WorldWideScience

Sample records for brain injury tbi

  1. Traumatic Brain Injury Registry (TBI)

    Data.gov (United States)

    Department of Veterans Affairs — As the number of Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Traumatic Brain Injury (TBI) patients has grown, so has the need to track and monitor...

  2. Traumatic Brain Injury (TBI): Moderate or Severe

    Science.gov (United States)

    Traumatic Brain Injury (TBI) Moderate or Severe Definition A TBI is classified as moderate or severe when a patient experiences ... skull and enters the brain Defense and Veterans Brain Injury Center PATFIAE MN TI LSI ES Traumatic Brain ...

  3. Traumatic Brain Injury (TBI)

    Science.gov (United States)

    ... A. (2008). Mild traumatic brain injury in U.S. soldiers returning from Iraq. New England Journal of Medicine, 358, 453–463. ... and Spotlights U.S. hospitals miss followup for suspected child abuse Q&A with NICHD Acting Director Catherine ...

  4. TRAUMATIC BRAIN INJURY (TBI) DATABASE

    Science.gov (United States)

    The Traumatic Brain Injury National Data Center (TBINDC) at Kessler Medical Rehabilitation Research and Education Center is the coordinating center for the research and dissemination efforts of the Traumatic Brain Injury Model Systems (TBIMS) program funded by the National Instit...

  5. Genetics and outcomes after traumatic brain injury (TBI): What do we know about pediatric TBI?

    OpenAIRE

    Kurowski, Brad; Martin, Lisa J.; Wade, Shari L.

    2012-01-01

    Human genetic association studies in individuals with traumatic brain injury (TBI) have increased rapidly over the past few years. Recently, several review articles evaluated the association of genetics with outcomes after TBI. However, almost all of the articles discussed in these reviews focused on adult TBI. The primary objective of this review is to gain a better understanding of which genes and/or genetic polymorphisms have been evaluated in pediatric TBI. Our initial search identified 1...

  6. Traumatic Brain Injury (TBI) Data and Statistics

    Science.gov (United States)

    ... Submit Search The CDC Injury Prevention & Control: Traumatic Brain Injury & Concussion Note: Javascript is disabled or is not ... please visit this page: About CDC.gov . Traumatic Brain Injury & Concussion Basic Information Get the Facts Signs and ...

  7. Treatment of Accommodative and Vergence Dysfunction in Traumatic Brain Injury (TBI): A Case Report

    OpenAIRE

    Anna Griffith, OD

    2015-01-01

    Background: Accommodative insufficiency (AI), accommodative infacility, and convergence insufficiency (CI) are some of the most common visual problems following traumatic brain injury (TBI). In light of the increased prevalence of TBIs in modern-day combat, it is important for clinicians to be aware of the associated visual symptoms and methods of treatment. The mechanism of progressive neural damage in TBI as well as the neural-anatomical pathways of accommodation and vergence will be review...

  8. Longitudinal outcome and recovery of social problems after pediatric traumatic brain injury (TBI): Contribution of brain insult and family environment.

    Science.gov (United States)

    Ryan, Nicholas P; van Bijnen, Loeka; Catroppa, Cathy; Beauchamp, Miriam H; Crossley, Louise; Hearps, Stephen; Anderson, Vicki

    2016-04-01

    Pediatric traumatic brain injury (TBI) can result in a range of social impairments, however longitudinal recovery is not well characterized, and clinicians are poorly equipped to identify children at risk for persisting difficulties. Using a longitudinal prospective design, this study aimed to evaluate the contribution of injury and non-injury related risk and resilience factors to longitudinal outcome and recovery of social problems from 12- to 24-months post-TBI. 78 children with TBI (injury age: 5.0-15.0 years) and 40 age and gender-matched typically developing (TD) children underwent magnetic resonance imaging including a susceptibility-weighted imaging (SWI) sequence 2-8 weeks post-injury (M=39.25, SD=27.64 days). At 12 and 24-months post- injury, parents completed questionnaires rating their child's social functioning, and environmental factors including socioeconomic status, caregiver mental health and family functioning. Results revealed that longitudinal recovery profiles differed as a function of injury severity, such that among children with severe TBI, social problems significantly increased from 12- to 24-months post-injury, and were found to be significantly worse than TD controls and children with mild and moderate TBI. In contrast, children with mild and moderate injuries showed few problems at 12-months post-injury and little change over time. Pre-injury environment and SWI did not significantly contribute to outcome at 24-months, however concurrent caregiver mental health and family functioning explained a large and significant proportion of variance in these outcomes. Overall, this study shows that longitudinal recovery profiles differ as a function of injury severity, with evidence for late-emerging social problems among children with severe TBI. Poorer long-term social outcomes were associated with family dysfunction and poorer caregiver mental health at 24-months post injury, suggesting that efforts to optimize the child's environment and

  9. How Do Health Care Providers Diagnose Traumatic Brain Injury (TBI)?

    Science.gov (United States)

    ... The pressure can cause additional damage to the brain. A health care provider may insert a probe through the skull to monitor this swelling. 2 In some cases, a shunt or drain is placed into the skull to relieve ICP. [ ...

  10. Thioredoxin-Mimetic-Peptides Protect Cognitive Function after Mild Traumatic Brain Injury (mTBI)

    Science.gov (United States)

    Baratz-Goldstein, Renana; Deselms, Hanna; Heim, Leore Raphael; Khomski, Lena; Hoffer, Barry J.

    2016-01-01

    Mild traumatic brain injury (mTBI) is recognized as a common injury among children, sportsmen, and elderly population. mTBI lacks visible objective structural brain damage but patients frequently suffer from long-lasting cognitive, behavioral and emotional difficulties associated with biochemical and cellular changes. Currently there is no effective treatment for patients with mTBI. The thioredoxin reductase/thioredoxin pathway (TrxR/Trx1) has both anti-inflammatory and anti-oxidative properties. If the system is compromised, Trx1 remains oxidized and triggers cell death via an ASK1-Trx1 signal transduction mechanism. We previously showed tri and tetra peptides which were derived from the canonical -CxxC- motif of the Trx1-active site, called thioredoxin mimetic (TXM) peptides, reversed inflammatory and oxidative stress damage mimicking Trx1 activity. Here, TXM-peptides were examined for protecting cognitive function following weight drop closed-head injury in a mouse model of mTBI. TXM-CB3 (AcCys-Pro-CysNH2), TXM-CB13 (DY-70; AcCys-Met-Lys-CysNH2) or AD4 (ACysNH2) were administered at 50 mg/kg, 60 min after injury and cognitive performance was monitored by the novel-object-recognition and Y-maze tests. Behavioral deficits subsequent to mTBI injury were reversed by a single dose of TXM-CB3, TXM-CB13 and, to a lesser extent, by AD4. TXM-CB13 similar to TXM-CB3 and AD4 reversed oxidative stress-induced phosphorylation of mitogen-activated kinases, p38MAPK and c-Jun N-terminal kinase, (JNK) in human neuronal SH-SY5Y cells. We conclude that significantly improved cognitive behavior post mTBI by the TXM-peptides could result from anti-apoptotic, and/or anti-inflammatory activities. Future preclinical studies are required to establish the TXM-peptides as potential therapeutic drugs for brain injuries. PMID:27285176

  11. Treatment of Accommodative and Vergence Dysfunction in Traumatic Brain Injury (TBI: A Case Report

    Directory of Open Access Journals (Sweden)

    Anna Griffith, OD

    2015-06-01

    Full Text Available Background: Accommodative insufficiency (AI, accommodative infacility, and convergence insufficiency (CI are some of the most common visual problems following traumatic brain injury (TBI. In light of the increased prevalence of TBIs in modern-day combat, it is important for clinicians to be aware of the associated visual symptoms and methods of treatment. The mechanism of progressive neural damage in TBI as well as the neural-anatomical pathways of accommodation and vergence will be reviewed in the case report presented here. Important considerations when treating patients with TBI will also be discussed. Case Report: This case report describes the diagnosis, management, and treatment of accommodative and vergence dysfunction in a 33-year-old veteran with a history of multiple TBIs incurred during combat in Afghanistan. The veteran was diagnosed with asymmetric accommodative insufficiency and infacility and gross convergence insufficiency, and he had decreased depth perception. Five in-office vision therapy sessions were conducted over the course of a month and a half, with daily practice at home, followed by maintenance activities and tapering of vision training. Treatment restored the patient’s visual clarity, comfort, and fine stereopsis, enabling him to pursue his goal of returning to school for engineering. Conclusion: Vision therapy improves visual function and symptoms from TBI in many patients. An increase in TBI due to modern-day warfare has increased the awareness of and the need for recognition and treatment of visual problems. Most, if not all, communities have a need for vision care for patients with TBI from car crashes, accidents, sports injuries, and concussion. Prompt diagnosis and treatment of visual dysfunction is critical to improving quality of life, ability to work towards vocational goals, and progress of other rehabilitation therapies which require varied visual tasks.

  12. Complementary and alternative medicine (CAM) following traumatic brain injury (TBI): Opportunities and challenges.

    Science.gov (United States)

    Hernández, Theresa D; Brenner, Lisa A; Walter, Kristen H; Bormann, Jill E; Johansson, Birgitta

    2016-06-01

    Traumatic brain injury (TBI) is highly prevalent and occurs in a variety of populations. Because of the complexity of its sequelae, treatment strategies pose a challenge. Given this complexity, TBI provides a unique target of opportunity for complementary and alternative medicine (CAM) treatments. The present review describes and discusses current opportunitites and challenges associated with CAM research and clinical applications in civilian, veteran and military service populations. In addition to a brief overview of CAM, the translational capacity from basic to clinical research to clinical practice will be described. Finally, a systematic approach to developing an adoptable evidence base, with proof of effectiveness based on the literature will be discussed. Inherent in this discussion will be the methodological and ethical challenges associated with CAM research in those with TBI and associated comorbidities, specifically in terms of how these challenges relate to practice and policy issues, implementation and dissemination. This article is part of a Special Issue entitled SI:Brain injury and recovery. PMID:26806403

  13. An evaluation of the strategic approach to the rehabilitation of traumatic brain injury (TBI) patients

    Science.gov (United States)

    Tomaszewski, Wiesław; Mańko, Grzegorz

    2011-01-01

    Summary Background The objective of our study was to evaluate a goal-driven strategic plan for the step-by-step rehabilitation of traumatic brain injury (TBI) patients, with effectiveness measured in terms of quality of life, as compared to patients treated according to a standard, progressive rehabilitation program. Material/Methods We studied 40 patients after TBI awakened from a long-term coma. The patients were divided into two equal groups: a control group (n=20) involving patients treated before the introduction of the strategic approach, and an experimental group (n=20) involving patients rehabilitated under the strategic approach. In evaluating the effectiveness of rehabilitation we used a structured interview with clinical observation and a scale for assessing the quality of life of patients after TBI. Results The deterioration in the quality of life of TBI patients is mainly related to difficulties in satisfying physiological needs, self-care, reduced mobility and disorders of cognitive, regulatory, and social functions. In both groups, the feature most susceptible to rehabilitation related change was movement, while the least susceptible functions were associated with the use of different means of transport. This change is significantly greater in persons in the experimental group, as compared to controls. Conclusions We found that a rehabilitation program controlled by a strategic plan, with the cooperation of the patient, is more effective in improving the quality of life, as the patient is more self-motivated to individually designed objectives. PMID:21873948

  14. The contribution of injury severity, executive and implicit functions to awareness of defi cits after traumatic brain injury (TBI)

    OpenAIRE

    Morton, Nicholas; Barker, Lynne

    2010-01-01

    Deficits in self-awareness are commonly seen after Traumatic Brain Injury (TBI) and adversely affect rehabilitative efforts, independence and quality of life (Ponsford, 2004). Awareness models predict that executive and implicit functions are important cognitive components of awareness though the putative relationship between implicit and awareness processes has not been subject to empirical investigation (Crosson et al., 1989; Ownsworth, Clare, & Morris, 2006; Toglia & Kirk, 2000). Severity ...

  15. Characterizing the spatial distribution of microhemorrhages resulting from Traumatic Brain Injury (TBI)

    Science.gov (United States)

    Li, Ningzhi; Chou, Yi-Yu; Shiee, Navid; Chan, Leighton; Pham, Dzung L.; Butman, John A.

    2014-03-01

    This study examines the spatial distribution of microhemorrhages defined using susceptibility weighted images (SWI) in 46 patients with Traumatic Brain Injury (TBI) and applying region of interest (ROI) analysis using a brain atlas. SWI and 3D T1-weighted images were acquired on a 3T clinical Siemens scanner. A neuroradiologist reviewed all SWI images and manually labeled all identified microhemorrhages. To characterize the spatial distribution of microhemorrhages in standard Montreal Neurological Institute (MNI) space, the T1-weighted images were nonlinearly registered to the MNI template. This transformation was then applied to the co-registered SWI images and to the microhemorrhage coordinates. The frequencies of microhemorrhages were determined in major structures from ROIs defined in the digital Talairach brain atlas and in white matter tracts defined using a diffusion tensor imaging atlas. A total of 629 microhemorrhages were found with an average of 22±42 (range=1-179) in the 24 positive TBI patients. Microhemorrhages mostly congregated around the periphery of the brain and were fairly symmetrically distributed, although a number were found in the corpus callosum. From Talairach ROI analysis, microhemorrhages were most prevalent in the frontal lobes (65.1%). Restricting the analysis to WM tracts, microhemorrhages were primarily found in the corpus callosum (56.9%).

  16. Greater neurobehavioral deficits occur in adult mice after repeated, as compared to single, mild traumatic brain injury (mTBI).

    Science.gov (United States)

    Nichols, Jessica N; Deshane, Alok S; Niedzielko, Tracy L; Smith, Cory D; Floyd, Candace L

    2016-02-01

    Mild traumatic brain injury (mTBI) accounts for the majority of all brain injuries and affected individuals typically experience some extent of cognitive and/or neuropsychiatric deficits. Given that repeated mTBIs often result in worsened prognosis, the cumulative effect of repeated mTBIs is an area of clinical concern and on-going pre-clinical research. Animal models are critical in elucidating the underlying mechanisms of single and repeated mTBI-associated deficits, but the neurobehavioral sequelae produced by these models have not been well characterized. Thus, we sought to evaluate the behavioral changes incurred after single and repeated mTBIs in mice utilizing a modified impact-acceleration model. Mice in the mTBI group received 1 impact while the repeated mTBI group received 3 impacts with an inter-injury interval of 24h. Classic behavior evaluations included the Morris water maze (MWM) to assess learning and memory, elevated plus maze (EPM) for anxiety, and forced swim test (FST) for depression/helplessness. Additionally, species-typical behaviors were evaluated with the marble-burying and nestlet shredding tests to determine motivation and apathy. Non-invasive vibration platforms were used to examine sleep patterns post-mTBI. We found that the repeated mTBI mice demonstrated deficits in MWM testing and poorer performance on species-typical behaviors. While neither single nor repeated mTBI affected behavior in the EPM or FST, sleep disturbances were observed after both single and repeated mTBI. Here, we conclude that behavioral alterations shown after repeated mTBI resemble several of the deficits or disturbances reported by patients, thus demonstrating the relevance of this murine model to study repeated mTBIs. PMID:26542813

  17. Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI)

    DEFF Research Database (Denmark)

    Maas, Andrew I R; Menon, David K; Steyerberg, Ewout W;

    2015-01-01

    : To improve characterization and classification of TBI and to identify best clinical care, using comparative effectiveness research approaches. METHODS: This multicenter, longitudinal, prospective, observational study in 22 countries across Europe and Israel will collect detailed data from 5400...... consenting patients, presenting within 24 hours of injury, with a clinical diagnosis of TBI and an indication for computed tomography. Broader registry-level data collection in approximately 20,000 patients will assess generalizability. Cross sectional comprehensive outcome assessments, including quality of......Trauma Effectiveness Research in TBI should provide novel multidimensional approaches to TBI characterization and classification, evidence to support treatment recommendations, and benchmarks for quality of care. Data and sample repositories will ensure opportunities for legacy research. DISCUSSION: Comparative...

  18. Abnormal neurological exam findings in individuals with mild traumatic brain injury (mTBI) versus psychiatric and healthy controls.

    Science.gov (United States)

    Silva, Marc A; Donnell, Alison J; Kim, Michelle S; Vanderploeg, Rodney D

    2012-01-01

    In those with a history of mild traumatic brain injury (mTBI), cognitive and emotional disturbances are often misattributed to that preexisting injury. However, causal determinations of current symptoms cannot be conclusively determined because symptoms are often nonspecific to etiology and offer virtually no differential diagnostic value in postacute or chronic phases. This population-based study examined whether the presence of abnormalities during neurological examination would distinguish between mTBI (in the chronic phase), healthy controls, and selected psychiatric conditions. Retrospective analysis of data from 4462 community-dwelling Army veterans was conducted. Diagnostically unique groups were compared on examination of cranial nerve function and other neurological signs. Results demonstrated that individuals with mTBI were no more likely than those with a major depressive disorder, generalized anxiety disorder, posttraumatic stress disorder, or somatoform disorder to show any abnormality. Thus, like self-reported cognitive and emotional symptoms, the presence of cranial nerve or other neurological abnormalities offers no differential diagnostic value. Clinical implications and study limitations are presented. PMID:23020281

  19. Evolving hypopituitarism as a consequence of traumatic brain injury (TBI) in childhood - call for attention.

    Science.gov (United States)

    Medic-Stojanoska, Milica; Pekic, Sandra; Curic, Nikola; Djilas-Ivanovic, Dragana; Popovic, Vera

    2007-06-01

    Hypopituitarism is a common complication of TBI in long-term survivors, more frequent than previously realized. It may be partial or complete, sometimes very subtle without visible lesions in hypothalamo-pituitary region and is diagnosed only by biochemical means. Neuroendocrine abnormalities caused by TBI may have significant implications for the recovery and rehabilitation of these patients. The subjects at risk are those who have suffered moderate to severe trauma, although mild intensity trauma may precede hypopituitarism also. Particular attention should be paid to this problem in children and adolescents. We describe a patient with hypopituitarism thought to be idiopathic due to mild head trauma which caused diabetes insipidus in childhood, gradual failure of pituitary hormones during the period of growth and development, and metabolic (dyslipidemia), physical (obesity), and cognitive impairments in the adult period. PMID:17906374

  20. Traumatic Brain Injury

    Science.gov (United States)

    Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that ...

  1. Traumatic Brain Injury

    Science.gov (United States)

    Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that people ...

  2. Uncovering latent deficits due to mild traumatic brain injury (mTBI by using normobaric hypoxia stress

    Directory of Open Access Journals (Sweden)

    Leonard eTemme

    2013-04-01

    Full Text Available Memory deficits and other cognitive symptoms frequently associated with mTBI are commonly thought to resolve within 7 to 10 days. This generalization is based principally on observations made in individuals who are in the unstressed environmental conditions typical to a clinic and so does not consider the impact of physiologic, environmental or psychological stress. Normobaric Hypoxia (NH stress can be generated by mixing normal mean sea level air (MSL containing 21% oxygen (O2 with nitrogen, which is biologically inert, so that the resultant mixed gas has a partial pressure of O2 approximating that of specified altitudes. This technique was used to generate NH equivalents of 8,000, 12,000 and 14,000 feet above MSL in a group of 36 volunteers with an mTBI history and an equal number of controls matched on the basis of age, gender, weight, etc. Short term visual memory was tested using Matching to Sample (M2S subtest of the BrainCheckers analogue of the Automated Neuropsychological Assessment Metrics (ANAM. Although there were no significant differences in M2S performance between the two groups of subjects at MSL, with increased altitude, performance deteriorated in the mTBI group as predicted to be significantly worse than that of the controls. When the subjects were returned to MSL, the difference disappeared. This finding suggests that the hypoxic challenge paradigm developed here has potential clinical utility for assessing the effects of mTBI in individuals who appear asymptomatic under normal conditions.

  3. Stretch and/or oxygen glucose deprivation (OGD in an in vitro traumatic brain injury (TBI model induces calcium alteration and inflammatory cascade

    Directory of Open Access Journals (Sweden)

    Ellaine Salvador

    2015-08-01

    Full Text Available The blood-brain barrier (BBB, made up of endothelial cells of capillaries in the brain, maintains the microenvironment of the central nervous system. During ischemia and traumatic brain injury (TBI, cellular disruption leading to mechanical insult results to the BBB being compromised. Oxygen glucose deprivation (OGD is the most commonly used in vitro model for ischemia. On the other hand, stretch injury is currently being used to model TBI in vitro. In this paper, the two methods are used alone or in combination, to assess their effects on cerebrovascular endothelial cells cEND in the presence or absence of astrocytic factors. Applying severe stretch and/or OGD to cEND cells in our experiments resulted to cell swelling and distortion. Damage to the cells induced release of lactate dehydrogenase enzyme (LDH and nitric oxide (NO into the cell culture medium. In addition, mRNA expression of inflammatory markers interleukin (IL-6, IL-1α, chemokine (C-C motif ligand 2 (CCL2 and tumor necrosis factor (TNF-α also increased. These events could lead to the opening of calcium ion channels resulting to excitotoxicity. This could be demonstrated by increased calcium level in OGD-subjected cEND cells incubated with astrocyte-conditioned medium. Furthermore, reduction of cell membrane integrity decreased tight junction proteins claudin-5 and occludin expression. In addition, permeability of the endothelial cell monolayer increased. Also, since cell damage requires an increased uptake of glucose, expression of glucose transporter glut1 was found to increase at the mRNA level after OGD. Overall, the effects of OGD on cEND cells appear to be more prominent than that of stretch with regards to TJ proteins, NO, glut1 expression and calcium level. Astrocytes potentiate these effects on calcium level in cEND cells. Combining both methods to model TBI in vitro shows a promising improvement to currently available models.

  4. Trigeminal neuroplasticity underlies allodynia in a preclinical model of mild closed head traumatic brain injury (cTBI).

    Science.gov (United States)

    Mustafa, Golam; Hou, Jiamei; Tsuda, Shigeharu; Nelson, Rachel; Sinharoy, Ankita; Wilkie, Zachary; Pandey, Rahul; Caudle, Robert M; Neubert, John K; Thompson, Floyd J; Bose, Prodip

    2016-08-01

    Post-traumatic headache (PTH) following TBI is a common and often persisting pain disability. PTH is often associated with a multimodal central pain sensitization on the skin surface described as allodynia. However, the particular neurobiology underlying cTBI-induced pain disorders are not known. These studies were performed to assess trigeminal sensory sensitization and to determine if sensitization measured behaviorally correlated with detectable changes in portions of the trigeminal sensory system (TSS), particularly trigeminal nucleus, thalamus, and sensory cortex. Thermal stimulation is particularly well suited to evaluate sensitization and was used in these studies. Recent advances in the use of reward/conflict paradigms permit use of operant measures of behavior, versus reflex-driven response behaviors, for thermal sensitization studies. Thus, to quantitate facial thermal sensitization (allodynia) in the setting of acute TBI, the current study utilized an operant orofacial pain reward/conflict testing paradigm to assess facial thermal sensitivity in uninjured control animals compared with those two weeks after cTBI in a rodent model. Significant reductions in facial contact/lick behaviors were observed in the TBI animals using either cool or warm challenge temperatures compared with behaviors in the normal animals. These facial thermal sensitizations correlated with detectable changes in multiple levels of the TSS. The immunohistochemical (IHC) studies revealed significant alterations in the expression of the serotonin (5-HT), neurokinin 1 receptor (NK1R), norepinephrine (NE), and gamma-aminobutyric acid (GABA) in the caudal trigeminal nucleus, thalamic VPL/VPM nucleus, and sensory cortex of the orofacial pain pathways. There was a strong correlation between increased expression of certain IHC markers and increased behavioral markers for facial sensitization. The authors conclude that TBI-induced changes observed in the TSS are consistent with the expression

  5. Traumatic Brain Injury Inpatient Rehabilitation

    Science.gov (United States)

    Im, Brian; Schrer, Marcia J.; Gaeta, Raphael; Elias, Eileen

    2010-01-01

    Traumatic brain injuries (TBI) can cause multiple medical and functional problems. As the brain is involved in regulating nearly every bodily function, a TBI can affect any part of the body and aspect of cognitive, behavioral, and physical functioning. However, TBI affects each individual differently. Optimal management requires understanding the…

  6. PERSONALITY CHANGES IN BRAIN INJURY

    OpenAIRE

    Garcia, Patricia Gracia; Mielke, Michelle M.; Rosenberg, Paul; Bergey, Alyssa; Rao, Vani

    2011-01-01

    Traumatic brain injury (TBI) is frequently complicated by alterations in mood and behaviour and changes in personality. We report mild personality changes post-TBI as a possible indicator of traumatic brain injury, but not of injury severity or psychiatric complications.

  7. Hypopituitarism in Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Klose, Marianne; Feldt-Rasmussen, Ulla

    2015-01-01

    While hypopituitarism after traumatic brain injury (TBI) was previously considered rare, it is now thought to be a major cause of treatable morbidity among TBI survivors. Consequently, recommendations for assessment of pituitary function and replacement in TBI were recently introduced. Given the...

  8. Mild traumatic brain injury.

    NARCIS (Netherlands)

    Vos, P.E.; Alekseenko, Y.; Battistin, L.; Ehler, E.; Gerstenbrand, F.; Muresanu, D.F.; Potapov, A.; Stepan, C.A.; Traubner, P.; Vecsei, L.; Wild, K. von

    2012-01-01

    Traumatic Brain Injury (TBI) is among the most frequent neurological disorders. Of all TBIs 90% are considered mild with an annual incidence of 100-300/100.000. Intracranial complications of Mild Traumatic Brain Injury (MTBI) are infrequent (10%), requiring neurosurgical intervention in a minority o

  9. Traumatic Brain Injury: Looking Back, Looking Forward

    Science.gov (United States)

    Bartlett, Sue; Lorenz, Laura; Rankin, Theresa; Elias, Eileen; Weider, Katie

    2011-01-01

    This article is the eighth of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received limited national attention and support. However, since it is the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained attention of elected officials, military leaders, policymakers, and the public. The…

  10. Preconditioning for traumatic brain injury

    Science.gov (United States)

    Yokobori, Shoji; Mazzeo, Anna T; Hosein, Khadil; Gajavelli, Shyam; Dietrich, W. Dalton; Bullock, M. Ross

    2016-01-01

    Traumatic brain injury (TBI) treatment is now focused on the prevention of primary injury and reduction of secondary injury. However, no single effective treatment is available as yet for the mitigation of traumatic brain damage in humans. Both chemical and environmental stresses applied before injury, have been shown to induce consequent protection against post-TBI neuronal death. This concept termed “preconditioning” is achieved by exposure to different pre-injury stressors, to achieve the induction of “tolerance” to the effect of the TBI. However, the precise mechanisms underlying this “tolerance” phenomenon are not fully understood in TBI, and therefore even less information is available about possible indications in clinical TBI patients. In this review we will summarize TBI pathophysiology, and discuss existing animal studies demonstrating the efficacy of preconditioning in diffuse and focal type of TBI. We will also review other non-TBI preconditionng studies, including ischemic, environmental, and chemical preconditioning, which maybe relevant to TBI. To date, no clinical studies exist in this field, and we speculate on possible futureclinical situation, in which pre-TBI preconditioning could be considered. PMID:24323189

  11. Sleep in traumatic brain injury.

    Science.gov (United States)

    Vermaelen, James; Greiffenstein, Patrick; deBoisblanc, Bennett P

    2015-07-01

    More than one-half million patients are hospitalized annually for traumatic brain injury (TBI). One-quarter demonstrate sleep-disordered breathing, up to 50% experience insomnia, and half have hypersomnia. Sleep disturbances after TBI may result from injury to sleep-regulating brain tissue, nonspecific neurohormonal responses to systemic injury, ICU environmental interference, and medication side effects. A diagnosis of sleep disturbances requires a high index of suspicion and appropriate testing. Treatment starts with a focus on making the ICU environment conducive to normal sleep. Treating sleep-disordered breathing likely has outcome benefits in TBI. The use of sleep promoting sedative-hypnotics and anxiolytics should be judicious. PMID:26118920

  12. Family needs after brain injury

    DEFF Research Database (Denmark)

    Norup, Anne; Perrin, Paul B; Cuberos-Urbano, Gustavo;

    2015-01-01

    OBJECTIVE: The objective of this study was to explore differences by country in the importance of family needs after traumatic brain injury (TBI), as well as differences in met/unmet needs. METHOD: Two hundred and seventy-one family members of an individual with TBI in Mexico, Colombia, Spain...

  13. Surviving severe traumatic brain injury in Denmark

    DEFF Research Database (Denmark)

    Odgaard, Lene; Poulsen, Ingrid; Kammersgaard, Lars Peter;

    2015-01-01

    PURPOSE: To identify all hospitalized patients surviving severe traumatic brain injury (TBI) in Denmark and to compare these patients to TBI patients admitted to highly specialized rehabilitation (HS-rehabilitation). PATIENTS AND METHODS: Patients surviving severe TBI were identified from The...... severe TBI were admitted to HS-rehabilitation. Female sex, older age, and non-working status pre-injury were independent predictors of no HS-rehabilitation among patients surviving severe TBI. CONCLUSION: The incidence rate of hospitalized patients surviving severe TBI was stable in Denmark and the...

  14. Head motions while riding roller coasters: Implications for brain injury

    OpenAIRE

    Pfister, Bryan J.; Chickola, Larry; Smith, Douglas H.

    2009-01-01

    The risk of traumatic brain injury (TBI) while riding roller coasters has received substantial attention. Case reports of TBI around the time of riding roller coasters have led many medical professionals to assert that the high gravitational forces (G-forces) induced by roller coasters pose a significant TBI risk. Head injury research, however, has shown that G-forces alone cannot predict TBI. Established head injury criterions and procedures were employed to compare the potential of TBI betw...

  15. Post-injury administration of NAAG peptidase inhibitor prodrug, PGI-02776, in experimental TBI.

    Science.gov (United States)

    Feng, Jun-Feng; Van, Ken C; Gurkoff, Gene G; Kopriva, Christina; Olszewski, Rafal T; Song, Minsoo; Sun, Shifeng; Xu, Man; Neale, Joseph H; Yuen, Po-Wai; Lowe, David A; Zhou, Jia; Lyeth, Bruce G

    2011-06-13

    Traumatic brain injury (TBI) leads to a rapid and excessive increase in glutamate concentration in the extracellular milieu, which is strongly associated with excitotoxicity and neuronal degeneration. N-acetylaspartylglutamate (NAAG), a prevalent peptide neurotransmitter in the vertebrate nervous system, is released along with glutamate and suppresses glutamate release by actions at pre-synaptic metabotropic glutamate autoreceptors. Extracellular NAAG is hydrolyzed to N-acetylaspartate and glutamate by peptidase activity. In the present study PGI-02776, a newly designed di-ester prodrug of the urea-based NAAG peptidase inhibitor ZJ-43, was tested for neuroprotective potential when administered intraperitoneally 30 min after lateral fluid percussion TBI in the rat. Stereological quantification of hippocampal CA2-3 degenerating neurons at 24 h post injury revealed that 10 mg/kg PGI-02776 significantly decreased the number of degenerating neurons (pwater maze performance and assessment of 24-hour memory retention revealed significant differences between sham-TBI and TBI-saline. In contrast, no significant difference was found between sham-TBI and PGI-02776 treated groups in either analysis indicating an improvement in cognitive performance with PGI-02776 treatment. Histological analysis on day 16 post-injury revealed significant cell death in injured animals regardless of treatment. In vitro NAAG peptidase inhibition studies demonstrated that the parent compound (ZJ-43) exhibited potent inhibitory activity while the mono-ester (PGI-02749) and di-ester (PGI-02776) prodrug compounds exhibited moderate and weak levels of inhibitory activity, respectively. Pharmacokinetic assays in uninjured animals found that the di-ester (PGI-02776) crossed the blood-brain barrier. PGI-02776 was also readily hydrolyzed to both the mono-ester (PGI-02749) and the parent compound (ZJ-43) in both blood and brain. Overall, these findings suggest that post-injury treatment with the ZJ-43

  16. Working with Students with Traumatic Brain Injury

    Science.gov (United States)

    Lucas, Matthew D.

    2010-01-01

    The participation of a student with Traumatic Brain Injury (TBI) in general physical education can often be challenging and rewarding for the student and physical education teacher. This article addresses common characteristics of students with TBI and presents basic solutions to improve the education of students with TBI in the general physical…

  17. Narrative Language in Traumatic Brain Injury

    Science.gov (United States)

    Marini, Andrea; Galetto, Valentina; Zampieri, Elisa; Vorano, Lorenza; Zettin, Marina; Carlomagno, Sergio

    2011-01-01

    Persons with traumatic brain injury (TBI) often show impaired linguistic and/or narrative abilities. The present study aimed to document the features of narrative discourse impairment in a group of adults with TBI. 14 severe TBI non-aphasic speakers (GCS less than 8) in the phase of neurological stability and 14 neurologically intact participants…

  18. Traumatic Brain Injury and Personality Change

    Science.gov (United States)

    Fowler, Marc; McCabe, Paul C.

    2011-01-01

    Traumatic brain injury (TBI) is the leading cause of death and lifelong disability in the United States for individuals below the age of 45. Current estimates from the Center for Disease Control (CDC) indicate that at least 1.4 million Americans sustain a TBI annually. TBI affects 475,000 children under age 14 each year in the United States alone.…

  19. Evaluation after Traumatic Brain Injury

    Science.gov (United States)

    Trudel, Tina M.; Halper, James; Pines, Hayley; Cancro, Lorraine

    2010-01-01

    It is important to determine if a traumatic brain injury (TBI) has occurred when an individual is assessed in a hospital emergency room after a car accident, fall, or other injury that affects the head. This determination influences decisions about treatment. It is essential to screen for the injury, because the sooner they begin appropriate…

  20. Brain injury requires lung protection

    OpenAIRE

    Lopez-Aguilar, Josefina; Blanch, Lluis

    2015-01-01

    The paper entitled “The high-mobility group protein B1-Receptor for advanced glycation endproducts (HMGB1-RAGE) axis mediates traumatic brain injury (TBI)-induced pulmonary dysfunction in lung transplantation” published recently in Science Translational Medicine links lung failure after transplantation with alterations in the axis HMGB1-RAGE after TBI, opening a new field for exploring indicators for the early detection of patients at risk of developing acute lung injury (ALI). The lung is on...

  1. NONINVASIVE BRAIN STIMULATION IN TRAUMATIC BRAIN INJURY

    OpenAIRE

    Demirtas-Tatlidede, Asli; Vahabzadeh-Hagh, Andrew M.; Bernabeu, Montserrat; Tormos, Jose M.; Pascual-Leone, Alvaro

    2012-01-01

    Brain stimulation techniques have evolved in the last few decades with more novel methods capable of painless, noninvasive brain stimulation. While the number of clinical trials employing noninvasive brain stimulation continues to increase in a variety of medication-resistant neurological and psychiatric diseases, studies evaluating their diagnostic and therapeutic potential in traumatic brain injury (TBI) are largely lacking. This review introduces different techniques of noninvasive brain s...

  2. Radiologic Determination of Corpus Callosum Injury in Patients with Mild Traumatic Brain Injury and Associated Clinical Characteristics

    OpenAIRE

    Kim, Dong Shin; Choi, Hyuk Jai; Yang, Jin Seo; Cho, Yong Jun; Kang, Suk Hyung

    2015-01-01

    Objective To investigate the incidence of corpus callosum injury (CCI) in patients with mild traumatic brain injury (TBI) using brain MRI. We also performed a review of the clinical characteristics associated with this injury. Methods A total of 356 patients in the study were diagnosed with TBI, with 94 patients classified as having mild TBI. We included patients with mild TBI for further evaluation if they had normal findings via brain computed tomography (CT) scans and also underwent brain ...

  3. Clinical Traumatic Brain Injury in the Preclinical Setting.

    Science.gov (United States)

    Berkner, Justin; Mannix, Rebekah; Qiu, Jianhua

    2016-01-01

    Traumatic brain injury (TBI) is the leading cause of death and disability for people under 45 years of age. Clinical TBI is often the result of disparate forces resulting in heterogeneous injuries. Preclinical modeling of TBI is a vital tool for studying the complex cascade of metabolic, cellular, and molecular post-TBI events collectively termed secondary injury. Preclinical models also provide an important platform for studying therapeutic interventions. However, modeling TBI in the preclinical setting is challenging, and most models replicate only certain aspects of clinical TBI. This chapter details the most widely used models of preclinical TBI, including the controlled cortical impact, fluid percussion, blast, and closed head models. Each of these models replicates particular critical aspects of clinical TBI. Prior to selecting a preclinical TBI model, it is important to address what aspect of human TBI is being sought to evaluate. PMID:27604710

  4. Traumatic Brain Injury and Delayed Sequelae: A Review - Traumatic Brain Injury and Mild Traumatic Brain Injury (Concussion) are Precursors to Later-Onset Brain Disorders, Including Early-Onset Dementia

    OpenAIRE

    Michael A. Kiraly; Kiraly, Stephen J.

    2007-01-01

    Brain injuries are too common. Most people are unaware of the incidence of and horrendous consequences of traumatic brain injury (TBI) and mild traumatic brain injury (MTBI). Research and the advent of sophisticated imaging have led to progression in the understanding of brain pathophysiology following TBI. Seminal evidence from animal and human experiments demonstrate links between TBI and the subsequent onset of premature, psychiatric syndromes and neurodegenerative diseases, including Alzh...

  5. Secondary Damage after Traumatic Brain Injury: Epidemiology, Pathophysiology and Therapy

    OpenAIRE

    Engel, Doortje Caroline

    2008-01-01

    textabstractTraumatic brain injury (TBI) is defined as a microscopic or macroscopic injury to the brain caused by external physical forces. Road traffic accidents, falls, sports injuries (i.e. boxing), recreational accidents (i.e. parachute jumping), the use of firearms, assault, child abuse, and several rare causes e.g. the use of nail guns or lawn mowers have all been described as causes of TBI. The pathology of TBI can be classified by mechanism (closed versus penetrating); clinical severi...

  6. Inflammatory neuroprotection following traumatic brain injury.

    Science.gov (United States)

    Russo, Matthew V; McGavern, Dorian B

    2016-08-19

    Traumatic brain injury (TBI) elicits an inflammatory response in the central nervous system (CNS) that involves both resident and peripheral immune cells. Neuroinflammation can persist for years following a single TBI and may contribute to neurodegeneration. However, administration of anti-inflammatory drugs shortly after injury was not effective in the treatment of TBI patients. Some components of the neuroinflammatory response seem to play a beneficial role in the acute phase of TBI. Indeed, following CNS injury, early inflammation can set the stage for proper tissue regeneration and recovery, which can, perhaps, explain why general immunosuppression in TBI patients is disadvantageous. Here, we discuss some positive attributes of neuroinflammation and propose that inflammation be therapeutically guided in TBI patients rather than globally suppressed. PMID:27540166

  7. Traumatic Brain Injury and Delayed Sequelae: A Review - Traumatic Brain Injury and Mild Traumatic Brain Injury (Concussion are Precursors to Later-Onset Brain Disorders, Including Early-Onset Dementia

    Directory of Open Access Journals (Sweden)

    Michael A. Kiraly

    2007-01-01

    Full Text Available Brain injuries are too common. Most people are unaware of the incidence of and horrendous consequences of traumatic brain injury (TBI and mild traumatic brain injury (MTBI. Research and the advent of sophisticated imaging have led to progression in the understanding of brain pathophysiology following TBI. Seminal evidence from animal and human experiments demonstrate links between TBI and the subsequent onset of premature, psychiatric syndromes and neurodegenerative diseases, including Alzheimer's disease (AD and Parkinson's disease (PD. Objectives of this summary are, therefore, to instill appreciation regarding the importance of brain injury prevention, diagnosis, and treatment, and to increase awareness regarding the long-term delayed consequences following TBI.

  8. Traumatic brain injury, neuroimaging, and neurodegeneration

    Directory of Open Access Journals (Sweden)

    Erin D. Bigler

    2013-08-01

    Full Text Available Depending on severity, traumatic brain injury (TBI induces immediate neuropathological effects that in the mildest form may be transient but as severity increases results in neural damage and degeneration. The first phase of neural degeneration is explainable by the primary acute and secondary neuropathological effects initiated by the injury; however, neuroimaging studies demonstrate a prolonged period of pathological changes that progressively occur even during the chronic phase. This review examines how neuroimaging may be used in TBI to understand (1 the dynamic changes that occur in brain development relevant to understanding the effects of TBI and how these relate to developmental stage when the brain is injured, (2 how TBI interferes with age-typical brain development and the effects of aging thereafter, and (3 how TBI results in greater frontotemporolimbic damage, results in cerebral atrophy, and is more disruptive to white matter neural connectivity. Neuroimaging quantification in TBI demonstrates degenerative effects from brain injury over time. An adverse synergistic influence of TBI with aging may predispose the brain injured individual for the development of neuropsychiatric and neurodegenerative disorders long after surviving the brain injury.

  9. Standardizing Data Collection in Traumatic Brain Injury

    OpenAIRE

    Maas, Andrew I.R.; Harrison-Felix, Cynthia L.; Menon, David; Adelson, P. David; Balkin, Tom; Bullock, Ross; Engel, Doortje C.; Gordon, Wayne; Langlois-Orman, Jean; Lew, Henry L.; Robertson, Claudia; Temkin, Nancy; Valadka, Alex; VERFAELLIE, MIEKE; Wainwright, Mark

    2011-01-01

    Collaboration among investigators, centers, countries, and disciplines is essential to advancing the care for traumatic brain injury (TBI). It is thus important that we “speak the same language.” Great variability, however, exists in data collection and coding of variables in TBI studies, confounding comparisons between and analysis across different studies. Randomized controlled trials can never address the many uncertainties concerning treatment approaches in TBI. Pooling data from differen...

  10. Traumatic Brain Injury, Boredom and Depression

    OpenAIRE

    James Danckert; Yael Goldberg

    2013-01-01

    Traumatic brain injury (TBI) often presents with co-morbid depression and elevated levels of boredom. We explored the relationship between boredom and depression in a group of mild (n = 38), moderate-to-severe TBI patients (n = 14) and healthy controls (n = 88), who completed the Beck Depression Inventory and Boredom Proneness Scales as part of a larger study. Results showed that the relationship between boredom and depression was strongest in moderate-to-severe TBI patients. We explored two ...

  11. Traumatic Brain Injury: Nuclear Medicine Neuroimaging

    NARCIS (Netherlands)

    Sánchez-Catasús, Carlos A; Vállez Garcia, David; Le Riverend Morales, Eloísa; Galvizu Sánchez, Reinaldo; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; de Vries, Erik FJ; van Waarde, Aren; Leenders, Klaus L

    2014-01-01

    This chapter provides an up-to-date review of nuclear medicine neuroimaging in traumatic brain injury (TBI). 18F-FDG PET will remain a valuable tool in researching complex mechanisms associated with early metabolic dysfunction in TBI. Although evidence-based imaging studies are needed, 18F-FDG PET i

  12. Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: Experimental rat injury model

    Science.gov (United States)

    Mishra, Vikas; Skotak, Maciej; Schuetz, Heather; Heller, Abi; Haorah, James; Chandra, Namas

    2016-06-01

    Injury severity in blast induced Traumatic Brain Injury (bTBI) increases with blast overpressure (BOP) and impulse in dose-dependent manner. Pure primary blast waves were simulated in compressed gas shock-tubes in discrete increments. Present work demonstrates 24 hour survival of rats in 0–450 kPa (0–800 Pa•s impulse) range at 10 discrete levels (60, 100, 130, 160, 190, 230, 250, 290, 350 and 420 kPa) and determines the mortality rate as a non-linear function of BOP. Using logistic regression model, predicted mortality rate (PMR) function was calculated, and used to establish TBI severities. We determined a BOP of 145 kPa as upper mild TBI threshold (5% PMR). Also we determined 146–220 kPa and 221–290 kPa levels as moderate and severe TBI based on 35%, and 70% PMR, respectively, while BOP above 290 kPa is lethal. Since there are no standards for animal bTBI injury severity, these thresholds need further refinements using histopathology, immunohistochemistry and behavior. Further, we specifically investigated mild TBI range (0–145 kPa) using physiological (heart rate), pathological (lung injury), immuno-histochemical (oxidative/nitrosative and blood-brain barrier markers) as well as blood borne biomarkers. With these additional data, we conclude that mild bTBI occurs in rats when the BOP is in the range of 85–145 kPa.

  13. Plasticity and Inflammation following Traumatic Brain Injury

    OpenAIRE

    Hånell, Anders

    2011-01-01

    Traumatic Brain Injury (TBI) mainly affects young persons in traffic accidents and the elderly in fall accidents. Improvements in the clinical management have significantly improved the outcome following TBI but survivors still suffer from depression, memory problems, personality changes, epilepsy and fatigue. The initial injury starts a series of events that give rise to a secondary injury process and despite several clinical trials there is no drug available for clinical use that targets se...

  14. Functional level after Traumatic Brain Injury

    OpenAIRE

    Sandhaug, Maria

    2012-01-01

    Objectives: The objectives of the thesis were to describe the functional level (papers I and II) and self awareness of functional deficits (paper III) after moderate and severe Traumatic Brain Injury (TBI), and to evaluate the predictive impact of pre-injury and injury-related factors on functional level (papers I, II) and awareness of functional deficits (paper III). Material and methods: Papers I-II were cohort studies of 55 TBI patients (moderate = 21, severe = 34) and 65...

  15. Aquaporin 9 in rat brain after severe traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2012-03-01

    Full Text Available OBJECTIVE: To reveal the expression and possible roles of aquaporin 9 (AQP9 in rat brain, after severe traumatic brain injury (TBI. METHODS: Brain water content (BWC, tetrazolium chloride staining, Evans blue staining, immunohistochemistry (IHC, immunofluorescence (IF, western blot, and real-time polymerase chain reaction were used. RESULTS: The BWC reached the first and second (highest peaks at 6 and 72 hours, and the blood brain barrier (BBB was severely destroyed at six hours after the TBI. The worst brain ischemia occurred at 72 hours after TBI. Widespread AQP9-positive astrocytes and neurons in the hypothalamus were detected by means of IHC and IF after TBI. The abundance of AQP9 and its mRNA increased after TBI and reached two peaks at 6 and 72 hours, respectively, after TBI. CONCLUSIONS: Increased AQP9 might contribute to clearance of excess water and lactate in the early stage of TBI. Widespread AQP9-positive astrocytes might help lactate move into neurons and result in cellular brain edema in the later stage of TBI. AQP9-positive neurons suggest that AQP9 plays a role in energy balance after TBI.

  16. Evidence that the blood biomarker SNTF predicts brain imaging changes and persistent cognitive dysfunction in mild TBI patients

    Directory of Open Access Journals (Sweden)

    Robert eSiman

    2013-11-01

    Full Text Available Although mild traumatic brain injury (mTBI, or concussion, is not typically associated with abnormalities on computed tomography (CT, it nevertheless causes persistent cognitive dysfunction for many patients. Consequently, new prognostic methods for mTBI are needed to identify at-risk cases, especially at an early and potentially treatable stage. Here, we quantified plasma levels of the neurodegeneration biomarker calpain-cleaved alphaII-spectrin N-terminal fragment (SNTF from 38 participants with CT-negative mTBI, orthopedic injury (OI and normal uninjured controls (age range 12-30 years, and compared them with findings from diffusion tensor magnetic resonance imaging (DTI and long-term cognitive assessment. SNTF levels were at least twice the lower limit of detection in 7 of 17 mTBI cases and in 3 of 13 OI cases, but in none of the uninjured controls. An elevation in plasma SNTF corresponded with significant differences in fractional anisotropy and the apparent diffusion coefficient in the corpus callosum and uncinate fasciculus measured by DTI. Furthermore, increased plasma SNTF on the day of injury correlated significantly with cognitive impairment that persisted for at least 3 months, both across all study participants and also among the mTBI cases by themselves. The elevation in plasma SNTF in the subset of OI cases, accompanied by corresponding white matter and cognitive abnormalities, raises the possibility of identifying undiagnosed cases of mTBI. These data suggest that the blood level of SNTF on the day of a CT-negative mTBI may identify a subset of patients at risk of white matter damage and persistent disability. SNTF could have prognostic and diagnostic utilities in the assessment and treatment of mTBI.

  17. Getting My Bearings, Returning to School: Issues Facing Adolescents with Traumatic Brain Injury

    Science.gov (United States)

    Schilling, Ethan J.; Getch, Yvette Q.

    2012-01-01

    Traumatic brain injury (TBI) is characterized by a blow to the head or other penetrating head injury resulting in impairment of the brain's functioning. Despite the high incidence of TBI in adolescents, many educators still consider TBI to be a low-incidence disability. In addition, school personnel often report receiving little to no pre-service…

  18. Managing traumatic brain injury secondary to explosions

    Directory of Open Access Journals (Sweden)

    Burgess Paula

    2010-01-01

    Full Text Available Explosions and bombings are the most common deliberate cause of disasters with large numbers of casualties. Despite this fact, disaster medical response training has traditionally focused on the management of injuries following natural disasters and terrorist attacks with biological, chemical, and nuclear agents. The following article is a clinical primer for physicians regarding traumatic brain injury (TBI caused by explosions and bombings. The history, physics, and treatment of TBI are outlined.

  19. Comparative Effectiveness of Family Problem-Solving Therapy (F-PST) for Adolescent TBI

    Science.gov (United States)

    2016-07-25

    Tbi; Intracranial Edema; Brain Edema; Craniocerebral Trauma; Head Injury; Brain Hemorrhage, Traumatic; Subdural Hematoma; Brain Concussion; Head Injuries, Closed; Epidural Hematoma; Cortical Contusion; Wounds and Injuries; Disorders of Environmental Origin; Trauma, Nervous System; Brain Injuries

  20. Traumatic brain injury and forensic neuropsychology.

    Science.gov (United States)

    Bigler, Erin D; Brooks, Michael

    2009-01-01

    As part of a special issue of The Journal of Head Trauma Rehabilitation, forensic neuropsychology is reviewed as it applies to traumatic brain injury (TBI) and other types of acquired brain injury in which clinical neuropsychologists and rehabilitation psychologists may be asked to render professional opinions about the neurobehavioral effects and outcome of a brain injury. The article introduces and overviews the topic focusing on the process of forensic neuropsychological consultation and practice as it applies to patients with TBI or other types of acquired brain injury. The emphasis is on the application of scientist-practitioner standards as they apply to legal questions about the status of a TBI patient and how best that may be achieved. This article introduces each topic area covered in this special edition. PMID:19333063

  1. Resting Network Plasticity Following Brain Injury

    OpenAIRE

    Toru Nakamura; Hillary, Frank G.; Biswal, Bharat B.

    2009-01-01

    The purpose of this study was to examine neural network properties at separate time-points during recovery from traumatic brain injury (TBI) using graph theory. Whole-brain analyses of the topological properties of the fMRI signal were conducted in 6 participants at 3 months and 6 months following severe TBI. Results revealed alterations of network properties including a change in the degree distribution, reduced overall strength in connectivity, and increased "small-worldness" from 3 months ...

  2. Traumatic brain injury: a review of characteristics, molecular basis and management.

    Science.gov (United States)

    Wang, Ke; Cui, Daming; Gao, Liang

    2016-01-01

    Traumatic brain injury (TBI) is a critical cause of hospitalization, disability, and death worldwide. The global increase in the incidence of TBI poses a significant socioeconomic burden. Guidelines for the management of acute TBI mostly pertain to emergency treatment. Comprehensive gene expression analysis is currently available for several animal models of TBI, along with enhanced understanding of the molecular mechanisms activated during injury and subsequent recovery. The current review focuses on the characteristics, molecular basis and management of TBI. PMID:27100477

  3. Neurocritical care monitoring correlates with neuropathology in a swine model of pediatric traumatic brain injury

    OpenAIRE

    Friess, Stuart H.; Ralston, Jill; Eucker, Stephanie A.; Helfaer, Mark A.; Smith, Colin; Margulies, Susan S.

    2011-01-01

    Small-animal models have been used in traumatic brain injury (TBI) research to investigate the basic mechanisms and pathology of TBI. Unfortunately, successful TBI investigations in small-animal models have not resulted in marked improvements in clinical outcomes of TBI patients.

  4. Accommodation in mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Wesley Green, MS

    2010-05-01

    Full Text Available Accommodative dysfunction in individuals with mild traumatic brain injury (mTBI can have a negative impact on quality of life, functional abilities, and rehabilitative progress. In this study, we used a range of dynamic and static objective laboratory and clinical measurements of accommodation to assess 12 adult patients (ages 18-40 years with mTBI. The results were compared with either 10 control subjects with no visual impairment or normative literature values where available. Regarding the dynamic parameters, responses in those with mTBI were slowed and exhibited fatigue effects. With respect to static parameters, reduced accommodative amplitude and abnormal accommodative interactions were found in those with mTBI. These results provide further evidence for the substantial impact of mTBI on accommodative function. These findings suggest that a range of accommodative tests should be included in the comprehensive vision examination of individuals with mTBI.

  5. Links between traumatic brain injury and ballistic pressure waves originating in the thoracic cavity and extremities

    OpenAIRE

    Courtney, Amy; Courtney, Michael

    2008-01-01

    Identifying patients at risk of traumatic brain injury (TBI) is important because research suggests prophylactic treatments to reduce risk of long-term sequelae. Blast pressure waves can cause TBI without penetrating wounds or blunt force trauma. Similarly, bullet impacts distant from the brain can produce pressure waves sufficient to cause mild to moderate TBI. The fluid percussion model of TBI shows that pressure impulses of 15-30 psi cause mild to moderate TBI in laboratory animals. In pig...

  6. Traumatic brain injury in modern war

    Science.gov (United States)

    Ling, Geoffrey S. F.; Hawley, Jason; Grimes, Jamie; Macedonia, Christian; Hancock, James; Jaffee, Michael; Dombroski, Todd; Ecklund, James M.

    2013-05-01

    Traumatic brain injury (TBI) is common and especially with military service. In Iraq and Afghanistan, explosive blast related TBI has become prominent and is mainly from improvised explosive devices (IED). Civilian standard of care clinical practice guidelines (CPG) were appropriate has been applied to the combat setting. When such CPGs do not exist or are not applicable, new practice standards for the military are created, as for TBI. Thus, CPGs for prehospital care of combat TBI CPG [1] and mild TBI/concussion [2] were introduced as was a DoD system-wide clinical care program, the first large scale system wide effort to address all severities of TBI in a comprehensive organized way. As TBI remains incompletely understood, substantial research is underway. For the DoD, leading this effort are The Defense and Veterans Brain Injury Center, National Intrepid Center of Excellence and the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury. This program is a beginning, a work in progress ready to leverage advances made scientifically and always with the intent of providing the best care to its military beneficiaries.

  7. The Impact of Traumatic Brain Injury on the Aging Brain.

    Science.gov (United States)

    Young, Jacob S; Hobbs, Jonathan G; Bailes, Julian E

    2016-09-01

    Traumatic brain injury (TBI) has come to the forefront of both the scientific and popular culture. Specifically, sports-related concussions or mild TBI (mTBI) has become the center of scientific scrutiny with a large amount of research focusing on the long-term sequela of this type of injury. As the populace continues to age, the impact of TBI on the aging brain will become clearer. Currently, reports have come to light that link TBI to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as certain psychiatric diseases. Whether these associations are causations, however, is yet to be determined. Other long-term sequelae, such as chronic traumatic encephalopathy (CTE), appear to be associated with repetitive injuries. Going forward, as we gain better understanding of the pathophysiological process involved in TBI and subclinical head traumas, and individual traits that influence susceptibility to neurocognitive diseases, a clearer, more comprehensive understanding of the connection between brain injury and resultant disease processes in the aging brain will become evident. PMID:27432348

  8. Traumatic Brain Injury: Persistent Misconceptions and Knowledge Gaps among Educators

    Science.gov (United States)

    Ettel, Deborah; Glang, Ann E.; Todis, Bonnie; Davies, Susan C.

    2016-01-01

    Each year approximately 700,000 U.S. children aged 0-19 years sustain a traumatic brain injury (TBI) placing them at risk for academic, cognitive, and behavioural challenges. Although TBI has been a special education disability category for 25 years, prevalence studies show that of the 145,000 students each year who sustain long-term injury from…

  9. Energy Drinks, Alcohol, Sports and Traumatic Brain Injuries among Adolescents

    OpenAIRE

    Ilie, Gabriela; Boak, Angela; Mann, Robert E.; Adlaf, Edward M.; Hamilton, Hayley; Asbridge, Mark; Rehm, Jürgen; Cusimano, Michael D.

    2015-01-01

    Importance The high prevalence of traumatic brain injuries (TBI) among adolescents has brought much focus to this area in recent years. Sports injuries have been identified as a main mechanism. Although energy drinks, including those mixed with alcohol, are often used by young athletes and other adolescents they have not been examined in relation to TBI. Objective We report on the prevalence of adolescent TBI and its associations with energy drinks, alcohol and energy drink mixed in with alco...

  10. TBI Symptoms, Diagnosis, Treatment, Prevention

    Science.gov (United States)

    Skip Navigation Bar Home Current Issue Past Issues Cover Story: Traumatic Brain Injury TBI Symptoms, Diagnosis, Treatment, ... Prevention (CDC) urge people to always: Wear a seat belt when driving or riding in a car ...

  11. Defense Centers of Excellence for Psychological Health & Traumatic Brain Injury

    Science.gov (United States)

    ... Defense Centers of Excellence For Psychological Health & Traumatic Brain Injury U.S. Department of Defense About DCoE Centers Leadership ... PTSD Suicide Prevention Provider Resources DCoE Resources Traumatic Brain Injury About Traumatic Brain Injury Tips for Treating mTBI ...

  12. Practice Update: What Professionals Who Are Not Brain Injury Specialists Need to Know About Intimate Partner Violence-Related Traumatic Brain Injury.

    Science.gov (United States)

    Murray, Christine E; Lundgren, Kristine; Olson, Loreen N; Hunnicutt, Gwen

    2016-07-01

    There is growing recognition of the risk for traumatic brain injury (TBI) among victims and survivors of intimate partner violence (IPV). A wide range of physically abusive behaviors may lead to injuries to the head or neck and place an individual at risk for a TBI. The purpose of this article is to consolidate current research and present practical guidelines for professionals, who are not brain injury specialists, but work with clients who may have sustained a TBI in the context of IPV. Recommendations are provided for TBI risk screening, making appropriate referrals, and providing services in light of a potential TBI. PMID:25951838

  13. Genetic susceptibility to traumatic brain injury and apolipoprotein E gene

    Institute of Scientific and Technical Information of China (English)

    SUN Xiao-chuan; JIANG Yong

    2008-01-01

    @@ Traumatic brain injury (TBI) is defined as an injury caused by a blow or jolt to the head or a penetrating head injury that disrupts the normal function of the brain. It is a common emergency and severe case in neurosurgery field. Nowadays, there are more and more evidences showing that TBI, which is apparently similar in pathology and severity in the acute stage, may have different outcomes.

  14. Mild traumatic brain injuries in adults

    Directory of Open Access Journals (Sweden)

    Dhaval Shukla

    2010-01-01

    Full Text Available Mild traumatic brain injury (mTBI is the commonest form of TBI. Though the name implies, it may not be mild in certain cases. There is a lot of heterogeneity in nomenclature, classification, evaluation and outcome of mTBI. We have reviewed the relevant articles on mTBI in adults, particularly its definition, evaluation and outcome, published in the last decade. The aspects of mTBI like pediatric age group, sports concussion, and postconcussion syndrome were not reviewed. There is general agreement that Glasgow coma score (GCS of 13 should not be considered as mTBI as the risk of intracranial lesion is higher than in patients with GCS 14-15. All patients with GCS of <15 should be evaluated with a computed tomography (CT scan. Patients with GCS 15 and risk factors or neurological symptoms should also be evaluated with CT scan. The outcome of mTBI depends on the combination of preinjury, injury and postinjury factors. Overall outcome of mTBI is good with mortality around 0.1% and disability around 10%.

  15. Current status and development of traumatic brain injury treatments in China

    Institute of Scientific and Technical Information of China (English)

    Baiyun Liu

    2015-01-01

    Due to its high incidence,high disability rate,and high mortality rate,traumatic brain injury (TBI) poses a serious threat to human health.This manuscript describes the urgent problems currently existing in China's TBI treatment and proposes a scheme of a nationwide collaboration platform for the treatment of TBI so as to improve the overall level of TBI treatment in China,and reduce disability and mortality rates in TBI patients.

  16. Aquaporin 9 in rat brain after severe traumatic brain injury

    OpenAIRE

    Hui Liu; Mei Yang; Guo-ping Qiu; Fei Zhuo; Wei-hua Yu; Shan-quan Sun; Yun Xiu

    2012-01-01

    OBJECTIVE: To reveal the expression and possible roles of aquaporin 9 (AQP9) in rat brain, after severe traumatic brain injury (TBI). METHODS: Brain water content (BWC), tetrazolium chloride staining, Evans blue staining, immunohistochemistry (IHC), immunofluorescence (IF), western blot, and real-time polymerase chain reaction were used. RESULTS: The BWC reached the first and second (highest) peaks at 6 and 72 hours, and the blood brain barrier (BBB) was severely destroyed at six hours after ...

  17. Sigma-1 Receptor Modulates Neuroinflammation After Traumatic Brain Injury.

    Science.gov (United States)

    Dong, Hui; Ma, Yunfu; Ren, Zengxi; Xu, Bin; Zhang, Yunhe; Chen, Jing; Yang, Bo

    2016-07-01

    Traumatic brain injury (TBI) remains a significant clinical problem and contributes to one-third of all injury-related deaths. Activated microglia-mediated inflammatory response is a distinct characteristic underlying pathophysiology of TBI. Here, we evaluated the effect and possible mechanisms of the selective Sigma-1 receptor agonist 2-(4-morpholinethyl)-1-phenylcyclohexanecarboxylate (PRE-084) in mice TBI model. A single intraperitoneal injection 10 μg/g PRE-084, given 15 min after TBI significantly reduced lesion volume, lessened brain edema, attenuated modified neurological severity score, increased the latency time in wire hang test, and accelerated body weight recovery. Moreover, immunohistochemical analysis with Iba1 staining showed that PRE-084 lessened microglia activation. Meanwhile, PRE-084 reduced nitrosative and oxidative stress to proteins. Thus, Sigma-1 receptors play a major role in inflammatory response after TBI and may serve as useful target for TBI treatment in the future. PMID:26228028

  18. The Wechsler Adult Intelligence Scale-III and Malingering in Traumatic Brain Injury: Classification Accuracy in Known Groups

    Science.gov (United States)

    Curtis, Kelly L.; Greve, Kevin W.; Bianchini, Kevin J.

    2009-01-01

    A known-groups design was used to determine the classification accuracy of Wechsler Adult Intelligence Scale-III (WAIS-III) variables in detecting malingered neurocognitive dysfunction (MND) in traumatic brain injury (TBI). TBI patients were classified into the following groups: (a) mild TBI not-MND (n = 26), (b) mild TBI MND (n = 31), and (c)…

  19. Secondary Damage after Traumatic Brain Injury: Epidemiology, Pathophysiology and Therapy

    NARCIS (Netherlands)

    D.C. Engel (Doortje Caroline)

    2008-01-01

    textabstractTraumatic brain injury (TBI) is defined as a microscopic or macroscopic injury to the brain caused by external physical forces. Road traffic accidents, falls, sports injuries (i.e. boxing), recreational accidents (i.e. parachute jumping), the use of firearms, assault, child abuse, and se

  20. Cushing's ulcer in traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Biteghe-bi-Nzeng Alain; WANG Yun-jie

    2008-01-01

    Traumatic brain injury(TBI)remains a complicated and urgent disease in our modernized cities. It becomes now a public health disease. We have got more and more patients in Neurosurgery Intensive Care Unit following motor vehicle accidents and others causes. TBI brings multiple disorders,from the primary injury to secondary injury. The body received the disturbances in the brain,in the hypothalamo-pituitary-adrenocortical(HPA)axis,in the gastric mucosa,in the immune and neuroendocrine systems.The mortality of TBI is more than 50 000 deaths/year, the third of the mortality of all iniuries. Cushing ulcer is one of the severe complications of TBI and its mortality rate is more than 50%. Many studies have improved the management of TBI and the associated complications to give patients a better outcome. Furthers studies need to be done based on the similar methodology to clarify the different steps of the HPA axis and the neuroendocrine change associated. The aim of the present review is to assess the clinical and endocrinal features of hypopituitarism and stress ulcer following TBI.

  1. Spreading depolarizations and late secondary insults after traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Strong, Anthony J; Fabricius, Martin;

    2009-01-01

    Here we investigated the incidence of cortical spreading depolarizations (spreading depression and peri-infarct depolarization) after traumatic brain injury (TBI) and their relationship to systemic physiologic values during neurointensive care. Subdural electrode strips were placed on peri...

  2. Spreading depolarisations and outcome after traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Bullock, M Ross; Okonkwo, David O;

    2011-01-01

    Pathological waves of spreading mass neuronal depolarisation arise repeatedly in injured, but potentially salvageable, grey matter in 50-60% of patients after traumatic brain injury (TBI). We aimed to ascertain whether spreading depolarisations are independently associated with unfavourable...

  3. Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Federal Interagency Traumatic Brain Injury Research (FITBIR) informatics system is an extensible, scalable informatics platform for TBI relevant imaging,...

  4. Chronic cerebrovascular dysfunction after traumatic brain injury.

    Science.gov (United States)

    Jullienne, Amandine; Obenaus, Andre; Ichkova, Aleksandra; Savona-Baron, Catherine; Pearce, William J; Badaut, Jerome

    2016-07-01

    Traumatic brain injuries (TBI) often involve vascular dysfunction that leads to long-term alterations in physiological and cognitive functions of the brain. Indeed, all the cells that form blood vessels and that are involved in maintaining their proper function can be altered by TBI. This Review focuses on the different types of cerebrovascular dysfunction that occur after TBI, including cerebral blood flow alterations, autoregulation impairments, subarachnoid hemorrhage, vasospasms, blood-brain barrier disruption, and edema formation. We also discuss the mechanisms that mediate these dysfunctions, focusing on the cellular components of cerebral blood vessels (endothelial cells, smooth muscle cells, astrocytes, pericytes, perivascular nerves) and their known and potential roles in the secondary injury cascade. © 2016 Wiley Periodicals, Inc. PMID:27117494

  5. Acute Blast Injury Reduces Brain Abeta in Two Rodent Species

    OpenAIRE

    GregoryAElder; MiguelA.Gama Sosa; RitaDe Gasperi; MichaelCShaughness; StevenTDeKosky; SamGandy; MadhusoodanaPNambiar; JohnWSteele

    2012-01-01

    Blast-induced traumatic brain injury (TBI) has been a major cause of morbidity and mortality in the conflicts in Iraq and Afghanistan. How the primary blast wave affects the brain is not well understood. In particular, it is unclear whether blast injures the brain through mechanisms similar to those found in non-blast closed impact injuries (nbTBI). The β-amyloid (Aβ) peptide associated with the development of Alzheimer’s disease (AD) is elevated acutely following TBI in humans as well as in ...

  6. Acute Blast Injury Reduces Brain Abeta in Two Rodent Species

    OpenAIRE

    De Gasperi, Rita; Gama Sosa, Miguel A; Kim, Soong Ho; Steele, John W.; Shaughness, Michael C; Maudlin-Jeronimo, Eric; Hall, Aaron A.; DeKosky, Steven T.; McCarron, Richard M; Nambiar, Madhusoodana P.; Gandy, Sam; Ahlers, Stephen T.; Elder, Gregory A.

    2012-01-01

    Blast-induced traumatic brain injury (TBI) has been a major cause of morbidity and mortality in the conflicts in Iraq and Afghanistan. How the primary blast wave affects the brain is not well understood. In particular, it is unclear whether blast injures the brain through mechanisms similar to those found in non-blast closed impact injuries (nbTBI). The β-amyloid (Aβ) peptide associated with the development of Alzheimer’s disease is elevated acutely following TBI in humans as well as in exper...

  7. An experimental protocol for mimicking pathomechanisms of traumatic brain injury in mice

    Directory of Open Access Journals (Sweden)

    Albert-Weißenberger Christiane

    2012-02-01

    Full Text Available Abstract Traumatic brain injury (TBI is a result of an outside force causing immediate mechanical disruption of brain tissue and delayed pathogenic events. In order to examine injury processes associated with TBI, a number of rodent models to induce brain trauma have been described. However, none of these models covers the entire spectrum of events that might occur in TBI. Here we provide a thorough methodological description of a straightforward closed head weight drop mouse model to assess brain injuries close to the clinical conditions of human TBI.

  8. Risks of Brain Injury after Blunt Head Trauma

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-06-01

    Full Text Available The association of loss of consciousness (LOC and/or amnesia with traumatic brain injury (TBI identified on CT and TBI requiring acute intervention was evaluated in 2043 children <18 years old enrolled prospectively in a level 1 trauma center ED at University of California, Davis School of Medicine, CA.

  9. Neuroprotective effect of Pycnogenol® following traumatic brain injury

    OpenAIRE

    Scheff, Stephen W.; Ansari, Mubeen A.; Roberts, Kelly N.

    2012-01-01

    Traumatic brain injury (TBI) involves primary and secondary injury cascades that underlie delayed neuronal dysfunction and death. Oxidative stress is one of the most celebrated secondary injury mechanisms. A close relationship exists between levels of oxidative stress and the pathogenesis of TBI. However, other cascades, such as an increase in proinflammatory cytokines, also play important roles in the overall response to the trauma. Pharmacologic intervention, in order to be successful, requ...

  10. GH and Pituitary Hormone Alterations After Traumatic Brain Injury.

    Science.gov (United States)

    Karaca, Züleyha; Tanrıverdi, Fatih; Ünlühızarcı, Kürşad; Kelestimur, Fahrettin

    2016-01-01

    Traumatic brain injury (TBI) is a crucially important public health problem around the world, which gives rise to increased mortality and is the leading cause of physical and psychological disability in young adults, in particular. Pituitary dysfunction due to TBI was first described 95years ago. However, until recently, only a few papers have been published in the literature and for this reason, TBI-induced hypopituitarism has been neglected for a long time. Recent studies have revealed that TBI is one of the leading causes of hypopituitarism. TBI which causes hypopituitarism may be characterized by a single head injury such as from a traffic accident or by chronic repetitive head trauma as seen in combative sports including boxing, kickboxing, and football. Vascular damage, hypoxic insult, direct trauma, genetic predisposition, autoimmunity, and neuroinflammatory changes may have a role in the development of hypopituitarism after TBI. Because of the exceptional structure of the hypothalamo-pituitary vasculature and the special anatomic location of anterior pituitary cells, GH is the most commonly lost hormone after TBI, and the frequency of isolated GHD is considerably high. TBI-induced pituitary dysfunction remains undiagnosed and therefore untreated in most patients because of the nonspecific and subtle clinical manifestations of hypopituitarism. Treatment of TBI-induced hypopituitarism depends on the deficient anterior pituitary hormones. GH replacement therapy has some beneficial effects on metabolic parameters and neurocognitive dysfunction. Patients with TBI without neuroendocrine changes and those with TBI-induced hypopituitarism share the same clinical manifestations, such as attention deficits, impulsion impairment, depression, sleep abnormalities, and cognitive disorders. For this reason, TBI-induced hypopituitarism may be neglected in TBI victims and it would be expected that underlying hypopituitarism would aggravate the clinical picture of TBI itself

  11. Acute Blast Injury Reduces Brain Abeta in Two Rodent Species

    Directory of Open Access Journals (Sweden)

    GregoryAElder

    2012-12-01

    Full Text Available Blast-induced traumatic brain injury (TBI has been a major cause of morbidity and mortality in the conflicts in Iraq and Afghanistan. How the primary blast wave affects the brain is not well understood. In particular, it is unclear whether blast injures the brain through mechanisms similar to those found in non-blast closed impact injuries (nbTBI. The β-amyloid (Aβ peptide associated with the development of Alzheimer’s disease (AD is elevated acutely following TBI in humans as well as in experimental animal models of nbTBI. We examined levels of brain Aβ following experimental blast injury using enzyme-linked immunosorbent assays for Aβ 40 and 42. In both rat and mouse models of blast injury, rather than being increased, endogenous rodent brain Aβ levels were decreased acutely following injury. Levels of the amyloid precursor protein (APP were increased following blast exposure although there was no evidence of axonal pathology based on APP immunohistochemical staining. Unlike the findings in nbTBI animal models, levels of the β-secretase, BACE-1, and the γ-secretase component presenilin-1 were unchanged following blast exposure. These studies have implications for understanding the nature of blast injury to the brain. They also suggest that strategies aimed at lowering Aβ production may not be effective for treating acute blast injury to the brain.

  12. Hydrocephalus following severe traumatic brain injury in adults. Incidence, timing, and clinical predictors during rehabilitation

    DEFF Research Database (Denmark)

    Kammersgaard, Lars Peter; Linnemann, Mia; Tibæk, Maiken

    2013-01-01

    To investigate timing and clinical predictors that might predict hydrocephalus emerging during rehabilitation until 1 year following severe traumatic brain injury (TBI).......To investigate timing and clinical predictors that might predict hydrocephalus emerging during rehabilitation until 1 year following severe traumatic brain injury (TBI)....

  13. Practitioner Review: Beyond Shaken Baby Syndrome--What Influences the Outcomes for Infants following Traumatic Brain Injury?

    Science.gov (United States)

    Ashton, Rebecca

    2010-01-01

    Background: Traumatic brain injury (TBI) in infancy is relatively common, and is likely to lead to poorer outcomes than injuries sustained later in childhood. While the headlines have been grabbed by infant TBI caused by abuse, often known as shaken baby syndrome, the evidence base for how to support children following TBI in infancy is thin.…

  14. Anemia and brain oxygen after severe traumatic brain injury

    OpenAIRE

    Oddo, Mauro; Levine, Joshua M.; Kumar, Monisha; Iglesias, Katia; Frangos, Suzanne; Maloney-Wilensky, Eileen; Le Roux, Peter D.

    2016-01-01

    Purpose To investigate the relationship between hemoglobin (Hgb) and brain tissue oxygen tension (PbtO2) after severe traumatic brain injury (TBI) and to examine its impact on outcome. Methods This was a retrospective analysis of a prospective cohort of severe TBI patients whose PbtO2 was monitored. The relationship between Hgb—categorized into four quartiles (≤9; 9–10; 10.1–11; >11 g/dl)—and PbtO2 was analyzed using mixed-effects models. Anemia with compromised PbtO2 was defined as episodes...

  15. Impaired Visual Integration in Children with Traumatic Brain Injury: An Observational Study.

    Directory of Open Access Journals (Sweden)

    Marsh Königs

    Full Text Available Axonal injury after traumatic brain injury (TBI may cause impaired sensory integration. We aim to determine the effects of childhood TBI on visual integration in relation to general neurocognitive functioning.We compared children aged 6-13 diagnosed with TBI (n = 103; M = 1.7 years post-injury to children with traumatic control (TC injury (n = 44. Three TBI severity groups were distinguished: mild TBI without risk factors for complicated TBI (mildRF- TBI, n = 22, mild TBI with ≥1 risk factor (mildRF+ TBI, n = 46 or moderate/severe TBI (n = 35. An experimental paradigm measured speed and accuracy of goal-directed behavior depending on: (1 visual identification; (2 visual localization; or (3 both, measuring visual integration. Group-differences on reaction time (RT or accuracy were tracked down to task strategy, visual processing efficiency and extra-decisional processes (e.g. response execution using diffusion model analysis. General neurocognitive functioning was measured by a Wechsler Intelligence Scale short form.The TBI group had poorer accuracy of visual identification and visual integration than the TC group (Ps ≤ .03; ds ≤ -0.40. Analyses differentiating TBI severity revealed that visual identification accuracy was impaired in the moderate/severe TBI group (P = .05, d = -0.50 and that visual integration accuracy was impaired in the mildRF+ TBI group and moderate/severe TBI group (Ps < .02, ds ≤ -0.56. Diffusion model analyses tracked impaired visual integration accuracy down to lower visual integration efficiency in the mildRF+ TBI group and moderate/severe TBI group (Ps < .001, ds ≤ -0.73. Importantly, intelligence impairments observed in the TBI group (P = .009, d = -0.48 were statistically explained by visual integration efficiency (P = .002.Children with mildRF+ TBI or moderate/severe TBI have impaired visual integration efficiency, which may contribute to poorer general neurocognitive functioning.

  16. Traumatic brain injury patients: does frontal brain lesion influence basic emotion recognition?

    OpenAIRE

    A.T. Martins; Faísca, L.; Esteves, F.; A. Muresan; Justo, M.; Simão, C.; Reis, A.

    2011-01-01

    Adequate emotion recognition is relevant to individuals’ interpersonal communication. Patients with frontal traumatic brain injury (TBI) exhibit a lower response to facial emotional stimuli, influencing social interactions. In this sense, the main goal of the current study was to assess the ability of TBI patients in recognizing basic emotions. Photographs of facial expressions of five basic emotions (happiness, sadness, fear, anger, and surprise) were presented to 32 TBI patients an...

  17. Traumatic Brain Injury: a Case Study of the School Reintegration Process

    OpenAIRE

    McWilliams, Karen P.

    2004-01-01

    The purpose of this linear-analytic exploratory case study is to illustrate the reintegration process from acute care and rehabilitative care to the traditional school setting after one has sustained a Traumatic Brain Injury (TBI). TBI is an unrecognized educational challenge. Few educational professionals are aware of the divarication of TBI. Traumatic Brain Injury is the leading cause of death and disability in children and adolescents in the United States. The review of literature reveals ...

  18. Detecting Behavioral Deficits Post Traumatic Brain Injury in Rats.

    Science.gov (United States)

    Awwad, Hibah O

    2016-01-01

    Traumatic brain injury (TBI), ranging from mild to severe, almost always elicits an array of behavioral deficits in injured subjects. Some of these TBI-induced behavioral deficits include cognitive and vestibulomotor deficits as well as anxiety and other consequences. Rodent models of TBI have been (and still are) fundamental in establishing many of the pathophysiological mechanisms of TBI. Animal models are also utilized in screening and testing pharmacological effects of potential therapeutic agents for brain injury treatment. This chapter details validated protocols for each of these behavioral deficits post traumatic brain injury in Sprague-Dawley male rats. The elevated plus maze (EPM) protocol is described for assessing anxiety-like behavior; the Morris water maze protocol for assessing cognitive deficits in learning memory and spatial working memory and the rotarod test for assessing vestibulomotor deficits. PMID:27604739

  19. Temporal-spatial feature of gait after traumatic brain injury.

    Science.gov (United States)

    Ochi, F; Esquenazi, A; Hirai, B; Talaty, M

    1999-04-01

    The temporal-spatial characteristics of the gait of patients with traumatic brain injury (TBI) were investigated and compared with those of normal gait and the gait of stroke survivors. A slower walking velocity is evident in the TBI population when compared with normal. The average walking speed of TBI survivors is faster than that of stroke patients and is mainly related to a longer step length. TBI survivors produce a gait pattern with a prolonged stance period for the unaffected limb, without prolonged stance period for the affected limb, and a shorter step length for the unaffected limb. PMID:10191370

  20. Sexual changes associated with traumatic brain injury.

    Science.gov (United States)

    Ponsford, Jennie

    2003-01-01

    Findings from numerous outcome studies have suggested that people with traumatic brain injuries (TBI) experience relationship difficulties and changes in sexuality. However, there have been few investigations of these problems. This paper reports the results of a study of sexuality following TBI, which aimed to identify changes in sexual behaviour, affect, self-esteem, and relationship quality, and their inter-relationships. Two hundred and eight participants with moderate-to-severe TBI (69% males) completed a questionnaire 1-5 years post-injury. Their responses were compared with those of 150 controls, matched for age, gender, and education. Of TBI participants 36-54% reported: (1) A decrease in the importance of sexuality, opportunities, and frequency of engaging in sexual activities; (2) reduced sex drive; (3) a decline in their ability to give their partner sexual satisfaction and to engage in sexual intercourse; and (4) decreased enjoyment of sexual activity and ability to stay aroused and to climax. The frequencies of such negative changes were significantly higher than those reported by controls and far outweighed the frequency of increases on these dimensions. A significant proportion of TBI participants also reported decreased self-confidence, sex appeal, higher levels of depression, and decreased communication levels and relationship quality with their sexual partner. Factors associated with sexual problems in the TBI group are explored and implications of all findings discussed. PMID:21854338

  1. Prehospital Care of Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    TVSP Murthy

    2008-01-01

    Full Text Available Traumatic brain injury (TBI occurs when a sudden trauma causes brain damage. Depending on the severity, outcome can be anything from complete recovery to permanent disability or death. Emergency medical services play a dominant role in provision of primary care at the site of injury. Since little can be done to reverse the initial brain damage due to trauma, attempts to prevent further brain damage and stabilize the patient before he can be brought to a specialized trauma care centre play a pivotal role in the final outcome. Recognition and early treatment of hypoten-sion, hypoxemia, and hypoglycemia, objective neurological assessment based on GCS and pupils, and safe transport to an optimal care centre are the key elements of prehospital care of a TBI patient.

  2. Transcranial amelioration of inflammation and cell death after brain injury

    Science.gov (United States)

    Roth, Theodore L.; Nayak, Debasis; Atanasijevic, Tatjana; Koretsky, Alan P.; Latour, Lawrence L.; McGavern, Dorian B.

    2014-01-01

    Traumatic brain injury (TBI) is increasingly appreciated to be highly prevalent and deleterious to neurological function. At present, no effective treatment options are available, and little is known about the complex cellular response to TBI during its acute phase. To gain insights into TBI pathogenesis, we developed a novel murine closed-skull brain injury model that mirrors some pathological features associated with mild TBI in humans and used long-term intravital microscopy to study the dynamics of the injury response from its inception. Here we demonstrate that acute brain injury induces vascular damage, meningeal cell death, and the generation of reactive oxygen species (ROS) that ultimately breach the glial limitans and promote spread of the injury into the parenchyma. In response, the brain elicits a neuroprotective, purinergic-receptor-dependent inflammatory response characterized by meningeal neutrophil swarming and microglial reconstitution of the damaged glial limitans. We also show that the skull bone is permeable to small-molecular-weight compounds, and use this delivery route to modulate inflammation and therapeutically ameliorate brain injury through transcranial administration of the ROS scavenger, glutathione. Our results shed light on the acute cellular response to TBI and provide a means to locally deliver therapeutic compounds to the site of injury.

  3. Traumatic brain injury: endocrine consequences in children and adults.

    Science.gov (United States)

    Richmond, Erick; Rogol, Alan D

    2014-02-01

    Traumatic brain injury (TBI) is a common cause of death and disability in young adults with consequences ranging from physical disabilities to long-term cognitive, behavioral, psychological and social defects. Recent data suggest that pituitary hormone deficiency is not infrequent among TBI survivors; the prevalence of reported hypopituitarism following TBI varies widely among published studies. The most common cause of TBI is motor vehicle accidents, including pedestrian-car and bicycle car encounters, falls, child abuse, violence and sports injuries. Prevalence of hypopituitarism, from total to isolated pituitary deficiency, ranges from 5 to 90 %. The time interval between TBI and pituitary function evaluation is one of the major factors responsible for variations in the prevalence of hypopituitarism reported. Endocrine dysfunction after TBI in children and adolescents is common. Adolescence is a time of growth, freedom and adjustment, consequently TBI is also common in this group. Sports-related TBI is an important public health concern, but many cases are unrecognized and unreported. Sports that are associated with an increased risk of TBI include those involving contact and/or collisions such as boxing, football, soccer, ice hockey, rugby, and the martial arts, as well as high velocity sports such as cycling, motor racing, equestrian sports, skiing and roller skating. The aim of this paper is to summarize the best evidence of TBI as a cause of pituitary deficiency in children and adults. PMID:24030696

  4. Effects of traumatic brain injury on cognitive functioning and cerebral metabolites in HIV-infected individuals

    OpenAIRE

    Lin, Kenny; Taylor, Michael J.; Heaton, Robert; Franklin, Donald; Jernigan, Terry; Fennema-Notestine, Christine; McCutchan, Allen; Atkinson, J. Hampton; Ellis, Ronald J.; McArthur, Justin; Morgello, Susan; Simpson, David; Collier, Ann C.; Marra, Christina; Gelman, Benjamin

    2011-01-01

    We explored the possible augmenting effect of traumatic brain injury (TBI) history on HIV (human immunodeficiency virus) associated neurocognitive complications. HIV-infected participants with self-reported history of definite TBI were compared to HIV patients without TBI history. Groups were equated for relevant demographic and HIV-associated characteristics. The TBI group evidenced significantly greater deficits in executive functioning and working memory. N-acetylaspartate, a putative mark...

  5. Driving Difficulties and Adaptive Strategies: The Perception of Individuals Having Sustained a Mild Traumatic Brain Injury

    OpenAIRE

    Carolina Bottari; Marie-Pierre Lamothe; Nadia Gosselin; Isabelle Gélinas; Alain Ptito

    2012-01-01

    Introduction. After a mild traumatic brain injury (mTBI), individuals quickly resume driving. However, relatively little is known about the impact of mTBI on driving ability and, notably, on the perceived influence of postconcussive symptoms on driving. Hence, the objective of this study was to document the perception of driving abilities in individuals with mTBI. Method. Twenty-seven drivers with mTBI were interviewed to document their perception regarding their driving abilities. Both drivi...

  6. Manifesto for the current understanding and management of traumatic brain injury-induced hypopituitarism.

    LENUS (Irish Health Repository)

    Tanriverdi, F

    2011-01-01

    Traumatic brain injury (TBI)-induced hypopituitarism remains a relevant medical problem, because it may affect a significant proportion of the population. In the last decade important studies have been published investigating pituitary dysfunction after TBI. Recently, a group of experts gathered and revisited the topic of TBI-induced hypopituitarism. During the 2-day meeting, the main issues of this topic were presented and discussed, and current understanding and management of TBI-induced hypopituitarism are summarized here.

  7. Needs and concerns of male combat Veterans with mild traumatic brain injury

    OpenAIRE

    Virginia S. Daggett, PhD, RN; Tamilyn Bakas, PhD, RN, FAHA, FAAN; Janice Buelow, PhD, RN, FAAN; Barbara Habermann, PhD, RN; Laura L. Murray, PhD, CCC-SLP

    2013-01-01

    Traumatic brain injury (TBI) has emerged as a major cause of morbidity among U.S. servicemembers who have served in Iraq and Afghanistan. Even mild TBI (mTBI) can result in cognitive impairments that can affect the community reintegration of Veterans postdeployment. The purpose of this study was to explore the needs and concerns of combat Veterans with mTBI to provide support for an mTBI-specific conceptual model (Conceptual Model in the Context of mTBI) derived from Ferrans et al.’s health-r...

  8. Skull Flexure from Blast Waves: A Mechanism for Brain Injury with Implications for Helmet Design

    Energy Technology Data Exchange (ETDEWEB)

    Moss, W C; King, M J; Blackman, E G

    2009-04-30

    Traumatic brain injury [TBI] has become a signature injury of current military conflicts, with debilitating, costly, and long-lasting effects. Although mechanisms by which head impacts cause TBI have been well-researched, the mechanisms by which blasts cause TBI are not understood. From numerical hydrodynamic simulations, we have discovered that non-lethal blasts can induce sufficient skull flexure to generate potentially damaging loads in the brain, even without a head impact. The possibility that this mechanism may contribute to TBI has implications for injury diagnosis and armor design.

  9. Pharmacologic resuscitation for hemorrhagic shock combined with traumatic brain injury

    DEFF Research Database (Denmark)

    Jin, Guang; Duggan, Michael; Imam, Ayesha;

    2012-01-01

    We have previously demonstrated that valproic acid (VPA), a histone deacetylase inhibitor, can improve survival after hemorrhagic shock (HS), protect neurons from hypoxia-induced apoptosis, and attenuate the inflammatory response. We have also shown that administration of 6% hetastarch (Hextend [...... [Hex]) after traumatic brain injury (TBI) decreases brain swelling, without affecting size of the lesion. This study was performed to determine whether addition of VPA to Hex would decrease the lesion size in a clinically relevant large animal model of TBI + HS....

  10. Oligodendrogenesis after Cerebral Ischaemia and Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Zheng Gang Zhang

    2013-08-01

    Full Text Available Stroke and traumatic brain injury (TBI damage white and grey matter. Loss of oligodendrocytes and their myelin, impairs axonal function. Remyelination involves oligodendrogenesis during which new myelinating oligodendrocytes are generated by differentiated oligodendrocyte progenitor cells (OPCs. This article briefly reviews the processes of oligodendrogenesis in adult rodent brains, and promising experimental therapies targeting the neurovascular unit that reduce oligodendrocyte damage and amplify endogenous oligodendrogenesis after stroke and TBI.

  11. Centralized rehabilitation after servere traumatic brain injury

    DEFF Research Database (Denmark)

    Engberg, Aase Worså; Liebach, Annette; Nordenbo, Annette Mosbæk

    2006-01-01

    OBJECTIVES: To present results from the first 3 years of centralized subacute rehabilitation after very severe traumatic brain injury (TBI), and to compare results of centralized versus decentralized rehabilitation. MATERIAL AND METHODS: Prospectively, the most severely injured group of adults from...... an uptake area of 2.4 million in Denmark were included at admission to a regional brain injury unit (BIU), on average 19 days after injury. Patients in the retrospective study used for comparison were randomly chosen from the national hospital register. RESULTS AND CONCLUSIONS: Out of 117 patients in...

  12. Magnetic micelles for DNA delivery to rat brains after mild traumatic brain injury.

    Science.gov (United States)

    Das, Mahasweta; Wang, Chunyan; Bedi, Raminder; Mohapatra, Shyam S; Mohapatra, Subhra

    2014-10-01

    Traumatic brain injury (TBI) causes significant mortality, long term disability and psychological symptoms. Gene therapy is a promising approach for treatment of different pathological conditions. Here we tested chitosan and polyethyleneimine (PEI)-coated magnetic micelles (CP-mag micelles or CPMMs), a potential MRI contrast agent, to deliver a reporter DNA to the brain after mild TBI (mTBI). CPMM-tomato plasmid (ptd) conjugate expressing a red-fluorescent protein (RFP) was administered intranasally immediately after mTBI or sham surgery in male SD rats. Evans blue extravasation following mTBI suggested CPMM-ptd entry into the brain via the compromised blood-brain barrier. Magnetofection increased the concentration of CPMMs in the brain. RFP expression was observed in the brain (cortex and hippocampus), lung and liver 48 h after mTBI. CPMM did not evoke any inflammatory response by themselves and were excreted from the body. These results indicate the possibility of using intranasally administered CPMM as a theranostic vehicle for mTBI. From the clinical editor: In this study, chitosan and PEI-coated magnetic micelles (CPMM) were demonstrated as potentially useful vehicles in traumatic brain injury in a rodent model. Magnetofection increased the concentration of CPMMs in the brain and, after intranasal delivery, CPMM did not evoke any inflammatory response and were excreted from the body. PMID:24486465

  13. Berberine Protects against Neuronal Damage via Suppression of Glia-Mediated Inflammation in Traumatic Brain Injury

    OpenAIRE

    Chien-Cheng Chen; Tai-Ho Hung; Chao Yu Lee; Liang-Fei Wang; Chun-Hu Wu; Chia-Hua Ke; Szu-Fu Chen

    2014-01-01

    Traumatic brain injury (TBI) triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg(-1)) or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain ba...

  14. Resting network plasticity following brain injury.

    Directory of Open Access Journals (Sweden)

    Toru Nakamura

    Full Text Available The purpose of this study was to examine neural network properties at separate time-points during recovery from traumatic brain injury (TBI using graph theory. Whole-brain analyses of the topological properties of the fMRI signal were conducted in 6 participants at 3 months and 6 months following severe TBI. Results revealed alterations of network properties including a change in the degree distribution, reduced overall strength in connectivity, and increased "small-worldness" from 3 months to 6 months post injury. The findings here indicate that, during recovery from injury, the strength but not the number of network connections diminishes, so that over the course of recovery, the network begins to approximate what is observed in healthy adults. These are the first data examining functional connectivity in a disrupted neural system during recovery.

  15. Recovery of Content and Temporal Order Memory for Performed Activities following Moderate to Severe Traumatic Brain Injury

    OpenAIRE

    Schmitter-Edgecombe, Maureen; Seelye, Adriana M.

    2012-01-01

    Few studies have investigated the complex nature of everyday activity memory following traumatic brain injury (TBI). This study examined recovery of content and temporal order memory for performed activities during the first year in individuals who suffered moderate to severe TBI. TBI and control participants completed eight different cognitive activities at baseline (i.e., acutely following injury for TBI) and then again approximately one year later (follow-up). Participants’ free recall of ...

  16. Neuropathophysiology of Brain Injury.

    Science.gov (United States)

    Quillinan, Nidia; Herson, Paco S; Traystman, Richard J

    2016-09-01

    Every year in the United States, millions of individuals incur ischemic brain injury from stroke, cardiac arrest, or traumatic brain injury. These acquired brain injuries can lead to death or long-term neurologic and neuropsychological impairments. The mechanisms of ischemic and traumatic brain injury that lead to these deficiencies result from a complex interplay of interdependent molecular pathways, including excitotoxicity, acidotoxicity, ionic imbalance, oxidative stress, inflammation, and apoptosis. This article reviews several mechanisms of brain injury and discusses recent developments. Although much is known from animal models of injury, it has been difficult to translate these effects to humans. PMID:27521191

  17. Update of Endocrine Dysfunction following Pediatric Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Kent Reifschneider

    2015-07-01

    Full Text Available Traumatic brain injuries (TBI are common occurrences in childhood, often resulting in long term, life altering consequences. Research into endocrine sequelae following injury has gained attention; however, there are few studies in children. This paper reviews the pathophysiology and current literature documenting risk for endocrine dysfunction in children suffering from TBI. Primary injury following TBI often results in disruption of the hypothalamic-pituitary-adrenal axis and antidiuretic hormone production and release, with implications for both acute management and survival. Secondary injuries, occurring hours to weeks after TBI, result in both temporary and permanent alterations in pituitary function. At five years after moderate to severe TBI, nearly 30% of children suffer from hypopituitarism. Growth hormone deficiency and disturbances in puberty are the most common; however, any part of the hypothalamic-pituitary axis can be affected. In addition, endocrine abnormalities can improve or worsen with time, having a significant impact on children’s quality of life both acutely and chronically. Since primary and secondary injuries from TBI commonly result in transient or permanent hypopituitarism, we conclude that survivors should undergo serial screening for possible endocrine disturbances. High indices of suspicion for life threatening endocrine deficiencies should be maintained during acute care. Additionally, survivors of TBI should undergo endocrine surveillance by 6–12 months after injury, and then yearly, to ensure early detection of deficiencies in hormonal production that can substantially influence growth, puberty and quality of life.

  18. Optical microangiography enabling visualization of change in meninges after traumatic brain injury in mice in vivo

    Science.gov (United States)

    Choi, Woo June; Qin, Wan; Qi, Xiaoli; Wang, Ruikang K.

    2016-03-01

    Traumatic brain injury (TBI) is a form of brain injury caused by sudden impact on brain by an external mechanical force. Following the damage caused at the moment of injury, TBI influences pathophysiology in the brain that takes place within the minutes or hours involving alterations in the brain tissue morphology, cerebral blood flow (CBF), and pressure within skull, which become important contributors to morbidity after TBI. While many studies for the TBI pathophysiology have been investigated with brain cortex, the effect of trauma on intracranial tissues has been poorly studied. Here, we report use of high-resolution optical microangiography (OMAG) to monitor the changes in cranial meninges beneath the skull of mouse after TBI. TBI is induced on a brain of anesthetized mouse by thinning the skull using a soft drill where a series of drilling exert mechanical stress on the brain through the skull, resulting in mild brain injury. Intracranial OMAG imaging of the injured mouse brain during post-TBI phase shows interesting pathophysiological findings in the meningeal layers such as widening of subdural space as well as vasodilation of subarachnoid vessels. These processes are acute and reversible within hours. The results indicate potential of OMAG to explore mechanism involved following TBI on small animals in vivo.

  19. Neurobehavioral Effects of Levetiracetam in Patients with Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Jared F Benge

    2013-12-01

    Full Text Available Moderate to severe traumatic brain injury (TBI is one of the leading causes of acquired epilepsy. Prophylaxis for seizures is the standard of care for individuals with moderate to severe injuries at risk for developing seizures, though relatively limited comparative data is available to guide clinicians in their choice of agents. There have however been experimental studies which demonstrate potential neuroprotective qualities of levetiracetam after TBI, and in turn there is hope that eventually such agents may improve neurobehavioral outcomes post-TBI. This mini-review summarizes the available studies and suggests areas for future studies.

  20. Chapter 3 animal models of traumatic brain injury: is there an optimal model that parallels human brain injury?

    Science.gov (United States)

    Briones, Teresita L

    2015-01-01

    Traumatic brain injury (TBI) is the leading cause of mortality and morbidity in the younger population worldwide. Survivors of TBI often experience long-term disability in the form of cognitive, sensorimotor, and affective impairments. Despite the high prevalence in, and cost of TBI to, both individuals and society, some of its underlying pathophysiology is not completely understood. Animal models have been developed over the past few decades to closely replicate the different facets of TBI in humans to better understand the underlying pathophysiology and behavioral impairments and assess potential therapies that can promote neuroprotection. However, no effective treatment for TBI has been established to date in the clinical setting, despite promising results generated in preclinical studies in the use of neuroprotective strategies. The failure to translate results from preclinical studies to the clinical setting underscores a compelling need to revisit the current state of knowledge in the use of animal models in TBI. PMID:25946383

  1. Clinical Outcomes after Traumatic Brain Injury.

    Science.gov (United States)

    Sandsmark, Danielle K

    2016-06-01

    Traumatic brain injury (TBI) is a major cause of death and disability that often affects young people. After injury, the degree of recovery can be highly variable, with some people regaining near complete function while others remain severely disabled. Understanding what factors influence recovery is important for counseling patients and families in the acute period after injury and can help guide therapeutic decisions in the acute period following injury. In this review, prognostic algorithms useful for clinicians are discussed. Tools for grading patient outcomes, their role in clinical care and research studies, and their limitations are reviewed. Ongoing work focusing on the development of biomarkers to track TBI recovery and the refinement of clinical outcome metrics is summarized. PMID:27072952

  2. A Prospective Pilot Investigation of Brain Volume, White Matter Hyperintensities, and Hemorrhagic Lesions after Mild Traumatic Brain Injury

    OpenAIRE

    Jarrett, Michael; Tam, Roger; Hernández-Torres, Enedino; Martin, Nancy; Perera, Warren; Zhao, Yinshan; Shahinfard, Elham; Dadachanji, Shiroy; Taunton, Jack; Li, David K.B.; Rauscher, Alexander

    2016-01-01

    Traumatic brain injury (TBI) is among the most common neurological disorders. Hemorrhagic lesions and white matter hyperintensities (WMH) are radiological features associated with moderate and severe TBI. Brain volume reductions have also been observed during the months following injury. In concussion, no signs of injury are observed on conventional magnetic resonance imaging (MRI), which may be a true feature of concussion or merely due to the limited sensitivity of imaging techniques used s...

  3. Simvastatin Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy.

    Science.gov (United States)

    Mountney, Andrea; Bramlett, Helen M; Dixon, C Edward; Mondello, Stefania; Dietrich, W Dalton; Wang, Kevin K W; Caudle, Krista; Empey, Philip E; Poloyac, Samuel M; Hayes, Ronald L; Povlishock, John T; Tortella, Frank C; Kochanek, Patrick M; Shear, Deborah A

    2016-03-15

    Simvastatin, the fourth drug selected for testing by Operation Brain Trauma Therapy (OBTT), is a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor used clinically to reduce serum cholesterol. In addition, simvastatin has demonstrated potent antineuroinflammatory and brain edema reducing effects and has shown promise in promoting functional recovery in pre-clinical models of traumatic brain injury (TBI). The purpose of this study was to assess the potential neuroprotective effects of oral administration of simvastatin on neurobehavioral, biomarker, and histopathological outcome measures compared across three pre-clinical TBI animal models. Adult male Sprague-Dawley rats were exposed to either moderate fluid percussion injury (FPI), controlled cortical impact injury (CCI), or penetrating ballistic-like brain injury (PBBI). Simvastatin (1 or 5 mg/kg) was delivered via oral gavage at 3 h post-injury and continued once daily out to 14 days post-injury. Results indicated an intermediate beneficial effect of simvastatin on motor performance on the gridwalk (FPI), balance beam (CCI), and rotarod tasks (PBBI). No significant therapeutic benefit was detected, however, on cognitive outcome across the OBTT TBI models. In fact, Morris water maze (MWM) performance was actually worsened by treatment in the FPI model and scored full negative points for low dose in the MWM latency and swim distance to locate the hidden platform. A detrimental effect on cortical tissue loss was also seen in the FPI model, and there were no benefits on histology across the other models. Simvastatin also produced negative effects on circulating glial fibrillary acidic protein biomarker outcomes that were evident in the FPI and PBBI models. Overall, the current findings do not support the beneficial effects of simvastatin administration over 2 weeks post-TBI using the oral route of administration and, as such, it will not be further pursued by OBTT. PMID:26541177

  4. When Service Members with Traumatic Brain Injury Become Students: Methods to Advance Learning

    Science.gov (United States)

    Helms, Kimberly Turner; Libertz, Daniel

    2014-01-01

    The purpose of this paper is to explain which evidence-based interventions in study strategies have been successful in helping soldiers and veterans with traumatic brain injury (TBI) return to the classroom. Military leaders have specifically identified TBI as one of the signature injuries of the wars in Afghanistan and Iraq with over a quarter of…

  5. Platelet activation and dysfunction in a large-animal model of traumatic brain injury and hemorrhage

    DEFF Research Database (Denmark)

    Sillesen, Martin; Johansson, Pär I; Rasmussen, Lars S; Jin, Guang; Jepsen, Cecilie H; Imam, Ayehsa M; Hwabejire, John; Lu, Jennifer; Duggan, Michael; Velmahos, George; deMoya, Marc; Alam, Hasan B

    2013-01-01

    Traumatic brain injury (TBI) and hemorrhage are the leading causes of trauma-related mortality. Both TBI and hemorrhage are associated with coagulation disturbances, including platelet dysfunction. We hypothesized that platelet dysfunction could be detected early after injury, and that this...

  6. Neuroimaging Correlates of Novel Psychiatric Disorders after Pediatric Traumatic Brain Injury

    Science.gov (United States)

    Max, Jeffrey E.; Wilde, Elisabeth A.; Bigler, Erin D.; Thompson, Wesley K.; MacLeod, Marianne; Vasquez, Ana C.; Merkley, Tricia L.; Hunter, Jill V.; Chu, Zili D.; Yallampalli, Ragini; Hotz, Gillian; Chapman, Sandra B.; Yang, Tony T.; Levin, Harvey S.

    2012-01-01

    Objective: To study magnetic resonance imaging (MRI) correlates of novel (new-onset) psychiatric disorders (NPD) after traumatic brain injury (TBI) and orthopedic injury (OI). Method: Participants were 7 to 17 years of age at the time of hospitalization for either TBI or OI. The study used a prospective, longitudinal, controlled design with…

  7. Etanercept Attenuates Traumatic Brain Injury in Rats by Reducing Brain TNF-α Contents and by Stimulating Newly Formed Neurogenesis

    OpenAIRE

    Chong-Un Cheong; Ching-Ping Chang; Chien-Ming Chao; Bor-Chih Cheng; Chung-Zhing Yang; Chung-Ching Chio

    2013-01-01

    It remains unclear whether etanercept penetrates directly into the contused brain and improves the outcomes of TBI by attenuating brain contents of TNF- α and/or stimulating newly formed neurogenesis. Rats that sustained TBI are immediately treated with etanercept. Acute neurological and motor injury is assessed in all rats the day prior to and 7 days after surgery. The numbers of the colocalizations of 5-bromodeoxyuridine and doublecortin specific markers in the contused brain injury that oc...

  8. Long-term effects of mild traumatic brain injury on cognitive performance

    OpenAIRE

    Dean, Philip J. A.; Sterr, Annette

    2013-01-01

    Although a proportion of individuals report chronic cognitive difficulties after mild traumatic brain injury (mTBI), results from behavioral testing have been inconsistent. In fact, the variability inherent to the mTBI population may be masking subtle cognitive deficits. We hypothesized that this variability could be reduced by accounting for post-concussion syndrome (PCS) in the sample. Thirty-six participants with mTBI (>1 year post-injury) and 36 non-head injured controls performed informa...

  9. FDG-PET imaging in mild traumatic brain injury: A critical review

    OpenAIRE

    Byrnes, Kimberly R.; Colin Wilson; Fiona Brabazon; Jennifer Jurgens; Oakes, Terrence R.

    2014-01-01

    Traumatic brain injury (TBI) affects an estimated 1.7 million people in the United States and is a contributing factor to one third of all injury related deaths annually. According to the CDC, approximately 75% of all reported TBIs are concussions or considered mild in form, although the number of unreported mild TBIs and patients not seeking medical attention is unknown. Currently, classification of mild TBI (mTBI) or concussion is a clinical assessment since diagnostic imaging is typically ...

  10. Synaptic Mechanisms of Blast-Induced Brain Injury.

    Science.gov (United States)

    Przekwas, Andrzej; Somayaji, Mahadevabharath R; Gupta, Raj K

    2016-01-01

    Blast wave-induced traumatic brain injury (TBI) is one of the most common injuries to military personnel. Brain tissue compression/tension due to blast-induced cranial deformations and shear waves due to head rotation may generate diffuse micro-damage to neuro-axonal structures and trigger a cascade of neurobiological events culminating in cognitive and neurodegenerative disorders. Although diffuse axonal injury is regarded as a signature wound of mild TBI (mTBI), blast loads may also cause synaptic injury wherein neuronal synapses are stretched and sheared. This synaptic injury may result in temporary disconnect of the neural circuitry and transient loss in neuronal communication. We hypothesize that mTBI symptoms such as loss of consciousness or dizziness, which start immediately after the insult, could be attributed to synaptic injury. Although empirical evidence is beginning to emerge; the detailed mechanisms underlying synaptic injury are still elusive. Coordinated in vitro-in vivo experiments and mathematical modeling studies can shed light into the synaptic injury mechanisms and their role in the potentiation of mTBI symptoms. PMID:26834697

  11. Quantitative Brain Electrical Activity in the Initial Screening of Mild Traumatic Brain Injuries

    OpenAIRE

    O'Neil, Brian; Prichep, Leslie S.; Naunheim, Roseanne; Chabot, Robert

    2012-01-01

    Introduction: The incidence of emergency department (ED) visits for Traumatic Brain Injury (TBI) in the United States exceeds 1,000,000 cases/year with the vast majority classified as mild (mTBI). Using existing computed tomography (CT) decision rules for selecting patients to be referred for CT, such as the New Orleans Criteria (NOC), approximately 70% of those scanned are found to have a negative CT. This study investigates the use of quantified brain electrical activity to assess its possi...

  12. Feasibility of computerized brain plasticity-based cognitive training after traumatic brain injury

    OpenAIRE

    Matthew S. Lebowitz, AB; Kristen Dams-O’Connor, PhD; Joshua B. Cantor, PhD

    2013-01-01

    The present study investigates the feasibility and utility of using a computerized brain plasticity-based cognitive training (BPCT) program as an intervention for community-dwelling individuals with traumatic brain injury (TBI). In a pre-post pilot study, 10 individuals with mild to severe TBI who were 6 mo to 22 yr postinjury were asked to use a computerized BPCT intervention—designed to improve cognitive functioning through a graduated series of structured exercises—at their homes in an urb...

  13. Clinical neurorestorative progress in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Huang H

    2015-03-01

    Full Text Available Huiling Huang,1 Lin Chen,2,3 Hongyun Huang4–61Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin Neurosurgical Institute, Tianjin, People's Republic of China; 2Medical Center, Tsinghua University, Beijing, People's Republic of China; 3Tsinghua University Yuquan Hospital, Beijing, People's Republic of China; 4General Hospital of Chinese people's Armed Police Forces, 5Beijing Rehabilitation Hospital of Capital Medical University, Beijing, People's Republic of China; 6Beijing Hongtianji Neuroscience Academy, Beijing, People's Republic of ChinaAbstract: Traumatic brain injury (TBI is a leading cause of death and disability from trauma to the central nervous system. Besides the surgical interventions and symptomatic management, the conventional therapies for TBI and its sequelae are still limited. Recently emerging evidence suggests that some neurorestorative treatments appear to have a potential therapeutic role for TBI and improving the patient's quality of life. The current clinical neurorestorative strategies available in TBI include pharmacological treatments (recombinant human interleukin-1 receptor antagonist, amantadine, lithium, and valproate, the neuromodulation treatments (repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and low-level laser therapy, cell transplantation (bone marrow stromal cells and umbilical cord stromal cells, and combined neurorehabilitation. In this review, we summarize the recent clinical neurorestorative progress in the management of neurodegeneration as well as cognitive and motor deficits after TBI; indeed further clinical trials are required to provide more robust evidence.Keywords: brain trauma, neurorestorative treatment, cell transplantation, clinical study

  14. Energy Drinks, Alcohol, Sports and Traumatic Brain Injuries among Adolescents.

    Directory of Open Access Journals (Sweden)

    Gabriela Ilie

    Full Text Available The high prevalence of traumatic brain injuries (TBI among adolescents has brought much focus to this area in recent years. Sports injuries have been identified as a main mechanism. Although energy drinks, including those mixed with alcohol, are often used by young athletes and other adolescents they have not been examined in relation to TBI.We report on the prevalence of adolescent TBI and its associations with energy drinks, alcohol and energy drink mixed in with alcohol consumption.Data were derived from the Centre for Addiction and Mental Health's 2013 Ontario Student Drug Use and Health Survey (OSDUHS. This population-based cross-sectional school survey included 10,272 7th to 12th graders (ages 11-20 who completed anonymous self-administered questionnaires in classrooms.Mild to severe TBI were defined as those resulting in a loss of consciousness for at least five minutes, or being hospitalized for at least one night. Mechanism of TBI, prevalence estimates of TBI, and odds of energy drink consumption, alcohol use, and consumption of energy drinks mixed with alcohol are assessed.Among all students, 22.4% (95% CI: 20.7, 24.1 reported a history of TBI. Sports injuries remain the main mechanism of a recent (past year TBI (45.5%, 95% CI: 41.0, 50.1. Multinomial logistic regression showed that relative to adolescents who never sustained a TBI, the odds of sustaining a recent TBI were greater for those consuming alcohol, energy drinks, and energy drinks mixed in with alcohol than abstainers. Odds ratios were higher for these behaviors among students who sustained a recent TBI than those who sustained a former TBI (lifetime but not past 12 months. Relative to recent TBI due to other causes of injury, adolescents who sustained a recent TBI while playing sports had higher odds of recent energy drinks consumption than abstainers.TBI remains a disabling and common condition among adolescents and the consumption of alcohol, energy drinks, and alcohol

  15. 77 FR 73366 - Secondary Service Connection for Diagnosable Illnesses Associated With Traumatic Brain Injury

    Science.gov (United States)

    2012-12-10

    ... Traumatic Brain Injury AGENCY: Department of Veterans Affairs. ACTION: Proposed rule. SUMMARY: The... Medicine (IOM), Gulf War and Health, Volume 7: Long-Term Consequences of Traumatic Brain Injury, regarding the association between traumatic brain injury (TBI) and five diagnosable illnesses. The...

  16. Long-Term Ability to Interpret Facial Expression after Traumatic Brain Injury and Its Relation to Social Integration

    Science.gov (United States)

    Knox, Lucy; Douglas, Jacinta

    2009-01-01

    There is considerable evidence that individuals with traumatic brain injury (TBI) experience problems interpreting the emotional state of others. However, the functional implications of these changes have not been fully investigated. A study of 13 individuals with severe TBI and an equal number of matched controls found that TBI participants had…

  17. Lateral fluid percussion injury of the brain induces CCL20 inflammatory chemokine expression in rats

    OpenAIRE

    Das Mahasweta; Leonardo Christopher C; Rangooni Saniya; Mohapatra Shyam S; Mohapatra Subhra; Pennypacker Keith R

    2011-01-01

    Abstract Background Traumatic brain injury (TBI) evokes a systemic immune response including leukocyte migration into the brain and release of pro-inflammatory cytokines; however, the mechanisms underlying TBI pathogenesis and protection are poorly understood. Due to the high incidence of head trauma in the sports field, battlefield and automobile accidents identification of the molecular signals involved in TBI progression is critical for the development of novel therapeutics. Methods In thi...

  18. What’s New in Traumatic Brain Injury: Update on Tracking, Monitoring and Treatment

    OpenAIRE

    Cesar Reis; Yuechun Wang; Onat Akyol; Wing Mann Ho; Richard Applegate II; Gary Stier; Robert Martin; Zhang, John H.

    2015-01-01

    Traumatic brain injury (TBI), defined as an alteration in brain functions caused by an external force, is responsible for high morbidity and mortality around the world. It is important to identify and treat TBI victims as early as possible. Tracking and monitoring TBI with neuroimaging technologies, including functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), positron emission tomography (PET), and high definition fiber tracking (HDFT) show increasing sensitivity...

  19. A semi-automated workflow solution for multimodal neuroimaging: application to patients with traumatic brain injury

    OpenAIRE

    Wong, Koon-Pong; Bergsneider, Marvin; Glenn, Thomas C; Kepe, Vladimir; Barrio, Jorge R.; Hovda, David A.; Vespa, Paul M.; Huang, Sung-Cheng

    2015-01-01

    Traumatic brain injury (TBI) is a major cause of mortality and morbidity, placing a significant financial burden on the healthcare system worldwide. Non-invasive neuroimaging technologies have been playing a pivotal role in the study of TBI, providing important information for surgical planning and patient management. Advances in understanding the basic mechanisms and pathophysiology of the brain following TBI are hindered by a lack of reliable image analysis methods for accurate quantitative...

  20. Development of an Ontology for Rehabilitation: Traumatic Brain Injury

    Science.gov (United States)

    Grove, Michael J.

    2013-01-01

    Traumatic Brain Injury (TBI) rehabilitation interventions are very heterogeneous due to injury characteristics and pathology, patient demographics, healthcare settings, caregiver variability, and individualized, multi-discipline treatment plans. Consequently, comparing and generalizing the effectiveness of interventions is limited largely due to…

  1. Lateral fluid percussion: model of traumatic brain injury in mice.

    Science.gov (United States)

    Alder, Janet; Fujioka, Wendy; Lifshitz, Jonathan; Crockett, David P; Thakker-Varia, Smita

    2011-01-01

    Traumatic brain injury (TBI) research has attained renewed momentum due to the increasing awareness of head injuries, which result in morbidity and mortality. Based on the nature of primary injury following TBI, complex and heterogeneous secondary consequences result, which are followed by regenerative processes (1,2). Primary injury can be induced by a direct contusion to the brain from skull fracture or from shearing and stretching of tissue causing displacement of brain due to movement (3,4). The resulting hematomas and lacerations cause a vascular response (3,5), and the morphological and functional damage of the white matter leads to diffuse axonal injury (6-8). Additional secondary changes commonly seen in the brain are edema and increased intracranial pressure (9). Following TBI there are microscopic alterations in biochemical and physiological pathways involving the release of excitotoxic neurotransmitters, immune mediators and oxygen radicals (10-12), which ultimately result in long-term neurological disabilities (13,14). Thus choosing appropriate animal models of TBI that present similar cellular and molecular events in human and rodent TBI is critical for studying the mechanisms underlying injury and repair. Various experimental models of TBI have been developed to reproduce aspects of TBI observed in humans, among them three specific models are widely adapted for rodents: fluid percussion, cortical impact and weight drop/impact acceleration (1). The fluid percussion device produces an injury through a craniectomy by applying a brief fluid pressure pulse on to the intact dura. The pulse is created by a pendulum striking the piston of a reservoir of fluid. The percussion produces brief displacement and deformation of neural tissue (1,15). Conversely, cortical impact injury delivers mechanical energy to the intact dura via a rigid impactor under pneumatic pressure (16,17). The weight drop/impact model is characterized by the fall of a rod with a specific

  2. Traumatic brain injury induces neuroinflammation and neuronal degeneration that is associated with escalated alcohol self-administration in rats

    Science.gov (United States)

    Mayeux, Jacques P; Teng, Sophie X; Katz, Paige S; Gilpin, Nicholas W; Molina, Patricia E

    2014-01-01

    Background Traumatic brain injury (TBI) affects millions of people each year and is characterized by direct tissue injury followed by a neuroinflammatory response. The post-TBI recovery period can be associated with a negative emotional state characterized by alterations in affective behaviors implicated in the development of Alcohol Use Disorder in humans. The aim of this study was to test the hypothesis that post-TBI neuroinflammation is associated with behavioral dysfunction, including escalated alcohol intake. Methods Adult male Wistar rats were trained to self-administer alcohol prior to counterbalanced assignment into naïve, craniotomy, and TBI groups by baseline drinking. TBI was produced by lateral fluid percussion (LFP; >2 ATM; 25 ms). Alcohol drinking and neurobehavioral function were measured at baseline and following TBI in all experimental groups. Markers of neuroinflammation (GFAP & ED1) and neurodegeneration (FJC) were determined by fluorescence histochemistry in brains excised at sacrifice 19 days post-TBI. Results The cumulative increase in alcohol intake over the 15 days post-TBI was greater in TBI animals compared to naïve controls. A higher rate of pre-injury alcohol intake was associated with a greater increase in post-injury alcohol intake in both TBI and craniotomy animals. Immediately following TBI, both TBI and craniotomy animals exhibited greater neurobehavioral dysfunction compared to naïve animals. GFAP, IBA-1, ED1, and FJC immunoreactivity at 19 days post-TBI was significantly higher in brains from TBI animals compared to both craniotomy and naïve animals. Conclusions These results show an association between post-TBI escalation of alcohol drinking and marked localized neuroinflammation at the site of injury. Moreover, these results highlight the relevance of baseline alcohol preference in determining post-TBI alcohol drinking. Further investigation to determine the contribution of neuroinflammation to increased alcohol drinking

  3. Molecular Mechanisms of Cognitive Dysfunction following Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Kendall Rae Walker

    2013-07-01

    Full Text Available Traumatic brain injury (TBI results in significant disability due to cognitive deficits particularly in attention, learning and memory and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer’s disease (AD, Parkinson’s disease (PD, Amyotrophic Lateral Sclerosis (ALS and most recently chronic traumatic encephalopathy (CTE is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration.

  4. Investigation of blast-induced traumatic brain injury

    OpenAIRE

    Taylor, Paul A.; Ludwigsen, John S.; Ford, Corey C.

    2014-01-01

    Objective Many troops deployed in Iraq and Afghanistan have sustained blast-related, closed-head injuries from being within non-lethal distance of detonated explosive devices. Little is known, however, about the mechanisms associated with blast exposure that give rise to traumatic brain injury (TBI). This study attempts to identify the precise conditions of focused stress wave energy within the brain, resulting from blast exposure, which will correlate with a threshold for persistent brain in...

  5. SECONDARY BRAIN INJURY

    OpenAIRE

    Ida Ayu Basmatika

    2013-01-01

    Secondary brain injury is a condision that occurs at some times after the primary impact and can be largely prevented and treated. Most brain injury ends with deadly consequences which is caused by secondary damage to the brain. Traumatic brain injured still represents the leading cause of morbidity and mortality in individuals under the age of 45 years in the world. The classification of secondary brain injured is divided into extracranial and intracranial causes. The cause of extracranial s...

  6. Rehabilitation Outcome of Unconscious Traumatic Brain Injury Patients

    OpenAIRE

    Klein, Anke-Maria; Howell, Kaitlen; Vogler, Jana; Grill, Eva; Straube, Andreas; Bender, Andreas

    2013-01-01

    Outcome prediction of traumatic brain injury (TBI) patients with severe disorders of consciousness (DOC) at the end of their time in an intensive care setting is important for clinical decision making and counseling of relatives, and constitutes a major challenge. Even the question of what constitutes an improved outcome is controversially discussed. We have conducted a retrospective cohort study for the rehabilitation dynamics and outcome of TBI patients with DOC. Out of 188 patients, 37.2% ...

  7. Cost-effectiveness of early rehabilitation after Traumatic brain injury

    OpenAIRE

    2013-01-01

    Traumatic brain injury (TBI) is a craniocerebral trauma which causes long-term physical, cognitive and emotional impairment and adds substantially to the healthcare burden. The cost of TBIs is believed to be huge in Norway. Moderate and severe TBIs require rehabilitation, which helps reduce disability and improves the quality of life of patients. It is important to determine the efficacy of early rehabilitation as a form of treatment after severe TBI both in terms of its costs and effectivene...

  8. Deficits in analogical reasoning in adolescents with traumatic brain injury

    OpenAIRE

    Krawczyk, Daniel C.; Gerri Hanten; Elisabeth A. Wilde; Levin, Harvey S.

    2010-01-01

    Individuals with traumatic brain injury (TBI) exhibit deficits in executive control, which may impact their reasoning abilities. Analogical reasoning requires working memory and inhibitory abilities. In this study, we tested adolescents with moderate to severe TBI and typically-developing (TD) controls on a set of picture analogy problems. Three factors were varied: complexity (number of relations in the problems), distraction (distractor item present or absent), and animacy (living or non-li...

  9. Deficits in Analogical Reasoning in Adolescents with Traumatic Brain Injury

    OpenAIRE

    Krawczyk, Daniel C.; Hanten, Gerri; Elisabeth A. Wilde; Li, Xiaoqi; Schnelle, Kathleen P.; Merkley, Tricia L.; Vasquez, Ana C.; Cook, Lori G.; McClelland, Michelle; Chapman, Sandra B.; Levin, Harvey S.

    2010-01-01

    Individuals with traumatic brain injury (TBI) exhibit deficits in executive control, which may impact their reasoning abilities. Analogical reasoning requires working memory and inhibitory abilities. In this study, we tested adolescents with moderate to severe TBI and typically developing (TD) controls on a set of picture analogy problems. Three factors were varied: complexity (number of relations in the problems), distraction (distractor item present or absent), and animacy (living or non-li...

  10. Recovery of resting brain connectivity ensuing mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Rose Dawn Bharath

    2015-09-01

    Full Text Available Brains reveal amplified plasticity as they recover from an injury. We aimed to define time dependent plasticity changes in patients recovering from mild traumatic brain injury (mTBI. 25 subjects with mild head injury were longitudinally evaluated within 36 hours, 3 and 6 months using resting state functional connectivity (RSFC. Region of interest (ROI based connectivity differences over time within the patient group and in comparison with a healthy control group were analyzed at p<0.005. We found 33 distinct ROI pairs that revealed significant changes in their connectivity strength with time. Within three months, the majority of the ROI pairs had decreased connectivity in mTBI population, which increased and became comparable to healthy controls at 6 months. Initial imaging within 36 hours of injury revealed hyper connectivity predominantly involving the salience network and default mode network, which reduced at 3 months when lingual, inferior frontal and fronto-parietal networks revealed hyper connectivity. At six months all the evaluated networks revealed hyper connectivity and became comparable to the healthy controls. Our findings in a fairly homogenous group of patients with mTBI evaluated during the 6 month window of recovery defines time varying brain connectivity changes as the brain recovers from an injury. A majority of these changes were seen in the frontal and parietal lobes between 3-6 months after injury. Hyper connectivity of several networks supported normal recovery in the first six months and it remains to be seen in future studies whether this can predict an early and efficient recovery of brain function.

  11. Multivariate projection method to investigate inflammation associated with secondary insults and outcome after human traumatic brain injury: a pilot study

    OpenAIRE

    Mazzeo, Anna Teresa; Filippini, Claudia; Rosato, Rosalba; Fanelli, Vito; Assenzio, Barbara; Piper, Ian; Howells, Timothy; Mastromauro, Ilaria; Berardino, Maurizio; Ducati, Alessandro; Mascia, Luciana

    2016-01-01

    Background Neuroinflammation has been proposed as a possible mechanism of brain damage after traumatic brain injury (TBI), but no consensus has been reached on the most relevant molecules. Furthermore, secondary insults occurring after TBI contribute to worsen neurological outcome in addition to the primary injury. We hypothesized that after TBI, a specific pattern of cytokines is related to secondary insults and outcome. Methods A prospective observational clinical study was performed. Secon...

  12. Objective Neuropsychological Deficits in Post-Traumatic Stress Disorder and Mild Traumatic Brain Injury: What Remains Beyond Symptom Similarity?

    OpenAIRE

    Hélène Pineau; André Marchand; Stéphane Guay

    2014-01-01

    This exploratory study intends to characterize the neuropsychological profile in persons with post-traumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) using objective measures of cognitive performance. A neuropsychological battery of tests for attention, memory and executive functions was administered to four groups: PTSD (n = 25), mTBI (n = 19), subjects with two formal diagnoses: Post-traumatic Stress Disorder and Mild Traumatic Brain Injury (mTBI/PTSD) (n = 6) and contr...

  13. Brain stimulation: Neuromodulation as a potential treatment for motor recovery following traumatic brain injury.

    Science.gov (United States)

    Clayton, E; Kinley-Cooper, S K; Weber, R A; Adkins, D L

    2016-06-01

    There is growing evidence that electrical and magnetic brain stimulation can improve motor function and motor learning following brain damage. Rodent and primate studies have strongly demonstrated that combining cortical stimulation (CS) with skilled motor rehabilitative training enhances functional motor recovery following stroke. Brain stimulation following traumatic brain injury (TBI) is less well studied, but early pre-clinical and human pilot studies suggest that it is a promising treatment for TBI-induced motor impairments as well. This review will first discuss the evidence supporting brain stimulation efficacy derived from the stroke research field as proof of principle and then will review the few studies exploring neuromodulation in experimental TBI studies. This article is part of a Special Issue entitled SI:Brain injury and recovery. PMID:26855256

  14. Severe Traumatic Brain Injury

    Science.gov (United States)

    ... inflicted traumatic brain injury (ITBI), is a leading cause of child maltreatment deaths in the United States. Meeting the ... Awareness Additional Prevention Resources Childhood Injuries Concussion in Children and Teens Injuries from Violence Injuries from Motor Vehicle Crashes Teen Driver Safety ...

  15. Preventing Older Adult Falls and TBI

    Centers for Disease Control (CDC) Podcasts

    2008-03-05

    This podcast provides tips on how older adults can prevent falls and related injuries, such as traumatic brain injuries (TBI).  Created: 3/5/2008 by National Center for Injury Prevention and Control (NCIPC).   Date Released: 3/7/2008.

  16. Pathophysiology of Juvenile Traumatic Brain Injury: Role of Edema and a Potential Treatment

    OpenAIRE

    Adami, Arash

    2013-01-01

    Traumatic brain injury (TBI) is caused by an external force to the head, resulting in damage to the brain. TBI is especially common in children and young adults and is associated with long-term mortality and morbidity. Juveniles seem to be at increased risk of developing cerebral edema after TBI partly due to higher water content and developmental differences in the brain's response to injury. Aquaporin-4 (AQP4) is the most abundant water channel in the brain and plays a critical role in edem...

  17. Compensation through Functional Hyperconnectivity: A Longitudinal Connectome Assessment of Mild Traumatic Brain Injury

    OpenAIRE

    Armin Iraji; Hanbo Chen; Natalie Wiseman; Welch, Robert D.; Brian J. O’Neil; E. Mark Haacke; Tianming Liu; Zhifeng Kou

    2016-01-01

    Mild traumatic brain injury (mTBI) is a major public health concern. Functional MRI has reported alterations in several brain networks following mTBI. However, the connectome-scale brain network changes are still unknown. In this study, sixteen mTBI patients were prospectively recruited from an emergency department and followed up at 4–6 weeks after injury. Twenty-four healthy controls were also scanned twice with the same time interval. Three hundred fifty-eight brain landmarks that preserve...

  18. Mental Trauma Experienced by Caregivers of patients with Diffuse Axonal Injury or Severe Traumatic Brain Injury

    OpenAIRE

    Syed Tajuddin Syed Hassan; Husna Jamaludin; Rosna Abd Raman; Haliza Mohd Riji; Khaw Wan Fei

    2013-01-01

    Context: As with care giving and rehabilitation in chronic illnesses, the concern with traumatic brain injury (TBI), particularly with diffuse axonal injury (DAI), is that the caregivers are so overwhelmingly involved in caring and rehabilitation of the victim that in the process they become traumatized themselves. This review intends to shed light on the hidden and silent trauma sustained by the caregivers of severe brain injury survivors. Motor vehicle accident (MVA) is the highest contribu...

  19. Hyperbaric oxygen therapy for traumatic brain injury: bench-to-bedside

    Directory of Open Access Journals (Sweden)

    Qin Hu

    2016-01-01

    Full Text Available Traumatic brain injury (TBI is a serious public health problem in the United States. Survivors of TBI are often left with significant cognitive, behavioral, and communicative disabilities. So far there is no effective treatment/intervention in the daily clinical practice for TBI patients. The protective effects of hyperbaric oxygen therapy (HBOT have been proved in stroke; however, its efficiency in TBI remains controversial. In this review, we will summarize the results of HBOT in experimental and clinical TBI, elaborate the mechanisms, and bring out our current understanding and opinions for future studies.

  20. Vergence in mild traumatic brain injury: A pilot study

    Directory of Open Access Journals (Sweden)

    Dora Szymanowicz, OD, MS

    2012-10-01

    Full Text Available Vergence dysfunction in individuals with mild traumatic brain injury (mTBI may have a negative effect on quality of life, functional abilities, and rehabilitative progress. In this study, we used a range of dynamic and static objective and subjective measures of vergence to assess 21 adult patients with mTBI and nearwork symptoms. The results were compared with 10 control adult subjects. With respect to dynamic parameters, responses in those with mTBI were slowed, variable, and delayed. With respect to static parameters, reduced near point of convergence and restricted near vergence ranges were found in those with mTBI. The present results provide evidence for the substantial adverse effect of mTBI on vergence function.

  1. Neuropsychology of Neuroendocrine Dysregulation after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Josef Zihl

    2015-05-01

    Full Text Available Endocrine dysfunction is a common effect of traumatic brain injury (TBI. In addition to affecting the regulation of important body functions, the disruption of endocrine physiology can significantly impair mental functions, such as attention, memory, executive function, and mood. This mini-review focuses on alterations in mental functioning that are associated with neuroendocrine disturbances in adults who suffered TBI. It summarizes the contribution of hormones to the regulation of mental functions, the consequences of TBI on mental health and neuroendocrine homeostasis, and the effects of hormone substitution on mental dysfunction caused by TBI. The available empirical evidence suggests that comprehensive assessment of mental functions should be standard in TBI subjects presenting with hormone deficiency and that hormone replacement therapy should be accompanied by pre- and post-assessments.

  2. Epileptogenesis after traumatic brain injury in Plau-deficient mice.

    Science.gov (United States)

    Bolkvadze, Tamuna; Rantala, Jukka; Puhakka, Noora; Andrade, Pedro; Pitkänen, Asla

    2015-10-01

    Several components of the urokinase-type plasminogen activator receptor (uPAR)-interactome, including uPAR and its ligand sushi-repeat protein 2, X-linked (SRPX2), are linked to susceptibility to epileptogenesis in animal models and/or humans. Recent evidence indicates that urokinase-type plasminogen activator (uPA), a uPAR ligand with focal proteinase activity in the extracellular matrix, contributes to recovery-enhancing brain plasticity after various epileptogenic insults such as traumatic brain injury (TBI) and status epilepticus. Here, we examined whether deficiency of the uPA-encoding gene Plau augments epileptogenesis after TBI. Traumatic brain injury was induced by controlled cortical impact in the somatosensory cortex of adult male wild-type and Plau-deficient mice. Development of epilepsy and seizure susceptibility were assessed with a 3-week continuous video-electroencephalography monitoring and a pentylenetetrazol test, respectively. Traumatic brain injury-induced cortical or hippocampal pathology did not differ between genotypes. The pentylenetetrazol test revealed increased seizure susceptibility after TBI (p<0.05) in injured mice. Epileptogenesis was not exacerbated, however, in Plau-deficient mice. Taken together, Plau deficiency did not worsen controlled cortical impact-induced brain pathology or epileptogenesis caused by TBI when assessed at chronic timepoints. These data expand previous observations on Plau deficiency in models of status epilepticus and suggest that inhibition of focal extracellular proteinase activity resulting from uPA-uPAR interactions does not modify epileptogenesis after TBI. PMID:26253597

  3. Coated-Platelet Levels Increase with Number of Injuries in Patients with Mild Traumatic Brain Injury.

    Science.gov (United States)

    Prodan, Calin I; Vincent, Andrea S; Dale, George L

    2016-05-01

    Coated-platelets are procoagulant platelets that are elevated in stroke and are associated with stroke recurrence. In a previous study, prompted by data showing an increased risk for stroke following traumatic brain injury (TBI), we found that coated-platelet levels are elevated in patients with combat-related mild TBI (mTBI) several years after the injury, compared with controls. We now investigate in an expanded patient population whether parameters commonly recorded in mTBI are related to increased coated-platelet potential. Coated-platelet levels were assayed in 120 mTBI patients at intervals ranging from 6 months to 10 years from the last injury. Correlations were calculated between coated-platelet levels and age, gender, race/ethnicity, loss of consciousness, alteration in consciousness, post-traumatic amnesia, number of injuries, mechanism of injury, time since first and last injury, smoking, medications that may influence coated-platelet levels, and pertinent comorbid conditions. Significant correlations were detected between coated-platelet levels and number of injuries (p = 0.026), gender (p = 0.01), and time since last injury (p = 0.04). A multi-variable linear model analysis, including these three parameters and an additional three parameters (race/ethnicity, smoking, and mechanism of injury) that reached a p value of <0.2, showed that the number of injuries were predictive of coated-platelet levels (p = 0.004). These results support a mechanistic link between increased coated-platelet levels and repeated injuries in mTBI. Long-term studies will be required to determine the impact of increased prothrombotic potential in mTBI patients. PMID:26414016

  4. Long-term global and regional brain volume changes following severe traumatic brain injury: A longitudinal study with clinical correlates

    DEFF Research Database (Denmark)

    Sidaros, Annette; Skimminge, Arnold Jesper Møller; Liptrot, Matthew George;

    2009-01-01

    Traumatic brain injury (TBI) results in neurodegenerative changes that progress for months, perhaps even years post-injury. However, there is little information on the spatial distribution and the clinical significance of this late atrophy. In 24 patients who had sustained severe TBI we acquired ......, inferior and superior longitudinal fasciculus, corpus callosum and corona radiata. This indicates that the long-term atrophy is attributable to consequences of traumatic axonal injury. Despite progressive atrophy, remarkable clinical improvement occurred in most patients....

  5. Effect of lacosamide on structural damage and functional recovery after traumatic brain injury in rats.

    Science.gov (United States)

    Pitkänen, A; Immonen, R; Ndode-Ekane, X; Gröhn, O; Stöhr, T; Nissinen, J

    2014-05-01

    In a subgroup of patients, traumatic brain injury (TBI) results in the occurrence of acute epileptic seizures or even status epilepticus, which are treated with antiepileptic drugs (AEDs). Recent experimental data, however, suggest that administration of AEDs at the early post-injury phase can compromise the recovery process. The present study was designed to assess the profile of a novel anticonvulsant, lacosamide (Vimpat) on post-TBI structural, motor and cognitive outcomes. Moderate TBI was induced by lateral fluid-percussion injury in adult rats. Treatment with 0.9% saline or lacosamide (30 mg/kg, i.p.) was started at 30 min post-injury and continued at 8h intervals for 3d (total daily dose 90 mg/kg/d). Rats were randomly assigned to 4 treatment groups: sham-operated controls treated with vehicle (Sham-Veh) or lacosamide (Sham-LCM) and injured animals treated with vehicle (TBI-Veh) or lacosamide (TBI-LCM). As functional outcomes we tested motor recovery with composite neuroscore and beam-walking at 2, 7, and 15 d post-injury. Cognitive recovery was tested with the Morris water-maze at 12-14 d post-TBI. To assess the structural outcome, animals underwent magnetic resonance imaging (MRI) at 2 d post-TBI. At 16d post-TBI, rats were perfused for histology to analyze cortical and hippocampal neurodegeneration and axonal damage. Our data show that at 2 d post-TBI, both the TBI-Veh and TBI-LCM groups were equally impaired in neuroscore. Thereafter, motor recovery occurred similarly during the first week. At 2 wk post-TBI, recovery of the TBI-LCM group lagged behind that in the TBI-VEH group (pwater-maze at 2 wk post-TBI. MRI and histology did not reveal any differences in the cortical or hippocampal damage between the TBI-Veh and TBI-LCM groups. Taken together, acute treatment with LCM had no protective effects on post-TBI structural or functional impairment. Composite neuroscore in the TBI-LCM group lagged behind that in the TBI-Veh group at 15 d post-injury, but no

  6. The impact of preexisting illness and substance use on functional and neuropsychological outcomes following traumatic brain injury

    OpenAIRE

    Dahdah, Marie N.; Barnes, Sunni A.; Buros, Amy; Allmon, Andrew; Dubiel, Rosemary; Dunklin, Cynthia; Callender, Librada; Shafi, Shahid

    2016-01-01

    Traumatic brain injury (TBI) is a significant public health problem in the US. Specific preexisting medical illnesses delay recovery after TBI and increase mortality or risk of repeat TBI. This study examined the impact of preexisting illness and substance use on patient rehabilitation outcomes following TBI. The Functional Independence Measure total score and Disability Rating Scale score measured functional outcomes at discharge from inpatient rehabilitation, while the Trail Making Test A a...

  7. Tolerability and Effectiveness of Contact Lenses in Mild Traumatic Brain Injury with Visual Discomfort: A Case Series

    OpenAIRE

    Len V. Hua, PhD; Hannu R.V. Laukkanen, OD, MEd; John Hayes, PhD; Mark Andre, CM

    2014-01-01

    Background: Over one million people in the United States annually have traumatic incidents that lead to traumatic brain injury (TBI). Asthenopia or eyestrain is frequently a clinical complaint with TBI patients. However, little is studied or known in the literature about the potential of contact lens correction in the management of mild TBI (mTBI) with accommodative dysfunction. This pilot study examines the tolerability, effectiveness, and clinical utility of multifocal contact l...

  8. Triple Peripheral Nerve Injury Accompanying to Traumatic Brain Injury: A Case Report

    Directory of Open Access Journals (Sweden)

    Ižlknur Can

    2014-02-01

    Full Text Available Secondary injuries especially extremity fractures may be seen concurrently with traumatic brain injury (TBI. Peripheral nerve damages may accompany to these fractures and may be missed out, especially in acute stage. In this case report; damage of radial, ulnar and median nerves which was developed secondarily to distal humerus fracture that could not be detected in acute stage, in a patient who had motor vehicle accident (MVA. 29-year-old male patient was admitted with weakness in the right upper extremity. 9 months ago, he had traumatic brain injury because of MVA, and fracture of distal humerus was detected in follow-ups. Upon the suspect of the peripheral nerve injury, the diagnosis was confirmed with ENMG. The patient responded well to the rehabilitation program treatment. In a TBI patient, it must be kept in mind that there might be a secondary trauma and therefore peripheral nerve lesions may accompany to TBI.

  9. Glucose administration after traumatic brain injury improves cerebral metabolism and reduces secondary neuronal injury

    OpenAIRE

    Moro, Nobuhiro; Ghavim, Sima; Harris, Neil G.; Hovda, David A.; Sutton, Richard L.

    2013-01-01

    Clinical studies have indicated an association between acute hyperglycemia and poor outcomes in patients with traumatic brain injury (TBI), although optimal blood glucose levels needed to maximize outcomes for these patients’ remains under investigation. Previous results from experimental animal models suggest that post-TBI hyperglycemia may be harmful, neutral, or beneficial. The current studies determined the effects of single or multiple episodes of acute hyperglycemia on cerebral glucose ...

  10. Systematic Review of Traumatic Brain Injury Animal Models.

    Science.gov (United States)

    Phipps, Helen W

    2016-01-01

    The goals of this chapter are to provide an introduction into the variety of animal models available for studying traumatic brain injury (TBI) and to provide a concise systematic review of the general materials and methods involved in each model. Materials and methods were obtained from a literature search of relevant peer-reviewed articles. Strengths and weaknesses of each animal choice were presented to include relative cost, anatomical and physiological features, and mechanism of injury desired. Further, a variety of homologous, isomorphic/induced, and predictive animal models were defined, described, and compared with respect to their relative ease of use, characteristics, range, adjustability (e.g., amplitude, duration, mass/size, velocity, and pressure), and rough order of magnitude cost. Just as the primary mechanism of action of TBI is limitless, so are the animal models available to study TBI. With such a wide variety of available animals, types of injury models, along with the research needs, there exists no single "gold standard" model of TBI rendering cross-comparison of data extremely difficult. Therefore, this chapter reflects a representative sampling of the TBI animal models available and is not an exhaustive comparison of every possible model and associated parameters. Throughout this chapter, special considerations for animal choice and TBI animal model classification are discussed. Criteria central to choosing appropriate animal models of TBI include ethics, funding, complexity (ease of use, safety, and controlled access requirements), type of model, model characteristics, and range of control (scope). PMID:27604713

  11. Influence of mild traumatic brain injury during pediatric stage on short-term memory and hippocampal apoptosis in adult rats

    OpenAIRE

    Park, Mi-Sook; Oh, Hyean-Ae; Ko, Il-Gyu; Kim, Sung-Eun; Kim, Sang-Hoon; Kim, Chang-Ju; Kim, Hyun-Bae; Kim, Hong

    2014-01-01

    Traumatic brain injury (TBI) is a leading cause of neurological deficit in the brain, which induces short- and long-term brain damage, cognitive impairment with/without structural alteration, motor deficits, emotional problems, and death both in children and adults. In the present study, we evaluated whether mild TBI in childhood causes persisting memory impairment until adulthood. Moreover, we investigated the influence of mild TBI on memory impairment in relation with hippocampal apoptosis....

  12. The profile of head injuries and traumatic brain injury deaths in Kashmir

    Directory of Open Access Journals (Sweden)

    Tabish Amin

    2008-06-01

    Full Text Available Abstract This study was conducted on patients of head injury admitted through Accident & Emergency Department of Sher-i-Kashmir Institute of Medical Sciences during the year 2004 to determine the number of head injury patients, nature of head injuries, condition at presentation, treatment given in hospital and the outcome of intervention. Traumatic brain injury (TBI deaths were also studied retrospectively for a period of eight years (1996 to 2003. The traumatic brain injury deaths showed a steady increase in number from year 1996 to 2003 except for 1999 that showed decline in TBI deaths. TBI deaths were highest in age group of 21–30 years (18.8%, followed by 11–20 years age group (17.8% and 31–40 years (14.3%. The TBI death was more common in males. Maximum number of traumatic brain injury deaths was from rural areas as compared to urban areas. To minimize the morbidity and mortality resulting from head injury there is a need for better maintenance of roads, improvement of road visibility and lighting, proper mechanical maintenance of automobile and other vehicles, rigid enforcement of traffic rules, compulsory wearing of crash helmets by motor cyclist and scooterists and shoulder belt in cars and imparting compulsory road safety education to school children from primary education level. Moreover, appropriate medical care facilities (including trauma centres need to be established at district level, sub-divisional and block levels to provide prompt and quality care to head injury patients

  13. Risk factors for cervical spine injury among patients with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Tomoko Fujii

    2013-01-01

    Full Text Available Background: Diagnosis of cervical spine injury (CSI is difficult in patients with an altered level of consciousness as a result of a traumatic brain injury (TBI. Patients with TBI and older adults are at increased risk for CSI. This study examined the various risk factors for CSI among trauma patients with TBI and whether adults who were older (≥55 years were at higher risk for CSI when they sustained a fall-related TBI. Materials and Methods: Data used was the 2007 National Trauma Data Bank (NTDB, National Sample Project (NSP for adults who sustained a TBI. This dataset contains 2007 admission records from 82 level I and II trauma centers. Logistic regression was used to identify potential risk factors for CSI and to test for interaction between age and injury mechanism. Additional model variables included gender, race, Glasgow Coma Score, multiple severe injuries, hypotension and respiratory distress. Results: An analysis of the NTDB NSP identified 187,709 adults with TBI, of which 16,078 were diagnosed with a concomitant CSI. In motor vehicle traffic injuries, the older age group had significantly higher odds of CSI (odds ratio [OR] = 1.26 [1.15-1.39]. In fall-related injuries the older age group did not have a higher odds of CSI compared to the younger age group. Skull/face fracture, other spine fracture/dislocation, upper limb injury, thorax injury, and hypotension were significantly associated with CSI. Pelvic injuries had an inverse association with CSI (OR = 0.60 [0.54-0.67]. Black had significantly higher odds of CSI compared to Whites (OR = 1.25 [1.07-1.46]. Conclusion: The identification of associated injuries and factors may assist physicians in evaluating CSI in patients with TBI.

  14. Occurrence and severity of agitated behavior after severe traumatic brain injury

    DEFF Research Database (Denmark)

    Moth Wolffbrandt, Mia; Poulsen, Ingrid; Engberg, Aase W; Hornnes, Nete

    2013-01-01

    To investigate the occurrence and severity of agitation in patients after severe traumatic brain injury (TBI), to identify predictors of agitation and to study interrater reliability for a translated version of the Agitated Behavior Scale (ABS)....

  15. Beneficial effects of hyperbaric oxygen on edema in rat hippocampus following traumatic brain injury.

    Science.gov (United States)

    Liu, Su; Liu, Ying; Deng, Shukun; Guo, Aisong; Wang, Xiubing; Shen, Guangyu

    2015-12-01

    Hyperbaric oxygen (HBO) therapy helps alleviate secondary injury following brain trauma [traumatic brain injury (TBI)], although the mechanisms remain unclear. In this study, we assessed recovery of post-TBI spatial learning and memory in rats using the Morris water maze (MWM) and measured changes in apparent diffusion coefficient in the hippocampus by diffusion-weighted imaging (DWI) to evaluate possible therapeutic effects of HBO on TBI-associated brain edema. DWIs were obtained 8, 24, 48 h, 7 days, and 14 days post-TBI. Daily HBO therapy significantly improved post-TBI MWM performance and reduced edema in the ipsilateral hippocampus, suggesting that the therapeutic efficacy of HBO is mediated, at least in part, by a reduction in brain edema. PMID:26267487

  16. Traumatic brain injury and olfactory deficits

    DEFF Research Database (Denmark)

    Fortin, Audrey; Lefebvre, Mathilde Beaulieu; Ptito, Maurice

    2010-01-01

    PRIMARY OBJECTIVE: Olfactory functions are not systematically evaluated following traumatic brain injury (TBI). This study aimed at comparing two smell tests that are used in a clinical setting. RESEARCH DESIGN: The University of Pennsylvania Smell Identification Test (UPSIT) and the Alberta Smell....... RESULTS: The scores of the two smell tests were significantly correlated. Both tests indicated that patients with frontal lesion performed significantly worse than patients with other types of lesion. Mood and injury severity were not associated with olfactory impairment when age was taken into account...... Alberta Smell test. To refine their diagnosis, the UPSIT can also be used....

  17. Association of traumatic brain injury with subsequent neurological and psychiatric disease: a meta-analysis.

    Science.gov (United States)

    Perry, David C; Sturm, Virginia E; Peterson, Matthew J; Pieper, Carl F; Bullock, Thomas; Boeve, Bradley F; Miller, Bruce L; Guskiewicz, Kevin M; Berger, Mitchel S; Kramer, Joel H; Welsh-Bohmer, Kathleen A

    2016-02-01

    OBJECT Mild traumatic brain injury (TBI) has been proposed as a risk factor for the development of Alzheimer's disease, Parkinson's disease, depression, and other illnesses. This study's objective was to determine the association of prior mild TBI with the subsequent diagnosis (that is, at least 1 year postinjury) of neurological or psychiatric disease. METHODS All studies from January 1995 to February 2012 reporting TBI as a risk factor for diagnoses of interest were identified by searching PubMed, study references, and review articles. Reviewers abstracted the data and assessed study designs and characteristics. RESULTS Fifty-seven studies met the inclusion criteria. A random effects meta-analysis revealed a significant association of prior TBI with subsequent neurological and psychiatric diagnoses. The pooled odds ratio (OR) for the development of any illness subsequent to prior TBI was 1.67 (95% CI 1.44-1.93, p depression, mixed affective disorders, and bipolar disorder in individuals with previous TBI as compared to those without TBI. This association was present when examining only studies of mild TBI and when considering the influence of study design and characteristics. Analysis of a subset of studies demonstrated no evidence that multiple TBIs were associated with higher odds of disease than a single TBI. CONCLUSIONS History of TBI, including mild TBI, is associated with the development of neurological and psychiatric illness. This finding indicates that either TBI is a risk factor for heterogeneous pathological processes or that TBI may contribute to a common pathological mechanism. PMID:26315003

  18. Head motions while riding roller coasters: implications for brain injury.

    Science.gov (United States)

    Pfister, Bryan J; Chickola, Larry; Smith, Douglas H

    2009-12-01

    The risk of traumatic brain injury (TBI) while riding roller coasters has received substantial attention. Case reports of TBI around the time of riding roller coasters have led many medical professionals to assert that the high gravitational forces (G-forces) induced by roller coasters pose a significant TBI risk. Head injury research, however, has shown that G-forces alone cannot predict TBI. Established head injury criterions and procedures were employed to compare the potential of TBI between daily activities and roller coaster riding. Three-dimensional head motions were measured during 3 different roller coaster rides, a pillow fight, and car crash simulations. Data was analyzed and compared with published data, using similar analyses of head motions. An 8.05 m/s car crash lead to the largest head injury criterion measure of 28.1 and head impact power of 3.41, over 6 times larger than the roller coaster rides of 4.1 and 0.36. Notably, the linear and rotational components of head acceleration during roller coaster rides were milder than those induced by many common activities. As such, there appears to be an extremely low risk of TBI due to the head motions induced by roller coaster rides. PMID:19901817

  19. Music-Based Cognitive Remediation Therapy for Patients with Traumatic Brain Injury

    OpenAIRE

    Shantala eHegde

    2014-01-01

    Traumatic brain injury (TBI) is one of the common causes of disability in physical, psychological, and social domains of functioning leading to poor quality of life. TBI leads to impairment in sensory, motor, language, and emotional processing, and also in cognitive functions such as attention, information processing, executive functions, and memory. Cognitive impairment plays a central role in functional recovery in TBI. Innovative methods such as music therapy to alleviate cognitive impairm...

  20. The Rich Get Richer: Brain Injury Elicits Hyperconnectivity in Core Subnetworks

    OpenAIRE

    Hillary, Frank G.; Rajtmajer, Sarah M.; Roman, Cristina A.; Medaglia, John D.; Slocomb-Dluzen, Julia E.; Calhoun, Vincent D.; Good, David C.; Wylie, Glenn R.

    2014-01-01

    There remains much unknown about how large-scale neural networks accommodate neurological disruption, such as moderate and severe traumatic brain injury (TBI). A primary goal in this study was to examine the alterations in network topology occurring during the first year of recovery following TBI. To do so we examined 21 individuals with moderate and severe TBI at 3 and 6 months after resolution of posttraumatic amnesia and 15 age- and education-matched healthy adults using functional MRI and...

  1. Modeling community integration in workers with delayed recovery from mild traumatic brain injury

    OpenAIRE

    Mollayeva, Tatyana; Shapiro, Colin M; Mollayeva, Shirin; Cassidy, J David; Colantonio, Angela

    2015-01-01

    Background Delayed recovery in persons after mild traumatic brain injury (mTBI) is poorly understood. Community integration (CI) is endorsed by persons with neurological disorders as an important outcome. We aimed to describe CI and its associated factors in insured Ontario workers with delayed recovery following mTBI. Methods A cross-sectional study of insured workers in the chronic phase following mTBI was performed at a rehabilitation hospital in Ontario, Canada. Sociodemographic, occupati...

  2. The Essential Role of Psychosocial Risk and Protective Factors in Pediatric Traumatic Brain Injury Research

    OpenAIRE

    Gerring, Joan P.; Wade, Shari

    2012-01-01

    This article builds upon Traumatic Brain Injury Common Data Elements (TBI CDE) version 1.0 and the pediatric CDE Initiative by emphasizing the essential role of psychosocial risk and protective factors in pediatric TBI research. The goals are to provide a compelling rationale for including psychosocial risk and protective factors in addition to socioeconomic status (SES), age, and sex in the study design and analyses of pediatric TBI research and to describe recommendations for core common da...

  3. Increased vagal tone accounts for the observed immune paralysis in patients with traumatic brain injury.

    OpenAIRE

    Kox, M; Pompe, J.C.; Pickkers, P; Hoedemaekers, C.W.E.; van Vugt, A. B.; van der Hoeven, J. G.

    2008-01-01

    Traumatic brain injury (TBI) is a leading cause of death and disability, especially in the younger population. In the acute phase after TBI, patients are more vulnerable to infection, associated with a decreased immune response in vitro. The cause of this immune paralysis is poorly understood. Apart from other neurologic dysfunction, TBI also results in an increase in vagal activity. Recently, the vagus nerve has been demonstrated to exert an anti-inflammatory effect, termed the cholinergic a...

  4. Defining pediatric traumatic brain injury using International Classification of Diseases Version 10 Codes: A systematic review

    OpenAIRE

    Chan, Vincy; Thurairajah, Pravheen; Colantonio, Angela

    2015-01-01

    Background Although healthcare administrative data are commonly used for traumatic brain injury (TBI) research, there is currently no consensus or consistency on the International Classification of Diseases Version 10 (ICD-10) codes used to define TBI among children and youth internationally. This study systematically reviewed the literature to explore the range of ICD-10 codes that are used to define TBI in this population. The identification of the range of ICD-10 codes to define this popul...

  5. Response inhibition in children with and without ADHD after traumatic brain injury

    OpenAIRE

    Ornstein, Tisha J.; Psych, C.; Max, Jeffrey E.; Schachar, Russell; Dennis, Maureen; Barnes, Marcia; Ewing-Cobbs, Linda; Levin, Harvey S.

    2012-01-01

    Children with attention-deficit/hyperactivity disorder (ADHD) and traumatic brain injury (TBI) show deficient response inhibition. ADHD itself is a common consequence of TBI, known as secondary ADHD (S-ADHD). Similarity in inhibitory control in children with TBI, S-ADHD, and ADHD would implicate impaired frontostriatal systems; however, it is first necessary to delineate similarities and differences in inhibitory control in these conditions. We compared performance of children with ADHD and t...

  6. Cisternostomy for Management of Intracranial Hypertension in Severe Traumatic Brain Injury; Case Report and Literature Review

    OpenAIRE

    Mohammad Sadegh Masoudi; Elahe Rezaee; Hasanali Hakiminejad; Maryam Tavakoli; Tayebe Sadeghpoor

    2016-01-01

    Main goal in the management of patients with severe traumatic brain injury (TBI) is control of intracranial pressure (ICP). Decompressive craniectomy is an accepted technique for control of refractory intracranial hypertension in patients with severe TBI. Because of high complication rate after decompressive craniectomy, new techniques such as basal cisternostomy have developed. We herein report a case of severe TBI in a 13-year-old boy treated by cisternostomy. The patient was admitted follo...

  7. Audiological issues and hearing loss among Veterans with mild traumatic brain injury

    OpenAIRE

    Michael Oleksiak; Bridget M. Smith, PhD; Justin R. St. Andre, MA; Carly M. Caughlan, AuD; Monica Steiner, MD

    2012-01-01

    We examined the prevalence, severity, etiology, and treatment of audiology problems among Operation Iraqi Freedom/Operation Enduring Freedom (OIF/OEF) Veterans with mild traumatic brain injury (TBI). A retrospective chart review was performed of 250 Veterans with mild TBI. Results of a comprehensive second-level mild TBI evaluation and subsequent visits to audiology were evaluated. We found the vast majority (87%) of Veterans reported some level of hearing disturbance and those involved in bl...

  8. Menace of childhood non-accidental traumatic brain injuries: A single unit report

    OpenAIRE

    Musa Ibrahim; Adamu Ladan Mu′azu; Nura Idris; Musa Uba Rabiu; Binta Wudil Jibir; Kabir Ibrahim Getso; Mohammad Aminu Mohammad; Femi Luqman Owolabi

    2015-01-01

    Background: Childhood traumatic brain injury (TBI) has high rate of mortality and morbidity worldwide. There are dearths of reports from developing countries with large paediatric population on trauma; neurosurgery trauma of nonaccidental origin is not an exemption. This study analysed menace of non-accidental TBI in the paediatric population from our center. Materials and Methods: This is a single unit, retrospective study of the epidemiology of non-accidental TBI in children starting from S...

  9. A Multi-Mode Shock Tube for Investigation of Blast-Induced Traumatic Brain Injury

    OpenAIRE

    Reneer, Dexter V.; Hisel, Richard D.; Hoffman, Joshua M.; Kryscio, Richard J.; Lusk, Braden T.; Geddes, James W.

    2011-01-01

    Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the diff...

  10. Suicidality, Bullying and Other Conduct and Mental Health Correlates of Traumatic Brain Injury in Adolescents

    OpenAIRE

    Ilie, Gabriela; Mann, Robert E.; Boak, Angela; Adlaf, Edward M.; Hamilton, Hayley; Asbridge, Mark; Rehm, Jürgen; Cusimano, Michael D.

    2014-01-01

    Objective Our knowledge on the adverse correlates of traumatic brain injuries (TBI), including non-hospitalized cases, among adolescents is limited to case studies. We report lifetime TBI and adverse mental health and conduct behaviours associated with TBI among adolescents from a population-based sample in Ontario. Method and Findings Data were derived from 4,685 surveys administered to adolescents in grades 7 through 12 as part of the 2011 population-based cross-sectional Ontario Student Dr...

  11. Response to Goal Management Training in Veterans with blast-related mild traumatic brain injury

    OpenAIRE

    J. Kay Waid-Ebbs, PhD, BCBA-D; Janis Daly, PhD; Samuel S. Wu, PhD; W. Keith Berg, PhD; Russell M. Bauer, PhD; William M. Perlstein, PhD; Bruce Crosson, PhD

    2015-01-01

    Veterans with blast-related mild traumatic brain injury (TBI) experience cognitive deficits that interfere with functional activities. Goal Management Training (GMT), which is a metacognitive intervention, offers an executive function rehabilitation approach that draws upon theories concerning goal processing and sustained attention. GMT has received empirical support in studies of patients with TBI but has not been tested in Veterans with blast-related mild TBI. GMT was modified from 7 weekl...

  12. Effect of traumatic brain injury among U.S. servicemembers with amputation

    OpenAIRE

    Mitchell J. Rauh, PhD, PT, MPH; Hilary J. Aralis, MS; Ted Melcer, PhD; Caroline A. Macera, PhD; Pinata Sessoms, PhD; Jamie Bartlett, PhD; Michael R. Galarneau, MS

    2013-01-01

    Servicemembers with combat-related limb loss often require substantial rehabilitative care. The prevalence of traumatic brain injury (TBI), which may impair cognitive and functional abilities, among servicemembers has increased. The primary objectives of this study were to determine the frequency of TBI among servicemembers with traumatic amputation and examine whether TBI status was associated with discharge to civilian status and medical and rehabilitative service use postamputation. U.S. s...

  13. Acute Alcohol Intoxication and Long-Term Outcome in Patients with Traumatic Brain Injury

    OpenAIRE

    Raj, Rahul; Skrifvars, Markus B.; Kivisaari, Riku; Hernesniemi, Juha; Lappalainen, Jaakko; Siironen, Jari

    2015-01-01

    The effect of blood alcohol concentration (BAC) on outcome after traumatic brain injury (TBI) is controversial. We sought to assess the independent effect of positive BAC on long-term outcome in patients with TBI treated in the intensive care unit (ICU). We performed a retrospective analysis of 405 patients with TBI, admitted to the ICU of a large urban Level 1 trauma center between January 2009 and December 2012. Outcome was six-month mortality and unfavorable neurological outcome (defined a...

  14. Are Isofurans and Neuroprostanes Increased After Subarachnoid Hemorrhage and Traumatic Brain Injury?

    OpenAIRE

    Corcoran, Tomas B; Mas, Emilie; Barden, Anne E.; Durand, Thierry; Galano, Jean-Marie; Roberts, L. Jackson; Phillips, Michael; Ho, Kwok M.; Mori, Trevor A.

    2011-01-01

    Current diagnostic tools to assess neurological injury after aneurysmal subarachnoid hemorrhage (aSAH) and traumatic brain injury (TBI) have poor discriminatory abilities. Free radicals are associated with the pathophysiology of secondary damage after brain trauma. We examined cerebrospinal fluid (CSF) lipid markers of oxidative stress, isofurans (IsoFs), F4-neuroprostanes (F4-NeuroPs), and F2-isoprostanes (F2-IsoPs), in two case-controlled studies in patients with aSAH or severe TBI. Patient...

  15. Guest Editorial: Leveraging the patient support network in traumatic brain injury

    OpenAIRE

    Kara Gagnon, OD, FAAO; Michael Wininger, PhD

    2013-01-01

    TRAUMATIC BRAIN INJURY AND ASSOCIATED DISORDERS CAN OBSTRUCT THE PATIENT-CARE PATHWAYA recent single-topic issue of this journal (JRRD, 49(7)) gave forum to common—yet often overlooked—sequelae of traumatic brain injury (TBI): sensory and communication dysfunction. The issue gave excellent context not only for the diffuse and idiosyncratic nature of these deficits but also for their prevalence. Perhaps the most compelling aspect of sensory and communication disorders following TBI is that imp...

  16. Acute and long-term pituitary insufficiency in traumatic brain injury

    DEFF Research Database (Denmark)

    Klose, M; Juul, A; Struck, J;

    2007-01-01

    To assess the prevalence of hypopituitarism following traumatic brain injury (TBI), describe the time-course and assess the association with trauma-related parameters and early post-traumatic hormone alterations.......To assess the prevalence of hypopituitarism following traumatic brain injury (TBI), describe the time-course and assess the association with trauma-related parameters and early post-traumatic hormone alterations....

  17. The Effects of Traumatic Brain Injury during Adolescence on Career Plans and Outcomes

    Science.gov (United States)

    Balaban, Tammy; Hyde, Nellemarie; Colantonio, Angela

    2009-01-01

    Traumatic brain injury (TBI) often occurs during the years when individuals are aiming for vocational goals and acquiring skills needed to achieve vocational success. This exploratory study aimed to describe the perceived long-term impact on career outcomes for individuals who were hospitalized with a TBI during adolescence. This study used a…

  18. Interpersonal Relatedness and Psychological Functioning Following Traumatic Brain Injury: Implications for Marital and Family Therapists

    Science.gov (United States)

    Bay, Esther H.; Blow, Adrian J.; Yan, Xie

    2012-01-01

    Recovery from a mild-to-moderate traumatic brain injury (TBI) is a challenging process for injured persons and their families. Guided by attachment theory, we investigated whether relationship conflict, social support, or sense of belonging were associated with psychological functioning. Community-dwelling persons with TBI (N = 75) and their…

  19. Predictors of Attention-Deficit/Hyperactivity Disorder within 6 Months after Pediatric Traumatic Brain Injury

    Science.gov (United States)

    Max, Jeffrey E.; Schachar, Russell J.; Levin, Harvey S.; Ewing-Cobbs, Linda; Chapman, Sandra B.; Dennis, Maureen; Saunders, Ann; Landis, Julie

    2005-01-01

    Objective: To assess the phenomenology and predictive factors of attention-deficit/hyperactivity disorder (ADHD) after traumatic brain injury (TBI), also called secondary ADHD (SADHD). Method: Children without preinjury ADHD 5-14 years old with TBI from consecutive admissions (n = 143) to five trauma centers were observed prospectively for 6…

  20. Traumatic Brain Injury and Grief: Considerations and Practical Strategies for School Psychologists

    Science.gov (United States)

    Jantz, Paul B.; Comerchero, Victoria A.; Canto, Angela I.; Pierson, Eric

    2015-01-01

    Traumatic brain injury (TBI) can result in a range of social, emotional, neurological, cognitive, and behavioral outcomes. If these outcomes are significant, family members and the individual who has sustained the TBI may struggle with accepting the effects of these deficits. They may grieve over disrupted family relationships, roles, and routines…

  1. Manifesto for the current understanding and management of traumatic brain injury-induced hypopituitarism

    DEFF Research Database (Denmark)

    Tanriverdi, F; Agha, A; Aimaretti, G;

    2011-01-01

    Traumatic brain injury (TBI)-induced hypopituitarism remains a relevant medical problem, because it may affect a significant proportion of the population. In the last decade important studies have been published investigating pituitary dysfunction after TBI. Recently, a group of experts gathered...

  2. Time Perception in Severe Traumatic Brain Injury Patients: A Study Comparing Different Methodologies

    Science.gov (United States)

    Mioni, G.; Mattalia, G.; Stablum, F.

    2013-01-01

    In this study, we investigated time perception in patients with traumatic brain injury (TBI). Fifteen TBI patients and 15 matched healthy controls participated in the study. Participants were tested with durations above and below 1s on three different temporal tasks that involved time reproduction, production, and discrimination tasks. Data…

  3. The synthetic NCAM-derived peptide, FGL, modulates the transcriptional response to traumatic brain injury

    DEFF Research Database (Denmark)

    Pedersen, Martin Volmer; Helweg-Larsen, Rehannah Borup; Nielsen, Finn Cilius;

    2008-01-01

    Cerebral responses to traumatic brain injury (TBI) include up- and downregulation of a vast number of proteins involved in endogenous inflammatory responses and defense mechanisms developing postinjury. The present study analyzed the global gene expression profile in response to cryo-induced TBI by...

  4. Preschool Traumatic Brain Injury: A Review for the Early Childhood Special Educator

    Science.gov (United States)

    Wetherington, Crista E.; Hooper, Stephen R.

    2006-01-01

    This article reviews an emergent area of traumatic brain injury (TBI) literature; namely, developmental outcomes of TBI sustained during the early childhood and preschool period. The developmental time period from birth through age 5 years is one of significant growth and maturity, particularly in the neurological development of the child. An…

  5. Traumatic Brain Injury in K-12 Students: Where Have All the Children Gone?

    Science.gov (United States)

    Schutz, Larry E.; Rivers, Kenyatta O.; McNamara, Elizabeth; Schutz, Judith A.; Lobato, Emilio J.

    2010-01-01

    When children who are permanently disabled by traumatic brain injury (TBI) return to school, most are placed in mainstream classrooms and incorrectly presumed capable of resuming their education. Only one to two percent are classified as students with TBI, qualifying them for the services they need for their education. The failure to properly…

  6. Increased vagal tone accounts for the observed immune paralysis in patients with traumatic brain injury.

    NARCIS (Netherlands)

    Kox, M.; Pompe, J.C.; Pickkers, P.; Hoedemaekers, C.W.E.; Vugt, A.B. van; Hoeven, J.G. van der

    2008-01-01

    Traumatic brain injury (TBI) is a leading cause of death and disability, especially in the younger population. In the acute phase after TBI, patients are more vulnerable to infection, associated with a decreased immune response in vitro. The cause of this immune paralysis is poorly understood. Apart

  7. Mirror Asymmetry of Category and Letter Fluency in Traumatic Brain Injury and Alzheimer's Patients

    Science.gov (United States)

    Capitani, Erminio; Rosci, Chiara; Saetti, Maria Cristina; Laiacona, Marcella

    2009-01-01

    In this study we contrasted the Category fluency and Letter fluency performance of 198 normal subjects, 57 Alzheimer's patients and 57 patients affected by traumatic brain injury (TBI). The aim was to check whether, besides the prevalence of Category fluency deficit often reported among Alzheimer's patients, the TBI group presented the opposite…

  8. Dysarthria Associated with Traumatic Brain Injury: Speaking Rate and Emphatic Stress

    Science.gov (United States)

    Wang, Y.T.; Kent, R.D.; Duffy, J.R.; Thomas, J.E.

    2005-01-01

    Prosodic abnormality is common in the dysarthria associated with traumatic brain injury (TBI), and adjustments of speaking rate and emphatic stress are often used as steps in treating the speech disorder in patients with TBI-induced dysarthria. However, studies to date do not present a clear and detailed picture of how speaking rate and emphatic…

  9. Outcome Prediction in Moderate and Severe Traumatic Brain Injury : A Focus on Computed Tomography Variables

    NARCIS (Netherlands)

    Jacobs, Bram; Beems, Tjemme; van der Vliet, Ton M.; van Vugt, Arie B.; Hoedemaekers, Cornelia; Horn, Janneke; Franschman, Gaby; Haitsma, Ian; van der Naalt, Joukje; Andriessen, Teuntje M. J. C.; Borm, George F.; Vos, Pieter E.

    2013-01-01

    With this study we aimed to design validated outcome prediction models in moderate and severe traumatic brain injury (TBI) using demographic, clinical, and radiological parameters. Seven hundred consecutive moderate or severe TBI patients were included in this observational prospective cohort study.

  10. Traumatic Brain Injury: The Efficacy of a Half-Day Training for School Psychologists

    Science.gov (United States)

    Davies, Susan C.; Ray, Ashlyn M.

    2014-01-01

    The incidence rates of traumatic brain injuries (TBI) are increasing, yet educators continue to be inadequately trained in assessing and serving students with TBIs. This study examined the efficacy of a half-day TBI training program for school psychologists designed to improve their knowledge and skills. Results of quantitative and qualitative…

  11. Posttraumatic Stress Disorder, Traumatic Brain Injury, and Suicide Attempt History among Veterans Receiving Mental Health Services

    Science.gov (United States)

    Brenner, Lisa A.; Betthauser, Lisa M.; Homaifar, Beeta Y.; Villarreal, Edgar; Harwood, Jeri E. F.; Staves, Pamela J.; Huggins, Joseph A.

    2011-01-01

    History of posttraumatic stress disorder (PTSD) or traumatic brain injury (TBI) has been found to increase risk of suicidal behavior. The association between suicide attempt history among veterans with PTSD and/or TBI was explored. Cases (N = 81) and 2:1 matched controls (N = 160) were randomly selected from a Veterans Affairs Medical Center…

  12. Are boys and girls that different? An analysis of traumatic brain injury in children.

    LENUS (Irish Health Repository)

    Collins, Niamh C

    2013-08-01

    The Phillips Report on traumatic brain injury (TBI) in Ireland found that injury was more frequent in men and that gender differences were present in childhood. This study determined when gender differences emerge and examined the effect of gender on the mechanism of injury, injury type and severity and outcome.

  13. Evidence for Impaired Plasticity after Traumatic Brain Injury in the Developing Brain

    Science.gov (United States)

    Li, Nan; Yang, Ya; Glover, David P.; Zhang, Jiangyang; Saraswati, Manda; Robertson, Courtney

    2014-01-01

    Abstract The robustness of plasticity mechanisms during brain development is essential for synaptic formation and has a beneficial outcome after sensory deprivation. However, the role of plasticity in recovery after acute brain injury in children has not been well defined. Traumatic brain injury (TBI) is the leading cause of death and disability among children, and long-term disability from pediatric TBI can be particularly devastating. We investigated the altered cortical plasticity 2–3 weeks after injury in a pediatric rat model of TBI. Significant decreases in neurophysiological responses across the depth of the noninjured, primary somatosensory cortex (S1) in TBI rats, compared to age-matched controls, were detected with electrophysiological measurements of multi-unit activity (86.4% decrease), local field potential (75.3% decrease), and functional magnetic resonance imaging (77.6% decrease). Because the corpus callosum is a clinically important white matter tract that was shown to be consistently involved in post-traumatic axonal injury, we investigated its anatomical and functional characteristics after TBI. Indeed, corpus callosum abnormalities in TBI rats were detected with diffusion tensor imaging (9.3% decrease in fractional anisotropy) and histopathological analysis (14% myelination volume decreases). Whole-cell patch clamp recordings further revealed that TBI results in significant decreases in spontaneous firing rate (57% decrease) and the potential to induce long-term potentiation in neurons located in layer V of the noninjured S1 by stimulation of the corpus callosum (82% decrease). The results suggest that post-TBI plasticity can translate into inappropriate neuronal connections and dramatic changes in the function of neuronal networks. PMID:24050267

  14. MICROGLIA ACTIVATION AS A BIOMARKER FOR TRAUMATIC BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    CesarVBorlongan

    2013-03-01

    Full Text Available Traumatic brain injury (TBI has become the signature wound of wars in Afghanistan and Iraq. Injury may result from a mechanical force, a rapid acceleration-deceleration movement, or a blast wave. A cascade of secondary cell death events ensues after the initial injury. In particular, multiple inflammatory responses accompany TBI. A series of inflammatory cytokines and chemokines spreads to normal brain areas juxtaposed to the core impacted tissue. Among the repertoire of immune cells involved, microglia is a key player in propagating inflammation to tissues neighboring the core site of injury. Neuroprotective drug trials in TBI have failed, likely due to their sole focus on abrogating neuronal cell death and ignoring the microglia response despite these inflammatory cells’ detrimental effects on the brain. Another relevant point to consider is the veracity of results of animal experiments due to deficiencies in experimental design, such as incomplete or inadequate method description, data misinterpretation and reporting may introduce bias and give false-positive results. Thus, scientific publications should follow strict guidelines that include randomization, blinding, sample-size estimation and accurate handling of all data (Landis et al., 2012. A prolonged state of inflammation after brain injury may linger for years and predispose patients to develop other neurological disorders, such as Alzheimer’s disease. TBI patients display progressive and long-lasting impairments in their physical, cognitive, behavioral, and social performance. Here, we discuss inflammatory mechanisms that accompany TBI in an effort to increase our understanding of the dynamic pathological condition as the disease evolves over time and begin to translate these findings for defining new and existing inflammation-based biomarkers and treatments for TBI.

  15. Prognosis in moderate and severe traumatic brain injury: External validation of the IMPACT models and the role of extracranial injuries

    OpenAIRE

    Lingsma, Hester; Andriessen, Teuntje; Haitsema, Iain; Horn, Janneke; van der Naalt, Joukje; Franschman, Gaby; Maas, Andrew; Vos, Pieter; Steyerberg, Ewout

    2013-01-01

    textabstractBACKGROUND: Several prognosticmodels to predict outcomein traumatic brain injury (TBI) have been developed, but feware externally validated. We aimed to validate the International Mission on Prognosis and Analysis of Clinical Trials in TBI (IMPACT) prognostic models in a recent unselected patient cohort and to assess the additional prognostic value of extracranial injury. METHODS: The Prospective Observational COhort Neurotrauma (POCON) registry contains 508 patients with moderate...

  16. Traumatic Brain Injury Studies in Britain during World War II.

    Science.gov (United States)

    Lanska, Douglas J

    2016-01-01

    As a result of the wartime urgency to understand, prevent, and treat patients with traumatic brain injury (TBI) during World War II (WWII), clinicians and basic scientists in Great Britain collaborated on research projects that included accident investigations, epidemiologic studies, and development of animal and physical models. Very quickly, investigators from different disciplines shared information and ideas that not only led to new insights into the mechanisms of TBI but also provided very practical approaches for preventing or ameliorating at least some forms of TBI. Neurosurgeon Hugh Cairns (1896-1952) conducted a series of influential studies on the prevention and treatment of head injuries that led to recognition of a high rate of fatal TBI among motorcycle riders and subsequently to demonstrations of the utility of helmets in lowering head injury incidence and case fatality. Neurologists Derek Denny-Brown (1901-1981) and (William) Ritchie Russell (1903-1980) developed an animal model of TBI that demonstrated the fundamental importance of sudden acceleration (i.e., jerking) of the head in causing concussion and forced a distinction between head injury associated with sudden acceleration/deceleration and that associated with crush or compression. Physicist A.H.S. Holbourn (1907-1962) used theoretical arguments and simple physical models to illustrate the importance of shear stress in TBI. The work of these British neurological clinicians and scientists during WWII had a strong influence on subsequent clinical and experimental studies of TBI and also eventually resulted in effective (albeit controversial) public health campaigns and legislation in several countries to prevent head injuries among motorcycle riders and others through the use of protective helmets. Collectively, these studies accelerated our understanding of TBI and had subsequent important implications for both military and civilian populations. As a result of the wartime urgency to understand

  17. Erythropoietin Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy.

    Science.gov (United States)

    Bramlett, Helen M; Dietrich, W Dalton; Dixon, C Edward; Shear, Deborah A; Schmid, Kara E; Mondello, Stefania; Wang, Kevin K W; Hayes, Ronald L; Povlishock, John T; Tortella, Frank C; Kochanek, Patrick M

    2016-03-15

    Experimental studies targeting traumatic brain injury (TBI) have reported that erythropoietin (EPO) is an endogenous neuroprotectant in multiple models. In addition to its neuroprotective effects, it has also been shown to enhance reparative processes including angiogenesis and neurogenesis. Based on compelling pre-clinical data, EPO was tested by the Operation Brain Trauma Therapy (OBTT) consortium to evaluate therapeutic potential in multiple TBI models along with biomarker assessments. Based on the pre-clinical TBI literature, two doses of EPO (5000 and 10,000 IU/kg) were tested given at 15 min after moderate fluid percussion brain injury (FPI), controlled cortical impact (CCI), or penetrating ballistic-like brain injury (PBBI) with subsequent behavioral, histopathological, and biomarker outcome assessments. There was a significant benefit on beam walk with the 5000 IU dose in CCI, but no benefit on any other motor task across models in OBTT. Also, no benefit of EPO treatment across the three TBI models was noted using the Morris water maze to assess cognitive deficits. Lesion volume analysis showed no treatment effects after either FPI or CCI; however, with the 5000 IU/kg dose of EPO, a paradoxical increase in lesion volume and percent hemispheric tissue loss was seen after PBBI. Biomarker assessments included measurements of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) in blood at 4 or 24 h after injury. No treatment effects were seen on biomarker levels after FPI, whereas treatment at either dose exacerbated the increase in GFAP at 24 h in PBBI but attenuated 24-4 h delta UCH-L1 levels at high dose in CCI. Our data indicate a surprising lack of efficacy of EPO across three established TBI models in terms of behavioral, histopathological, and biomarker assessments. Although we cannot rule out the possibility that other doses or more prolonged treatment could show different effects, the lack of efficacy of EPO

  18. Understanding the pathology and treatment of traumatic brain injury and posttraumatic stress disorder: a therapeutic role for hyperbaric oxygen therapy.

    Science.gov (United States)

    Guedes, Vivian A; Song, Shuojing; Provenzano, Martina; Borlongan, Cesario V

    2016-01-01

    Traumatic brain injury (TBI) is an intracranial injury caused by external trauma leading to different degrees of brain damage. TBI can cause a wide array of symptoms and range in severity from concussion to coma and death. The link between TBI and posttraumatic stress disorder (PTSD) has received increasing attention due to the high incidence of these conditions in soldiers returning from recent conflicts. TBI has been associated with an increased risk of PTSD. Additionally, TBI and PTSD often demonstrate overlapping symptoms. In this article, we discuss the different forms of TBI and their links to PTSD. We also discuss current therapies for TBI and PTSD, in particular detailing the therapeutic potential of hyperbaric oxygen therapy in the management of these conditions. PMID:26613116

  19. Enriched environment improves the cognitive effects from traumatic brain injury in mice.

    Science.gov (United States)

    Schreiber, S; Lin, R; Haim, L; Baratz-Goldstien, R; Rubovitch, V; Vaisman, N; Pick, C G

    2014-09-01

    To date, there is yet no established effective treatment (medication or cognitive intervention) for post-traumatic brain injury (TBI) patients with chronic sequelae. Enriched environment (EE) has been recognized of importance in brain regulation, behaviour and physiology. Rodents reared in, or pre-exposed to EE, recovered better from brain insults. Using the concussive head trauma model of minimal TBI in mice, we evaluated the effect of transition to EE following a weight-drop (30g or 50g) induced mTBI on behavioural and cognitive parameters in mice in the Novel Object Recognition task, the Y- and the Elevated Plus mazes. In all assays, both mTBI groups (30g, 50g) housed in normal conditions were equally and significantly impaired 6 weeks post injury in comparison with the no-mTBI (pjuggling training and intensive cognitive stimulation. PMID:24906196

  20. Pharmacotherapy in rehabilitation of post-acute traumatic brain injury.

    Science.gov (United States)

    Bhatnagar, Saurabha; Iaccarino, Mary Alexis; Zafonte, Ross

    2016-06-01

    There are nearly 1.8 million annual emergency room visits and over 289,000 annual hospitalizations related to traumatic brain injury (TBI). The goal of this review article is to highlight pharmacotherapies that we often use in the clinic that have been shown to benefit various sequelae of TBI. We have decided to focus on sequelae that we commonly encounter in our practice in the post-acute phase after a TBI. These symptoms are hyper-arousal, agitation, hypo-arousal, inattention, slow processing speed, memory impairment, sleep disturbance, depression, headaches, spasticity, and paroxysmal sympathetic hyperactivity. In this review article, the current literature for the pharmacological management of these symptoms are mentioned, including medications that have not had success and some ongoing trials. It is clear that the pharmacological management specific to those with TBI is often based on small studies and that often treatment is based on assumptions of how similar conditions are managed when not relating to TBI. As the body of the literature expands and targeted treatments start to emerge for TBI, the function of pharmacological management will need to be further defined. This article is part of a Special Issue entitled SI:Brain injury and recovery. PMID:26801831

  1. Altered Neuroinflammation and Behavior after Traumatic Brain Injury in a Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Kokiko-Cochran, Olga; Ransohoff, Lena; Veenstra, Mike; Lee, Sungho; Saber, Maha; Sikora, Matt; Teknipp, Ryan; Xu, Guixiang; Bemiller, Shane; Wilson, Gina; Crish, Samuel; Bhaskar, Kiran; Lee, Yu-Shang; Ransohoff, Richard M; Lamb, Bruce T

    2016-04-01

    Traumatic brain injury (TBI) has acute and chronic sequelae, including an increased risk for the development of Alzheimer's disease (AD). TBI-associated neuroinflammation is characterized by activation of brain-resident microglia and infiltration of monocytes; however, recent studies have implicated beta-amyloid as a major manipulator of the inflammatory response. To examine neuroinflammation after TBI and development of AD-like features, these studies examined the effects of TBI in the presence and absence of beta-amyloid. The R1.40 mouse model of cerebral amyloidosis was used, with a focus on time points well before robust AD pathologies. Unexpectedly, in R1.40 mice, the acute neuroinflammatory response to TBI was strikingly muted, with reduced numbers of CNS myeloid cells acquiring a macrophage phenotype and decreased expression of inflammatory cytokines. At chronic time points, macrophage activation substantially declined in non-Tg TBI mice; however, it was relatively unchanged in R1.40 TBI mice. The persistent inflammatory response coincided with significant tissue loss between 3 and 120 days post-injury in R1.40 TBI mice, which was not observed in non-Tg TBI mice. Surprisingly, inflammatory cytokine expression was enhanced in R1.40 mice compared with non-Tg mice, regardless of injury group. Although R1.40 TBI mice demonstrated task-specific deficits in cognition, overall functional recovery was similar to non-Tg TBI mice. These findings suggest that accumulating beta-amyloid leads to an altered post-injury macrophage response at acute and chronic time points. Together, these studies emphasize the role of post-injury neuroinflammation in regulating long-term sequelae after TBI and also support recent studies implicating beta-amyloid as an immunomodulator. PMID:26414955

  2. Dementia Resulting From Traumatic Brain Injury

    Science.gov (United States)

    Shively, Sharon; Scher, Ann I.; Perl, Daniel P.; Diaz-Arrastia, Ramon

    2013-01-01

    Traumatic brain injury (TBI) is among the earliest illnesses described in human history and remains a major source of morbidity and mortality in the modern era. It is estimated that 2% of the US population lives with long-term disabilities due to a prior TBI, and incidence and prevalence rates are even higher in developing countries. One of the most feared long-term consequences of TBIs is dementia, as multiple epidemiologic studies show that experiencing a TBI in early or midlife is associated with an increased risk of dementia in late life. The best data indicate that moderate and severe TBIs increase risk of dementia between 2-and 4-fold. It is less clear whether mild TBIs such as brief concussions result in increased dementia risk, in part because mild head injuries are often not well documented and retrospective studies have recall bias. However, it has been observed for many years that multiple mild TBIs as experienced by professional boxers are associated with a high risk of chronic traumatic encephalopathy (CTE), a type of dementia with distinctive clinical and pathologic features. The recent recognition that CTE is common in retired professional football and hockey players has rekindled interest in this condition, as has the recognition that military personnel also experience high rates of mild TBIs and may have a similar syndrome. It is presently unknown whether dementia in TBI survivors is pathophysiologically similar to Alzheimer disease, CTE, or some other entity. Such information is critical for developing preventive and treatment strategies for a common cause of acquired dementia. Herein, we will review the epidemiologic data linking TBI and dementia, existing clinical and pathologic data, and will identify areas where future research is needed. PMID:22776913

  3. Integration of Neuropsychology in Educational Planning Following Traumatic Brain Injury

    Science.gov (United States)

    Stavinoha, Peter L.

    2005-01-01

    Traumatic brain injuries (TBIs) have the potential to significantly disrupt a student's cognitive, academic, social, emotional, behavioral, and physical functioning. It is important for educators to appreciate the array of difficulties students with TBI may experience in order to appropriately assess needs and create an educational plan that…

  4. Evaluation of a Health Education Programme about Traumatic Brain Injury

    Science.gov (United States)

    Garcia, Jane Mertz; Sellers, Debra M.; Hilgendorf, Amy E.; Burnett, Debra L.

    2014-01-01

    Objective: Our aim was to evaluate a health education programme (TBIoptions: Promoting Knowledge) designed to increase public awareness and understanding about traumatic brain injury (TBI) through in-person (classroom) and computer-based (electronic) learning environments. Design: We used a pre-post survey design with randomization of participants…

  5. Imaging assessment of traumatic brain injury.

    Science.gov (United States)

    Currie, Stuart; Saleem, Nayyar; Straiton, John A; Macmullen-Price, Jeremy; Warren, Daniel J; Craven, Ian J

    2016-01-01

    Traumatic brain injury (TBI) constitutes injury that occurs to the brain as a result of trauma. It should be appreciated as a heterogeneous, dynamic pathophysiological process that starts from the moment of impact and continues over time with sequelae potentially seen many years after the initial event. Primary traumatic brain lesions that may occur at the moment of impact include contusions, haematomas, parenchymal fractures and diffuse axonal injury. The presence of extra-axial intracranial lesions such as epidural and subdural haematomas and subarachnoid haemorrhage must be anticipated as they may contribute greatly to secondary brain insult by provoking brain herniation syndromes, cranial nerve deficits, oedema and ischaemia and infarction. Imaging is fundamental to the management of patients with TBI. CT remains the imaging modality of choice for initial assessment due to its ease of access, rapid acquisition and for its sensitivity for detection of acute haemorrhagic lesions for surgical intervention. MRI is typically reserved for the detection of lesions that may explain clinical symptoms that remain unresolved despite initial CT. This is especially apparent in the setting of diffuse axonal injury, which is poorly discerned on CT. Use of particular MRI sequences may increase the sensitivity of detecting such lesions: diffusion-weighted imaging defining acute infarction, susceptibility-weighted imaging affording exquisite data on microhaemorrhage. Additional advanced MRI techniques such as diffusion tensor imaging and functional MRI may provide important information regarding coexistent structural and functional brain damage. Gaining robust prognostic information for patients following TBI remains a challenge. Advanced MRI sequences are showing potential for biomarkers of disease, but this largely remains at the research level. Various global collaborative research groups have been established in an effort to combine imaging data with clinical and

  6. SECONDARY BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    Ida Ayu Basmatika

    2013-03-01

    Full Text Available Secondary brain injury is a condision that occurs at some times after the primary impact and can be largely prevented and treated. Most brain injury ends with deadly consequences which is caused by secondary damage to the brain. Traumatic brain injured still represents the leading cause of morbidity and mortality in individuals under the age of 45 years in the world. The classification of secondary brain injured is divided into extracranial and intracranial causes. The cause of extracranial such as hipoxia, hypotensi, hyponatremia, hypertermia, hypoglycemia or hyperglycemia. The cause of intracranial such as extradural, subdural, intraserebral, intraventrikular, dan subarachnoid hemorrhage. Beside that secondary injury can also be caused by edema and infection. Post-traumatic cerebral injured is characterized by direct tissue damage, impaired regulation of cerebral blood flow (cerebral blood flow / CBF, and disruption of metabolism. Manifestations of secondary brain injured include increased intracranial pressure, ischemic brain damage, cerebral hypoxia and hypercarbi, as well as disruption of cerebral autoregulation. The first priority is to stabilize the patient's cervical spine injury, relieve and maintain airway, ensure adequate ventilation (breathing, and making venous access for fluid resuscitation pathways (circulation and assessing the level of awareness and disability. This steps is crucial in patients with head injured to prevent hypoxia and hypotension, which is the main cause of secondary brain injury.

  7. Pituitary dysfunction after traumatic brain injury: a clinical and pathophysiological approach.

    Science.gov (United States)

    Tanriverdi, Fatih; Schneider, Harald Jörn; Aimaretti, Gianluca; Masel, Brent E; Casanueva, Felipe F; Kelestimur, Fahrettin

    2015-06-01

    Traumatic brain injury (TBI) is a growing public health problem worldwide and is a leading cause of death and disability. The causes of TBI include motor vehicle accidents, which are the most common cause, falls, acts of violence, sports-related head traumas, and war accidents including blast-related brain injuries. Recently, pituitary dysfunction has also been described in boxers and kickboxers. Neuroendocrine dysfunction due to TBI was described for the first time in 1918. Only case reports and small case series were reported until 2000, but since then pituitary function in TBI victims has been investigated in more detail. The frequency of hypopituitarism after TBI varies widely among different studies (15-50% of the patients with TBI in most studies). The estimates of persistent hypopituitarism decrease to 12% if repeated testing is applied. GH is the most common hormone lost after TBI, followed by ACTH, gonadotropins (FSH and LH), and TSH. The underlying mechanisms responsible for pituitary dysfunction after TBI are not entirely clear; however, recent studies have shown that genetic predisposition and autoimmunity may have a role. Hypopituitarism after TBI may have a negative impact on the pace or degree of functional recovery and cognition. What is not clear is whether treatment of hypopituitarism has a beneficial effect on specific function. In this review, the current data related to anterior pituitary dysfunction after TBI in adult patients are updated, and guidelines for the diagnosis, follow-up strategies, and therapeutic approaches are reported. PMID:25950715

  8. Role of Melatonin in Traumatic Brain Injury and Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Mehar Naseem

    2014-01-01

    Full Text Available Brain and spinal cord are implicated in incidences of two of the most severe injuries of central nervous system (CNS. Traumatic brain injury (TBI is a devastating neurological deficit involving primary and secondary injury cascades. The primary and secondary mechanisms include complex consequences of activation of proinflammatory cytokines, cerebral edema, upregulation of NF-κβ, disruption of blood-brain barrier (BBB, and oxidative stress. Spinal cord injury (SCI includes primary and secondary injury cascades. Primary injury leads to secondary injury in which generation of free radicals and oxidative or nitrative damage play an important pathophysiological role. The indoleamine melatonin is a hormone secreted or synthesized by pineal gland in the brain which helps to regulate sleep and wake cycle. Melatonin has been shown to be a versatile hormone having antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. It has a special characteristic of crossing BBB. Melatonin has neuroprotective role in the injured part of the CNS after TBI and SCI. A number of studies have successfully shown its therapeutic value as a neuroprotective agent in the treatment of neurodegenerative diseases. Here in this review we have compiled the literature supporting consequences of CNS injuries, TBI and SCI, and the protective role of melatonin in it.

  9. Brain injury - discharge

    Science.gov (United States)

    ... 5, 2014. Chuang K, Stroud, NL, Zafonte R. Rehabilitation of patients with traumatic brain injury. In: Winn HR, ed. Youman's Neurological Surgery . 6th ed. Philadelphia, PA: Elsevier Saunders; 2011: ...

  10. Mild Traumatic Brain Injury with Social Defeat Stress Alters Anxiety, Contextual Fear Extinction, and Limbic Monoamines in Adult Rats

    OpenAIRE

    Davies, Daniel R.; Olson, Dawne; Meyer, Danielle L.; Scholl, Jamie L.; Watt, Michael J.; Manzerra, Pasquale; Renner, Kenneth J.; Forster, Gina L.

    2016-01-01

    Mild traumatic brain injury (mTBI) produces symptoms similar to those typifying posttraumatic stress disorder (PTSD) in humans. We sought to determine whether a rodent model of stress concurrent with mTBI produces characteristics of PTSD such as impaired contextual fear extinction, while also examining concurrent alterations to limbic monoamine activity in brain regions relevant to fear and anxiety states. Male rats were exposed to social stress or control conditions immediately prior to mTBI...

  11. Manic Symptoms Due to Methylphenidate Use in an Adolescent with Traumatic Brain Injury

    Science.gov (United States)

    Ekinci, Ozalp; Direk, Meltem Çobanoğullari; Ekinci, Nuran; Okuyaz, Cetin

    2016-01-01

    Almost one-fifth of children who sustain a traumatic brain injury (TBI) are under the risk of attention problems after injury. The efficacy and tolerability of methylphenidate (MPH) in children with a history of TBI have not been completely identified. In this case report, MPH-induced manic symptoms in an adolescent with TBI will be summarized. A male patient aged 17 years was admitted with the complaints of attention difficulties on schoolwork and forgetfullness which became evident after TBI. Long-acting MPH was administered with the dose of 18 mg/day for attention problems. After one week, patient presented with the complaints of talking to himself, delusional thoughts, irritability and sleeplessness. This case highlights the fact that therapeutic dose of MPH may cause mania-like symptoms in children with TBI. Close monitarization and slow dose titration are crucial when considering MPH in children with TBI. PMID:27489389

  12. Manic Symptoms Due to Methylphenidate Use in an Adolescent with Traumatic Brain Injury.

    Science.gov (United States)

    Ekinci, Ozalp; Direk, Meltem Çobanoğullari; Ekinci, Nuran; Okuyaz, Cetin

    2016-08-31

    Almost one-fifth of children who sustain a traumatic brain injury (TBI) are under the risk of attention problems after injury. The efficacy and tolerability of methylphenidate (MPH) in children with a history of TBI have not been completely identified. In this case report, MPH-induced manic symptoms in an adolescent with TBI will be summarized. A male patient aged 17 years was admitted with the complaints of attention difficulties on schoolwork and forgetfullness which became evident after TBI. Long-acting MPH was administered with the dose of 18 mg/day for attention problems. After one week, patient presented with the complaints of talking to himself, delusional thoughts, irritability and sleeplessness. This case highlights the fact that therapeutic dose of MPH may cause mania-like symptoms in children with TBI. Close monitarization and slow dose titration are crucial when considering MPH in children with TBI. PMID:27489389

  13. Traumatic brain injury in children: acute care management.

    Science.gov (United States)

    Geyer, Kristen; Meller, Karen; Kulpan, Carol; Mowery, Bernice D

    2013-01-01

    The care of the pediatric patient with a severe traumatic brain injury (TBI) is an all-encompassing nursing challenge. Nursing vigilance is required to maintain a physiological balance that protects the injured brain. From the time a child and family first enter the hospital, they are met with the risk of potential death and an uncertain future. The family is subjected to an influx of complex medical and nursing terminology and interventions. Nurses need to understand the complexities of TBI and the modalities of treatment, as well as provide patients and families with support throughout all phases of care. PMID:24640314

  14. Pediatric Traumatic Brain Injury.

    Science.gov (United States)

    Schaller, Alexandra L; Lakhani, Saquib A; Hsu, Benson S

    2015-10-01

    The purpose of this article is to provide a better understanding of pediatric traumatic brain injury and its management. Within the pediatric age group, ages 1 to 19, injuries are the number one cause of death with traumatic brain injury being involved in almost 50 percent of these cases. This, along with the fact that the medical system spends over $1 billion annually on pediatric traumatic brain injury, makes this issue both timely and relevant to health care providers. Over the course of this article the epidemiology, physiology, pathophysiology, and treatment of pediatric traumatic brain injury will be explored. Emphasis will be placed on the role of the early responder and the immediate interventions that should be considered and/or performed. The management discussed in this article follows the most recent recommendations from the 2012 edition of the Guidelines for the Acute Medical Management of Severe Traumatic Brain Injury in Infants, Children, and Adolescents. Despite the focus of this article, it is important not to lose sight of the fact that an ounce of prevention is worth a pound--or, to be more precise and use the average human's brain measurements, just above three pounds--of cure. PMID:26630835

  15. Scales for assessment of patients with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Vieira RC

    2015-11-01

    Full Text Available Rita de Cassia Almeida Vieira,1 Daniel Vieira de Oliveira,2 Manoel Jacobsen Teixeira,2 Wellingson da Silva Paiva2 1Nursing School, 2Division of Neurological Surgery, University of Sao Paulo, Sao Paulo, BrazilWe read with great interest the paper by Ślusarz et al1 published in the Patient Preference and Adherence. The functional recovery after traumatic brain injury (TBI is related to the severity of the brain lesion and the time after TBI. The consequences of brain damage remain beyond the acute phase, extending and modifying for a long period after the traumatic event.2 Knowing the functional recovery after TBI is relevant to evaluating the results of new techniques and treatments to minimize the severity of the disability. As a result, the pathophysiology of disability after TBI and the mechanisms involved in functional recovery are the subject of investigations, which provide the foundation to direct rehabilitation programs and guide the development of individualized therapy after TBI.3 Ślusarz et al’s1 article focused on the role of establishing the relationships between measurements by the Glasgow Coma Scale (GCS and the scales used for the assessment of functional capacity of TBI patients.View original paper by Ślusarz et al.

  16. Surgical management of traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Vidgeon, Steven; Strong, Anthony J;

    2014-01-01

    for TBI were enrolled in the Co-Operative Studies on Brain Injury Depolarizations (COSBID) at King's College Hospital (KCH, n = 27) and Virginia Commonwealth University (VCU, n = 24) from July 2004 to March 2010. Subdural electrode strips were placed at the time of surgery for subsequent...... contusions: 48%-52%), signs of mass effect (midline shift ≥ 5 mm: 43%-52%), and preoperative intracranial pressure (ICP). At VCU, however, surgeries were performed earlier (median 0.51 vs 0.83 days posttrauma, p < 0.05), bone flaps were larger (mean 82 vs 53 cm(2), p < 0.001), and craniectomies were more......-effectiveness study provides evidence for major practice variation in surgical management of severe TBI. Although ages differed between the 2 cohorts, the results suggest that a more aggressive approach, including earlier surgery, larger craniotomy, and removal of bone flap, may reduce ICP, prevent cortical spreading...

  17. Mental Trauma Experienced by Caregivers of patients with Diffuse Axonal Injury or Severe Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Syed Tajuddin Syed Hassan

    2013-09-01

    Full Text Available Context: As with care giving and rehabilitation in chronic illnesses, the concern with traumatic brain injury (TBI, particularly with diffuse axonal injury (DAI, is that the caregivers are so overwhelmingly involved in caring and rehabilitation of the victim that in the process they become traumatized themselves. This review intends to shed light on the hidden and silent trauma sustained by the caregivers of severe brain injury survivors. Motor vehicle accident (MVA is the highest contributor of TBI or DAI. The essence of trauma is the infliction of pain and suffering and having to bear the pain (i.e. by the TBI survivor and the burden of having to take care and manage and rehabilitate the TBI survivor (i.e. by the TBI caregiver. Moreover many caregivers are not trained for their care giving task, thus compounding the stress of care giving and rehabilitating patients. Most research on TBI including DAI, focus on the survivors and not on the caregivers. TBI injury and its effects and impacts remain the core question of most studies, which are largely based on the quantitative approach.Evidence Acquisition: Qualitative research can better assess human sufferings such as in the case of DAI trauma. While quantitative research can measure many psychometric parameters to assess some aspects of trauma conditions, qualitative research is able to fully reveal the meaning, ramification and experience of TBI trauma. Both care giving and rehabilitation are overwhelmingly demanding; hence , they may complicate the caregivers’ stress. However, some positive outcomes also exist.Results: Caregivers involved in caring and rehabilitation of TBI victims may become mentally traumatized. Posttraumatic recovery of the TBI survivor can enhance the entire family’s closeness and bonding as well as improve the mental status of the caregiver.Conclusions: A long-term longitudinal study encompassing integrated research is needed to fully understand the traumatic

  18. Effect of Preferred Music on Agitation After Traumatic Brain Injury.

    Science.gov (United States)

    Park, Soohyun; Williams, Reg Arthur; Lee, Donghyun

    2016-04-01

    Agitation is a common behavioral problem after traumatic brain injury (TBI), which threatens the safety of patients and caregivers and disrupts the rehabilitation process. This study aimed to evaluate the effects of a preferred music intervention on the reduction of agitation in TBI patients and to compare the effects of preferred music with those of classical "relaxation" music. A single group, within-subjects, randomized crossover trial design was formed, consisting of 14 agitated patients with cognitive impairment after severe TBI. Patients listened to preferred music and classical "relaxation" music, with a wash-out period in between. Patients listening to the preferred music reported a significantly greater reduction in agitation compared with the effect seen during the classical "relaxation" music intervention (p = .046). These findings provide preliminary evidence that the preferred music intervention may be effective as an environmental therapeutic approach for reducing agitation after TBI. PMID:26129873

  19. Chronic visual dysfunction after blast-induced mild traumatic brain injury

    OpenAIRE

    M. Teresa Magone, MD; Ellen Kwon, OD; Soo Y. Shin, MD

    2014-01-01

    The purpose of this study was to investigate the long-term visual dysfunction in patients after blast-induced mild traumatic brain injury (mbTBI) using a retrospective case series of 31 patients with mbTBI (>12 mo prior) without eye injuries. Time since mbTBI was 50.5 +/– 19.8 mo. Age at the time of injury was 30.0 +/– 8.3 yr. Mean corrected visual acuity was 20/20. Of the patients, 71% (n = 22) experienced loss of consciousness; 68% (n = 15) of patients in this subgroup were dismounted durin...

  20. Quality of Life in Pediatric Mild Traumatic Brain Injury and its Relationship to Postconcussive Symptoms

    OpenAIRE

    Moran, Lisa M.; Taylor, H. Gerry; Rusin, Jerome; Bangert, Barbara; Dietrich, Ann; NUSS, KATHRYN E.; Wright, Martha; Minich, Nori; Yeates, Keith O.

    2011-01-01

    Objectives Mild traumatic brain injury (TBI) and injury-related outcomes such as postconcussive symptoms (PCS) may influence health-related quality of life (HRQOL) in children. Methods We evaluated HRQOL in 186 8- to 15-year-old children with mild TBI and 99 children with orthopedic injuries (OI). Parents rated the frequency and severity of PCS at an initial assessment within 2-weeks postinjury and rated HRQOL at 3- and 12-months postinjury. Results The mild TBI and OI groups did not differ i...

  1. Effects of ganglioside GM1 on reduction of brain edema and amelioration of cerebral metabolism after traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    陈志刚; 卢亦成; 朱诚; 张光霁; 丁学华; 江基尧

    2003-01-01

    Objective: To observe the effects of ganglioside GM1 on reduction of brain edema and amelioration of cerebral metabolism after traumatic brain injury (TBI).Methods: An acute experimental closed TBI model in rats was induced by a fluid-percussion brain injury model. At five and sixty minutes after TBI, the animals were intraperitoneally injected by ganglioside GM1 (30 mg/kg) or the same volume of saline. At the 6th hour after TBI, effects of ganglioside GM1 or saline on changes of mean arterial pressure (MAP), contents of water, lactic acid (LA) and lipid peroxidation (LPO) in the injured cerebral tissues were observed.Results: After TBI, MAP decreased and contents of water, LA and LPO increased in brain injury group; however, MAP was back to normal levels and contents of water, LA and LPO decreased in ganglioside GM1 treated group, compared with those in brain injury group (P0.05) was observed.Conclusions: Ganglioside GM1 does have obvious neuroprotective effect on early TBI.

  2. The Family Environment as a Moderator of Psychosocial Outcomes Following Traumatic Brain Injury in Young Children

    Science.gov (United States)

    Yeates, Keith Owen; Taylor, H. Gerry; Walz, Nicolay Chertkoff; Stancin, Terry; Wade, Shari L.

    2010-01-01

    Objective This study sought to determine whether the family environment moderates psychosocial outcomes after traumatic brain injury (TBI) in young children. Method Participants were recruited prospectively from consecutive hospital admissions of 3-6 year old children, and included 19 with severe TBI, 56 with complicated mild/moderate TBI, and 99 with orthopedic injuries (OI). They completed four assessments across the first 18 months post-injury. The initial assessment included measures of parenting style, family functioning, and the quality of the home. Children’s behavioral adjustment, adaptive functioning, and social competence were assessed at each occasion. Mixed model analyses examined the relationship of the family environment to psychosocial outcomes across time. Results The OI and TBI groups differed significantly in social competence, but the family environment did not moderate the group difference, which was of medium magnitude. In contrast, group differences in behavioral adjustment became more pronounced across time at high levels of authoritarian and permissive parenting; among children with severe TBI, however, even those with low levels of permissive parenting showed increases in behavioral problems. For adaptive functioning, better home environments provided some protection following TBI, but not over time for the severe TBI group. These three-way interactions of group, family environment, and time post injury were all of medium magnitude. Conclusions The findings indicate that the family environment moderates the psychosocial outcomes of TBI in young children, but the moderating influence may wane with time among children with severe TBI. PMID:20438212

  3. OCT imaging of acute vascular changes following mild traumatic brain injury in mice (Conference Presentation)

    Science.gov (United States)

    Chico-Calero, Isabel; Shishkov, Milen; Welt, Jonathan; Blatter, Cedric; Vakoc, Benjamin J.

    2016-03-01

    While most people recover completely from mild traumatic brain injuries (mTBIs) and concussions, a subset develop lasting neurological disorders. Understanding the complex pathophysiology of these injuries is critical to developing improved prognostic and therapeutic approaches. Multiple studies have shown that the structure and perfusion of brain vessels are altered after mTBI. It is possible that these vascular injuries contribute to or trigger neurodegeneration. Intravital microscopy and mouse models of TBI offer a powerful platform to study the vascular component of mTBI. Because optical coherence tomography based angiography is based on perfusion contrast and is not significantly degraded by vessel leakage or blood brain barrier disruption, it is uniquely suited to studies of brain perfusion in the setting of trauma. However, existing TBI imaging models require surgical exposure of the brain at the time of injury which conflates TBI-related vascular changes with those caused by surgery. In this work, we describe a modified cranial window preparation based on a flexible, transparent polyurethane membrane. Impact injuries were delivered directly through this membrane, and imaging was performed immediately after injury without the need for additional surgical procedures. Using this model, we demonstrate that mTBI induces a transient cessation of flow in the capillaries and smaller vessels near the injury point. Reperfusion is observed in all animals within 3 hours of injury. This work describes new insight into the transient vascular changes induced by mTBI, and demonstrates more broadly the utility of the OCT/polyurethane window model platform in preclinical studies of mTBI.

  4. Influence of post-traumatic stress disorder on neuroinflammation and cell proliferation in a rat model of traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Sandra A Acosta

    Full Text Available Long-term consequences of traumatic brain injury (TBI are closely associated with the development of severe psychiatric disorders, such as post-traumatic stress disorder (PTSD, yet preclinical studies on pathological changes after combined TBI with PTSD are lacking. In the present in vivo study, we assessed chronic neuroinflammation, neuronal cell loss, cell proliferation and neuronal differentiation in specific brain regions of adult Sprague-Dawley male rats following controlled cortical impact model of moderate TBI with or without exposure to PTSD. Eight weeks post-TBI, stereology-based histological analyses revealed no significant differences between sham and PTSD alone treatment across all brain regions examined, whereas significant exacerbation of OX6-positive activated microglial cells in the striatum, thalamus, and cerebral peduncle, but not cerebellum, in animals that received TBI alone and combined TBI-PTSD compared with PTSD alone and sham treatment. Additional immunohistochemical results revealed a significant loss of CA3 pyramidal neurons in the hippocampus of TBI alone and TBI-PTSD compared to PTSD alone and sham treatment. Further examination of neurogenic niches revealed a significant downregulation of Ki67-positive proliferating cells, but not DCX-positive neuronally migrating cells in the neurogenic subgranular zone and subventricular zone for both TBI alone and TBI-PTSD compared to PTSD alone and sham treatment. Comparisons of levels of neuroinflammation and neurogenesis between TBI alone and TBI+PTSD revealed that PTSD did not exacerbate the neuropathological hallmarks of TBI. These results indicate a progressive deterioration of the TBI brain, which, under the conditions of the present approach, was not intensified by PTSD, at least within our time window and within the examined areas of the brain. Although the PTSD manipulation employed here did not exacerbate the pathological effects of TBI, the observed long

  5. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries

    Science.gov (United States)

    Mann, Aman P.; Scodeller, Pablo; Hussain, Sazid; Joo, Jinmyoung; Kwon, Ester; Braun, Gary B.; Mölder, Tarmo; She, Zhi-Gang; Kotamraju, Venkata Ramana; Ranscht, Barbara; Krajewski, Stan; Teesalu, Tambet; Bhatia, Sangeeta; Sailor, Michael J.; Ruoslahti, Erkki

    2016-06-01

    Traumatic brain injury (TBI) is a major health and socio-economic problem, but no pharmacological agent is currently approved for the treatment of acute TBI. Thus, there is a great need for advances in this field. Here, we describe a short peptide (sequence CAQK) identified by in vivo phage display screening in mice with acute brain injury. The CAQK peptide selectively binds to injured mouse and human brain, and systemically injected CAQK specifically homes to sites of brain injury in mouse models. The CAQK target is a proteoglycan complex upregulated in brain injuries. Coupling to CAQK increased injury site accumulation of systemically administered molecules ranging from a drug-sized molecule to nanoparticles. CAQK-coated nanoparticles containing silencing oligonucleotides provided the first evidence of gene silencing in injured brain parenchyma by systemically administered siRNA. These findings present an effective targeting strategy for the delivery of therapeutics in clinical management of acute brain injuries.

  6. Neurosensory Symptom Complexes after Acute Mild Traumatic Brain Injury.

    Directory of Open Access Journals (Sweden)

    Michael E Hoffer

    Full Text Available Mild Traumatic Brain Injury (mTBI is a prominent public health issue. To date, subjective symptom complaints primarily dictate diagnostic and treatment approaches. As such, the description and qualification of these symptoms in the mTBI patient population is of great value. This manuscript describes the symptoms of mTBI patients as compared to controls in a larger study designed to examine the use of vestibular testing to diagnose mTBI. Five symptom clusters were identified: Post-Traumatic Headache/Migraine, Nausea, Emotional/Affective, Fatigue/Malaise, and Dizziness/Mild Cognitive Impairment. Our analysis indicates that individuals with mTBI have headache, dizziness, and cognitive dysfunction far out of proportion to those without mTBI. In addition, sleep disorders and emotional issues were significantly more common amongst mTBI patients than non-injured individuals. A simple set of questions inquiring about dizziness, headache, and cognitive issues may provide diagnostic accuracy. The consideration of other symptoms may be critical for providing prognostic value and treatment for best short-term outcomes or prevention of long-term complications.

  7. Neurosensory Symptom Complexes after Acute Mild Traumatic Brain Injury.

    Science.gov (United States)

    Hoffer, Michael E; Szczupak, Mikhaylo; Kiderman, Alexander; Crawford, James; Murphy, Sara; Marshall, Kathryn; Pelusso, Constanza; Balaban, Carey

    2016-01-01

    Mild Traumatic Brain Injury (mTBI) is a prominent public health issue. To date, subjective symptom complaints primarily dictate diagnostic and treatment approaches. As such, the description and qualification of these symptoms in the mTBI patient population is of great value. This manuscript describes the symptoms of mTBI patients as compared to controls in a larger study designed to examine the use of vestibular testing to diagnose mTBI. Five symptom clusters were identified: Post-Traumatic Headache/Migraine, Nausea, Emotional/Affective, Fatigue/Malaise, and Dizziness/Mild Cognitive Impairment. Our analysis indicates that individuals with mTBI have headache, dizziness, and cognitive dysfunction far out of proportion to those without mTBI. In addition, sleep disorders and emotional issues were significantly more common amongst mTBI patients than non-injured individuals. A simple set of questions inquiring about dizziness, headache, and cognitive issues may provide diagnostic accuracy. The consideration of other symptoms may be critical for providing prognostic value and treatment for best short-term outcomes or prevention of long-term complications. PMID:26727256

  8. Executive Functioning of Combat Mild Traumatic Brain Injury.

    Science.gov (United States)

    Gaines, Katy D; Soper, Henry V; Berenji, Gholam R

    2016-01-01

    This study investigates neuropsychological deficits in recently deployed veterans with mild traumatic brain injury (mTBI). Veterans discharged from 2007 to 2012 were recruited from Veterans Affairs clinics. Independent groups of participants with mTBI (n = 57) and those without TBI (n = 57) were administered the Beck Depression Inventory-II, Combat Exposure Scale, Word Memory Test, and the Self-Awareness of Deficits Interview. Neuropsychological instruments included the Rey-Osterrieth Complex Figure Test, Letter and Category Fluency, Trail-Making Test-Parts A and B, Christiansen H-abbreviated, Soper Neuropsychology Screen, Wechsler Memory Scale subtests Logical Memory I and II, and the Street Completion Test. The mTBI group performed significantly worse on all of the executive and nonexecutive measurements with the exception of Category Fluency, after controlling for age, depression effort, and combat exposure. Depression and combat exposure were greater for the mTBI group. The mTBI group scored poorer on effort, but only the Multiple Choice subtest was significant. The mTBI group had good awareness of their deficits. PMID:26496530

  9. High-Performance Bioinstrumentation for Real-Time Neuroelectrochemical Traumatic Brain Injury Monitoring

    Science.gov (United States)

    Papadimitriou, Konstantinos I.; Wang, Chu; Rogers, Michelle L.; Gowers, Sally A. N.; Leong, Chi L.; Boutelle, Martyn G.; Drakakis, Emmanuel M.

    2016-01-01

    Traumatic brain injury (TBI) has been identified as an important cause of death and severe disability in all age groups and particularly in children and young adults. Central to TBIs devastation is a delayed secondary injury that occurs in 30–40% of TBI patients each year, while they are in the hospital Intensive Care Unit (ICU). Secondary injuries reduce survival rate after TBI and usually occur within 7 days post-injury. State-of-art monitoring of secondary brain injuries benefits from the acquisition of high-quality and time-aligned electrical data i.e., ElectroCorticoGraphy (ECoG) recorded by means of strip electrodes placed on the brains surface, and neurochemical data obtained via rapid sampling microdialysis and microfluidics-based biosensors measuring brain tissue levels of glucose, lactate and potassium. This article progresses the field of multi-modal monitoring of the injured human brain by presenting the design and realization of a new, compact, medical-grade amperometry, potentiometry and ECoG recording bioinstrumentation. Our combined TBI instrument enables the high-precision, real-time neuroelectrochemical monitoring of TBI patients, who have undergone craniotomy neurosurgery and are treated sedated in the ICU. Electrical and neurochemical test measurements are presented, confirming the high-performance of the reported TBI bioinstrumentation.

  10. The UCLA Study of Children with Moderate-to-Severe Traumatic Brain Injury: Event-Related Potential Measure of Interhemispheric Transfer Time

    OpenAIRE

    Ellis, MU; Marion, SD; McArthur, DL; Babikian, T; Giza, C; Kernan, CL; NEWMAN;, N.; Moran, L.; Akarakian, R; Houshiarnejad, A; Mink, R; Johnson, J; Babbitt, CJ; Olsen, A.; Asarnow, RF

    2016-01-01

    Traumatic brain injury (TBI) frequently results in diffuse axonal injury and other white matter damage. The corpus callosum (CC) is particularly vulnerable to injury following TBI. Damage to this white matter tract has been associated with impaired neurocognitive functioning in children with TBI. Event-related potentials can identify stimulus-locked neural activity with high temporal resolution. They were used in this study to measure interhemispheric transfer time (IHTT) as an indicator of C...

  11. Top-cited articles in traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Bhanu Sharma

    2014-11-01

    Full Text Available A review of the top-cited articles in a scientific discipline can identify areas of research that are well established and those in need of further development, and may, as a result, inform and direct future research efforts. Our objective was to identify and characterize the top-cited articles in traumatic brain injury (TBI. We used publically available software to identify the 50 TBI articles with the most lifetime citations, and the 50 TBI articles with the highest annual citation rates. A total of 73 articles were included in this review, with 27 of the 50 papers with the highest annual citation rates common to the cohort of 50 articles with the most lifetime citations. All papers were categorized by their primary topic or focus, namely: predictor of outcome, pathology/natural history, treatment, guidelines and consensus statements, epidemiology, assessment measures, or experimental model of TBI. The mean year of publication of the articles with the most lifetime citations and highest annual citation rates was, respectively, 1990 ± 14.9 years and 2003 ± 6.7 years. The 50 articles with the most lifetime citations typically studied predictors of outcome (34.0%, 17/50 and were specific to severe TBI (38.0%, 19/50. In contrast, the most common subject of papers with the highest annual citation rates was treatment of brain injury (22.0%, 11/50, and these papers most frequently investigated mild TBI (36.0%, 18/50. These findings suggest an intensified focus on mild TBI, which is perhaps a response to the dedicated attention these injuries are currently receiving in the context of sports and war, and because of their increasing incidence in developing nations. Our findings also indicate increased focus on treatment of TBI, possibly due to the limited efficacy of current interventions for TBI. This review provides a cross-sectional summary of some of the most influential articles in TBI, and a bibliometric examination of the current status of TBI

  12. Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design

    Energy Technology Data Exchange (ETDEWEB)

    Moss, W C; King, M J; Blackman, E G

    2009-04-14

    Traumatic brain injury [TBI] has become a signature injury of current military conflicts. The debilitating effects of TBI are long-lasting and costly. Although the mechanisms by which impacts cause TBI have been well researched, the mechanisms by which blasts cause TBI are not understood. Various possibilities have been investigated, but blast-induced deformation of the skull has been neglected. From numerical hydrodynamic simulations, we have discovered that nonlethal blasts can induce sufficient flexure of the skull to generate potentially damaging loads in the brain, even if no impact occurs. The possibility that this mechanism may contribute to TBI has implications for the diagnosis of soldiers and the design of protective equipment such as helmets.

  13. Skull Flexure from Blast Waves: A New Mechanism for Brain Injury with Implications for Helmet Design

    CERN Document Server

    Moss, William C; Blackman, Eric G

    2008-01-01

    Traumatic brain injury [TBI] has become the signature injury of current military conflicts. The debilitating effects of TBI on society are long-lasting and costly. Although the mechanisms by which impacts cause TBI have been well researched, the mechanisms by which blasts cause TBI are not understood. Various mechanisms, including impacts caused by the blast, have been investigated, but blast-induced deformation of the skull has been neglected. Through the use of hydrodynamical numerical simulations, we have discovered that non-lethal blasts can induce sufficient flexure of the skull to generate potentially damaging loads in the brain, even if no impact occurs. This mechanism has implications for the diagnosis of TBI in soldiers and the design of protective equipment such as helmets.

  14. Neuropsychological differential diagnosis of mild traumatic brain injury.

    Science.gov (United States)

    Larrabee, Glenn J; Rohling, Martin L

    2013-01-01

    The diagnosis and evaluation of mild traumatic brain injury (mTBI) is reviewed from the perspective of meta-analyses of neuropsychological outcome, showing full recovery from a single, uncomplicated mTBI by 90 days post-trauma. Persons with history of complicated mTBI characterized by day-of-injury computed tomography or magnetic resonance imaging abnormalities, and those who have suffered prior mTBIs may or may not show evidence of complete recovery similar to that experienced by persons suffering a single, uncomplicated mTBI. Persistent post-concussion syndrome (PCS) is considered as a somatoform presentation, influenced by the non-specificity of PCS symptoms which commonly occur in non-TBI samples and co-vary as a function of general life stress, and psychological factors including symptom expectation, depression and anxiety. A model is presented for forensic evaluation of the individual mTBI case, which involves open-ended interview, followed by structured interview, record review, and detailed neuropsychological testing. Differential diagnosis includes consideration of other neurologic and psychiatric disorders, symptom expectation, diagnosis threat, developmental disorders, and malingering. PMID:24105915

  15. Inosine improves functional recovery after experimental traumatic brain injury.

    Science.gov (United States)

    Dachir, Shlomit; Shabashov, Dalia; Trembovler, Victoria; Alexandrovich, Alexander G; Benowitz, Larry I; Shohami, Esther

    2014-03-25

    Despite years of research, no effective therapy is yet available for the treatment of traumatic brain injury (TBI). The most prevalent and debilitating features in survivors of TBI are cognitive deficits and motor dysfunction. A potential therapeutic method for improving the function of patients following TBI would be to restore, at least in part, plasticity to the CNS in a controlled way that would allow for the formation of compensatory circuits. Inosine, a naturally occurring purine nucleoside, has been shown to promote axon collateral growth in the corticospinal tract (CST) following stroke and focal TBI. In the present study, we investigated the effects of inosine on motor and cognitive deficits, CST sprouting, and expression of synaptic proteins in an experimental model of closed head injury (CHI). Treatment with inosine (100 mg/kg i.p. at 1, 24 and 48 h following CHI) improved outcome after TBI, significantly decreasing the neurological severity score (NSS, pcognitive performance (object recognition, peffect on sensorimotor coordination (rotarod) and spatial cognitive functions (Y-maze). Inosine did not affect CST sprouting in the lumbar spinal cord but did restore levels of the growth-associated protein GAP-43 in the hippocampus, though not in the cerebral cortex. Our results suggest that inosine may improve functional outcome after TBI. PMID:24502983

  16. ‘Studying Injured Minds’ - The Vietnam Head Injury Study and 40 years of brain injury research

    Directory of Open Access Journals (Sweden)

    Vanessa Raymont

    2011-03-01

    Full Text Available The study of those who have sustained traumatic brain injuries (TBI during military conflicts has greatly facilitated research in the fields of neuropsychology, neurosurgery, psychiatry, neurology and neuroimaging. The Vietnam Head Injury Study (VHIS is a prospective, long-term follow-up study of a cohort of 1,221 Vietnam veterans with mostly penetrating brain injuries, which has stretched over more than 40 years. The scope of this study, both in terms of the types of injury and fields of examination, has been extremely broad. It has been instrumental in extending the field of TBI research and in exposing pressing medical and social issues that affect those who suffer such injuries. This review summarizes the history of conflict-related TBI research and the VHIS to date, as well as the vast range of important findings the VHIS has established.

  17. Abnormal Corticospinal Excitability in Traumatic Diffuse Axonal Brain Injury

    OpenAIRE

    Bernabeu, Montse; Demirtas-Tatlidede, Asli; Opisso, Eloy; Lopez, Raquel; Tormos, Jose Mª; Pascual-Leone, Alvaro

    2009-01-01

    This study aimed to investigate the cortical motor excitability characteristics in diffuse axonal injury (DAI) due to severe traumatic brain injury (TBI). A variety of excitatory and inhibitory transcranial magnetic stimulation (TMS) paradigms were applied to primary motor cortices of 17 patients and 11 healthy controls. The parameters of testing included resting motor threshold (MT), motor evoked potential (MEP) area under the curve, input-output curves, MEP variability, and silent period (S...

  18. Barriers to Meeting the Needs of Students with Traumatic Brain Injury

    Science.gov (United States)

    Canto, Angela I.; Chesire, David J.; Buckley, Valerie A.; Andrews, Terrie W.; Roehrig, Alysia D.

    2014-01-01

    Many students with traumatic brain injury (TBI) are identified by the medical community each year and many more experience head injuries that are not examined by medical personnel. School psychologists and allied consultants have important liaison roles to identify and assist these students post-injury. In this study, 75 school psychologists (the…

  19. Initial developmental process of a VA semistructured clinical interview for TBI identification

    OpenAIRE

    Heather G . Belanger, PhD; Rodney D. Vanderploeg, PhD; Shirley Groer, PhD

    2012-01-01

    Identification of a remote traumatic brain injury (TBI), particularly mild TBI, is a challenge. The acknowledged standard for determining a history of prior TBI is self-report elicited through a structured or in-depth clinical interview. In April 2007, the Veterans Health Administration (VHA) mandated that the four-section TBI Clinical Reminder screening instrument be completed on all individuals returning from deployment in the Operation Iraqi Freedom/Operation Enduring Freedom theaters of o...

  20. Emergence of cognitive deficits after mild traumatic brain injury due to hyperthermia.

    Science.gov (United States)

    Titus, David J; Furones, Concepcion; Atkins, Coleen M; Dietrich, W Dalton

    2015-01-01

    Mild elevations in core temperature can occur in individuals involved in strenuous activities that are risky for potentially sustaining a mild traumatic brain injury (mTBI) or concussion. Recently, we have discovered that mild elevations in brain temperature can significantly aggravate the histopathological consequences of mTBI. However, whether this exacerbation of brain pathology translates into behavioral deficits is unknown. Therefore, we investigated the behavioral consequences of elevating brain temperature to mildly hyperthermic levels prior to mTBI. Adult male Sprague Dawley rats underwent mild fluid-percussion brain injury or sham surgery while normothermic (37 °C) or hyperthermic (39 °C) and were allowed to recover for 7 days. Animals were then assessed for cognition using the water maze and cue and contextual fear conditioning. We found that mTBI alone at normothermia had no effect on long-term cognitive measures whereas mTBI animals that were hyperthermic for 15 min prior to and for 4h after brain injury were significantly impaired on long-term retention for both the water maze and fear conditioning. In contrast, hyperthermic mTBI animals cooled within 15 min to normothermia demonstrated no significant long-term cognitive deficits. Mild TBI irrespective of temperature manipulations resulted in significant short-term working memory deficits. Cortical atrophy and contusions were detected in all mTBI treatment groups and contusion volume was significantly less in hyperthermic mTBI animals that were cooled as compared to hyperthermic mTBI animals that remained hyperthermic. These results indicate that brain temperature is an important variable for mTBI outcome and that mildly elevated temperatures at the time of injury result in persistent cognitive deficits. Importantly, cooling to normothermia after mTBI prevents the development of long-term cognitive deficits caused by hyperthermia. Reducing temperature to normothermic levels soon after mTBI represents

  1. Social communication in young children with traumatic brain injury: Relations with corpus callosum morphometry

    OpenAIRE

    Ewing-Cobbs, Linda; Prasad, Mary R.; Swank, Paul; Kramer, Larry; Mendez, Donna; Treble, Amery; Payne, Christa; Bachevalier, Jocelyne

    2011-01-01

    The purpose of the present investigation was to characterize the relations of specific social communication behaviors, including joint attention, gestures, and verbalization, with surface area of midsagittal corpus callosum (CC) subregions in children who sustained traumatic brain injury (TBI) before 7 years of age. Participants sustained mild (n = 10) or moderate–severe (n = 26) noninflicted TBI. The mean age at injury was 33.6 months; mean age at MRI was 44.4 months. The CC was divided into...

  2. Effects of acute substance use and pre-injury substance abuse on traumatic brain injury severity in adults admitted to a trauma centre

    OpenAIRE

    Schanke Anne-Kristine; Sigurdardottir Solrun; Jerstad Tone; Andelic Nada; Sandvik Leiv; Roe Cecilie

    2010-01-01

    Abstract Background The aims of this study were to describe the occurrence of substance use at the time of injury and pre-injury substance abuse in patients with moderate-to-severe traumatic brain injury (TBI). Effects of acute substance use and pre-injury substance abuse on TBI severity were also investigated. Methods A prospective study of 111 patients, aged 16-55 years, injured from May 2005 to May 2007 and hospitalised at the Trauma Referral Centre in Eastern Norway with acute TBI (Glasgo...

  3. Robust whole-brain segmentation: application to traumatic brain injury.

    Science.gov (United States)

    Ledig, Christian; Heckemann, Rolf A; Hammers, Alexander; Lopez, Juan Carlos; Newcombe, Virginia F J; Makropoulos, Antonios; Lötjönen, Jyrki; Menon, David K; Rueckert, Daniel

    2015-04-01

    We propose a framework for the robust and fully-automatic segmentation of magnetic resonance (MR) brain images called "Multi-Atlas Label Propagation with Expectation-Maximisation based refinement" (MALP-EM). The presented approach is based on a robust registration approach (MAPER), highly performant label fusion (joint label fusion) and intensity-based label refinement using EM. We further adapt this framework to be applicable for the segmentation of brain images with gross changes in anatomy. We propose to account for consistent registration errors by relaxing anatomical priors obtained by multi-atlas propagation and a weighting scheme to locally combine anatomical atlas priors and intensity-refined posterior probabilities. The method is evaluated on a benchmark dataset used in a recent MICCAI segmentation challenge. In this context we show that MALP-EM is competitive for the segmentation of MR brain scans of healthy adults when compared to state-of-the-art automatic labelling techniques. To demonstrate the versatility of the proposed approach, we employed MALP-EM to segment 125 MR brain images into 134 regions from subjects who had sustained traumatic brain injury (TBI). We employ a protocol to assess segmentation quality if no manual reference labels are available. Based on this protocol, three independent, blinded raters confirmed on 13 MR brain scans with pathology that MALP-EM is superior to established label fusion techniques. We visually confirm the robustness of our segmentation approach on the full cohort and investigate the potential of derived symmetry-based imaging biomarkers that correlate with and predict clinically relevant variables in TBI such as the Marshall Classification (MC) or Glasgow Outcome Score (GOS). Specifically, we show that we are able to stratify TBI patients with favourable outcomes from non-favourable outcomes with 64.7% accuracy using acute-phase MR images and 66.8% accuracy using follow-up MR images. Furthermore, we are able to

  4. Altered sleep composition after traumatic brain injury does not affect declarative sleep-dependent memory consolidation.

    Science.gov (United States)

    Mantua, Janna; Mahan, Keenan M; Henry, Owen S; Spencer, Rebecca M C

    2015-01-01

    Individuals with a history of traumatic brain injury (TBI) often report sleep disturbances, which may be caused by changes in sleep architecture or reduced sleep quality (greater time awake after sleep onset, poorer sleep efficiency, and sleep stage proportion alterations). Sleep is beneficial for memory formation, and herein we examine whether altered sleep physiology following TBI has deleterious effects on sleep-dependent declarative memory consolidation. Participants learned a list of word pairs in the morning or evening, and recall was assessed 12-h later, following an interval awake or with overnight sleep. Young adult participants (18-22 years) were assigned to one of four experimental groups: TBI Sleep (n = 14), TBI Wake (n = 12), non-TBI Sleep (n = 15), non-TBI Wake (n = 15). Each TBI participant was >1 year post-injury. Sleep physiology was measured with polysomnography. Memory consolidation was assessed by comparing change in word-pair recall over 12-h intersession intervals. The TBI group spent a significantly greater proportion of the night in SWS than the non-TBI group at the expense of NREM1. The TBI group also had marginally lower EEG delta power during SWS in the central region. Intersession changes in recall were greater for intervals with sleep than without sleep in both groups. However, despite abnormal sleep stage proportions for individuals with a TBI history, there was no difference in the intersession change in recall following sleep for the TBI and non-TBI groups. In both Sleep groups combined, there was a positive correlation between Intersession Change and the proportion of the night in NREM2 + SWS. Overall, sleep composition is altered following TBI but such deficits do not yield insufficiencies in sleep-dependent memory consolidation. PMID:26097451

  5. Altered sleep composition after traumatic brain injury does not affect declarative sleep-dependent memory consolidation

    Directory of Open Access Journals (Sweden)

    Janna Mantua

    2015-06-01

    Full Text Available Individuals with a history of traumatic brain injury (TBI often report sleep disturbances, which may be caused by changes in sleep architecture or reduced sleep quality (greater time awake after sleep onset, poorer sleep efficiency, and sleep stage proportion alterations. Sleep is beneficial for memory formation, and herein we examine whether altered sleep physiology following TBI has deleterious effects on sleep-dependent declarative memory consolidation. Participants learned a list of word pairs in the morning or evening, and recall was assessed 12-hrs later, following an interval awake or with overnight sleep. Young adult participants (18-22 yrs were assigned to one of four experimental groups: TBI Sleep (n=14, TBI Wake (n=12, non-TBI Sleep (n=15, non-TBI Wake (n=15. Each TBI participant was >1 yr post-injury. Sleep physiology was measured with polysomnography. Memory consolidation was assessed by comparing change in word-pair recall over 12-hr intersession intervals. The TBI group spent a significantly greater proportion of the night in SWS than the non-TBI group at the expense of NREM1. The TBI group also had marginally lower EEG delta power during SWS in the central region. Intersession changes in recall were greater for intervals with sleep than without sleep in both groups. However, despite abnormal sleep stage proportions for individuals with a TBI history, there was no difference in the intersession change in recall following sleep for the TBI and non-TBI groups. In both Sleep groups combined, there was a positive correlation between Intersession Change and the proportion of the night in NREM2 + SWS. Overall, sleep composition is altered following TBI but such deficits do not yield insufficiencies in sleep-dependent memory consolidation.

  6. Tensor-Based Morphometry Reveals Volumetric Deficits in Moderate=Severe Pediatric Traumatic Brain Injury.

    Science.gov (United States)

    Dennis, Emily L; Hua, Xue; Villalon-Reina, Julio; Moran, Lisa M; Kernan, Claudia; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C; Thompson, Paul M; Asarnow, Robert F

    2016-05-01

    Traumatic brain injury (TBI) can cause widespread and prolonged brain degeneration. TBI can affect cognitive function and brain integrity for many years after injury, often with lasting effects in children, whose brains are still immature. Although TBI varies in how it affects different individuals, image analysis methods such as tensor-based morphometry (TBM) can reveal common areas of brain atrophy on magnetic resonance imaging (MRI), secondary effects of the initial injury, which will differ between subjects. Here we studied 36 pediatric moderate to severe TBI (msTBI) participants in the post-acute phase (1-6 months post-injury) and 18 msTBI participants who returned for their chronic assessment, along with well-matched controls at both time-points. Participants completed a battery of cognitive tests that we used to create a global cognitive performance score. Using TBM, we created three-dimensional (3D) maps of individual and group differences in regional brain volumes. At both the post-acute and chronic time-points, the greatest group differences were expansion of the lateral ventricles and reduction of the lingual gyrus in the TBI group. We found a number of smaller clusters of volume reduction in the cingulate gyrus, thalamus, and fusiform gyrus, and throughout the frontal, temporal, and parietal cortices. Additionally, we found extensive associations between our cognitive performance measure and regional brain volume. Our results indicate a pattern of atrophy still detectable 1-year post-injury, which may partially underlie the cognitive deficits frequently found in TBI. PMID:26393494

  7. Tensor-Based Morphometry Reveals Volumetric Deficits in Moderate=Severe Pediatric Traumatic Brain Injury

    Science.gov (United States)

    Hua, Xue; Villalon-Reina, Julio; Moran, Lisa M.; Kernan, Claudia; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C.; Thompson, Paul M.; Asarnow, Robert F.

    2016-01-01

    Abstract Traumatic brain injury (TBI) can cause widespread and prolonged brain degeneration. TBI can affect cognitive function and brain integrity for many years after injury, often with lasting effects in children, whose brains are still immature. Although TBI varies in how it affects different individuals, image analysis methods such as tensor-based morphometry (TBM) can reveal common areas of brain atrophy on magnetic resonance imaging (MRI), secondary effects of the initial injury, which will differ between subjects. Here we studied 36 pediatric moderate to severe TBI (msTBI) participants in the post-acute phase (1–6 months post-injury) and 18 msTBI participants who returned for their chronic assessment, along with well-matched controls at both time-points. Participants completed a battery of cognitive tests that we used to create a global cognitive performance score. Using TBM, we created three-dimensional (3D) maps of individual and group differences in regional brain volumes. At both the post-acute and chronic time-points, the greatest group differences were expansion of the lateral ventricles and reduction of the lingual gyrus in the TBI group. We found a number of smaller clusters of volume reduction in the cingulate gyrus, thalamus, and fusiform gyrus, and throughout the frontal, temporal, and parietal cortices. Additionally, we found extensive associations between our cognitive performance measure and regional brain volume. Our results indicate a pattern of atrophy still detectable 1-year post-injury, which may partially underlie the cognitive deficits frequently found in TBI. PMID:26393494

  8. Development of a mild traumatic brain injury-specific vision screening protocol: A Delphi study

    Directory of Open Access Journals (Sweden)

    Gregory L. Goodrich, PhD

    2013-08-01

    Full Text Available Although traumatic brain injury (TBI can happen to anyone at any time, the wars in Iraq and Afghanistan have brought it renewed attention. Fortunately, most cases of TBI from the recent conflicts are mild TBI (mTBI. Still, many physical, psychological, and social problems are associated with mTBI. Among the difficulties encountered are oculomotor and vision problems, many of which can impede daily activities such as reading. Therefore, correct diagnosis and treatment of these mTBI-related vision problems is an important part of patient recovery. Numerous eye care providers in the Department of Veterans Affairs, in military settings, and in civilian practices specialize and are proficient in examining patients who have a history of TBI. However, many do not have this level of experience working with and treating patients with mTBI. Recognizing this, we used a modified Delphi method to derive expert opinions from a panel of 16 optometrists concerning visual examination of the patient with mTBI. This process resulted in a clinical tool containing 17 history questions and 7 examination procedures. This tool provides a set of clinical guidelines that can be used as desired by any eye care provider either as a screening tool or adjunct to a full eye examination when seeing a patient with a history of mTBI. The goal of this process was to provide optimal and uniform vision care for the patient with mTBI.

  9. Posttraumatic administration of luteolin protects mice from traumatic brain injury: implication of autophagy and inflammation.

    Science.gov (United States)

    Xu, Jianguo; Wang, Handong; Lu, Xinyu; Ding, Ke; Zhang, Li; He, Jin; Wei, Wuting; Wu, Yong

    2014-09-25

    Secondary brain insult induced by traumatic brain injury (TBI), including excitotoxicity, oxidative stress, inflammatory response, and neuronal degeneration, is sensitive to therapeutic interventions; therefore, searching for neuroprotective agents represents a promising therapeutic strategy for TBI treatment. Luteolin, a member of the flavonoid family, has recently been proven to modulate autophagy. However, whether it activates autophagy after TBI thereby alleviating the secondary insult is not yet understood. Here, we aimed to evaluate the neuroprotection of luteolin against TBI and the potential role of autophagy where it is involved. For this purpose, mice were randomly divided into four groups and then subjected to TBI. The treatment mice received luteolin at a dose of 30mg/kg 30min post-TBI based on our previous study. We employed western blot, immunofluorescence and quantitative real-time PCR to determine autophagy process and inflammatory response among different groups. Autophagy was found to be enhanced after luteolin treatment according to the expressions of autophagic markers. Furthermore, luteolin decreased nuclear accumulation of p65 induced by TBI, indicating attenuation of inflammation. In line with these observations, luteolin decreased mRNA and protein expressions of pro-inflammatory factors IL-1b and TNF-a. At last, luteolin reduced neuronal degeneration, and alleviated brain edema and blood-brain barrier (BBB) disruption. In conclusion, these results implied that luteolin protected mice brain from traumatic brain injury by inhibiting inflammatory response, and luteolin-induced autophagy might play a pivotal role in its neuroprotection. PMID:25093609

  10. Phosphodiesterase inhibition rescues chronic cognitive deficits induced by traumatic brain injury.

    Science.gov (United States)

    Titus, David J; Sakurai, Atsushi; Kang, Yuan; Furones, Concepcion; Jergova, Stanislava; Santos, Rosmery; Sick, Thomas J; Atkins, Coleen M

    2013-03-20

    Traumatic brain injury (TBI) modulates several cell signaling pathways in the hippocampus critical for memory formation. Previous studies have found that the cAMP-protein kinase A signaling pathway is downregulated after TBI and that treatment with a phosphodiesterase (PDE) 4 inhibitor rolipram rescues the decrease in cAMP. In the present study, we examined the effect of rolipram on TBI-induced cognitive impairments. At 2 weeks after moderate fluid-percussion brain injury or sham surgery, adult male Sprague Dawley rats received vehicle or rolipram (0.03 mg/kg) 30 min before water maze acquisition or cue and contextual fear conditioning. TBI animals treated with rolipram showed a significant improvement in water maze acquisition and retention of both cue and contextual fear conditioning compared with vehicle-treated TBI animals. Cue and contextual fear conditioning significantly increased phosphorylated CREB levels in the hippocampus of sham animals, but not in TBI animals. This deficit in CREB activation during learning was rescued in TBI animals treated with rolipram. Hippocampal long-term potentiation was reduced in TBI animals, and this was also rescued with rolipram treatment. These results indicate that the PDE4 inhibitor rolipram rescues cognitive impairments after TBI, and this may be mediated through increased CREB activation during learning. PMID:23516287

  11. Structural Neuroimaging Findings in Mild Traumatic Brain Injury.

    Science.gov (United States)

    Bigler, Erin D; Abildskov, Tracy J; Goodrich-Hunsaker, Naomi J; Black, Garrett; Christensen, Zachary P; Huff, Trevor; Wood, Dawn-Marie G; Hesselink, John R; Wilde, Elisabeth A; Max, Jeffrey E

    2016-09-01

    Common neuroimaging findings in mild traumatic brain injury (mTBI), including sport-related concussion (SRC), are reviewed based on computed tomography and magnetic resonance imaging (MRI). Common abnormalities radiologically identified on the day of injury, typically a computed tomographic scan, are in the form of contusions, small subarachnoid or intraparenchymal hemorrhages as well as subdural and epidural collections, edema, and skull fractures. Common follow-up neuroimaging findings with MRI include white matter hyperintensities, hypointense signal abnormalities that reflect prior hemorrhage, focal encephalomalacia, presence of atrophy and/or dilated Virchow-Robins perivascular space. The MRI findings from a large pediatric mTBI study show low frequency of positive MRI findings at 6 months postinjury. The review concludes with an examination of some of the advanced MRI-based image analysis methods that can be performed in the patient who has sustained an mTBI. PMID:27482782

  12. Hysteria following brain injury.

    OpenAIRE

    Eames, P

    1992-01-01

    Of 167 patients referred to a unit treating severe behaviour disorders after brain injury, 54 showed clinical features closely resembling those of gross hysteria as described by Charcot. Close correlation was found with very diffuse insults (hypoxia and hypoglycaemia), but not with severity of injury or with family or personal history of hysterical or other psychiatric disorder. The findings may have implications for the understanding of the nature of hysteria.

  13. Cognitive and psychopathological sequelae of pediatric traumatic brain injury.

    Science.gov (United States)

    Beauchamp, M H; Anderson, V

    2013-01-01

    Childhood traumatic brain injury (TBI) is a frequent cause of acquired disability in childhood and can have a serious impact on development across the lifespan. The consequences of early TBI vary according to injury severity, with severe injuries usually resulting in more serious physical, cognitive and behavioral sequelae. Both clinical and research reports document residual deficits in a range of skills, including intellectual function, attention, memory, learning, and executive function. In addition, recent investigations suggest that early brain injury also affects psychological and social development and that problems in these domains may increase in the long term postinjury. Together, these deficits affect children's ability to function effectively at school, in the home, and in their social environment, resulting in impaired acquisition of knowledge, psychological and social problems, and overall reduced quality of life. Ultimately, recovery from childhood TBI depends on a range of complex biological, developmental, and psychosocial factors making prognosis difficult to predict. This chapter will detail the cognitive (intellectual, attentional, mnesic, executive, educational, and vocational) and psychopathological (behavioral, adaptive, psychological, social) sequelae of childhood TBI with a particular focus on postinjury recovery patterns in the acute, short-, and long-term phases, as well as into adulthood. PMID:23622301

  14. Brain injury impairs working memory and prefrontal circuit function

    Directory of Open Access Journals (Sweden)

    Colin James Smith

    2015-11-01

    Full Text Available More than 2.5 million Americans suffer a traumatic brain injury (TBI each year. Even mild to moderate traumatic brain injury causes long-lasting neurological effects. Despite its prevalence, no therapy currently exists to treat the underlying cause of cognitive impairment suffered by TBI patients. Following lateral fluid percussion injury (LFPI, the most widely used experimental model of TBI, we investigated alterations in working memory and excitatory/inhibitory synaptic balance in the prefrontal cortex. LFPI impaired working memory as assessed with a T-maze behavioral task. Field excitatory postsynaptic potentials recorded in the prefrontal cortex were reduced in slices derived from brain-injured mice. Spontaneous and miniature excitatory postsynaptic currents onto layer 2/3 neurons were more frequent in slices derived from LFPI mice while inhibitory currents onto layer 2/3 neurons were smaller after LFPI. Additionally, an increase in action potential threshold and concomitant decrease in firing rate was observed in layer 2/3 neurons in slices from injured animals. Conversely, no differences in excitatory or inhibitory synaptic transmission onto layer 5 neurons were observed; however, layer 5 neurons demonstrated a decrease in input resistance and action potential duration after LFPI. These results demonstrate synaptic and intrinsic alterations in prefrontal circuitry that may underlie working memory impairment caused by TBI.

  15. Traumatic brain injury: future assessment tools and treatment prospects

    Directory of Open Access Journals (Sweden)

    Steven R Flanagan

    2008-10-01

    Full Text Available Steven R Flanagan1, Joshua B Cantor2, Teresa A Ashman21New York University School of Medicine, The Rusk Institute of Rehabilitation, New York, NY, USA; 2Department of Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY, USAAbstract: Traumatic brain injury (TBI is widespread and leads to death and disability in millions of individuals around the world each year. Overall incidence and prevalence of TBI are likely to increase in absolute terms in the future. Tackling the problem of treating TBI successfully will require improvements in the understanding of normal cerebral anatomy, physiology, and function throughout the lifespan, as well as the pathological and recuperative responses that result from trauma. New treatment approaches and combinations will need to be targeted to the heterogeneous needs of TBI populations. This article explores and evaluates the research evidence in areas that will likely lead to a reduction in TBI-related morbidity and improved outcomes. These include emerging assessment instruments and techniques in areas of structural/chemical and functional neuroimaging and neuropsychology, advances in the realms of cell-based therapies and genetics, promising cognitive rehabilitation techniques including cognitive remediation and the use of electronic technologies including assistive devices and virtual reality, and the emerging field of complementary and alternative medicine.Keywords: traumatic brain injury, assessments, treatments

  16. Astrocytic Ephrin-B1 Regulates Synapse Remodeling Following Traumatic Brain Injury

    OpenAIRE

    Nikolakopoulou, Angeliki M.; Koeppen, Jordan; Garcia, Michael; Leish, Joshua; Obenaus, Andre; Iryna M Ethell

    2016-01-01

    Traumatic brain injury (TBI) can result in tissue alterations distant from the site of the initial injury, which can trigger pathological changes within hippocampal circuits and are thought to contribute to long-term cognitive and neuropsychological impairments. However, our understanding of secondary injury mechanisms is limited. Astrocytes play an important role in brain repair after injury and astrocyte-mediated mechanisms that are implicated in synapse development are likely important in ...

  17. Deficits in analogical reasoning in adolescents with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Daniel C Krawczyk

    2010-08-01

    Full Text Available Individuals with traumatic brain injury (TBI exhibit deficits in executive control, which may impact their reasoning abilities. Analogical reasoning requires working memory and inhibitory abilities. In this study, we tested adolescents with moderate to severe TBI and typically-developing (TD controls on a set of picture analogy problems. Three factors were varied: complexity (number of relations in the problems, distraction (distractor item present or absent, and animacy (living or non-living items in the problems. We found that TD adolescents performed significantly better overall than TBI adolescents. There was also an age effect present in the TBI group where older participants performed better than younger ones. This age effect was not observed in the TD group. Performance was affected by complexity and distraction. Further, TBI participants exhibited lower performance with distractors present than TD participants. The reasoning deficits exhibited by the TBI participants were correlated with measures of executive function that required working memory updating, attention, and attentional screening. Using MRI-derived measures of cortical thickness, correlations were carried out between task accuracy and cortical thickness. The TD adolescents showed negative correlations between thickness and task accuracy in frontal and temporal regions consistent with cortical maturation in these regions. This study demonstrates that adolescent TBI results in impairments in analogical reasoning ability. Further, TBI youth have difficulty effectively screening out distraction, which may lead to failures in comprehension of the relations among items in visual scenes. Lastly, TBI youth fail to show robust cortical-behavior correlations as observed in TD individuals.

  18. Long-term cognitive correlates of traumatic brain injury across adulthood and interactions with APOE genotype, sex, and age cohorts.

    OpenAIRE

    Eramudugolla, R.; Bielak, AA; Bunce, D; Easteal, S; Cherbuin, N; Anstey, KJ

    2014-01-01

    There is continuing debate about long-term effects of brain injury. We examined a range of traumatic brain injury (TBI) variables (TBI history, severity, frequency, and age of injury) as predictors of cognitive outcome over 8 years in an adult population, and interactions with apolipoprotein E (APOE) genotype, sex, and age cohorts. Three randomly sampled age cohorts (20-24, 40-44, 60-64 years at baseline; N = 6333) were each evaluated three times over 8 years. TBI variables, based on self-rep...

  19. Radiation Injury to the Brain

    Science.gov (United States)

    ... Hits since January 2003 RADIATION INJURY TO THE BRAIN Radiation treatments affect all cells that are targeted. ... fractions, duration of therapy, and volume of [healthy brain] nervous tissue irradiated influence the likelihood of injury. ...

  20. Non-invasive brain stimulation for the treatment of symptoms following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Simarjot K Dhaliwal

    2015-08-01

    Full Text Available Background: Traumatic brain injury (TBI is a common cause of physical, psychological, and cognitive impairment, but many current treatments for TBI are ineffective or produce adverse side effects. Non-invasive methods of brain stimulation could help ameliorate some common trauma-induced symptoms.Objective: This review summarizes instances in which repetitive Transcranial Magnetic Stimulation (rTMS and transcranial Direct Current Stimulation (tDCS have been used to treat symptoms following a traumatic brain injury. A subsequent discussion attempts to determine the value of these methods in light of their potential risks.Methods: The research databases of PubMed/MEDLINE and PsycINFO were electronically searched using terms relevant to the use of rTMS and tDCS as a tool to decrease symptoms in the context of rehabilitation post-TBI.Results: Eight case-studies and four multi-subject reports using rTMS and six multi-subject studies using tDCS were found. Two instances of seizure are discussed. Conclusions: There is evidence that rTMS can be an effective treatment option for some post-TBI symptoms such as depression, tinnitus, and neglect. Although the safety of this method remains uncertain, the use of rTMS in cases of mild-TBI without obvious structural damage may be justified. Evidence on the effectiveness of tDCS is mixed, highlighting the need for additional

  1. Intelligence after traumatic brain injury: meta-analysis of outcomes and prognosis.

    Science.gov (United States)

    Königs, M; Engenhorst, P J; Oosterlaan, J

    2016-01-01

    Worldwide, 54-60 million individuals sustain traumatic brain injury (TBI) each year. This meta-analysis aimed to quantify intelligence impairments after TBI and to determine the value of age and injury severity in the prognosis of TBI. An electronic database search identified 81 relevant peer-reviewed articles encompassing 3890 patients. Full-scale IQ (FSIQ), performance IQ (PIQ) and verbal IQ (VIQ) impairments were quantified (Cohen's d) for patients with mild, moderate and severe TBI in the subacute phase of recovery and the chronic phase. Meta-regressions explored prognostic values of age and injury severity measures for intelligence impairments. The results showed that, in the subacute phase, FSIQ impairments were absent for patients with mild TBI, medium-sized for patients with moderate TBI (d = -0.61, P intelligence impairments, where children may have better recovery from mild TBI and poorer recovery from severe TBI than adults. Injury severity measures predict intelligence impairments and do not outperform one another. PMID:25919757

  2. Neuroprotective efficacy of a proneurogenic compound after traumatic brain injury.

    Science.gov (United States)

    Blaya, Meghan O; Bramlett, Helen M; Naidoo, Jacinth; Pieper, Andrew A; Dietrich, W Dalton

    2014-03-01

    Traumatic brain injury (TBI) is characterized by histopathological damage and long-term sensorimotor and cognitive dysfunction. Recent studies have reported the discovery of the P7C3 class of aminopropyl carbazole agents with potent neuroprotective properties for both newborn neural precursor cells in the adult hippocampus and mature neurons in other regions of the central nervous system. This study tested, for the first time, whether the highly active P7C3-A20 compound would be neuroprotective, promote hippocampal neurogenesis, and improve functional outcomes after experimental TBI. Sprague-Dawley rats subjected to moderate fluid percussion brain injury were evaluated for quantitative immunohistochemical and behavioral changes after trauma. P7C3-A20 (10 mg/kg) or vehicle was initiated intraperitoneally 30 min postsurgery and twice per day every day thereafter for 7 days. Administration of P7C3-A20 significantly reduced overall contusion volume, preserved vulnerable anti-neuronal nuclei (NeuN)-positive pericontusional cortical neurons, and improved sensorimotor function 1 week after trauma. P7C3-A20 treatment also significantly increased both bromodeoxyuridine (BrdU)- and doublecortin (DCX)-positive cells within the subgranular zone of the ipsilateral dentate gyrus 1 week after TBI. Five weeks after TBI, animals treated with P7C3-A20 showed significantly increased BrdU/NeuN double-labeled neurons and improved cognitive function in the Morris water maze, compared to TBI-control animals. These results suggest that P7C3-A20 is neuroprotective and promotes endogenous reparative strategies after TBI. We propose that the chemical scaffold represented by P7C3-A20 provides a basis for optimizing and advancing new pharmacological agents for protecting patients against the early and chronic consequences of TBI. PMID:24070637

  3. MMP-9 inhibitor SB-3CT attenuates behavioral impairments and hippocampal loss after traumatic brain injury in rat.

    Science.gov (United States)

    Jia, Feng; Yin, Yu Hua; Gao, Guo Yi; Wang, Yu; Cen, Lian; Jiang, Ji-Yao

    2014-07-01

    The aim of this study was to evaluate the potential efficacy of SB-3CT, a matrix metallopeptidase 9 inhibitor, on behavioral and histological outcomes after traumatic brain injury (TBI) in rats. Adult male Sprague-Dawley rats were randomly divided into three groups (n=15/group): TBI with SB-3CT treatment, TBI with saline, and sham injury. The TBI model was induced by a fluid percussion TBI device. SB-3CT (50 mg/kg in 10% dimethyl sulfoxide) was administered intraperitoneally at 30 min, 6 h, and 12 h after the TBI. Motor function (beam-balance/beam-walk tests) and spatial learning/memory (Morris water maze) were assessed on post-operative Days 1-5 and 11-15, respectively. Fluoro-Jade staining, immunofluorescence, and cresyl violet-staining were carried out for histopathological evaluation at 24 h, 72 h, and 15 days after TBI, respectively. It was shown that TBI can result in significant behavioral deficit induced by acute neurodegeneration, increased expression of cleaved caspase-3, and long-term neuronal loss. SB-3CT intervention via the current regime provides robust behavioral protection and hippocampal neurons preservation from the deleterious effects of TBI. Hence, the efficacy of SB-3CT on TBI prognosis could be ascertained. It is believed that the current study adds to the growing literature in identifying SB-3CT as a potential therapy for human brain injury. PMID:24661104

  4. Low level laser therapy for traumatic brain injury

    Science.gov (United States)

    Wu, Qiuhe; Huang, Ying-Ying; Dhital, Saphala; Sharma, Sulbha K.; Chen, Aaron C.-H.; Whalen, Michael J.; Hamblin, Michael R.

    2010-02-01

    Low level laser (or light) therapy (LLLT) has been clinically applied for many indications in medicine that require the following processes: protection from cell and tissue death, stimulation of healing and repair of injuries, and reduction of pain, swelling and inflammation. One area that is attracting growing interest is the use of transcranial LLLT to treat stroke and traumatic brain injury (TBI). The fact that near-infrared light can penetrate into the brain would allow non-invasive treatment to be carried out with a low likelihood of treatment-related adverse events. LLLT may have beneficial effects in the acute treatment of brain damage injury by increasing respiration in the mitochondria, causing activation of transcription factors, reducing key inflammatory mediators, and inhibiting apoptosis. We tested LLLT in a mouse model of TBI produced by a controlled weight drop onto the skull. Mice received a single treatment with 660-nm, 810-nm or 980-nm laser (36 J/cm2) four hours post-injury and were followed up by neurological performance testing for 4 weeks. Mice with moderate to severe TBI treated with 660- nm and 810-nm laser had a significant improvement in neurological score over the course of the follow-up and histological examination of the brains at sacrifice revealed less lesion area compared to untreated controls. Further studies are underway.

  5. Perceptual organization deficits in traumatic brain injury patients.

    Science.gov (United States)

    Costa, Thiago L; Zaninotto, Ana Luiza C; Benute, Gláucia G; De Lúcia, Mara C S; Paiva, Wellingson S; Wagemans, Johan; Boggio, Paulo S

    2015-11-01

    Traumatic brain injury (TBI) is a prevalent condition and there is limited visual perception research with this population. Here, we investigated perceptual organization changes in a rather homogeneous sample of closed head TBI outpatients with diffuse axonal injury only and no other known comorbidities. Patients had normal or corrected visual acuity. Perceptual organization was measured with the Leuven Perceptual Organization Screening Test (L-POST), a coherent motion task (CM) and the Leuven Embedded Figures Test (L-EFT). These tests were chosen to screen for deficits in different aspects of perceptual organization (L-POST), to evaluate local and global processing (L-EFT) and grouping in a dynamic set of stimuli (CM). TBI patients were significantly impaired compared to controls in all measures for both response time and accuracy, except for CM thresholds and object recognition subtests. The TBI group was similarly affected in all aspects of the L-EFT. TBI was also similarly affected in all perceptual factors of the L-POST. No significant correlations were found between scores and time post-injury, except for CM thresholds (rs=-0.74), which might explain the lack of group-level differences. The only score significantly correlated to IQ was L-EFT response time (rs=-0.67). These findings demonstrate that perceptual organization is diffusely affected in TBI and this effect has no substantial correlations with IQ. As many of the neuropsychological tests used to measure different cognitive functions involve some level of visual discrimination and perceptual organization demands, these results must be taken into account in the general neuropsychological evaluation of TBI patients. PMID:26455804

  6. Pre-hospital severe traumatic brain injury – comparison of outcome in paramedic versus physician staffed emergency medical services

    OpenAIRE

    Pakkanen, Toni; Virkkunen, Ilkka; Kämäräinen, Antti; Huhtala, Heini; Silfvast, Tom; Virta, Janne; Randell, Tarja; Yli-Hankala, Arvi

    2016-01-01

    Background Traumatic brain injury (TBI) is one of the leading causes of death and permanent disability. Emergency Medical Services (EMS) personnel are often the first healthcare providers attending patients with TBI. The level of available care varies, which may have an impact on the patient’s outcome. The aim of this study was to evaluate mortality and neurological outcome of TBI patients in two regions with differently structured EMS systems. Methods A 6-year period (2005 – 2010) observatio...

  7. Akathisia—rare cause of psychomotor agitation in patients with traumatic brain injury: Case report and review of literature

    OpenAIRE

    Janet E. Wielenga-Boiten, MD; Gerard M. Ribbers, MD, PhD

    2012-01-01

    Akathisia is reported to be one of the most common and disabling side effects of antipsychotics and other drugs. Akathisia is also a rare cause of psychomotor agitation in patients with traumatic brain injury (TBI). In this clinical note, we describe a case report of akathisia in a 34-year-old woman with TBI; review earlier case studies on akathisia in TBI; and discuss the differential diagnosis and its pathophysiology, treatment, and prognosis.

  8. Improved Cognitive Function After Transcranial, Light-Emitting Diode Treatments in Chronic, Traumatic Brain Injury: Two Case Reports

    OpenAIRE

    Naeser, Margaret A.; Saltmarche, Anita; Krengel, Maxine H.; Hamblin, Michael R.; Knight, Jeffrey A.

    2011-01-01

    Objective: Two chronic, traumatic brain injury (TBI) cases, where cognition improved following treatment with red and near-infrared light-emitting diodes (LEDs), applied transcranially to forehead and scalp areas, are presented. Background: Significant benefits have been reported following application of transcranial, low-level laser therapy (LLLT) to humans with acute stroke and mice with acute TBI. These are the first case reports documenting improved cognitive function in chronic, TBI pati...

  9. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system.

    Science.gov (United States)

    Plog, Benjamin A; Dashnaw, Matthew L; Hitomi, Emi; Peng, Weiguo; Liao, Yonghong; Lou, Nanhong; Deane, Rashid; Nedergaard, Maiken

    2015-01-14

    The nonspecific and variable presentation of traumatic brain injury (TBI) has motivated an intense search for blood-based biomarkers that can objectively predict the severity of injury. However, it is not known how cytosolic proteins released from traumatized brain tissue reach the peripheral blood. Here we show in a murine TBI model that CSF movement through the recently characterized glymphatic pathway transports biomarkers to blood via the cervical lymphatics. Clinically relevant manipulation of glymphatic activity, including sleep deprivation and cisternotomy, suppressed or eliminated TBI-induced increases in serum S100β, GFAP, and neuron specific enolase. We conclude that routine TBI patient management may limit the clinical utility of blood-based biomarkers because their brain-to-blood transport depends on glymphatic activity. PMID:25589747

  10. Brain Injury Association of America

    Science.gov (United States)

    ... Only) 1-800-444-6443 Welcome to the Brain Injury Association of America (BIAA) Brain injury is not an event or an outcome. ... misunderstood, under-funded neurological disease. People who sustain brain injuries must have timely access to expert trauma ...

  11. Psychiatric disorders and traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Marcelo Schwarzbold

    2008-09-01

    Full Text Available Marcelo Schwarzbold1, Alexandre Diaz1, Evandro Tostes Martins2, Armanda Rufino1, Lúcia Nazareth Amante1,3, Maria Emília Thais1, João Quevedo4, Alexandre Hohl1, Marcelo Neves Linhares1,5,6, Roger Walz1,61Núcleo de Pesquisas em Neurologia Clínica e Experimental (NUPNEC, Departamento de Clínica Médica, Hospital Universitário, UFSC, Florianópolis, SC, Brazil; 2Unidade de Terapia Intensiva, Hospital Governador Celso Ramos, Florianópolis, SC, Brazil; 3Departamento de Enfermagem, UFSC, Florianópolis, SC, Brazil; 4Laboratório de Neurociências, UNESC, Criciúma, SC, Brazil; 5Departamento de Cirurgia, Hospital Universitário, UFSC, Florianópolis, SC, Brazil; 6Centro de Cirurgia de Epilepsia de Santa Catarina (CEPESC, Hospital Governador Celso Ramos, Florianópolis, SC, BrazilAbstract: Psychiatric disorders after traumatic brain injury (TBI are frequent. Researches in this area are important for the patients’ care and they may provide hints for the comprehension of primary psychiatric disorders. Here we approach epidemiology, diagnosis, associated factors and treatment of the main psychiatric disorders after TBI. Finally, the present situation of the knowledge in this field is discussed.Keywords: psychiatric disorders, traumatic brain injury, neuropsychiatry, diagnostic, epidemiology, pathophysiology

  12. Trends in North American newspaper reporting of brain injury in ice hockey.

    Directory of Open Access Journals (Sweden)

    Michael D Cusimano

    Full Text Available The frequency and potential long-term effects of sport-related traumatic brain injuries (TBI make it a major public health concern. The culture within contact sports, such as ice hockey, encourages aggression that puts youth at risk of TBI such as concussion. Newspaper reports play an important role in conveying and shaping the culture around health-related behaviors. We qualitatively studied reports about sport-related TBI in four major North American newspapers over the last quarter-century. We used the grounded-theory approach to identify major themes and then did a content analysis to compare the frequency of key themes between 1998-2000 and 2009-2011. The major themes were: perceptions of brain injury, aggression, equipment, rules and regulations, and youth hockey. Across the full study period, newspaper articles from Canada and America portrayed violence and aggression that leads to TBI both as integral to hockey and as an unavoidable risk associated with playing the game. They also condemned violence in ice hockey, criticized the administrative response to TBI, and recognized the significance of TBI. In Canada, aggression was reported more often recently and there was a distinctive shift in portraying protective equipment as a solution to TBI in earlier years to a potential contributing factor to TBI later in the study period. American newspapers gave a greater attention to 'perception of risks' and the role of protective equipment, and discussed TBI in a broader context in the recent time period. Newspapers from both countries showed similar recent trends in regards to a need for rule changes to curb youth sport-related TBI. This study provides a rich description of the reporting around TBI in contact sport. Understanding this reporting is important for evaluating whether the dangers of sport-related TBI are being appropriately communicated by the media.

  13. Trends in North American newspaper reporting of brain injury in ice hockey.

    Science.gov (United States)

    Cusimano, Michael D; Sharma, Bhanu; Lawrence, David W; Ilie, Gabriela; Silverberg, Sarah; Jones, Rochelle

    2013-01-01

    The frequency and potential long-term effects of sport-related traumatic brain injuries (TBI) make it a major public health concern. The culture within contact sports, such as ice hockey, encourages aggression that puts youth at risk of TBI such as concussion. Newspaper reports play an important role in conveying and shaping the culture around health-related behaviors. We qualitatively studied reports about sport-related TBI in four major North American newspapers over the last quarter-century. We used the grounded-theory approach to identify major themes and then did a content analysis to compare the frequency of key themes between 1998-2000 and 2009-2011. The major themes were: perceptions of brain injury, aggression, equipment, rules and regulations, and youth hockey. Across the full study period, newspaper articles from Canada and America portrayed violence and aggression that leads to TBI both as integral to hockey and as an unavoidable risk associated with playing the game. They also condemned violence in ice hockey, criticized the administrative response to TBI, and recognized the significance of TBI. In Canada, aggression was reported more often recently and there was a distinctive shift in portraying protective equipment as a solution to TBI in earlier years to a potential contributing factor to TBI later in the study period. American newspapers gave a greater attention to 'perception of risks' and the role of protective equipment, and discussed TBI in a broader context in the recent time period. Newspapers from both countries showed similar recent trends in regards to a need for rule changes to curb youth sport-related TBI. This study provides a rich description of the reporting around TBI in contact sport. Understanding this reporting is important for evaluating whether the dangers of sport-related TBI are being appropriately communicated by the media. PMID:23613957

  14. Predictors of Secondary Attention-Deficit/Hyperactivity Disorder in Children and Adolescents 6 to 24 Months after Traumatic Brain Injury

    Science.gov (United States)

    Max, Jeffrey E.; Schachar, Russell J.; Levin, Harvey S.; Ewing-Cobbs, Linda; Chapman, Sandra B.; Dennis, Maureen; Saunders, Ann; Landis, Julie

    2005-01-01

    Objective: To assess the phenomenology and predictive factors of attention-deficit/hyperactivity disorder (ADHD) after traumatic brain injury (TBI), also called secondary ADHD (SADHD). Method: Children without preinjury ADHD 5-14 years old with TBI from consecutive admissions (n = 143) to five trauma centers were observed prospectively from 6 to…

  15. Deficits in Facial Emotion Recognition Indicate Behavioral Changes and Impaired Self-Awareness after Moderate to Severe Traumatic Brain Injury

    NARCIS (Netherlands)

    Spikman, Jacoba M.; Milders, Maarten V.; Visser-Keizer, Annemarie C.; Westerhof-Evers, Herma J.; Herben-Dekker, Meike; van der Naalt, Joukje

    2013-01-01

    Traumatic brain injury (TBI) is a leading cause of disability, specifically among younger adults. Behavioral changes are common after moderate to severe TBI and have adverse consequences for social and vocational functioning. It is hypothesized that deficits in social cognition, including facial aff

  16. Correlation of cell apoptosis with brain edema and elevated intracranial pressure in traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-feng; LIU Wei-guo; SHEN Hong; GONG Jiang-biao; YU Jun; HU Wei-wei; L(U) Shi-ting; ZHENG Xiu-jue; FU Wei-ming

    2005-01-01

    Objective: To study the correlation between brain edema, elevated intracranial pressure (ICP) and cell apoptosis in traumatic brain injury (TBI). Methods: In this study, totally 42 rabbits in 7 groups were studied. Six of the animals were identified as a control group, and the remaining 36 animals were equally divided into 6 TBI groups. TBI models were produced by the modified method of Feeney. After the impact, ICP of each subject was recorded continuously by an ICP monitor until the animal was sacrificed at scheduled time. The apoptotic brain cells were detected by an terminal deoxynucleotide-transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL) assay. Cerebral water content (CWC) was measured with a drying method and calculated according to the Elliott formula. Then, an analysis was conducted to determine the correlation between the count of apoptotic cells and the clinical pathological changes of the brain. Results: Apoptotic cell count began to increase 2 h after the impact, and reached its maximum about 3 days after the impact. The peak value of CWC and ICP appeared 1 day and 3 days after the impact, respectively. Apoptotic cell count had a positive correlation with CWC and ICP. Conclusions: In TBI, occurrence of brain edema and ICP increase might lead to apoptosis of brain cells. Any therapy which can relieve brain edema and/or decrease ICP would be able to reduce neuron apoptosis, thereby to attenuate the secondary brain damage.

  17. Melatonin treatment reduces astrogliosis and apoptosis in rats with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Abdolreza Babaee

    2015-09-01

    Full Text Available Objective(s:Melatonin is known as an anti-inflammatory agent, and it has been proven to exert neuroprotection through inhibition of cell death (apoptosis in several models of brain injury.Secondary injury following the primary traumatic brain injury (TBI results in glial cells activation, especially astrocytes. In fact, astrocyte activation causes the production of pro-inflammatory cytokines that may lead to secondary injury. Since most TBI research studies have focused on injured neurons and paid little attention to glial cells, the aim of current study was to investigate the effects of melatonin against astrocytes activation (astrogliosis, as well as inhibition of apoptosis in brain tissue of male rats after TBI. Materials and Methods: The animals were randomly allocated into five groups: sham group, TBI+ vehicle group (1% ethanol in saline and TBI+ melatonin groups (5 mg/kg, 10 mg/kg and 20 mg/kg. All rats were intubated and then exposed to diffuse TBI, except for the sham group. Immunohistochemical methods were conducted using glial fibrillary acidic protein (GFAP marker and TUNEL assay to evaluate astrocyte reactivity and cell death, respectively. Results: The results showed that based on the number of GFAP positive astrocytes in brain cortex, astrogliosis was reduced significantly (P

  18. Cognitive impairment and rehabilitation strategies after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Apurba Barman

    2016-01-01

    Full Text Available Traumatic brain injury (TBI is among the significant causes of morbidity and mortality in the present world. Around 1.6 million persons sustain TBI, whereas 200,000 die annually in India, thus highlighting the rising need for appropriate cognitive rehabilitation strategies. This literature review assesses the current knowledge of various cognitive rehabilitation training strategies. The entire spectrum of TBI severity; mild to severe, is associated with cognitive deficits of varying degree. Cognitive insufficiency is more prevalent and longer lasting in TBI persons than in the general population. A multidisciplinary approach with neuropsychiatric evaluation is warranted. Attention process training and tasks for attention deficits, compensatory strategies and errorless learning training for memory deficits, pragmatic language skills and social behavior guidance for cognitive-communication disorder, meta-cognitive strategy, and problem-solving training for executive disorder are the mainstay of therapy for cognitive deficits in persons with TBI. Cognitive impairments following TBI are common and vary widely. Different cognitive rehabilitation techniques and combinations in addition to pharmacotherapy are helpful in addressing various cognitive deficits.

  19. Cognitive Impairment and Rehabilitation Strategies After Traumatic Brain Injury.

    Science.gov (United States)

    Barman, Apurba; Chatterjee, Ahana; Bhide, Rohit

    2016-01-01

    Traumatic brain injury (TBI) is among the significant causes of morbidity and mortality in the present world. Around 1.6 million persons sustain TBI, whereas 200,000 die annually in India, thus highlighting the rising need for appropriate cognitive rehabilitation strategies. This literature review assesses the current knowledge of various cognitive rehabilitation training strategies. The entire spectrum of TBI severity; mild to severe, is associated with cognitive deficits of varying degree. Cognitive insufficiency is more prevalent and longer lasting in TBI persons than in the general population. A multidisciplinary approach with neuropsychiatric evaluation is warranted. Attention process training and tasks for attention deficits, compensatory strategies and errorless learning training for memory deficits, pragmatic language skills and social behavior guidance for cognitive-communication disorder, meta-cognitive strategy, and problem-solving training for executive disorder are the mainstay of therapy for cognitive deficits in persons with TBI. Cognitive impairments following TBI are common and vary widely. Different cognitive rehabilitation techniques and combinations in addition to pharmacotherapy are helpful in addressing various cognitive deficits. PMID:27335510

  20. Spontaneous Wheel Running Exercise Induces Brain Recovery via Neurotrophin-3 Expression Following Experimental Traumatic Brain Injury in Rats

    OpenAIRE

    Koo, Hyun Mo; Lee, Sun Min; Kim, Min Hee

    2013-01-01

    [Purpose] The aim of the present study was to investigate the expression of neurotrophin-3 (NT-3) after applying spontaneous wheel running exercises (SWR) after experimental traumatic brain injury (TBI). [Subjects and Methods] Thirty male Sprague-Dawley rats were divided into 3 groups; 20 rats were subjected to controlled cortical impact for TBI, and then, animals were randomly collected from the SWR group and subjected to wheel running exercise for 3 weeks. Ten rats were not subjected to any...

  1. Brain injury tolerance limit based on computation of axonal strain.

    Science.gov (United States)

    Sahoo, Debasis; Deck, Caroline; Willinger, Rémy

    2016-07-01

    Traumatic brain injury (TBI) is the leading cause of death and permanent impairment over the last decades. In both the severe and mild TBIs, diffuse axonal injury (DAI) is the most common pathology and leads to axonal degeneration. Computation of axonal strain by using finite element head model in numerical simulation can enlighten the DAI mechanism and help to establish advanced head injury criteria. The main objective of this study is to develop a brain injury criterion based on computation of axonal strain. To achieve the objective a state-of-the-art finite element head model with enhanced brain and skull material laws, was used for numerical computation of real world head trauma. The implementation of new medical imaging data such as, fractional anisotropy and axonal fiber orientation from Diffusion Tensor Imaging (DTI) of 12 healthy patients into the finite element brain model was performed to improve the brain constitutive material law with more efficient heterogeneous anisotropic visco hyper-elastic material law. The brain behavior has been validated in terms of brain deformation against Hardy et al. (2001), Hardy et al. (2007), and in terms of brain pressure against Nahum et al. (1977) and Trosseille et al. (1992) experiments. Verification of model stability has been conducted as well. Further, 109 well-documented TBI cases were simulated and axonal strain computed to derive brain injury tolerance curve. Based on an in-depth statistical analysis of different intra-cerebral parameters (brain axonal strain rate, axonal strain, first principal strain, Von Mises strain, first principal stress, Von Mises stress, CSDM (0.10), CSDM (0.15) and CSDM (0.25)), it was shown that axonal strain was the most appropriate candidate parameter to predict DAI. The proposed brain injury tolerance limit for a 50% risk of DAI has been established at 14.65% of axonal strain. This study provides a key step for a realistic novel injury metric for DAI. PMID:27038501

  2. Moderate Hypothermia Significantly Decreases Hippocampal Cell Death Involving Autophagy Pathway after Moderate Traumatic Brain Injury.

    Science.gov (United States)

    Jin, Yichao; Lin, Yingying; Feng, Jun-feng; Jia, Feng; Gao, Guo-yi; Jiang, Ji-yao

    2015-07-15

    Here, we evaluated changes in autophagy after post-traumatic brain injury (TBI) followed by moderate hypothermia in rats. Adult male Sprague-Dawley rats were randomly divided into four groups: sham injury with normothermia group (37 °C); sham injury with hypothermia group (32 °C); TBI with normothermia group (TNG; 37 °C); and TBI with hypothermia group (THG; 32 °C). Injury was induced by a fluid percussion TBI device. Moderate hypothermia (32 °C) was achieved by partial immersion in a water bath (0 °C) under general anesthesia for 4 h. All rats were killed at 24 h after fluid percussion TBI. The ipsilateral hippocampus in all rats was analyzed with hematoxylin and eosin staining; terminal deoxynucleoitidyl transferase-mediated nick end labeling staining was used to determine cell death in ipsilateral hippocampus. Immunohistochemistry and western blotting of microtubule-associated protein light chain 3 (LC3), Beclin-1, as well as transmission electron microscopy performed to assess changes in autophagy. At 24 h after TBI, the cell death index was 27.90 ± 2.36% in TNG and 14.90 ± 1.52% in THG. Expression level of LC3 and Beclin-1 were significantly increased after TBI and were further up-regulated after post-TBI hypothermia. Further, ultrastructural observations showed that there was a marked increase of autophagosomes and autolysosomes in ipsilateral hippocampus after post-TBI hypothermia. Our data demonstrated that moderate hypothermia significantly attenuated cell death and increased autophagy in ipsilateral hippocampus after fluid percussion TBI. In conclusion, autophagy pathway may participate in the neuroprotective effect of post-TBI hypothermia. PMID:25942484

  3. Proteomics analysis after traumatic brain injury in rats: the search for potential biomarkers

    Directory of Open Access Journals (Sweden)

    Jun Ding

    2015-04-01

    Full Text Available Many studies of protein expression after traumatic brain injury (TBI have identified biomarkers for diagnosing or determining the prognosis of TBI. In this study, we searched for additional protein markers of TBI using a fluid perfusion impact device to model TBI in S-D rats. Two-dimensional gel electrophoresis and mass spectrometry were used to identify differentially expressed proteins. After proteomic analysis, we detected 405 and 371 protein spots within a pH range of 3-10 from sham-treated and contused brain cortex, respectively. Eighty protein spots were differentially expressed in the two groups and 20 of these proteins were identified. This study validated the established biomarkers of TBI and identified potential biomarkers that could be examined in future work.

  4. Chronic visual dysfunction after blast-induced mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    M. Teresa Magone, MD

    2014-03-01

    Full Text Available The purpose of this study was to investigate the long-term visual dysfunction in patients after blast-induced mild traumatic brain injury (mbTBI using a retrospective case series of 31 patients with mbTBI (>12 mo prior without eye injuries. Time since mbTBI was 50.5 +/– 19.8 mo. Age at the time of injury was 30.0 +/– 8.3 yr. Mean corrected visual acuity was 20/20. Of the patients, 71% (n = 22 experienced loss of consciousness; 68% (n = 15 of patients in this subgroup were dismounted during the blast injury. Overall, 68% (n = 21 of patients had visual complaints. The most common complaints were photophobia (55% and difficulty with reading (32%. Of all patients, 25% were diagnosed with convergence insufficiency and 23% had accommodative insufficiency. Patients with more than one mbTBI had a higher rate of visual complaints (87.5%. Asymptomatic patients had a significantly longer time (62.5 +/– 6.2 mo since the mbTBI than symptomatic patients (42.0 +/– 16.4 mo, p < 0.004. Long-term visual dysfunction after mbTBI is common even years after injury despite excellent distance visual acuity and is more frequent if more than one incidence of mbTBI occurred. We recommend obtaining a careful medical history, evaluation of symptoms, and binocular vision assessment during routine eye examinations in this prepresbyopic patient population.

  5. Chronic visual dysfunction after blast-induced mild traumatic brain injury.

    Science.gov (United States)

    Magone, M Teresa; Kwon, Ellen; Shin, Soo Y

    2014-01-01

    The purpose of this study was to investigate the long-term visual dysfunction in patients after blast-induced mild traumatic brain injury (mbTBI) using a retrospective case series of 31 patients with mbTBI (>12 mo prior) without eye injuries. Time since mbTBI was 50.5 +/- 19.8 mo. Age at the time of injury was 30.0 +/- 8.3 yr. Mean corrected visual acuity was 20/20. Of the patients, 71% (n = 22) experienced loss of consciousness; 68% (n = 15) of patients in this subgroup were dismounted during the blast injury. Overall, 68% (n = 21) of patients had visual complaints. The most common complaints were photophobia (55%) and difficulty with reading (32%). Of all patients, 25% were diagnosed with convergence insufficiency and 23% had accommodative insufficiency. Patients with more than one mbTBI had a higher rate of visual complaints (87.5%). Asymptomatic patients had a significantly longer time (62.5 +/- 6.2 mo) since the mbTBI than symptomatic patients (42.0 +/- 16.4 mo, p < 0.004). Long-term visual dysfunction after mbTBI is common even years after injury despite excellent distance visual acuity and is more frequent if more than one incidence of mbTBI occurred. We recommend obtaining a careful medical history, evaluation of symptoms, and binocular vision assessment during routine eye examinations in this prepresbyopic patient population. PMID:24805895

  6. A Narrative Review of Pharmacologic and Non-pharmacologic Interventions for Disorders of Consciousness Following Brain Injury in the Pediatric Population

    OpenAIRE

    Evanson, Nathan K.; Paulson, Andrea L.; Kurowski, Brad G.

    2016-01-01

    Traumatic brain injury (TBI) is the most common cause of long-term disability in the United States. A significant proportion of children who experience a TBI will have moderate or severe injuries, which includes a period of decreased responsiveness. Both pharmacological and non-pharmacological modalities are used for treating disorders of consciousness after TBI in children. However, the evidence supporting the use of potential therapies is relatively scant, even in adults, and overall, there...

  7. Voltage-Gated Calcium Channel Antagonists and Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Bruce Lyeth

    2013-06-01

    Full Text Available Traumatic brain injury (TBI is a leading cause of death and disability in the United States. Despite more than 30 years of research, no pharmacological agents have been identified that improve neurological function following TBI. However, several lines of research described in this review provide support for further development of voltage gated calcium channel (VGCC antagonists as potential therapeutic agents. Following TBI, neurons and astrocytes experience a rapid and sometimes enduring increase in intracellular calcium ([Ca2+]i. These fluxes in [Ca2+]i drive not only apoptotic and necrotic cell death, but also can lead to long-term cell dysfunction in surviving cells. In a limited number of in vitro experiments, both L-type and N-type VGCC antagonists successfully reduced calcium loads as well as neuronal and astrocytic cell death following mechanical injury. In rodent models of TBI, administration of VGCC antagonists reduced cell death and improved cognitive function. It is clear that there is a critical need to find effective therapeutics and rational drug delivery strategies for the management and treatment of TBI, and we believe that further investigation of VGCC antagonists should be pursued before ruling out the possibility of successful translation to the clinic.

  8. Efficacy of N-acetyl cysteine in traumatic brain injury.

    Science.gov (United States)

    Eakin, Katharine; Baratz-Goldstein, Renana; Pick, Chiam G; Zindel, Ofra; Balaban, Carey D; Hoffer, Michael E; Lockwood, Megan; Miller, Jonathan; Hoffer, Barry J

    2014-01-01

    In this study, using two different injury models in two different species, we found that early post-injury treatment with N-Acetyl Cysteine (NAC) reversed the behavioral deficits associated with the TBI. These data suggest generalization of a protocol similar to our recent clinical trial with NAC in blast-induced mTBI in a battlefield setting, to mild concussion from blunt trauma. This study used both weight drop in mice and fluid percussion injury in rats. These were chosen to simulate either mild or moderate traumatic brain injury (TBI). For mice, we used novel object recognition and the Y maze. For rats, we used the Morris water maze. NAC was administered beginning 30-60 minutes after injury. Behavioral deficits due to injury in both species were significantly reversed by NAC treatment. We thus conclude NAC produces significant behavioral recovery after injury. Future preclinical studies are needed to define the mechanism of action, perhaps leading to more effective therapies in man. PMID:24740427

  9. Efficacy of N-Acetyl Cysteine in Traumatic Brain Injury

    Science.gov (United States)

    Eakin, Katharine; Baratz-Goldstein, Renana; Pick, Chiam G.; Zindel, Ofra; Balaban, Carey D.; Hoffer, Michael E.; Lockwood, Megan; Miller, Jonathan; Hoffer, Barry J.

    2014-01-01

    In this study, using two different injury models in two different species, we found that early post-injury treatment with N-Acetyl Cysteine (NAC) reversed the behavioral deficits associated with the TBI. These data suggest generalization of a protocol similar to our recent clinical trial with NAC in blast-induced mTBI in a battlefield setting [1], to mild concussion from blunt trauma. This study used both weight drop in mice and fluid percussion injury in rats. These were chosen to simulate either mild or moderate traumatic brain injury (TBI). For mice, we used novel object recognition and the Y maze. For rats, we used the Morris water maze. NAC was administered beginning 30–60 minutes after injury. Behavioral deficits due to injury in both species were significantly reversed by NAC treatment. We thus conclude NAC produces significant behavioral recovery after injury. Future preclinical studies are needed to define the mechanism of action, perhaps leading to more effective therapies in man. PMID:24740427

  10. Efficacy of N-acetyl cysteine in traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Katharine Eakin

    Full Text Available In this study, using two different injury models in two different species, we found that early post-injury treatment with N-Acetyl Cysteine (NAC reversed the behavioral deficits associated with the TBI. These data suggest generalization of a protocol similar to our recent clinical trial with NAC in blast-induced mTBI in a battlefield setting, to mild concussion from blunt trauma. This study used both weight drop in mice and fluid percussion injury in rats. These were chosen to simulate either mild or moderate traumatic brain injury (TBI. For mice, we used novel object recognition and the Y maze. For rats, we used the Morris water maze. NAC was administered beginning 30-60 minutes after injury. Behavioral deficits due to injury in both species were significantly reversed by NAC treatment. We thus conclude NAC produces significant behavioral recovery after injury. Future preclinical studies are needed to define the mechanism of action, perhaps leading to more effective therapies in man.

  11. Diffusion Tensor Imaging Reveals White Matter Injury in a Rat Model of Repetitive Blast-Induced Traumatic Brain Injury

    OpenAIRE

    Calabrese, Evan; Du, Fu; Garman, Robert H.; Johnson, G. Allan; Riccio, Cory; Tong, Lawrence C.; Joseph B. Long

    2014-01-01

    Blast-induced traumatic brain injury (bTBI) is one of the most common combat-related injuries seen in U.S. military personnel, yet relatively little is known about the underlying mechanisms of injury. In particular, the effects of the primary blast pressure wave are poorly understood. Animal models have proven invaluable for the study of primary bTBI, because it rarely occurs in isolation in human subjects. Even less is known about the effects of repeated primary blast wave exposure, but exis...

  12. Clinical utility of brain stimulation modalities following traumatic brain injury: current evidence

    Directory of Open Access Journals (Sweden)

    Li S

    2015-06-01

    Full Text Available Shasha Li,1,2 Ana Luiza Zaninotto,2,3 Iuri Santana Neville,4 Wellingson Silva Paiva,4 Danuza Nunn,2 Felipe Fregni21Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China; 2Spaulding Neuromodulation Center, Harvard Medical School, Boston, MA, USA; 3Division of Psychology, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil; 4Division of Neurosurgery, University of São Paulo Medical School, São Paulo, São Paulo, BrazilAbstract: Traumatic brain injury (TBI remains the main cause of disability and a major public health problem worldwide. This review focuses on the neurophysiology of TBI, and the rationale and current state of evidence of clinical application of brain stimulation to promote TBI recovery, particularly on consciousness, cognitive function, motor impairments, and psychiatric conditions. We discuss the mechanisms of different brain stimulation techniques including major noninvasive and invasive stimulations. Thus far, most noninvasive brain stimulation interventions have been nontargeted and focused on the chronic phase of recovery after TBI. In the acute stages, there is limited available evidence of the efficacy and safety of brain stimulation to improve functional outcomes. Comparing the studies across different techniques, transcranial direct current stimulation is the intervention that currently has the higher number of properly designed clinical trials, though total number is still small. We recognize the need for larger studies with target neuroplasticity modulation to fully explore the benefits of brain stimulation to effect TBI recovery during different stages of recovery.Keywords: traumatic brain injury, brain stimulation, neuroplasticity

  13. Beneficial effects of hydrogen gas in a rat model of traumatic brain injury via reducing oxidative stress.

    Science.gov (United States)

    Ji, Xituan; Liu, Wenbo; Xie, Keliang; Liu, Weiping; Qu, Yan; Chao, Xiaodong; Chen, Tao; Zhou, Jun; Fei, Zhou

    2010-10-01

    Traumatic brain injury (TBI) is a leading cause of mortality and disability among the young population. It has been shown that hydrogen gas (H(2)) exerts a therapeutic antioxidant activity by selectively reducing hydroxyl radical (OH, the most cytotoxic ROS). Recently, we have found that H(2) inhalation significantly improved the survival rate and organ damage of septic mice. In the present study, we investigated the effectiveness of H(2) therapy on brain edema, blood-brain barrier (BBB) breakdown, neurological dysfunction and injury volume in TBI-challenged rats. In addition, we investigated the effects of H(2) treatment on the changes of oxidative products and antioxidant enzymes in brain tissue of TBI-challenged rats. Hydrogen treatment was given by exposure to 2% H(2) from 5 min to 5h after sham or TBI operation, respectively. Here, we found that TBI-challenged rats showed significant brain injuries characterized by the increase of BBB permeability, brain edema and lesion volume as well as neurological dysfunction, which was significantly attenuated by 2% H(2) treatment. In addition, we found that the decrease of oxidative products and the increase of endogenous antioxidant enzymatic activities in the brain tissue may be associated with the protective effects of H(2) treatment in TBI-challenged rats. The present study supports that H(2) inhalation may be a more effective therapeutic strategy for patients with TBI. PMID:20654594

  14. Assessing neuro-systemic & behavioral components in the pathophysiology of blast-related brain injury.

    Science.gov (United States)

    Kobeissy, Firas; Mondello, Stefania; Tümer, Nihal; Toklu, Hale Z; Whidden, Melissa A; Kirichenko, Nataliya; Zhang, Zhiqun; Prima, Victor; Yassin, Walid; Anagli, John; Chandra, Namas; Svetlov, Stan; Wang, Kevin K W

    2013-01-01

    Among the U.S. military personnel, blast injury is among the leading causes of brain injury. During the past decade, it has become apparent that even blast injury as a form of mild traumatic brain injury (mTBI) may lead to multiple different adverse outcomes, such as neuropsychiatric symptoms and long-term cognitive disability. Blast injury is characterized by blast overpressure, blast duration, and blast impulse. While the blast injuries of a victim close to the explosion will be severe, majority of victims are usually at a distance leading to milder form described as mild blast TBI (mbTBI). A major feature of mbTBI is its complex manifestation occurring in concert at different organ levels involving systemic, cerebral, neuronal, and neuropsychiatric responses; some of which are shared with other forms of brain trauma such as acute brain injury and other neuropsychiatric disorders such as post-traumatic stress disorder. The pathophysiology of blast injury exposure involves complex cascades of chronic psychological stress, autonomic dysfunction, and neuro/systemic inflammation. These factors render blast injury as an arduous challenge in terms of diagnosis and treatment as well as identification of sensitive and specific biomarkers distinguishing mTBI from other non-TBI pathologies and from neuropsychiatric disorders with similar symptoms. This is due to the "distinct" but shared and partially identified biochemical pathways and neuro-histopathological changes that might be linked to behavioral deficits observed. Taken together, this article aims to provide an overview of the current status of the cellular and pathological mechanisms involved in blast overpressure injury and argues for the urgent need to identify potential biomarkers that can hint at the different mechanisms involved. PMID:24312074

  15. Assessing Neuro-Systemic & Behavioral Components in the Pathophysiology of Blast-Related Brain Injury

    Directory of Open Access Journals (Sweden)

    Firas H Kobeissy

    2013-11-01

    Full Text Available Among the U.S. military personnel, blast injury is among the leading causes of brain injury. During the past decade, it has become apparent that even blast injury as a form of mild traumatic brain injury (mTBI may lead to multiple different adverse outcomes, such as neuropsychiatric symptoms and long-term cognitive disability. Blast injury is characterized by blast overpressure (BOP, blast duration, and blast impulse. While the blast injuries of a victim close to the explosion will be severe, majority of victims are usually at a distance leading to milder form described as mild blast TBI (mbTBI. A major feature of mbTBI is its complex manifestation occurring in concert at different organ levels involving systemic, cerebral, neuronal and neuropsychiatric responses; some of which are shared with other forms of brain trauma such as acute brain injury and other neuropsychiatric disorders such as PTSD. The pathophysiology of blast injury exposure involves complex cascades of chronic psychological stress, autonomic dysfunction and neuro/systemic inflammation. These factors render blast injury as an arduous challenge in terms of diagnosis and treatment as well as identification of sensitive and specific biomarkers distinguishing mTBI from other non-TBI pathologies and from neuropsychiatric disorders with similar symptoms. This is due to the distinct but shared and partially identified biochemical pathways and neuro-histopathological changes that might be linked to behavioral deficits observed. Taken together, this article aims to provide an overview of the current status of the cellular and pathological mechanisms involved in blast overpressure injury and argues for the urgent need to identify potential biomarkers that can hint at the different mechanisms involved.

  16. Lateral fluid percussion injury of the brain induces CCL20 inflammatory chemokine expression in rats

    Directory of Open Access Journals (Sweden)

    Das Mahasweta

    2011-10-01

    Full Text Available Abstract Background Traumatic brain injury (TBI evokes a systemic immune response including leukocyte migration into the brain and release of pro-inflammatory cytokines; however, the mechanisms underlying TBI pathogenesis and protection are poorly understood. Due to the high incidence of head trauma in the sports field, battlefield and automobile accidents identification of the molecular signals involved in TBI progression is critical for the development of novel therapeutics. Methods In this report, we used a rat lateral fluid percussion impact (LFPI model of TBI to characterize neurodegeneration, apoptosis and alterations in pro-inflammatory mediators at two time points within the secondary injury phase. Brain histopathology was evaluated by fluoro-jade (FJ staining and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL assay, polymerase chain reaction (qRT PCR, enzyme linked immunosorbent assay (ELISA and immunohistochemistry were employed to evaluate the CCL20 gene expression in different tissues. Results Histological analysis of neurodegeneration by FJ staining showed mild injury in the cerebral cortex, hippocampus and thalamus. TUNEL staining confirmed the presence of apoptotic cells and CD11b+ microglia indicated initiation of an inflammatory reaction leading to secondary damage in these areas. Analysis of spleen mRNA by PCR microarray of an inflammation panel led to the identification of CCL20 as an important pro-inflammatory signal upregulated 24 h after TBI. Although, CCL20 expression was observed in spleen and thymus after 24h of TBI, it was not expressed in degenerating cortex or hippocampal neurons until 48 h after insult. Splenectomy partially but significantly decreased the CCL20 expression in brain tissues. Conclusion These results demonstrate that the systemic inflammatory reaction to TBI starts earlier than the local brain response and suggest that spleen- and/ or thymus-derived CCL20 might play a role in

  17. Blood brain barrier dysfunction and delayed neurological deficits in mild traumatic brain injury induced by blast shock waves

    OpenAIRE

    Shetty, Ashok K.

    2014-01-01

    Mild traumatic brain injury (mTBI) resulting from exposure to blast shock waves (BSWs) is one of the most predominant causes of illnesses among veterans who served in the recent Iraq and Afghanistan wars. Such mTBI can also happen to civilians if exposed to shock waves of bomb attacks by terrorists. While cognitive problems, memory dysfunction, depression, anxiety and diffuse white matter injury have been observed at both early and/or delayed time-points, an initial brain pathology resulting ...

  18. Facilitated assessment of tissue loss following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anders eHånell

    2012-03-01

    Full Text Available All experimental models of traumatic brain injury (TBI result in a progressive loss of brain tissue. The extent of tissue loss reflects the injury severity and can be measured to evaluate the potential neuroprotective effect of experimental treatments. Quantitation of tissue volumes is commonly performed using evenly spaced brain sections stained using routine histochemical methods and digitally captured. The brain tissue areas are then measured and the corresponding volumes are calculated using the distance between the sections. Measurements of areas are usually performed using a general purpose image analysis software and the results are then transferred to another program for volume calculations. To facilitate the measurement of brain tissue loss we developed novel algorithms which automatically separate the areas of brain tissue from the surrounding image background and identify the ventricles. We implemented these new algorithms by creating a new computer program (SectionToVolume which also has functions for image organization, image adjustments and volume calculations. We analyzed brain sections from mice subjected to severe focal TBI using both SectionToVolume and ImageJ, a commonly used image analysis program. The volume measurements made by the two programs were highly correlated and analysis using SectionToVolume required considerably less time. The inter-rater reliability was high. Given the extensive use of brain tissue loss measurements in TBI research, SectionToVolume will likely be a useful tool for TBI research. We therefore provide both the source code and the program as attachments to this article.

  19. Traumatic brain injury increases levels of miR-21 in extracellular vesicles: implications for neuroinflammation.

    Science.gov (United States)

    Harrison, Emily B; Hochfelder, Colleen G; Lamberty, Benjamin G; Meays, Brittney M; Morsey, Brenda M; Kelso, Matthew L; Fox, Howard S; Yelamanchili, Sowmya V

    2016-08-01

    Traumatic brain injury (TBI) is an important health concern and effective treatment strategies remain elusive. Understanding the complex multicellular response to TBI may provide new avenues for intervention. In the context of TBI, cell-cell communication is critical. One relatively unexplored form of cell-cell communication in TBI is extracellular vesicles (EVs). These membrane-bound vesicles can carry many different types of cargo between cells. Recently, miRNA in EVs have been shown to mediate neuroinflammation and neuronal injury. To explore the role of EV-associated miRNA in TBI, we isolated EVs from the brain of injured mice and controls, purified RNA from brain EVs, and performed miRNA sequencing. We found that the expression of miR-212 decreased, while miR-21, miR-146, miR-7a, and miR-7b were significantly increased with injury, with miR-21 showing the largest change between conditions. The expression of miR-21 in the brain was primarily localized to neurons near the lesion site. Interestingly, adjacent to these miR-21-expressing neurons were activated microglia. The concurrent increase in miR-21 in EVs with the elevation of miR-21 in neurons, suggests that miR-21 is secreted from neurons as potential EV cargo. Thus, this study reveals a new potential mechanism of cell-cell communication not previously described in TBI. PMID:27516962

  20. Salubrinal reduces oxidative stress, neuroinflammation and impulsive-like behavior in a rodent model of traumatic brain injury.

    Science.gov (United States)

    Logsdon, Aric F; Lucke-Wold, Brandon P; Nguyen, Linda; Matsumoto, Rae R; Turner, Ryan C; Rosen, Charles L; Huber, Jason D

    2016-07-15

    Traumatic brain injury (TBI) is the leading cause of trauma related morbidity in the developed world. TBI has been shown to trigger secondary injury cascades including endoplasmic reticulum (ER) stress, oxidative stress, and neuroinflammation. The link between secondary injury cascades and behavioral outcome following TBI is poorly understood warranting further investigation. Using our validated rodent blast TBI model, we examined the interaction of secondary injury cascades following single injury and how these interactions may contribute to impulsive-like behavior after a clinically relevant repetitive TBI paradigm. We targeted these secondary pathways acutely following single injury with the cellular stress modulator, salubrinal (SAL). We examined the neuroprotective effects of SAL administration on significantly reducing ER stress: janus-N-terminal kinase (JNK) phosphorylation and C/EBP homology protein (CHOP), oxidative stress: superoxide and carbonyls, and neuroinflammation: nuclear factor kappa beta (NFκB) activity, inducible nitric oxide synthase (iNOS) protein expression, and pro-inflammatory cytokines at 24h post-TBI. We then used the more clinically relevant repeat injury paradigm and observed elevated NFκB and iNOS activity. These injury cascades were associated with impulsive-like behavior measured on the elevated plus maze. SAL administration attenuated secondary iNOS activity at 72h following repetitive TBI, and most importantly prevented impulsive-like behavior. Overall, these results suggest a link between secondary injury cascades and impulsive-like behavior that can be modulated by SAL administration. PMID:27131989

  1. Emotion Recognition following Pediatric Traumatic Brain Injury: Longitudinal Analysis of Emotional Prosody and Facial Emotion Recognition

    Science.gov (United States)

    Schmidt, Adam T.; Hanten, Gerri R.; Li, Xiaoqi; Orsten, Kimberley D.; Levin, Harvey S.

    2010-01-01

    Children with closed head injuries often experience significant and persistent disruptions in their social and behavioral functioning. Studies with adults sustaining a traumatic brain injury (TBI) indicate deficits in emotion recognition and suggest that these difficulties may underlie some of the social deficits. The goal of the current study was…

  2. Simulation of blast-induced, early-time intracranial wave physics leading to traumatic brain injury.

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Paul Allen; Ford, Corey C. (University of New Mexico, Albuquerque, NM)

    2008-04-01

    U.S. soldiers are surviving blast and impacts due to effective body armor, trauma evacuation and care. Blast injuries are the leading cause of traumatic brain injury (TBI) in military personnel returning from combat. Understanding of Primary Blast Injury may be needed to develop better means of blast mitigation strategies. The objective of this paper is to investigate the effects of blast direction and strength on the resulting mechanical stress and wave energy distributions generated in the brain.

  3. Traumatic brain injuries in children: A hospital-based study in Nigeria

    OpenAIRE

    David O Udoh; Adeyemo, Adebolajo A.

    2013-01-01

    Background: Traumatic Brain Injury (TBI) is a significant cause of morbidity and mortality worldwide. Our previous studies showed a high frequency of motor vehicle accidents among neurosurgical patients. However, there is a dearth of data on head injuries in children in Nigeria. Aims: To determine the epidemiology of paediatric traumatic brain injuries. Setting and Design: This is a prospective analysis of paediatric head trauma at the University of Benin Teaching Hospital, a major referral c...

  4. Early Bifrontal Brain Injury: Disturbances in Cognitive Function Development

    Directory of Open Access Journals (Sweden)

    Christine Bonnier

    2010-01-01

    Full Text Available We describe six psychomotor, language, and neuropsychological sequential developmental evaluations in a boy who sustained a severe bifrontal traumatic brain injury (TBI at 19 months of age. Visuospatial, drawing, and writing skills failed to develop normally. Gradually increasing difficulties were noted in language leading to reading and spontaneous speech difficulties. The last two evaluations showed executive deficits in inhibition, flexibility, and working memory. Those executive abnormalities seemed to be involved in the other impairments. In conclusion, early frontal brain injury disorganizes the development of cognitive functions, and interactions exist between executive function and other cognitive functions during development.

  5. Diabetes Insipidus after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Cristina Capatina

    2015-07-01

    Full Text Available Traumatic brain injury (TBI is a significant cause of morbidity and mortality in many age groups. Neuroendocrine dysfunction has been recognized as a consequence of TBI and consists of both anterior and posterior pituitary insufficiency; water and electrolyte abnormalities (diabetes insipidus (DI and the syndrome of inappropriate antidiuretic hormone secretion (SIADH are amongst the most challenging sequelae. The acute head trauma can lead (directly or indirectly to dysfunction of the hypothalamic neurons secreting antidiuretic hormone (ADH or of the posterior pituitary gland causing post-traumatic DI (PTDI. PTDI is usually diagnosed in the first days after the trauma presenting with hypotonic polyuria. Frequently, the poor general status of most patients prevents adequate fluid intake to compensate the losses and severe dehydration and hypernatremia occur. Management consists of careful monitoring of fluid balance and hormonal replacement. PTDI is associated with high mortality, particularly when presenting very early following the injury. In many surviving patients, the PTDI is transient, lasting a few days to a few weeks and in a minority of cases, it is permanent requiring management similar to that offered to patients with non-traumatic central DI.

  6. The effect of hypothermia on the expression of TIMP-3 after traumatic brain injury in rats.

    Science.gov (United States)

    Jia, Feng; Mao, Qing; Liang, Yu-Min; Jiang, Ji-Yao

    2014-02-15

    Here we investigate the effect of hypothermia on the expression of apoptosis-regulating protein TIMP-3 after fluid percussion traumatic brain injury (TBI) in rats. We began with 210 adult male Sprague-Dawley rats and randomly assigned them to three groups: TBI with hypothermia treatment (32°C), TBI with normothermia (37°C), and sham-injured controls. TBI was induced by a fluid percussion TBI device. Mild hypothermia (32°C) was achieved by partial immersion in a water bath (0°C) under general anesthesia for 4 h. The rats were killed at 4, 6, 12, 24, 48, and 72 h and 1 week after TBI. The mRNA and protein level of TIMP-3 in both the injured and uninjured hemispheres of the brains from each group were measured using RT-PCR and Western blotting. In the normothermic group, TIMP-3 levels in both the injured and uninjured hemispheres were significantly increased after TBI compared with those of sham-injured animals (p percussion brain injury significantly upregulates TIMP-3 expression, and that this increase may be suppressed by hypothermia treatment. PMID:23256480

  7. Hypothalamic-Pituitary Autoimmunity and Traumatic Brain Injury

    OpenAIRE

    Federica Guaraldi; Silvia Grottoli; Emanuela Arvat; Ezio Ghigo

    2015-01-01

    Background: Traumatic brain injury (TBI) is a leading cause of secondary hypopituitarism in children and adults, and is responsible for impaired quality of life, disabilities and compromised development. Alterations of pituitary function can occur at any time after the traumatic event, presenting in various ways and evolving during time, so they require appropriate screening for early detection and treatment. Although the exact pathophysiology is unknown, several mechanisms have been hypoth...

  8. Understanding paroxysmal sympathetic hyperactivity after traumatic brain injury

    OpenAIRE

    Meyer, Kimberly S.

    2014-01-01

    Background: Paroxysmal sympathetic hyperactivity (PSH) is a condition occurring in a small percentage of patients with severe traumatic brain injury (TBI). It is characterized by a constellation of symptoms associated with excessive adrenergic output, including tachycardia, hypertension, tachypnea, and diaphoresis. Diagnosis is one of exclusion and, therefore, is often delayed. Treatment is aimed at minimizing triggers and pharmacologic management of symptoms. Methods: A literature review...

  9. Inhibitory Control after Traumatic Brain Injury in Children

    OpenAIRE

    Sinopoli, Katia J.; Dennis, Maureen

    2011-01-01

    Inhibitory control describes a number of distinct processes. Effortless inhibition refers to acts of control that are automatic and reflexive. Effortful inhibition refers to voluntary, goal-directed acts of control such as response flexibility, interference control, cancellation inhibition, and restraint inhibition. Disruptions to a number of inhibitory control processes occur as a consequence of childhood traumatic brain injury (TBI). This paper reviews the current knowledge of inhibition de...

  10. Traumatic Brain Injury

    Science.gov (United States)

    ... and TBI Whether you are a parent, youth sports coach, high school coach, school professional, or health care provider), this ... Youth Sports Coaches & Parents Health Care Providers High School Sports Coaches Get Email Updates To receive email updates ...

  11. Traumatic Brain Injury

    Science.gov (United States)

    ... in which events happen (called sequencing), and judgment. Social, behavioral, or emotional problems: These difficulties may include sudden changes in mood, anxiety, and depression. Children with TBI may have trouble relating to others. ...

  12. Potential application of hydrogen in traumatic and surgical brain injury, stroke and neonatal hypoxia-ischemia

    OpenAIRE

    Eckermann Jan M; Krafft Paul R; Shoemaker Lorelei; Lieberson Robert E; Chang Steven D; Colohan Austin

    2012-01-01

    Abstract This article summarized findings of current preclinical studies that implemented hydrogen administration, either in the gas or liquid form, as treatment application for neurological disorders including traumatic brain injury (TBI), surgically induced brain injury (SBI), stroke, and neonatal hypoxic-ischemic brain insult (HI). Most reviewed studies demonstrated neuroprotective effects of hydrogen administration. Even though anti-oxidative potentials have been reported in several studi...

  13. Involvement of aberrant cyclin-dependent kinase 5/p25 activity in experimental traumatic brain injury.

    Science.gov (United States)

    Yousuf, Mohammad A; Tan, Chunfeng; Torres-Altoro, Melissa I; Lu, Fang-Min; Plautz, Erik; Zhang, Shanrong; Takahashi, Masaya; Hernandez, Adan; Kernie, Steven G; Plattner, Florian; Bibb, James A

    2016-07-01

    Traumatic brain injury (TBI) is associated with adverse effects on brain functions, including sensation, language, emotions and/or cognition. Therapies for improving outcomes following TBI are limited. A better understanding of the pathophysiological mechanisms of TBI may suggest novel treatment strategies to facilitate recovery and improve treatment outcome. Aberrant activation of cyclin-dependent kinase 5 (Cdk5) has been implicated in neuronal injury and neurodegeneration. Cdk5 is a neuronal protein kinase activated via interaction with its cofactor p35 that regulates numerous neuronal functions, including synaptic remodeling and cognition. However, conversion of p35 to p25 via Ca(2+) -dependent activation of calpain results in an aberrantly active Cdk5/p25 complex that is associated with neuronal damage and cell death. Here, we show that mice subjected to controlled cortical impact (CCI), a well-established experimental TBI model, exhibit increased p25 levels and consistently elevated Cdk5-dependent phosphorylation of microtubule-associated protein tau and retinoblastoma (Rb) protein in hippocampal lysates. Moreover, CCI-induced neuroinflammation as indicated by increased astrocytic activation and number of reactive microglia. Brain-wide conditional Cdk5 knockout mice (Cdk5 cKO) subjected to CCI exhibited significantly reduced edema, ventricular dilation, and injury area. Finally, neurophysiological recordings revealed that CCI attenuated excitatory post-synaptic potential field responses in the hippocampal CA3-CA1 pathway 24 h after injury. This neurophysiological deficit was attenuated in Cdk5 cKO mice. Thus, TBI induces increased levels of p25 generation and aberrant Cdk5 activity, which contributes to pathophysiological processes underlying TBI progression. Hence, selectively preventing aberrant Cdk5 activity may be an effective acute strategy to improve recovery from TBI. Traumatic brain injury (TBI) increases astrogliosis and microglial activation

  14. Ventilator-Associated Pneumonia in Pediatric Traumatic Brain Injury.

    Science.gov (United States)

    Hamele, Mitchell; Stockmann, Chris; Cirulis, Meghan; Riva-Cambrin, Jay; Metzger, Ryan; Bennett, Tellen D; Bratton, Susan L

    2016-05-01

    Ventilator-associated pneumonia (VAP) is a common occurrence among intubated pediatric traumatic brain injury (TBI) patients. However, little is known about the epidemiology, risk factors, and microbiology of VAP in pediatric TBI. We reviewed a cohort of 119 pediatric moderate-to-severe TBI patients and identified 42 with VAP by positive protected bronchial brush specimens. Location of intubation, severity of injury, and antibiotic administration within 2 days after injury were not associated with VAP. Most treatments for elevated intracranial pressure were associated with increased risk of VAP; however, in a multi-variable analysis barbiturate coma (hazard ratio [HR], 3.2; 95% confidence interval [CI] 1.4-7.3), neuromuscular blockade (NMBA; HR, 3.4; 95% CI 1.6-7.3), and use of a cooling blanket for euthermia (HR 2.4; 95% CI 1.1-5.5) remained independently associated with VAP. Most VAP (55%) occurred prior to hospital Day 4 and only 7% developed VAP after Day 7. Methicillin-sensitive Staphylococcus aureus (34%), Haemophilus influenzae (22%), and Streptococcus pneumoniae (15%) were the most common organisms, comprising 71% of isolated pathogens (36% of infections were polymicrobial). Patients with VAP had significantly longer intensive care unit and hospital stays, as well as increased risk of chronic care needs after discharge, but not mortality. VAP is a common occurrence in pediatric TBI patients, and early empiric therapy for patients requiring barbiturate infusion, NMBA, or use of a cooling blanket could mitigate morbidity. PMID:26203702

  15. Family environment influences emotion recognition following paediatric traumatic brain injury

    Science.gov (United States)

    SCHMIDT, ADAM T.; ORSTEN, KIMBERLEY D.; HANTEN, GERRI R.; LI, XIAOQI; LEVIN, HARVEY S.

    2011-01-01

    Objective This study investigated the relationship between family functioning and performance on two tasks of emotion recognition (emotional prosody and face emotion recognition) and a cognitive control procedure (the Flanker task) following paediatric traumatic brain injury (TBI) or orthopaedic injury (OI). Methods A total of 142 children (75 TBI, 67 OI) were assessed on three occasions: baseline, 3 months and 1 year post-injury on the two emotion recognition tasks and the Flanker task. Caregivers also completed the Life Stressors and Resources Scale (LISRES) on each occasion. Growth curve analysis was used to analyse the data. Results Results indicated that family functioning influenced performance on the emotional prosody and Flanker tasks but not on the face emotion recognition task. Findings on both the emotional prosody and Flanker tasks were generally similar across groups. However, financial resources emerged as significantly related to emotional prosody performance in the TBI group only (p = 0.0123). Conclusions Findings suggest family functioning variables—especially financial resources—can influence performance on an emotional processing task following TBI in children. PMID:21058900

  16. A transdiagnostic investigation of emotional distress after traumatic brain injury.

    Science.gov (United States)

    Shields, Cassandra; Ownsworth, Tamara; O'Donovan, Analise; Fleming, Jennifer

    2016-06-01

    Emotional distress after traumatic brain injury (TBI) often presents as a range of neurobehavioural and emotional reactions rather than distinct disorders. This study adopted a transdiagnostic approach with the aim of identifying psychological processes common to depression, anxiety and global distress after TBI. Fifty participants with TBI (aged 19-66 years, 12-65 months post-injury) completed measures of threat appraisals and avoidance behaviour (Appraisal of Threat and Avoidance Questionnaire), self-discrepancy (Head Injury Semantic Differential Scale III), emotion dysregulation (Difficulties in Emotion Regulation Scale), worry (Penn State Worry Questionnaire), negative self-focused attention (Self-Focus Sentence Completion) and emotional distress (Depression Anxiety Stress Scales and Brief Symptom Inventory). Significant correlations were found among the proposed transdiagnostic variables (rs = .29-.82, p Emotion Dysregulation. Only the Emotion Dysregulation factor accounted for significant unique variance in levels of depression, anxiety and global distress (sr(2) = .12-.17). Such findings indicate the need for interventions to target difficulties in identifying and regulating emotions after TBI to facilitate emotional adjustment. PMID:25918948

  17. A modified controlled cortical impact technique to model mild traumatic brain injury mechanics in mice.

    Directory of Open Access Journals (Sweden)

    YungChia eChen

    2014-06-01

    Full Text Available For the past 25 years, controlled cortical impact (CCI has been a useful tool in traumatic brain injury (TBI research, creating injury patterns that include primary contusion, neuronal loss, and traumatic axonal damage. However, when CCI was first developed, very little was known on the underlying biomechanics of mild TBI. This paper uses information generated from recent computational models of mild TBI in humans to alter CCI and better reflect the biomechanical conditions of mild TBI. Using a finite element model of CCI in the mouse, we adjusted three primary features of CCI: the speed of the impact to achieve strain rates within the range associated with mild TBI, the shape and material of the impounder to minimize strain concentrations in the brain, and the impact depth to control the peak deformation that occurred in the cortex and hippocampus. For these modified cortical impact conditions, we observed peak strains and strain rates throughout the brain were significantly reduced and consistent with estimated strains and strain rates observed in human mild TBI. We saw breakdown of the blood-brain barrier but no primary hemorrhage. Moreover, neuronal degeneration, axonal injury, and both astrocytic and microglia reactivity were observed up to 8 days after injury. Significant deficits in rotarod performance appeared early after injury, but we observed no impairment in spatial object recognition or contextual fear conditioning response 5 days and 8 days after injury, respectively. Together, these data show that simulating the biomechanical conditions of mild TBI with a modified cortical impact technique produces regions of cellular reactivity and neuronal loss that coincide with only a transient behavioral impairment.

  18. Factors that may improve outcomes of early traumatic brain injury care: prospective multicenter study in Austria

    OpenAIRE

    Brazinova, Alexandra; Majdan, Marek; Leitgeb, Johannes; Trimmel, Helmut; Mauritz, Walter; ,

    2015-01-01

    Background Existing evidence concerning the management of traumatic brain injury (TBI) patients underlines the importance of appropriate treatment strategies in both prehospital and early in-hospital care. The objectives of this study were to analyze the current state of early TBI care in Austria with its physician-based emergency medical service. Subsequently, identified areas for improvement were transformed into treatment recommendations. The proposed changes were implemented in participat...

  19. Treatments for traumatic brain injury with emphasis on transcranial near-infrared laser phototherapy

    OpenAIRE

    Morries LD; Cassano P; Henderson TA

    2015-01-01

    Larry D Morries,1 Paolo Cassano,2 Theodore A Henderson1,3 1Neuro-Laser Foundation, Lakewood, CO, 2Harvard Medical School, Depression Clinical and Research Program, Massachusetts General Hospital, Boston, MA, 3The Synaptic Space, Centennial, CO, USA Abstract: Traumatic brain injury (TBI) is a growing health concern affecting civilians and military personnel. In this review, treatments for the chronic TBI patient are discussed, including pharmaceuticals, nutraceuticals, cognitive therapy, and...

  20. Moderate traumatic brain injury promotes proliferation of quiescent neural progenitors in the adult hippocampus

    OpenAIRE

    Gao, Xiang; Enikolopov, Grigori; Chen, Jinhui

    2009-01-01

    Recent evidence shows that traumatic brain injury (TBI) regulates proliferation of neural stem/progenitor cells in the dentate gyrus (DG) of adult hippocampus. There are distinct classes of neural stem/progenitor cells in the adult DG, including quiescent neural progenitors (QNPs), which carry stem cell properties, and their progeny, amplifying neural progenitors (ANPs). The response of each class of progenitors to TBI is not clear. We here used a transgenic reporter Nestin-GFP mouse line, in...

  1. Predictions of Episodic Memory following Moderate to Severe Traumatic Brain Injury During Inpatient Rehabilitation

    OpenAIRE

    Anderson, Jonathan W.; Schmitter-Edgecombe, Maureen

    2009-01-01

    We examined memory self-awareness and memory self-monitoring abilities during inpatient rehabilitation in participants with moderate to severe traumatic brain injury (TBI). Twenty-nine participants with moderate to severe TBI and 29 controls matched on age, gender, and education completed a performance prediction paradigm. To assess memory self-awareness, participants predicted the amount of information they would remember before completing list-learning and visual-spatial memory tasks. Memor...

  2. Review: Managing posttraumatic stress disorder in combat veterans with comorbid traumatic brain injury

    OpenAIRE

    Bruce Capehart, MD, MBA; Dale Bass, PhD

    2012-01-01

    Military deployments to Afghanistan and Iraq have been associated with elevated prevalence of both posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI) among combat veterans. The diagnosis and management of PTSD when a comorbid TBI may also exist presents a challenge to interdisciplinary care teams at Department of Veterans Affairs (VA) and civilian medical facilities, particularly when the patient reports a history of blast exposure. Treatment recommendations from VA and Dep...

  3. Integration of Proteomics, Bioinformatics, and Systems Biology in Traumatic Brain Injury Biomarker Discovery

    OpenAIRE

    Guingab-Cagmat, J.D.; Cagmat, E.B.; Hayes, R. L.; Anagli, J.

    2013-01-01

    Traumatic brain injury (TBI) is a major medical crisis without any FDA-approved pharmacological therapies that have been demonstrated to improve functional outcomes. It has been argued that discovery of disease-relevant biomarkers might help to guide successful clinical trials for TBI. Major advances in mass spectrometry (MS) have revolutionized the field of proteomic biomarker discovery and facilitated the identification of several candidate markers that are being further evaluated for their...

  4. Integration of Proteomics, Bioinformatics and Systems biology in Brain Injury Biomarker Discovery

    OpenAIRE

    JoyGuingab-Cagmat

    2013-01-01

    Traumatic brain injury (TBI) is a major medical crisis without any FDA-approved pharmacological therapies that have been demonstrated to improve functional outcomes. It has been argued that discovery of disease-relevant biomarkers might help to guide successful clinical trials for TBI. Major advances in mass spectrometry (MS) have revolutionized the field of proteomic biomarker discovery and facilitated the identification of several candidate markers that are being further evaluated for thei...

  5. Early management of traumatic brain injury in a Tertiary hospital in Central Kenya: A clinical audit

    OpenAIRE

    Clifford Chacha Mwita; Johnstone Muthoka; Stephen Maina; Phillip Mulingwa; Samson Gwer

    2016-01-01

    Background: Traumatic brain injury (TBI) is a major cause of death and disability worldwide and is mostly attributed to road traffic accidents in resource-poor areas. However, access to neurosurgical care is poor in these settings and patients in need of neurosurgical procedures are often managed by general practitioners or surgeons. Materials and Methods: A retrospective clinical audit of the initial management of patients with TBI in Thika Level 5 Hospital (TL5H), a Tertiary Hospital in Cen...

  6. Effectiveness of Physiotherapy and Occupational Therapy after Traumatic Brain Injury in the Intensive Care Unit

    OpenAIRE

    Stephanie Hellweg

    2012-01-01

    Physiotherapy and occupational therapy are frequently administered in intensive care units (ICUs) after traumatic brain injury (TBI) to promote recovery. The increasing economic pressure and the growing need for evidence of therapeutic effectiveness are reasons for reviewing the currently available scientific data. The databases of OTseeker, PEDro, Medline, and Cochrane were searched for studies on frequently applied therapeutic procedures in the ICU following a TBI. It becomes evident that t...

  7. The relation between the incidence of hypernatremia and mortality in patients with severe traumatic brain injury

    OpenAIRE

    Maggiore, Umberto; Picetti, Edoardo; Antonucci, Elio; Parenti, Elisabetta; Regolisti, Giuseppe; Mergoni, Mario; Vezzani, Antonella; Cabassi, Aderville; Fiaccadori, Enrico

    2009-01-01

    Introduction The study was aimed at verifying whether the occurrence of hypernatremia during the intensive care unit (ICU) stay increases the risk of death in patients with severe traumatic brain injury (TBI). We performed a retrospective study on a prospectively collected database including all patients consecutively admitted over a 3-year period with a diagnosis of TBI (post-resuscitation Glasgow Coma Score ≤ 8) to a general/neurotrauma ICU of a university hospital, providing critical care ...

  8. Hypernatremia in patients with severe traumatic brain injury: a systematic review

    OpenAIRE

    Kolmodin, Leif; Sekhon, Mypinder S; Henderson, William R.; Turgeon, Alexis F; Griesdale, Donald EG

    2013-01-01

    Background Hypernatremia is common following traumatic brain injury (TBI) and occurs from a variety of mechanisms, including hyperosmotic fluids, limitation of free water, or diabetes insipidus. The purpose of this systematic review was to assess the relationship between hypernatremia and mortality in patients with TBI. Methods We searched the following databases up to November 2012: MEDLINE, EMBASE, and CENTRAL. Using a combination of MeSH and text terms, we developed search filters for the ...

  9. Altered sleep composition after traumatic brain injury does not affect declarative sleep-dependent memory consolidation

    OpenAIRE

    Janna Mantua; Keenan M Mahan

    2015-01-01

    Individuals with a history of traumatic brain injury (TBI) often report sleep disturbances, which may be caused by changes in sleep architecture or reduced sleep quality (greater time awake after sleep onset, poorer sleep efficiency, and sleep stage proportion alterations). Sleep is beneficial for memory formation, and herein we examine whether altered sleep physiology following TBI has deleterious effects on sleep-dependent declarative memory consolidation. Participants learned a list of wor...

  10. Subjective cognitive complaints and neuropsychological test performance following military-related traumatic brain injury

    OpenAIRE

    Louis M. French, PsyD; Rael T. Lange, PhD; Tracey A. Brickell, D.Psych

    2014-01-01

    This study examined the relation between neuropsychological test performance and self-reported cognitive complaints following traumatic brain injury (TBI). Participants were 109 servicemembers from the U.S. military who completed a neuropsychological evaluation within the first 2 yr following mild–severe TBI. Measures included the Personality Assessment Inventory (PAI), Posttraumatic Stress Disorder Symptom Checklist-Civilian version (PCL-C), Neurobehavioral Symptom Inventory (NSI), and 17 se...

  11. Report of traumatic brain injury information sources among OIF/OEF Veterans undergoing polytrauma evaluations

    OpenAIRE

    Robert J. Spencer, PhD; Adam P. McGuire; Heather A. Tree, PhD; Brigid Waldron-Perrine, PhD; ­Percival H. Pangilinan, MD; Linas A. Bieliauskas, PhD

    2013-01-01

    Servicemembers returning from recent conflicts frequently report symptoms associated with traumatic brain injury (TBI) and are subsequently assessed within the Department of Veterans Affairs (VA) medical system. Information on potential cognitive and behavioral correlates of TBI is available from multiple sources. A Veteran’s symptom presentation may be significantly influenced by the information he or she has received. Despite knowledge of the relationship between information source and symp...

  12. Structural Dissociation of Attentional Control and Memory in Adults with and without Mild Traumatic Brain Injury

    Science.gov (United States)

    Niogi, Sumit N.; Mukherjee, Pratik; Ghajar, Jamshid; Johnson, Carl E.; Kolster, Rachel; Lee, Hana; Suh, Minah; Zimmerman, Robert D.; Manley, Geoffrey T.; McCandliss, Bruce D.

    2008-01-01

    Memory and attentional control impairments are the two most common forms of dysfunction following mild traumatic brain injury (TBI) and lead to significant morbidity in patients, yet these functions are thought to be supported by different brain networks. This 3 T magnetic resonance diffusion tensor imaging (DTI) study investigates whether…

  13. Normal saline influences coagulation and endothelial function after traumatic brain injury and hemorrhagic shock in pigs

    DEFF Research Database (Denmark)

    Dekker, Simone E; Sillesen, Martin; Bambakidis, Ted; Jin, Guang; Liu, Baoling; Boer, Christa; Johansson, Pär I; Halaweish, Ihab; Maxwell, Jake; Alam, Hasan B

    2014-01-01

    BACKGROUND: Traumatic brain injury (TBI) and hemorrhagic shock (HS) are the leading causes of trauma-related deaths. These insults disrupt coagulation and endothelial systems. This study investigated whether previously reported differences in lesion size and brain swelling during normal saline (NS...

  14. Osteopontin Expression in Acute Immune Response Mediates Hippocampal Synaptogenesis and Adaptive Outcome Following Cortical Brain Injury

    OpenAIRE

    Chan, Julie L.; Reeves, Thomas M.; Phillips, Linda L.

    2014-01-01

    Traumatic brain injury (TBI) produces axotomy, deafferentation and reactive synaptogenesis. Inflammation influences synaptic repair, and the novel brain cytokine osteopontin (OPN) has potential to support axon regeneration through exposure of its integrin receptor binding sites. This study explored whether OPN secretion and proteolysis by matrix metalloproteinases (MMPs) mediate the initial degenerative phase of synaptogenesis, targeting reactive neuroglia to affect successful repair. Adult r...

  15. Imaging brain plasticity after trauma

    OpenAIRE

    Kou, Zhifeng; Iraji, Armin

    2014-01-01

    The brain is highly plastic after stroke or epilepsy; however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrated both structural reorganization as well as functional compensation by the recruitment of other brain regions. ...

  16. Systems biomarkers as acute diagnostics and chronic monitoring tools for traumatic brain injury

    Science.gov (United States)

    Wang, Kevin K. W.; Moghieb, Ahmed; Yang, Zhihui; Zhang, Zhiqun

    2013-05-01

    Traumatic brain injury (TBI) is a significant biomedical problem among military personnel and civilians. There exists an urgent need to develop and refine biological measures of acute brain injury and chronic recovery after brain injury. Such measures "biomarkers" can assist clinicians in helping to define and refine the recovery process and developing treatment paradigms for the acutely injured to reduce secondary injury processes. Recent biomarker studies in the acute phase of TBI have highlighted the importance and feasibilities of identifying clinically useful biomarkers. However, much less is known about the subacute and chronic phases of TBI. We propose here that for a complex biological problem such as TBI, multiple biomarker types might be needed to harness the wide range of pathological and systemic perturbations following injuries, including acute neuronal death, neuroinflammation, neurodegeneration and neuroregeneration to systemic responses. In terms of biomarker types, they range from brain-specific proteins, microRNA, genetic polymorphism, inflammatory cytokines and autoimmune markers and neuro-endocrine hormones. Furthermore, systems biology-driven biomarkers integration can help present a holistic approach to understanding scenarios and complexity pathways involved in brain injury.

  17. Berberine protects against neuronal damage via suppression of glia-mediated inflammation in traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Chien-Cheng Chen

    Full Text Available Traumatic brain injury (TBI triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg(-1 or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain barrier (BBB permeability and brain water content were determined. Expression of PI3K/Akt and Erk signaling and inflammatory mediators were also analyzed. The protective effect of berberine was also investigated in cultured neurons either subjected to stretch injury or exposed to conditioned media with activated microglia. Berberine significantly attenuated functional deficits and brain damage associated with TBI up to day 28 post-injury. Berberine also reduced neuronal death, apoptosis, BBB permeability, and brain edema at day 1 post-injury. These changes coincided with a marked reduction in leukocyte infiltration, microglial activation, matrix metalloproteinase-9 activity, and expression of inflammatory mediators. Berberine had no effect on Akt or Erk 1/2 phosphorylation. In mixed glial cultures, berberine reduced TLR4/MyD88/NF-κB signaling. Berberine also attenuated neuronal death induced by microglial conditioned media; however, it did not directly protect cultured neurons subjected to stretch injury. Moreover, administration of berberine at 3 h post-injury also reduced TBI-induced neuronal damage, apoptosis and inflammation in vivo. Berberine reduces TBI-induced brain damage by limiting the production of inflammatory mediators by glial cells, rather than by a direct neuroprotective effect.

  18. Voluntary exercise prior to traumatic brain injury alters miRNA expression in the injured mouse cerebral cortex

    OpenAIRE

    Miao, W.; T.H. Bao; Han, J. H.; Yin, M.; Yan, Y.; Wang, W. W.; Zhu, Y. H.

    2015-01-01

    MicroRNAs (miRNAs) may be important mediators of the profound molecular and cellular changes that occur after traumatic brain injury (TBI). However, the changes and possible roles of miRNAs induced by voluntary exercise prior to TBI are still not known. In this report, the microarray method was used to demonstrate alterations in miRNA expression levels in the cerebral cortex of TBI mice that were pretrained on a running wheel (RW). Voluntary RW exercise prior to TBI: i) significantly decrease...

  19. Prospective memory in adults with traumatic brain injury: an analysis of perceived reasons for remembering and forgetting.

    Science.gov (United States)

    Roche, Nadine L; Moody, Anna; Szabo, Krisztina; Fleming, Jennifer M; Shum, David H K

    2007-06-01

    Reasons for prospective remembering and forgetting after traumatic brain injury (TBI) were investigated using Ellis' (1996) five phases of prospective memory as a framework. Participants were 38 individuals with severe TBI and 34 controls. Participants self-rated their perceived reasons for prospective remembering and forgetting using section C of the Comprehensive Assessment of Prospective Memory (CAPM). Significant others also rated participants using the same scale. Analyses were conducted to examine the effect of group membership (TBI or control) on reported reasons for prospective remembering and forgetting. Findings highlighted the TBI group's difficulties with encoding, performance interval, and execution phases of prospective remembering. PMID:17474059

  20. Survivors of a Silent Epidemic: The Learning Experience of College Students with a History of Traumatic Brain Injury

    Science.gov (United States)

    Schlessman, Heather A.

    2010-01-01

    A significant proportion of young adults experience a traumatic brain injury (TBI) every year, and students with this history are becoming a growing presence on college campuses. A review of the literature revealed very little research exploring the learning experiences of college students with a history of traumatic brain injury. The purpose of…

  1. Traumatic Brain Injury Activation of the Adult Subventricular Zone Neurogenic Niche

    Science.gov (United States)

    Chang, Eun Hyuk; Adorjan, Istvan; Mundim, Mayara V.; Sun, Bin; Dizon, Maria L. V.; Szele, Francis G.

    2016-01-01

    Traumatic brain injury (TBI) is common in both civilian and military life, placing a large burden on survivors and society. However, with the recognition of neural stem cells in adult mammals, including humans, came the possibility to harness these cells for repair of damaged brain, whereas previously this was thought to be impossible. In this review, we focus on the rodent adult subventricular zone (SVZ), an important neurogenic niche within the mature brain in which neural stem cells continue to reside. We review how the SVZ is perturbed following various animal TBI models with regards to cell proliferation, emigration, survival, and differentiation, and we review specific molecules involved in these processes. Together, this information suggests next steps in attempting to translate knowledge from TBI animal models into human therapies for TBI. PMID:27531972

  2. Mesenchymal Stem Cells Regulate Blood Brain Barrier Integrity in Traumatic Brain Injury Through Production of the Soluble Factor TIMP3

    Science.gov (United States)

    Menge, Tyler; Zhao, Yuhai; Zhao, Jing; Wataha, Kathryn; Geber, Michael; Zhang, Jianhu; Letourneau, Phillip; Redell, John; Shen, Li; Wang, Jing; Peng, Zhalong; Xue, Hasen; Kozar, Rosemary; Cox, Charles S.; Khakoo, Aarif Y.; Holcomb, John B.; Dash, Pramod K.; Pati, Shibani

    2013-01-01

    Mesenchymal stem cells (MCSs) have been shown to have therapeutic potential in multiple disease states associated with vascular instability including traumatic brain injury (TBI). In the present study, Tissue Inhibitor of Matrix Metalloproteinase-3 (TIMP3) is identified as the soluble factor produced by MSCs that can recapitulate the beneficial effects of MSCs on endothelial function and blood brain barrier (BBB) compromise in TBI. Attenuation of TIMP3 expression in MSCs completely abrogates the effect of MSCs on BBB permeability and stability, while intravenous administration of rTIMP3 alone can inhibit BBB permeability in TBI. Our results demonstrate that MSCs increase circulating levels of soluble TIMP3, which inhibits VEGF-A induced breakdown of endothelial AJs in vitro and in vivo. These findings elucidate a clear molecular mechanism for the effects of MSCs on the BBB in TBI, and directly demonstrate a role for TIMP3 in regulation of BBB integrity. PMID:23175708

  3. Assessment of an experimental rodent model of pediatric mild traumatic brain injury.

    Science.gov (United States)

    Mychasiuk, Richelle; Farran, Allyson; Esser, Michael J

    2014-04-15

    Childhood is one the highest risk periods for experiencing a mild traumatic brain injury (mTBI) from sports-related concussions, motor vehicle accidents, and falls. In addition, many children experience lingering symptomology (post-concussion syndrome) from these closed head injuries. Although the negative sequel of mTBI has been described, a clinically reliable animal model of mild pediatric brain injury has not. The purpose of this study was to examine the validity of a modified weight-drop technique as a model for the induction of mTBI/concussion in juvenile rats following a single impact. Male and female rats (P30) were exposed to a single mTBI or a sham injury followed by a behavioral test battery. Juvenile rats who experienced a single mTBI displayed significant motor/balance impairments when tested on the beam walking task and in the open field, as well as deficits of executive functioning as measured with the novel context mismatch task and the probe trial of the Morris water task. In addition, both male and female rats showed depression-like behavior in the forced swim task, with male rats also exhibiting decreased anxiety-related behaviors in the elevated plus maze. The results from this study suggest that the modified weight-drop technique induces a clinically relevant behavioral phenotype in juvenile rats, and may provide researchers with a reliable animal model of mTBI/concussion from which clinical therapeutic strategies could be developed. PMID:24283269

  4. Involvement of Connexin40 in the Protective Effects of Ginsenoside Rb1 Against Traumatic Brain Injury.

    Science.gov (United States)

    Chen, Wei; Guo, Yijun; Yang, Wenjin; Zheng, Ping; Zeng, Jinsong; Tong, Wusong

    2016-10-01

    Ginsenosides are the major active components of ginseng, which have been proven to be effective in therapies for neurodegenerative diseases. Ginsenoside Rb1 (GS-Rb1) is the most abundant among all the identified ginsenosides and has been shown to exert neuroprotective effects, although the underlying molecular mechanisms remain unclear. Connexins are a family of transmembrane proteins that form gap junctions, which are important for diffusion of cytosolic factors such as ions and second messenger signaling molecules. Previous studies have shown that a subset of connexin proteins is involved in neuroprotection. We investigated the protective effects of GS-Rb1 against traumatic brain injury (TBI) and the potential mechanism using TBI mouse model. We discovered that TBI-induced brain injury and up-regulation of connexin40 (Cx40) protein expression as early as 6 h post-TBI, which was reversed by administration of GS-Rb1. In addition, we found that the protective effects of GS-Rb1 are dose and time dependent and are partially mediated through phosphorylation of ERK1/2 signaling pathway, as evidenced by the abolishment of GS-Rb1-mediated elevation of p-ERK1/2 expression and inhibition of Cx40 expressions when ERK inhibitor U0126 was used. Our study provides evidence that Cx40 is implicated in TBI-induced brain injuries, and GS-Rb1 exerts neuroprotective activity against TBI involving down-regulation of Cx40 expression. PMID:26645822

  5. Effect of low-dose methylprednisolone on peripheral blood endothelial progenitor cells and its significance in rats after brain injury

    Directory of Open Access Journals (Sweden)

    Bin ZHANG

    2011-05-01

    Full Text Available Objective To explore the effects of low-dose methylprednisolone(MP treatment after traumatic brain injury(TBI in rats on the number of peripheral blood endothelial progenitor cells(EPCs and injury area of the brain.Methods One hundred and fifty-four adult male Wistar rats were involved in the present study,and they were randomly divided into normal control group(n=18,TBI control group(n=38,MP control group(n=30,MP+TBI group(n=30 and TBI+MP group(n=38.The TBI model was reproduced by fluid percussion injury(FPI.MP(5mg/kg was intraperitoneally administered once a day for 4 days.Peripheral venous blood samples were taken on day 1,3,7 and 14,and the counts of EPCs were determined by flow cytometry.The rats were sacrificed on day 1 and 3,brain edema was estimated by dry-wet weight method,and the blood-brain barrier(BBB permeability was determined by Evans-blue extravasation.Results The counts of peripheral blood EPCs were significantly higher in MP control group,MP+TBI group and TBI+MP group on day 1,3 and 7 than that in normal control and TBI control group,and it returned to the level of normal control group on day 14.The BBB permeability was improved and brain edema alleviated in MP+TBI and TBI+MP group on day 3.Conclusion The administration of low-dose MP may increase the count of peripheral blood EPCs in rats,decrease BBB damage,and alleviate brain edema.

  6. Phenoxybenzamine Is Neuroprotective in a Rat Model of Severe Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Thomas F. Rau

    2014-01-01

    Full Text Available Phenoxybenzamine (PBZ is an FDA approved α-1 adrenergic receptor antagonist that is currently used to treat symptoms of pheochromocytoma. However, it has not been studied as a neuroprotective agent for traumatic brain injury (TBI. While screening neuroprotective candidates, we found that phenoxybenzamine reduced neuronal death in rat hippocampal slice cultures following exposure to oxygen glucose deprivation (OGD. Using this system, we found that phenoxybenzamine reduced neuronal death over a broad dose range (0.1 µM–1 mM and provided efficacy when delivered up to 16 h post-OGD. We further tested phenoxybenzamine in the rat lateral fluid percussion model of TBI. When administered 8 h after TBI, phenoxybenzamine improved neurological severity scoring and foot fault assessments. At 25 days post injury, phenoxybenzamine treated TBI animals also showed a significant improvement in both learning and memory compared to saline treated controls. We further examined gene expression changes within the cortex following TBI. At 32 h post-TBI phenoxybenzamine treated animals had significantly lower expression of pro-inflammatory signaling proteins CCL2, IL1β, and MyD88, suggesting that phenoxybenzamine may exert a neuroprotective effect by reducing neuroinflammation after TBI. These data suggest that phenonxybenzamine may have application in the treatment of TBI.

  7. Sleep, Sleep Disorders, and Mild Traumatic Brain Injury. What We Know and What We Need to Know: Findings from a National Working Group.

    Science.gov (United States)

    Wickwire, Emerson M; Williams, Scott G; Roth, Thomas; Capaldi, Vincent F; Jaffe, Michael; Moline, Margaret; Motamedi, Gholam K; Morgan, Gregory W; Mysliwiec, Vincent; Germain, Anne; Pazdan, Renee M; Ferziger, Reuven; Balkin, Thomas J; MacDonald, Margaret E; Macek, Thomas A; Yochelson, Michael R; Scharf, Steven M; Lettieri, Christopher J

    2016-04-01

    Disturbed sleep is one of the most common complaints following traumatic brain injury (TBI) and worsens morbidity and long-term sequelae. Further, sleep and TBI share neurophysiologic underpinnings with direct relevance to recovery from TBI. As such, disturbed sleep and clinical sleep disorders represent modifiable treatment targets to improve outcomes in TBI. This paper presents key findings from a national working group on sleep and TBI, with a specific focus on the testing and development of sleep-related therapeutic interventions for mild TBI (mTBI). First, mTBI and sleep physiology are briefly reviewed. Next, essential empirical and clinical questions and knowledge gaps are addressed. Finally, actionable recommendations are offered to guide active and efficient collaboration between academic, industry, and governmental stakeholders. PMID:27002812

  8. Hypothalamic-Pituitary Autoimmunity and Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Federica Guaraldi

    2015-05-01

    Full Text Available Background: Traumatic brain injury (TBI is a leading cause of secondary hypopituitarism in children and adults, and is responsible for impaired quality of life, disabilities and compromised development. Alterations of pituitary function can occur at any time after the traumatic event, presenting in various ways and evolving during time, so they require appropriate screening for early detection and treatment. Although the exact pathophysiology is unknown, several mechanisms have been hypothesized, including hypothalamic-pituitary autoimmunity (HP-A. The aim of this study was to systematically review literature on the association between HP-A and TBI-induced hypopituitarism. Major pitfalls related to the HP-A investigation were also discussed. Methods: The PubMed database was searched with a string developed for this purpose, without temporal or language limits, for original articles assessing the association of HP-A and TBI-induced hypopituitarism. Results: Three articles from the same group met the inclusion criteria. Anti-pituitary and anti-hypothalamic antibodies were detected using indirect immunofluorescence in a significant number of patients with acute and chronic TBI. Elevated antibody titer was associated with an increased risk of persistent hypopituitarism, especially somatotroph and gonadotroph deficiency, while no correlations were found with clinical parameters. Conclusion: HPA seems to contribute to TBI-induced pituitary damage, although major methodological issues need to be overcome and larger studies are warranted to confirm these preliminary data.

  9. Assessing Neuro-Systemic & Behavioral Components in the Pathophysiology of Blast-Related Brain Injury

    OpenAIRE

    Kobeissy, Firas; Mondello, Stefania; Tümer, Nihal; Toklu, Hale Z.; Whidden, Melissa A; Kirichenko, Nataliya; Zhang, Zhiqun; Prima, Victor; Yassin, Walid; Anagli, John; Chandra, Namas; Svetlov, Stan; Wang, Kevin K. W.

    2013-01-01

    Among the U.S. military personnel, blast injury is among the leading causes of brain injury. During the past decade, it has become apparent that even blast injury as a form of mild traumatic brain injury (mTBI) may lead to multiple different adverse outcomes, such as neuropsychiatric symptoms and long-term cognitive disability. Blast injury is characterized by blast overpressure, blast duration, and blast impulse. While the blast injuries of a victim close to the explosion will be severe, maj...

  10. Assessing Neuro-Systemic & Behavioral Components in the Pathophysiology of Blast-Related Brain Injury

    OpenAIRE

    Firas H Kobeissy; Stefania eMondello; Nihal eTumer; Toklu, Hale Z.; Whidden, Melissa A; Nataliya eKirichenko; Zhiqun eZhang; Victor ePrima; Walid eYassin; Chandra eNamas; John eAnagli; Stanislav eSvetlov; Wang, Kevin K. W.

    2013-01-01

    Among the U.S. military personnel, blast injury is among the leading causes of brain injury. During the past decade, it has become apparent that even blast injury as a form of mild traumatic brain injury (mTBI) may lead to multiple different adverse outcomes, such as neuropsychiatric symptoms and long-term cognitive disability. Blast injury is characterized by blast overpressure (BOP), blast duration, and blast impulse. While the blast injuries of a victim close to the explosion will be sever...

  11. Glycolysis and the significance of lactate in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Keri Linda Carpenter

    2015-04-01

    Full Text Available In traumatic brain injury (TBI patients, elevation of the brain extracellular lactate concentration and the lactate/pyruvate ratio are well recognised, and are associated statistically with unfavourable clinical outcome. Brain extracellular lactate was conventionally regarded as a waste product of glucose, when glucose is metabolised via glycolysis (Embden-Meyerhof-Parnas pathway to pyruvate, followed by conversion to lactate by the action of lactate dehydrogenase, and export of lactate into the extracellular fluid. In TBI, glycolytic lactate is ascribed to hypoxia or mitochondrial dysfunction, although the precise nature of the latter is incompletely understood. Seemingly in contrast to lactate’s association with unfavourable outcome is a growing body of evidence that lactate can be beneficial. The idea that the brain can utilise lactate by feeding into the tricarboxylic acid (TCA cycle of neurons, first published two decades ago, has become known as the astrocyte-neuron lactate shuttle hypothesis. Direct evidence of brain utilisation of lactate was first obtained 5 years ago in a cerebral microdialysis study in TBI patients, where administration of 13C-labelled lactate via the microdialysis catheter and simultaneous collection of the emerging microdialysates, with 13C NMR analysis, revealed 13C labelling in glutamine consistent with lactate utilisation via the TCA cycle. This suggests that where neurons are too damaged to utilise the lactate produced from glucose by astrocytes, i.e. uncoupling of neuronal and glial metabolism, high extracellular levels of lactate would accumulate, explaining association between high lactate and poor outcome. An intravenous exogenous lactate supplementation study in TBI patients showed evidence for a beneficial effect judged by surrogate endpoints. Here we review current knowledge about glycolysis and lactate in TBI, how it can be measured in patients, and whether it can be modulated to achieve better

  12. Hormones, biomarkers, genetics and prognostication of patients suffering severe traumatic brain injury

    OpenAIRE

    Olivecrona, Zandra

    2014-01-01

    Severe traumatic brain injury (sTBI) is a significant cause of mortality and mobidity worldwide. In Umeå University Hospital, at the department of Neurosurgery, patients with sTBI are treated by the Lund concept, which can be characterized as an intracranial pressure (ICP) targeted therapy. In recent decades, there has been an increasing interest in trying to understand why some patients recover better and survive after sTBI, and why some do not. Also, improving the instruments of prognostica...

  13. Prognostic value of evoked and event-related potentials in moderate to severe brain injury.

    Science.gov (United States)

    Lew, Henry L; Poole, John H; Castaneda, Annabel; Salerno, Rose Marie; Gray, Max

    2006-01-01

    Clinicians are often expected to project patients' clinical outcomes to allow effective planning for future care. This can be a challenge in patients with moderate to severe traumatic brain injury (TBI) who are often unable to participate reliably in clinical evaluations. With recent advances in computer instrumentation and signal processing, evoked potentials and event-related potentials show increasing promise as powerful tools for prognosticating the trajectory of recovery and ultimate outcome from the TBI. Short- and middle-latency evoked potentials can now effectively predict coma outcomes in patients with acute TBI. Long-latency event-related potential components hold promise in predicting recovery of higher order cognitive abilities. PMID:16915010

  14. Review: Managing posttraumatic stress disorder in combat veterans with comorbid traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Bruce Capehart, MD, MBA

    2012-06-01

    Full Text Available Military deployments to Afghanistan and Iraq have been associated with elevated prevalence of both posttraumatic stress disorder (PTSD and traumatic brain injury (TBI among combat veterans. The diagnosis and management of PTSD when a comorbid TBI may also exist presents a challenge to interdisciplinary care teams at Department of Veterans Affairs (VA and civilian medical facilities, particularly when the patient reports a history of blast exposure. Treatment recommendations from VA and Department of Defense’s (DOD recently updated VA/DOD Clinical Practice Guideline for Management of Post-Traumatic Stress are considered from the perspective of simultaneously managing comorbid TBI.

  15. Rapid EEG activity during sleep dominates in mild traumatic brain injury patients with acute pain.

    Science.gov (United States)

    Khoury, Samar; Chouchou, Florian; Amzica, Florin; Giguère, Jean-François; Denis, Ronald; Rouleau, Guy A; Lavigne, Gilles J

    2013-04-15

    Chronic pain is a highly prevalent post-concussion symptom occurring in a majority of patients with mild traumatic brain injury (mTBI). About half of patients with mTBI report sleep-wake disturbances. It is known that pain can alter sleep quality in this population, but the interaction between pain and sleep is not fully understood. This study aimed to identify how pain affects subjective sleep (Pittsburgh Sleep Quality Index [PSQI]), sleep architecture, and quantitative electroencephalographic (qEEG) brain activity after mTBI. Twenty-four mTBI patients complaining of sleep-wake disturbances, with and without pain (8 and 16, respectively), were recruited 45 (±22.7) days post-trauma on average. Data were compared with those of 18 healthy controls (no sleep or pain complaints). The PSQI, sleep architecture, and qEEG activity were analyzed. Pain was assessed using questionnaires and a 100-mm visual analogue scale. Patients with mTBI reported three times poorer sleep quality than controls on the PSQI. Sleep architecture significantly differed between patients with mTBI and controls but was within normal range. Global qEEG showed lower delta (deep sleep) and higher beta and gamma power (arousal) at certain EEG derivations in patients with mTBI compared with controls (pEEG frequency bands, mostly during REM sleep, and beta bands in non-REM sleep compared with patients with mTBI without pain and controls (pconcussion symptoms. PMID:23510169

  16. Affective responses after different intensities of exercise in patients with traumatic brain injury

    OpenAIRE

    Rzezak, Patricia; Caxa, Luciana; Santolia, Patricia; Hanna K.M. Antunes; Suriano, Italo; Tufik, Sérgio; de Mello, Marco T.

    2015-01-01

    Background: Patients with traumatic brain injury (TBI) usually have mood and anxiety symptoms secondary to their brain injury. Exercise may be a cost-effective intervention for the regulation of the affective responses of this population. However, there are no studies evaluating the effects of exercise or the optimal intensity of exercise for this clinical group. Methods: Twelve male patients with moderate or severe TBI [mean age of 31.83 and SD of 9.53] and 12 age- and gender-matched heal...

  17. Transplantation of human neural stem cells restores cognition in an immunodeficient rodent model of traumatic brain injury

    OpenAIRE

    Haus, DL; Lopez-Velazquez, L; Gold, EM; Cunningham, KM; Perez, H; Anderson, AJ; Cummings, BJ

    2016-01-01

    Traumatic brain injury (TBI) in humans can result in permanent tissue damage and has been linked to cognitive impairment that lasts years beyond the initial insult. Clinically effective treatment strategies have yet to be developed. Transplantation of human neural stem cells (hNSCs) has the potential to restore cognition lost due to injury, however, the vast majority of rodent TBI/hNSC studies to date have evaluated cognition only at early time points, typically

  18. The military's approach to traumatic brain injury and post-traumatic stress disorder

    Science.gov (United States)

    Ling, Geoffrey S. F.; Grimes, Jamie; Ecklund, James M.

    2014-06-01

    Traumatic brain injury (TBI) and Post Traumatic Stress Disorder (PTSD) are common conditions. In Iraq and Afghanistan, explosive blast related TBI became prominent among US service members but the vast majority of TBI was still due to typical causes such as falls and sporting events. PTS has long been a focus of the US military mental health providers. Combat Stress Teams have been integral to forward deployed units since the beginning of the Global War on Terror. Military medical management of disease and injury follows standard of care clinical practice guidelines (CPG) established by civilian counterparts. However, when civilian CPGs do not exist or are not applicable to the military environment, new practice standards are created. Such is the case for mild TBI. In 2009, the VA-DoD CPG for management of mild TBI/concussion was published and a system-wide clinical care program for mild TBI/concussion was introduced. This was the first large scale effort on an entire medical care system to address all severities of TBI in a comprehensive organized way. In 2010, the VA-DoD CPG for management of PTSD was published. Nevertheless, both TBI and PTS are still incompletely understood. Investment in terms of money and effort has been committed by the DoD to their study. The Defense and Veterans Brain Injury Center, National Intrepid Center of Excellence and the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury are prominent examples of this effort. These are just beginnings, a work in progress ready to leverage advances made scientifically and always striving to provide the very best care to its military beneficiaries.

  19. Differences in Marital Satisfaction, Coping and Social Support following a Traumatic Brain Injury

    LENUS (Irish Health Repository)

    Carroll, Aine Dr.

    2009-01-01

    Objective: Adverse cognitive, emotional and behavioural sequelae of Traumatic Brain Injury (TBI) are commonly noted by family members. These sequelae can adversely impact on marital and family relationships. The aim of this study is to examine marital and relationship satisfaction following a TBI amongst patients and partners. Design: A questionnaire based postal survey was used to investigate relationship and marital satisfaction. Participants: Thirty four participants (14 male; 20 female), ranging in age from 25-68 years ( = 44 years, SD 11 years), took part in this study. Sixteen had sustained a TBI and eighteen were partners of patients with TBI. Participants with TBI who were inpatients at the National Rehabilitation Hospital (NRH) and their partners were invited to participate in the study. Outcome Measures: The Marital Satisfaction Questionnaire (MSI-R) was used to examine marital and relationship satisfaction. Results: Both patients and partners reported relationship difficulties following brain injury (z = -3.078, p < .05 patients; z = 2.699, p < .05 partners). Conclusion: This study highlights the significant impact of TBI on relationships for both the TBI survivor and their partners. Implications for interventions in neuropsychological rehabilitation are discussed.

  20. Traumatic Brain Injury in Qatar: Age Matters—Insights from a 4-Year Observational Study

    Directory of Open Access Journals (Sweden)

    Moamena El-Matbouly

    2013-01-01

    Full Text Available Background. Overall traumatic brain injury (TBI incidence and related death rates vary across different age groups. Objectives. To evaluate the incidence, causes, and outcome of TBI in adolescents and young adult population in Qatar. Method. This was a retrospective review of all TBIs admitted to the trauma center between January 2008 and December 2011. Demographics, mechanism of injury, morbidity, and mortality were analyzed in different age groups. Results. A total of 1665 patients with TBI were admitted; the majority were males (92% with a mean age of 28 ± 16 years. The common mechanism of injury was motor vehicle crashes and falls from height (51% and 35%, resp.. TBI was incidentally higher in young adults (34% and middle age group (21%. The most frequent injuries were contusion (40%, subarachnoid (25%, subdural (24%, and epidural hemorrhage (18%. The mortality rate was 11% among TBI patients. Mortality rates were 8% and 12% among adolescents and young adults, respectively. The highest mortality rate was observed in elderly patients (35%. Head AIS, ISS, and age were independent predictors for mortality. Conclusion. Adolescents and adults sustain significant portions of TBI, whereas mortality is much higher in the older group. Public awareness and injury prevention campaigns should target young population.

  1. Multisensory impairment reported by veterans with and without mild traumatic brain injury history

    Directory of Open Access Journals (Sweden)

    Terri K. Pogoda, PhD

    2012-10-01

    Full Text Available With the use of Veterans Health Administration and Department of Defense databases of veterans who completed a Department of Veterans Affairs comprehensive traumatic brain injury (TBI evaluation, the objectives of this study were to (1 identify the co-occurrence of self-reported auditory, visual, and vestibular impairment, referred to as multisensory impairment (MSI, and (2 examine demographic, deployment-related, and mental health characteristics that were potentially predictive of MSI. Our sample included 13,746 veterans with either a history of deployment-related mild TBI (mTBI (n = 9,998 or no history of TBI (n = 3,748. The percentage of MSI across the sample was 13.9%, but was 17.4% in a subsample with mTBI history that experienced both nonblast and blast injuries. The factors that were significantly predictive of reporting MSI were older age, being female, lower rank, and etiology of injury. Deployment-related mTBI history, posttraumatic stress disorder, and depression were also significantly predictive of reporting MSI, with mTBI history the most robust after adjusting for these conditions. A better comprehension of impairments incurred by deployed servicemembers is needed to fully understand the spectrum of blast and nonblast dysfunction and may allow for more targeted interventions to be developed to address these issues.

  2. Predictors of longitudinal outcome and recovery of pragmatic language and its relation to externalizing behaviour after pediatric traumatic brain injury.

    Science.gov (United States)

    Ryan, Nicholas P; Catroppa, Cathy; Beare, Richard; Coleman, Lee; Ditchfield, Michael; Crossley, Louise; Beauchamp, Miriam H; Anderson, Vicki A

    2015-03-01

    The purpose of the present investigation was to evaluate the contribution of age-at-insult and brain pathology on longitudinal outcome and recovery of pragmatic language in a sample of children and adolescents with traumatic brain injury (TBI). Children and adolescents with mild to severe TBI (n=112) were categorized according to timing of brain insult: (i) Middle Childhood (5-9 years; n=41); (ii) Late Childhood (10-11 years; n=39); and (iii) Adolescence (12-15 years; n=32) and group-matched for age, gender and socio-economic status (SES) to a typically developing (TD) control group (n=43). Participants underwent magnetic resonance imaging (MRI) including a susceptibility weighted imaging (SWI) sequence 2-8 weeks after injury and were assessed on measures of pragmatic language and behavioural functioning at 6- and 24-months after injury. Children and adolescents with TBI of all severity levels demonstrated impairments in these domains at 6-months injury before returning to age-expected levels at 2-years post-TBI. However, while adolescent TBI was associated with post-acute disruption to skills that preceded recovery to age-expected levels by 2-years post injury, the middle childhood TBI group demonstrated impairments at 6-months post-injury that were maintained at 2-year follow up. Reduced pragmatic communication was associated with frontal, temporal and corpus callosum lesions, as well as more frequent externalizing behaviour at 24-months post injury. Findings show that persisting pragmatic language impairment after pediatric TBI is related to younger age at brain insult, as well as microhemorrhagic pathology in brain regions that contribute to the anatomically distributed social brain network. Relationships between reduced pragmatic communication and more frequent externalizing behavior underscore the need for context-sensitive rehabilitation programs that aim to increase interpersonal effectiveness and reduce risk for maladaptive behavior trajectories into the

  3. The Effects of Female Sex Steroids on Gastric Secretory Responses of Rat Following Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Zakieh Keshavarzi

    2011-05-01

    Full Text Available AbstractObjective(sGastric ulceration is induced by various forms of stress like surgery, ischemia and trauma. The female sex has more resistance to stress and the gastrointestinal lesions happen fewer than male sex. The purpose of this study was to evaluate the role of estradiol and progesterone on the gastric acid and pepsin levels following traumatic brain injury (TBI induction.Materials and MethodsDiffuse TBI was induced by Marmarou method in female rats. Rats randomly assigned into 9 groups: intact, OVX (ovarectomized rat, Sham+OVX, TBI (intact rats under TBI, TBI+OVX (ovarectomized rats under TBI and treated OVX rats with vehicle (sesame oil, E2 (estradiol, P4 (progesterone or E2+P4 combination. The acid content and pepsin levels of each gastric washout sample were measured 5 days after the TBI induction.ResultsThere was no significant difference in gastric acid output between groups either after TBI induction or after treatment with E2 or P4 or E2+P4. Gastric pepsin levels were increased in Sham+OVX, TBI (P< 0.001 and TBI+OVX (P< 0.05 compared to intact group. Gastric pepsin levels were significantly lower in E2 and E2+ P4 treated rats than vehicle treated group (P< 0.01. P4 treatment increased gastric pepsin level compared to TBI+OVX group (P< 0.05 and this increment was higher than rats that were treated with the E2 and E2+P4 (P< 0.01.ConclusionThese results suggest that protective effect of estradiol and E2+P4 combination against mucosal damage after TBI, might be mediated by inhibition of pepsin secretion.

  4. SNTF immunostaining reveals previously undetected axonal pathology in traumatic brain injury.

    Science.gov (United States)

    Johnson, Victoria E; Stewart, William; Weber, Maura T; Cullen, D Kacy; Siman, Robert; Smith, Douglas H

    2016-01-01

    Diffuse axonal injury (DAI) is a common feature of severe traumatic brain injury (TBI) and may also be a predominant pathology in mild TBI or "concussion". The rapid deformation of white matter at the instant of trauma can lead to mechanical failure and calcium-dependent proteolysis of the axonal cytoskeleton in association with axonal transport interruption. Recently, a proteolytic fragment of alpha-II spectrin, "SNTF", was detected in serum acutely following mild TBI in patients and was prognostic for poor clinical outcome. However, direct evidence that this fragment is a marker of DAI has yet to be demonstrated in either humans following TBI or in models of mild TBI. Here, we used immunohistochemistry (IHC) to examine for SNTF in brain tissue following both severe and mild TBI. Human severe TBI cases (survival <7d; n = 18) were compared to age-matched controls (n = 16) from the Glasgow TBI archive. We also examined brains from an established model of mild TBI at 6, 48 and 72 h post-injury versus shams. IHC specific for SNTF was compared to that of amyloid precursor protein (APP), the current standard for DAI diagnosis, and other known markers of axonal pathology including non-phosphorylated neurofilament-H (SMI-32), neurofilament-68 (NF-68) and compacted neurofilament-medium (RMO-14) using double and triple immunofluorescent labeling. Supporting its use as a biomarker of DAI, SNTF immunoreactive axons were observed at all time points following both human severe TBI and in the model of mild TBI. Interestingly, SNTF revealed a subpopulation of degenerating axons, undetected by the gold-standard marker of transport interruption, APP. While there was greater axonal co-localization between SNTF and APP after severe TBI in humans, a subset of SNTF positive axons displayed no APP accumulation. Notably, some co-localization was observed between SNTF and the less abundant neurofilament subtype markers. Other SNTF positive axons, however, did not co-localize with any

  5. Effect of post-traumatic mild hypothermia on hippocampal cell death after traumatic brain injury in rats.

    Science.gov (United States)

    Jia, Feng; Mao, Qing; Liang, Yu-Min; Jiang, Ji-Yao

    2009-02-11

    In this investigation, we evaluated the effect of post-traumatic mild hypothermia on cell death in the hippocampus after fluid percussion traumatic brain injury (TBI) in rats. Adult male Sprague-Dawley rats were randomly divided into three groups (n = 40/group): TBI with hypothermia treatment (32 degrees C), TBI with normothermia (37 degrees C), and sham injury. The TBI model was induced by a fluid percussion TBI device. Mild hypothermia (32 degrees C) was achieved by partial immersion in a water bath (0 degrees C) under general anesthesia for 4h. All rats were killed at 24 or 72h after TBI. The ipsilateral hippocampal CA1 in all rats were analyzed by hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling (TUNEL), and 4',6-diamidino-2-phenylindole (DAPI) staining for determining cell death. Caspase-3 expression was examined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. At 24h, based on TUNEL and DAPI results, the cell death index was 28.80 +/- 2.60% and 32.10 +/- 1.40% in the normothermia TBI group, while reaching only 14.30 +/- 2.70% and 18.40 +/- 2.10% in the hypothermic TBI group (p percussion injury. Taken together with other studies, these observations support the premise that post-traumatic mild hypothermia can provide cerebral protection for patients with TBI. PMID:19236165

  6. Neuroinflammatory responses to traumatic brain injury: etiology, clinical consequences, and therapeutic opportunities

    Directory of Open Access Journals (Sweden)

    Lozano D

    2015-01-01

    Full Text Available Diego Lozano,* Gabriel S Gonzales-Portillo,* Sandra Acosta, Ike de la Pena, Naoki Tajiri, Yuji Kaneko, Cesar V Borlongan Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA *These authors contributed equally to this work Abstract: Traumatic brain injury (TBI is a serious public health problem accounting for 1.4 million emergency room visits by US citizens each year. Although TBI has been traditionally considered an acute injury, chronic symptoms reminiscent of neurodegenerative disorders have now been recognized. These progressive neurodegenerative-like symptoms manifest as impaired motor and cognitive skills, as well as stress, anxiety, and mood affective behavioral alterations. TBI, characterized by external bumps or blows to the head exceeding the brain’s protective capacity, causes physical damage to the central nervous system with accompanying neurological dysfunctions. The primary impact results in direct neural cell loss predominantly exhibiting necrotic death, which is then followed by a wave of secondary injury cascades including excitotoxicity, oxidative stress, mitochondrial dysfunction, blood–brain barrier disruption, and inflammation. All these processes exacerbate the damage, worsen the clinical outcomes, and persist as an evolving pathological hallmark of what we now describe as chronic TBI. Neuroinflammation in the acute stage of TBI mobilizes immune cells, astrocytes, cytokines, and chemokines toward the site of injury to mount an antiinflammatory response against brain damage; however, in the chronic stage, excess activation of these inflammatory elements contributes to an “inflamed” brain microenvironment that principally contributes to secondary cell death in TBI. Modulating these inflammatory cells by changing their phenotype from proinflammatory to antiinflammatory would likely promote therapeutic effects on TBI. Because neuroinflammation occurs at

  7. Making waves in the brain: What are oscillations, and why modulating them makes sense for brain injury

    Directory of Open Access Journals (Sweden)

    Aleksandr ePevzner

    2016-04-01

    Full Text Available Traumatic brain injury (TBI can result in persistent cognitive, behavioral and emotional deficits. However, the vast majority of patients are not chronically hospitalized; rather they have to manage their disabilities once they are discharged to home. Promoting recovery to pre-injury level is important from a patient care as well as a societal perspective. Electrical neuromodulation is one approach that has shown promise in alleviating symptoms associated with neurological disorders such as in Parkinson’s disease and epilepsy. Consistent with this perspective, both animal and clinical studies have revealed that TBI alters physiological oscillatory rhythms. More recently several studies demonstrated that low frequency stimulation improves cognitive outcome in models of TBI. Specifically, stimulation of the septohippocampal circuit in the theta frequency entrained oscillations and improved spatial learning following traumatic brain injury. In order to evaluate the potential of electrical deep brain stimulation for clinical translation we review the basic neurophysiology of oscillations, their role in cognition and how they are changed post-TBI. Furthermore, we highlight several factors for future pre-clinical and clinical studies to consider, with the hope that it will promote a hypothesis driven approach to subsequent experimental designs and ultimately successful translation to improve outcome in patients with TBI.

  8. Characterization of pressure distribution in penetrating traumatic brain injuries.

    Science.gov (United States)

    Davidsson, Johan; Risling, Mårten

    2015-01-01

    Severe impacts to the head commonly lead to localized brain damage. Such impacts may also give rise to temporary pressure changes that produce secondary injuries in brain volumes distal to the impact site. Monitoring pressure changes in a clinical setting is difficult; detailed studies into the effect of pressure changes in the brain call for the development and use of animal models. The aim of this study is to characterize the pressure distribution in an animal model of penetrating traumatic brain injuries (pTBI). This data may be used to validate mathematical models of the animal model and to facilitate correlation studies between pressure changes and pathology. Pressure changes were measured in rat brains while subjected to pTBI for a variety of different probe velocities and shapes; pointy, blunt, and flat. Experiments on ballistic gel samples were carried out to study the formation of any temporary cavities. In addition, pressure recordings from the gel experiments were compared to values recorded in the animal experiments. The pTBI generated short lasting pressure changes in the brain tissue; the pressure in the contralateral ventricle (CLV) increased to 8 bar followed by a drop to 0.4 bar when applying flat probes. The pressure changes in the periphery of the probe, in the Cisterna Magna, and the spinal canal, were significantly less than those recorded in the CLV or the vicinity of the skull base. High-speed videos of the gel samples revealed the formation of spherically shaped cavities when flat and spherical probes were applied. Pressure changes in the gel were similar to those recorded in the animals, although amplitudes were lower in the gel samples. We concluded cavity expansion rate rather than cavity size correlated with pressure changes in the gel or brain secondary to probe impact. The new data can serve as validation data for finite element models of the trauma model and the animal and to correlate physical measurements with secondary injuries

  9. The complexity of biomechanics causing primary blast-induced traumatic brain injury: a review of potential mechanisms.

    Directory of Open Access Journals (Sweden)

    Amy eCourtney

    2015-10-01

    Full Text Available Primary blast induced traumatic brain injury (bTBI is a prevalent battlefield injury in recent conflicts, yet biomechanical mechanisms of bTBI remain unclear. Elucidating specific biomechanical mechanisms is essential to developing animal models for testing candidate therapies and for improving protective equipment. Three hypothetical mechanisms of primary bTBI have received the most attention. Because translational and rotational head accelerations are primary contributors to TBI from non-penetrating blunt force head trauma, the acceleration hypothesis suggests that blast-induced head accelerations may cause bTBI. The hypothesis of direct cranial transmission suggests that a pressure transient traverses the skull into the brain and directly injures brain tissue. The thoracic hypothesis of bTBI suggests that some combination of a pressure transient reaching the brain via the thorax and a vagally mediated reflex result in bTBI. These three mechanisms may not be mutually exclusive, and quantifying exposure thresholds (for blasts of a given duration is essential for determining which mechanisms may be contributing for a level of blast exposure. Progress has been hindered by experimental designs which do not effectively expose animal models to a single mechanism and by over-reliance on poorly validated computational models. The path forward should be predictive validation of computational models by quantitative confirmation with blast experiments in animal models, human cadavers, and biofidelic human surrogates over a range of relevant blast magnitudes and durations coupled with experimental designs which isolate a single injury mechanism.

  10. Mild traumatic brain injury with social defeat stress alters anxiety, contextual fear extinction, and limbic monoamines in adult rats

    OpenAIRE

    Daniel eDavies; Dawne eOlson; Danielle eMeyer; Jamie eScholl; Michael eWatt; Pasquale eManzerra; Kenneth eRenner; Forster, Gina L.

    2016-01-01

    Mild traumatic brain injury (mTBI) produces symptoms similar to those typifying posttraumatic stress disorder (PTSD) in humans. We sought to determine whether a rodent model of stress concurrent with mTBI produces characteristics of PTSD such as impaired contextual fear extinction, while also examining concurrent alterations to limbic monoamine activity in brain regions relevant to fear and anxiety states. Male rats were exposed to social stress or control conditions immediately prior to mT...

  11. Determining client cognitive status following mild traumatic brain injury.

    Science.gov (United States)

    Hobson, Elizabeth; Lannin, Natasha A; Taylor, Amelia; Farquhar, Michelle; Morarty, Jacqui; Unsworth, Carolyn

    2016-03-01

    Background People with mild traumatic brain injury (mTBI) commonly experience cognitive impairments. Occupational therapists working in acute general hospitals in Australia routinely access client Glasgow Coma Scale (GCS) scores, and assess cognitive status using standardized tools and by observing basic activity of daily living (ADL) performance. However, limited evidence exists to identify the best assessment(s) to determine client cognitive status. Aim/objectives To determine whether cognitive status assessed by GCS score and the Cognistat are predictive of basic ADL performance among clients with mTBI in an acute general hospital and make inferences concerning the clinical utility of these assessment tools. Material and methods Retrospective analysis of medical record data on demographics, Cognistat, GCS, and modified Barthel Index (MBI) using descriptive statistics, chi-square tests and linear regression. Results Data analysis of 166 participants demonstrated that no associations exist between GCS and Cognistat scores, or Cognistat scores and MBI dependency level. The presence of co-morbid multi-trauma injuries and length of stay were the only variables that significantly predicted MBI dependency level. Conclusion and significance While the MBI scores are of value in identifying clients with difficulty in basic ADLs, Cognistat and GCS scores are of limited use in differentiating client levels of cognitive impairment and the authors caution against the routine administration of the Cognistat following mTBI. Further research is required to identify more suitable assessments for use with a mTBI population. PMID:26458152

  12. Risk Factors Analysis on Traumatic Brain Injury Prognosis

    Institute of Scientific and Technical Information of China (English)

    Xiao-dong Qu; Resha Shrestha; Mao-de Wang

    2011-01-01

    To investigate the independent risk factors of traumatic brain injury (TBI) prognosis.Methods A retrospective analysis was performed in 885 hospitalized TEl patients from January 1,2003 to January 1, 2010 in the First Affiliated Hospital of Medical College of Xi' an Jiaotong University. Single-factor and logistic regression analysis were conducted to evaluate the association of different variables with TBI outcome.Results The single-factor analysis revealed significant association between several variables and TEl outcome, including age (P=0.044 for the age group 40-60, P<0.001 for the age group ≥60), complications (P<0.001), cerebrospinal fluid leakage (P<0.001), Glasgow Coma Scale (GCS) (P<0.001), pupillary light reflex (P<0.001), shock (P<0.001), associated extra-cranial lesions (P=0.01), subdural hematoma (P<0.001), cerebral contusion (P<0.001), diffuse axonal injury (P<0.001), and subarachnoid hemorrhage (P<0.001), suggesting the influence of those factors on the prognosis of TBI. Furthermore, logistic regression analysis identified age, GCS score, pupillary light reflex, subdural hematoma, and subarachnoid hemorrhage as independent risk factors of TEl prognosis.Conclusion Age, GCS score, papillary light reflex, subdural hematoma, and subarachnoid hemorrhage may be risk factors influencing the prognosis of TEl. Paying attention to those factors might improve the outcome of TBI in clinical treatment.

  13. A model for traumatic brain injury using laser induced shockwaves

    Science.gov (United States)

    Selfridge, A.; Preece, D.; Gomez, V.; Shi, L. Z.; Berns, M. W.

    2015-08-01

    Traumatic brain injury (TBI) represents a major treatment challenge in both civilian and military medicine; on the cellular level, its mechanisms are poorly understood. As a method to study the dysfunctional repair mechanisms following injury, laser induced shock waves (LIS) are a useful way to create highly precise, well characterized mechanical forces. We present a simple model for TBI using laser induced shock waves as a model for damage. Our objective is to develop an understanding of the processes responsible for neuronal death, the ways in which we can manipulate these processes to improve cell survival and repair, and the importance of these processes at different levels of biological organization. The physics of shock wave creation has been modeled and can be used to calculate forces acting on individual neurons. By ensuring that the impulse is in the same regime as that occurring in practical TBI, the LIS model can ensure that in vitro conditions and damage are similar to those experienced in TBI. This model will allow for the study of the biochemical response of neurons to mechanical stresses, and can be combined with microfluidic systems for cell growth in order to better isolate areas of damage.

  14. Cyclosporine Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy.

    Science.gov (United States)

    Dixon, C Edward; Bramlett, Helen M; Dietrich, W Dalton; Shear, Deborah A; Yan, Hong Q; Deng-Bryant, Ying; Mondello, Stefania; Wang, Kevin K W; Hayes, Ronald L; Empey, Philip E; Povlishock, John T; Tortella, Frank C; Kochanek, Patrick M

    2016-03-15

    Operation Brain Trauma Therapy (OBTT) is a consortium of investigators using multiple pre-clinical models of traumatic brain injury (TBI) to bring acute therapies to clinical trials. To screen therapies, we used three rat models (parasagittal fluid percussion injury [FPI], controlled cortical impact [CCI], and penetrating ballistic-like brain injury [PBBI]). We report results of the third therapy (cyclosporin-A; cyclosporine; [CsA]) tested by OBTT. At each site, rats were randomized to treatment with an identical regimen (TBI + vehicle, TBI + CsA [10 mg/kg], or TBI + CsA [20 mg/kg] given intravenously at 15 min and 24 h after injury, and sham). We assessed motor and Morris water maze (MWM) tasks over 3 weeks after TBI and lesion volume and hemispheric tissue loss at 21 days. In FPI, CsA (10 mg/kg) produced histological protection, but 20 mg/kg worsened working memory. In CCI, CsA (20 mg/kg) impaired MWM performance; surprisingly, neither dose showed benefit on any outcome. After PBBI, neither dose produced benefit on any outcome, and mortality was increased (20 mg/kg) partly caused by the solvent vehicle. In OBTT, CsA produced complex effects with histological protection at the lowest dose in the least severe model (FPI), but only deleterious effects as model severity increased (CCI and PBBI). Biomarker assessments included measurements of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) in blood at 4 or 24 h after injury. No positive treatment effects were seen on biomarker levels in any of the models, whereas significant increases in 24 h UCH-L1 levels were seen with CsA (20 mg/kg) after CCI and 24 h GFAP levels in both CsA treated groups in the PBBI model. Lack of behavioral protection in any model, indicators of toxicity, and a narrow therapeutic index reduce enthusiasm for clinical translation. PMID:26671075

  15. Mild fluid percussion injury in mice produces evolving selective axonal pathology and cognitive deficits relevant to human brain injury.

    Science.gov (United States)

    Spain, Aisling; Daumas, Stephanie; Lifshitz, Jonathan; Rhodes, Jonathan; Andrews, Peter J D; Horsburgh, Karen; Fowler, Jill H

    2010-08-01

    Mild traumatic brain injury (TBI) accounts for up to 80% of clinical TBI and can result in cognitive impairment and white matter damage that may develop and persist over several years. Clinically relevant models of mild TBI for investigation of neurobiological changes and the development of therapeutic strategies are poorly developed. In this study we investigated the temporal profile of axonal and somal injury that may contribute to cognitive impairments in a mouse model of mild TBI. Neuronal perikaryal damage (hematoxylin and eosin and Fluoro-Jade C), myelin integrity (myelin basic protein and myelin-associated glycoprotein), and axonal damage (amyloid precursor protein), were evaluated by immunohistochemistry at 4 h, 24 h, 72 h, 4 weeks, and 6 weeks after mild lateral fluid percussion brain injury (0.9 atm; righting time 167 +/- 15 sec). At 3 weeks post-injury spatial reference learning and memory were tested in the Morris water maze (MWM). Levels of damage to neuronal cell bodies were comparable in the brain-injured and sham groups. Myelin integrity was minimally altered following injury. Clear alterations in axonal damage were observed at various time points after injury. Axonal damage was localized to the cingulum at 4 h post-injury. At 4 and 6 weeks post-injury, axonal damage was evident in the external capsule, and was seen at 6 weeks in the dorsal thalamic nuclei. At 3 weeks post-injury, injured mice showed an impaired ability to learn the water maze task, suggesting injury-induced alterations in search strategy learning. The evolving localization of axonal damage points to ongoing degeneration after injury that is concomitant with a deficit in learning. PMID:20528171

  16. Estrogen provides neuroprotection against brain edema and blood brain barrier disruption through both estrogen receptors α and β following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Vida Naderi

    2015-02-01

    Full Text Available Objective(s:Estrogen (E2 has neuroprotective effects on blood-brain-barrier (BBB after traumatic brain injury (TBI. In order to investigate the roles of estrogen receptors (ERs in these effects, ER-α antagonist (MPP and, ER-β antagonist (PHTPP, or non-selective estrogen receptors antagonist (ICI 182780 were administered. Materials and Methods: Ovariectomized rats were divided into 10 groups, as follows: Sham, TBI, E2, oil, MPP+E2, PHTPP+E2, MPP+PHTPP+E2, ICI+E2, MPP, and DMSO. E2 (33.3 µg/Kg or oil were administered 30 min after TBI. 1 dose (150 µg/Kg of each of MPP, PHTPP, and (4 mg/kg ICI182780 was injected two times, 24 hr apart, before TBI and estrogen treatment. BBB disruption (Evans blue content and brain edema (brain water content evaluated 5 hr and 24 hr after the TBI were evaluated, respectively. Results: The results showed that E2 reduced brain edema after TBI compared to vehicle (P

  17. Effects and outcomes in civilian and military traumatic brain injury: similarities, differences, and forensic implications.

    Science.gov (United States)

    Lamberty, Greg J; Nelson, Nathaniel W; Yamada, Torrii

    2013-01-01

    Traumatic brain injury (TBI) is a prominent public health problem in both civilian and military settings. This article discusses similarities and differences in the assessment and treatment of TBI and the attendant forensic implications. Acute care and management of moderate/severe TBI tend to be similar across environments, as is the recognition of disability status in affected individuals. By contrast, an increased focus on mild TBI in recent years has resulted in a reliance on self-report and screening measures to validate the occurrence of events leading to injury. This has complicated assessment, treatment and subsequent medicolegal proceedings. The neuropsychological literature has provided significant guidance on these difficult issues, although the complexity of disability adjudication for active duty members of the military and veterans continues to pose challenges for clinicians in evaluative and treatment contexts. PMID:24105940

  18. An examination of co-occurring conditions and management of psychotropic medication use in soldiers with traumatic brain injury.

    Science.gov (United States)

    Farinde, Abimbola

    2014-01-01

    There are approximately 1.4 million cases of traumatic brain injury (TBI) per year in the United States, with about 23 000 survivors requiring hospitalization. The incidence of TBI has increased in the patient population of the Department of Defense and Veterans Healthcare Administration as a result of injuries suffered during recent military and combat operations. Within the past few years, TBI has emerged as a common form of injury in service members with a subset of patients experiencing postinjury symptoms that greatly affect their quality of life. Traumatic brain injury can occur when sudden trauma (ie, penetration blast or blunt) causes damage to the brain. Traumatic brain injury produces a cascade of potentially injurious processes that include focal contusions and cytotoxic damage. The results of TBI can include impaired physical, cognitive, emotional, and behavioral functioning, which may or may not require the initiation of pharmacological and nonpharmacological interventions when deemed appropriate. Associated outcomes of TBI include alterations in mental state at the time of injury (confusion, disorientation, slowed thinking, and alteration of consciousness). Neurological deficits include loss of balance, praxis, aphasia, change in vision that may or may not be transient. Individuals who sustain a TBI are more likely to have or developed co-occurring conditions (ie, sleep problems, headaches, depression, anxiety, and posttraumatic stress disorder) that may require the administration of multiple medications. It has been identified that veterans being discharged on central nervous system and muscular skeletal drug classes can develop addiction and experience medication misadventures. With the severity of TBI being highly variable but typically categorized as either mild, moderate, or severe, it can assist health care providers in determining which patients are more susceptible to medication misadventures compared with others. The unique development of

  19. Making Waves in the Brain: What Are Oscillations, and Why Modulating Them Makes Sense for Brain Injury.

    Science.gov (United States)

    Pevzner, Aleksandr; Izadi, Ali; Lee, Darrin J; Shahlaie, Kiarash; Gurkoff, Gene G

    2016-01-01

    Traumatic brain injury (TBI) can result in persistent cognitive, behavioral and emotional deficits. However, the vast majority of patients are not chronically hospitalized; rather they have to manage their disabilities once they are discharged to home. Promoting recovery to pre-injury level is important from a patient care as well as a societal perspective. Electrical neuromodulation is one approach that has shown promise in alleviating symptoms associated with neurological disorders such as in Parkinson's disease (PD) and epilepsy. Consistent with this perspective, both animal and clinical studies have revealed that TBI alters physiological oscillatory rhythms. More recently several studies demonstrated that low frequency stimulation improves cognitive outcome in models of TBI. Specifically, stimulation of the septohippocampal circuit in the theta frequency entrained oscillations and improved spatial learning following TBI. In order to evaluate the potential of electrical deep brain stimulation for clinical translation we review the basic neurophysiology of oscillations, their role in cognition and how they are changed post-TBI. Furthermore, we highlight several factors for future pre-clinical and clinical studies to consider, with the hope that it will promote a hypothesis driven approach to subsequent experimental designs and ultimately successful translation to improve outcome in patients with TBI. PMID:27092062

  20. Aggregated n-of-1 trials of central nervous system stimulants versus placebo for paediatric traumatic brain injury – a pilot study

    OpenAIRE

    Nikles, Catherine J; McKinlay, Lynne; Mitchell, Geoffrey K; Carmont, Sue-Ann S; Senior, Hugh E; Waugh, Mary-Clare A; Epps, Adrienne; Schluter, Philip J; Lloyd, Owen T

    2014-01-01

    Background In 2006 there were 432,700 people in Australia who had acquired brain injury (ABI) with some limitation of activities; 90% of these were traumatic brain injuries (TBIs) and nearly a third sustained injury below age 15 years. One to four years post injury, 20% to 46% of children with traumatic brain injury (TBI) have clinically significant disorders of attention. There is controversy as to whether central nervous system (CNS) stimulants can be an effective method of treating these. ...

  1. Temporal assessment of nanoparticle accumulation after experimental brain injury: Effect of particle size

    Science.gov (United States)

    Bharadwaj, Vimala N.; Lifshitz, Jonathan; Adelson, P. David; Kodibagkar, Vikram D.; Stabenfeldt, Sarah E.

    2016-01-01

    Nanoparticle (NP) based therapeutic and theranostic agents have been developed for various diseases, yet application to neural disease/injury is restricted by the blood-brain-barrier (BBB). Traumatic brain injury (TBI) results in a host of pathological alterations, including transient breakdown of the BBB, thus opening a window for NP delivery to the injured brain tissue. This study focused on investigating the spatiotemporal accumulation of different sized NPs after TBI. Specifically, animal cohorts sustaining a controlled cortical impact injury received an intravenous injection of PEGylated NP cocktail (20, 40, 100, and 500 nm, each with a unique fluorophore) immediately (0 h), 2 h, 5 h, 12 h, or 23 h after injury. NPs were allowed to circulate for 1 h before perfusion and brain harvest. Confocal microscopy demonstrated peak NP accumulation within the injury penumbra 1 h post-injury. An inverse relationship was found between NP size and their continued accumulation within the penumbra. NP accumulation preferentially occurred in the primary motor and somatosensory areas of the injury penumbra as compared to the parietal association and visual area. Thus, we characterized the accumulation of particles up to 500 nm at different times acutely after injury, indicating the potential of NP-based TBI theranostics in the acute period after injury. PMID:27444615

  2. Sex-related differences in striatal dopaminergic system after traumatic brain injury.

    Science.gov (United States)

    Xu, Xiupeng; Cao, Shengwu; Chao, Honglu; Liu, Yinlong; Ji, Jing

    2016-06-01

    Several studies have demonstrated alterations in the dopamine (DA) system after traumatic brain injury (TBI). Additionally, the existence of significant sex-related differences in the dopaminergic system has long been recognized. Accordingly, the purpose of the present study was to investigate whether TBI would differentially alter, in female and male mice, the expression and the function of the striatal vesicular monoamine transporter-2 (VMAT-2), an important DA transporter. After controlled cortical impact (CCI) injury, female mice showed significantly lower striatal DA concentrations and K(+)-evoked DA output. By contrast, no significant sex-related differences were observed in the mRNA and protein levels of striatal dopamine transporter (DAT) and VMAT-2 and the methamphetamine (MA)-evoked DA output. These results demonstrated clear sex-related differences in striatal VMAT-2 function in response to TBI and suggested that female mice may be more sensitive to the TBI-induced inhibition of the VMAT-2 function, as indicated by the greater degree of deficits observed when the VMAT-2 DA-storage function was inhibited by TBI. Moreover, the TBI-induced suppression of locomotion was more pronounced than female mice. Such findings highlight the need for sex-specific considerations when examining differences among brain injury conditions. PMID:27210290

  3. Differential effects of glucocorticoid and mineralocorticoid antagonism on anxiety behavior in mild traumatic brain injury.

    Science.gov (United States)

    Fox, Laura C; Davies, Daniel R; Scholl, Jamie L; Watt, Michael J; Forster, Gina L

    2016-10-01

    Mild traumatic brain injuries (TBIs) comprise three-quarters of all TBIs occurring in the United States annually, and psychological symptoms arising from them can last years after injury. One commonly observed symptom following mild TBI is generalized anxiety. Most mild TBIs happen in stressful situations (sports, war, domestic violence, etc.) when glucocorticoids are elevated in the brain at the time of impact, and glucocorticoids have negative effects on neuronal health following TBI. Therefore, blocking glucocorticoid receptors might prevent emergence of anxiety symptoms post-injury. Adult male rats received mifepristone (20mg/kg) or spironolactone (50mg/kg) to block glucocorticoid and mineralocorticoid receptors, respectively, 40min prior to being exposed to acute social defeat stress followed immediately by mild TBI. In defeated rats with concomitant mild TBI, mifepristone restored time spent in the open arms of an elevated plus maze to control levels, demonstrating for the first time that glucocorticoid receptors play a critical role in the development of anxiety after mild TBI. Future treatments could target these receptors, alleviating anxiety as a major side effect in victims of mild TBI sustained in stressful situations. PMID:27363926

  4. Marrow stromal cells administrated intracisternally to rats after traumatic brain injury migrate into the brain and improve neurological function

    Institute of Scientific and Technical Information of China (English)

    胡德志; 周良辅; 朱剑虹

    2004-01-01

    @@ Marrow stromal cells(MSCs) have been reported to transplant into injured brain via intravenous or intraarterial or direct intracerebral administration.1-3 In the present study, we observed that MSCs migrated into the brain, survived and diffeneriated into neural cells after they were injected into the cisterna magna of rats, and that the behavior of the rats after traumatic brain injury (TBI) was improved.

  5. Mouse Brain PSA-NCAM Levels Are Altered by Graded-Controlled Cortical Impact Injury

    Directory of Open Access Journals (Sweden)

    Craig S. Budinich

    2012-01-01

    Full Text Available Traumatic brain injury (TBI is a worldwide endemic that results in unacceptably high morbidity and mortality. Secondary injury processes following primary injury are composed of intricate interactions between assorted molecules that ultimately dictate the degree of longer-term neurological deficits. One comparatively unexplored molecule that may contribute to exacerbation of injury or enhancement of recovery is the posttranslationally modified polysialic acid form of neural cell adhesion molecule, PSA-NCAM. This molecule is a critical modulator of central nervous system plasticity and reorganization after injury. In this study, we used controlled cortical impact (CCI to produce moderate or severe TBI in the mouse. Immunoblotting and immunohistochemical analysis were used to track the early (2, 24, and 48 hour and late (1 and 3 week time course and location of changes in the levels of PSA-NCAM after TBI. Variable and heterogeneous short- and long-term increases or decreases in expression were found. In general, alterations in PSA-NCAM levels were seen in the cerebral cortex immediately after injury, and these reductions persisted in brain regions distal to the primary injury site, especially after severe injury. This information provides a starting point to dissect the role of PSA-NCAM in TBI-related pathology and recovery.

  6. Early initiation of prophylactic heparin in severe traumatic brain injury is associated with accelerated improvement on brain imaging

    Directory of Open Access Journals (Sweden)

    Luke Kim

    2014-01-01

    Full Text Available Background: Venous thromboembolic prophylaxis (VTEp is often delayed following traumatic brain injury (TBI, yet animal data suggest that it may reduce cerebral inflammation and improve cognitive recovery. We hypothesized that earlier VTEp initiation in severe TBI patients would result in more rapid neurologic recovery and reduced progression of brain injury on radiologic imaging. Study Design: Medical charts of severe TBI patients admitted to a level 1 trauma center in 2009-2010 were queried for admission Glasgow Coma Scale (GCS, head Abbreviated Injury Scale, Injury Severity Score (ISS, osmotherapy use, emergency neurosurgery, and delay to VTEp initiation. Progression (+1 = better, 0 = no change, −1 = worse of brain injury on head CTs and neurologic exam (by bedside MD, nurse was collected from patient charts. Head CT scan Marshall scores were calculated from the initial head CT results. Results: A total of 22, 34, and 19 patients received VTEp at early (5 days time intervals, respectively. Clinical and radiologic brain injury characteristics on admission were similar among the three groups (P > 0.05, but ISS was greatest in the early group (P < 0.05. Initial head CT Marshall scores were similar in early and late groups. The slowest progression of brain injury on repeated head CT scans was in the early VTEp group up to 10 days after admission. Conclusion: Early initiation of prophylactic heparin in severe TBI is not associated with deterioration neurologic exam and may result in less progression of injury on brain imaging. Possible neuroprotective effects of heparin in humans need further investigation.

  7. Sexual Functioning, Desire, and Satisfaction in Women with TBI and Healthy Controls

    OpenAIRE

    Jenna Strizzi; Laiene Olabarrieta Landa; Monique Pappadis; Silvia Leonor Olivera; Edgar Ricardo Valdivia Tangarife; Inmaculada Fernandez Agis; Paul B. Perrin; Juan Carlos Arango-Lasprilla

    2015-01-01

    Traumatic brain injury (TBI) can substantially alter many areas of a person's life and there has been little research published regarding sexual functioning in women with TBI. Methods. A total of 58 women (29 with TBI and 29 healthy controls) from Neiva, Colombia, participated. There were no statistically significant differences between groups in sociodemographic characteristics. All 58 women completed the Sexual Quality of Life Questionnaire (SQoL), Female Sexual Functioning Index (FSFI), Se...

  8. Oxidative burst of circulating neutrophils following traumatic brain injury in human.

    Directory of Open Access Journals (Sweden)

    Yiliu Liao

    Full Text Available Besides secondary injury at the lesional site, Traumatic brain injury (TBI can cause a systemic inflammatory response, which may cause damage to initially unaffected organs and potentially further exacerbate the original injury. Here we investigated plasma levels of important inflammatory mediators, oxidative activity of circulating leukocytes, particularly focusing on neutrophils, from TBI subjects and control subjects with general trauma from 6 hours to 2 weeks following injury, comparing with values from uninjured subjects. We observed increased plasma level of inflammatory cytokines/molecules TNF-α, IL-6 and CRP, dramatically increased circulating leukocyte counts and elevated expression of TNF-α and iNOS in circulating leukocytes from TBI patients, which suggests a systemic inflammatory response following TBI. Our data further showed increased free radical production in leukocyte homogenates and elevated expression of key oxidative enzymes iNOS, COX-2 and NADPH oxidase (gp91(phox in circulating leukocytes, indicating an intense induction of oxidative burst following TBI, which is significantly greater than that in control subjects with general trauma. Furthermore, flow cytometry assay proved neutrophils as the largest population in circulation after TBI and showed significantly up-regulated oxidative activity and suppressed phagocytosis rate for circulating neutrophils following brain trauma. It suggests that the highly activated neutrophils might play an important role in the secondary damage, even outside the injured brain. Taken together, the potent systemic inflammatory response induced by TBI, especially the intensively increase oxidative activity of circulating leukocytes, mainly neutrophils, may lead to a systemic damage, dysfunction/damage of bystander tissues/organs and even further exacerbate secondary local damage. Controlling these pathophysiological processes may be a promising therapeutic strategy and will protect unaffected

  9. The incidence of critical-illness-related-corticosteroid-insufficiency is associated with severity of traumatic brain injury in adult rats.

    Science.gov (United States)

    Chen, Xin; Zhao, Zilong; Chai, Yan; Luo, Lanlan; Jiang, Rongcai; Zhang, Jianning

    2014-07-15

    Traumatic brain injury (TBI) causes deleterious critical-illness-related-corticosteroid-insufficiency (CIRCI), leading to high mortality and morbidity. However, the incidence of CIRCI following different TBI severities is not fully defined. This study was designed to investigate mechanistically the effects of injury severity on corticosteroid response and the development of CIRCI in a rat model of experimentally controlled TBI. Adult male Wistar rats were randomly assigned to sham, mild injury, moderate injury or severe injury groups. TBI was induced using a fluid percussion device at magnitudes of 1.2-1.4 atm (mild injury), 2.0-2.2 atm (moderate injury), and 3.2-3.5 atm (severe injury). We first assessed the effects of injury severity on the mortality and CIRCI occurrence using electrical stimulation test to assess corticosteroid response. We also investigated a series of pathological changes in the hypothalamus, especially in the paraventricular nuclei (PVN), among different injury group including: apoptosis detected by a TUNEL assay, blood-brain-barrier (BBB) permeability assessed by brain water content and Evans Blue extravasation into the cerebral parenchyma, and BBB integrity evaluated by CD31 and Claudin-5 expression and transmission electron microscopy. We made the following observations. First, 6.7% of mild-injured, 13.3% of moderate-injured, and 68.8% of severe-injured rats developed CIRCI, with a peak incidence on post-injury day 7. Second, TBI-induced CIRCI is closely correlated with injury severity. As the injury severity rises both the incidence of CIRCI and mortality surge; Third, increased level of injury severity reduces the expression of endothelial tight junction protein, aggravate BBB permeability and exacerbate the ensuing neural apoptosis in the PVN of hypothalamus. These findings indicate that increased severity of TBI aggravate the incidence of CIRCI by causing damage to tight junctions of vascular endothelial cells and increasing neuronal

  10. A voxel-based lesion study on facial emotion recognition after penetrating brain injury

    OpenAIRE

    Dal Monte, Olga; Krueger, Frank; Solomon, Jeffrey M.; Schintu, Selene; Knutson, Kristine M.; Strenziok, Maren; Pardini, Matteo; Leopold, Anne; Raymont, Vanessa; Grafman, Jordan

    2012-01-01

    The ability to read emotions in the face of another person is an important social skill that can be impaired in subjects with traumatic brain injury (TBI). To determine the brain regions that modulate facial emotion recognition, we conducted a whole-brain analysis using a well-validated facial emotion recognition task and voxel-based lesion symptom mapping (VLSM) in a large sample of patients with focal penetrating TBIs (pTBIs). Our results revealed that individuals with pTBI performed signif...

  11. Sodium butyrate exerts neuroprotective effects by restoring the blood-brain barrier in traumatic brain injury mice.

    Science.gov (United States)

    Li, Haixiao; Sun, Jing; Wang, Fangyan; Ding, Guoqiang; Chen, Wenqian; Fang, Renchi; Yao, Ye; Pang, Mengqi; Lu, Zhong-Qiu; Liu, Jiaming

    2016-07-01

    Sodium butyrate (SB) has been widely used to treat cerebral diseases. The aim of the present study is to examine the neuroprotective effects of SB on early TBI in mice and to explore the underlying mechanisms of these effects. TBI was induced using a modified weight-drop method. Neurological deficits were evaluated according to the neurological severity score (NSS), brain oedema was measured by brain water content, and blood-brain barrier (BBB) permeability was evaluated by Evans blue (EB) dye extravasation. Neuronal injury was assessed by hematoxylin and eosin (H&E) staining and Fluoro-Jade C staining. The expression of tight junction-associated proteins, such as occludin and zonula occludens-1 (ZO-1), was analysed by western blotting and immunofluorescence. Our results showed that mice subjected to TBI exhibited worsened NSS, brain oedema, neuronal damage and BBB permeability. However, these were all attenuated by SB. Moreover, SB reversed the decrease in occludin and ZO-1 expression induced by TBI. These findings suggest that SB might attenuate neurological deficits, brain oedema, neuronal change and BBB damage, as well as increase occludin and ZO-1 expression in the brain to protect against TBI. The protective effect of SB may be correlated with restoring the BBB following its impairment. PMID:27017959

  12. Endogenous Nitric-Oxide Synthase Inhibitor ADMA after Acute Brain Injury

    Directory of Open Access Journals (Sweden)

    Carla S. Jung

    2014-03-01

    Full Text Available Previous results on nitric oxide (NO metabolism after traumatic brain injury (TBI show variations in NO availability and controversial effects of exogenous nitric oxide synthase (NOS-inhibitors. Furthermore, elevated levels of the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA were reported in cerebro-spinal fluid (CSF after traumatic subarachnoid hemorrhage (SAH. Therefore, we examined whether ADMA and the enzymes involved in NO- and ADMA-metabolism are expressed in brain tissue after TBI and if time-dependent changes occur. TBI was induced by controlled cortical impact injury (CCII and neurological performance was monitored. Expression of NOS, ADMA, dimethylarginine dimethylaminohydrolases (DDAH and protein-arginine methyltransferase 1 (PRMT1 was determined by immunostaining in different brain regions and at various time-points after CCII. ADMA and PRMT1 expression decreased in all animals after TBI compared to the control group, while DDAH1 and DDAH2 expression increased in comparison to controls. Furthermore, perilesionally ADMA is positively correlated with neuroscore performance, while DDAH1 and DDAH2 are negatively correlated. ADMA and its metabolizing enzymes show significant temporal changes after TBI and may be new targets in TBI treatment.

  13. Patients' and relatives' experience of difficulties following severe traumatic brain injury: the sub-acute stage

    DEFF Research Database (Denmark)

    Holm, Sara; Schönberger, Michael; Poulsen, Ingrid;

    2008-01-01

    The present study aimed to (1) identify the difficulties most frequently reported by individuals with severe traumatic brain injury (TBI) at the time of discharge from a sub-acute rehabilitation brain injury unit as well as difficulties reported by their relatives, (2) compare patients' and...... relatives' reports of patient difficulties, and (3) explore the role of injury severity, disability and other factors on subjective experience of difficulties. The primary measure was the European Brain Injury Questionnaire (EBIQ) administered to patients and to one of their close relatives at discharge...

  14. Pain and sleep in post-concussion/mild traumatic brain injury.

    Science.gov (United States)

    Lavigne, Gilles; Khoury, Samar; Chauny, Jean-Marc; Desautels, Alex

    2015-04-01

    Concussion after a force to the head is called mild traumatic brain injury (mTBI). Approximately 1 in 5 patients with mTBI will develop chronic pain (headache and widespread pain, possibly of central origin) and/or sleep problems (insomnia, disordered breathing, periodic limb movements). However, the predisposing mechanisms for chronic pain in patients with mTBI are unknown. Mild traumatic brain injury is a rare model to prospectively assess the risk factors and mechanisms for pain chronification from the injury onset in the absence of pretrauma comorbidity or medication. In the acute phase, headaches and sleep disturbances seem to predict the poorest long-term cognitive and mood outcomes. Although recent studies suggest that certain brain biomarkers and mood alterations (eg, anxiety, depression) contribute, the causality of chronic pain remains unclear. In mTBI patients with pain, poor sleep quality was correlated with fast beta and gamma electroencephalographic activity in frontal, central, and occipital electroencephalographic (EEG) derivations in all sleep stages. Sleep recuperative function seems to be disturbed by persistent wake EEG activity, corroborating patient complaints such as feeling awake when asleep. Pain and sleep management in mTBI is not yet evidence-based. Treatments include cognitive behavioral and light therapies, medications, and continuous positive airway pressure (CPAP) or oral appliances for disordered sleep breathing. Customized approaches are indicated for mTBI, pain, and sleep complaints. Further studies in pediatric, sport, and transportation populations are needed to prevent TBI chronification. Improvements are emerging in biomarker sensitivity and specificity and management strategies for TBI, pain, and sleep comorbidities. PMID:25789439

  15. Traumatic brain injury: an overview of pathobiology with emphasis on military populations

    OpenAIRE

    Cernak, Ibolja; Linda J Noble-Haeusslein

    2010-01-01

    This review considers the pathobiology of non-impact blast-induced neurotrauma (BINT). The pathobiology of traumatic brain injury (TBI) has been historically studied in experimental models mimicking features seen in the civilian population. These brain injuries are characterized by primary damage to both gray and white matter and subsequent evolution of secondary pathogenic events at the cellular, biochemical, and molecular levels, which collectively mediate widespread neurodegeneration. An e...

  16. Blocking leukotriene synthesis attenuates the pathophysiology of traumatic brain injury and associated cognitive deficits.

    Science.gov (United States)

    Corser-Jensen, Chelsea E; Goodell, Dayton J; Freund, Ronald K; Serbedzija, Predrag; Murphy, Robert C; Farias, Santiago E; Dell'Acqua, Mark L; Frey, Lauren C; Serkova, Natalie; Heidenreich, Kim A

    2014-06-01

    Neuroinflammation is a component of secondary injury following traumatic brain injury (TBI) that can persist beyond the acute phase. Leukotrienes are potent, pro-inflammatory lipid mediators generated from membrane phospholipids. In the absence of injury, leukotrienes are undetectable in the brain, but after trauma they are rapidly synthesized by a transcellular event involving infiltrating neutrophils and endogenous brain cells. Here, we investigate the efficacy of MK-886, an inhibitor of 5-lipoxygenase activating protein (FLAP), in blocking leukotriene synthesis, secondary brain damage, synaptic dysfunction, and cognitive impairments after TBI. Male Sprague Dawley rats (9-11weeks) received either MK-886 or vehicle after they were subjected to unilateral moderate fluid percussion injury (FPI) to assess the potential clinical use of FLAP inhibitors for TBI. MK-886 was also administered before FPI to determine the preventative potential of FLAP inhibitors. MK-886 given before or after injury significantly blocked the production of leukotrienes, measured by reverse-phase liquid chromatography coupled to tandem mass spectrometry (RP LC-MS/MS), and brain edema, measured by T2-weighted magnetic resonance imaging (MRI). MK-886 significantly attenuated blood-brain barrier disruption in the CA1 hippocampal region and deficits in long-term potentiation (LTP) at CA1 hippocampal synapses. The prevention of FPI-induced synaptic dysfunction by MK-886 was accompanied by fewer deficits in post-injury spatial learning and memory performance in the radial arm water maze (RAWM). These results indicate that leukotrienes contribute significantly to secondary brain injury and subsequent cognitive deficits. FLAP inhibitors represent a novel anti-inflammatory approach for treating human TBI that is feasible for both intervention and prevention of brain injury and neurologic deficits. PMID:24681156

  17. Mean cortical curvature reflects cytoarchitecture restructuring in mild traumatic brain injury

    OpenAIRE

    King, Jace B.; Lopez-Larson, Melissa P.; Yurgelun-Todd, Deborah A.

    2016-01-01

    In the United States alone, the number of persons living with the enduring consequences of traumatic brain injuries is estimated to be between 3.2 and 5 million. This number does not include individuals serving in the United States military or seeking care at Veterans Affairs hospitals. The importance of understanding the neurobiological consequences of mild traumatic brain injury (mTBI) has increased with the return of veterans from conflicts overseas, many of who have suffered this type of ...

  18. Functional oral intake and time to reach unrestricted dieting for patients with traumatic brain injury

    DEFF Research Database (Denmark)

    Hansen, T.S.; Engberg, Anders; Larsen, K.

    2008-01-01

    OBJECTIVES: To investigate the status of functional oral intake for patients with severe traumatic brain injury (TBI) and time to return to unrestricted dieting; and to investigate whether severity of brain injury is a predictor for unrestricted dieting. DESIGN: Observational retrospective cohort...... planning rehabilitation, giving information to patients and relatives, and designing efficacy studies of facial oral tract therapy, which are highly recommended Udgivelsesdato: 2008/8...

  19. The neuroprotective effect of salubrinal in a mouse model of traumatic brain injury.

    Science.gov (United States)

    Rubovitch, Vardit; Barak, Shani; Rachmany, Lital; Goldstein, Renana Baratz; Zilberstein, Yael; Pick, Chaim G

    2015-03-01

    We have previously reported that mild traumatic brain injury (mTBI) induced cognitive deficits as well as apoptotic changes in the brains of mice. Apoptosis may be caused by severe, prolonged accumulation of misfolded proteins, and protein aggregation in the endoplasmic reticulum (ER stress). In an additional study, we have reported that mTBI activated the pro-apoptotic arm of the integrated stress response (ISR). The main goal of the present study was to test the involvement of the adaptive eIF2α/ATF4 pathway in mTBI-affected brains. Head injury was induced with a noninvasive, closed-head weight drop (30 g) to ICR mice. Salubrinal, the selective phosphatase inhibitor of p-eIF2α, was injected immediately and 24 h after mTBI (1 mg/kg, ip). Y-maze and novel object recognition tests to assess spatial and visual memories, respectively, were conducted either 7 or 30 days post-trauma. Salubrinal administration significantly improved memory deficits following mTBI. Slaubrinal also prevented the elevation of degenerating neurons and the reduction of mature neurons in the cortex (as seen by immunofluorescent staining with Fluoro-Jade-B and NeuN antibodies, 72 h and 1 week post-mTBI, respectively). Western blot analysis revealed that salubrinal prevented the significant reduction in eIF2α and ATF4 phosphorylation in mTBI brains 72 h post-injury. Immunofluorescence staining revealed that although the reduction in p-eIF2α did not reach significance, salubrinal administration elevated it dramatically. Our results show that targeting the translational/adaptive arm of the ISR with salubrinal may serve as a therapeutic strategy for brain damage. PMID:25582550

  20. Willingness to Favor Aggressive Care and Live with Disability Following Severe Traumatic Brain Injury: A Survey of Healthy Young Adults in Hawai‘i

    OpenAIRE

    Nakagawa, Kazuma; Obana, Kyle K

    2014-01-01

    Traumatic brain injury (TBI) is a major public health problem that significantly impacts young adults. Since severe TBI patients lack decision-making capacity, the providers and patient surrogates are often faced with the challenging task of deciding whether to continue with aggressive life-prolonging care or to transition to comfort-focused care with an expected outcome of natural death. The assumption is often made that aggressive care is appropriate for young patients who suffer severe TBI...

  1. Re-examination of the Controversial Coexistence of Traumatic Brain Injury and Posttraumatic Stress Disorder: Misdiagnosis and Self-Report Measures

    OpenAIRE

    Sbordone, Robert J.; Ruff, Ronald M.

    2010-01-01

    The coexistence of traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) remains a controversial issue in the literature. To address this controversy, we focused primarily on the civilian-related literature of TBI and PTSD. Some investigators have argued that individuals who had been rendered unconscious or suffered amnesia due to a TBI are unable to develop PTSD because they would be unable to consciously experience the symptoms of fear, helplessness, and horror associated wi...

  2. Mild traumatic brain injury and posttraumatic stress disorder: Investigation of visual attention in Operation Iraqi Freedom/Operation Enduring Freedom veterans

    OpenAIRE

    Kristen Barlow-Ogden, MA; William Poynter, PhD

    2012-01-01

    Mild traumatic brain injury (mTBI) and posttraumatic stress disorder (PTSD) are prevalent dual impairments in veterans returning from the wars in Iraq and Afghanistan. Attention problems are a common self-reported complaint of veterans with mTBI, but relatively few studies have investigated the types and levels of behavioral attentional deficits present in veterans with mTBI and PTSD. The purpose of this study was to compare visual attentional performance between samples of veterans with both...

  3. Experimental Models Combining TBI, Hemorrhagic Shock, and Hypoxemia.

    Science.gov (United States)

    Leung, Lai Yee; Deng-Bryant, Ying; Shear, Deborah; Tortella, Frank

    2016-01-01

    Animal models of traumatic brain injury (TBI) provide important tools for studying the pathobiology of brain trauma and for evaluating therapeutic or diagnostic targets. Incorporation of additional insults such as hemorrhagic shock (HS) and/or hypoxemia (HX) into these models more closely recreates clinical scenarios as TBI often occurs in conjunction with these systemic insults (i.e., polytrauma). We have developed a rat model of polytrauma that combines penetrating TBI, HS and HX. Following brain trauma, HX was induced by reducing the inspired oxygen while HS was induced by withdrawing blood to lower the mean arterial pressure. The physiological, histological, and behavioral aspects of this animal model have been characterized and have demonstrated exacerbating effects of systemic insults on penetrating TBI. As such, this model may facilitate the use of simultaneous assessments of multiple mechanisms and provide a platform for testing novel diagnostic and therapeutic targets. PMID:27604733

  4. Controversies in preterm brain injury.

    Science.gov (United States)

    Penn, Anna A; Gressens, Pierre; Fleiss, Bobbi; Back, Stephen A; Gallo, Vittorio

    2016-08-01

    In this review, we highlight critical unresolved questions in the etiology and mechanisms causing preterm brain injury. Involvement of neurons, glia, endogenous factors and exogenous exposures is considered. The structural and functional correlates of interrupted development and injury in the premature brain are under active investigation, with the hope that the cellular and molecular mechanisms underlying developmental abnormalities in the human preterm brain can be understood, prevented or repaired. PMID:26477300

  5. Chronic Repetitive Mild Traumatic Brain Injury Results in Reduced Cerebral Blood Flow, Axonal Injury, Gliosis, and Increased T-Tau and Tau Oligomers.

    Science.gov (United States)

    Ojo, Joseph O; Mouzon, Benoit; Algamal, Moustafa; Leary, Paige; Lynch, Cillian; Abdullah, Laila; Evans, James; Mullan, Michael; Bachmeier, Corbin; Stewart, William; Crawford, Fiona

    2016-07-01

    Exposure to repetitive mild traumatic brain injury (mTBI) is a risk factor for chronic traumatic encephalopathy, which is characterized by patchy deposition of hyperphosphorylated tau aggregates in neurons and astrocytes at the depths of cortical sulci. We developed an mTBI paradigm to explore effects of repetitive concussive-type injury over several months in mice with a human tau genetic background (hTau). Two injuries were induced in the hTau mice weekly over a period of 3 or 4 months and the effects were compared with those in noninjured sham animals. Behavioral and in vivo measures and detailed neuropathological assessments were conducted 6 months after the first injury. Our data confirm impairment in cerebral blood flow and white matter damage. This was accompanied by a 2-fold increase in total tau levels and mild increases in tau oligomers/conformers and pTau (Thr231) species in brain gray matter. There was no evidence of neurofibrillary/astroglial tangles, neuropil threads, or perivascular foci of tau immunoreactivity. There were neurobehavioral deficits (ie, disinhibition and impaired cognitive performance) in the mTBI animals. These data support the relevance of this new mTBI injury model for studying the consequences of chronic repetitive mTBI in humans, and the role of tau in TBI. PMID:27251042

  6. Dose- and Time-Dependent Neuroprotective Effects of Pycnogenol® following Traumatic Brain Injury

    OpenAIRE

    Ansari, Mubeen A.; Roberts, Kelly N.; Scheff, Stephen W.

    2013-01-01

    After traumatic brain injury (TBI), both primary and secondary injury cascades are initiated, leading to neuronal death and cognitive dysfunction. We have previously shown that the combinational bioflavonoid, Pycnogenol® (PYC), alters some secondary injury cascades and protects synaptic proteins when administered immediately following trauma. The purpose of the present study was to explore further the beneficial effects of PYC and to test whether it can be used in a more clinically relevant f...

  7. The Acute Inflammatory Response in Trauma / Hemorrhage and Traumatic Brain Injury: Current State and Emerging Prospects

    OpenAIRE

    R, Namas; A, Ghuma; L, Hermus; R, Zamora; DO Okonkwo; TR, Billiar; Y, Vodovotz

    2009-01-01

    Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury (TBI). Inflammation is a finely tuned, dynamic, highly-regulated process that is not inherently detrimental, but rather required for immune surveillance, optimal post-injury tissue repair, and rege...

  8. Working toward exposure thresholds for blast-induced traumatic brain injury: thoracic and acceleration mechanisms

    OpenAIRE

    Courtney, Michael; Courtney, Amy

    2011-01-01

    Research in blast-induced lung injury resulted in exposure thresholds that are useful in understanding and protecting humans from such injury. Because traumatic brain injury (TBI) due to blast exposure has become a prominent medical and military problem, similar thresholds should be identified that can put available research results in context and guide future research toward protecting warfighters as well as diagnosis and treatment. At least three mechanical mechanisms by which the blast wav...

  9. Is Traumatic Brain Injury Associated with Reduced Inter-Hemispheric Functional Connectivity? A Study of Large-Scale Resting State Networks following Traumatic Brain Injury.

    Science.gov (United States)

    Rigon, Arianna; Duff, Melissa C; McAuley, Edward; Kramer, Arthur F; Voss, Michelle W

    2016-06-01

    Traumatic brain injury (TBI) often has long-term debilitating sequelae in cognitive and behavioral domains. Understanding how TBI impacts functional integrity of brain networks that underlie these domains is key to guiding future approaches to TBI rehabilitation. In the current study, we investigated the differences in inter-hemispheric functional connectivity (FC) of resting state networks (RSNs) between chronic mild-to-severe TBI patients and normal comparisons (NC), focusing on two externally oriented networks (i.e., the fronto-parietal network [FPN] and the executive control network [ECN]), one internally oriented network (i.e., the default mode network [DMN]), and one somato-motor network (SMN). Seed voxel correlation analysis revealed that TBI patients displayed significantly less FC between lateralized seeds and both homologous and non-homologous regions in the opposite hemisphere for externally oriented networks but not for DMN or SMN; conversely, TBI patients showed increased FC within regions of the DMN, especially precuneus and parahippocampal gyrus. Region of interest correlation analyses confirmed the presence of significantly higher inter-hemispheric FC in NC for the FPN (p  0.05) or SMN (p > 0.05). Further analysis revealed that performance on a neuropsychological test measuring organizational skills and visuo-spatial abilities administered to the TBI group, the Rey-Osterrieth Complex Figure Test, positively correlated with FC between the right FPN and homologous regions. Our findings suggest that distinct RSNs display specific patterns of aberrant FC following TBI; this represents a step forward in the search for biomarkers useful for early diagnosis and treatment of TBI-related cognitive impairment. PMID:25719433

  10. A quantitative MRI method for imaging blood-brain barrier leakage in experimental traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Blood-brain barrier (BBB disruption is common following traumatic brain injury (TBI. Dynamic contrast enhanced (DCE MRI can longitudinally measure the transport coefficient Ktrans which reflects BBB permeability. Ktrans measurements however are not widely used in TBI research because it is generally considered to be noisy and possesses low spatial resolution. We improved spatiotemporal resolution and signal sensitivity of Ktrans MRI in rats by using a high-sensitivity surface transceiver coil. To overcome the signal drop off profile of the surface coil, a pre-scan module was used to map the flip angle (B1 field and magnetization (M0 distributions. A series of T1-weighted gradient echo images were acquired and fitted to the extended Kety model with reversible or irreversible leakage, and the best model was selected using F-statistics. We applied this method to study the rat brain one hour following controlled cortical impact (mild to moderate TBI, and observed clear depiction of the BBB damage around the impact regions, which matched that outlined by Evans Blue extravasation. Unlike the relatively uniform T2 contrast showing cerebral edema, Ktrans shows a pronounced heterogeneous spatial profile in and around the impact regions, displaying a nonlinear relationship with T2. This improved Ktrans MRI method is also compatible with the use of high-sensitivity surface coil and the high-contrast two-coil arterial spin-labeling method for cerebral blood flow measurement, enabling more comprehensive investigation of the pathophysiology in TBI.

  11. Hydrogen-rich saline protects against oxidative damage and cognitive deficits after mild traumatic brain injury.

    Science.gov (United States)

    Hou, Zonggang; Luo, Wei; Sun, Xuejun; Hao, Shuyu; Zhang, Ying; Xu, Feifan; Wang, Zhongcheng; Liu, Baiyun

    2012-09-01

    Oxidative stress is the principal factor in traumatic brain injury (TBI) that initiates events that result in protracted neuronal dysfunction and remodeling. Importantly, antioxidants can protect the brain against oxidative damage and modulate the capacity of the brain to cope with synaptic dysfunction and cognitive impairment. However, no studies have investigated the effects of hydrogen-rich saline on cognitive deficits after TBI. In the present study, rats with fluid percussion injury (FPI) were used to investigate the protective effects of hydrogen-rich saline. The results showed that hydrogen-rich saline reduced the level of malondialdehyde (MDA) and elevated the level of silent information regulator 2 (Sir2). In addition, treatment with hydrogen-rich saline, which elevated the levels of molecules associated with brain-derived neurotropic factor (BDNF)-mediated synaptic plasticity, improved cognitive performance in the Morris water maze after mild TBI. These results suggest that hydrogen-rich saline can protect the brain against the deleterious effects of mild TBI on synaptic plasticity and cognition and that hydrogen-rich saline could be an effective therapeutic strategy for patients with cognitive deficits after TBI. PMID:22742936

  12. Pituitary and/or hypothalamic dysfunction following moderate to severe traumatic brain injury: Current perspectives

    Directory of Open Access Journals (Sweden)

    Zeeshan Javed

    2015-01-01

    Full Text Available There is an increasing deliberation regarding hypopituitarism following traumatic brain injury (TBI and recent data have suggested that pituitary dysfunction is very common among survivors of patients having moderate-severe TBI which may evolve or resolve over time. Due to high prevalence of pituitary dysfunction after moderate-severe TBI and its association with increased morbidity and poor recovery and the fact that it can be easily treated with hormone replacement, it has been suggested that early detection and treatment is necessary to prevent long-term neurological consequences. The cause of pituitary dysfunction after TBI is still not well understood, but evidence suggests few possible primary and secondary causes. Results of recent studies focusing on the incidence of hypopituitarism in the acute and chronic phases after TBI are varied in terms of severity and time of occurrence. Although the literature available does not show consistent values and there is difference in study parameters and diagnostic tests used, it is clear that pituitary dysfunction is very common after moderate to severe TBI and patients should be carefully monitored. The exact timing of development cannot be predicted but has suggested regular assessment of pituitary function up to 1 year after TBI. In this narrative review, we aim to explore the current evidence available regarding the incidence of pituitary dysfunction in acute and chronic phase post-TBI and recommendations for screening and follow-up in these patients. We will also focus light over areas in this field worthy of further investigation.

  13. Loss of Microstructural Integrity in the Limbic-Subcortical Networks for Acute Symptomatic Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Yanan Zhu

    2014-01-01

    Full Text Available Previous studies reported discrepant white matter diffusivity in mild traumatic brain injury (mTBI on the base of Glasgow Coma Scale, which are unreliable for some TBI severity indicators and the frequency of missing documentation in the medical record. In the present study, we adopted the Mayo classification system for TBI severity. In this system, the mTBI is also divided into two groups as “probable and symptomatic” TBI. We aimed to investigate altered microstructural integrity in symptomatic acute TBI (<1 week by using tract-based spatial statics (TBSS approach. A total of 12 patients and 13 healthy volunteers were involved and underwent MRI scans including conventional scan, and SWI and DTI. All the patients had no visible lesions by using conventional and SWI neuroimaging techniques, while showing widespread declines in the fractional anisotropy (FA of gray matter and white matter throughout the TBSS skeleton, particularly in the limbic-subcortical structures. By contrast, symptomatic TBI patients showed no significant enhanced changes in FA compared to the healthy controls. A better understanding of the acute changes occurring following symptomatic TBI may increase our understanding of neuroplasticity and continuing degenerative change, which, in turn, may facilitate advances in management and intervention.

  14. Association of initial CT findings with quality-of-life outcomes for traumatic brain injury in children

    International Nuclear Information System (INIS)

    Traumatic brain injury (TBI) is a leading cause of acquired disability in children and adolescents. To demonstrate the association between specific findings on initial noncontrast head CT and long-term outcomes in children who have suffered TBI. This was an IRB-approved prospective study of children ages 2-17 years treated in emergency departments for TBI and who underwent a head CT as part of the initial work-up (n = 347). The change in quality of life at 12 months after injury was measured by the PedsQL scale. Children with TBI who had intracranial injuries identified on the initial head CT had a significantly lower quality-of-life scores compared to children with TBI whose initial head CTs were normal. In multivariate analysis, children whose initial head CT scans demonstrated intraventricular hemorrhage, parenchymal injury, midline shift ≥5 mm, hemorrhagic shear injury, abnormal cisterns or subdural hematomas ≥3 mm had lower quality of life scores 1 year after injury than children whose initial CTs did not have these same injuries. Associations exist between findings from the initial noncontrast head CT and quality of life score 12 months after injury in children with TBI. (orig.)

  15. Association of initial CT findings with quality-of-life outcomes for traumatic brain injury in children

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Jonathan O. [Seattle Children' s Hospital and University of Washington, Department of Radiology, Seattle, WA (United States); Vavilala, Monica S.; Wang, Jin; Rivara, Frederick P. [Harborview Medical Center, University of Washington, Department of Pediatrics, Seattle, WA (United States); Pruthi, Sumit [Monroe Carell Jr. Children' s Hospital at Vanderbilt University, Department of Radiology, Nashville, TN (United States); Fink, James [University of Washington, Department of Radiology, Seattle, WA (United States); Jaffe, Kenneth M. [University of Washington, Department of Rehabilitation Medicine, Seattle, WA (United States); Durbin, Dennis [University of Pennsylvania, Department of Pediatrics, Center for Injury Research and Prevention, The Children' s Hospital of Philadelphia, Philadelphia, PA (United States); Koepsell, Thomas [University of Washington, Department of Epidemiology, Seattle, WA (United States); Temkin, Nancy [University of Washington, Biostatistics, Seattle, WA (United States)

    2012-08-15

    Traumatic brain injury (TBI) is a leading cause of acquired disability in children and adolescents. To demonstrate the association between specific findings on initial noncontrast head CT and long-term outcomes in children who have suffered TBI. This was an IRB-approved prospective study of children ages 2-17 years treated in emergency departments for TBI and who underwent a head CT as part of the initial work-up (n = 347). The change in quality of life at 12 months after injury was measured by the PedsQL scale. Children with TBI who had intracranial injuries identified on the initial head CT had a significantly lower quality-of-life scores compared to children with TBI whose initial head CTs were normal. In multivariate analysis, children whose initial head CT scans demonstrated intraventricular hemorrhage, parenchymal injury, midline shift {>=}5 mm, hemorrhagic shear injury, abnormal cisterns or subdural hematomas {>=}3 mm had lower quality of life scores 1 year after injury than children whose initial CTs did not have these same injuries. Associations exist between findings from the initial noncontrast head CT and quality of life score 12 months after injury in children with TBI. (orig.)

  16. Influence of apolipoprotein E and its receptors on cerebral amyloid precursor protein metabolism following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shuai; SUN Xiao-chuan

    2012-01-01

    Traumatic brain injury (TBI) is the leading cause of mortality and disability among young individuals in our society,and globally the incidence of TBI is rising sharply.Mounting evidence has indicated that apolipoprotein E (apoE:protein; APOE:gene) genotype influences the outcome after TBI.The proposed mechanism by which APOE affects the clinicopathological consequences of TBI is multifactorial and includes amyloid deposition,disruption of lipid distribution,dysfunction of mitochondrial energy production,oxidative stress and increases intracellular calcium in response to injury.This paper reviews the current state of knowledge regarding the influence of apoE and its receptors on cerebral amyloid betaprotein precursor metabolism following TBI.

  17. Influence of negative stereotypes and beliefs on neuropsychological test performance in a traumatic brain injury population.

    Science.gov (United States)

    Kit, Karen A; Mateer, Catherine A; Tuokko, Holly A; Spencer-Rodgers, Julie

    2014-02-01

    The impact of stereotype threat and self-efficacy beliefs on neuropsychological test performance in a clinical traumatic brain injury (TBI) population was investigated. A total of 42 individuals with mild-to-moderate TBI and 42 (age-, gender-, educationally matched) healthy adults were recruited. The study consisted of a 2 (Type of injury: control, TBI) × 2 (Threat Condition: reduced threat, heightened threat) between-participants design. The purpose of the reduced threat condition was to reduce negative stereotyped beliefs regarding cognitive effects of TBI and to emphasize personal control over cognition. The heightened threat condition consisted of an opposing view. Main effects included greater anxiety, motivation, and dejection but reduced memory self-efficacy for head-injured-groups, compared to control groups. On neuropsychological testing, the TBI-heightened-threat-group displayed lower scores on Initial Encoding (initial recall) and trended toward displaying lower scores on Attention (working memory) compared to the TBI-reduced-threat-group. No effect was found for Delayed Recall measures. Memory self-efficacy mediated the relation between threat condition and neuropsychological performance, indicating a potential mechanism for the threat effect. The findings highlight the impact of stereotype threat and self-referent beliefs on neuropsychological test performance in a clinical TBI population. PMID:24352047

  18. Diagnostic protein biomarkers for severe, moderate and mild traumatic brain injury

    Science.gov (United States)

    Streeter, Jackson; Hayes, Ronald L.; Wang, Kevin K. W.

    2011-06-01

    Traumatic Brain Injury (TBI) is a major problem in military and civilian medicine. Yet, there are no simple non-invasive diagnostics for TBI. Our goal is to develop and clinically validate blood-based biomarker assays for the diagnosis, prognosis and management of mild, moderate and severe TBI patients. These assays will ultimately be suitable for deployment to far-forward combat environments. Using a proteomic and systems biology approach, we identified over 20 candidate biomarkers for TBI and developed robust ELISAs for at least 6 candidate biomarkers, including Ubiquitin C-terminal hydrolase- L1 (UCH-L1), Glial Fibrillary Acidic Protein (GFAP) and a 145 kDa breakdown products of αII-spectrin (SBDP 145) generated by calpain proteolysis. In a multi-center feasibility study (Biomarker Assessment For Neurotrauma Diagnosis And Improved Triage System (BANDITS), we analyzed CSF and blood samples from 101 adult patients with severe TBI [Glasgow Coma Scale (GCS) <= 8] at 6 sites and analyzed 27 mild TBI patients and 5 moderate TBI patients [GCS 9-15] from 2 sites in a pilot study. We identified that serum levels of UCH-L1, GFAP and SBDP145 have strong diagnostic and prognostic properties for severe TBI over controls. Similarly initial post-TBI serum levels (< 6 h) of UCH-L1 and GFAP have diagnostic characteristics for moderate and mild TBI. We are now furthering assay production, refining assay platforms (both benchtop and point-ofcare/ handheld) and planning a pivotal clinical study to seek FDA approval of these TBI diagnostic assays.

  19. Neuropsychological rehabilitation for traumatic brain injury patients

    Directory of Open Access Journals (Sweden)

    Marzena Chantsoulis

    2015-05-01

    Full Text Available The aim of this review is to discuss the basic forms of neuropsychological rehabilitation for patients with traumatic brain injury (TBI. More broadly, we discussed cognitive rehabilitation therapy (CRT which constitutes a fundamental component in therapeutic interaction at many centres worldwide. Equally presented is a comprehensive model of rehabilitation, the fundamental component of which is CRT. It should be noted that the principles of this approach first arose in Poland in the 1970s, in other words, several decades before their appearance in other programmemes. Taken into consideration are four factors conditioning the effectiveness of such a process: comprehensiveness, earlier interaction, universality and its individualized character. A comprehensive programmeme of rehabilitation covers: cognitive rehabilitation, individual and group rehabilitation with the application of a therapeutic environment, specialist vocational rehabilitation, as well as family psychotherapy. These training programmemes are conducted within the scope of the ‘Academy of Life,’ which provides support for the patients in their efforts and shows them the means by which they can overcome existing difficulties. Equally emphasized is the close cooperation of the whole team of specialists, as well as the active participation of the family as an essential condition for the effectiveness of rehabilitation and, in effect, a return of the patient to a relatively normal life. Also presented are newly developing neurothechnologies and the neuromarkers of brain injuries. This enables a correct diagnosis to be made and, as a result, the selection of appropriate methods for neuropsychological rehabilitation, including neurotherapy.

  20. Preservation of general intelligence following traumatic brain injury: contributions of the Met66 brain-derived neurotrophic factor.

    Directory of Open Access Journals (Sweden)

    Aron K Barbey

    Full Text Available Brain-derived neurotrophic factor (BDNF promotes survival and synaptic plasticity in the human brain. The Val66Met polymorphism of the BDNF gene interferes with intracellular trafficking, packaging, and regulated secretion of this neurotrophin. The human prefrontal cortex (PFC shows lifelong neuroplastic adaption implicating the Val66Met BDNF polymorphism in the recovery of higher-order executive functions after traumatic brain injury (TBI. In this study, we examined the effect of this BDNF polymorphism on the preservation of general intelligence following TBI. We genotyped a sample of male Vietnam combat veterans (n = 156 consisting of a frontal lobe lesion group with focal penetrating head injuries for the Val66Met BDNF polymorphism. Val/Met did not differ from Val/Val genotypes in general cognitive ability before TBI. However, we found substantial average differences between these groups in general intelligence (≈ half a standard deviation or 8 IQ points, verbal comprehension (6 IQ points, perceptual organization (6 IQ points, working memory (8 IQ points, and processing speed (8 IQ points after TBI. These results support the conclusion that Val/Met genotypes preserve general cognitive functioning, whereas Val/Val genotypes are largely susceptible to TBI.

  1. Alterations in neuronal calcium levels are associated with cognitive deficits after traumatic brain injury.

    Science.gov (United States)

    Deshpande, Laxmikant S; Sun, David A; Sombati, Sompong; Baranova, Anya; Wilson, Margaret S; Attkisson, Elisa; Hamm, Robert J; DeLorenzo, Robert J

    2008-08-15

    Traumatic brain injury (TBI) survivors often suffer from a post-traumatic syndrome with deficits in learning and memory. Calcium (Ca(2+)) has been implicated in the pathophysiology of TBI-induced neuronal death. However, the role of long-term changes in neuronal Ca(2+) function in surviving neurons and the potential impact on TBI-induced cognitive impairments are less understood. Here we evaluated neuronal death and basal free intracellular Ca(2+) ([Ca(2+)](i)) in acutely isolated rat CA3 hippocampal neurons using the Ca(2+) indicator, Fura-2, at seven and thirty days after moderate central fluid percussion injury. In moderate TBI, cognitive deficits as evaluated by the Morris Water Maze (MWM), occur after injury but resolve after several weeks. Using MWM paradigm we compared alterations in [Ca(2+)](i) and cognitive deficits. Moderate TBI did not cause significant hippocampal neuronal death. However, basal [Ca(2+)](i) was significantly elevated when measured seven days post-TBI. At the same time, these animals exhibited significant cognitive impairment (F(2,25)=3.43, p<0.05). When measured 30 days post-TBI, both basal [Ca(2+)](i) and cognitive functions had returned to normal. Pretreatment with MK-801 blocked this elevation in [Ca(2+)](i) and also prevented MWM deficits. These studies provide evidence for a link between elevated [Ca(2+)](i) and altered cognition. Since no significant neuronal death was observed, the alterations in Ca(2+) homeostasis in the traumatized, but surviving neurons may play a role in the pathophysiology of cognitive deficits that manifest in the acute setting after TBI and represent a novel target for therapeutic intervention following TBI. PMID:18583041

  2. Increased Risk of Post-Trauma Stroke after Traumatic Brain Injury-Induced Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Chen, Gunng-Shinng; Liao, Kuo-Hsing; Bien, Mauo-Ying; Peng, Giia-Sheun; Wang, Jia-Yi

    2016-07-01

    This study determines whether acute respiratory distress syndrome (ARDS) is an independent risk factor for an increased risk of post-traumatic brain injury (TBI) stroke during 3-month, 1-year, and 5-year follow-ups, respectively, after adjusting for other covariates. Clinical data for the analysis were from the National Health Insurance Database 2000, which covered a total of 2121 TBI patients and 101 patients with a diagnosis of TBI complicated with ARDS (TBI-ARDS) hospitalized between January 1, 2001 and December 31, 2005. Each patient was tracked for 5 years to record stroke occurrences after discharge from the hospital. The prognostic value of TBI-ARDS was evaluated using a multivariate Cox proportional hazard model. The main outcome found that stroke occurred in nearly 40% of patients with TBI-ARDS, and the hazard ratio for post-TBI stroke increased fourfold during the 5-year follow-up period after adjusting for other covariates. The increased risk of hemorrhagic stroke in the ARDS group was considerably higher than in the TBI-only cohort. This is the first study to report that post-traumatic ARDS yielded an approximate fourfold increased risk of stroke in TBI-only patients. We suggest intensive and appropriate medical management and intensive follow-up of TBI-ARDS patients during the beginning of the hospital discharge. PMID:26426583

  3. The impact of preexisting illness and substance use on functional and neuropsychological outcomes following traumatic brain injury.

    Science.gov (United States)

    Dahdah, Marie N; Barnes, Sunni A; Buros, Amy; Allmon, Andrew; Dubiel, Rosemary; Dunklin, Cynthia; Callender, Librada; Shafi, Shahid

    2016-07-01

    Traumatic brain injury (TBI) is a significant public health problem in the US. Specific preexisting medical illnesses delay recovery after TBI and increase mortality or risk of repeat TBI. This study examined the impact of preexisting illness and substance use on patient rehabilitation outcomes following TBI. The Functional Independence Measure total score and Disability Rating Scale score measured functional outcomes at discharge from inpatient rehabilitation, while the Trail Making Test A and B and Total Trials 1-5 of the California Verbal Learning Test-II measured neuropsychological outcomes in 128 TBI survivors with moderate or severe TBI. Results showed that the presence of a heart condition or diabetes/high blood sugar was associated with lower functional outcomes by discharge. A history of a heart condition, stroke, or respiratory condition prior to TBI was associated with reduced cognitive flexibility. Those with preexisting diabetes/high blood sugar demonstrated poorer visual attention, visuomotor processing speed, and ability to learn and recall verbal information. Those with pre-TBI cancer also had greater auditory-verbal memory deficits. The findings showed that specific preexisting medical conditions are independently associated with lower functional and cognitive outcomes for patients with TBI. By screening patients for preexisting medical conditions, multidisciplinary TBI rehabilitation teams can identify patients who require more aggressive treatments or greater length of stay. PMID:27365869

  4. The impact of preexisting illness and substance use on functional and neuropsychological outcomes following traumatic brain injury

    Science.gov (United States)

    Barnes, Sunni A.; Buros, Amy; Allmon, Andrew; Dubiel, Rosemary; Dunklin, Cynthia; Callender, Librada; Shafi, Shahid

    2016-01-01

    Traumatic brain injury (TBI) is a significant public health problem in the US. Specific preexisting medical illnesses delay recovery after TBI and increase mortality or risk of repeat TBI. This study examined the impact of preexisting illness and substance use on patient rehabilitation outcomes following TBI. The Functional Independence Measure total score and Disability Rating Scale score measured functional outcomes at discharge from inpatient rehabilitation, while the Trail Making Test A and B and Total Trials 1–5 of the California Verbal Learning Test–II measured neuropsychological outcomes in 128 TBI survivors with moderate or severe TBI. Results showed that the presence of a heart condition or diabetes/high blood sugar was associated with lower functional outcomes by discharge. A history of a heart condition, stroke, or respiratory condition prior to TBI was associated with reduced cognitive flexibility. Those with preexisting diabetes/high blood sugar demonstrated poorer visual attention, visuomotor processing speed, and ability to learn and recall verbal information. Those with pre-TBI cancer also had greater auditory-verbal memory deficits. The findings showed that specific preexisting medical conditions are independently associated with lower functional and cognitive outcomes for patients with TBI. By screening patients for preexisting medical conditions, multidisciplinary TBI rehabilitation teams can identify patients who require more aggressive treatments or greater length of stay. PMID:27365869

  5. Assessment of Cognitive Function in the Water Maze Task: Maximizing Data Collection and Analysis in Animal Models of Brain Injury.

    Science.gov (United States)

    Whiting, Mark D; Kokiko-Cochran, Olga N

    2016-01-01

    Animal models play a critical role in understanding the biomechanical, pathophysiological, and behavioral consequences of traumatic brain injury (TBI). In preclinical studies, cognitive impairment induced by TBI is often assessed using the Morris water maze (MWM). Frequently described as a hippocampally dependent spatial navigation task, the MWM is a highly integrative behavioral task that requires intact functioning in numerous brain regions and involves an interdependent set of mnemonic and non-mnemonic processes. In this chapter, we review the special considerations involved in using the MWM in animal models of TBI, with an emphasis on maximizing the degree of information extracted from performance data. We include a theoretical framework for examining deficits in discrete stages of cognitive function and offer suggestions for how to make inferences regarding the specific nature of TBI-induced cognitive impairment. The ultimate goal is more precise modeling of the animal equivalents of the cognitive deficits seen in human TBI. PMID:27604738

  6. Perspectives on Molecular Biomarkers of Oxidative Stress and Antioxidant Strategies in Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    André Mendes Arent

    2014-01-01

    Full Text Available Traumatic brain injury (TBI is frequently associated with abnormal blood-brain barrier function, resulting in the release of factors that can be used as molecular biomarkers of TBI, among them GFAP, UCH-L1, S100B, and NSE. Although many experimental studies have been conducted, clinical consolidation of these biomarkers is still needed to increase the predictive power and reduce the poor outcome of TBI. Interestingly, several of these TBI biomarkers are oxidatively modified to carbonyl groups, indicating that markers of oxidative stress could be of predictive value for the selection of therapeutic strategies. Some drugs such as corticosteroids and progesterone have already been investigated in TBI neuroprotection but failed to demonstrate clinical applicability in advanced phases of the studies. Dietary antioxidants, such as curcumin, resveratrol, and sulforaphane, have been shown to attenuate TBI-induced damage in preclinical studies. These dietary antioxidants can increase antioxidant defenses via transcriptional activation of NRF2 and are also known as carbonyl scavengers, two potential mechanisms for neuroprotection. This paper reviews the relevance of redox biology in TBI, highlighting perspectives for future studies.

  7. Effect of zinc supplementation on neuronal precursor proliferation in the rat hippocampus after traumatic brain injury.

    Science.gov (United States)

    Cope, Elise C; Morris, Deborah R; Gower-Winter, Shannon D; Brownstein, Naomi C; Levenson, Cathy W

    2016-05-01

    There is great deal of debate about the possible role of adult-born hippocampal cells in the prevention of depression and related mood disorders. We first showed that zinc supplementation prevents the development of the depression-like behavior anhedonia associated with an animal model of traumatic brain injury (TBI). This work then examined the effect of zinc supplementation on the proliferation of new cells in the hippocampus that have the potential to participate in neurogenesis. Rats were fed a zinc adequate (ZA, 30ppm) or zinc supplemented (ZS, 180ppm) diet for 4wk followed by TBI using controlled cortical impact. Stereological counts of EdU-positive cells showed that TBI doubled the density of proliferating cells 24h post-injury (p<0.05), and supplemental zinc significantly increased this by an additional 2-fold (p<0.0001). While the survival of these proliferating cells decreased at the same rate in ZA and in ZS rats after injury, the total density of newly born cells was approximately 60% higher in supplemented rats 1wk after TBI. Furthermore, chronic zinc supplementation resulted in significant increases in the density of new doublecortin-positive neurons one week post-TBI that were maintained for 4wk after injury (p<0.01). While the effect of zinc supplementation on neuronal precursor cells in the hippocampus was robust, use of targeted irradiation to eliminate these cells after zinc supplementation and TBI revealed that these cells are not the sole mechanism through which zinc acts to prevent depression associated with brain injury, and suggest that other zinc dependent mechanisms are needed for the anti-depressant effect of zinc in this model of TBI. PMID:26902472

  8. Posttraining Epinephrine Reverses Memory Deficits Produced by Traumatic Brain Injury in Rats

    Science.gov (United States)

    Lorón-Sánchez, Alejandro; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Costa-Miserachs, David; Portell-Cortés, Isabel

    2016-01-01

    The aim of this research is to evaluate whether posttraining systemic epinephrine is able to improve object recognition memory in rats with memory deficits produced by traumatic brain injury. Forty-nine two-month-old naïve male Wistar rats were submitted to surgical procedures to induce traumatic brain injury (TBI) or were sham-operated. Rats were trained in an object recognition task and, immediately after training, received an intraperitoneal injection of distilled water (Sham-Veh and TBI-Veh group) or 0.01 mg/kg epinephrine (TBI-Epi group) or no injection (TBI-0 and Sham-0 groups). Retention was tested 3 h and 24 h after acquisition. The results showed that brain injury produced severe memory deficits and that posttraining administration of epinephrine was able to reverse them. Systemic administration of distilled water also had an enhancing effect, but of a lower magnitude. These data indicate that posttraining epinephrine and, to a lesser extent, vehicle injection reduce memory deficits associated with TBI, probably through induction of a low-to-moderate emotional arousal. PMID:27127685

  9. Posttraining Epinephrine Reverses Memory Deficits Produced by Traumatic Brain Injury in Rats

    Directory of Open Access Journals (Sweden)

    Alejandro Lorón-Sánchez

    2016-01-01

    Full Text Available The aim of this research is to evaluate whether posttraining systemic epinephrine is able to improve object recognition memory in rats with memory deficits produced by traumatic brain injury. Forty-nine two-month-old naïve male Wistar rats were submitted to surgical procedures to induce traumatic brain injury (TBI or were sham-operated. Rats were trained in an object recognition task and, immediately after training, received an intraperitoneal injection of distilled water (Sham-Veh and TBI-Veh group or 0.01 mg/kg epinephrine (TBI-Epi group or no injection (TBI-0 and Sham-0 groups. Retention was tested 3 h and 24 h after acquisition. The results showed that brain injury produced severe memory deficits and that posttraining administration of epinephrine was able to reverse them. Systemic administration of distilled water also had an enhancing effect, but of a lower magnitude. These data indicate that posttraining epinephrine and, to a lesser extent, vehicle injection reduce memory deficits associated with TBI, probably through induction of a low-to-moderate emotional arousal.

  10. Propofol Ameliorates Calpain-induced Collapsin Response Mediator Protein-2 Proteolysis in Traumatic Brain Injury in Rats

    Directory of Open Access Journals (Sweden)

    Yun Yu

    2015-01-01

    Full Text Available Background: Collapsin response mediator protein-2 (CRMP2, a multifunctional cytosolic protein highly expressed in the brain, is degraded by calpain following traumatic brain injury (TBI, possibly inhibiting posttraumatic neurite regeneration. Lipid peroxidation (LP is involved in triggering postinjury CRMP2 proteolysis. We examined the hypothesis that propofol could attenuate LP, calpain-induced CRMP2 degradation, and brain injury after TBI. Methods: A unilateral moderate controlled cortical impact injury was induced in adult male Sprague-Dawley rats. The animals were randomly divided into seven groups: Sham control group, TBI group, TBI + propofol groups (including propofol 1 h, 2 h, and 4 h groups, TBI + U83836E group and TBI + fat emulsion group. The LP inhibitor U83836E was used as a control to identify that antioxidation partially accounts for the potential neuroprotective effects of propofol. The solvent of propofol, fat emulsion, was used as the vehicle control. Ipsilateral cortex tissues were harvested at 24 h post-TBI. Immunofluorescent staining, Western blot analysis, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling were used to evaluate LP, calpain activity, CRMP2 proteolysis and programmed cell death. The data were statistically analyzed using one-way analysis of variance and a paired t-test. Results: Propofol and U83836E significantly ameliorated the CRMP2 proteolysis. In addition, both propofol and U83836E significantly decreased the ratio of 145-kDa αII-spectrin breakdown products to intact 270-kDa spectrin, the 4-hydroxynonenal expression and programmed cell death in the pericontusional cortex at 24 h after TBI. There was no difference between the TBI group and the fat emulsion group. Conclusions: These results demonstrate that propofol postconditioning alleviates calpain-mediated CRMP2 proteolysis and provides neuroprotective effects following moderate TBI potentially by counteracting LP and reducing

  11. Dietary Docosahexaenoic Acid Improves Cognitive Function, Tissue Sparing, and Magnetic Resonance Imaging Indices of Edema and White Matter Injury in the Immature Rat after Traumatic Brain Injury.

    Science.gov (United States)

    Schober, Michelle E; Requena, Daniela F; Abdullah, Osama M; Casper, T Charles; Beachy, Joanna; Malleske, Daniel; Pauly, James R

    2016-02-15

    Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children. Specific therapies to treat acute TBI are lacking. Cognitive impairment from TBI may be blunted by decreasing inflammation and oxidative damage after injury. Docosahexaenoic acid (DHA) decreases cognitive impairment, oxidative stress, and white matter injury in adult rats after TBI. Effects of DHA on cognitive outcome, oxidative stress, and white matter injury in the developing rat after experimental TBI are unknown. We hypothesized that DHA would decrease early inflammatory markers and oxidative stress, and improve cognitive, imaging and histologic outcomes in rat pups after controlled cortical impact (CCI). CCI or sham surgery was delivered to 17 d old male rat pups exposed to DHA or standard diet for the duration of the experiments. DHA was introduced into the dam diet the day before CCI to allow timely DHA delivery to the pre-weanling pups. Inflammatory cytokines and nitrates/nitrites were measured in the injured brains at post-injury Day (PID) 1 and PID2. Morris water maze (MWM) testing was performed at PID41-PID47. T2-weighted and diffusion tensor imaging studies were obtained at PID12 and PID28. Tissue sparing was calculated histologically at PID3 and PID50. DHA did not adversely affect rat survival or weight gain. DHA acutely decreased oxidative stress and increased anti-inflammatory interleukin 10 in CCI brains. DHA improved MWM performance and lesion volume late after injury. At PID12, DHA decreased T2-imaging measures of cerebral edema and decreased radial diffusivity, an index of white matter injury. DHA improved short- and long-term neurologic outcomes after CCI in the rat pup. Given its favorable safety profile, DHA is a promising candidate therapy for pediatric TBI. Further studies are needed to explore neuroprotective mechanisms of DHA after developmental TBI. PMID:26247583

  12. Traumatic brain injury alters methionine metabolism: implications for pathophysiology

    Directory of Open Access Journals (Sweden)

    Pramod K Dash

    2016-04-01

    Full Text Available Methionine is an essential proteinogenic amino acid that is obtained from the diet. In addition to its requirement for protein biosynthesis, methionine is metabolized to generate metabolites that play key roles in a number of cellular functions. Metabolism of methionine via the transmethylation pathway generates S-adenosylmethionine (SAM that serves as the principal methyl (-CH3 donor for DNA and histone methyltransferases to regulate epigenetic changes in gene expression. SAM is also required for methylation of other cellular proteins that serve various functions and phosphatidylcholine synthesis that participate in cellular signaling.. Under conditions of oxidative stress, homocysteine (which is derived from SAM enters the transsulfuration pathway to generate glutathione, an important cytoprotective molecule against oxidative damage. As both experimental and clinical studies have shown that traumatic brain injury (TBI alters DNA and histone methylation and causes oxidative stress, we examined if TBI alters the plasma levels of methionine and its metabolites in human patients. Blood samples were collected from healthy volunteers (n = 20 and patients with mild TBI (GCS > 12; n = 20 or severe TBI (GCS < 8; n = 20 within the first 24 hours of injury. The levels of methionine and its metabolites in the plasma samples were analyzed by either liquid chromatography-mass spectrometry or gas chromatography-mass spectrometry (LC-MS or GC-MS. Severe TBI decreased the levels of methionine, SAM, betaine and 2-methylglycine as compared to healthy volunteers, indicating a decrease in metabolism through the transmethylation cycle. In addition, precursors for the generation of glutathione, cysteine and glycine were also found to be decreased as were intermediate metabolites of the gamma-glutamyl cycle (gamma-glutamyl amino acids and 5-oxoproline. Mild TBI also decreased the levels of methionine, α-ketobutyrate, 2 hydroxybutyrate and glycine, albeit to lesser

  13. Chronic impact of traumatic brain injury on outcome and quality of life: a narrative review.

    Science.gov (United States)

    Stocchetti, Nino; Zanier, Elisa R

    2016-01-01

    Traditionally seen as a sudden, brutal event with short-term impairment, traumatic brain injury (TBI) may cause persistent, sometimes life-long, consequences. While mortality after TBI has been reduced, a high proportion of severe TBI survivors require prolonged rehabilitation and may suffer long-term physical, cognitive, and psychological disorders. Additionally, chronic consequences have been identified not only after severe TBI but also in a proportion of cases previously classified as moderate or mild. This burden affects the daily life of survivors and their families; it also has relevant social and economic costs.Outcome evaluation is difficult for several reasons: co-existing extra-cranial injuries (spinal cord damage, for instance) may affect independence and quality of life outside the pure TBI effects; scales may not capture subtle, but important, changes; co-operation from patients may be impossible in the most severe cases. Several instruments have been developed for capturing specific aspects, from generic health status to specific cognitive functions. Even simple instruments, however, have demonstrated variable inter-rater agreement.The possible links between structural traumatic brain damage and functional impairment have been explored both experimentally and in the clinical setting with advanced neuro-imaging techniques. We briefly report on some fundamental findings, which may also offer potential targets for future therapies.Better understanding of damage mechanisms and new approaches to neuroprotection-restoration may offer better outcomes for the millions of survivors of TBI. PMID:27323708

  14. Increased risk of dementia in patients with mild traumatic brain injury: a nationwide cohort study.

    Directory of Open Access Journals (Sweden)

    Yi-Kung Lee

    Full Text Available BACKGROUND: It is known that the risk of dementia in patients with moderate to severe traumatic brain injury (TBI is higher. However, the relationship between mild traumatic brain injury (mTBI and dementia has never been established. OBJECTIVES: We investigated the incidences of dementia among patients with mTBI in Taiwan to evaluate if there is higher risk compared with general population. METHODS: We utilized a sampled National Health Insurance (NHI claims data containing one million beneficiaries. We followed all adult beneficiaries from January 1, 2005 till December 31, 2009 to see if they had been diagnosed with dementia. We further identify patients with mTBI and compared their risk of dementia with the general population. RESULTS: We identified 28551 patients with mTBI and 692382 without. After controlled for age, gender, urbanization level, socioeconomic status, diabetes, hypertension, coronary artery disease, hyperlipidemia, history of alcohol intoxication, history of ischemic stroke, history of intracranial hemorrhage and Charlson Comorbidity Index Score, the adjusted hazard ratio is 3.26 (95% Confidence interval, 2.69-3.94. CONCLUSIONS: TBI is an independent significant risk factor of developing dementia even in the mild type.

  15. Repeated mild traumatic brain injury causes chronic neuroinflammation, changes in hippocampal synaptic plasticity, and associated cognitive deficits

    Science.gov (United States)

    Aungst, Stephanie L; Kabadi, Shruti V; Thompson, Scott M; Stoica, Bogdan A; Faden, Alan I

    2014-01-01

    Repeated mild traumatic brain injury (mTBI) can cause sustained cognitive and psychiatric changes, as well as neurodegeneration, but the underlying mechanisms remain unclear. We examined histologic, neurophysiological, and cognitive changes after single or repeated (three injuries) mTBI using the rat lateral fluid percussion (LFP) model. Repeated mTBI caused substantial neuronal cell loss and significantly increased numbers of activated microglia in both ipsilateral and contralateral hippocampus on post-injury day (PID) 28. Long-term potentiation (LTP) could not be induced on PID 28 after repeated mTBI in ex vivo hippocampal slices from either hemisphere. N-Methyl-D-aspartate (NMDA) receptor-mediated responses were significantly attenuated after repeated mTBI, with no significant changes in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated responses. Long-term potentiation was elicited in slices after single mTBI, with potentiation significantly increased in ipsilateral versus contralateral hippocampus. After repeated mTBI, rats displayed cognitive impairments in the Morris water maze (MWM) and novel object recognition (NOR) tests. Thus, repeated mTBI causes deficits in the hippocampal function and changes in excitatory synaptic neurotransmission, which are associated with chronic neuroinflammation and neurodegeneration. PMID:24756076

  16. Repeated mild traumatic brain injury causes chronic neuroinflammation, changes in hippocampal synaptic plasticity, and associated cognitive deficits.

    Science.gov (United States)

    Aungst, Stephanie L; Kabadi, Shruti V; Thompson, Scott M; Stoica, Bogdan A; Faden, Alan I

    2014-07-01

    Repeated mild traumatic brain injury (mTBI) can cause sustained cognitive and psychiatric changes, as well as neurodegeneration, but the underlying mechanisms remain unclear. We examined histologic, neurophysiological, and cognitive changes after single or repeated (three injuries) mTBI using the rat lateral fluid percussion (LFP) model. Repeated mTBI caused substantial neuronal cell loss and significantly increased numbers of activated microglia in both ipsilateral and contralateral hippocampus on post-injury day (PID) 28. Long-term potentiation (LTP) could not be induced on PID 28 after repeated mTBI in ex vivo hippocampal slices from either hemisphere. N-Methyl-D-aspartate (NMDA) receptor-mediated responses were significantly attenuated after repeated mTBI, with no significant changes in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated responses. Long-term potentiation was elicited in slices after single mTBI, with potentiation significantly increased in ipsilateral versus contralateral hippocampus. After repeated mTBI, rats displayed cognitive impairments in the Morris water maze (MWM) and novel object recognition (NOR) tests. Thus, repeated mTBI causes deficits in the hippocampal function and changes in excitatory synaptic neurotransmission, which are associated with chronic neuroinflammation and neurodegeneration. PMID:24756076

  17. A Thoracic Mechanism of Mild Traumatic Brain Injury Due to Blast Pressure Waves

    OpenAIRE

    Courtney, Amy; Courtney, Michael

    2008-01-01

    The mechanisms by which blast pressure waves cause mild to moderate traumatic brain injury (mTBI) are an open question. Possibilities include acceleration of the head, direct passage of the blast wave via the cranium, and propagation of the blast wave to the brain via a thoracic mechanism. The hypothesis that the blast pressure wave reaches the brain via a thoracic mechanism is considered in light of ballistic and blast pressure wave research. Ballistic pressure waves, caused by penetrating b...

  18. Early CT signs of progressive hemorrhagic injury following acute traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Wu-song; Zheng, Ping; Xu, Jun-fa; Guo, Yi-jun; Zeng, Jing-song; Yang, Wen-jin; Li, Gao-yi; He, Bin; Yu, Hui [Pudong New Area People' s Hospital, Department of Neurosurgery, Shanghai (China)

    2011-05-15

    Since progressive hemorrhagic injury (PHI) was introduced in neurosurgical literatures, several studies have been performed, the results of which have influenced doctors but do not define guidelines for the best treatment of PHI. PHI may be confirmed by a serial computerized tomography (CT) scan, and it has been shown to be associated with a fivefold increase in the risk of clinical worsening and is a significant cause of morbidity and mortality as well. So, early detection of PHI is practically important in a clinical situation. To analyze the early CT signs of progressive hemorrhagic injury following acute traumatic brain injury (TBI) and explore their clinical significances, PHI was confirmed by comparing the first and repeated CT scans. Data were analyzed and compared including times from injury to the first CT and signs of the early CT scan. Logistic regression analysis was used to show the risk factors related to PHI. A cohort of 630 TBI patients was evaluated, and there were 189 (30%) patients who suffered from PHI. For patients with their first CT scan obtained as early as 2 h post-injury, there were 116 (77.25%) cases who suffered from PHI. The differences between PHIs and non-PHIs were significant in the initial CT scans showing fracture, subarachnoid hemorrhage (SAH), brain contusion, epidural hematoma (EDH), subdural hematoma (SDH), and multiple hematoma as well as the times from injury to the first CT scan (P < 0.01). Logistic regression analysis showed that early CT scans (EDH, SDH, SAH, fracture, and brain contusion) were predictors of PHI (P < 0.01). For patients with the first CT scan obtained as early as 2 h post-injury, a follow-up CT scan should be performed promptly. If the initial CT scan shows SAH, brain contusion, and primary hematoma with brain swelling, an earlier and dynamic CT scan should be performed for detection of PHI as early as possible and the medical intervention would be enforced in time. (orig.)

  19. Early CT signs of progressive hemorrhagic injury following acute traumatic brain injury

    International Nuclear Information System (INIS)

    Since progressive hemorrhagic injury (PHI) was introduced in neurosurgical literatures, several studies have been performed, the results of which have influenced doctors but do not define guidelines for the best treatment of PHI. PHI may be confirmed by a serial computerized tomography (CT) scan, and it has been shown to be associated with a fivefold increase in the risk of clinical worsening and is a significant cause of morbidity and mortality as well. So, early detection of PHI is practically important in a clinical situation. To analyze the early CT signs of progressive hemorrhagic injury following acute traumatic brain injury (TBI) and explore their clinical significances, PHI was confirmed by comparing the first and repeated CT scans. Data were analyzed and compared including times from injury to the first CT and signs of the early CT scan. Logistic regression analysis was used to show the risk factors related to PHI. A cohort of 630 TBI patients was evaluated, and there were 189 (30%) patients who suffered from PHI. For patients with their first CT scan obtained as early as 2 h post-injury, there were 116 (77.25%) cases who suffered from PHI. The differences between PHIs and non-PHIs were significant in the initial CT scans showing fracture, subarachnoid hemorrhage (SAH), brain contusion, epidural hematoma (EDH), subdural hematoma (SDH), and multiple hematoma as well as the times from injury to the first CT scan (P < 0.01). Logistic regression analysis showed that early CT scans (EDH, SDH, SAH, fracture, and brain contusion) were predictors of PHI (P < 0.01). For patients with the first CT scan obtained as early as 2 h post-injury, a follow-up CT scan should be performed promptly. If the initial CT scan shows SAH, brain contusion, and primary hematoma with brain swelling, an earlier and dynamic CT scan should be performed for detection of PHI as early as possible and the medical intervention would be enforced in time. (orig.)

  20. Return to Work and Social Communication Ability Following Severe Traumatic Brain Injury

    Science.gov (United States)

    Douglas, Jacinta M.; Bracy, Christine A.; Snow, Pamela C.

    2016-01-01

    Purpose: Return to competitive employment presents a major challenge to adults who survive traumatic brain injury (TBI). This study was undertaken to better understand factors that shape employment outcome by comparing the communication profiles and self-awareness of communication deficits of adults who return to and maintain employment with those…

  1. 78 FR 9929 - Current Traumatic Brain Injury State Implementation Partnership Grantees; Non-Competitive One...

    Science.gov (United States)

    2013-02-12

    ... Implementation Partnership Grantees; Non-Competitive One-Year Extension Funds AGENCY: Health Resources and...-Competitive One-Year Extension Funds for Current Traumatic Brain Injury (TBI) State Implementation Partnership... a non-competitive one-year extension for the State Implementation Partnerships (H21) awards...

  2. Child, Adolescent, and Young Adult Community Integration after a Traumatic Brain Injury

    Science.gov (United States)

    Barton, Barbara; Brouwers, Lynn; Ruoff, Janis; Trudel, Tina M.; Valnes, Betsy; Elias, Eileen; Pines, Hayley

    2010-01-01

    "Rehabilitation," as a term in and of itself, implies a goal of bringing something back to its original state of being. However, for many people living with traumatic brain injury (TBI), rehabilitation means learning to live all over again. Through means of education and employment, this article explores the quest for inclusive community…

  3. Functional oral intake and time to reach unrestricted dieting for patients with traumatic brain injury

    DEFF Research Database (Denmark)

    Hansen, Trine S; Engberg, Aase W; Larsen, Klaus

    2008-01-01

    study. SETTING: Subacute rehabilitation department, university hospital. PARTICIPANTS: Patients age 16 to 65 years (N=173) with severe TBI (posttraumatic amnesia from 7d to >6 mo) admitted over a 5-year period. Patients are transferred to the brain injury unit as soon as they ventilate spontaneously...

  4. Family Resiliency, Family Needs, and Community Reintegration in Persons with Brain Injury

    Science.gov (United States)

    Frain, Julianne; Dillahunt-Aspillaga, Tina; Frain, Michael; Ehkle, Sarah

    2014-01-01

    Purpose: The purpose of the study was to measure predictors of community reintegration and empirically test the resiliency model of family stress, adjustment, and adaptation in persons with traumatic brain injury (TBI). The study also aimed to measure family needs by surveying caregiving family members through the use of the Family Needs…

  5. Autobiographical memory and episodic future thinking after moderate to severe traumatic brain injury

    DEFF Research Database (Denmark)

    Rasmussen, Katrine Willemoes; Berntsen, Dorthe

    2014-01-01

    Converging evidence suggests that autobiographical memory and episodic future thinking share a common neurocognitive basis. Although previous research has shown that traumatic brain injury (TBI) can impair the ability to remember the personal past, episodic future thinking has not previously been...

  6. Liberal Bias Mediates Emotion Recognition Deficits in Frontal Traumatic Brain Injury

    Science.gov (United States)

    Callahan, Brandy L.; Ueda, Keita; Sakata, Daisuke; Plamondon, Andre; Murai, Toshiya

    2011-01-01

    It is well-known that patients having sustained frontal-lobe traumatic brain injury (TBI) are severely impaired on tests of emotion recognition. Indeed, these patients have significant difficulty recognizing facial expressions of emotion, and such deficits are often associated with decreased social functioning and poor quality of life. As of yet,…

  7. A systematic review of fatigue in patients with traumatic brain injury: The course, predictors and consequences

    DEFF Research Database (Denmark)

    Mollayeva, T.; Kendzerska, T.; Mollayeva, S.;

    2014-01-01

    Background: Fatigue is common after traumatic brain injury (TBI). Its risk factors, natural history and consequences are uncertain. Best-evidence synthesis was used to address the gaps. Methods: Five databases were searched for relevant peer-reviewed studies. Of the 33 articles appraised, 22...

  8. Misconceptions about Traumatic Brain Injury among Students Preparing to Be Special Education Professionals

    Science.gov (United States)

    Hux, Karen; Bush, Erin; Evans, Kelli; Simanek, Gina

    2013-01-01

    The researchers performed a survey study to determine the effectiveness of collegiate programmes in dispelling common misconceptions about traumatic brain injury (TBI) while preparing undergraduate and graduate students for special education (SpEd) careers. Respondents included 136 undergraduate and 147 graduate SpEd students in their final…

  9. The association of functional oral intake and pneumonia in patients with severe traumatic brain injury

    DEFF Research Database (Denmark)

    Hansen, Trine Schow; Larsen, Klaus; Engberg, Aase Worså

    2008-01-01

    OBJECTIVES: To investigate the incidence and onset time of pneumonia for patients with severe traumatic brain injury (TBI) in the early phase of rehabilitation and to identify parameters associated with the risk of pneumonia. DESIGN: Observational retrospective cohort study. SETTING: Subacute reh...

  10. Traumatic Brain Injury: Exploring the Role of Cooperative Extension in Kansas Communities

    Science.gov (United States)

    Sellers, Debra M.; Garcia, Jane Mertz

    2012-01-01

    TBI"options" helps survivors of traumatic brain injury and their families identify, locate, and contact helpful organizations in their local communities to promote successful living. This article discusses the role of county agents in the program and the support offered by community partners. Results of pre- and post-surveys for both…

  11. Implicit Memory Influences on Metamemory during Verbal Learning after Traumatic Brain Injury

    Science.gov (United States)

    Ramanathan, Pradeep; Kennedy, Mary R. T.; Marsolek, Chad J.

    2014-01-01

    Purpose: Prior research has shown that individuals with traumatic brain injury (TBI) may be overconfident in their judgments of learning (JOLs; online measures of self-monitoring of learning and memory). JOLs had been presumed to be driven by explicit processes, but recent research has also revealed implicit memory involvement. Given that implicit…

  12. Reduced N400 Semantic Priming Effects in Adult Survivors of Paediatric and Adolescent Traumatic Brain Injury

    Science.gov (United States)

    Knuepffer, C.; Murdoch, B. E.; Lloyd, D.; Lewis, F. M.; Hinchliffe, F. J.

    2012-01-01

    The immediate and long-term neural correlates of linguistic processing deficits reported following paediatric and adolescent traumatic brain injury (TBI) are poorly understood. Therefore, the current research investigated event-related potentials (ERPs) elicited during a semantic picture-word priming experiment in two groups of highly functioning…

  13. The Cognitive Basis for Sentence Planning Difficulties in Discourse after Traumatic Brain Injury

    Science.gov (United States)

    Peach, Richard K.

    2013-01-01

    Purpose: Analyses of language production of individuals with traumatic brain injury (TBI) place increasing emphasis on microlinguistic (i.e., within-sentence) patterns. It is unknown whether the observed problems involve implementation of well-formed sentence frames or represent a fundamental linguistic disturbance in computing sentence structure.…

  14. Epigallocatechin-3-Gallate (EGCG) Attenuates Traumatic Brain Injury by Inhibition of Edema Formation and Oxidative Stress.

    Science.gov (United States)

    Zhang, Bo; Wang, Bing; Cao, Shuhua; Wang, Yongqiang

    2015-11-01

    Traumatic brain injury (TBI) is a major cause of mortality and long-term disability, which can decrease quality of life. In spite of numerous studies suggesting that Epigallocatechin-3-gallate (EGCG) has been used as a therapeutic agent for a broad range of disorders, the effect of EGCG on TBI remains unknown. In this study, a weight drop model was established to evaluate the therapeutic potential of EGCG on TBI. Rats were administered with 100 mg/kg EGCG or PBS intraperitoneally. At different times following trauma, rats were sacrificed for analysis. It was found that EGCG (100 mg/kg, i.p.) treatment significantly reduced brain water content and vascular permeability at 12, 24, 48, 72 hour after TBI. Real-time PCR results revealed that EGCG inhibited TBI-induced IL-1β and TNF-α mRNA expression. Importantly, CD68 mRNA expression decreasing in the brain suggested that EGCG inhibited microglia activation. Western blotting and immunohistochemistry results showed that administering of EGCG significantly inhibited the levels of aquaporin-4 (AQP4) and glial fibrillary acidic protein (GFAP) expression. TBI-induced oxidative stress was remarkably impaired by EGCG treatment, which elevated the activities of SOD and GSH-PX. Conversely, EGCG significantly reduced the contents of MDA after TBI. In addition, EGCG decreased TBI-induced NADPH oxidase activation through inhibition of p47(phox) translocation from cytoplasm to plasma membrane. These data demonstrate that EGCG treatment may be an effective therapeutic strategy for TBI and the underlying mechanism involves inhibition of oxidative stress. PMID:26557015

  15. Disruption of caudate working memory activation in chronic blast-related traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Mary R. Newsome

    2015-01-01

    Full Text Available Mild to moderate traumatic brain injury (TBI due to blast exposure is frequently diagnosed in veterans returning from the wars in Iraq and Afghanistan. However, it is unclear whether neural damage resulting from blast TBI differs from that found in TBI due to blunt-force trauma (e.g., falls and motor vehicle crashes. Little is also known about the effects of blast TBI on neural networks, particularly over the long term. Because impairment in working memory has been linked to blunt-force TBI, the present functional magnetic resonance imaging (fMRI study sought to investigate whether brain activation in response to a working memory task would discriminate blunt-force from blast TBI. Twenty-five veterans (mean age = 29.8 years, standard deviation = 6.01 years, 1 female who incurred TBI due to blast an average of 4.2 years prior to enrollment and 25 civilians (mean age = 27.4 years, standard deviation = 6.68 years, 4 females with TBI due to blunt-force trauma performed the Sternberg Item Recognition Task while undergoing fMRI. The task involved encoding 1, 3, or 5 items in working memory. A group of 25 veterans (mean age = 29.9 years, standard deviation = 5.53 years, 0 females and a group of 25 civilians (mean age = 27.3 years, standard deviation = 5.81 years, 0 females without history of TBI underwent identical imaging procedures and served as controls. Results indicated that the civilian TBI group and both control groups demonstrated a monotonic relationship between working memory set size and activation in the right caudate during encoding, whereas the blast TBI group did not (p < 0.05, corrected for multiple comparisons using False Discovery Rate. Blast TBI was also associated with worse performance on the Sternberg Item Recognition Task relative to the other groups, although no other group differences were found on neuropsychological measures of episodic memory, inhibition, and general processing speed. These results

  16. Links between traumatic brain injury and ballistic pressure waves originating in the thoracic cavity and extremities

    CERN Document Server

    Courtney, Amy

    2007-01-01

    Identifying patients at risk of traumatic brain injury (TBI) is important because research suggests prophylactic treatments to reduce risk of long-term sequelae. Blast pressure waves can cause TBI without penetrating wounds or blunt force trauma. Similarly, bullet impacts distant from the brain can produce pressure waves sufficient to cause mild to moderate TBI. The fluid percussion model of TBI shows that pressure impulses of 15-30 psi cause mild to moderate TBI in laboratory animals. In pigs and dogs, bullet impacts to the thigh produce pressure waves in the brain of 18-45 psi and measurable injury to neurons and neuroglia. Analyses of research in goats and epidemiological data from shooting events involving humans show high correlations (r > 0.9) between rapid incapacitation and pressure wave magnitude in the thoracic cavity. A case study has documented epilepsy resulting from a pressure wave without the bullet directly hitting the brain. Taken together, these results support the hypothesis that bullet imp...

  17. The Utility of Cerebral Blood Flow Assessment in TBI.

    Science.gov (United States)

    Akbik, Omar S; Carlson, Andrew P; Krasberg, Mark; Yonas, Howard

    2016-08-01

    Over the past few decades, intracranial monitoring technologies focused on treating and preempting secondary injury after traumatic brain injury (TBI) have experienced considerable growth. A physiological measure fundamental to the management of these patients is cerebral blood flow (CBF), which may be determined directly or indirectly. Direct measurement has proven difficult previously; however, invasive and non-invasive CBF monitors are now available. This article reviews the history of CBF measurements in TBI as well as the role of CBF in pathologies associated with TBI, such as cerebral autoregulation, hyperemia, and cortical spreading depression. The limitations of various CBF monitors are reviewed in order to better understand their role in TBI management. PMID:27315250

  18. Delayed, post-injury treatment with aniracetam improves cognitive performance after traumatic brain injury in rats.

    Science.gov (United States)

    Baranova, Anna I; Whiting, Mark D; Hamm, Robert J

    2006-08-01

    Chronic cognitive impairment is an enduring aspect of traumatic brain injury (TBI) in both humans and animals. Treating cognitive impairment in the post-traumatic stages of injury often involves the delivery of pharmacologic agents aimed at specific neurotransmitter systems. The current investigation examined the effects of the nootropoic drug aniracetam on cognitive recovery following TBI in rats. Three experiments were performed to determine (1) the optimal dose of aniracetam for treating cognitive impairment, (2) the effect of delaying drug treatment for a period of days following TBI, and (3) the effect of terminating drug treatment before cognitive assessment. In experiment 1, rats were administered moderate fluid percussion injury and treated with vehicle, 25, or 50 mg/kg aniracetam for 15 days. Both doses of aniracetam effectively reduced injury-induced deficits in the Morris water maze (MWM) as measured on postinjury days 11-15. In experiment 2, injured rats were treated with 50 mg/kg aniracetam or vehicle beginning on day 11 postinjury and continuing for 15 days. MWM performance, assessed on days 26-30, indicates that aniracetam-treated animals performed as well as sham-injured controls. In experiment 3, animals were injured and treated with aniracetam for 15 days. Drug treatment was terminated during MWM testing on postinjury days 16-20. In this experiment, aniracetam-treated rats did not perform better than vehicle-treated rats. The results of these experiments indicate that aniracetam is an effective treatment for cognitive impairment induced by TBI, even when treatment is delayed for a period of days following injury. PMID:16928181

  19. Clinically-Important Brain Injury and CT Findings in Pediatric Mild Traumatic Brain Injuries: A Prospective Study in a Chinese Reference Hospital

    Directory of Open Access Journals (Sweden)

    Huiping Zhu

    2014-03-01

    Full Text Available This study investigated injury patterns and the use of computed tomography (CT among Chinese children with mild traumatic brain injury (MTBI. We enrolled children with MTBI who were treated within 24 hours of head trauma in the emergency department of Wuhan Medical Care Center for Women and Children in Wuhan, China. Characteristics of MTBIs were analyzed by age and gender. Results of cranial CT scan and clinically-important brain injury (ciTBI for children were obtained. The definition of ciTBI was: death from TBI, intubation for more than 24 h for TBI, neurosurgery, or hospital admission of 2 nights or more. Of 455 eligible patients with MTBI, ciTBI occurred in two, and no one underwent neurosurgical intervention. CT scans were performed for 441 TBI patients (96.9%, and abnormal findings were reported for 147 patients (33.3%, 95% CI 29.0–37.8. Falls were the leading cause of MTBI (61.5%, followed by blows (18.9% and traffic collisions (14.1% for children in the 0–2 group and 10–14 group. For children aged between 3 and 9, the top three causes of TBI were falls, traffic collisions and blows. Leisure activity was the most reported activity when injuries occurred for all age groups. Sleeping/resting and walking ranked in the second and third place for children between 0 and 2 years of age, and walking and riding for the other two groups. The places where the majority injuries occurred were the home for the 0–2 and 3–9 years of age groups, and school for the 10–14 years of age group. There was no statistical difference between boys and girls with regard to the activity that caused the MTBI. This study highlights the important roles that parents and school administrators in the development of preventive measures to reduce the risk of traumatic brain injury in children. Also, identifying children who had a head trauma at very low risk of clinically important TBI for whom CT might be unnecessary is a priority area of research in China.

  20. Psychiatric Disease and Post-Acute Traumatic Brain Injury.

    Science.gov (United States)

    Zgaljardic, Dennis J; Seale, Gary S; Schaefer, Lynn A; Temple, Richard O; Foreman, Jack; Elliott, Timothy R

    2015-12-01

    Psychiatric disorders are common following traumatic brain injury (TBI) and can include depression, anxiety, and psychosis, as well as other maladaptive behaviors and personality changes. The epidemiologic data of psychiatric disorders post-TBI vary widely, although the incidence and prevalence rates typically are higher than in the general population. Although the experience of psychiatric symptoms may be temporary and may resolve in the acute period, many patients with TBI can experience psychopathology that is persistent or that develops in the post-acute period. Long-term psychiatric disorder, along with cognitive and physical sequelae and greater risk for substance use disorders, can pose a number of life-long challenges for patients and their caregivers, as they can interfere with participation in rehabilitation as well as limit functional independence in the community. The current review of the literature considers the common psychiatric problems affecting individuals with TBI in the post-acute period, including personality changes, psychosis, executive dysfunction, depression, anxiety, and substance misuse. Although treatment considerations (pharmacological and nonpharmacological) are referred to, an extensive description of such protocols is beyond the scope of the current review. The impact of persistent psychiatric symptoms on perceived caregiver burden and distress is also discussed. PMID:25629222

  1. Acute Alcohol Intoxication in Patients with Mild Traumatic Brain Injury: Characteristics, Recovery, and Outcome.

    Science.gov (United States)

    Scheenen, Myrthe E; de Koning, Myrthe E; van der Horn, Harm J; Roks, Gerwin; Yilmaz, Tansel; van der Naalt, Joukje; Spikman, Jacoba M

    2016-02-15

    A substantial number of patients (30% to 50%) sustains a mild traumatic brain injury (mTBI) while they are under the influence of alcohol. An acute alcohol intoxication (AAI) at the time of injury has been subject of research in severe TBI, but little is known about the relation between AAI and mTBI. This study aimed to describe the characteristics of this intoxicated subgroup and evaluate recovery and outcome in comparison to sober mTBI patients. We included 528 mTBI patients (Glasgow Coma Scale [GCS] score 13-15) admitted to two Level 1 trauma centers as part of a prospective follow-up study. We compared clinical characteristics, demographics, and injury mechanism between groups. Post-concussive complaints, mood disorders, and post-traumatic stress-related complaints were assessed at 2 weeks post-injury, and outcome at 6 months with the Glasgow Outcome Scale Extended (GOSE). Thirty-three percent of the mTBI patients were intoxicated. Results showed that the intoxicated group was younger (36 vs. 40 years; p = 0.001) and were more frequently of male gender (78% vs. 60%; p violence-related injuries. The intoxicated group was assessed with a lower GCS score and had a higher hospital admission rate. However, at 2 weeks post-injury, intoxicated patients reported less complaints than the non-alcohol group and showed a better recovery at 6 months (average GOSE scores 7 vs. 7.3; p = 0.030). We conclude that AAI in mTBI represents a characteristically different group, which has implications for prevention measures, as well as the course of recovery. PMID:26230219

  2. Community-based training and employment: an effective program for persons with traumatic brain injury.

    Science.gov (United States)

    Wall, J R; Niemczura, J G; Rosenthal, M

    1998-01-01

    Occupational entry is an important issue for persons with disabilities, as many become or remain unemployed after their injury. After traumatic brain injury (TBI), individuals exhibit high unemployment rates, especially those persons with injuries of greater severity, a limited premorbid work history and/or persons from economically disadvantaged backgrounds. Vocational rehabilitation programs have been developed to improve employability. Traditional vocational rehabilitation approaches, based on integrating work skills with cognitive rehabilitation models have proven only minimally effective with TBI. The supported employment model has been demonstrated to be much more effective with this group, as has an approach that combines vocational and psychosocial skills training along with job support. Even with these generally successful approaches, the literature on vocational rehabilitation in clients from economically disadvantaged environments who are diagnosed with TBI is limited. An approach for the economically disadvantaged, which combines work skills training in a real work community along with supported employment is presented. PMID:24525815

  3. Altered Mitochondrial Dynamics and TBI Pathophysiology

    Directory of Open Access Journals (Sweden)

    Tara Diane Fischer

    2016-03-01

    Full Text Available Mitochondrial function is intimately linked to cellular survival, growth, and death. Mitochondria not only generate ATP from oxidative phosphorylation, but also mediate intracellular calcium buffering, generation of reactive oxygen species (ROS, and apoptosis. Electron leakage from the electron transport chain, especially from damaged or depolarized mitochondria, can generate excess free radicals that damage cellular proteins, DNA, and lipids. Furthermore, mitochondrial damage releases pro-apoptotic factors to initiate cell death. Previous studies have reported that traumatic brain injury (TBI reduces mitochondrial respiration, enhances production of ROS, and triggers apoptotic cell death, suggesting a prominent role of mitochondria in TBI pathophysiology. Mitochondria maintain cellular energy homeostasis and health via balanced processes of fusion and fission, continuously dividing and fusing to form an interconnected network throughout the cell. An imbalance of these processes, particularly an excess of fission, can be detrimental to mitochondrial function, causing decreased respiration, ROS production, and apoptosis. Mitochondrial fission is regulated by the cytosolic GTPase, dynamin-related protein 1 (Drp1, which translocates to the mitochondrial outer membrane to initiate fission. Aberrant Drp1 activity has been linked to excessive mitochondrial fission and neurodegeneration. Measurement of Drp1 levels in purified hippocampal mitochondria showed an increase in TBI animals as compared to sham controls. Analysis of cryo-electron micrographs of these mitochondria also showed that TBI caused an initial increase in the length of hippocampal mitochondria at 24 hours post-injury, followed by a significant decrease in length at 72 hours. Post-TBI administration of Mdivi-1, a pharmacological inhibitor of Drp1, prevented this decrease in mitochondria length. Mdivi-1 treatment also reduced the loss of newborn neurons in the hippocampus and improved

  4. Altered Mitochondrial Dynamics and TBI Pathophysiology.

    Science.gov (United States)

    Fischer, Tara D; Hylin, Michael J; Zhao, Jing; Moore, Anthony N; Waxham, M Neal; Dash, Pramod K

    2016-01-01

    Mitochondrial function is intimately linked to cellular survival, growth, and death. Mitochondria not only generate ATP from oxidative phosphorylation, but also mediate intracellular calcium buffering, generation of reactive oxygen species (ROS), and apoptosis. Electron leakage from the electron transport chain, especially from damaged or depolarized mitochondria, can generate excess free radicals that damage cellular proteins, DNA, and lipids. Furthermore, mitochondrial damage releases pro-apoptotic factors to initiate cell death. Previous studies have reported that traumatic brain injury (TBI) reduces mitochondrial respiration, enhances production of ROS, and triggers apoptotic cell death, suggesting a prominent role of mitochondria in TBI pathophysiology. Mitochondria maintain cellular energy homeostasis and health via balanced processes of fusion and fission, continuously dividing and fusing to form an interconnected network throughout the cell. An imbalance of these processes, particularly an excess of fission, can be detrimental to mitochondrial function, causing decreased respiration, ROS production, and apoptosis. Mitochondrial fission is regulated by the cytosolic GTPase, dynamin-related protein 1 (Drp1), which translocates to the mitochondrial outer membrane (MOM) to initiate fission. Aberrant Drp1 activity has been linked to excessive mitochondrial fission and neurodegeneration. Measurement of Drp1 levels in purified hippocampal mitochondria showed an increase in TBI animals as compared to sham controls. Analysis of cryo-electron micrographs of these mitochondria also showed that TBI caused an initial increase in the length of hippocampal mitochondria at 24 h post-injury, followed by a significant decrease in length at 72 h. Post-TBI administration of Mitochondrial division inhibitor-1 (Mdivi-1), a pharmacological inhibitor of Drp1, prevented this decrease in mitochondria length. Mdivi-1 treatment also reduced the loss of newborn neurons in the

  5. Talking to Your Patients: A Clinician’s Guide to Treating Mild Traumatic Brain Injury

    Centers for Disease Control (CDC) Podcasts

    2010-10-05

    This podcast describes how to talk to your patients and provide health information about mild traumatic brain injury (mild TBI) that may help ease their concerns and can give them tools to help speed their recovery.  Created: 10/5/2010 by National Center for Injury Prevention and Control (NCIPC).   Date Released: 10/5/2010.

  6. Pediatric minor traumatic brain injury.

    Science.gov (United States)

    Gordon, Kevin E

    2006-12-01

    The literature surrounding minor traumatic brain injury is complex, methodologically challenging, and controversial. Although we lack a consistent standardized definition, the annual rate is likely in excess of 200 per 100,000 children. The proportion of children with minor traumatic brain injury who will require neurosurgery is certainly return to play is currently recommended. The recurrence risk for subsequent concussions is elevated, but there is limited documentation of the effectiveness of preventative efforts. Much remains to be learned. PMID:17178354

  7. Suicidality, bullying and other conduct and mental health correlates of traumatic brain injury in adolescents.

    Directory of Open Access Journals (Sweden)

    Gabriela Ilie

    Full Text Available OBJECTIVE: Our knowledge on the adverse correlates of traumatic brain injuries (TBI, including non-hospitalized cases, among adolescents is limited to case studies. We report lifetime TBI and adverse mental health and conduct behaviours associated with TBI among adolescents from a population-based sample in Ontario. METHOD AND FINDINGS: Data were derived from 4,685 surveys administered to adolescents in grades 7 through 12 as part of the 2011 population-based cross-sectional Ontario Student Drug Use and Health Survey (OSDUHS. Lifetime TBI was defined as head injury that resulted in being unconscious for at least 5 minutes or being retained in the hospital for at least one night, and was reported by 19.5% (95%CI:17.3,21.9 of students. When holding constant sex, grade, and complex sample design, students with TBI had significantly greater odds of reporting elevated psychological distress (AOR = 1.52, attempting suicide (AOR = 3.39, seeking counselling through a crisis help-line (AOR = 2.10, and being prescribed medication for anxiety, depression, or both (AOR = 2.45. Moreover, students with TBI had higher odds of being victimized through bullying at school (AOR = 1.70, being cyber-bullied (AOR = 2.05, and being threatened with a weapon at school (AOR = 2.90, compared with students who did not report TBI. Students with TBI also had higher odds of victimizing others and engaging in numerous violent as well as nonviolent conduct behaviours. CONCLUSIONS: Significant associations between TBI and adverse internalizing and externalizing behaviours were found in this large population-based study of adolescents. Those who reported lifetime TBI were at a high risk for experiencing mental and physical health harms in the past year than peers who never had a head injury. Primary physicians should be vigilant and screen for potential mental heath and behavioural harms in adolescent patients with TBI. Efforts to prevent TBI during

  8. Early dysautonomia detected by heart rate variability predicts late depression in female patients following mild traumatic brain injury.

    Science.gov (United States)

    Sung, Chih-Wei; Lee, Hsin-Chien; Chiang, Yung-Hsiao; Chiu, Wen-Ta; Chu, Shu-Fen; Ou, Ju-Chi; Tsai, Shin-Han; Liao, Kuo-Hsing; Lin, Chien-Min; Lin, Jia-Wei; Chen, Gunng-Shinng; Li, Wei-Jiun; Wang, Jia-Yi

    2016-04-01

    Depression is one of the frequent complications following a mild traumatic brain injury (mTBI). Recent research indicated that abnormalities in the autonomic nervous system (ANS) can be evaluated by a noninvasive power spectral analysis of the heart rate variability (HRV). In this study, we investigated whether a frequency-domain analysis of HRV was correlated with late depression in mTBI patients. In total, 181 patients diagnosed with mTBI and 83 volunteers as healthy controls were recruited in 2010-2014. Beck Depression Inventory (BDI) scores were used to evaluate depression in the 1st week of assessment and at 1.5-, 3-, 6-, 12-, and 18-month follow-ups. Correlation and logistic regression analyses of the 1st week HRV parameters with BDI scores at 18 months were performed in individual female mTBI patients. Female mTBI patients were more vulnerable to depression accompanied by reduced HRV compared to healthy controls. Over time, depression was aggravated in female mTBI patients but was alleviated in male mTBI patients. A significantly lower parasympathetic proportion of the ANS was noted at 18 months with respect to the 1st week in female mTBI patients. In addition, depression in female mTBI patients at 18 months after injury was significantly correlated with a decrease in the parasympathetic proportion of the ANS in the 1st week (ρ = -0.411; p Dysautonomia resulted in higher risks of depression in female mTBI patients. We concluded that early dysautonomia following an mTBI contributes to late depression in female mTBI patients. PMID:26560198

  9. Role of α-II-spectrin breakdown products in the prediction of the severity and clinical outcome of acute traumatic brain injury

    Science.gov (United States)

    CHEN, SHANGYU; SHI, QIANKUN; ZHENG, SHUYUN; LUO, LIANGSHEN; YUAN, SHOUTAO; WANG, XIANG; CHENG, ZIHAO; ZHANG, WENHAO

    2016-01-01

    αII-spectrin breakdown products are regarded as potential biomarkers for traumatic brain injury (TBI). The aim of the present study was to further evaluate these biomarkers by assessing their clinical utility in predicting the severity of injury and clinical outcome of patients with TBI. Eligible patients with acute TBI (n=17), defined by a Glasgow Coma Scale (GCS) score of ≤8, were enrolled. Ventricular cerebrospinal fluid (CSF) was sampled from each patient at 24, 72 and 120 h following TBI. An immunoblot assay was used to determine the concentrations of SBDPs in the CSF samples. The concentrations of SBDPs combined with the GCS score at 24 h after injury and the Glasgow Outcome Score (GOS) at 30 days after injury were compared and analyzed. The levels of SBDPs in CSF were markedly increased following acute TBI in comparison with those in the control group. In the early period after TBI, the levels of SBDPs were closely associated with GCS score. Comparisons of the SBDP levels with the severity of injury revealed significant differences between patients with the most severe brain injury and patients with severe brain injury in the first 24 h post-injury (Pinjury. The levels of SBDPs differed significantly between patients grouped according to prognosis (Pinjury and clinical outcome of patients.

  10. Traumatic brain injury and bipolar psychosis in the Genomic Psychiatry Cohort.

    Science.gov (United States)

    Cieslak, Kristina; Pato, Michelle; Buckley, Peter; Pato, Carlos; Sobell, Janet L; Medeiros, Helena; Zhao, Yuan; Ahn, Hongshik; Malaspina, Dolores

    2016-06-01

    Approximately three million individuals in the United States sustain traumatic brain injury (TBI) every year, with documented impact on a range of neurological and psychiatric disturbances including mania, depression, and psychosis. Identification of subsets of individuals that may demonstrate increased propensity for posttraumatic symptoms and who may share genetic vulnerabilities for gene-environment interactions can enhance efforts to understand, predict, and prevent these phenomena. A sample of 11,489 cases from the Genomic Psychiatry Cohort (GPC), a NIMH-managed data repository for the investigation of schizophrenia and bipolar disorder, was used for this study. Cases were excluded if TBI was deemed causal to their mental illness. A k-means clustering algorithm was used to probe differences between schizophrenia and bipolar disorder associated with variables including onset age, hallucinations, delusions, head injury, and TBI. Cases were separated into an optimum number of seven clusters, with two clusters including all cases with brain injury. Bipolar disorder with psychosis and TBI were significantly correlated in one cluster in which 72% of cases were male and 99.2% sustained head injury. This cluster also carried the longest average period of unconsciousness. This study demonstrates an association of TBI with psychosis in a subset of bipolar cases, suggesting that traumatic stressors may have the ability to impact gene expression in a vulnerable population, and/or there is a heightened occurrence of TBI in individuals with underlying psychosis. Further studies should more closely examine the interplay between genetic variation in bipolar disorder and susceptibility to psychosis following TBI. © 2015 Wiley Periodicals, Inc. PMID:26224022

  11. White matter disruption in moderate/severe pediatric traumatic brain injury: Advanced tract-based analyses

    Directory of Open Access Journals (Sweden)

    Emily L. Dennis

    2015-01-01

    Full Text Available Traumatic brain injury (TBI is the leading cause of death and disability in children and can lead to a wide range of impairments. Brain imaging methods such as DTI (diffusion tensor imaging are uniquely sensitive to the white matter (WM damage that is common in TBI. However, higher-level analyses using tractography are complicated by the damage and decreased FA (fractional anisotropy characteristic of TBI, which can result in premature tract endings. We used the newly developed autoMATE (automated multi-atlas tract extraction method to identify differences in WM integrity. 63 pediatric patients aged 8–19 years with moderate/severe TBI were examined with cross sectional scanning at one or two time points after injury: a post-acute assessment 1–5 months post-injury and a chronic assessment 13–19 months post-injury. A battery of cognitive function tests was performed in the same time periods. 56 children were examined in the first phase, 28 TBI patients and 28 healthy controls. In the second phase 34 children were studied, 17 TBI patients and 17 controls (27 participants completed both post-acute and chronic phases. We did not find any significant group differences in the post-acute phase. Chronically, we found extensive group differences, mainly for mean and radial diffusivity (MD and RD. In the chronic phase, we found higher MD and RD across a wide range of WM. Additionally, we found correlations between these WM integrity measures and cognitive deficits. This suggests a distributed pattern of WM disruption that continues over the first year following a TBI in children.

  12. Identifying Risk Factors for Incidence of Mental Disorders after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Sajjad Rezaei

    2014-09-01

    Full Text Available Background: Organic brain pathology usually may be followed by mental disorders. This research was aimed at constructing a predictive model and investigating the risk factors in the incidence of mental disorders after traumatic brain injury (TBI. Materials and Methods: Two hundred and thirty eight patients (195 males and 43 females were entered the study in a descriptive-longitudinal design by non-probable and consecutive sampling method. They were undergone neurosurgical examinations and psychological evaluations. After a 4-month follow-up, 65.1% of the patients (N=155 referred to a psychiatrist in order to determine the nature of mental disorder following TBI, using a structured clinical interview based on DSM-IV diagnostic criteria. Results: 75.48% (117 cases of patients had a form of mental disorder‎ secondary to TBI. The Results of binary logistic regression analyses for calculating odds ratio (OR model with 95% confidence interval (CI indicating the severity of TBI ‎(OR‏=‏3.497,‎ 95% CI =1.259-9.712‎, presence of subcranial injury (OR‏=‏‎2.834,‎ 95% CI =1.022-7.857‎ and falling level of general compatibility, as measured by modified version of GHQ-28 (OR‏=‏1.072, 95% ‎CI =1.035-1.111 indicated an increasing risk in the incidence of mental disorder. Conclusion: Findings revealed that in the development of post-TBI mental disorders, first there was a close relationship with organic brain pathology (TBI severity and subcranial injury, although the role of effective psychological factors such as level of general compatibility after trauma should not be neglected. Also in order to predict the people at risk of mental disorders after TBI, the proposed predictive model in this study can be used.

  13. Wireless Intracranial Pressure Sensors for the Assessment of Traumatic Brain Injury

    Science.gov (United States)

    Meng, Xu

    A significant cause of death and long term disability due to head injuries and pathological conditions is an elevation in the intracranial pressure (ICP). ICP measurements before and after the injury in a completely closed-head environment have significant research value, particularly during the acute post-injury period. With the current technology, a tethered fiber optic probe penetrates the brain, and therefore can only remain implanted for relatively short time periods. The goal of this research was to evaluate the dynamic performances of both AICP (previously designed) and digital ICP (DICP) (newly designed) devices in different traumatic brain injury (TBI) models: a swine model of closed-head rotational injury and a rat model of closed-head single and repetitive blast injury. The uniqueness of this work is accentuated by the first time in-vivo studies of dynamic ICP changes using custom-built ICP sensors implanted in two different TBI models. Following implant, baseline ICP readings were relatively stable prior to injury and closed-head rotation TBI induced a rapid and extreme ICP spike occurring directly upon injury. The acute elevation in ICP generally lasted for 40-60 minutes, followed by a gradual decline to a persistently maintained elevated level over several hours post-injury. The AICP devices were redesigned for the study of ICP variation in a rat model of single and repetitive blast induced TBI (bTBI) for seven days and the results revealed the ICP changes in a week under different blast overpressure (BOP) exposure conditions with respect to the peak pressure and the numbers of occurrences of BOP. In addition, a novel TBI in-vitro model was proposed to induce a BOP similar to that in the one measured in the animal's head generated by shock tube for the study of immediate neuron response to BOP in a small Petri dish. This research highlights the utility of wireless ICP devices as a tool to diagnose and track long-term ICP changes following TBI in a

  14. Emotion recognition impairment in traumatic brain injury compared with schizophrenia spectrum: similar deficits with different origins.

    Science.gov (United States)

    Mancuso, Mauro; Magnani, Nadia; Cantagallo, Anna; Rossi, Giulia; Capitani, Donatella; Galletti, Vania; Cardamone, Giuseppe; Robertson, Ian Hamilton

    2015-02-01

    The aim of our study was to identify the common and separate mechanisms that might underpin emotion recognition impairment in patients with traumatic brain injury (TBI) and schizophrenia (Sz) compared with healthy controls (HCs). We recruited 21 Sz outpatients, 24 severe TBI outpatients, and 38 HCs, and we used eye-tracking to compare facial emotion processing performance. Both Sz and TBI patients were significantly poorer at recognizing facial emotions compared with HC. Sz patients showed a different way of exploring the Pictures of Facial Affects stimuli and were significantly worse in recognition of neutral expressions. Selective or sustained attention deficits in TBI may reduce efficient emotion recognition, whereas in Sz, there is a more strategic deficit underlying the observed problem. There would seem to be scope for adjustment of effective rehabilitative training focused on emotion recognition. PMID:25602943

  15. The immunology of traumatic brain injury: a prime target for Alzheimer’s disease prevention

    Directory of Open Access Journals (Sweden)

    Giunta Brian

    2012-08-01

    Full Text Available Abstract A global health problem, traumatic brain injury (TBI is especially prevalent in the current era of ongoing world military conflicts. Its pathological hallmark is one or more primary injury foci, followed by a spread to initially normal brain areas via cascades of inflammatory cytokines and chemokines resulting in an amplification of the original tissue injury by microglia and other central nervous system immune cells. In some cases this may predispose individuals to later development of Alzheimer’s disease (AD. The inflammatory-based progression of TBI has been shown to be active in humans for up to 17 years post TBI. Unfortunately, all neuroprotective drug trials have failed, and specific treatments remain less than efficacious. These poor results might be explained by too much of a scientific focus on neurons without addressing the functions of microglia in the brain, which are at the center of proinflammatory cytokine generation. To address this issue, we provide a survey of the TBI-related brain immunological mechanisms that may promote progression to AD. We discuss these immune and microglia-based inflammatory mechanisms involved in the progression of post-trauma brain damage to AD. Flavonoid-based strategies to oppose the antigen-presenting cell-like inflammatory phenotype of microglia will also be reviewed. The goal is to provide a rationale for investigations of inflammatory response following TBI which may represent a pathological link to AD. In the end, a better understanding of neuroinflammation could open therapeutic avenues for abrogation of secondary cell death and behavioral symptoms that may mediate the progression of TBI to later AD.

  16. Molecular mechanisms of estrogen for neuroprotection in spinal cord injury and traumatic brain injury.

    Science.gov (United States)

    Chakrabarti, Mrinmay; Das, Arabinda; Samantaray, Supriti; Smith, Joshua A; Banik, Naren L; Haque, Azizul; Ray, Swapan K

    2016-04-01

    Estrogen (EST) is a steroid hormone that exhibits several important physiological roles in the human body. During the last few decades, EST has been well recognized as an important neuroprotective agent in a variety of neurological disorders in the central nervous system (CNS), such as spinal cord injury (SCI), traumatic brain injury (TBI), Alzheimer's disease, and multiple sclerosis. The exact molecular mechanisms of EST-mediated neuroprotection in the CNS remain unclear due to heterogeneity of cell populations that express EST receptors (ERs) in the CNS as well as in the innate and adaptive immune system. Recent investigations suggest that EST protects the CNS from injury by suppressing pro-inflammatory pathways, oxidative stress, and cell death, while promoting neurogenesis, angiogenesis, and neurotrophic support. In this review, we have described the currently known molecular mechanisms of EST-mediated neuroprotection and neuroregeneration in SCI and TBI. At the same time, we have emphasized on the recent in vitro and in vivo findings from our and other laboratories, implying potential clinical benefits of EST in the treatment of SCI and TBI. PMID:26461840

  17. Detection of neural stem cells function in rats with traumatic brain injury by manganese-enhanced magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    TANG Hai-liang; SUN Hua-ping; WU Xing; SHA Hong-ying; FENG Xiao-yuan; ZHU Jian-hong

    2011-01-01

    Background Previously we had successfully tracked adult human neural stem cells (NSCs) labeled with superparamagnetic iron oxide particles (SPIOs) in host human brain after transplantation In vivo non-invasively by magnetic resonance imaging (MRI). However, the function of the transplanted NSCs could not be evaluated by the method. In the study, we applied manganese-enhanced MRI (ME-MRI) to detect NSCs function after implantation in brain of rats with traumatic brain injury (TBI) In vivo.Methods Totally 40 TBI rats were randomly divided into 4 groups with 10 rats in each group. In group 1, the TBI rats did not receive NSCs transplantation. MnCl2-4H2O was intravenously injected, hyperosmolar mannitol was delivered to disrupt rightside blood brain barrier, and its contralateral forepaw was electrically stimulated. In group 2, the TBI rats received NSCs (labeled with SPIO) transplantation, and the ME-MRI procedure was same to group 1. In group 3, the TBI rats received NSCs (labeled with SPIO) transplantation, and the ME-MRI procedure was same to group 1, but diltiazem was introduced during the electrical stimulation period. In group 4, the TBI rats received phosphate buffered saline (PBS) injection, and the ME-MRI procedure was same to group 1.Results Hyperintense signals were detected by ME-MRI in the cortex areas associated with somatosensory in TBI rats of group 2. These signals, which could not be induced in TBI rats of groups 1 and 4, disappeared when diltiazem was introduced in TBI rats of group 3.Conclusion In this initial study, we mapped implanted NSCs activity and its functional participation within local brain area in TBI rats by ME-MRI technique, paving the way for further pre-clinical research.

  18. Adult sports-related traumatic brain injury in United States trauma centers.

    Science.gov (United States)

    Winkler, Ethan A; Yue, John K; Burke, John F; Chan, Andrew K; Dhall, Sanjay S; Berger, Mitchel S; Manley, Geoffrey T; Tarapore, Phiroz E

    2016-04-01

    OBJECTIVE Sports-related traumatic brain injury (TBI) is an important public health concern estimated to affect 300,000 to 3.8 million people annually in the United States. Although injuries to professional athletes dominate the media, this group represents only a small proportion of the overall population. Here, the authors characterize the demographics of sports-related TBI in adults from a community-based trauma population and identify predictors of prolonged hospitalization and increased morbidity and mortality rates. METHODS Utilizing the National Sample Program of the National Trauma Data Bank (NTDB), the authors retrospectively analyzed sports-related TBI data from adults (age ≥ 18 years) across 5 sporting categories-fall or interpersonal contact (FIC), roller sports, skiing/snowboarding, equestrian sports, and aquatic sports. Multivariable regression analysis was used to identify predictors of prolonged hospital length of stay (LOS), medical complications, inpatient mortality rates, and hospital discharge disposition. Statistical significance was assessed at α Equestrian sports were the greatest contributors to sports-related TBI (45.2%). Mild TBI represented nearly 86% of injuries overall. Mean (± SEM) LOSs in the hospital or intensive care unit (ICU) were 4.25 ± 0.09 days and 1.60 ± 0.06 days, respectively. The mortality rate was 3.0% across all patients, but was statistically higher in TBI from roller sports (4.1%) and aquatic sports (7.7%). Age, hypotension on admission to the emergency department (ED), and the severity of head and extracranial injuries were statistically significant predictors of prolonged hospital and ICU LOSs, medical complications, failure to discharge to home, and death. Traumatic brain injury during aquatic sports was similarly associated with prolonged ICU and hospital LOSs, medical complications, and failure to be discharged to home. CONCLUSIONS Age, hypotension on ED admission, severity of head and extracranial injuries

  19. Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Ming-Xiong Huang

    2014-01-01

    Full Text Available Traumatic brain injury (TBI is a leading cause of sustained impairment in military and civilian populations. However, mild TBI (mTBI can be difficult to detect using conventional MRI or CT. Injured brain tissues in mTBI patients generate abnormal slow-waves (1–4 Hz that can be measured and localized by resting-state magnetoencephalography (MEG. In this study, we develop a voxel-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mTBI on a single-subject basis. A normative database of resting-state MEG source magnitude images (1–4 Hz from 79 healthy control subjects was established for all brain voxels. The high-resolution MEG source magnitude images were obtained by our recent Fast-VESTAL method. In 84 mTBI patients with persistent post-concussive symptoms (36 from blasts, and 48 from non-blast causes, our method detected abnormalities at the positive detection rates of 84.5%, 86.1%, and 83.3% for the combined (blast-induced plus with non-blast causes, blast, and non-blast mTBI groups, respectively. We found that prefrontal, posterior parietal, inferior temporal, hippocampus, and cerebella areas were particularly vulnerable to head trauma. The result also showed that MEG slow-wave generation in prefrontal areas positively correlated with personality change, trouble concentrating, affective lability, and depression symptoms. Discussion is provided regarding the neuronal mechanisms of MEG slow-wave generation due to deafferentation caused by axonal injury and/or blockages/limitations of cholinergic transmission in TBI. This study provides an effective way for using MEG slow-wave source imaging to localize affected areas and supports MEG as a tool for assisting the diagnosis of mTBI.

  20. MLC901, a Traditional Chinese Medicine induces neuroprotective and neuroregenerative benefits after traumatic brain injury in rats.

    Science.gov (United States)

    Quintard, H; Lorivel, T; Gandin, C; Lazdunski, M; Heurteaux, C

    2014-09-26

    Traumatic brain injury (TBI) is a frequent and clinically highly heterogeneous neurological disorder with large socioeconomic consequences. NeuroAid (MLC601 and MLC901), a Traditional Medicine used in China for patients after stroke has been previously reported to induce neuroprotection and neuroplasticity. This study was designed to evaluate the neuroprotective and neuroregenerative effects of MLC901 in a rat model of TBI. TBI was induced by a moderate lateral fluid percussion applied to the right parietal cortex. MLC901 was injected intraperitoneally at 2h post-TBI, and then administered in drinking water at a concentration of 10mg/ml until sacrifice of the animals. The cognitive deficits induced by TBI were followed by using the "what-where-when" task, which allows the measurement of episodic-like memory. MLC901 treatment decreased brain lesions induced by TBI. It prevented the serum increase of S-100 beta (S100B) and neuron-specific enolase (NSE), which may be markers to predict the neurologic outcome in human patients with TBI. MLC901 reduced the infarct volume when injected up to 2h post-TBI, prevented edema formation and assisted its resolution, probably via the regulation of aquaporin 4. These positive MLC901 effects were associated with an upregulation of vascular endothelial growth factor (VEGF) as well as an increase of endogenous hippocampal neurogenesis and gliogenesis around the lesion. Furthermore, MLC901 reduced cognitive deficits induced by TBI. Rats subjected to TBI displayed a suppression of temporal order memory, which was restored by MLC901. This work provides evidence that MLC901 has neuroprotective and neurorestorative actions, which lead to an improvement in the recovery of cognitive functions in a model of traumatic brain injury. PMID:24993477