WorldWideScience

Sample records for brain injury sustained

  1. Building sustainable rural research capacity: the experiences of a brain injury rehabilitation service.

    Science.gov (United States)

    Salmon, Lizette; Curtin, Michael; Ginnivan, Denis; Neumayer, Robert

    2007-06-01

    There is an emerging recognition of the need for health research that is conducted by and for rural people. Rural research promotes excellence in clinical practice and can improve staff recruitment and retention. A group of clinicians from a regional brain injury service collaborated with academics at their local university to form the Rural Rehabilitation Research on Brain Injury initiative. This initiative has funded four peer-reviewed research projects, secured an Australian Research Council grant and established the beginnings of a state-wide rural research collective involving all Brain Injury Rehabilitation Programs in New South Wales. Sustainable research enterprises such as this have significant potential as a 'prototype' for building research capacity in other rural health sectors. Governments and funding bodies should support these initiatives.

  2. Brain Injury Association of America

    Science.gov (United States)

    ... Only) 1-800-444-6443 Welcome to the Brain Injury Association of America (BIAA) Brain injury is not an event or an outcome. ... misunderstood, under-funded neurological disease. People who sustain brain injuries must have timely access to expert trauma ...

  3. Initial and sustained brain responses to threat anticipation in blood-injection-injury phobia

    Directory of Open Access Journals (Sweden)

    Leonie Brinkmann

    2017-01-01

    Full Text Available Blood-injection-injury (BII phobia differs from other subtypes of specific phobia in that it is associated with elevated disgust-sensitivity as well as specific autonomic and brain responses during processing of phobia-relevant stimuli. To what extent these features play a role already during threat anticipation is unclear. In the current fMRI experiment, 16 female BII phobics and 16 female healthy controls anticipated the presentation of phobia-specific and neutral pictures. On the behavioral level, anxiety dominated the anticipatory period in BII phobics relative to controls, while both anxiety and disgust were elevated during picture presentation. By applying two different models for the analysis of brain responses to anticipation of phobia-specific versus neutral stimuli, we found initial and sustained increases of activation in anterior cingulate cortex (ACC, insula, lateral and medial prefrontal cortex (PFC, thalamus and visual areas, as well as initial activation in the amygdala for BII phobics as compared to healthy controls. These results suggest that BII phobia is characterized by activation of a typical neural defense network during threat anticipation, with anxiety as the predominant emotion.

  4. Traumatic Brain Injury

    Science.gov (United States)

    Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that ...

  5. Assessment of Students with Traumatic Brain Injury

    Science.gov (United States)

    Chesire, David J.; Buckley, Valerie A.; Canto, Angela I.

    2011-01-01

    The incidence of brain injuries, as well as their impact on individuals who sustain them, has received growing attention from American media in recent years. This attention is likely the result of high profile individuals suffering brain injuries. Greater public awareness of traumatic brain injuries (TBIs) has also been promoted by sources such as…

  6. Social cognition and its relationship to functional outcomes in patients with sustained acquired brain injury

    Directory of Open Access Journals (Sweden)

    Ubukata S

    2014-11-01

    Full Text Available Shiho Ubukata,1,2 Rumi Tanemura,2 Miho Yoshizumi,1 Genichi Sugihara,1 Toshiya Murai,1 Keita Ueda1 1Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, 2Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan Abstract: Deficits in social cognition are common after traumatic brain injury (TBI. However, little is known about how such deficits affect functional outcomes. The purpose of this study was to investigate the relationship between social cognition and functional outcomes in patients with TBI. We studied this relationship in 20 patients with TBI over the course of 1 year post-injury. Patients completed neurocognitive assessments and social cognition tasks. The social cognition tasks included an emotion-perception task and three theory of mind tasks: the Faux Pas test, Reading the Mind in the Eyes (Eyes test, and the Moving-Shapes paradigm. The Craig Handicap Assessment and Reporting Technique was used to assess functional outcomes. Compared with our database of normal subjects, patients showed impairments in all social cognition tasks. Multiple regression analysis revealed that theory of mind ability as measured by the Eyes test was the best predictor of the cognitive aspects of functional outcomes. The findings of this pilot study suggest that the degree to which a patient can predict what others are thinking is an important measure that can estimate functional outcomes over 1 year following TBI. Keywords: Eyes test, social emotion perception, social function, social participation, theory of mind

  7. Driving Difficulties and Adaptive Strategies: The Perception of Individuals Having Sustained a Mild Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Carolina Bottari

    2012-01-01

    Full Text Available Introduction. After a mild traumatic brain injury (mTBI, individuals quickly resume driving. However, relatively little is known about the impact of mTBI on driving ability and, notably, on the perceived influence of postconcussive symptoms on driving. Hence, the objective of this study was to document the perception of driving abilities in individuals with mTBI. Method. Twenty-seven drivers with mTBI were interviewed to document their perception regarding their driving abilities. Both driving-related difficulties and compensatory strategies used to increase driving safety were documented. A mixed quantitative and qualitative analysis of the data was completed. Results. 93% of participants reported at least one difficulty perceived as having an impact on everyday activities. Most frequently named problems affecting driving were fatigue and reduced concentration. In addition, 74% of participants had adapted their driving or developed strategies to compensate for driving difficulties. Discussion/Conclusion. Postconcussive symptoms have repercussions on driving ability. However, people with mTBI tend to be aware of their difficulties and develop, over time, adaptive strategies. Preventive measures are thus warranted to increase health care professionals' awareness of the potential consequences of mTBI on driving ability and to promote guidelines for the safe resumption of driving after injury.

  8. Occupational Therapy and Community Reintegration of Persons with Brain Injury

    Science.gov (United States)

    Fact Sheet Occupational Therapy and Community Reintegration of Persons With Brain Injury Brain injuries can affect motor, sensory, cognitive, and behavioral functioning. A person who has sustained a brain ...

  9. MRI of perinatal brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Mary; Allsop, Joanna [Imperial College, Robert Steiner MR Unit, Perinatal Imaging, MRC Clinical Sciences Centre, Hammersmith Hospital, London (United Kingdom); Martinez Biarge, Miriam [La Paz University Hospital, Dept of Neonatology, Madrid (Spain); Counsell, Serena [Imperial College, Robert Steiner MR Unit, Neonatal Medicine, MRC Clinical Sciences Centre, Hammersmith Hospital, London (United Kingdom); Cowan, Frances [Imperial College, Dept of Paediatrics, Hammersmith Hospital, London (United Kingdom)

    2010-06-15

    MRI is invaluable in assessing the neonatal brain following suspected perinatal injury. Good quality imaging requires adaptations to both the hardware and the sequences used for adults or older children. The perinatal and postnatal details often predict the pattern of lesions sustained and should be available to aid interpretation of the imaging findings. Perinatal lesions, the pattern of which can predict neurodevelopmental outcome, are at their most obvious on conventional imaging between 1 and 2 weeks from birth. Very early imaging during the first week may be useful to make management decisions in ventilated neonates but brain abnormalities may still be subtle using conventional sequences. Diffusion-weighted imaging (DWI) is very useful for the early identification of ischaemic tissue in the neonatal brain but may underestimate the final extent of injury, particularly basal ganglia and thalamic lesions. MR imaging is an excellent predictor of outcome following perinatal brain injury and can therefore be used as a biomarker in interventional trials designed to reduce injury and improve neurodevelopmental outcome. (orig.)

  10. Traumatic brain injury and reserve.

    Science.gov (United States)

    Bigler, Erin D; Stern, Yaakov

    2015-01-01

    The potential role of brain and cognitive reserve in traumatic brain injury (TBI) is reviewed. Brain reserve capacity (BRC) refers to preinjury quantitative measures such as brain size that relate to outcome. Higher BRC implies threshold differences when clinical deficits will become apparent after injury, where those individuals with higher BRC require more pathology to reach that threshold. Cognitive reserve (CR) refers to how flexibly and efficiently the individual makes use of available brain resources. The CR model suggests the brain actively attempts to cope with brain damage by using pre-existing cognitive processing approaches or by enlisting compensatory approaches. Standard proxies for CR include education and IQ although this has expanded to include literacy, occupational attainment, engagement in leisure activities, and the integrity of social networks. Most research on BRC and CR has taken place in aging and degenerative disease but these concepts likely apply to the effects of TBI, especially with regards to recovery. Since high rates of TBI occur in those under age 35, both CR and BRC factors likely relate to how the individual copes with TBI over the lifespan. These factors may be particularly relevant to the relationship of developing dementia in the individual who has sustained a TBI earlier in life.

  11. Traumatic Brain Injury as a Cause of Behavior Disorders.

    Science.gov (United States)

    Nordlund, Marcia R.

    There is increasing evidence that many children and adolescents who display behavior disorders have sustained a traumatic brain injury. Traumatic brain injury can take the following forms: closed head trauma in which the brain usually suffers diffuse damage; open head injury which usually results in specific focal damage; or internal trauma (e.g.,…

  12. Concussion and Traumatic Brain Injury

    Science.gov (United States)

    ... of this page please turn JavaScript on. Feature: Concussion Concussion and Traumatic Brain Injury Past Issues / Summer 2015 ... have a concussion or more serious brain injury. Concussion Signs Observed Can't recall events prior to ...

  13. Cognitive impairments in patients with brain injury

    Directory of Open Access Journals (Sweden)

    Vladimir Vladimirovich Zakharov

    2013-01-01

    Full Text Available The paper gives the data of Russian and foreign authors and the results of this paper authors’ investigation of higher cerebral functions in patients who have sustained brain injury (BI. It shows their high prevalence, the predominance of cognitive impairments (CI over neurological disorders in patients with mild and moderate injury, presents their quantitative and qualitative features (a preponderance of focal symptoms in severe injury and neurodynamic disorders in mild injury, describes the predictors of their course and prognosis (the degree of injury is one of the most important predictors, and discusses current trends in the medical correction of detected abnormalities.

  14. Radiation Injury to the Brain

    Science.gov (United States)

    ... Tumors Brain Tumors Brain Disorders AVMs Radiosurgery Gamma Knife Linac Radiotherapy Overview Childhood Brain Tumors IMRT Radiation Therapy Radiation Injury Treatment Day Making a Decision Centers of Excellence Publications Definitions Q & ...

  15. Wrapping Our Brains around Sustainability

    Directory of Open Access Journals (Sweden)

    Mary Ann Curran

    2009-03-01

    Full Text Available As many of us begin to embrace the concept of sustainability, we realize that it is not simply something that we ‘do.’ Rather, sustainability is a destination that we aspire to reach with the selection of the sustainable pathways that we choose as we proceed along the journey. We are embarking on a new journey with the creation of Sustainability, an on-line, open access journal. As stated on the journal’s website, Sustainability is an international and cross-disciplinary scholarly journal of environmental, cultural, economic and social sustainability of human beings, which provides an advanced forum for studies that are related to sustainability and sustainable development. To genuinely wrap our brains around the impact that our actions have on the sustainability of our planet, we must first understand something of the big picture and have a firm grasp of the terminology. To help further clarify the elusive term ‘sustainability,’ without attempting to provide an exact definition, this paper outlines various, inter-related concepts and basic practices and approaches that are being used in the name of sustainability, including: traditional end-of-pipe control strategies, life cycle, environmental sustainability, urban sustainability, industrial ecology, business sustainability, sustainable supply chain systems, sustainability indicators and metrics, green chemistry and green engineering, design for the environment, sustainable buildings, eco-tourism, and renewable and sustainable energy and fuels.

  16. PERSONALITY CHANGES IN BRAIN INJURY

    OpenAIRE

    Garcia, Patricia Gracia; Mielke, Michelle M.; Rosenberg, Paul; Bergey, Alyssa; Rao, Vani

    2011-01-01

    Traumatic brain injury (TBI) is frequently complicated by alterations in mood and behaviour and changes in personality. We report mild personality changes post-TBI as a possible indicator of traumatic brain injury, but not of injury severity or psychiatric complications.

  17. An Exploratory Study of Special Educational Needs Co-Ordinators' Knowledge and Experience of Working with Children Who Have Sustained a Brain Injury

    Science.gov (United States)

    Howe, Julia; Ball, Heather

    2017-01-01

    This research aimed to measure Special Educational Needs Co-ordinators' knowledge of the educational implications of acquired brain injury in children and young people and whether experience of working with pupils with a brain injury or additional training impacts upon this knowledge. Data was collected within one local authority in England using…

  18. Mild Traumatic Brain Injury in Translation

    OpenAIRE

    Levin, Harvey S.; Robertson, Claudia S.

    2013-01-01

    This Introduction to a Special Issue on Mild Traumatic Brain Injury (mTBI) highlights the methodological challenges in outcome studies and clinical trials involving patients who sustain mTBI. Recent advances in brain imaging and portable, computerized cognitive tasks have contributed to protocols that are sensitive to the effects of mTBI and efficient in time for completion. Investigation of civilian mTBI has been extended to single and repeated injuries in athletes and blast-related mTBI in ...

  19. Evaluation after Traumatic Brain Injury

    Science.gov (United States)

    Trudel, Tina M.; Halper, James; Pines, Hayley; Cancro, Lorraine

    2010-01-01

    It is important to determine if a traumatic brain injury (TBI) has occurred when an individual is assessed in a hospital emergency room after a car accident, fall, or other injury that affects the head. This determination influences decisions about treatment. It is essential to screen for the injury, because the sooner they begin appropriate…

  20. Nutritional support for patients sustaining traumatic brain injury: a systematic review and meta-analysis of prospective studies.

    Directory of Open Access Journals (Sweden)

    Xiang Wang

    Full Text Available BACKGROUND: In traumatic brain injury (TBI, the appropriate timing and route of feeding, and the efficacy of immune-enhancing formulae have not been well established. We performed this meta-analysis aiming to compare the effects of different nutritional support modalities on clinical outcomes of TBI patients. METHODS: We systematically searched Pubmed, Embase, and the Cochrane Library until October, 2012. All randomized controlled trials (RCTs and non-randomized prospective studies (NPSs that compared the effects of different routes, timings, or formulae of feeding on outcomes in TBI patients were selected. The primary outcomes included mortality and poor outcome. The secondary outcomes included the length of hospital stay, the length of ventilation days, and the rate of infectious or feeding-related complications. FINDINGS: 13 RCTs and 3 NPSs were included. The pooled data demonstrated that, compared with delayed feeding, early feeding was associated with a significant reduction in the rate of mortality (relative risk [RR] = 0.35; 95% CI, 0.24-0.50, poor outcome (RR = 0.70; 95% CI, 0.54-0.91, and infectious complications (RR = 0.77; 95% CI, 0.59-0.99. Compared with enteral nutrition, parenteral nutrition showed a slight trend of reduction in the rate of mortality (RR = 0.61; 95% CI, 0.34-1.09, poor outcome (RR = 0.73; 95% CI, 0.51-1.04, and infectious complications (RR = 0.89; 95% CI, 0.66-1.22, whereas without statistical significances. The immune-enhancing formula was associated with a significant reduction in infection rate compared with the standard formula (RR = 0.54; 95% CI, 0.35-0.82. Small-bowel feeding was found to be with a decreasing rate of pneumonia compared with nasogastric feeding (RR = 0.41; 95% CI, 0.22-0.76. CONCLUSION: After TBI, early initiation of nutrition is recommended. It appears that parenteral nutrition is superior to enteral nutrition in improving outcomes. Our results lend support to

  1. Brain Injury: A Manual For Educators.

    Science.gov (United States)

    Connor, Karen; Dettmer, Judy; Dise-lewis, Jeanne E.; Murphy, Mary; Santistevan, Barbette; Seckinger, Barbara

    This manual provides Colorado educators with guidelines for serving students with brain injuries. Following an introductory chapter, chapter 2 provides basic information on the brain including definitions of brain injury and its severity, incidence of brain injury, and characteristics of students with brain injury. Chapter 3 considers…

  2. Hyperthermia and fever control in brain injury.

    Science.gov (United States)

    Badjatia, Neeraj

    2009-07-01

    Fever in the neurocritical care setting is common and has a negative impact on outcome of all disease types. Meta-analyses have demonstrated that fever at onset and in the acute setting after ischemic brain injury, intracerebral hemorrhage, and cardiac arrest has a negative impact on morbidity and mortality. Data support that the impact of fever is sustained for longer durations after subarachnoid hemorrhage and traumatic brain injury. Recent advances have made eliminating fever and maintaining normothermia feasible. However, there are no prospective randomized trials demonstrating the benefit of fever control in these patient populations, and important questions regarding indications and timing remain. The purpose of this review is to analyze the data surrounding the impact of fever across a range of neurologic injuries to better understand the optimal timing and duration of fever control. Prospective randomized trials are needed to determine whether the beneficial impact of secondary injury prevention is outweighed by the potential risks of prolonged fever control.

  3. Catecholamines and cognition after traumatic brain injury.

    Science.gov (United States)

    Jenkins, Peter O; Mehta, Mitul A; Sharp, David J

    2016-09-01

    Cognitive problems are one of the main causes of ongoing disability after traumatic brain injury. The heterogeneity of the injuries sustained and the variability of the resulting cognitive deficits makes treating these problems difficult. Identifying the underlying pathology allows a targeted treatment approach aimed at cognitive enhancement. For example, damage to neuromodulatory neurotransmitter systems is common after traumatic brain injury and is an important cause of cognitive impairment. Here, we discuss the evidence implicating disruption of the catecholamines (dopamine and noradrenaline) and review the efficacy of catecholaminergic drugs in treating post-traumatic brain injury cognitive impairments. The response to these therapies is often variable, a likely consequence of the heterogeneous patterns of injury as well as a non-linear relationship between catecholamine levels and cognitive functions. This individual variability means that measuring the structure and function of a person's catecholaminergic systems is likely to allow more refined therapy. Advanced structural and molecular imaging techniques offer the potential to identify disruption to the catecholaminergic systems and to provide a direct measure of catecholamine levels. In addition, measures of structural and functional connectivity can be used to identify common patterns of injury and to measure the functioning of brain 'networks' that are important for normal cognitive functioning. As the catecholamine systems modulate these cognitive networks, these measures could potentially be used to stratify treatment selection and monitor response to treatment in a more sophisticated manner.

  4. Cytokines and perinatal brain injury.

    Science.gov (United States)

    Silverstein, F S; Barks, J D; Hagan, P; Liu, X H; Ivacko, J; Szaflarski, J

    1997-01-01

    A rapidly expanding body of data provides support for the hypothesis that pro-inflammatory cytokines including interleukin-1 beta (IL-1 beta), and tumor necrosis factor-alpha (TNF-alpha) are expressed acutely in injured brain and contribute to progressive neuronal damage. Little is known about the pathogenetic role of these cytokines in perinatal brain injury. Recent experimental studies have incorporated two closely related in vivo perinatal rodent brain injury models to evaluate the role(s) of pro-inflammatory cytokines in the progression of neuronal injury: a perinatal stroke model, elicited by unilateral carotid artery ligation and subsequent timed exposure to 8% oxygen in 7-day-old rats, and a model of excitotoxic injury, elicited by stereotactic intra-cerebral injection of the selective excitatory amino acid agonist NMDA. Each of these lesioning methods results in reproducible, quantifiable focal forebrain injury at this developmental stage. Acute brain injury, evoked by cerebral hypoxia-ischemia or excitotoxin lesioning, results in transient marked increases in expression of IL-1 beta, and TNF-alpha mRNA in brain regions susceptible to irreversible injury, and there is evidence that pharmacological antagonism of IL-1 receptors can attenuate injury in both models. Recent studies also suggest that complementary strategies, based on pharmacological antagonism of platelet activating factor and on neutrophil depletion can also limit the extent of irreversible injury. In summary, current data suggest that pro-inflammatory cytokines contribute to the progression of perinatal brain injury, and that these mediators are important targets for neuroprotective interventions in the acute post-injury period.

  5. Maxillofacial and dental injuries sustained in hurling.

    LENUS (Irish Health Repository)

    Murphy, C

    2010-06-01

    The incidence of facial injuries in hurling has decreased since the introduction of helmets with facial protection. The aim of this study was to identify the incidence of facial and dental injuries sustained in hurling training or matches and compliance with wearing helmets, with or without modified or unmodified faceguards. This prospective study included all patients who attended the Mid Western Regional Hospital Limerick, with injuries sustained while playing hurling during 2007 and 2008 seasons. The study population included 70 patients. Forty two (60%) injuries occurred during practice and 28(40%) during matches. Fifty two players (75%) sustained facial injuries whilst no helmet was worn. Eighteen injuries (25%) were sustained by players wearing helmets. Th study demonstrates that 60% of injuries occur during training when players do not wear helmets. We support the recent introduction by the GAA making it compulsory to wear helmets with faceguard protection from January 1st 2010.

  6. Traumatic Brain Injury Registry (TBI)

    Data.gov (United States)

    Department of Veterans Affairs — As the number of Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Traumatic Brain Injury (TBI) patients has grown, so has the need to track and monitor...

  7. Brain Networks Subserving Emotion Regulation and Adaptation after Mild Traumatic Brain Injury

    NARCIS (Netherlands)

    van der Horn, Harm J.; Liemburg, Edith J.; Aleman, Andre; Spikman, Jacoba M.; van der Naalt, Joukje

    2016-01-01

    The majority of patients with traumatic brain injury (TBI) sustain a mild injury (mTBI). One out of 4 patients experiences persistent complaints, despite their often normal neuropsychological test results and the absence of structural brain damage on conventional neuroimaging. Susceptibility to deve

  8. Discriminating military and civilian traumatic brain injuries.

    Science.gov (United States)

    Reid, Matthew W; Velez, Carmen S

    2015-05-01

    Traumatic brain injury (TBI) occurs at higher rates among service members than civilians. Explosions from improvised explosive devices and mines are the leading cause of TBI in the military. As such, TBI is frequently accompanied by other injuries, which makes its diagnosis and treatment difficult. In addition to postconcussion symptoms, those who sustain a TBI commonly report chronic pain and posttraumatic stress symptoms. This combination of symptoms is so typical they have been referred to as the "polytrauma clinical triad" among injured service members. We explore whether these symptoms discriminate civilian occurrences of TBI from those of service members, as well as the possibility that repeated blast exposure contributes to the development of chronic traumatic encephalopathy (CTE). This article is part of a Special Issue entitled 'Traumatic Brain Injury'.

  9. Traumatic Brain Injury Inpatient Rehabilitation

    Science.gov (United States)

    Im, Brian; Schrer, Marcia J.; Gaeta, Raphael; Elias, Eileen

    2010-01-01

    Traumatic brain injuries (TBI) can cause multiple medical and functional problems. As the brain is involved in regulating nearly every bodily function, a TBI can affect any part of the body and aspect of cognitive, behavioral, and physical functioning. However, TBI affects each individual differently. Optimal management requires understanding the…

  10. Osmolar therapy in pediatric traumatic brain injury.

    Science.gov (United States)

    Bennett, Tellen D; Statler, Kimberly D; Korgenski, E Kent; Bratton, Susan L

    2012-01-01

    To describe patterns of use for mannitol and hypertonic saline in children with traumatic brain injury, to evaluate any potential associations between hypertonic saline and mannitol use and patient demographic, injury, and treatment hospital characteristics, and to determine whether the 2003 guidelines for severe pediatric traumatic brain injury impacted clinical practice regarding osmolar therapy. Retrospective cohort study. Pediatric Health Information System database, January, 2001 to December, 2008. Children (age injury and head/neck Abbreviated Injury Scale score ≥ 3 who received mechanical ventilation and intensive care. : None. The primary outcome was hospital billing for parenteral hypertonic saline and mannitol use, by day of service. Overall, 33% (2,069 of 6,238) of the patients received hypertonic saline, and 40% (2,500 of 6,238) received mannitol. Of the 1,854 patients who received hypertonic saline or mannitol for ≥ 2 days in the first week of therapy, 29% did not have intracranial pressure monitoring. After adjustment for hospital-level variation, primary insurance payer, and overall injury severity, use of both drugs was independently associated with older patient age, intracranial hemorrhage (other than epidural), skull fracture, and higher head/neck injury severity. Hypertonic saline use increased and mannitol use decreased with publication of the 2003 guidelines, and these trends continued through 2008. Hypertonic saline and mannitol are used less in infants than in older children. The patient-level and hospital-level variation in osmolar therapy use and the substantial amount of sustained osmolar therapy without intracranial pressure monitoring suggest opportunities to improve the quality of pediatric traumatic brain injury care. With limited high-quality evidence available, published expert guidelines appear to significantly impact clinical practice in this area.

  11. Neurofilaments and traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Mariusz Kobek

    2015-03-01

    Full Text Available Objective determination of the time of brain contusion is of key importance in medicolegal neurotraumatology. Currently, the progress of immunohistochemistry allows the study of structural elements of cells including neurofilaments, i.e. neuronal cytoskeletal proteins possessing properties that could be used for determining the age of brain injury in forensic medicine. The purpose of this study was to review recently published literature with a focus on studies investigating changes which occur in neurofilaments after brain trauma, both in animal models and in human biological material. The review has shown a lack of data on temporal changes in neurofilament expression after human brain trauma which could be used for determining the age of injuries in forensic medicine.

  12. Brain Injury Safety Tips and Prevention

    Science.gov (United States)

    ... Address What's this? Submit What's this? Submit Button Brain Injury Safety Tips and Prevention Recommend on Facebook ... not grass or dirt. More HEADS UP Video: Brain Injury Safety and Prevention frame support disabled and/ ...

  13. Traumatic Brain Injury (TBI) Data and Statistics

    Science.gov (United States)

    ... The CDC Cancel Submit Search The CDC Traumatic Brain Injury & Concussion Note: Javascript is disabled or is not ... please visit this page: About CDC.gov . Traumatic Brain Injury & Concussion Basic Information Get the Facts Signs and ...

  14. Traumatic Brain Injury: FDA Research and Actions

    Science.gov (United States)

    ... Control—Traumatic Brain Injury Public Workshop: Advancing the Development of Biomarkers in Traumatic Brain Injury, March 3, 2016 ... Health Cosmetics Dietary Supplements Drugs Food Medical Devices Nutrition Radiation-Emitting Products Tobacco Products Vaccines, Blood & Biologics ...

  15. Imaging of Traumatic Brain Injury

    NARCIS (Netherlands)

    Zagorchev, L.; McAllister, T.

    2011-01-01

    Traumatic brain injury (TBI) represents an enormous public health challenge and is often associated with life long neurobehavioral sequelae in survivors. Several factors including higher percentages of individuals surviving TBI, as well as increasing concern about potential long term sequelae of ev

  16. Family needs after brain injury

    DEFF Research Database (Denmark)

    Norup, Anne; Perrin, Paul B; Cuberos-Urbano, Gustavo

    2015-01-01

    OBJECTIVE: The objective of this study was to explore differences by country in the importance of family needs after traumatic brain injury (TBI), as well as differences in met/unmet needs. METHOD: Two hundred and seventy-one family members of an individual with TBI in Mexico, Colombia, Spain, De...

  17. Traumatic brain injury : from impact to rehabilitation

    NARCIS (Netherlands)

    Halliday, J.; Absalom, A. R.

    2008-01-01

    Traumatic brain injury is a significant cause of mortality and morbidity in our society, particularly among the young. This review discusses the pathophysiology of traumatic brain injury, and current management from the acute phase through to rehabilitation of the traumatic brain injury patient.

  18. Knowledge of Traumatic Brain Injury among Educators

    Science.gov (United States)

    Ernst, William J.; Gallo, Adrienne B.; Sellers, Amanda L.; Mulrine, Jessica; MacNamara, Luciana; Abrahamson, Allison; Kneavel, Meredith

    2016-01-01

    The purpose of this study is to determine knowledge of traumatic brain injury among educators. Few studies have examined knowledge of traumatic brain injury in this population and fewer still have included a substantial proportion of general education teachers. Examining knowledge of traumatic brain injury in educators is important as the vast…

  19. A Novel Closed-head Model of Mild Traumatic Brain Injury Caused by Primary Overpressure Blast to the Cranium Produces Sustained Emotional Deficits in Mice

    Directory of Open Access Journals (Sweden)

    Scott A Heldt

    2014-01-01

    Full Text Available Emotional disorders are a common outcome from mild traumatic brain injury (TBI in humans, but their pathophysiological basis is poorly understood. We have developed a mouse model of closed-head blast injury using an air pressure wave delivered to a small area on one side of the cranium, which we have used to create mild TBI. We found that 20-psi blasts in 3-month old C57BL/6 male mice yielded no obvious behavioral or histological evidence of brain injury, while 25-40 psi blasts produced transient anxiety in an open field arena but little histological evidence of brain damage. By contrast, 50-60 psi blasts resulted in anxiety-like behavior in an open field arena that became more evident with time after blast. In additional behavioral tests conducted 2-8 weeks after blast, 50-60 psi mice also demonstrated increased acoustic startle, perseverance of learned fear, and enhanced contextual fear, as well as depression-like behavior and diminished prepulse inhibition. We found no evident cerebral pathology, however, and only scattered axonal degeneration in brain sections from 50-60 psi mice 3-8 weeks after blast. Thus, the TBI caused by single 50-60 psi blasts in mice exhibits the minimal neuronal loss coupled to diffuse axonal injury characteristic of human mild TBI. A reduction in the abundance of a subpopulation of excitatory projection neurons in basolateral amygdala enriched in Thy1 was, however, observed. The reported link of this neuronal population to fear suppression suggests their damage by mild TBI may contribute to the heightened anxiety and fearfulness observed after blast in our mice. Our overpressure air blast model of concussion in mice will enable further studies of the mechanisms underlying the diverse emotional deficits seen after mild TBI.

  20. Chronic Traumatic Encephalopathy: The Neuropathological Legacy of Traumatic Brain Injury.

    Science.gov (United States)

    Hay, Jennifer; Johnson, Victoria E; Smith, Douglas H; Stewart, William

    2016-05-23

    Almost a century ago, the first clinical account of the punch-drunk syndrome emerged, describing chronic neurological and neuropsychiatric sequelae occurring in former boxers. Thereafter, throughout the twentieth century, further reports added to our understanding of the neuropathological consequences of a career in boxing, leading to descriptions of a distinct neurodegenerative pathology, termed dementia pugilistica. During the past decade, growing recognition of this pathology in autopsy studies of nonboxers who were exposed to repetitive, mild traumatic brain injury, or to a single, moderate or severe traumatic brain injury, has led to an awareness that it is exposure to traumatic brain injury that carries with it a risk of this neurodegenerative disease, not the sport or the circumstance in which the injury is sustained. Furthermore, the neuropathology of the neurodegeneration that occurs after traumatic brain injury, now termed chronic traumatic encephalopathy, is acknowledged as being a complex, mixed, but distinctive pathology, the detail of which is reviewed in this article.

  1. Traumatic brain injury is under-diagnosed in patients with spinal cord injury.

    Science.gov (United States)

    Tolonen, Anu; Turkka, Jukka; Salonen, Oili; Ahoniemi, Eija; Alaranta, Hannu

    2007-10-01

    To investigate the occurrence and severity of traumatic brain injury in patients with traumatic spinal cord injury. Cross-sectional study with prospective neurological, neuropsychological and neuroradiological examinations and retrospective medical record review. Thirty-one consecutive, traumatic spinal cord injury patients on their first post-acute rehabilitation period in a national rehabilitation centre. The American Congress of Rehabilitation Medicine diagnostic criteria for mild traumatic brain injury were applied. Assessments were performed with neurological and neuropsychological examinations and magnetic resonance imaging 1.5T. Twenty-three of the 31 patients with spinal cord injury (74%) met the diagnostic criteria for traumatic brain injury. Nineteen patients had sustained a loss of consciousness or post-traumatic amnesia. Four patients had a focal neurological finding and 21 had neuropsychological findings apparently due to traumatic brain injury. Trauma-related magnetic resonance imaging abnormalities were detected in 10 patients. Traumatic brain injury was classified as moderate or severe in 17 patients and mild in 6 patients. The results suggest a high frequency of traumatic brain injury in patients with traumatic spinal cord injury, and stress a special diagnostic issue to be considered in this patient group.

  2. BPSD following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Renato Anghinah

    Full Text Available ABSTRACT Annually, 700,000 people are hospitalized with brain injury acquired after traumatic brain injury (TBI in Brazil. Objective: We aim to review the basic concepts related to TBI, and the most common Behavioral and Psychological Symptoms of Dementia (BPSD findings in moderate and severe TBI survivors. We also discussed our strategies used to manage such patients in the post-acute period. Methods: Fifteen TBI outpatients followed at the Center for Cognitive Rehabilitation Post-TBI of the Clinicas Hospital of the University of São Paulo were submitted to a neurological, neuropsychological, speech and occupational therapy evaluation, including the Mini-Mental State Examination. Rehabilitation strategies will then be developed, together with the interdisciplinary team, for each patient individually. Where necessary, the pharmacological approach will be adopted. Results: Our study will discuss options of pharmacologic treatment choices for cognitive, behavioral, or affective disorders following TBI, providing relevant information related to a structured cognitive rehabilitation service and certainly will offer an alternative for patients and families afflicted by TBI. Conclusion: Traumatic brain injury can cause a variety of potentially disabling psychiatric symptoms and syndromes. Combined behavioral and pharmacological strategies, in the treatment of a set of highly challenging behavioral problems, appears to be essential for good patient recovery.

  3. Severe cerebral vasospasm after traumatic brain injury.

    Science.gov (United States)

    Fehnel, Corey R; Wendell, Linda C; Potter, N Stevenson; Klinge, Petra; Thompson, Bradford B

    2014-07-01

    Severe traumatic brain injury is associated with both acute and delayed neuro- logical injury. Cerebral vasospasm is commonly associated with delayed neurological decline in aneurysmal subarachnoid hemorrhage patients. However, the role played by vasospasm in traumatic brain injury is less clear. Vasospasm occurs earlier, for a shorter duration, and often without significant neurological consequence among traumatic brain injury patients. Detection and management strategies for vasospasm in aneurysmal subarachnoid hemorrhage are not easily transferrable to traumatic brain injury patients. We present a patient with a severe traumatic brain injury who had dramatic improvement following emergent decompressive hemicraniectomy. Two weeks after initial presentation he suffered a precipitous decline despite intensive surveillance. This case illustrates the distinct challenges of diagnosing cerebral vasospasm in the setting of severe traumatic brain injury.

  4. Altered calcium signaling following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    John Thomas Weber

    2012-04-01

    Full Text Available Cell death and dysfunction after traumatic brain injury (TBI is caused by a primary phase, related to direct mechanical disruption of the brain, and a secondary phase which consists of delayed events initiated at the time of the physical insult. Arguably, the calcium ion contributes greatly to the delayed cell damage and death after TBI. A large, sustained influx of calcium into cells can initiate cell death signaling cascades, through activation of several degradative enzymes, such as proteases and endonucleases. However, a sustained level of intracellular free calcium is not necessarily lethal, but the specific route of calcium entry may couple calcium directly to cell death pathways. Other sources of calcium, such as intracellular calcium stores, can also contribute to cell damage. In addition, calcium-mediated signal transduction pathways in neurons may be perturbed following injury. These latter types of alterations may contribute to abnormal physiology in neurons that do not necessarily die after a traumatic episode. This review provides an overview of experimental evidence that has led to our current understanding of the role of calcium signaling in death and dysfunction following TBI.

  5. Should losartan be administered following brain injury?

    Science.gov (United States)

    Friedman, Alon; Bar-Klein, Guy; Serlin, Yonatan; Parmet, Yisrael; Heinemann, Uwe; Kaufer, Daniela

    2014-12-01

    Brain injury is a major health concern and associated with delayed neurological complications, including post-injury epilepsy, cognitive and emotional disabilities. Currently, there is no strategy to prevent post-injury delayed complications. We recently showed that dysfunction of the blood-brain barrier, often reported in brain injuries, can lead to epilepsy and neurodegeneration via activation of inflammatory TGF-β signaling in astrocytes. We further showed that the FDA approved angiotensin II type 1 receptor antagonist, losartan, blocks brain TGF-β signaling and prevents epilepsy in the albumin or blood-brain barrier breakdown models of epileptogenesis. Here we discuss the potential of losartan as an anti-epileptogenic and a neuroprotective drug, the rationale of its use following brain injury and the challenges of designing clinical trials. We highlight the urgent need to develop reliable biomarkers for epileptogenesis (and other complications) after brain injury as a pre-requisite to challenge neuroprotective therapies.

  6. Cerebrospinal fluid enzymes in acute brain injury

    NARCIS (Netherlands)

    A.I.R. Maas (Andrew)

    1977-01-01

    textabstractSevere brain injury is a major cause of death, especially in young men. In 1972, over 20% of all deaths occurring in England and Wales in men aged 15-25 years were due to head injury (Field, 1976). The mortality rate after severe brain injuries is higb. Jennett et al. (1977) reporting on

  7. Traumatic brain injury-induced sleep disorders

    Directory of Open Access Journals (Sweden)

    Viola-Saltzman M

    2016-02-01

    Full Text Available Mari Viola-Saltzman, Camelia Musleh Department of Neurology, NorthShore University HealthSystem, Evanston, IL, USA Abstract: Sleep disturbances are frequently identified following traumatic brain injury, affecting 30%–70% of persons, and often occur after mild head injury. Insomnia, fatigue, and sleepiness are the most frequent sleep complaints after traumatic brain injury. Sleep apnea, narcolepsy, periodic limb movement disorder, and parasomnias may also occur after a head injury. In addition, depression, anxiety, and pain are common brain injury comorbidities with significant influence on sleep quality. Two types of traumatic brain injury that may negatively impact sleep are acceleration/deceleration injuries causing generalized brain damage and contact injuries causing focal brain damage. Polysomnography, multiple sleep latency testing, and/or actigraphy may be utilized to diagnose sleep disorders after a head injury. Depending on the disorder, treatment may include the use of medications, positive airway pressure, and/or behavioral modifications. Unfortunately, the treatment of sleep disorders associated with traumatic brain injury may not improve neuropsychological function or sleepiness. Keywords: traumatic brain injury, insomnia, hypersomnia, sleep apnea, periodic limb movement disorder, fatigue

  8. Traumatic brain injury among Indiana state prisoners.

    Science.gov (United States)

    Ray, Bradley; Sapp, Dona; Kincaid, Ashley

    2014-09-01

    Research on traumatic brain injury among inmates has focused on comparing the rate of traumatic brain injury among offenders to the general population, but also how best to screen for traumatic brain injury among this population. This study administered the short version of the Ohio State University Traumatic Brain Injury Identification Method to all male inmates admitted into Indiana state prisons were screened for a month (N = 831). Results indicate that 35.7% of the inmates reported experiencing a traumatic brain injury during their lifetime and that these inmates were more likely to have a psychiatric disorder and a prior period of incarceration than those without. Logistic regression analysis finds that a traumatic brain injury predicts the likelihood of prior incarceration net of age, race, education, and psychiatric disorder. This study suggests that brief instruments can be successfully implemented into prison screenings to help divert inmates into needed treatment.

  9. Traumatic Brain Injury: Same or Different

    Science.gov (United States)

    2011-07-22

    TRAUMATIC BRAIN INJURY : SAME OR DIFFERENT Kimberly Meyer, ACNP-BC, CNRN Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting...TITLE AND SUBTITLE Traumatic Brain Injury : Same or Different 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...official policy of the Department of the Army, Department of Defense, or U.S. Government. DISCLOSURES Nothing to disclose TRAUMATIC BRAIN INJURY Mild

  10. Cell Delivery System for Traumatic Brain Injury

    Science.gov (United States)

    2008-03-21

    REPORT Cell Delivery System for Traumatic Brain Injury 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We have met all of the milestones outlined in this...COVERED (From - To) 18-Sep-2006 Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 17-Mar-2008 Cell Delivery System for Traumatic Brain Injury Report...Manassero*, Justin Kim*, Maureen St Georges*, Nicole Esclamado* and Elizabeth Orwin. “Development of a Cell Delivery System for Traumatic Brain Injury Using

  11. Wrapping Our Brains around Sustainability

    OpenAIRE

    Mary Ann Curran

    2009-01-01

    As many of us begin to embrace the concept of sustainability, we realize that it is not simply something that we ‘do.’ Rather, sustainability is a destination that we aspire to reach with the selection of the sustainable pathways that we choose as we proceed along the journey. We are embarking on a new journey with the creation of Sustainability , an on-line, open access journal. As stated on the journal’s website, Sustainability is an international and cross-disciplinary scholarly journal of...

  12. Misconceptions about traumatic brain injuries among South African ...

    African Journals Online (AJOL)

    about or do not always understand the physical, behavioural, cognitive and psychosocial ... among the general public and family members of people who sustained a TBI. ... two groups. ... The frequency distribution of the sample by gender, race and .... Brain injuries may cause one to feel depressed, sad and hopeless (T).

  13. Intervention Strategies for Serving Students with Traumatic Brain Injury

    Science.gov (United States)

    Arroyos-Jurado, Elsa; Savage, Todd A.

    2008-01-01

    As school-age children are at the highest risk for sustaining a traumatic brain injury (TBI), educational professionals working in school settings will encounter students dealing with the after-effects of a TBI. These effects can influence students' ability to navigate the behavioral, social, and academic demands of the classroom. This article…

  14. Classroom Interventions for Students with Traumatic Brain Injuries

    Science.gov (United States)

    Bowen, Julie M.

    2005-01-01

    Students who have sustained a traumatic brain injury (TBI) return to the school setting with a range of cognitive, psychosocial, and physical deficits that can significantly affect their academic functioning. Successful educational reintegration for students with TBI requires careful assessment of each child's unique needs and abilities and the…

  15. [Mild brain injuries in emergency medicine].

    Science.gov (United States)

    Liimatainen, Suvi; Niskakangas, Tero; Ohman, Juha

    2011-01-01

    Diagnostics and correct classification of mild brain injuries is challenging. Problems caused by insufficient documentation at the acute phase become more obvious in situations in which legal insurance issues are to be considered. A small proportion of patients with mild brain injury suffer from prolonged symptoms. Medical recording and classification of the brain injury at the initial phase should therefore be carried out in a structured manner. The review deals with the diagnostic problems of mild brain injuries and presents a treatment protocol for adult patients at the acute phase, aiming at avoiding prolonged problems.

  16. Hypopituitarism after traumatic brain injury.

    Science.gov (United States)

    Fernandez-Rodriguez, Eva; Bernabeu, Ignacio; Castro, Ana I; Casanueva, Felipe F

    2015-03-01

    The prevalence of hypopituitarism after traumatic brain (TBI) injury is widely variable in the literature; a meta-analysis determined a pooled prevalence of anterior hypopituitarism of 27.5%. Growth hormone deficiency is the most prevalent hormone insufficiency after TBI; however, the prevalence of each type of pituitary deficiency is influenced by the assays used for diagnosis, severity of head trauma, and time of evaluation. Recent studies have demonstrated improvement in cognitive function and cognitive quality of life with substitution therapy in GH-deficient patients after TBI.

  17. Traumatic Brain Injury (TBI) in Kids

    Science.gov (United States)

    ... Research Information Clinical Trials Resources and Publications Traumatic Brain Injury (TBI): Condition Information Skip sharing on social ... external force that affects the functioning of the brain. It can be caused by a bump or ...

  18. Chronic issues related to traumatic brain injury : traumatic brain injury is not an incident

    NARCIS (Netherlands)

    Grauwmeijer, Erik; van der Naalt, Joukje; ribbers, gerard

    2016-01-01

    Despite an increased awareness of the long-term consequences of traumatic brain injury, health care professionals often consider traumatic brain injury as an incident. However, patients with traumatic brain injury may experience long-term neurological, cognitive and behavioural problems. Due to the

  19. Quality of Life Following Brain Injury: Perspectives from Brain Injury Association of America State Affiliates

    Science.gov (United States)

    Degeneffe, Charles Edmund; Tucker, Mark

    2012-01-01

    Objective: to examine the perspectives of brain injury professionals concerning family members' feelings about the quality of life experienced by individuals with brain injuries. Participants: participating in the study were 28 individuals in leadership positions with the state affiliates of the Brain Injury Association of America (BIAA). Methods:…

  20. Brain Temperature: Physiology and Pathophysiology after Brain Injury

    Directory of Open Access Journals (Sweden)

    Ségolène Mrozek

    2012-01-01

    Full Text Available The regulation of brain temperature is largely dependent on the metabolic activity of brain tissue and remains complex. In intensive care clinical practice, the continuous monitoring of core temperature in patients with brain injury is currently highly recommended. After major brain injury, brain temperature is often higher than and can vary independently of systemic temperature. It has been shown that in cases of brain injury, the brain is extremely sensitive and vulnerable to small variations in temperature. The prevention of fever has been proposed as a therapeutic tool to limit neuronal injury. However, temperature control after traumatic brain injury, subarachnoid hemorrhage, or stroke can be challenging. Furthermore, fever may also have beneficial effects, especially in cases involving infections. While therapeutic hypothermia has shown beneficial effects in animal models, its use is still debated in clinical practice. This paper aims to describe the physiology and pathophysiology of changes in brain temperature after brain injury and to study the effects of controlling brain temperature after such injury.

  1. Early and sustained increase in the expression of hippocampal IGF-1, but not EPO, in a developmental rodent model of traumatic brain injury.

    Science.gov (United States)

    Schober, Michelle E; Block, Benjamin; Beachy, Joanna C; Statler, Kimberly D; Giza, Christopher C; Lane, Robert H

    2010-11-01

    Pediatric traumatic brain injury (pTBI) is the leading cause of traumatic death and disability in children in the United States. Impaired learning and memory in these young survivors imposes a heavy toll on society. In adult TBI (aTBI) models, cognitive outcome improved after administration of erythropoietin (EPO) or insulin-like growth factor-1 (IGF-1). Little is known about the production of these agents in the hippocampus, a brain region critical for learning and memory, after pTBI. Our objective was to describe hippocampal expression of EPO and IGF-1, together with their receptors (EPOR and IGF-1R, respectively), over time after pTBI in 17-day-old rats. We used the controlled cortical impact (CCI) model and measured hippocampal mRNA levels of EPO, IGF-1, EPOR, IGF-1R, and markers of caspase-dependent apoptosis (bcl2, bax, and p53) at post-injury days (PID) 1, 2, 3, 7, and 14. CCI rats performed poorly on Morris water maze testing of spatial working memory, a hippocampally-based cognitive function. Apoptotic markers were present early and persisted for the duration of the study. EPO in our pTBI model increased much later (PID7) than in aTBI models (12 h), while EPOR and IGF-1 increased at PID1 and PID2, respectively, similar to data from aTBI models. Our data indicate that EPO expression showed a delayed upregulation post-pTBI, while EPOR increased early. We speculate that administration of EPO in the first 1-2 days after pTBI would increase hippocampal neuronal survival and function.

  2. Ethical Issues in Neuroprognostication after Severe Pediatric Brain Injury.

    Science.gov (United States)

    Kirschen, Matthew P; Walter, Jennifer K

    2015-09-01

    Neurologic outcome prediction, or neuroprognostication, after severe brain injury in children is a challenging task and has many ethical dimensions. Neurologists and intensivists are frequently asked by families to predict functional recovery after brain injury to help guide medical decision making despite limited outcome data. Using two clinical cases of children with severe brain injury from different mechanisms: hypoxic-ischemic injury secondary to cardiac arrest and traumatic brain injury, this article first addresses the importance of making a correct diagnosis in a child with a disorder of consciousness and then discusses some of the clinical challenges with deducing an accurate and timely outcome prediction. We further explore the ethical obligations of physicians when supporting parental decision making. We highlight the need to focus on how to elicit family values for a brain injured child, how to manage prognostic uncertainty, and how to effectively communicate with families in these challenging situations. We offer guidance for physicians when they have diverging views from families on aggressiveness of care or feel pressured to prognosticate with in a "window of opportunity" for limiting or withdrawing life sustaining therapies. We conclude with a discussion of the potential influence of emerging technologies, specifically advanced functional neuroimaging, on neurologic outcome prediction after severe brain injury.

  3. Epidemiology of traumatic brain injury in Europe

    NARCIS (Netherlands)

    W. Peeters (Wouter); R. van den Brande (Ruben); S. Polinder (Suzanne); A. Brazinova (Alexandra); E.W. Steyerberg (Ewout); H.F. Lingsma (Hester); A.I.R. Maas (Andrew)

    2015-01-01

    textabstractBackground: Traumatic brain injury (TBI) is a critical public health and socio-economic problem throughout the world, making epidemiological monitoring of incidence, prevalence and outcome of TBI necessary. We aimed to describe the epidemiology of traumatic brain injury in Europe and to

  4. Early Bifrontal Brain Injury: Disturbances in Cognitive Function Development

    Directory of Open Access Journals (Sweden)

    Christine Bonnier

    2010-01-01

    Full Text Available We describe six psychomotor, language, and neuropsychological sequential developmental evaluations in a boy who sustained a severe bifrontal traumatic brain injury (TBI at 19 months of age. Visuospatial, drawing, and writing skills failed to develop normally. Gradually increasing difficulties were noted in language leading to reading and spontaneous speech difficulties. The last two evaluations showed executive deficits in inhibition, flexibility, and working memory. Those executive abnormalities seemed to be involved in the other impairments. In conclusion, early frontal brain injury disorganizes the development of cognitive functions, and interactions exist between executive function and other cognitive functions during development.

  5. Effect of AVP on brain edema following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    XU Miao; SU Wei; HUANG Wei-dong; LU Yuan-qiang; XU Qiu-ping; CHEN Zhao-jun

    2007-01-01

    Objective: To evaluate plasma arginine vasopressin (AVP) level in patients with traumatic brain injury and investigate the role of AVP in the process of brain edema. Methods: A total of 30 patients with traumatic brain injury were involved in our study. They were divided into two groups by Glasgow Coma Scale: severe traumatic brain injury group (STBI, GCS≤ 8) and moderate traumatic brain injury group (MTBI, GCS>8).Samples of venous blood were collected in the morning at rest from 15 healthy volunteers (control group)and within 24 h after traumatic brain injury from these patients for AVP determinations by radioimmunoassay. The severity and duration of the brain edema were estimated by head CT scan.Results: plasma AVP levels (ng/L) were (mean±SD): control, 3.06±1.49; MTBI, 38.12±7.25; and STBI, 66.61±17.10.The plasma level of AVP was significantly increased within 24 h after traumatic brain injury and followed by the reduction of GCS, suggesting the deterioration of cerebral injury (P<0.01). And the AVP level was correlated with the severity (STBI r=0.919, P<0.01; MTBI r=0.724, P<0.01) and the duration of brain edema (STBI r=0.790, P<0.01; MTBI r=0.712, P<0.01). Conclusions: The plasma AVP level is closely associated with the severity of traumatic brain injury. AVP may play an important role in pathogenesis of brain edema after traumatic brain injury.

  6. Treatment of very severe brain injuries

    Institute of Scientific and Technical Information of China (English)

    杨振九; 杨佳勇; 冯承宣; 宋伟健; 孙强

    2004-01-01

    Objective: To sum up the experience in treating very severe traumatic brain injuries.Methods: Retrospective analysis of 68 patients with very severe traumatic brain injuries treated in our hospital from 1997 to 2002 was done.Results: Forty-one (60%) patients died. In the 50 patients treated surgically 27 (40%) survived, 8 recovered well, 9 had moderate disability and 10 had sever deficits. The 18 patients treated non-operatively all died.Conclusions: Much attention should be given to the observation of the changes of severe brain injuries with cranial base injury. Timely operative decompression, basic life support, keeping effective brain blood perfusion and effective oxygen supply, improving cerebral microcirculation and preventing or controlling complications are the main methods to raise the successful rate of treating very severe brain injuries and the life quality of the patients.

  7. Robust whole-brain segmentation: application to traumatic brain injury.

    Science.gov (United States)

    Ledig, Christian; Heckemann, Rolf A; Hammers, Alexander; Lopez, Juan Carlos; Newcombe, Virginia F J; Makropoulos, Antonios; Lötjönen, Jyrki; Menon, David K; Rueckert, Daniel

    2015-04-01

    We propose a framework for the robust and fully-automatic segmentation of magnetic resonance (MR) brain images called "Multi-Atlas Label Propagation with Expectation-Maximisation based refinement" (MALP-EM). The presented approach is based on a robust registration approach (MAPER), highly performant label fusion (joint label fusion) and intensity-based label refinement using EM. We further adapt this framework to be applicable for the segmentation of brain images with gross changes in anatomy. We propose to account for consistent registration errors by relaxing anatomical priors obtained by multi-atlas propagation and a weighting scheme to locally combine anatomical atlas priors and intensity-refined posterior probabilities. The method is evaluated on a benchmark dataset used in a recent MICCAI segmentation challenge. In this context we show that MALP-EM is competitive for the segmentation of MR brain scans of healthy adults when compared to state-of-the-art automatic labelling techniques. To demonstrate the versatility of the proposed approach, we employed MALP-EM to segment 125 MR brain images into 134 regions from subjects who had sustained traumatic brain injury (TBI). We employ a protocol to assess segmentation quality if no manual reference labels are available. Based on this protocol, three independent, blinded raters confirmed on 13 MR brain scans with pathology that MALP-EM is superior to established label fusion techniques. We visually confirm the robustness of our segmentation approach on the full cohort and investigate the potential of derived symmetry-based imaging biomarkers that correlate with and predict clinically relevant variables in TBI such as the Marshall Classification (MC) or Glasgow Outcome Score (GOS). Specifically, we show that we are able to stratify TBI patients with favourable outcomes from non-favourable outcomes with 64.7% accuracy using acute-phase MR images and 66.8% accuracy using follow-up MR images. Furthermore, we are able to

  8. Anesthesia for Patients with Traumatic Brain Injuries.

    Science.gov (United States)

    Bhattacharya, Bishwajit; Maung, Adrian A

    2016-12-01

    Traumatic brain injury (TBI) represents a wide spectrum of disease and disease severity. Because the primary brain injury occurs before the patient enters the health care system, medical interventions seek principally to prevent secondary injury. Anesthesia teams that provide care for patients with TBI both in and out of the operating room should be aware of the specific therapies and needs of this unique and complex patient population.

  9. Hypopituitarism in Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Klose, Marianne; Feldt-Rasmussen, Ulla

    2015-01-01

    While hypopituitarism after traumatic brain injury (TBI) was previously considered rare, it is now thought to be a major cause of treatable morbidity among TBI survivors. Consequently, recommendations for assessment of pituitary function and replacement in TBI were recently introduced. Given...... the high incidence of TBI with more than 100 pr. 100,000 inhabitants, TBI would be by far the most common cause of hypopituitarism if the recently reported prevalence rates hold true. The disproportion between this proposed incidence and the occasional cases of post-TBI hypopituitarism in clinical practice...... justifies reflection as to whether hypopituitarism has been unrecognized in TBI patients or whether diagnostic testing designed for high risk populations such as patients with obvious pituitary pathology has overestimated the true risk and thereby the disease burden of hypopituitarism in TBI. The findings...

  10. Traumatic Brain Injury in Kenya

    Directory of Open Access Journals (Sweden)

    Benson Kinyanjui

    2016-03-01

    Full Text Available Kenya has a disproportionately high rate of road traffic accidents each year, many of them resulting in traumatic brain injuries (TBIs. A review of articles written on issues pertaining to the medical treatment of people with TBI in the past 15 years in Kenya indicates a significantly high incidence of TBIs and a high mortality rate. This article reviews the available literature as a first step in exploring the status of rehabilitation of Kenyans with cognitive impairments and other disabilities resulting from TBIs. From this preliminary review, it is apparent that despite TBI being a pervasive public health problem in Kenya, it has not received due attention in the public and private sectors as evidenced by a serious lack of post-acute rehabilitation services for people with TBIs. Implications for this lack of services are discussed and recommendations are made for potential approaches to this problem.

  11. Clinimetric measurement in traumatic brain injuries.

    Science.gov (United States)

    Opara, J A; Małecka, E; Szczygiel, J

    2014-06-15

    Traumatic brain injury is a leading cause of death and disability worldwide. Every year, about 1.5 million affected people die and several millions receive emergency treatment. Most of the burden (90%) is in low and middle-income countries. The costs of care depend on the level of disability. The burden of care after traumatic brain injury is caused by disability as well as by psychosocial and emotional sequelae of injury. The final consequence of brain injury is the reduction of quality of life. It is very difficult to predict the outcome after traumatic brain injury. The basic clinical model included four predictors: age, score in Glasgow coma scale, pupil reactivity, and the presence of major extracranial injury. These are the neuroradiological markers of recovery after TBI (CT, MRI and PET) and biomarkers: genetic markers of ApoE Gene, ectoenzyme CD 38 (cluster of differentiation 38), serum S100B, myelin basic protein (MBP), neuron specific endolase (NSE), and glial fibrillary acidic protein (GPAP). These are many clinimetric scales which are helpful in prognosing after head injury. In this review paper, the most commonly used scales evaluating the level of consciousness after traumatic brain injury have been presented.

  12. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an...

  13. [Biochemical and immunohistochemical markers of brain injury].

    Science.gov (United States)

    Vajtr, D; Průsa, R; Houst'ava, L; Sámal, F; Kukacka, J; Pachl, J

    2006-07-01

    Proteins released to circulation from affected tissues during primary or secondary trauma brain injury might be used as serum markers of glial or ganglial cells damage (neuron specific enolasis and S100 B protein). Other markers of trauma can be proved as relatively specific of diffuse axonal injury by immunohistochemical detectoin (amyloid prekurzor protein, neuron specific enolasis, glial fibrilar acidic protein and superficial antigen receptor CD 68). Some markers are associated with blood brain barrier damage (matrix metaloproteinases (MMP-2, MMP-9) and synthase of nitric oxide (iNOS)). We aimed in our short communication on biomechanics of developed of trauma, primary or secondary kinds of trauma brain injury and use of trauma brain injury markers for clinical diagnostics and management of patients.

  14. Fatigue in adults with traumatic brain injury

    DEFF Research Database (Denmark)

    Mollayeva, Tatyana; Kendzerska, Tetyana; Mollayeva, Shirin

    2013-01-01

    BACKGROUND: Despite strong indications that fatigue is the most common and debilitating symptom after traumatic brain injury, little is known about its frequency, natural history, or relation to other factors. The current protocol outlines a strategy for a systematic review that will identify......, assess, and critically appraise studies that assessed predictors for fatigue and the consequences of fatigue on at least two separate time points following traumatic brain injury. METHODS/DESIGN: MEDLINE, EMBASE, the Cochrane Database of Systematic Reviews, CINAHL, and PsycINFO will be systematically...... searched for relevant peer-reviewed studies. Reference lists of eligible papers will also be searched. All English language studies with a longitudinal design that focus on fatigue in adults with primary-impact traumatic brain injury will be included. Studies on fatigue following brain injury due...

  15. Nonsurgical interventions after mild traumatic brain injury

    DEFF Research Database (Denmark)

    Nygren-de Boussard, Catharina; Holm, Lena W; Cancelliere, Carol;

    2014-01-01

    OBJECTIVE: To synthesize the best available evidence regarding the impact of nonsurgical interventions on persistent symptoms after mild traumatic brain injury (MTBI). DATA SOURCES: MEDLINE and other databases were searched (2001-2012) with terms including "rehabilitation." Inclusion criteria wer...

  16. ischemic brain injury in neonatal rats

    African Journals Online (AJOL)

    Keywords: Hypoxic–ischemic brain injury, α-Lipoic acid, Cerebral infarct area, Edema, Antioxidants,. Inflammatory markers .... were then moved back to their respective dams and immediately ..... various pro-inflammatory cytokines is stimulated.

  17. Neuroimaging biomarkers in mild traumatic brain injury (mTBI).

    Science.gov (United States)

    Bigler, Erin D

    2013-09-01

    Reviewed herein are contemporary neuroimaging methods that detect abnormalities associated with mild traumatic brain injury (mTBI). Despite advances in demonstrating underlying neuropathology in a subset of individuals who sustain mTBI, considerable disagreement persists in neuropsychology about mTBI outcome and metrics for evaluation. This review outlines a thesis for the select use of sensitive neuroimaging methods as potential biomarkers of brain injury recognizing that the majority of individuals who sustain an mTBI recover without neuroimaging signs or neuropsychological sequelae detected with methods currently applied. Magnetic resonance imaging (MRI) provides several measures that could serve as mTBI biomarkers including the detection of hemosiderin and white matter abnormalities, assessment of white matter integrity derived from diffusion tensor imaging (DTI), and quantitative measures that directly assess neuroanatomy. Improved prediction of neuropsychological outcomes in mTBI may be achieved with the use of targeted neuroimaging markers.

  18. Reducing Secondary Insults in Traumatic Brain Injury

    Science.gov (United States)

    2013-04-01

    persons, and leaves 99,000 persons permanently disabled [1]. The total cost for treatment and rehabilitation of patients with brain injuries is...registry based or retrospective or include only secondary insults that occur in the intensive care unit ( ICU ) setting. Most prior investigations have...in the surgical and neurosurgical ICU diagnosed with a traumatic brain injury requiring a diagnostic procedure were eligible for the study. The study

  19. Mesenchymal stromal cells for traumatic brain injury

    OpenAIRE

    Pischiutta,

    2014-01-01

    The multiple pathological cascades activated after traumatic brain injury (TBI) and their extended nature offer the possibility for therapeutic interventions possibly affecting multiple injury mechanisms simultaneously. Mesenchymal stromal cell (MSC) therapy matches this need, being a bioreactor of a variety of molecules able to interact and modify the injured brain microenvironment. Compared to autologous MSCs, bank stored GMP-graded allogenic MSCs appear to be a realistic choice for TBI ...

  20. Traumatic brain injuries: Forensic and expertise aspects

    OpenAIRE

    Vuleković Petar; Simić Milan; Mišić-Pavkov Gordana; Cigić Tomislav; Kojadinović Željko; Đilvesi Đula

    2008-01-01

    Introduction. Traumatic brain injuries have major socio-economic importance due to their frequency, high mortality and serious consequences. According to their nature the consequences of these injuries may be classified as neurological, psychiatric and esthetic. Various lesions of brain structures cause neurological consequences such as disturbance of motor functions, sensibility, coordination or involuntary movements, speech disturbances and other deviations, as well as epilepsy. Psychiatric...

  1. Spinal cord injury drives chronic brain changes

    Directory of Open Access Journals (Sweden)

    Ignacio Jure

    2017-01-01

    Full Text Available Only a few studies have considered changes in brain structures other than sensory and motor cortex after spinal cord injury, although cognitive impairments have been reported in these patients. Spinal cord injury results in chronic brain neuroinflammation with consequent neurodegeneration and cognitive decline in rodents. Regarding the hippocampus, neurogenesis is reduced and reactive gliosis increased. These long-term abnormalities could explain behavioral impairments exhibited in humans patients suffering from spinal cord trauma.

  2. Modeling premature brain injury and recovery

    Science.gov (United States)

    Scafidi, Joey; Fagel, Devon M.; Ment, Laura R.; Vaccarino, Flora M.

    2009-01-01

    Premature birth is a growing and significant public health problem because of the large number of infants that survive with neurodevelopmental sequelae from brain injury. Recent advances in neuroimaging have shown that although some neuroanatomical structures are altered, others improve over time. This review outlines recent insights into brain structure and function in these preterm infants at school age and relevant animal models. These animal models have provided scientists with an opportunity to explore in depth the molecular and cellular mechanisms of injury as well as the potential of the brain for recovery. The endogenous potential that the brain has for neurogenesis and gliogenesis, and how environment contributes to recovery, are also outlined. These preclinical models will provide important insights into the genetic and epigenetic mechanisms responsible for variable degrees of injury and recovery, permitting the exploration of targeted therapies to facilitate recovery in the developing preterm brain. PMID:19482072

  3. Adolescents’ experience of a parental traumatic brain injury

    Directory of Open Access Journals (Sweden)

    D Harris

    2006-04-01

    Full Text Available This study explores the experiences of four adolescents, each living with a parent who has sustained a traumatic brain injury, against the theoretical backdrop of existential-phenomenological psychology. Opsomming Hierdie navorsing verken die belewenisse van vier adolessente wat saam met ‘n ouer wat ‘n traumatiese breinbesering opgedoen het, leef. *Please note: This is a reduced version of the abstract. Please refer to PDF for full text.

  4. Understanding Traumatic Brain Injury: An Introduction

    Science.gov (United States)

    Trudel, Tina M.; Scherer, Marcia J.; Elias, Eileen

    2009-01-01

    This article is the first of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received very limited national public policy attention and support. However since it has become the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained the attention of elected officials, military leaders,…

  5. Perioperative management of traumatic brain injury

    OpenAIRE

    Curry, Parichat; Viernes, Darwin; Sharma, Deepak

    2011-01-01

    Traumatic brain injury (TBI) is a major public health problem and the leading cause of death and disability worldwide. Despite the modern diagnosis and treatment, the prognosis for patients with TBI remains poor. While severity of primary injury is the major factor determining the outcomes, the secondary injury caused by physiological insults such as hypotension, hypoxemia, hypercarbia, hypocarbia, hyperglycemia and hypoglycemia, etc. that develop over time after the onset of the initial inju...

  6. Traumatic brain injuries: Forensic and expertise aspects

    Directory of Open Access Journals (Sweden)

    Vuleković Petar

    2008-01-01

    Full Text Available Introduction. Traumatic brain injuries have major socio-economic importance due to their frequency, high mortality and serious consequences. According to their nature the consequences of these injuries may be classified as neurological, psychiatric and esthetic. Various lesions of brain structures cause neurological consequences such as disturbance of motor functions, sensibility, coordination or involuntary movements, speech disturbances and other deviations, as well as epilepsy. Psychiatric consequences include cognitive deficit, emotional disturbances and behavior disturbances. Criminal-legal aspect of traumatic brain injuries and litigation. Criminal-legal aspect of traumatic brain injuries expertise understands the qualification of these injuries as mild, serious and qualified serious body injuries as well as the expertise about the mechanisms of their occurrence. Litigation expertise includes the estimation of pain, fear, diminished, i.e. lost vital activity and disability, esthetic marring, and psychological suffer based on the diminished general vital activity and esthetic marring. Competence and timing of expertise. Evaluation of consequences of traumatic brain injuries should be performed only when it can be positively confirmed that they are permanent, i.e. at least one year after the injury. Expertise of these injuries is interdisciplinary. Among clinical doctors the most competent medical expert is the one who is in charge for diagnostics and injury treatment, with the recommendation to avoid, if possible, the doctor who conducted treatment. For the estimation of general vital activity, the neurological consequences, pain and esthetic marring expertise, the most competent doctors are neurosurgeon and neurologist. Psychological psychiatric consequences and fear expertise have to be performed by the psychiatrist. Specialists of forensic medicine contribute with knowledge of criminal low and legal expertise.

  7. Modeling Blast-Related Brain Injury

    Science.gov (United States)

    2008-12-01

    02139 D. Moore Defense and Veterans Brain Injury Center (WRAMC) 6900 Georgia Ave. NW, Washington, DC 20307 L. Noels University of Liege Chemin des...chevreuils 1, B4000 Liege , Belgium ABSTRACT Recent military conflicts in Iraq and Afghanistan have highlighted the wartime effect of traumatic brain in

  8. [Differentiated treatment of acute diffuse brain injuries].

    Science.gov (United States)

    Pedachenko, E G; Dziak, L A; Sirko, A G

    2012-01-01

    Diagnosis and treatment results of 57 patients with acute diffuse brain injury have been analyzed. Patients were divided into two groups: first study period 2000-2005; second study period 2006-2010. The main differences between the first and the second study periods were in health condition and brain functions monitoring parameters, therapy approaches and goals. Increasing of axial and lateral dislocation symptoms during progression from the first type of diffuse injury to the fourth one is related to intracranial hypertension (ICH) occurrence rate and significance it's significance. During the second study period, ICH was found in 25% patients with the second type of injury, 57% patients with the third type of injury, and 80%, with the fourth type of injury. Mean ICP in the group of patients with the second type of diffuse injury comprised 14.4 +/- 6.6 mmHg; with the third type of injury, 30 +/- 20.6 mmHg; with the fourth type of injuty, 37.6 +/- 14.1 mmHg. Introduction of differentiated approach to conservative or surgical treatment method application to acute diffuse brain injuries patients based on ICP monitoring data led to 13.8% reduction in mortality in the second study period compared with the first study period.

  9. TRAUMATIC BRAIN INJURY CHILDREN: A LITERATURE REVIEW

    Directory of Open Access Journals (Sweden)

    Denismar Borges de Miranda

    2013-09-01

    Full Text Available Objective: to know the scientific literature on head injury in children. Method: this study is an integrative review of published articles in the database SciELO the period 2000-2010. Results: 10 articles were analyzed, from which emerged four categories: causes of traumatic brain child infant prognosis of traumatic brain child, treating children victims of child head injury and complications of therapy used for child victims of traumatic brain injury in children. Conclusions: there is consensus among the authors investigated the factors associated with better prognosis of traumatic brain child, remain vague and uncertain. They add that the success of this customer service related to the control of complications arising from cerebral trauma and mostly are treatable and / or preventable.

  10. Recovery after Brain Injury: Mechanisms and Principles

    Directory of Open Access Journals (Sweden)

    Randolph J. Nudo

    2013-12-01

    Full Text Available The past 20 years have represented an important period in the development of principles underlying neuroplasticity, especially as they apply to recovery from neurological injury. It is now generally accepted that acquired brain injuries, such as occur in stroke or trauma, initiate a cascade of regenerative events that last for at least several weeks, if not months. Many investigators have pointed out striking parallels between post-injury plasticity and the molecular and cellular events that take place during normal brain development. As evidence for the principles and mechanisms underlying post-injury neuroplasticity has been gleaned from both animal models and human populations, novel approaches to therapeutic intervention have been proposed. One important theme has persisted as the sophistication of clinicians and scientists in their knowledge of neuroplasticity mechanisms has grown: Behavioral experience is the most potent modulator of brain plasticity. While there is substantial evidence for this principle in normal, healthy brains, the injured brain is particularly malleable. Based on the quantity and quality of motor experience, the brain can be reshaped after injury in either adaptive or maladaptive ways. This paper reviews selected studies that have demonstrated the neurophysiological and neuroanatomical changes that are triggered by motor experience, by injury, and the interaction of these processes. In addition, recent studies using new and elegant techniques are providing novel perspectives on the events that take place in the injured brain, providing a real-time window into post-injury plasticity. These new approaches are likely to accelerate the pace of basic research, and provide a wealth of opportunities to translate basic principles into therapeutic methodologies.

  11. Traumatic brain injury, neuroimaging, and neurodegeneration.

    Science.gov (United States)

    Bigler, Erin D

    2013-01-01

    Depending on severity, traumatic brain injury (TBI) induces immediate neuropathological effects that in the mildest form may be transient but as severity increases results in neural damage and degeneration. The first phase of neural degeneration is explainable by the primary acute and secondary neuropathological effects initiated by the injury; however, neuroimaging studies demonstrate a prolonged period of pathological changes that progressively occur even during the chronic phase. This review examines how neuroimaging may be used in TBI to understand (1) the dynamic changes that occur in brain development relevant to understanding the effects of TBI and how these relate to developmental stage when the brain is injured, (2) how TBI interferes with age-typical brain development and the effects of aging thereafter, and (3) how TBI results in greater frontotemporolimbic damage, results in cerebral atrophy, and is more disruptive to white matter neural connectivity. Neuroimaging quantification in TBI demonstrates degenerative effects from brain injury over time. An adverse synergistic influence of TBI with aging may predispose the brain injured individual for the development of neuropsychiatric and neurodegenerative disorders long after surviving the brain injury.

  12. Traumatic brain injury, neuroimaging, and neurodegeneration

    Directory of Open Access Journals (Sweden)

    Erin D. Bigler

    2013-08-01

    Full Text Available Depending on severity, traumatic brain injury (TBI induces immediate neuropathological effects that in the mildest form may be transient but as severity increases results in neural damage and degeneration. The first phase of neural degeneration is explainable by the primary acute and secondary neuropathological effects initiated by the injury; however, neuroimaging studies demonstrate a prolonged period of pathological changes that progressively occur even during the chronic phase. This review examines how neuroimaging may be used in TBI to understand (1 the dynamic changes that occur in brain development relevant to understanding the effects of TBI and how these relate to developmental stage when the brain is injured, (2 how TBI interferes with age-typical brain development and the effects of aging thereafter, and (3 how TBI results in greater frontotemporolimbic damage, results in cerebral atrophy, and is more disruptive to white matter neural connectivity. Neuroimaging quantification in TBI demonstrates degenerative effects from brain injury over time. An adverse synergistic influence of TBI with aging may predispose the brain injured individual for the development of neuropsychiatric and neurodegenerative disorders long after surviving the brain injury.

  13. Driving, brain injury and assistive technology.

    Science.gov (United States)

    Lane, Amy K; Benoit, Dana

    2011-01-01

    Individuals with brain injury often present with cognitive, physical and emotional impairments which impact their ability to resume independence in activities of daily living. Of those activities, the resumption of driving privileges is cited as one of the greatest concerns by survivors of brain injury. The integration of driving fundamentals within the hierarchical model proposed by Keskinen represents the complexity of skills and behaviors necessary for driving. This paper provides a brief review of specific considerations concerning the driver with TBI and highlights current vehicle technology which has been developed by the automotive industry and by manufacturers of adaptive driving equipment that may facilitate the driving task. Adaptive equipment technology allows for compensation of a variety of operational deficits, whereas technological advances within the automotive industry provide drivers with improved safety and information systems. However, research has not yet supported the use of such intelligent transportation systems or advanced driving systems for drivers with brain injury. Although technologies are intended to improve the safety of drivers within the general population, the potential of negative consequences for drivers with brain injury must be considered. Ultimately, a comprehensive driving evaluation and training by a driving rehabilitation specialist is recommended for individuals with brain injury. An understanding of the potential impact of TBI on driving-related skills and knowledge of current adaptive equipment and technology is imperative to determine whether return-to-driving is a realistic and achievable goal for the individual with TBI.

  14. Emotion Recognition following Pediatric Traumatic Brain Injury: Longitudinal Analysis of Emotional Prosody and Facial Emotion Recognition

    Science.gov (United States)

    Schmidt, Adam T.; Hanten, Gerri R.; Li, Xiaoqi; Orsten, Kimberley D.; Levin, Harvey S.

    2010-01-01

    Children with closed head injuries often experience significant and persistent disruptions in their social and behavioral functioning. Studies with adults sustaining a traumatic brain injury (TBI) indicate deficits in emotion recognition and suggest that these difficulties may underlie some of the social deficits. The goal of the current study was…

  15. A Review of Family Intervention Guidelines for Pediatric Acquired Brain Injuries

    Science.gov (United States)

    Cole, Wesley R.; Paulos, Stephanie K.; Cole, Carolyn A. S.; Tankard, Carol

    2009-01-01

    Pediatric acquired brain injury (BI) not only affects the child with the injury, but also greatly impacts their family. Studies suggest there are higher rates of caregiver and sibling psychological distress after a child in the family has sustained a BI. Also, family functioning after BI impacts the child's recovery. In reviewing the literature,…

  16. Current review of injuries sustained in mixed martial arts competition.

    Science.gov (United States)

    Walrod, Bryant

    2011-01-01

    Mixed martial arts (MMA) have enjoyed a tremendous growth in popularity over the past 10 years, yet there remains a paucity of information with respect to common injuries sustained in MMA competitions. In the available studies, certain trends pertaining to risk factors for injury, as well as the most common injuries sustained in MMA competition, were noted. Common risk factors include being the losing fighter, history of knockout or technical knockout, and longer fight duration. Common injuries that were noted include lacerations and abrasions, followed by injuries to the face and ocular region. Concussions with or without loss of consciousness also were noted in MMA competition.

  17. Molecular Mechanisms of Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Claire Thornton

    2012-01-01

    Full Text Available Fetal/neonatal brain injury is an important cause of neurological disability. Hypoxia-ischemia and excitotoxicity are considered important insults, and, in spite of their acute nature, brain injury develops over a protracted time period during the primary, secondary, and tertiary phases. The concept that most of the injury develops with a delay after the insult makes it possible to provide effective neuroprotective treatment after the insult. Indeed, hypothermia applied within 6 hours after birth in neonatal encephalopathy reduces neurological disability in clinical trials. In order to develop the next generation of treatment, we need to know more about the pathophysiological mechanism during the secondary and tertiary phases of injury. We review some of the critical molecular events related to mitochondrial dysfunction and apoptosis during the secondary phase and report some recent evidence that intervention may be feasible also days-weeks after the insult.

  18. Managing traumatic brain injury secondary to explosions

    Directory of Open Access Journals (Sweden)

    Burgess Paula

    2010-01-01

    Full Text Available Explosions and bombings are the most common deliberate cause of disasters with large numbers of casualties. Despite this fact, disaster medical response training has traditionally focused on the management of injuries following natural disasters and terrorist attacks with biological, chemical, and nuclear agents. The following article is a clinical primer for physicians regarding traumatic brain injury (TBI caused by explosions and bombings. The history, physics, and treatment of TBI are outlined.

  19. Functional Recovery After Severe Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Hart, Tessa; Kozlowski, Allan; Whyte, John

    2014-01-01

    OBJECTIVE: To examine person, injury, and treatment characteristics associated with recovery trajectories of people with severe traumatic brain injury (TBI) during inpatient rehabilitation. DESIGN: Observational prospective longitudinal study. SETTING: Two specialized inpatient TBI rehabilitation...... functional levels received more treatment and more treatment was associated with slower recovery, presumably because treatment was allocated according to need. Thus, effects of treatment on outcome could not be disentangled from effects of case mix factors. CONCLUSIONS: FIM gain during inpatient recovery...

  20. Therapeutic hypothermia for acute brain injuries.

    Science.gov (United States)

    Andresen, Max; Gazmuri, Jose Tomás; Marín, Arnaldo; Regueira, Tomas; Rovegno, Maximiliano

    2015-06-05

    Therapeutic hypothermia, recently termed target temperature management (TTM), is the cornerstone of neuroprotective strategy. Dating to the pioneer works of Fay, nearly 75 years of basic and clinical evidence support its therapeutic value. Although hypothermia decreases the metabolic rate to restore the supply and demand of O₂, it has other tissue-specific effects, such as decreasing excitotoxicity, limiting inflammation, preventing ATP depletion, reducing free radical production and also intracellular calcium overload to avoid apoptosis. Currently, mild hypothermia (33°C) has become a standard in post-resuscitative care and perinatal asphyxia. However, evidence indicates that hypothermia could be useful in neurologic injuries, such as stroke, subarachnoid hemorrhage and traumatic brain injury. In this review, we discuss the basic and clinical evidence supporting the use of TTM in critical care for acute brain injury that extends beyond care after cardiac arrest, such as for ischemic and hemorrhagic strokes, subarachnoid hemorrhage, and traumatic brain injury. We review the historical perspectives of TTM, provide an overview of the techniques and protocols and the pathophysiologic consequences of hypothermia. In addition, we include our experience of managing patients with acute brain injuries treated using endovascular hypothermia.

  1. Mild Traumatic Brain Injury – Case Report

    Directory of Open Access Journals (Sweden)

    2015-06-01

    Full Text Available A mild traumatic brain injury or a concussion represents the majority of all traumatic brain injuries. The consequences show on physical, cognitive, and emotional functioning and even though the injury classifies as mild, it can have a significant effect on a patient, patient’s family and their quality of life. Defects are often overlooked as objective clinical methods are lacking. Neuropsychological evaluation can aid in appraisal of the defect magnitude and determine factors that influence the outcome of the injured. The following case report addresses the importance of neuropsychological evaluation in treating cognitive defects along with the Cognitive Behavioral therapy approach toward emotional and behavioral disorders treatment in mild traumatic brain injury. It has been shown how important it is to find possible causes for slow recovery. The annuity tendencies have been noted as an important factor for prolongation of the post-concussion syndrome. We can detect the symptom simulation with appropriate psychological instruments. Described is a case of 38-year-old man who suffered a mild traumatic brain injury.

  2. Fluid markers of traumatic brain injury.

    Science.gov (United States)

    Zetterberg, Henrik; Blennow, Kaj

    2015-05-01

    Traumatic brain injury (TBI) occurs when an external force traumatically injures the brain. Whereas severe TBI can be diagnosed using a combination of clinical signs and standard neuroimaging techniques, mild TBI (also called concussion) is more difficult to detect. This is where fluid markers of injury to different cell types and subcellular compartments in the central nervous system come into play. These markers are often proteins, peptides or other molecules with selective or high expression in the brain, which can be measured in the cerebrospinal fluid or blood as they leak out or get secreted in response to the injury. Here, we review the literature on fluid markers of neuronal, axonal and astroglial injury to diagnose mild TBI and to predict clinical outcome in patients with head trauma. We also discuss chronic traumatic encephalopathy, a progressive neurodegenerative disease in individuals with a history of multiple mild TBIs in a biomarker context. This article is part of a Special Issue entitled 'Traumatic Brain Injury'. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Neuropsychiatric aspects of severe brain injuries

    Directory of Open Access Journals (Sweden)

    O. S. Zaitsev

    2012-01-01

    Full Text Available The state-of-the-art of Russian neuropsychiatry and priority developments in different psychopathological syndromes in severe brain injuries are assessed. Many cognitive and emotional impairments are explained in terms of the idea on the organization of psychic activity over time. It is emphasized that to achieve the premorbid levels of an interhemispheric interaction and functional asymmetry of the cerebral hemispheres affords psychic activity recovery. The experience in investigating, classifying, and treating various mental disorders occurring after severe brain injuries is generalized. The basic principles of psychopharmacotherapy and rehabilitation of victims are stated.

  4. Surgical management of traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Vidgeon, Steven; Strong, Anthony J;

    2014-01-01

    OBJECT: Mass lesions from traumatic brain injury (TBI) often require surgical evacuation as a life-saving measure and to improve outcomes, but optimal timing and surgical technique, including decompressive craniectomy, have not been fully defined. The authors compared neurosurgical approaches...... enrolled in the Co-Operative Studies on Brain Injury Depolarizations (COSBID) at King's College Hospital (KCH, n = 27) and Virginia Commonwealth University (VCU, n = 24) from July 2004 to March 2010. Subdural electrode strips were placed at the time of surgery for subsequent electrocorticographic...

  5. The prehospital management of traumatic brain injury.

    Science.gov (United States)

    Goldberg, Scott A; Rojanasarntikul, Dhanadol; Jagoda, Andrew

    2015-01-01

    Traumatic brain injury (TBI) is an important cause of death and disability, particularly in younger populations. The prehospital evaluation and management of TBI is a vital link between insult and definitive care and can have dramatic implications for subsequent morbidity. Following a TBI the brain is at high risk for further ischemic injury, with prehospital interventions targeted at reducing this secondary injury while optimizing cerebral physiology. In the following chapter we discuss the prehospital assessment and management of the brain-injured patient. The initial evaluation and physical examination are discussed with a focus on interpretation of specific physical examination findings and interpretation of vital signs. We evaluate patient management strategies including indications for advanced airway management, oxygenation, ventilation, and fluid resuscitation, as well as prehospital strategies for the management of suspected or impending cerebral herniation including hyperventilation and brain-directed hyperosmolar therapy. Transport decisions including the role of triage models and trauma centers are discussed. Finally, future directions in the prehospital management of traumatic brain injury are explored. © 2015 Elsevier B.V. All rights reserved.

  6. Prehospital Care of Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    TVSP Murthy

    2008-01-01

    Full Text Available Traumatic brain injury (TBI occurs when a sudden trauma causes brain damage. Depending on the severity, outcome can be anything from complete recovery to permanent disability or death. Emergency medical services play a dominant role in provision of primary care at the site of injury. Since little can be done to reverse the initial brain damage due to trauma, attempts to prevent further brain damage and stabilize the patient before he can be brought to a specialized trauma care centre play a pivotal role in the final outcome. Recognition and early treatment of hypoten-sion, hypoxemia, and hypoglycemia, objective neurological assessment based on GCS and pupils, and safe transport to an optimal care centre are the key elements of prehospital care of a TBI patient.

  7. Time dysperception perspective for acquired brain injury

    Directory of Open Access Journals (Sweden)

    Federica ePiras

    2014-01-01

    Full Text Available Distortions of time perception are presented by a number of neuropsychiatric disorders. Here we survey timing abilities in clinical populations with acquired brain injuries in key cerebral areas recently implicated in human studies of timing. We purposely analyzed the complex relationship between cognitive and contextual factors involved in time estimation, as to characterize the correlation between timed and other cognitive behaviors in each group. We assume that interval timing is a solid construct to study cognitive dysfunctions following brain injury, as timing performance is a sensitive metric of information processing, while temporal cognition has the potential of influencing a wide range of cognitive processes. Moreover, temporal performance is a sensitive assay of damage to the underlying neural substrate after a brain insult. Further research in neurological and psychiatric patients will definitively answer the question of whether time distortions are manifestations of cognitive and behavioral symptoms of brain damage and definitively clarify their mechanisms.

  8. Minding and Caring about Ethics in Brain Injury.

    Science.gov (United States)

    Gillett, Grant

    2016-05-01

    Joseph Fins's book Rights Come to Mind: Brain Injury, Ethics, and the Struggle for Consciousness (Cambridge UP, 2015) is a considerable addition to the literature on disorders of consciousness and the murky area of minimally conscious states. Fins brings to this fraught area of clinical practice and neuroethical analysis a series of stories and reflections resulting in a pressing and sustained ethical challenge both to clinicians and to health care systems. The challenge is multifaceted, with diagnostic and therapeutic demands to be met by clinicians and a mix of moral, scientific-economic, and political resonances for health care analysts. Everything in the book resonates with my own clinical experience and the often messy and emotionally wrenching business of providing ongoing care for patients with severe brain injuries and disorders, people who frequently resist the categorizations that well-organized health care systems prefer and that can dictate terms of patient management.

  9. Psychiatric sequelae of traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Suprakash Chaudhury

    2013-01-01

    Full Text Available Almost half of the people suffering traumatic brain injury (TBI may later be diagnosed with psychiatric disorders. The literature (PubMed, IndMed of past 30 years on psychiatric disturbances associated with TBI is reviewed. The authors highlight the close link between head injury and psychiatry and provide an overview of the epidemiology, risk-factors, and mechanisms of psychiatric sequelae including, cognitive deficits, substance abuse, psychoses, mood disorders, suicide, anxiety disorders, dissociative disorders, post-concussion syndrome, and personality changes following head injury. The various psychiatric sequelae are briefly discussed.

  10. Advanced monitoring in traumatic brain injury: microdialysis

    OpenAIRE

    Carpenter, KLH; Young, AMH; Hutchinson, PJ

    2017-01-01

    Purpose of review: Here, we review the present state-of-the-art of microdialysis for monitoring patients with severe traumatic brain injury, highlighting the newest developments. Microdialysis has evolved in neurocritical care to become an established bedside monitoring modality that can reveal unique information on brain chemistry. Recent findings: A major advance is recent consensus guidelines for microdialysis use and interpretation. Other advances include insight obtained from microdi...

  11. Minor traumatic brain injury in sports.

    Science.gov (United States)

    Schleimer, Jonathan A

    2002-12-01

    Mild traumatic brain injury (MTBI) is an all-too-frequent occurrence among amateur and professional athletes alike. The increased attention it has received in recent literature may suggest that incidence of this injury has risen. The frequency of MTBI in general may be rising with the increased interest in so-called noncontact sports such as soccer, snowboarding, skateboarding, and motocross. Despite significant improvements made in the quality of protective equipment, head injury remains common in football, soccer, and amateur boxing. The management of athletes who suffer traumatic head injury remains problematic for coaches, trainers, team physicians, primary care physicians, and neurologic specialists. This article addresses guidelines, and diagnostic and treatment protocols to help with the management of athletes with concussion and traumatic head injuries.

  12. Advanced monitoring in traumatic brain injury: microdialysis.

    Science.gov (United States)

    Carpenter, Keri L H; Young, Adam M H; Hutchinson, Peter J

    2017-04-01

    Here, we review the present state-of-the-art of microdialysis for monitoring patients with severe traumatic brain injury, highlighting the newest developments. Microdialysis has evolved in neurocritical care to become an established bedside monitoring modality that can reveal unique information on brain chemistry. A major advance is recent consensus guidelines for microdialysis use and interpretation. Other advances include insight obtained from microdialysis into the complex, interlinked traumatic brain injury disorders of electrophysiological changes, white matter injury, inflammation and metabolism. Microdialysis has matured into being a standard clinical monitoring modality that takes its place alongside intracranial pressure and brain tissue oxygen tension measurement in specialist neurocritical care centres, as well as being a research tool able to shed light on brain metabolism, inflammation, therapeutic approaches, blood-brain barrier transit and drug effects on downstream targets. Recent consensus on microdialysis monitoring is paving the way for improved neurocritical care protocols. Furthermore, there is scope for future improvements both in terms of the catheters and microdialysate analyser technology, which may further enhance its applicability.

  13. Interleukin-1 and acute brain injury.

    Science.gov (United States)

    Murray, Katie N; Parry-Jones, Adrian R; Allan, Stuart M

    2015-01-01

    Inflammation is the key host-defense response to infection and injury, yet also a major contributor to a diverse range of diseases, both peripheral and central in origin. Brain injury as a result of stroke or trauma is a leading cause of death and disability worldwide, yet there are no effective treatments, resulting in enormous social and economic costs. Increasing evidence, both preclinical and clinical, highlights inflammation as an important factor in stroke, both in determining outcome and as a contributor to risk. A number of inflammatory mediators have been proposed as key targets for intervention to reduce the burden of stroke, several reaching clinical trial, but as yet yielding no success. Many factors could explain these failures, including the lack of robust preclinical evidence and poorly designed clinical trials, in addition to the complex nature of the clinical condition. Lack of consideration in preclinical studies of associated co-morbidities prevalent in the clinical stroke population is now seen as an important omission in previous work. These co-morbidities (atherosclerosis, hypertension, diabetes, infection) have a strong inflammatory component, supporting the need for greater understanding of how inflammation contributes to acute brain injury. Interleukin (IL)-1 is the prototypical pro-inflammatory cytokine, first identified many years ago as the endogenous pyrogen. Research over the last 20 years or so reveals that IL-1 is an important mediator of neuronal injury and blocking the actions of IL-1 is beneficial in a number of experimental models of brain damage. Mechanisms underlying the actions of IL-1 in brain injury remain unclear, though increasing evidence indicates the cerebrovasculature as a key target. Recent literature supporting this and other aspects of how IL-1 and systemic inflammation in general contribute to acute brain injury are discussed in this review.

  14. Interleukin-1 and acute brain injury

    Directory of Open Access Journals (Sweden)

    Katie N Murray

    2015-02-01

    Full Text Available Inflammation is the key host-defense response to infection and injury, yet also a major contributor to a diverse range of diseases, both peripheral and central in origin. Brain injury as a result of stroke or trauma is a leading cause of death and disability worldwide, yet there are no effective treatments, resulting in enormous social and economic costs. Increasing evidence, both preclinical and clinical, highlights inflammation as an important factor in stroke, both in determining outcome and as a contributor to risk. A number of inflammatory mediators have been proposed as key targets for intervention to reduce the burden of stroke, several reaching clinical trial, but as yet yielding no success. Many factors could explain these failures, including the lack of robust preclinical evidence and poorly designed clinical trials, in addition to the complex nature of the clinical condition. Lack of consideration in preclinical studies of associated co-morbidities prevalent in the clinical stroke population is now seen as an important omission in previous work. These co-morbidities (atherosclerosis, hypertension, diabetes, infection have a strong inflammatory component, supporting the need for greater understanding of how inflammation contributes to acute brain injury. Interleukin (IL-1 is the prototypical pro-inflammatory cytokine, first identified many years ago as the endogenous pyrogen. Research over the last 20 years or so reveals that IL-1 is an important mediator of neuronal injury and blocking the actions of IL-1 is beneficial in a number of experimental models of brain damage. Mechanisms underlying the actions of IL-1 in brain injury remain unclear, though increasing evidence indicates the cerebrovasculature as a key target. Recent literature supporting this and other aspects of how IL-1 and systemic inflammation in general contribute to acute brain injury are discussed in this review.

  15. Aggressive behaviour of inpatients with acquired brain injury

    NARCIS (Netherlands)

    Henk Nijman; prof Berno van Meijel; Joost Stolker; Ada Visscher

    2011-01-01

    Objective. To study the prevalence, nature and determinants of aggression among inpatients with acquired brain injury. Background. Patients with acquired brain injury often have difficulty in controlling their aggressive impulses. Design. A prospective observational study design. Methods. By means o

  16. Recovery of resting brain connectivity ensuing mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Rose Dawn Bharath

    2015-09-01

    Full Text Available Brains reveal amplified plasticity as they recover from an injury. We aimed to define time dependent plasticity changes in patients recovering from mild traumatic brain injury (mTBI. 25 subjects with mild head injury were longitudinally evaluated within 36 hours, 3 and 6 months using resting state functional connectivity (RSFC. Region of interest (ROI based connectivity differences over time within the patient group and in comparison with a healthy control group were analyzed at p<0.005. We found 33 distinct ROI pairs that revealed significant changes in their connectivity strength with time. Within three months, the majority of the ROI pairs had decreased connectivity in mTBI population, which increased and became comparable to healthy controls at 6 months. Initial imaging within 36 hours of injury revealed hyper connectivity predominantly involving the salience network and default mode network, which reduced at 3 months when lingual, inferior frontal and fronto-parietal networks revealed hyper connectivity. At six months all the evaluated networks revealed hyper connectivity and became comparable to the healthy controls. Our findings in a fairly homogenous group of patients with mTBI evaluated during the 6 month window of recovery defines time varying brain connectivity changes as the brain recovers from an injury. A majority of these changes were seen in the frontal and parietal lobes between 3-6 months after injury. Hyper connectivity of several networks supported normal recovery in the first six months and it remains to be seen in future studies whether this can predict an early and efficient recovery of brain function.

  17. Correlation between heat shock protein 70 expression in the brain stem and sudden death after experimental traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    ZHAO Lian-xu; XU Xiao-hu; LIU Chao; PAN Su-yue; ZHU Jia-zhen; ZHANG Cheng

    2001-01-01

    Objective: The aim of this study was to determine the patterns of heat-shock protein 70 (HSP70) biosynthesis following traumatic brain injury, and observe the effect of HSP70 induction on the function of the vital center in the brain stem. Methods: Rat models of sudden death resulted form traumatic brain injury were produced, and HSP70 expression in the rat brain stem was determined by immunohistochemistry, the induction of HSP70 mRNA detected by RT-PCR. Results: The level of HSP70 mRNA was prominently elevated in the brain stem as early as 1 5 min following the impact injury, while HSP70 expression was only observed 3 to 6 h after the injury. It was also observed that the levels of HSP70 mRNA but not the protein were elevated in the brain stem of sudden death rats. Conclusion: The synthesis of HSP70 was significantly enhanced in the brain stem following traumatic injury, and the expression of HSP70 is beneficial to eliminate the stress agents, and to sustain the cellular protein homeostasis. When the injury disturbs the synthesis of HSP70 to disarm the protective mechanism of heat-shock proteins, dysfunction of the vital center in the brain stem, and consequently death may occur. Breach in the synchronization of HSP70 mRNA-protein can be indicative of fatal damage to the nerve cells.

  18. Traumatic Brain Injury: Nuclear Medicine Neuroimaging

    NARCIS (Netherlands)

    Sánchez-Catasús, Carlos A; Vállez Garcia, David; Le Riverend Morales, Eloísa; Galvizu Sánchez, Reinaldo; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; de Vries, Erik FJ; van Waarde, Aren; Leenders, Klaus L

    2014-01-01

    This chapter provides an up-to-date review of nuclear medicine neuroimaging in traumatic brain injury (TBI). 18F-FDG PET will remain a valuable tool in researching complex mechanisms associated with early metabolic dysfunction in TBI. Although evidence-based imaging studies are needed, 18F-FDG PET i

  19. Perioperative Management of Adult Traumatic Brain Injury

    OpenAIRE

    Sharma, Deepak; Vavilala, Monica S.

    2012-01-01

    This article presents an overview of the management of traumatic brain injury (TBI) as relevant to the practicing anesthesiologist. Key concepts surrounding the pathophysiology, anesthetic principles are used to describe potential ways to reduce secondary insults and improve outcomes after TBI.

  20. Clinical review: ketones and brain injury.

    Science.gov (United States)

    White, Hayden; Venkatesh, Balasubramanian

    2011-04-06

    Although much feared by clinicians, the ability to produce ketones has allowed humans to withstand prolonged periods of starvation. At such times, ketones can supply up to 50% of basal energy requirements. More interesting, however, is the fact that ketones can provide as much as 70% of the brain's energy needs, more efficiently than glucose. Studies suggest that during times of acute brain injury, cerebral uptake of ketones increases significantly. Researchers have thus attempted to attenuate the effects of cerebral injury by administering ketones exogenously. Hypertonic saline is commonly utilized for management of intracranial hypertension following cerebral injury. A solution containing both hypertonic saline and ketones may prove ideal for managing the dual problems of refractory intracranial hypertension and low cerebral energy levels. The purpose of the present review is to explore the physiology of ketone body utilization by the brain in health and in a variety of neurological conditions, and to discuss the potential for ketone supplementation as a therapeutic option in traumatic brain injury.

  1. Narrative Language in Traumatic Brain Injury

    Science.gov (United States)

    Marini, Andrea; Galetto, Valentina; Zampieri, Elisa; Vorano, Lorenza; Zettin, Marina; Carlomagno, Sergio

    2011-01-01

    Persons with traumatic brain injury (TBI) often show impaired linguistic and/or narrative abilities. The present study aimed to document the features of narrative discourse impairment in a group of adults with TBI. 14 severe TBI non-aphasic speakers (GCS less than 8) in the phase of neurological stability and 14 neurologically intact participants…

  2. Brain Injury with Sickle Cell Disease

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2003-11-01

    Full Text Available The relationship between brain injury and vasculopathy in 146 sickle cell (SCD patients with hemoglobin SS, the most serious form of SCD, was evaluated by MRI and MRA at St Jude Children’s Research Hospital, Memphis, TN.

  3. Working with Students with Traumatic Brain Injury

    Science.gov (United States)

    Lucas, Matthew D.

    2010-01-01

    The participation of a student with Traumatic Brain Injury (TBI) in general physical education can often be challenging and rewarding for the student and physical education teacher. This article addresses common characteristics of students with TBI and presents basic solutions to improve the education of students with TBI in the general physical…

  4. Future directions in brain injury research.

    Science.gov (United States)

    Gennarelli, Thomas A

    2014-01-01

    This paper reviews the potential future directions that are important for brain injury research, especially with regard to concussion. The avenues of proposed research are categorized according to current concepts of concussion, types of concussion, and a global schema for globally reducing the burden of concussion.

  5. Monitoring Agitated Behavior After acquired Brain Injury

    DEFF Research Database (Denmark)

    Aadal, Lena; Mortensen, Jesper; Nielsen, Jørgen Feldbaek

    2016-01-01

    Purpose: To describe the onset, duration, intensity, and nursing shift variation of agitated behavior in patients with acquired brain injury (ABI) at a rehabilitation hospital. Design: Prospective descriptive study. Methods: A total of 11 patients with agitated behavior were included. Agitated...

  6. School Reentry Following Traumatic Brain Injury

    Science.gov (United States)

    Deidrick, Kathleen K. M.; Farmer, Janet E.

    2005-01-01

    Successful school reentry following traumatic brain injury (TBI) is critical to recovery. Physical, cognitive, behavioral, academic, and social problems can affect a child's school performance after a TBI. However, early intervention has the potential to improve child academic outcomes and promote effective coping with any persistent changes in…

  7. Biophysical mechanisms of traumatic brain injuries.

    Science.gov (United States)

    Young, Lee Ann; Rule, Gregory T; Bocchieri, Robert T; Burns, Jennie M

    2015-02-01

    Despite years of effort to prevent traumatic brain injuries (TBIs), the occurrence of TBI in the United States alone has reached epidemic proportions. When an external force is applied to the head, it is converted into stresses that must be absorbed into the brain or redirected by a helmet or other protective equipment. Complex interactions of the head, neck, and jaw kinematics result in strains in the brain. Even relatively mild mechanical trauma to these tissues can initiate a neurochemical cascade that leads to TBI. Civilians and warfighters can experience head injuries in both combat and noncombat situations from a variety of threats, including ballistic and blunt impact, acceleration, and blast. It is critical to understand the physics created by these threats to develop meaningful improvements to clinical care, injury prevention, and mitigation. Here the authors review the current state of understanding of the complex loading conditions that lead to TBI and characterize how these loads are transmitted through soft tissue, the skull and into the brain, resulting in TBI. In addition, gaps in knowledge and injury thresholds are reviewed, as these must be addressed to better design strategies that reduce TBI incidence and severity.

  8. Executive Functioning after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2008-07-01

    Full Text Available The Behavior Rating Inventory of Executive Function (BRIEF, a caregiver-report questionnaire, was used to measure changes in executive function in the first year after traumatic brain injury (TBI in a study of children, aged 5 to 15 years, at University of Minnesota, Minneapolis, and Johns Hopkins University School of Medicine, Baltimore, MD.

  9. Traumatic brain injury and olfactory deficits

    DEFF Research Database (Denmark)

    Fortin, Audrey; Lefebvre, Mathilde Beaulieu; Ptito, Maurice

    2010-01-01

    PRIMARY OBJECTIVE: Olfactory functions are not systematically evaluated following traumatic brain injury (TBI). This study aimed at comparing two smell tests that are used in a clinical setting. RESEARCH DESIGN: The University of Pennsylvania Smell Identification Test (UPSIT) and the Alberta Smell...

  10. New Antioxidant Drugs for Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Maria Luisa Tataranno

    2015-01-01

    Full Text Available The brain injury concept covers a lot of heterogeneity in terms of aetiology involving multiple factors, genetic, hemodynamic, metabolic, nutritional, endocrinological, toxic, and infectious mechanisms, acting in antenatal or postnatal period. Increased vulnerability of the immature brain to oxidative stress is documented because of the limited capacity of antioxidant enzymes and the high free radicals (FRs generation in rapidly growing tissue. FRs impair transmembrane enzyme Na+/K+-ATPase activity resulting in persistent membrane depolarization and excessive release of FR and excitatory aminoacid glutamate. Besides being neurotoxic, glutamate is also toxic to oligodendroglia, via FR effects. Neuronal cells die of oxidative stress. Excess of free iron and deficient iron/binding metabolising capacity are additional features favouring oxidative stress in newborn. Each step in the oxidative injury cascade has become a potential target for neuroprotective intervention. The administration of antioxidants for suspected or proven brain injury is still not accepted for clinical use due to uncertain beneficial effects when treatments are started after resuscitation of an asphyxiated newborn. The challenge for the future is the early identification of high-risk babies to target a safe and not toxic antioxidant therapy in combination with standard therapies to prevent brain injury and long-term neurodevelopmental impairment.

  11. Centralized rehabilitation after servere traumatic brain injury

    DEFF Research Database (Denmark)

    Engberg, Aase Worså; Liebach, Annette; Nordenbo, Annette Mosbæk

    2006-01-01

    OBJECTIVES: To present results from the first 3 years of centralized subacute rehabilitation after very severe traumatic brain injury (TBI), and to compare results of centralized versus decentralized rehabilitation. MATERIAL AND METHODS: Prospectively, the most severely injured group of adults from...... an uptake area of 2.4 million in Denmark were included at admission to a regional brain injury unit (BIU), on average 19 days after injury. Patients in the retrospective study used for comparison were randomly chosen from the national hospital register. RESULTS AND CONCLUSIONS: Out of 117 patients...... post-trauma was 0.29, and at 1 year 0.055 per 100,000 population. By comparison of 39 patients from the centralized unit injured in 2000-2003 with 21 patients injured in 1982, 1987 or 1992 and with similar PTA- and age distributions and male/female ratio, Glasgow Outcome Scale score at discharge...

  12. Centralized rehabilitation after servere traumatic brain injury

    DEFF Research Database (Denmark)

    Engberg, Aase Worså; Liebach, Annette; Nordenbo, Annette Mosbæk

    2006-01-01

    post-trauma was 0.29, and at 1 year 0.055 per 100,000 population. By comparison of 39 patients from the centralized unit injured in 2000-2003 with 21 patients injured in 1982, 1987 or 1992 and with similar PTA- and age distributions and male/female ratio, Glasgow Outcome Scale score at discharge......OBJECTIVES: To present results from the first 3 years of centralized subacute rehabilitation after very severe traumatic brain injury (TBI), and to compare results of centralized versus decentralized rehabilitation. MATERIAL AND METHODS: Prospectively, the most severely injured group of adults from...... an uptake area of 2.4 million in Denmark were included at admission to a regional brain injury unit (BIU), on average 19 days after injury. Patients in the retrospective study used for comparison were randomly chosen from the national hospital register. RESULTS AND CONCLUSIONS: Out of 117 patients...

  13. Traumatic Brain Injury (TBI) Studies at Grady Memorial Hospital

    Science.gov (United States)

    2010-09-01

    management of adult, blunt-mechanism traumatic brain injury ( TBI ) patients and assess the overall mortality of this cohort at Grady...this study is to determine the current compliance with widely accepted guidelines for the management of severe traumatic brain injury ( TBI ) patients...AD_________________ Award Number: W81XWH-09-2-0145 Study Title: Traumatic Brain Injury ( TBI

  14. Language Abilities Following Prematurity, Periventricular Brain Injury, and Cerebral Palsy.

    Science.gov (United States)

    Feldman, Heidi M.; And Others

    1994-01-01

    This study compared language abilities in three groups of preschool children (total n=18) who were born prematurely: children with bilateral spastic cerebral palsy associated with perinatal brain injury, with similar brain injury but no motor impairment, and with no brain injuries. No significant differences were observed among the groups on any…

  15. Dual diagnosis: traumatic brain injury with spinal cord injury.

    Science.gov (United States)

    Kushner, David S; Alvarez, Gemayaret

    2014-08-01

    Spinal cord injury (SCI) patients should be assessed for a co-occurring traumatic brain injury (TBI) on admission to a rehabilitation program. Incidence of a dual diagnosis may approach 60% with certain risk factors. Diagnosis of mild-moderate severity TBIs may be missed during acute care hospitalizations of SCI. Neuropsychological symptoms of a missed TBI diagnosis may be perceived during rehabilitation as noncompliance, inability to learn, maladaptive reactions to SCI, and poor motivation. There are life-threatening and quality-of-life-threatening complications of TBI that also may be missed if a dual diagnosis is not made.

  16. Combat Helmets and Blast Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Duncan Wallace

    2012-01-01

    Full Text Available Background: The conflicts in Iraq and Afghanistan and the prominence of traumatic brain injury (TBI, mostly from improvised explosive devices, have focused attention on the effectiveness of combat helmets. Purpose: This paper examines the importance of TBI, the role and history of the development of combat helmets, current helmet designs and effectiveness, helmet design methodology, helmet sensors, future research and recommendations. Method: A literature review was conducted using search terms – combat helmets, traumatic brain injury, concussion, Iraq, Afghanistan and helmet sensors, searching PubMed, MEDLINE, ProQuest and Google Scholar. Conclusions: At present, no existing helmet is able to fully protect against all threats faced on the battlefield. The prominence of traumatic brain injury from improvised explosive devices in the current conflicts in Iraq and Afghanistan has highlighted the limitations in knowledge about blast and how to provide protection from it. As a result, considerable research is currently occurring in how to protect the head from blast over-pressure. Helmet sensors may provide valuable data. Some new combat helmets may be able to protect against rifle rounds, but may result in injuries occurring behind body armour. Optimal combat helmet design requires a balance between the need for protection from trauma and the comfort and practicality of the helmet for the user to ensure the best outcomes.

  17. Brain injuries caused by spherical bolts.

    Science.gov (United States)

    Roth, Jonathan; Mayo, Ami; Elran, Hanoch; Razon, Nissim; Kluger, Yoram

    2005-05-01

    Metallic particles contained in antihuman bombs increase the number of fatalities. The ballistics of these particles depends on the explosive that is used, the distance from the explosion, the shape of the particle projected, and the biomechanics of the injured tissue. The authors present their experience with penetrating spherical bolt injuries to the brain. The authors retrospectively reviewed clinical and radiological data obtained in eight patients with penetrating spherical bolt injuries to the cranium: four had Glasgow Coma Scale (GCS) scores less than 8 (three died, one from an unrelated injury) and four had a GCS score of 15 (all survived). Two of the latter patients suffered unique anatomical injuries attributed to the distinctive ballistics of spherical bolts: in one patient the bolt penetrated the cavernous sinus causing minimal cranial nerve injury, and in the other patient the bolt lodged in the fourth ventricle causing acute hydrocephalus without other neurological deficits. Penetrating spherical bolts to the brain may be lethal. Nevertheless, they have unique ballistics that cause highly delineated anatomical damage and minor neurological deficits.

  18. Rehabilitation of awareness of deficits in patients with traumatic brain injury applying a user-friendly computerised intervention approach

    LENUS (Irish Health Repository)

    Morgan, Dr Jacinta

    2010-01-01

    Objective : Awareness of errors is an important prerequisite in rehabilitation. Few studies have investigated rehabilitation of error awareness following acquired brain injury. Pilot research has shown that receiving feedback about errors during a computerised task of sustained attention improves performance in patients who have sustained a traumatic brain injury. In this study, a computer-based intervention training programme aimed at improving error awareness was developed. \\r\

  19. Epidemiology of Hospital-Treated Injuries Sustained by Fitness Participants

    Science.gov (United States)

    Gray, Shannon E.; Finch, Caroline F.

    2015-01-01

    Purpose: The purpose of this study was to provide an epidemiological profile of injuries sustained by participants in fitness activities in Victoria, Australia, based on hospital admissions and emergency department (ED) presentations and to identify the most common types, causes, and sites of these injuries. Method: Hospital-treated fitness…

  20. Blunt colon injury sustained during a kickboxing match.

    Science.gov (United States)

    Rood, Loren K

    2007-02-01

    Emergency physicians routinely evaluate patients for injury from blunt abdominal trauma. Most serious injuries result from high energy mechanisms such as motor vehicle collisions. This case report describes a patient who sustained blunt trauma to the descending colon during a martial arts match, necessitating a hemicolectomy.

  1. Contribution of psychological trauma to outcomes after traumatic brain injury: assaults versus sporting injuries.

    Science.gov (United States)

    Mathias, Jane L; Harman-Smith, Yasmin; Bowden, Stephen C; Rosenfeld, Jeffrey V; Bigler, Erin D

    2014-04-01

    Clinical research into outcomes after traumatic brain injury (TBI) frequently combines injuries that have been sustained through different causes (e.g., car accidents, assaults, and falls), the effect of which is not well understood. This study examined the contribution of injury-related psychological trauma—which is more commonly associated with specific types of injuries—to outcomes after nonpenetrating TBI in order to determine whether it may be having a differential effect in samples containing mixed injuries. Data from three groups that were prospectively recruited for two larger studies were compared: one that sustained a TBI as a result of physical assaults (i.e., psychologically traumatizing) and another as a result of sporting injuries (i.e., nonpsychologically traumatizing), as well as an orthopedic control group (OC). Psychosocial and emotional (postconcussion symptoms, injury-related stress, and depression), cognitive (memory, abstract reasoning, problem solving, and verbal fluency), and functional (general outcome; resumption of home, social, and work roles) outcomes were all assessed. The TBI(assault) group reported significantly poorer psychosocial and emotional outcomes and higher rates of litigation (criminal rather than civil) than both the TBI(sport) and OC groups approximately 6 months postinjury, but there were no differences in the cognitive or functional outcomes of the three groups. The findings suggest that the cause of a TBI may assist in explaining some of the differences in outcomes of people who have seemingly comparable injuries. Involvement in litigation and the cause of an injury may also be confounded, which may lead to the erroneous conclusion that litigants have poorer outcomes.

  2. ‘Studying Injured Minds’ - The Vietnam Head Injury Study and 40 years of brain injury research

    Directory of Open Access Journals (Sweden)

    Vanessa eRaymont

    2011-03-01

    Full Text Available The study of those who have sustained traumatic brain injuries (TBI during military conflicts has greatly facilitated research in the fields of neuropsychology, neurosurgery, psychiatry, neurology and neuroimaging. The Vietnam Head Injury Study (VHIS is a prospective, long-term follow-up study of a cohort of 1,221 Vietnam veterans with mostly penetrating brain injuries, which has stretched over more than 40 years. The scope of this study, both in terms of the types of injury and fields of examination, has been extremely broad. It has been instrumental in extending the field of TBI research and in exposing pressing medical and social issues that affect those who suffer such injuries. This review summarizes the history of conflict-related TBI research and the VHIS to date, as well as the vast range of important findings the VHIS has established.

  3. Kevlar Vest Protection Against Blast Overpressure Brain Injury: Systemic Contributions to Injury Etiology

    Science.gov (United States)

    2014-11-01

    Award Number: W81XWH-08-2-0017 TITLE: " Kevlar Vest Protection Against Blast Overpressure Brain Injury: Systemic Contributions to Injury Etiology...TITLE AND SUBTITLE 5a. CONTRACT NUMBER “ Kevlar Vest Protection Against Blast Overpressure Brain Injury: Systemic Contributions to Injury Etiology...traumatic brain injury (bTBI) is largely undefined. Along with reducing mortality, in preliminary experiments Kevlar vests significantly protected

  4. Apelin-13 as a novel target for intervention in secondary injury after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hai-jun Bao

    2016-01-01

    Full Text Available The adipocytokine, apelin-13, is an abundantly expressed peptide in the nervous system. Apelin-13 protects the brain against ischemia/reperfusion injury and attenuates traumatic brain injury by suppressing autophagy. However, secondary apelin-13 effects on traumatic brain injury-induced neural cell death and blood-brain barrier integrity are still not clear. Here, we found that apelin-13 significantly decreases cerebral water content, mitigates blood-brain barrier destruction, reduces aquaporin-4 expression, diminishes caspase-3 and Bax expression in the cerebral cortex and hippocampus, and reduces apoptosis. These results show that apelin-13 attenuates secondary injury after traumatic brain injury and exerts a neuroprotective effect

  5. Glyburide - Novel Prophylaxis and Effective Treatment for Traumatic Brain Injury

    Science.gov (United States)

    2012-08-01

    ABSTRACT The overall subject of this project is blast- traumatic brain injury (blast- TBI ) and the role of the SUR1-regulated NCCa-ATP channel in blast- TBI ...project is blast- traumatic brain injury (blast- TBI ) and the role of the SUR1-regulated NCCa-ATP channel in secondary injury following blast- TBI . The...effective treatment for traumatic brain injury PRINCIPAL INVESTIGATOR: J. Marc Simard, M.D., Ph.D

  6. A Blast Model of Traumatic Brain Injury in Swine

    Science.gov (United States)

    2009-05-01

    public release; distribution unlimited Although blast-induced traumatic brain injury (BI- TBI ) is a significant cause of morbidity and behavioral...survival model of BI- TBI in swine. Traumatic Brain Injury , Swine, Blast, Model Development U U U 7 USAMRMC W81XWH-08-2-0082... Injury , TBI Scientific Advisor, Defense Center of Excellence for Psychological Health and Traumatic Brain Injury ) and Dr. Tamara Crowder at the DoD

  7. Lateral Fluid Percussion: Model of Traumatic Brain Injury in Mice

    OpenAIRE

    2011-01-01

    Traumatic brain injury (TBI) research has attained renewed momentum due to the increasing awareness of head injuries, which result in morbidity and mortality. Based on the nature of primary injury following TBI, complex and heterogeneous secondary consequences result, which are followed by regenerative processes 1,2. Primary injury can be induced by a direct contusion to the brain from skull fracture or from shearing and stretching of tissue causing displacement of brain due to movement 3,4. ...

  8. The neuroethics and neurolaw of brain injury.

    Science.gov (United States)

    Aggarwal, Neil Krishan; Ford, Elizabeth

    2013-01-01

    Neuroethics and neurolaw are fields of study that involve the interface of neuroscience with clinical and legal decision-making. The past two decades have seen increasing attention being paid to both fields, in large part because of the advances in neuroimaging techniques and improved ability to visualize and measure brain structure and function. Traumatic brain injury (TBI), along with its acute and chronic sequelae, has emerged as a focus of neuroethical issues, such as informed consent for treatment and research, diagnostic and prognostic uncertainties, and the subjectivity of interpretation of data. The law has also more frequently considered TBI in criminal settings for exculpation, mitigation and sentencing purposes and in tort and administrative law for personal injury, disability and worker's compensation cases. This article provides an overview of these topics with an emphasis on the current challenges that the neuroscience of TBI faces in the medicolegal arena.

  9. Traumatic Brain Injury, Microglia, and Beta Amyloid

    OpenAIRE

    Mannix, Rebekah C.; Whalen, Michael J

    2012-01-01

    Recently, there has been growing interest in the association between traumatic brain injury (TBI) and Alzheimer's Disease (AD). TBI and AD share many pathologic features including chronic inflammation and the accumulation of beta amyloid (A\\(\\beta\\)). Data from both AD and TBI studies suggest that microglia play a central role in A\\(\\beta\\) accumulation after TBI. This paper focuses on the current research on the role of microglia response to A\\(\\beta\\) after TBI.

  10. Cerebral Vasospasm in Traumatic Brain Injury

    OpenAIRE

    Kramer, Daniel R.; Winer, Jesse L.; B. A. Matthew Pease; Arun P. Amar; Mack, William J.

    2013-01-01

    Vasospasm following traumatic brain injury (TBI) may dramatically affect the neurological and functional recovery of a vulnerable patient population. While the reported incidence of traumatic vasospasm ranges from 19%–68%, the true incidence remains unknown due to variability in protocols for its detection. Only 3.9%–16.6% of patients exhibit clinical deficits. Compared to vasospasm resulting from aneurysmal SAH (aSAH), the onset occurs earlier and the duration is shorter. Overall, the clinic...

  11. Reducing Secondary Insults in Traumatic Brain Injury

    Science.gov (United States)

    2015-03-01

    distinguished by aligning data from the data logger accelerometer against the simultaneous data streams of ICP, mean anerial pressure, and cerebral ... edema of central nervous system tissue within the closed confines of the cranial vault. The ability to estab- lish and maintain an appropriate...source of cerebral ischemia following severe brain injury in the Trau- matic Coma Data Bank . Acta Neurochir Suppl (Wien) 1993; 59: 121-5. II. Jeremitsky

  12. Barbiturates for acute traumatic brain injury.

    OpenAIRE

    Roberts, I.; Sydenham, E

    2012-01-01

    BACKGROUND: Raised intracranial pressure (ICP) is an important complication of severe brain injury, and is associated with high mortality. Barbiturates are believed to reduce ICP by suppressing cerebral metabolism, thus reducing cerebral metabolic demands and cerebral blood volume. However, barbiturates also reduce blood pressure and may, therefore, adversely effect cerebral perfusion pressure. OBJECTIVES: To assess the effects of barbiturates in reducing mortality, disability and raised ICP ...

  13. Caregiver stress in traumatic brain injury

    OpenAIRE

    Blake, Holly

    2013-01-01

    Aims\\ud Many patients experience physical, behavioural, cognitive and emotional problems following traumatic brain injury (TBI). They may require continuing care for many years, most of which is provided by informal caregivers, such as spouses, parents, or other family members. The caregiving role is associated with a range of adverse effects including anxiety, depression, poor physical health and lowered quality of life. This article explores issues around caregiver stress; highlighting inte...

  14. Using magnetic resonance imaging to predict new learning outcome at 5 years after childhood traumatic brain injury.

    Science.gov (United States)

    Catroppa, Cathy; Anderson, Vicki; Ditchfield, Michael; Coleman, Lee

    2008-05-01

    Memory and learning entail the recruitment of a number of neural areas, including the medial temporal lobes, temporal association areas, and prefrontal cortices. This study examined the effects of injury severity on long-term memory function in 55 children who sustained traumatic brain injury 5 years earlier and compared this with 17 healthy controls. It also investigated cortical damage and diffuse axonal injury and their association to memory and learning outcomes 5 years after traumatic brain injury. Children were administered memory tests of increasing complexity. Results indicated that injury severity affected aspects of complex memory, with no significant influence on working memory; that focal cortical damage was not predictive of working or complex memory, whereas diffuse axonal injury predicted outcome on complex memory tasks. Findings suggest that the implementation of diffuse axonal injury as an index of injury may assist in predicting memory outcome after childhood traumatic brain injury.

  15. Structural Neuroimaging Findings in Mild Traumatic Brain Injury.

    Science.gov (United States)

    Bigler, Erin D; Abildskov, Tracy J; Goodrich-Hunsaker, Naomi J; Black, Garrett; Christensen, Zachary P; Huff, Trevor; Wood, Dawn-Marie G; Hesselink, John R; Wilde, Elisabeth A; Max, Jeffrey E

    2016-09-01

    Common neuroimaging findings in mild traumatic brain injury (mTBI), including sport-related concussion (SRC), are reviewed based on computed tomography and magnetic resonance imaging (MRI). Common abnormalities radiologically identified on the day of injury, typically a computed tomographic scan, are in the form of contusions, small subarachnoid or intraparenchymal hemorrhages as well as subdural and epidural collections, edema, and skull fractures. Common follow-up neuroimaging findings with MRI include white matter hyperintensities, hypointense signal abnormalities that reflect prior hemorrhage, focal encephalomalacia, presence of atrophy and/or dilated Virchow-Robins perivascular space. The MRI findings from a large pediatric mTBI study show low frequency of positive MRI findings at 6 months postinjury. The review concludes with an examination of some of the advanced MRI-based image analysis methods that can be performed in the patient who has sustained an mTBI.

  16. Radiation-induced brain injury: A review

    Directory of Open Access Journals (Sweden)

    Michael eRobbins

    2012-07-01

    Full Text Available Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (> 6 months to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses > 30 Gy; white matter necrosis occurs at fractionated doses > 60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain

  17. Traumatic brain injury in modern war

    Science.gov (United States)

    Ling, Geoffrey S. F.; Hawley, Jason; Grimes, Jamie; Macedonia, Christian; Hancock, James; Jaffee, Michael; Dombroski, Todd; Ecklund, James M.

    2013-05-01

    Traumatic brain injury (TBI) is common and especially with military service. In Iraq and Afghanistan, explosive blast related TBI has become prominent and is mainly from improvised explosive devices (IED). Civilian standard of care clinical practice guidelines (CPG) were appropriate has been applied to the combat setting. When such CPGs do not exist or are not applicable, new practice standards for the military are created, as for TBI. Thus, CPGs for prehospital care of combat TBI CPG [1] and mild TBI/concussion [2] were introduced as was a DoD system-wide clinical care program, the first large scale system wide effort to address all severities of TBI in a comprehensive organized way. As TBI remains incompletely understood, substantial research is underway. For the DoD, leading this effort are The Defense and Veterans Brain Injury Center, National Intrepid Center of Excellence and the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury. This program is a beginning, a work in progress ready to leverage advances made scientifically and always with the intent of providing the best care to its military beneficiaries.

  18. Lower extremity injuries sustained while farming.

    Science.gov (United States)

    Neil, Janice A

    2002-01-01

    Today's complex farm environment can pose many threats to the lower extremities of all people especially those with chronic diseases that affect the lower extremities. The purpose of this study was to investigate the incidence of injuries to the lower extremities among farmers and to rank the importance of these incidents in order to plan prevention programs. one hundred farmers were surveyed at a large farm show in the southeastern United States. An average of 4.86 injuries per farmer were reported. Blisters from work shoes or boots, followed by injuries from animals stepping on the feet were the most common injuries. Since those with chronic illnesses are especially prone to injury and disability, regular foot assessments, evaluation, and education about the hazards of farming are mainstays of prevention.

  19. Traumatic brain injury: unmet support needs of caregivers and families in Florida.

    Science.gov (United States)

    Dillahunt-Aspillaga, Christina; Jorgensen-Smith, Tammy; Ehlke, Sarah; Sosinski, Melanie; Monroe, Douglas; Thor, Jennifer

    2013-01-01

    Sustaining a Traumatic Brain Injury results in familial strain due to the significant impact the injury has upon the role and function of individuals and their families at home and in the community. Using the Stress Process Model of Caregiving, a caregiver needs assessment survey was developed and conducted to better understand the needs of individuals with a Traumatic Brain Injury and their caregivers. Survey results indicate that caregivers experience many challenges including unmet needs in areas of relational supports such as maintaining relationships, long-term emotional and financial support for themselves and the survivor, and the need for a patient or caregiver advocate. Implications for future practice are presented.

  20. Neuropsychiatric disturbances and hypopituitarism after traumatic brain injury in an elderly man.

    Science.gov (United States)

    Chang, Yi-Cheng; Tsai, Jui-Chang; Tseng, Fen-Yu

    2006-02-01

    Neuropsychiatric or cognitive disturbances are common complications after traumatic brain injury. They are commonly regarded as irreversible sequelae of organic brain injuries. We report a case of hypopituitarism in a 77-year-old man who presented with long-term neuropsychiatric disturbances, including cognitive impairment, disturbed sleep patterns, personality change, loss of affect, and visual and auditory hallucinations after a traumatic subdural hemorrhage. The treatment response to hormone replacement therapy was nearly complete. Hypopituitarism is rarely considered in patients who sustain traumatic brain injury and the neuropsychiatric manifestations of posttraumatic hypopituitarism have rarely been reported. This case highlights the importance of hypopituitarism as a potential reversible cause of neuropsychiatric disturbances after traumatic brain injury.

  1. Hemodynamic Disorders in Severe Brain Injury

    Directory of Open Access Journals (Sweden)

    Yu. A. Churlyaev

    2006-01-01

    Full Text Available This study was undertaken to determine the general regularities of hemodynamic disorders in relation to the severity of brain damage for the subsequent development of pathogenetically warranted methods for their correction in the complex of intensive care for severe brain injury. Studies were made in 67 victims, by using neurophysiological studies (electroencephalography, studies of acoustical stem-evoked potentials and somatosensory stem-evoked potentials, computed tomography and magnetic resonance imaging. Central hemodynamics was studied by a Sirecust 1260 monitoring system using Swan-Ganz catheters and thermodilution. The overall condition of the victims was regarded as very bad. Loss of consciousness was 8-4 scores by the Glasgow coma scale. The studies have indicated that the victims in whose clinical picture the signs of compression of the cerebral hemispheres dominate over those of the latter’s contusion develop a hemodynamic reaction by the normodynamic type. The hyperdynamic type of hemodynamic disorder develops in cerebral hemispheric and diencephalic lesions with a parallel increase in oxygen transport and uptake; and in severe brain injury, lower brain stem damages are accompanied by hemodynamic disorder by the hypodynamic type with a reduction in oxygen transport and uptake.

  2. Secondary Damage after Traumatic Brain Injury: Epidemiology, Pathophysiology and Therapy

    NARCIS (Netherlands)

    D.C. Engel (Doortje Caroline)

    2008-01-01

    textabstractTraumatic brain injury (TBI) is defined as a microscopic or macroscopic injury to the brain caused by external physical forces. Road traffic accidents, falls, sports injuries (i.e. boxing), recreational accidents (i.e. parachute jumping), the use of firearms, assault, child abuse, and se

  3. Secondary Damage after Traumatic Brain Injury: Epidemiology, Pathophysiology and Therapy

    NARCIS (Netherlands)

    D.C. Engel (Doortje Caroline)

    2008-01-01

    textabstractTraumatic brain injury (TBI) is defined as a microscopic or macroscopic injury to the brain caused by external physical forces. Road traffic accidents, falls, sports injuries (i.e. boxing), recreational accidents (i.e. parachute jumping), the use of firearms, assault, child abuse,

  4. Aquaporin 9 in rat brain after severe traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2012-03-01

    Full Text Available OBJECTIVE: To reveal the expression and possible roles of aquaporin 9 (AQP9 in rat brain, after severe traumatic brain injury (TBI. METHODS: Brain water content (BWC, tetrazolium chloride staining, Evans blue staining, immunohistochemistry (IHC, immunofluorescence (IF, western blot, and real-time polymerase chain reaction were used. RESULTS: The BWC reached the first and second (highest peaks at 6 and 72 hours, and the blood brain barrier (BBB was severely destroyed at six hours after the TBI. The worst brain ischemia occurred at 72 hours after TBI. Widespread AQP9-positive astrocytes and neurons in the hypothalamus were detected by means of IHC and IF after TBI. The abundance of AQP9 and its mRNA increased after TBI and reached two peaks at 6 and 72 hours, respectively, after TBI. CONCLUSIONS: Increased AQP9 might contribute to clearance of excess water and lactate in the early stage of TBI. Widespread AQP9-positive astrocytes might help lactate move into neurons and result in cellular brain edema in the later stage of TBI. AQP9-positive neurons suggest that AQP9 plays a role in energy balance after TBI.

  5. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury

    Science.gov (United States)

    Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang

    2014-01-01

    Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue. PMID:25368644

  6. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury.

    Science.gov (United States)

    Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang

    2014-09-01

    Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue.

  7. Epidemiology of eye injuries sustained by military personnel in China.

    Science.gov (United States)

    Xiao, Jian-He; Zhang, Mao-Nian; Jiang, Cai-Hui; Zhang, Ying; Qiu, Huai-Yu

    2011-01-01

    To investigate the epidemiological characteristics of eye injuries sustained by military personnel in Chinese army. Eleven military evacuation hospitals located in different regions were selected for this study. We reviewed all the medical records of eye injuries sustained by military personnel between January 2005 and December 2009. Patients'information was collected. All data were put into database and analyzed statistically. Totally there were 415 inpatients with eye injuries (442 eyes) and their mean age was 24.40 years. Eye injury accounts for 13.51% of all eye diseases in this study. From 2006 to 2009, the number of eye injury increased gradually. Among them, 175 (42.17%) were injured in leisure time, and 145 (34.94%) in working time. Twenty-two (5.30%) patients had an eye surgery or history of eye disease before injury. In all, 246 patients (59.28%) were sent to evacuation hospital within 24 hours and 64 (56.64%) underwent surgeries in 24 hours after injury. There were 389 patients (93.73%) hospitalized for 1 time. Visual acuities of 187 eyes (42.31%) were grade 1 (larger than or equal to 20/40) after injury. When discharge, 349 eyes (78.96%) obtained a visual acuity of grade 1. Eye injury has a very frequent incidence in Chinese army and much more attention should be paid to prevent it.

  8. Assessment of injuries sustained in mixed martial arts competition.

    Science.gov (United States)

    Scoggin, James F; Brusovanik, Georgiy; Pi, Michael; Izuka, Byron; Pang, Pierre; Tokumura, Seren; Scuderi, Gaetano

    2010-05-01

    Mixed martial arts (MMA) competitions have gained much popularity, and the sport is watched by many millions annually. Despite ongoing controversy, there have been no objective studies of the injuries sustained in MMA based on on-site evaluation. In the study reported in this article, we attempted to delineate injury patterns for MMA participants. We conducted an observational cohort study of MMA competitions held in Hawaii between 1999 and 2006. The study included 116 bouts, involving 232 "exposures" and 179 male participants between ages 18 and 40. All the fighters were examined by 1 of 4 physicians, both before and after each bout. Fighters were referred to an emergency department when necessary, and follow-up was recommended as needed. Among the 232 exposures were 55 injuries: 28 abrasions and lacerations (6 requiring on-site suturing or referral to an emergency department for suturing), 11 concussions (4 with retrograde amnesia), 5 facial injuries (2 nasal fractures, 1 tympanum rupture, 1 temporomandibular joint sprain, 1 Le Fort fracture), and 11 orthopedic injuries (3 metacarpal injuries, with 1 confirmed fracture; 1 acromioclavicular separation; 1 traumatic olecranon bursitis; 1 elbow subluxation; 1 midfoot sprain; 1 aggravation of elbow medial collateral ligament sprain; 1 elbow lateral collateral ligament strain; 1 trapezius strain; 1 Achilles tendon contusion). We describe the injuries sustained in MMA competition to make comparisons with other sports. We discuss distribution and mechanism of injuries as well as injury incidence based on on-site evaluation in MMA.

  9. Patterns of neonatal hypoxic-ischaemic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Linda S. de [University Medical Centre, Department of Neonatology, Wilhelmina Children' s Hospital, Utrecht (Netherlands); Wilhelmina Children' s Hospital, University Medical Centre, Department of Neonatology, KE 04.123.1, P.O. Box 85090, Utrecht (Netherlands); Groenendaal, Floris [University Medical Centre, Department of Neonatology, Wilhelmina Children' s Hospital, Utrecht (Netherlands)

    2010-06-15

    Enormous progress has been made in assessing the neonatal brain, using magnetic resonance imaging (MRI). In this review, we will describe the use of MRI and proton magnetic resonance spectroscopy in detecting different patterns of brain injury in (full-term) human neonates following hypoxic-ischaemic brain injury and indicate the relevance of these findings in predicting neurodevelopmental outcome. (orig.)

  10. Injuries Sustained by the Mixed Martial Arts Athlete.

    Science.gov (United States)

    Jensen, Andrew R; Maciel, Robert C; Petrigliano, Frank A; Rodriguez, John P; Brooks, Adam G

    2016-08-16

    Mixed martial arts (MMA) is rapidly growing in popularity in the United States and abroad. This combat sport joins athletes from a wide variety of martial art disciplines, each with characteristic and distinguishing injury profiles, together in competition. Because of increasing participation by professionals and amateurs alike, injuries sustained by MMA athletes have been on the rise. A review of relevant publications using the search term mixed martial arts and each of its component combat sports (eg, Muay Thai, Brazilian jiu-jitsu) from 1980 through 2015 was completed using PubMed and Google Scholar. Clinical review. Level 5. The majority of studies on MMA injuries evaluate those sustained during competition, which range in incidence from 22.9 to 28.6 per 100 fight-participations. Striking-predominant disciplines such as boxing, karate, and Muay Thai have high rates of head and facial injuries, whereas submission-predominant disciplines such as Brazilian jiu-jitsu, judo, and wrestling have high rates of joint injuries. Numerous studies have evaluated injuries in athletes who participate in MMA and its component disciplines during competition but much remains to be discovered about injuries sustained during training and in specific patient populations such as adolescents and women. © 2016 The Author(s).

  11. Gender differences in self reported long term outcomes following moderate to severe traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Ratcliff Graham

    2010-10-01

    Full Text Available Abstract Background The majority of research on health outcomes after a traumatic brain injury is focused on male participants. Information examining gender differences in health outcomes post traumatic brain injury is limited. The purpose of this study was to investigate gender differences in symptoms reported after a traumatic brain injury and to examine the degree to which these symptoms are problematic in daily functioning. Methods This is a secondary data analysis of a retrospective cohort study of 306 individuals who sustained a moderate to severe traumatic brain injury 8 to 24 years ago. Data were collected using the Problem Checklist (PCL from the Head Injury Family Interview (HIFI. Using Bonferroni correction, group differences between women and men were explored using Chi-square and Wilcoxon analysis. Results Chi-square analysis by gender revealed that significantly more men reported difficulty setting realistic goals and restlessness whereas significantly more women reported headaches, dizziness and loss of confidence. Wilcoxon analysis by gender revealed that men reported sensitivity to noise and sleep disturbances as significantly more problematic than women, whereas for women, lack of initiative and needing supervision were significantly more problematic in daily functioning. Conclusion This study provides insight into gender differences on outcomes after traumatic brain injury. There are significant differences between problems reported by men compared to women. This insight may facilitate health service planners and clinicians when developing programs for individuals with brain injury.

  12. Cushing's ulcer in traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Biteghe-bi-Nzeng Alain; WANG Yun-jie

    2008-01-01

    Traumatic brain injury(TBI)remains a complicated and urgent disease in our modernized cities. It becomes now a public health disease. We have got more and more patients in Neurosurgery Intensive Care Unit following motor vehicle accidents and others causes. TBI brings multiple disorders,from the primary injury to secondary injury. The body received the disturbances in the brain,in the hypothalamo-pituitary-adrenocortical(HPA)axis,in the gastric mucosa,in the immune and neuroendocrine systems.The mortality of TBI is more than 50 000 deaths/year, the third of the mortality of all iniuries. Cushing ulcer is one of the severe complications of TBI and its mortality rate is more than 50%. Many studies have improved the management of TBI and the associated complications to give patients a better outcome. Furthers studies need to be done based on the similar methodology to clarify the different steps of the HPA axis and the neuroendocrine change associated. The aim of the present review is to assess the clinical and endocrinal features of hypopituitarism and stress ulcer following TBI.

  13. Addressing the needs of traumatic brain injury with clinical proteomics

    National Research Council Canada - National Science Library

    Shen, Sean; Loo, Rachel R Ogorzalek; Wanner, Ina-Beate; Loo, Joseph A

    2014-01-01

    ...% of all traumatic brain injuries (TBIs) are concussions or other mild TBI (mTBI) forms. Evaluation of concussion injury today is limited to an assessment of behavioral symptoms, often with delay and subject to motivation...

  14. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury

    OpenAIRE

    Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang

    2014-01-01

    Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and b...

  15. A case of hypoglycemic brain injuries with cortical laminar necrosis.

    Science.gov (United States)

    Lee, Byung-Wan; Jin, Eun Sun; Hwang, Hyung-Sik; Yoo, Hyung-Joon; Jeong, Je Hoon

    2010-06-01

    We report a case of 68-yr-old male who died from brain injuries following an episode of prolonged hypoglycemia. While exploring controversies surrounding magnetic resonance imaging (MRI) findings indicating the bad prognosis in patients with hypoglycemia-induced brain injuries, we here discuss interesting diffusion-MRI of hypoglycemic brain injuries and their prognostic importance focusing on laminar necrosis of the cerebral cortex.

  16. Functional and structural connectivity of the visual system in infants with perinatal brain injury.

    Science.gov (United States)

    Merhar, Stephanie L; Gozdas, Elveda; Tkach, Jean A; Harpster, Karen L; Schwartz, Terry L; Yuan, Weihong; Kline-Fath, Beth M; Leach, James L; Altaye, Mekibib; Holland, Scott K

    2016-07-01

    Infants with perinatal brain injury are at risk of later visual problems. Advanced neuroimaging techniques show promise to detect functional and structural alterations of the visual system. We hypothesized that infants with perinatal brain injury would have less brain activation during a visual functional magnetic resonance imaging (fMRI) task and reduced task-based functional connectivity and structural connectivity as compared with healthy controls. Ten infants with perinatal brain injury and 20 control infants underwent visual fMRI and diffusion tensor imaging (DTI) during natural sleep with no sedation. Activation maps, functional connectivity maps, and structural connectivity were analyzed and compared between the two groups. Most infants in both groups had negative activation in the visual cortex during the fMRI task. Infants with brain injury showed reduced activation in the occipital cortex, weaker connectivity between visual areas and other areas of the brain during the visual task, and reduced fractional anisotropy in white matter tracts projecting to visual regions, as compared with control infants. Infants with brain injury sustained in the perinatal period showed evidence of decreased brain activity and functional connectivity during a visual task and altered structural connectivity as compared with healthy term neonates.

  17. Hypersexuality or altered sexual preference following brain injury.

    OpenAIRE

    Miller, B.L.; Cummings, J L; McIntyre, H.; Ebers, G; Grode, M

    1986-01-01

    Eight patients are described in whom either hypersexuality (four cases) or change in sexual preference (four cases) occurred following brain injury. In this series disinhibition of sexual activity and hypersexuality followed medial basal-frontal or diencephalic injury. This contrasted with the patients demonstrating altered sexual preference whose injuries involved limbic system structures. In some patients altered sexual behaviour may be the presenting or dominant feature of brain injury.

  18. Surviving severe traumatic brain injury in Denmark

    DEFF Research Database (Denmark)

    Odgaard, Lene; Poulsen, Ingrid; Kammersgaard, Lars Peter

    2015-01-01

    PURPOSE: To identify all hospitalized patients surviving severe traumatic brain injury (TBI) in Denmark and to compare these patients to TBI patients admitted to highly specialized rehabilitation (HS-rehabilitation). PATIENTS AND METHODS: Patients surviving severe TBI were identified from...... The Danish National Patient Registry and The Danish Head Trauma Database. Overall incidence rates of surviving severe TBI and incidence rates of admission to HS-rehabilitation after severe TBI were estimated and compared. Patient-related predictors of no admission to HS-rehabilitation among patients...... severe TBI were admitted to HS-rehabilitation. Female sex, older age, and non-working status pre-injury were independent predictors of no HS-rehabilitation among patients surviving severe TBI. CONCLUSION: The incidence rate of hospitalized patients surviving severe TBI was stable in Denmark...

  19. Liberal Bias Mediates Emotion Recognition Deficits in Frontal Traumatic Brain Injury

    Science.gov (United States)

    Callahan, Brandy L.; Ueda, Keita; Sakata, Daisuke; Plamondon, Andre; Murai, Toshiya

    2011-01-01

    It is well-known that patients having sustained frontal-lobe traumatic brain injury (TBI) are severely impaired on tests of emotion recognition. Indeed, these patients have significant difficulty recognizing facial expressions of emotion, and such deficits are often associated with decreased social functioning and poor quality of life. As of yet,…

  20. Where Have They All Gone?: Classroom Attention Patterns after Acquired Brain Injury

    Science.gov (United States)

    Rees, Siân A.

    2016-01-01

    Certain groups of pupils who have sustained an Acquired Brain Injury (ABI) have a different pattern of attention within the classroom which interferes with learning and social interactions. The delineation of these groups is suggested. By looking in detail at the classroom behaviour of eight pupils, a common account for classroom behaviour…

  1. The Relation of Mild Traumatic Brain Injury to Chronic Lapses of Attention

    Science.gov (United States)

    Pontifex, Matthew B.; Broglio, Steven P.; Drollette, Eric S.; Scudder, Mark R.; Johnson, Chris R.; O'Connor, Phillip M.; Hillman, Charles H.

    2012-01-01

    We assessed the extent to which failures in sustained attention were associated with chronic mild traumatic brain injury (mTBI) deficits in cognitive control among college-age young adults with and without a history of sport-related concussion. Participants completed the ImPACT computer-based assessment and a modified flanker task. Results…

  2. Traumatic Brain Injury and Grief: Considerations and Practical Strategies for School Psychologists

    Science.gov (United States)

    Jantz, Paul B.; Comerchero, Victoria A.; Canto, Angela I.; Pierson, Eric

    2015-01-01

    Traumatic brain injury (TBI) can result in a range of social, emotional, neurological, cognitive, and behavioral outcomes. If these outcomes are significant, family members and the individual who has sustained the TBI may struggle with accepting the effects of these deficits. They may grieve over disrupted family relationships, roles, and routines…

  3. Acute Alcohol Intoxication in Patients with Mild Traumatic Brain Injury: Characteristics, Recovery and Outcome

    NARCIS (Netherlands)

    Scheenen, Myrthe; de Koning, Myrthe; van der Horn, Harm; van der Naalt, Joukje; Spikman, Jacoba

    2015-01-01

    Objectives. To investigate the incidence of acute alcohol intoxication (AAI) at the time of sustaining mild traumatic brain injury (mTBI), describe the characteristics of this intoxicated subgroup, and evaluate recovery and outcome in comparison to sober mTBI patients. Methods. Multicenter cohort st

  4. Research progress in mechanism of traumatic brain injury affecting speed of fracture healing

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiao-gang; ZHAO Guang-feng; MA Yue-feng; JIANG Guan-yu

    2007-01-01

    @@ In patients who have sustained traumatic brain injury with associated extremity fracture, there is often a clinical perception that the rate of new bone formation around the fracture site increases. 1 An overgrowth of callus is observed and ectopic ossification even occurs in the muscle,2 but the mechanism remains unclear.

  5. Where Have They All Gone?: Classroom Attention Patterns after Acquired Brain Injury

    Science.gov (United States)

    Rees, Siân A.

    2016-01-01

    Certain groups of pupils who have sustained an Acquired Brain Injury (ABI) have a different pattern of attention within the classroom which interferes with learning and social interactions. The delineation of these groups is suggested. By looking in detail at the classroom behaviour of eight pupils, a common account for classroom behaviour…

  6. Thinking Allowed: Use of Egocentric Speech after Acquired Brain Injury (ABI)

    Science.gov (United States)

    Rees, Sian A.; Skidmore, David

    2011-01-01

    This paper explores the use of thinking aloud made by young people who have sustained a severe acquired brain injury (ABI). The phenomenon is compared with the concepts of egocentric speech and inner speech before the form of thinking aloud by pupils with ABI is examined. It is suggested that by using thinking aloud, this group of pupils is able…

  7. Seizures and the Role of Anticonvulsants After Traumatic Brain Injury.

    Science.gov (United States)

    Zimmermann, Lara L; Diaz-Arrastia, Ramon; Vespa, Paul M

    2016-10-01

    Posttraumatic seizures are a common complication of traumatic brain injury. Posttraumatic epilepsy accounts for 20% of symptomatic epilepsy in the general population and 5% of all epilepsy. Early posttraumatic seizures occur in more than 20% of patients in the intensive care unit and are associated with secondary brain injury and worse patient outcomes. Most posttraumatic seizures are nonconvulsive and therefore continuous electroencephalography monitoring should be the standard of care for patients with moderate or severe brain injury. The literature shows that posttraumatic seizures result in secondary brain injury caused by increased intracranial pressure, cerebral edema and metabolic crisis. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Musculoskeletal injuries sustained in modern army combatives.

    Science.gov (United States)

    Possley, Daniel R; Johnson, Anthony E

    2012-01-01

    Participation in martial arts has grown over the past 15 years with an estimated 8 million participants. In 2004, the Chief of Staff of the Army directed that all Initial Military Training soldiers receive Modern Army Combatives (MAC) training. The mechanical differences between the various martial arts styles incorporated into mixed martial arts/MAC pose challenges to the medical professional. We report the incidence of musculoskeletal injuries by Level 1 and 2 trained active duty soldiers participating in MAC over a 3-year period. From June 1, 2005 to January 1, 2009, the Orthopaedic Surgery service treated and tracked all injuries in MAC. Data was analyzed using the Chi(2) method of analysis. (p < 0.05). 155 of 1,025 soldiers presenting with MAC injuries reported inability to perform their military occupation specialty duties. The knee was most frequently injured followed by shoulder. Surgical intervention was warranted 24% of the time. Participants in MAC reported injuries severe enough to impact occupational duties at 15.5%. Surgical intervention was warranted only 24% of the time. The knee and shoulder are the most frequently injured body parts. Labral repair was the most frequent surgical procedure.

  9. Energy Drinks, Alcohol, Sports and Traumatic Brain Injuries among Adolescents.

    Directory of Open Access Journals (Sweden)

    Gabriela Ilie

    Full Text Available The high prevalence of traumatic brain injuries (TBI among adolescents has brought much focus to this area in recent years. Sports injuries have been identified as a main mechanism. Although energy drinks, including those mixed with alcohol, are often used by young athletes and other adolescents they have not been examined in relation to TBI.We report on the prevalence of adolescent TBI and its associations with energy drinks, alcohol and energy drink mixed in with alcohol consumption.Data were derived from the Centre for Addiction and Mental Health's 2013 Ontario Student Drug Use and Health Survey (OSDUHS. This population-based cross-sectional school survey included 10,272 7th to 12th graders (ages 11-20 who completed anonymous self-administered questionnaires in classrooms.Mild to severe TBI were defined as those resulting in a loss of consciousness for at least five minutes, or being hospitalized for at least one night. Mechanism of TBI, prevalence estimates of TBI, and odds of energy drink consumption, alcohol use, and consumption of energy drinks mixed with alcohol are assessed.Among all students, 22.4% (95% CI: 20.7, 24.1 reported a history of TBI. Sports injuries remain the main mechanism of a recent (past year TBI (45.5%, 95% CI: 41.0, 50.1. Multinomial logistic regression showed that relative to adolescents who never sustained a TBI, the odds of sustaining a recent TBI were greater for those consuming alcohol, energy drinks, and energy drinks mixed in with alcohol than abstainers. Odds ratios were higher for these behaviors among students who sustained a recent TBI than those who sustained a former TBI (lifetime but not past 12 months. Relative to recent TBI due to other causes of injury, adolescents who sustained a recent TBI while playing sports had higher odds of recent energy drinks consumption than abstainers.TBI remains a disabling and common condition among adolescents and the consumption of alcohol, energy drinks, and alcohol

  10. Energy Drinks, Alcohol, Sports and Traumatic Brain Injuries among Adolescents.

    Science.gov (United States)

    Ilie, Gabriela; Boak, Angela; Mann, Robert E; Adlaf, Edward M; Hamilton, Hayley; Asbridge, Mark; Rehm, Jürgen; Cusimano, Michael D

    2015-01-01

    The high prevalence of traumatic brain injuries (TBI) among adolescents has brought much focus to this area in recent years. Sports injuries have been identified as a main mechanism. Although energy drinks, including those mixed with alcohol, are often used by young athletes and other adolescents they have not been examined in relation to TBI. We report on the prevalence of adolescent TBI and its associations with energy drinks, alcohol and energy drink mixed in with alcohol consumption. Data were derived from the Centre for Addiction and Mental Health's 2013 Ontario Student Drug Use and Health Survey (OSDUHS). This population-based cross-sectional school survey included 10,272 7th to 12th graders (ages 11-20) who completed anonymous self-administered questionnaires in classrooms. Mild to severe TBI were defined as those resulting in a loss of consciousness for at least five minutes, or being hospitalized for at least one night. Mechanism of TBI, prevalence estimates of TBI, and odds of energy drink consumption, alcohol use, and consumption of energy drinks mixed with alcohol are assessed. Among all students, 22.4% (95% CI: 20.7, 24.1) reported a history of TBI. Sports injuries remain the main mechanism of a recent (past year) TBI (45.5%, 95% CI: 41.0, 50.1). Multinomial logistic regression showed that relative to adolescents who never sustained a TBI, the odds of sustaining a recent TBI were greater for those consuming alcohol, energy drinks, and energy drinks mixed in with alcohol than abstainers. Odds ratios were higher for these behaviors among students who sustained a recent TBI than those who sustained a former TBI (lifetime but not past 12 months). Relative to recent TBI due to other causes of injury, adolescents who sustained a recent TBI while playing sports had higher odds of recent energy drinks consumption than abstainers. TBI remains a disabling and common condition among adolescents and the consumption of alcohol, energy drinks, and alcohol mixed with

  11. [Updates on severe traumatic brain injury management].

    Science.gov (United States)

    Alted López, Emilio; Aznárez, Susana Bermejo; Fernández, Mario Chico

    2009-01-01

    Traumatic brain injury (TBI) is an important reason of morbidity-mortality all over the world, affecting young males more and generating Public Health problem. Unfortunately, the advances in the pathophysiology knowledge have not followed a similar development in therapeutic options, there currently not being any contrasted neuroprotectants. In this article, we have reviewed the epidemiology, pathophysiology and therapeutic measures used in the management of patient with severe TBI. The general measures as well as those aimed at controlling intracranial hypertension, the role of the surgery and some more innovative therapeutic options currently under evaluation in these patients are analyzed.

  12. Sports-related traumatic brain injury.

    Science.gov (United States)

    Phillips, Shawn; Woessner, Derek

    2015-06-01

    Concussions have garnered more attention in the medical literature, media, and social media. As such, in the nomenclature according to the Centers for Disease Control and Prevention, the term concussion has been supplanted by the term mild traumatic brain injury. Current numbers indicate that 1.7 million TBIs are documented annually, with estimates around 3 million annually (173,285 sports- and recreation-related TBIs among children and adolescents). The Sideline Concussion Assessment Tool 3 and the NFL Sideline Concussion Assessment Tool are commonly used sideline tools.

  13. Centralized rehabilitation after servere traumatic brain injury

    DEFF Research Database (Denmark)

    Engberg, Aase Worså; Liebach, Annette; Nordenbo, Annette Mosbæk

    2006-01-01

    OBJECTIVES: To present results from the first 3 years of centralized subacute rehabilitation after very severe traumatic brain injury (TBI), and to compare results of centralized versus decentralized rehabilitation. MATERIAL AND METHODS: Prospectively, the most severely injured group of adults from...... post-trauma was 0.29, and at 1 year 0.055 per 100,000 population. By comparison of 39 patients from the centralized unit injured in 2000-2003 with 21 patients injured in 1982, 1987 or 1992 and with similar PTA- and age distributions and male/female ratio, Glasgow Outcome Scale score at discharge...

  14. Long-term global and regional brain volume changes following severe traumatic brain injury: A longitudinal study with clinical correlates

    DEFF Research Database (Denmark)

    Sidaros, Annette; Skimminge, Arnold Jesper Møller; Liptrot, Matthew George;

    2009-01-01

    Traumatic brain injury (TBI) results in neurodegenerative changes that progress for months, perhaps even years post-injury. However, there is little information on the spatial distribution and the clinical significance of this late atrophy. In 24 patients who had sustained severe TBI we acquired 3D...... scan time point using SIENAX. Regional distribution of atrophy was evaluated using tensor-based morphometry (TBM). At the first scan time point, brain parenchymal volume was reduced by mean 8.4% in patients as compared to controls. During the scan interval, patients exhibited continued atrophy...... with percent brain volume change (%BVC) ranging between − 0.6% and − 9.4% (mean − 4.0%). %BVC correlated significantly with injury severity, functional status at both scans, and with 1-year outcome. Moreover, %BVC improved prediction of long-term functional status over and above what could be predicted using...

  15. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  16. Critical care management of severe traumatic brain injury in adults

    OpenAIRE

    Haddad Samir H; Arabi Yaseen M

    2012-01-01

    Abstract Traumatic brain injury (TBI) is a major medical and socio-economic problem, and is the leading cause of death in children and young adults. The critical care management of severe TBI is largely derived from the "Guidelines for the Management of Severe Traumatic Brain Injury" that have been published by the Brain Trauma Foundation. The main objectives are prevention and treatment of intracranial hypertension and secondary brain insults, preservation of cerebral perfusion pressure (CPP...

  17. CONSEQUENCES OF SEVERE TRAUMATIC BRAIN INJURY IN CHILDREN AND THEIR TREATMENT

    Directory of Open Access Journals (Sweden)

    N.N. Zavadenko

    2006-01-01

    Full Text Available Traumatic brain injury is one of the major causes for invalidization in children. The research purpose is an integrated study of consequences of severe and moderate closed traumatic brain injury in children and evaluation of their dynamics during therapy by means of a no tropic medication — cerebrolysin (Ebewe Pharma, Austria. The total of 283 children aged from 4 to 14 years were examined in the longaterm period of severe and moderate closed traumatic brain injury, from 6 months to 4 years after injury. Their neurological status was characterized by nona specific focal symptoms along with evident motor coordination disturbances, elements of dynamic and staticoloa comotory ataxia, reduction in execution speed of serial movements. Statistically significant differences with ageamatched controls were confirmed for measures of acousticaverbal memory and sustained attention. Posttraumatic epilepsy developed in 16 (5,7% patients with the onset of secondarily generalized seizures in 4–12 months following the injury. Effectiveness of the no tropic medication was evaluated in 60 patients aged from 7 to 12 years, who were distributed into 2 equal groups. The research has confirmed a positive effect of no tropic medication in the treatment of traumatic brain injury consequences manifested in the regression of headaches, fatigue, motor coordination disturbances along with improvements of memory, attention, intellectual performance rates, as well as EEG characteristics.Key words: traumatic brain injury, consequences, children, therapy, nootropic medications.

  18. Practitioner Review: Beyond Shaken Baby Syndrome--What Influences the Outcomes for Infants following Traumatic Brain Injury?

    Science.gov (United States)

    Ashton, Rebecca

    2010-01-01

    Background: Traumatic brain injury (TBI) in infancy is relatively common, and is likely to lead to poorer outcomes than injuries sustained later in childhood. While the headlines have been grabbed by infant TBI caused by abuse, often known as shaken baby syndrome, the evidence base for how to support children following TBI in infancy is thin.…

  19. Neuroglobin expression in rats after traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Xin Lin; Min Li; Aijia Shang; Yazhuo Hu; Xiao Yang; Ling Ye; Suyan Bian; Zhongfeng Wang; Dingbiao Zhou

    2012-01-01

    In this study, we used a rat model of severe closed traumatic brain injury to explore the relationship between neuroglobin, brain injury and neuronal apoptosis. Real-time PCR showed that neuroglobin mRNA expression rapidly increased in the rat cerebral cortex, and peaked at 30 minutes and 48 hours following traumatic brain injury. Immunohistochemical staining demonstrated that neuroglobin expression increased and remained high 2 hours to 5 days following injury. The rate of increase in the apoptosis-related Bax/Bcl-2 ratio greatly decreased between 30 minutes and 1 hour as well as between 48 and 72 hours post injury. Expression of neuroglobin and the anti-apoptotic factor Bcl-2 greatly increased, while that of the proapoptotic factor decreased, in the cerebral cortex post severe closed traumatic brain injury. It suggests that neuroglobin might protect neurons from apoptosis after traumatic injury by regulating Bax/Bcl-2 pathway.

  20. Impaired Pituitary Axes Following Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Robert A. Scranton

    2015-07-01

    Full Text Available Pituitary dysfunction following traumatic brain injury (TBI is significant and rarely considered by clinicians. This topic has received much more attention in the last decade. The incidence of post TBI anterior pituitary dysfunction is around 30% acutely, and declines to around 20% by one year. Growth hormone and gonadotrophic hormones are the most common deficiencies seen after traumatic brain injury, but also the most likely to spontaneously recover. The majority of deficiencies present within the first year, but extreme delayed presentation has been reported. Information on posterior pituitary dysfunction is less reliable ranging from 3%–40% incidence but prospective data suggests a rate around 5%. The mechanism, risk factors, natural history, and long-term effect of treatment are poorly defined in the literature and limited by a lack of standardization. Post TBI pituitary dysfunction is an entity to recognize with significant clinical relevance. Secondary hypoadrenalism, hypothyroidism and central diabetes insipidus should be treated acutely while deficiencies in growth and gonadotrophic hormones should be initially observed.

  1. Neuropsychological rehabilitation for traumatic brain injury patients

    Directory of Open Access Journals (Sweden)

    Marzena Chantsoulis

    2015-05-01

    Full Text Available The aim of this review is to discuss the basic forms of neuropsychological rehabilitation for patients with traumatic brain injury (TBI. More broadly, we discussed cognitive rehabilitation therapy (CRT which constitutes a fundamental component in therapeutic interaction at many centres worldwide. Equally presented is a comprehensive model of rehabilitation, the fundamental component of which is CRT. It should be noted that the principles of this approach first arose in Poland in the 1970s, in other words, several decades before their appearance in other programmemes. Taken into consideration are four factors conditioning the effectiveness of such a process: comprehensiveness, earlier interaction, universality and its individualized character. A comprehensive programmeme of rehabilitation covers: cognitive rehabilitation, individual and group rehabilitation with the application of a therapeutic environment, specialist vocational rehabilitation, as well as family psychotherapy. These training programmemes are conducted within the scope of the ‘Academy of Life,’ which provides support for the patients in their efforts and shows them the means by which they can overcome existing difficulties. Equally emphasized is the close cooperation of the whole team of specialists, as well as the active participation of the family as an essential condition for the effectiveness of rehabilitation and, in effect, a return of the patient to a relatively normal life. Also presented are newly developing neurothechnologies and the neuromarkers of brain injuries. This enables a correct diagnosis to be made and, as a result, the selection of appropriate methods for neuropsychological rehabilitation, including neurotherapy.

  2. Ischemic preconditioning protects against ischemic brain injury

    Directory of Open Access Journals (Sweden)

    Xiao-meng Ma

    2016-01-01

    Full Text Available In this study, we hypothesized that an increase in integrin αv ß 3 and its co-activator vascular endothelial growth factor play important neuroprotective roles in ischemic injury. We performed ischemic preconditioning with bilateral common carotid artery occlusion for 5 minutes in C57BL/6J mice. This was followed by ischemic injury with bilateral common carotid artery occlusion for 30 minutes. The time interval between ischemic preconditioning and lethal ischemia was 48 hours. Histopathological analysis showed that ischemic preconditioning substantially diminished damage to neurons in the hippocampus 7 days after ischemia. Evans Blue dye assay showed that ischemic preconditioning reduced damage to the blood-brain barrier 24 hours after ischemia. This demonstrates the neuroprotective effect of ischemic preconditioning. Western blot assay revealed a significant reduction in protein levels of integrin αv ß 3, vascular endothelial growth factor and its receptor in mice given ischemic preconditioning compared with mice not given ischemic preconditioning 24 hours after ischemia. These findings suggest that the neuroprotective effect of ischemic preconditioning is associated with lower integrin αv ß 3 and vascular endothelial growth factor levels in the brain following ischemia.

  3. Psychiatric disorders and traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Marcelo Schwarzbold

    2008-09-01

    Full Text Available Marcelo Schwarzbold1, Alexandre Diaz1, Evandro Tostes Martins2, Armanda Rufino1, Lúcia Nazareth Amante1,3, Maria Emília Thais1, João Quevedo4, Alexandre Hohl1, Marcelo Neves Linhares1,5,6, Roger Walz1,61Núcleo de Pesquisas em Neurologia Clínica e Experimental (NUPNEC, Departamento de Clínica Médica, Hospital Universitário, UFSC, Florianópolis, SC, Brazil; 2Unidade de Terapia Intensiva, Hospital Governador Celso Ramos, Florianópolis, SC, Brazil; 3Departamento de Enfermagem, UFSC, Florianópolis, SC, Brazil; 4Laboratório de Neurociências, UNESC, Criciúma, SC, Brazil; 5Departamento de Cirurgia, Hospital Universitário, UFSC, Florianópolis, SC, Brazil; 6Centro de Cirurgia de Epilepsia de Santa Catarina (CEPESC, Hospital Governador Celso Ramos, Florianópolis, SC, BrazilAbstract: Psychiatric disorders after traumatic brain injury (TBI are frequent. Researches in this area are important for the patients’ care and they may provide hints for the comprehension of primary psychiatric disorders. Here we approach epidemiology, diagnosis, associated factors and treatment of the main psychiatric disorders after TBI. Finally, the present situation of the knowledge in this field is discussed.Keywords: psychiatric disorders, traumatic brain injury, neuropsychiatry, diagnostic, epidemiology, pathophysiology

  4. Ethics of neuroimaging after serious brain injury.

    Science.gov (United States)

    Weijer, Charles; Peterson, Andrew; Webster, Fiona; Graham, Mackenzie; Cruse, Damian; Fernández-Espejo, Davinia; Gofton, Teneille; Gonzalez-Lara, Laura E; Lazosky, Andrea; Naci, Lorina; Norton, Loretta; Speechley, Kathy; Young, Bryan; Owen, Adrian M

    2014-05-20

    Patient outcome after serious brain injury is highly variable. Following a period of coma, some patients recover while others progress into a vegetative state (unresponsive wakefulness syndrome) or minimally conscious state. In both cases, assessment is difficult and misdiagnosis may be as high as 43%. Recent advances in neuroimaging suggest a solution. Both functional magnetic resonance imaging and electroencephalography have been used to detect residual cognitive function in vegetative and minimally conscious patients. Neuroimaging may improve diagnosis and prognostication. These techniques are beginning to be applied to comatose patients soon after injury. Evidence of preserved cognitive function may predict recovery, and this information would help families and health providers. Complex ethical issues arise due to the vulnerability of patients and families, difficulties interpreting negative results, restriction of communication to "yes" or "no" answers, and cost. We seek to investigate ethical issues in the use of neuroimaging in behaviorally nonresponsive patients who have suffered serious brain injury. The objectives of this research are to: (1) create an approach to capacity assessment using neuroimaging; (2) develop an ethics of welfare framework to guide considerations of quality of life; (3) explore the impact of neuroimaging on families; and, (4) analyze the ethics of the use of neuroimaging in comatose patients. Our research program encompasses four projects and uses a mixed methods approach. Project 1 asks whether decision making capacity can be assessed in behaviorally nonresponsive patients. We will specify cognitive functions required for capacity and detail their assessment. Further, we will develop and pilot a series of scenarios and questions suitable for assessing capacity. Project 2 examines the ethics of welfare as a guide for neuroimaging. It grounds an obligation to explore patients' interests, and we explore conceptual issues in the

  5. Chronic Traumatic Brain Injury in Amateur Boxers

    Directory of Open Access Journals (Sweden)

    M. Rahmati

    2008-04-01

    Full Text Available Introduction & objective: Despite of young and adolescence intent to the boxing sport, because of dominant aggression and direct blows contact to head, face and central nervous system, it is continuously criticize by different groups. The groups of sporting and physician conventions are distinguished boxing with physical and neuropsychological disorders and some groups believe that side effects of this sport are not more than other sports. For this base the aim of this study was to determine the chronic traumatic brain injury in a group amateur boxers.Materials & Methods: In a case-control study, three groups of sport men were considered, each group contained 20 randomly selected cases. The first group were amateur boxers with 4 years minimal activity(directly has been presented to the head blows, second group were amateur soccer players with 4 years minimal activity(has been presented to the not very severe head blows, third group were non athlete subjects .The groups were matched in weight, height, age and education .To understand brain disorder interview by medicine method has been used, then Wiskancin, Bonardele, Bender geshtalt, Kim karad visual memory, Benton and wechler memory (Alef type tests has been performed and EEG has got in the same hour and condition.Results: The homogeneity of between group variances was gained by the statistical method. Also between structural–visual abilities neuropsychological aspect in groups, significant difference has been gained (p= 0.000. In Kim karad visual memory test at the mild and long term visual memory deficit, significant differences between three groups was observed (P= 0.000, P=0.009 that least score has been belonged to the boxers. Also in boxers 6 abnormal EEGs is observed.Conclusion: It can be said that of four years amateur boxing can affect on boxers visual and memory perception and their spatial orientation. Additionally our study have showed that amateur boxing has a significant

  6. Repetitive Traumatic Brain Injury in Patients From Kashan, Iran

    Directory of Open Access Journals (Sweden)

    Fakharian

    2016-05-01

    Full Text Available Background Traumatic brain injury (TBI is a worldwide problem, especially in countries with high incidence of road traffic accidents such as Iran. Patients with a single occurrence of TBI have been shown to be at increased risk to sustain future TBI. Objectives The aim of this study was to present the incidence and characteristics of repeated TBI (RTBI in Iranian patients. Patients and Methods During one year, all admitted TBI patients with prior TBI history were enrolled into the study. In each patient, data such as age, gender, past medical history, injury cause, anatomic site of injury, TBI severity, clinical findings and CT scan findings were collected. Results RTBI comprised 2.5% of TBI cases (41 of 1629. The incidence of RTBI per 100,000 individuals per years was 9.7. The main cause of RTBI was road traffic accident (68.3%; 9.7 % of cases had preexisting seizure/epilepsy disorder; 36.6% of patients with RTBI had pervious ICU admission due to severe TBI. Ten patients had Glasgow coma scale (GCS ≤ 13 (24.4%. Seizure was seen in seven patients (17.1%. Thirty-nine percent of patients with RTBI had associated injuries. Eleven patients had abnormal CT scan findings (26.9%. Conclusions Considering the high incidence of trauma in developing countries, RTBI may also be more common compared with that of developed countries. This mandates a newer approach to preventive strategies, particularly in those with a previous experience of head injury.

  7. Epidemiology of eye injuries sustained by military personnel in China

    Institute of Scientific and Technical Information of China (English)

    XIAO Jian-he; ZHANG Mao-nian; JIANG Cai-hui; ZHANG Ying; QIU Huai-yu

    2011-01-01

    Objective:To investigate the epidemiological characteristcs of eye injuries sustained by military personnel in Chinese army.Methods:Eleven military evacuation hospitals located in different regions were selected for this study.We reviewed all the medical records of eye injuries sustained by military personnel between January 2005 and December 2009.Patients' information was collected.All data were put into database and analyzed statistically.Results:Totally there were 415 inpatients with eye injuries (442 eyes) and their mean age was 24.40 years.Eye injury accounts for 13.51% of all eye diseases in this study.From 2006 to 2009,the number of eye injury increased gradually.Among them,175 (42.17%) were injured in leisure time,and 145 (34.94%) in working time.Twenty-two (5.30%)patients had an eye surgery or history of eye disease before injury.In all,246 patients (59.28%) were sent to evacuation hospital within 24 hours and 64 (56.64%) underwent surgeries in 24 hours after injury.There were 389 patients (93.73%)hospitalized for 1 time.Visual acuities of 187 eyes (42.31%)were grade 1 (≥ 20/40) after injury.When discharge,349eyes (78.96%) obtained a visual acuity of grade 1.Conclusion:Eye injury has a very frequent incidence in Chinese army and much more attention should be paid to prevent it.

  8. Traumatic Brain Injury: Current Treatment Strategies and Future Endeavors.

    Science.gov (United States)

    Galgano, Michael; Toshkezi, Gentian; Qiu, Xuecheng; Russell, Thomas; Chin, Lawrence; Zhao, Li-Ru

    2016-11-22

    Traumatic brain injury presents in various forms ranging from mild alterations of consciousness to an unrelenting comatose state and death. In the most severe form of traumatic brain injury, the entirety of the brain is affected by a diffuse type of injury and swelling. Treatment modalities vary extensively based on the severity of the injury and range from daily cognitive therapy sessions to radical surgery such as bilateral decompressive craniectomies. Guidelines have been set forth regarding the optimal management of traumatic brain injury, but they must be taken in context of the situation and cannot be used in every individual circumstance. In this review article, we have summarized the current status of treatment for traumatic brain injury in both clinical practice and basic research. We have put forth a brief overview of the various subtypes of traumatic injuries, optimal medical management, as well as both the non-invasive and invasive monitoring modalities, in addition to the surgical interventions necessary in particular instances. We have overviewed the main achievements in searching for therapeutic strategies of traumatic brain injury in basic science. We have also discussed the future direction for developing traumatic brain injury treatment from an experimental perspective.

  9. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HuaHu; Wei-PingZhang; LeiZhang; ZhongChen; Er-QingWei

    2004-01-01

    Aquaporin-4 (AQP4) is one of the aquaporins (AQPs), a water channel family. In the brain, AQP4 is expressed in astroeyte foot processes, and plays an important role in water homeostasis and in the formation of brain edema. In our study, AQP4 expression in human brain specimens from patients with traumatic brain injury or different brain tumors was detected

  10. Mesenchymal Stem Cell Transplantation Attenuates Brain Injury After Neonatal Stroke

    NARCIS (Netherlands)

    van Velthoven, Cindy T. J.; Sheldon, R. Ann; Kavelaars, Annemieke; Derugin, Nikita; Vexler, Zinaida S.; Willemen, Hanneke L. D. M.; Maas, Mirjam; Heijnen, Cobi J.; Ferriero, Donna M.

    2013-01-01

    Background and Purpose-Brain injury caused by stroke is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. Mesenchymal stem cells (MSC) have been shown to improve outcome after neonatal hypoxic-ischemic brain injury mainly by secretion of growth factors stimulati

  11. Pharmacological Neuroprotection after Perinatal Hypoxic-Ischemic Brain Injury

    NARCIS (Netherlands)

    Fan, Xiyong; Kavelaars, Annemieke; Heijnen, Cobi J.; Groenendaal, Floris; van Bel, Frank

    2010-01-01

    Perinatal hypoxia-ischemia (HI) is an important cause of neonatal brain injury. Recent progress in the search for neuroprotective compounds has provided us with several promising drugs to reduce perinatal HI-induced brain injury. In the early stage (first 6 hours after birth) therapies are concentra

  12. The Pediatric Test of Brain Injury: Development and Interpretation

    Science.gov (United States)

    Hotz, Gillian A.; Helm-Estabrooks, Nancy; Nelson, Nickola Wolf; Plante, Elena

    2009-01-01

    The Pediatric Test of Brain Injury (PTBI) is designed to assess neurocognitive, language, and literacy abilities that are relevant to the school curriculum of children and adolescents recovering from brain injury. The PTBI is intended to help clinicians establish baseline levels of cognitive-linguistic abilities in the acute stages of recovery,…

  13. White Matter Damage and Cognitive Impairment after Traumatic Brain Injury

    Science.gov (United States)

    Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

  14. The potential of neural transplantation for brain repair and regeneration following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Dong Sun

    2016-01-01

    Traumatic brain injury is a major health problem worldwide. Currently, there is no effective treatment to improve neural structural repair and functional recovery of patients in the clinic. Cell transplantation is a potential strategy to repair and regenerate the injured brain. This review article summarized recent de-velopment in cell transplantation studies for post-traumatic brain injury brain repair with varying types of cell sources. It also discussed the potential of neural transplantation to repair/promote recovery of the injured brain following traumatic brain injury.

  15. Outcome after Traumatic Brain Injury : Epidemiology, impact and assessment

    NARCIS (Netherlands)

    A.C. Scholten (Annemieke)

    2016-01-01

    markdownabstractInjuries are among the leading causes of death and disability in the world, often imposing great personal suffering and economic costs. An important severe injury that often affects young people is a traumatic brain injury (TBI). Over the past decades, the number of survivors of se

  16. Inflicted traumatic brain injury: advances in evaluation and collaborative diagnosis.

    Science.gov (United States)

    Glick, Jill C; Staley, Kelley

    2007-01-01

    The determination that a traumatic brain injury is not accidental requires data collection from multiple domains: historical, clinical, laboratory, radiographic, environmental and psychosocial. These essential, yet disparate, types of information must be synthesized in a collaborative and interdisciplinary process to formulate a medical opinion with regard to the cause of an injury, and the final opinion has tremendous consequences for children and families. Medically directed child protection teams have emerged as the standard of care in many children's hospitals and child abuse pediatrics is now a recognized medical subspecialty with board certification available in the next several years. Not only do the child and family benefit from this coordinated effort, but there are also great benefits for the members of the child protection team: more clearly defined responsibilities, redirected focus on treatment for the surgeon, and increased confidence that the opinion is based upon consensus and current scientific knowledge. By this process and its division of labor, the child abuse pediatrician assumes responsibility for ensuring that a final medical opinion is arrived at, and then advocates for appropriate disposition for the child. The child abuse pediatrician is responsible for establishing institutional standards for family evaluation, collecting all necessary medical data and directing a consensus-based decision making process that is based upon current medical knowledge, medical literature and experience. The child abuse pediatrician also assumes the role of primary communication conduit for investigational agencies and the courts. The neurosurgeon is a key member of the child protection team and relies on the team to obtain necessary historical information to address consistency of the mechanism with the sustained injuries and has an integral role in determining the team's final opinion. An interdisciplinary response to inflicted traumatic brain injury is the

  17. Genetic susceptibility to traumatic brain injury and apolipoprotein E gene

    Institute of Scientific and Technical Information of China (English)

    SUN Xiao-chuan; JIANG Yong

    2008-01-01

    @@ Traumatic brain injury (TBI) is defined as an injury caused by a blow or jolt to the head or a penetrating head injury that disrupts the normal function of the brain. It is a common emergency and severe case in neurosurgery field. Nowadays, there are more and more evidences showing that TBI, which is apparently similar in pathology and severity in the acute stage, may have different outcomes.

  18. Neonatal ischemic brain injury: what every radiologist needs to know

    Energy Technology Data Exchange (ETDEWEB)

    Badve, Chaitra A.; Khanna, Paritosh C.; Ishak, Gisele E. [Seattle Children' s Hospital, University of Washington Medical Center, Department of Radiology, Seattle, WA (United States)

    2012-05-15

    We present a pictorial review of neonatal ischemic brain injury and look at its pathophysiology, imaging features and differential diagnoses from a radiologist's perspective. The concept of perinatal stroke is defined and its distinction from hypoxic-ischemic injury is emphasized. A brief review of recent imaging advances is included and a diagnostic approach to neonatal ischemic brain injury is suggested. (orig.)

  19. Serious brain injury coexisting with multiple injuries caused by traffic accidents in 69 cases

    Institute of Scientific and Technical Information of China (English)

    张浚; 张鹤飞; 等

    1999-01-01

    Objective To explore the speciality,diagnosis,cure principle of serious brain injury coexisting with nultiple injuries caused by traffic accidents.Methods To analyze the clinic data of 69 cases of serious rain injury combined by oter parts of injuries caused by traffic accidents received from January 1998 to April 1999.Results This type of injury took up 11.5 percent of brain injuries in the same term and 33.6 percent of serious brain injuries.The specialities of the injury are that most of them were pedestrians crashed by vehicles.Coesisting injuries including chest injury and limb fractures accounted for a large part.The brain injury usally presented profound disturbance of consciousness,being dangerous and complicated,and a high ISS value.After treatment 13 cases died,9 cases was heavily crippled,11 cases lightly crippled,and 36 cases recovered.The death was usually caused by brain injury.Conclusions Road traffic accidents increased substantially every year.Most of them are related with violating drive rules and regulations.It is important to decrease the road traffic accidents by strengthening propaganda on traffic safety and traffic management.The main principles for salvage should emphasize the importance of pre-hospital emergency rescue and the accurate diagnosis rate,especially the distinction between coma and shock.The priority should be put on those injuries threatening to life.

  20. Evaluation of the patient generated index as a measure of quality-of-life in people with severe traumatic brain injury.

    LENUS (Irish Health Repository)

    Hogan, Mark

    2013-01-01

    Quality-of-life (QoL) measures may be useful in quantifying the personal impact of an acquired brain injury and as an indicator of the effectiveness of service provision. This study investigated the validity of the patient generated index (PGI) as a measure of QoL with a sample of adults who had sustained a severe traumatic brain injury.

  1. Symptom Complaints Following Combat-Related Traumatic Brain Injury: Relationship to Traumatic Brain Injury Severity and Posttraumatic Stress Disorder

    Science.gov (United States)

    2009-08-01

    being less competent (Sawchyn, Mateer, & Suffi eld, 2005 ). Mild TBI has also been associated with greater emotional distress ( Leininger , Kreutzer...brain injury . Brain Injury , 23 , 83 – 91 . Leininger , B.E. , Kreutzer , J.S. , & Hill , M.R . ( 1991 ). Comparison of minor and severe

  2. Rehabilitation of persons with traumatic brain injury.

    Science.gov (United States)

    The objective of this NIH Consensus Statement is to inform the biomedical research and clinical practice communities of the results of the NIH Consensus Development Conference on Rehabilitation of Persons with Traumatic Brain Injury. The statement provides state-of-the-art information regarding effective rehabilitation measures for persons who have suffered a traumatic brain injury (TBI) and presents the conclusions and recommendations of the consensus panel regarding these issues. In addition, the statement identifies those areas that deserve further investigation. Upon completion of this educational activity, the reader should possess a clear working clinical knowledge of the state of the art regarding this topic. The target audience for this statement includes, but is not limited to, pediatricians, family practitioners, internists, neurologists, physiatrists, psychologists, and behavioral medicine specialists. Participants were a non-Federal, nonadvocate, 16-member panel representing the fields of neuropsychology, neurology, psychiatry, behavioral medicine, family medicine, pediatrics, physical medicine and rehabilitation, speech and hearing, occupational therapy, nursing, epidemiology, biostatistics and the public. In addition, 23 experts from these same fields presented data to the panel and a conference audience of 883. The literature was searched through Medline and an extensive bibliography of references was provided to the panel and the conference audience. Experts prepared abstracts with relevant citations from the literature. A compendium of evidence was prepared by the panel which included a contribution from a patient with TBI, a report from an Evidence Based Practice Center of the Agency for Health Care Policy and Research, and a report from the National Center for Injury Prevention and Control at the Centers for Disease Control and Prevention. Scientific evidence was given precedence over clinical anecdotal experience. The panel, answering predefined

  3. Relatives of patients with severe brain injury

    DEFF Research Database (Denmark)

    Norup, Anne; Petersen, Janne; Lykke Mortensen, Erik

    2015-01-01

    improvement. Higher initial level of symptoms of depression was seen in female relatives. Higher initial level of anxiety was associated with younger patient age, lower level of function and consciousness in the patient and the relative being female or the spouse. CONCLUSION: Future research and interventions...... relatives of patients with severe brain injury. METHODS: The relatives were assessed on the anxiety and depression scales from the Symptom Checklist-90-Revised and latent variable growth curve models were used to model the trajectories. The effects of patient's age, patient's Glasgow Coma Score, level...... of function and consciousness, gender and relationship of the relatives were modelled. RESULTS: Improvement was found in both symptoms of anxiety and depression during the 12-month study period. The analysis revealed different trajectories for symptoms of anxiety and depression, as anxiety had a more rapid...

  4. Traumatic Brain Injury and Delayed Sequelae: A Review - Traumatic Brain Injury and Mild Traumatic Brain Injury (Concussion) are Precursors to Later-Onset Brain Disorders, Including Early-Onset Dementia

    OpenAIRE

    Kiraly, Michael A.; Kiraly, Stephen J.

    2007-01-01

    Brain injuries are too common. Most people are unaware of the incidence of and horrendous consequences of traumatic brain injury (TBI) and mild traumatic brain injury (MTBI). Research and the advent of sophisticated imaging have led to progression in the understanding of brain pathophysiology following TBI. Seminal evidence from animal and human experiments demonstrate links between TBI and the subsequent onset of premature, psychiatric syndromes and neurodegenerative diseases, including Alzh...

  5. Iatrogenic traumatic brain injury during tooth extraction.

    Science.gov (United States)

    Troxel, Mark

    2015-01-01

    An 8 yr old spayed female Yorkshire terrier was referred for evaluation of progressive neurological signs after a routine dental prophylaxis with tooth extractions. The patient was circling to the left and blind in the right eye with right hemiparesis. Neurolocalization was to the left forebrain. MRI revealed a linear tract extending from the caudal oropharynx, through the left retrobulbar space and frontal lobe, into the left parietal lobe. A small skull fracture was identified in the frontal bone through which the linear tract passed. Those findings were consistent with iatrogenic trauma from slippage of a dental elevator during extraction of tooth 210. The dog was treated empirically with clindamycin. The patient regained most of its normal neurological function within the first 4 mo after the initial injury. Although still not normal, the dog has a good quality of life. Traumatic brain injury is a rarely reported complication of extraction. Care must be taken while performing dental cleaning and tooth extraction, especially of the maxillary premolar and molar teeth to avoid iatrogenic damage to surrounding structures.

  6. Diabetes Insipidus after Traumatic Brain Injury

    Science.gov (United States)

    Capatina, Cristina; Paluzzi, Alessandro; Mitchell, Rosalid; Karavitaki, Niki

    2015-01-01

    Traumatic brain injury (TBI) is a significant cause of morbidity and mortality in many age groups. Neuroendocrine dysfunction has been recognized as a consequence of TBI and consists of both anterior and posterior pituitary insufficiency; water and electrolyte abnormalities (diabetes insipidus (DI) and the syndrome of inappropriate antidiuretic hormone secretion (SIADH)) are amongst the most challenging sequelae. The acute head trauma can lead (directly or indirectly) to dysfunction of the hypothalamic neurons secreting antidiuretic hormone (ADH) or of the posterior pituitary gland causing post-traumatic DI (PTDI). PTDI is usually diagnosed in the first days after the trauma presenting with hypotonic polyuria. Frequently, the poor general status of most patients prevents adequate fluid intake to compensate the losses and severe dehydration and hypernatremia occur. Management consists of careful monitoring of fluid balance and hormonal replacement. PTDI is associated with high mortality, particularly when presenting very early following the injury. In many surviving patients, the PTDI is transient, lasting a few days to a few weeks and in a minority of cases, it is permanent requiring management similar to that offered to patients with non-traumatic central DI. PMID:26239685

  7. Hypoaminoacidemia Characterizes Chronic Traumatic Brain Injury.

    Science.gov (United States)

    Durham, William J; Foreman, Jack P; Randolph, Kathleen M; Danesi, Christopher P; Spratt, Heidi; Masel, Brian D; Summons, Jennifer R; Singh, Charan K; Morrison, Melissa; Robles, Claudia; Wolfram, Cindy; Kreber, Lisa A; Urban, Randall J; Sheffield-Moore, Melinda; Masel, Brent E

    2017-01-15

    Individuals with a history of traumatic brain injury (TBI) are at increased risk for a number of disorders, including Alzheimer's disease, Parkinson's disease, and chronic traumatic encephalopathy. However, mediators of the long-term morbidity are uncertain. We conducted a multi-site, prospective trial in chronic TBI patients (∼18 years post-TBI) living in long-term 24-h care environments and local controls without a history of head injury. Inability to give informed consent was exclusionary for participation. A total of 41 individuals (17 moderate-severe TBI, 24 controls) were studied before and after consumption of a standardized breakfast to determine if concentrations of amino acids, cytokines, C-reactive protein, and insulin are potential mediators of long-term TBI morbidity. Analyte concentrations were measured in serum drawn before (fasting) and 1 h after meal consumption. Mean ages were 44 ± 15 and 49 ± 11 years for controls and chronic TBI patients, respectively. Chronic TBI patients had significantly lower circulating concentrations of numerous individual amino acids, as well as essential amino acids (p = 0.03) and large neutral amino acids (p = 0.003) considered as groups, and displayed fundamentally altered cytokine-amino acid relationships. Many years after injury, TBI patients exhibit abnormal metabolic responses and altered relationships between circulating amino acids, cytokines, and hormones. This pattern is consistent with TBI, inducing a chronic disease state in patients. Understanding the mechanisms causing the chronic disease state could lead to new treatments for its prevention.

  8. The Impact of Mild Traumatic Brain Injury on Cognitive Functioning Following Co-occurring Spinal Cord Injury

    Science.gov (United States)

    Macciocchi, Stephen N.; Seel, Ronald T.; Thompson, Nicole

    2013-01-01

    Meta-analytic studies have shown that mild traumatic brain injury (MTBI) has relatively negligible effects on cognitive functioning at 90 or more days post-injury. Few studies have prospectively examined the effects of MTBI in acute physical trauma populations. This prospective, cohort study compared the cognitive performance of persons who sustained a spinal cord injury (SCI) and a co-occurring MTBI (N = 53) to persons who sustained an SCI alone (N = 64) between 26 and 76 days (mean = 46) post-injury. The presence of MTBI was determined based on acute medical record review using a standardized algorithm. Primary outcome measures were seven neuropsychological tests that evaluated visual, verbal, and working memory, perceptual reasoning, and processing speed that controlled for potential upper extremity impairment. Persons who sustained SCI with or without MTBI had lower than expected performance across all neuropsychological tests, on average about 1 SD below the mean. Analysis of covariance indicated that persons with MTBI did not evidence greater impairment on any neuropsychological test. The aggregated effect size (Cohen's d) was −0.16. The strongest predictors of neuropsychological test scores were education, race, history of learning problems, and days from injury to rehabilitation admission. MTBI did not predict performance on any neuropsychological test. These findings are consistent with other controlled studies that indicate a single MTBI has negligible long-term impacts on cognition. PMID:24055885

  9. Intellectual ability 10 years after traumatic brain injury in infancy and childhood: what predicts outcome?

    Science.gov (United States)

    Anderson, Vicki; Catroppa, Cathy; Godfrey, Celia; Rosenfeld, Jeffrey V

    2012-01-01

    The long-term consequences of child traumatic brain injury (TBI) are poorly understood, but there are indications of ongoing deterioration in skills with time since injury. This study investigated outcomes up to 10 years post-injury, to determine the influences of injury severity, injury age, and environment. The study design was prospective and longitudinal. Participants included consecutive admissions to the Royal Children's Hospital, Melbourne, Australia. Children sustaining TBI between 2 and 12 years of age (n=76) were recruited on admission and divided according to injury severity (mild, moderate, and severe) and injury age (2-7 years and 8-12 years). Cognitive abilities were evaluated using standard measures of intellectual function (IQ) acutely and at 12 months, 30 months, and 10 years post-injury. At 10 years, mean IQs for survivors fell within the low average to average range. There were no significant effects of injury severity, injury age, or time since injury. In contrast, elevated rates of impairment were identified in association with severe TBI (global deficits), and early injury (non-verbal deficits). Impairments in processing speed were related to injury severity and age at injury. Predictors of 10-year outcome included pre-injury and social factors, injury age, and family function. Child survivors of serious TBI are at elevated risk of cognitive impairment, with recovery continuing into the third year post-injury. However, between 30 months and 10 years post-insult, children appear to make appropriate developmental gains, contrary to the speculation that these children "grow into their deficits."

  10. Clinical neurorestorative progress in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Huang H

    2015-03-01

    Full Text Available Huiling Huang,1 Lin Chen,2,3 Hongyun Huang4–61Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin Neurosurgical Institute, Tianjin, People's Republic of China; 2Medical Center, Tsinghua University, Beijing, People's Republic of China; 3Tsinghua University Yuquan Hospital, Beijing, People's Republic of China; 4General Hospital of Chinese people's Armed Police Forces, 5Beijing Rehabilitation Hospital of Capital Medical University, Beijing, People's Republic of China; 6Beijing Hongtianji Neuroscience Academy, Beijing, People's Republic of ChinaAbstract: Traumatic brain injury (TBI is a leading cause of death and disability from trauma to the central nervous system. Besides the surgical interventions and symptomatic management, the conventional therapies for TBI and its sequelae are still limited. Recently emerging evidence suggests that some neurorestorative treatments appear to have a potential therapeutic role for TBI and improving the patient's quality of life. The current clinical neurorestorative strategies available in TBI include pharmacological treatments (recombinant human interleukin-1 receptor antagonist, amantadine, lithium, and valproate, the neuromodulation treatments (repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and low-level laser therapy, cell transplantation (bone marrow stromal cells and umbilical cord stromal cells, and combined neurorehabilitation. In this review, we summarize the recent clinical neurorestorative progress in the management of neurodegeneration as well as cognitive and motor deficits after TBI; indeed further clinical trials are required to provide more robust evidence.Keywords: brain trauma, neurorestorative treatment, cell transplantation, clinical study

  11. Visual agnosia and focal brain injury.

    Science.gov (United States)

    Martinaud, O

    Visual agnosia encompasses all disorders of visual recognition within a selective visual modality not due to an impairment of elementary visual processing or other cognitive deficit. Based on a sequential dichotomy between the perceptual and memory systems, two different categories of visual object agnosia are usually considered: 'apperceptive agnosia' and 'associative agnosia'. Impaired visual recognition within a single category of stimuli is also reported in: (i) visual object agnosia of the ventral pathway, such as prosopagnosia (for faces), pure alexia (for words), or topographagnosia (for landmarks); (ii) visual spatial agnosia of the dorsal pathway, such as cerebral akinetopsia (for movement), or orientation agnosia (for the placement of objects in space). Focal brain injuries provide a unique opportunity to better understand regional brain function, particularly with the use of effective statistical approaches such as voxel-based lesion-symptom mapping (VLSM). The aim of the present work was twofold: (i) to review the various agnosia categories according to the traditional visual dual-pathway model; and (ii) to better assess the anatomical network underlying visual recognition through lesion-mapping studies correlating neuroanatomical and clinical outcomes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Microglia and Inflammation: Impact on Developmental Brain Injuries

    Science.gov (United States)

    Chew, Li-Jin; Takanohashi, Asako; Bell, Michael

    2006-01-01

    Inflammation during the perinatal period has become a recognized risk factor for developmental brain injuries over the past decade or more. To fully understand the relationship between inflammation and brain development, a comprehensive knowledge about the immune system within the brain is essential. Microglia are resident immune cells within the…

  13. Microglia and Inflammation: Impact on Developmental Brain Injuries

    Science.gov (United States)

    Chew, Li-Jin; Takanohashi, Asako; Bell, Michael

    2006-01-01

    Inflammation during the perinatal period has become a recognized risk factor for developmental brain injuries over the past decade or more. To fully understand the relationship between inflammation and brain development, a comprehensive knowledge about the immune system within the brain is essential. Microglia are resident immune cells within the…

  14. Venous thromboembolic events in isolated severe traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Shahin Mohseni

    2012-01-01

    Full Text Available Objective: The purpose of this study was to investigate the effect of prophylactic anticoagulation on the incidence of venous thromboembolic events (VTE in patients suffering from isolated severe traumatic brain injury (TBI. Materials and Methods: Retrospective matched case-control study in adult patients sustaining isolated severe TBI (head AIS ≥3, with extracranial AIS ≤2 receiving VTE prophylaxis while in the surgical intensive care unit from 1/2007 through 12/2009. Patients subjected to VTE prophylaxis were matched 1:1 by age, gender, glasgow coma scale (GCS score at admission, presence of hypotension on admission, injury severity score, and head abbreviated injury scale (AIS score, with patients who did not receive chemical VTE prophylaxis. The primary outcome measure was VTE. Secondary outcomes were SICU and hospital length of stay (HLOS, adverse effects of anticoagulation, and mortality. Results: After propensity matching, 37 matched pairs were analysed. Cases and controls had similar demographics, injury characteristics, rate of craniotomies/craniectomies, SICU LOS, and HLOS. The median time of commencement of VTE prophylaxis was 10 days. The incidence of VTE was increased 3.5-fold in the controls compared to the cases (95% CI 1.0-12.1, P=0.002. The mortality was higher in patients who did not receive anticoagulation (19% vs. 5%, P=0.001. No adverse outcomes were detected in the anticoagulated patients. Conclusion: Prophylactic anticoagulation decreases the overall risk for clinically significant VTE in patients with severe isolated TBI. Prospective validation of the timing and safety of chemical VTE prophylaxis in these instances is warranted.

  15. /sup 31/P NMR characterization of graded traumatic brain injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Vink, R.; McIntosh, T.K.; Yamakami, I.; Faden, A.I.

    1988-01-01

    Irreversible tissue injury following central nervous system trauma is believed to result from both mechanical disruption at the time of primary insult, and more delayed autodestructive processes. These delayed events are associated with various biochemical changes, including alterations in phosphate energy metabolism and intracellular pH. Using /sup 31/P NMR, we have monitored the changes in phosphorus energy metabolism and intracellular pH in a single hemisphere of the rat brain over an 8-h period following graded, traumatic, fluid percussion-induced brain injury. Following trauma the ratio of phosphocreatine to inorganic phosphate (PCr/Pi) declined in each injury group. This decline was transitory with low injury (1.0 +/- 0.5 atm), biphasic with moderate (2.1 +/- 0.4 atm) and high (3.9 +/- 0.9 atm) injury, and sustained following severe injury (5.9 +/- 0.7 atm). The initial PCr/Pi decline in the moderate and high injury groups was associated with intracellular acidosis; however, the second decline occurred in the absence of any pH changes. Alterations in ATP occurred only in severely injured animals and such changes were associated with marked acidosis and 100% mortality rate. After 4h, the posttraumatic PCr/Pi ratio correlated linearly with the severity of injury. We suggest that a reduced posttraumatic PCr/Pi ratio may be indicative of altered mitochondrial energy production and may predict a reduced capacity of the cell to recover from traumatic injury.

  16. Sports-related brain injuries: connecting pathology to diagnosis.

    Science.gov (United States)

    Pan, James; Connolly, Ian D; Dangelmajer, Sean; Kintzing, James; Ho, Allen L; Grant, Gerald

    2016-04-01

    Brain injuries are becoming increasingly common in athletes and represent an important diagnostic challenge. Early detection and management of brain injuries in sports are of utmost importance in preventing chronic neurological and psychiatric decline. These types of injuries incurred during sports are referred to as mild traumatic brain injuries, which represent a heterogeneous spectrum of disease. The most dramatic manifestation of chronic mild traumatic brain injuries is termed chronic traumatic encephalopathy, which is associated with profound neuropsychiatric deficits. Because chronic traumatic encephalopathy can only be diagnosed by postmortem examination, new diagnostic methodologies are needed for early detection and amelioration of disease burden. This review examines the pathology driving changes in athletes participating in high-impact sports and how this understanding can lead to innovations in neuroimaging and biomarker discovery.

  17. Acute Blast Injury Reduces Brain Abeta in Two Rodent Species

    Directory of Open Access Journals (Sweden)

    Rita eDe Gasperi

    2012-12-01

    Full Text Available Blast-induced traumatic brain injury (TBI has been a major cause of morbidity and mortality in the conflicts in Iraq and Afghanistan. How the primary blast wave affects the brain is not well understood. In particular, it is unclear whether blast injures the brain through mechanisms similar to those found in non-blast closed impact injuries (nbTBI. The β-amyloid (Aβ peptide associated with the development of Alzheimer’s disease (AD is elevated acutely following TBI in humans as well as in experimental animal models of nbTBI. We examined levels of brain Aβ following experimental blast injury using enzyme-linked immunosorbent assays for Aβ 40 and 42. In both rat and mouse models of blast injury, rather than being increased, endogenous rodent brain Aβ levels were decreased acutely following injury. Levels of the amyloid precursor protein (APP were increased following blast exposure although there was no evidence of axonal pathology based on APP immunohistochemical staining. Unlike the findings in nbTBI animal models, levels of the β-secretase, BACE-1, and the γ-secretase component presenilin-1 were unchanged following blast exposure. These studies have implications for understanding the nature of blast injury to the brain. They also suggest that strategies aimed at lowering Aβ production may not be effective for treating acute blast injury to the brain.

  18. Traumatic Brain Injury and Delayed Sequelae: A Review - Traumatic Brain Injury and Mild Traumatic Brain Injury (Concussion are Precursors to Later-Onset Brain Disorders, Including Early-Onset Dementia

    Directory of Open Access Journals (Sweden)

    Michael A. Kiraly

    2007-01-01

    Full Text Available Brain injuries are too common. Most people are unaware of the incidence of and horrendous consequences of traumatic brain injury (TBI and mild traumatic brain injury (MTBI. Research and the advent of sophisticated imaging have led to progression in the understanding of brain pathophysiology following TBI. Seminal evidence from animal and human experiments demonstrate links between TBI and the subsequent onset of premature, psychiatric syndromes and neurodegenerative diseases, including Alzheimer's disease (AD and Parkinson's disease (PD. Objectives of this summary are, therefore, to instill appreciation regarding the importance of brain injury prevention, diagnosis, and treatment, and to increase awareness regarding the long-term delayed consequences following TBI.

  19. Longitudinal Examination of Resilience after Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    Science.gov (United States)

    Marwitz, Jennifer H; Sima, Adam P; Kreutzer, Jeffrey S; Dreer, Laura E; Bergquist, Thomas F; Zafonte, Ross; Johnson-Greene, Douglas; Felix, Elizabeth R

    2017-07-19

    To evaluate the trajectory of resilience during the first year following a moderate-severe TBI, factors associated with resilience at 3, 6 and 12-months post-injury, and changing relationships over time between resilience and other factors. Longitudinal analysis of an observational cohort. Five inpatient rehabilitation centers. Patients with TBI (N = 195) enrolled in the resilience module of the TBI Model Systems study with data collected at 3, 6, and 12-month follow-up. Not applicable. Connor-Davidson Resilience Scale. Initially, resilience levels appeared to be stable during the first year post-injury. Individual growth curve models were used to examine resilience over time in relation to demographic, psychosocial, and injury characteristics. After adjusting for these characteristics, resilience actually declined over time. Higher levels of resilience were related to non-minority status, absence of pre-injury substance abuse, lower anxiety and disability level, and greater life satisfaction. Resilience is a construct that is relevant to understanding brain injury outcomes and has potential value in planning clinical interventions. Copyright © 2017. Published by Elsevier Inc.

  20. Role of microglia in a mouse model of paediatric traumatic brain injury.

    Science.gov (United States)

    Chhor, Vibol; Moretti, Raffaella; Le Charpentier, Tifenn; Sigaut, Stephanie; Lebon, Sophie; Schwendimann, Leslie; Oré, Marie-Virginie; Zuiani, Chiara; Milan, Valentina; Josserand, Julien; Vontell, Regina; Pansiot, Julien; Degos, Vincent; Ikonomidou, Chrysanthy; Titomanlio, Luigi; Hagberg, Henrik; Gressens, Pierre; Fleiss, Bobbi

    2016-11-04

    The cognitive and behavioural deficits caused by traumatic brain injury (TBI) to the immature brain are more severe and persistent than TBI in the mature brain. Understanding this developmental sensitivity is critical as children under four years of age sustain TBI more frequently than any other age group. Microglia (MG), resident immune cells of the brain that mediate neuroinflammation, are activated following TBI in the immature brain. However, the type and temporal profile of this activation and the consequences of altering it are still largely unknown. In a mouse model of closed head weight drop paediatric brain trauma, we characterized i) the temporal course of total cortical neuroinflammation and the phenotype of ex vivo isolated CD11B-positive microglia/macrophage (MG/MΦ) using a battery of 32 markers, and ii) neuropathological outcome 1 and 5days post-injury. We also assessed the effects of targeting MG/MΦ activation directly, using minocycline a prototypical microglial activation antagonist, on these processes and outcome. TBI induced a moderate increase in both pro- and anti-inflammatory cytokines/chemokines in the ipsilateral hemisphere. Isolated cortical MG/MΦ expressed increased levels of markers of endogenous reparatory/regenerative and immunomodulatory phenotypes compared with shams. Blocking MG/MΦ activation with minocycline at the time of injury and 1 and 2days post-injury had only transient protective effects, reducing ventricular dilatation and cell death 1day post-injury but having no effect on injury severity at 5days. This study demonstrates that, unlike in adults, the role of MG/MΦ in injury mechanisms following TBI in the immature brain may not be negative. An improved understanding of MG/MΦ function in paediatric TBI could support translational efforts to design therapeutic interventions.

  1. Late effects of enriched environment (EE) plus multimodal early onset stimulation (MEOS) after traumatic brain injury in rats: Ongoing improvement of neuromotor function despite sustained volume of the CNS lesion.

    Science.gov (United States)

    Lippert-Gruener, Marcela; Maegele, Marc; Garbe, Janika; Angelov, Doychin N

    2007-01-01

    Recently we showed that the combination between MEOS and EE applied to rats for 7-15 days after traumatic brain injury (TBI) was associated with reduced CNS lesion volume and enhanced reversal of neuromotor dysfunction. In a continuation of this work, we tested whether these effects persisted for longer post-operative periods, e.g. 30 days post-injury (dpi). Rats were subjected to lateral fluid percussion (LFP) or to sham injury. After LFP, one third of the animals (injured and sham) was placed under conditions of standard housing (SH), one third was kept in EE-only, and one third received EE+MEOS. Standardized composite neuroscore (NS) for neurological functions and computerized analysis of the vibrissal motor performance were used to assess post-traumatic neuromotor deficits. These were followed by evaluation of the cortical lesion volume (CLV) after immunostaining for neuron-specific enolase, caspase 3 active, and GFAP. Finally, the volume of cortical lesion containing regeneration-associated proteins (CLV-RAP) was determined in sections stained for GAP-43, MAP2, and neuronal class III beta-tubulin. We found (i) no differences in the vibrissal motor performance; (ii) EE+MEOS rats performed significantly better than SH rats in NS; (iii) EE-only and EE+MEOS animals, but not SH rats, showed better recovery at 30 dpi than at 15 dpi; (iv) no differences among all groups in CLV (larger than that at 15 dpi) and CLV-RAP, despite a clear tendency to reduction in the EE-only and EE+MEOS rats. We conclude that EE+MEOS retards, but cannot prevent the increase of lesion volume. This retardation is sufficient for a continuous restoration of neurological functions.

  2. DARPA challenge: developing new technologies for brain and spinal injuries

    Science.gov (United States)

    Macedonia, Christian; Zamisch, Monica; Judy, Jack; Ling, Geoffrey

    2012-06-01

    The repair of traumatic injuries to the central nervous system remains among the most challenging and exciting frontiers in medicine. In both traumatic brain injury and spinal cord injuries, the ultimate goals are to minimize damage and foster recovery. Numerous DARPA initiatives are in progress to meet these goals. The PREventing Violent Explosive Neurologic Trauma program focuses on the characterization of non-penetrating brain injuries resulting from explosive blast, devising predictive models and test platforms, and creating strategies for mitigation and treatment. To this end, animal models of blast induced brain injury are being established, including swine and non-human primates. Assessment of brain injury in blast injured humans will provide invaluable information on brain injury associated motor and cognitive dysfunctions. The Blast Gauge effort provided a device to measure warfighter's blast exposures which will contribute to diagnosing the level of brain injury. The program Cavitation as a Damage Mechanism for Traumatic Brain Injury from Explosive Blast developed mathematical models that predict stresses, strains, and cavitation induced from blast exposures, and is devising mitigation technologies to eliminate injuries resulting from cavitation. The Revolutionizing Prosthetics program is developing an avant-garde prosthetic arm that responds to direct neural control and provides sensory feedback through electrical stimulation. The Reliable Neural-Interface Technology effort will devise technologies to optimally extract information from the nervous system to control next generation prosthetic devices with high fidelity. The emerging knowledge and technologies arising from these DARPA programs will significantly improve the treatment of brain and spinal cord injured patients.

  3. Developmental traumatic brain injury decreased brain derived neurotrophic factor expression late after injury.

    Science.gov (United States)

    Schober, Michelle Elena; Block, Benjamin; Requena, Daniela F; Hale, Merica A; Lane, Robert H

    2012-06-01

    Pediatric traumatic brain injury (TBI) is a major cause of acquired cognitive dysfunction in children. Hippocampal Brain Derived Neurotrophic Factor (BDNF) is important for normal cognition. Little is known about the effects of TBI on BDNF levels in the developing hippocampus. We used controlled cortical impact (CCI) in the 17 day old rat pup to test the hypothesis that CCI would first increase rat hippocampal BDNF mRNA/protein levels relative to SHAM and Naïve rats by post injury day (PID) 2 and then decrease BDNF mRNA/protein by PID14. Relative to SHAM, CCI did not change BDNF mRNA/protein levels in the injured hippocampus in the first 2 days after injury but did decrease BDNF protein at PID14. Surprisingly, BDNF mRNA decreased at PID 1, 3, 7 and 14, and BDNF protein decreased at PID 2, in SHAM and CCI hippocampi relative to Naïve. In conclusion, TBI decreased BDNF protein in the injured rat pup hippocampus 14 days after injury. BDNF mRNA levels decreased in both CCI and SHAM hippocampi relative to Naïve, suggesting that certain aspects of the experimental paradigm (such as craniotomy, anesthesia, and/or maternal separation) may decrease the expression of BDNF in the developing hippocampus. While BDNF is important for normal cognition, no inferences can be made regarding the cognitive impact of any of these factors. Such findings, however, suggest that meticulous attention to the experimental paradigm, and possible inclusion of a Naïve group, is warranted in studies of BDNF expression in the developing brain after TBI.

  4. Exercise to enhance neurocognitive function after traumatic brain injury.

    Science.gov (United States)

    Fogelman, David; Zafonte, Ross

    2012-11-01

    Vigorous exercise has long been associated with improved health in many domains. Results of clinical observation have suggested that neurocognitive performance also is improved by vigorous exercise. Data derived from animal model-based research have been emerging that show molecular and neuroanatomic mechanisms that may explain how exercise improves cognition, particularly after traumatic brain injury. This article will summarize the current state of the basic science and clinical literature regarding exercise as an intervention, both independently and in conjunction with other modalities, for brain injury rehabilitation. A key principle is the factor of timing of the initiation of exercise after mild traumatic brain injury, balancing potentially favorable and detrimental effects on recovery.

  5. What environmental factors irritate people with acquired brain injury?

    Science.gov (United States)

    Pryor, Julie

    2004-08-19

    This study aims to determine the environmental factors nurses identify as being irritating to people with acquired brain injury. This was a qualitative study. An experienced interviewer used the Critical Decision Method to interview 28 nurses working in 10 inpatient brain injury rehabilitation units in Australia on a one to one basis for 1-1.5 h on two consecutive days. Transcripts of interviews were analysed using thematic analysis. Nurses identified five groups of irritants that acted as triggers for aggression: The nurses in this study identified many environmental factors that irritate people with acquired brain injury. Some irritants appeared unavoidable but others could be addressed by staff expertise.

  6. Traumatic brain injury: Age at injury influences dementia risk after TBI

    OpenAIRE

    Johnson, Victoria E.; Stewart, William

    2015-01-01

    Traumatic brain injury (TBI) is increasingly recognized as a risk factor for dementia. New data provide further support for this association and demonstrate the influence of age at injury and injury severity on dementia risk after TBI, revealing that even mild TBI increases dementia risk in those aged ≥65 years.

  7. Traumatic Brain Injury in Rats Induces Lung Injury and Systemic Immune Suppression

    NARCIS (Netherlands)

    Vermeij, Jan-Dirk; Aslami, Hamid; Fluiter, Kees; Roelofs, Joris J.; van den Bergh, Walter M.; Juffermans, Nicole P.; Schultz, Marcus J.; Van der Sluijs, Koen; van de Beek, Diederik; van Westerloo, David J.

    2013-01-01

    Traumatic brain injury (TBI) is frequently complicated by acute lung injury, which is predictive for poor outcome. However, it is unclear whether lung injury develops independently or as a result of mechanical ventilation after TBI. Further, TBI is strongly associated with the development of pneumon

  8. Maxillofacial injuries sustained during soccer: incidence, severity and risk factors.

    Science.gov (United States)

    Papakosta, Veronica; Koumoura, Fanny; Mourouzis, Constantinos

    2008-04-01

    A very popular sport worldwide, soccer generates a great number of maxillofacial injuries, mainly fractures, resulting in esthetic or functional problems. The aim of this retrospective study was to contribute to the knowledge of soccer-related maxillofacial injuries, and call attention to the risk factors that favor these injuries. A total of 108 patients, who attended hospital because of maxillofacial injuries during soccer within a period of 8 years, were included in this study. The relationship of the patients with soccer, the type, the site, the severity, the mechanism of the injuries and the applied treatment were analyzed. The injured were all males, and were principally amateurs. Around 89.8% of the patients suffered maxillofacial fractures while 10.2% presented only soft tissue injuries; 13.9% had multiple fractures; 50% of the maxillofacial fractures concerned the zygomatic complex and 38.2% the mandible where the majority occurred at the angle. The prevailing mechanism was the direct impact of players. Head to head impact outnumbered. Elbow to head impact caused contusions of the temporomandibular joint. Kick to head impact was the main cause of multiple fractures. The treatment of fractures was mainly surgical (68.2%). These findings support the fact that maxillofacial injuries sustained during soccer tend to be severe, demanding surgical treatment. The mandibular angle is in danger due to the usual existence of impacted and semi-impacted third molars. There should be a preventive intervention on the above contributors, and mainly coaches and sports physicians should be properly informed about the specificity of the maxillofacial injuries.

  9. Traumatic brain injury recorded in the UK Joint Theatre Trauma Registry among the UK Armed Forces.

    Science.gov (United States)

    Hawley, Carol A; de Burgh, H Thomas; Russell, Robert J; Mead, Andrew

    2015-01-01

    To use the UK Joint Theatre Trauma Registry (UK-JTTR) to identify service personnel sustaining traumatic brain injury (TBI) in recent conflicts and to examine injury characteristics, outcomes, and severity measures predictive of survival. Operations HERRICK (Afghanistan) and TELIC (Iraq). The UK-JTTR records data for every UK service person either killed on operations or treated by Defence Medical Services after a trauma call, including those evacuated for inpatient care following traumatic injury. UK-JTTR data were retrospectively analyzed to identify those who sustained TBI. The Mayo system was used to define TBI. Glasgow Coma Scale score, injury severity score, new injury severity score, trauma injury severity score, abbreviated injury scale, and a severity characterization of trauma were used to predict survival. In total, 464 UK service personnel sustained TBI, representing 19% of the 2440 casualties in Afghanistan and Iraq, recorded in the UK-JTTR. Most TBI casualties had moderate-severe TBI (402, 87%). There were 181 (39%) survivors, 56% of these received neurorehabilitation. Improvised explosive devices accounted for 55% of TBIs sustained in Afghanistan and 31% of TBIs in Iraq. Logistic regression analyses were performed using the 412 cases (149 survivors: 263 fatalities) with scores on all severity measures. The best-fitting model was based on trauma injury severity score. A trauma injury severity score more than 11.13 indicates a more than 95% probability of survival. This is the first study of UK combat TBIs between 2003 and 2011. Almost 1 in 5 UK service personnel recorded in the UK-JTTR had TBI; most were moderate-severe. However, mild TBI is likely to be underrepresented in the UK-JTTR. These findings may be used to plan future rehabilitation needs, as almost half the survivors did not receive neurorehabilitation.

  10. Imatinib treatment reduces brain injury in a murine model of traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Enming Joe Su

    2015-10-01

    Full Text Available Current therapies for Traumatic brain injury (TBI focus on stabilizing individuals and on preventing further damage from the secondary consequences of TBI. A major complication of TBI is cerebral edema, which can be caused by the loss of blood brain barrier (BBB integrity. Recent studies in several CNS pathologies have shown that activation of latent platelet derived growth factor-CC (PDGF-CC within the brain can promote BBB permeability through PDGF receptor α (PDGFRα signaling, and that blocking this pathway improves outcomes. In this study we examine the efficacy for the treatment of TBI of an FDA approved antagonist of the PDGFRα, Imatinib. Using a murine model we show that Imatinib treatment, begun 45 minutes after TBI and given twice daily for 5 days, significantly reduces BBB dysfunction. This is associated with significantly reduced lesion size 24 hours, 7 days, and 21 days after TBI, reduced cerebral edema, determined from apparent diffusion co-efficient (ADC measurements, and with the preservation of cognitive function. Finally, analysis of CSF from human TBI patients suggests a possible correlation between high PDGF-CC levels and increased injury severity. Thus, our data suggests a novel strategy for the treatment of TBI with an existing FDA approved antagonist of the PDGFRα.

  11. Disorders of consciousness after severe brain injury: therapeutic options.

    Science.gov (United States)

    Schnakers, Caroline; Monti, Martin M

    2017-09-09

    Very few options exist for patients who survive severe traumatic brain injury but fail to fully recover and develop a disorder of consciousness (e.g. vegetative state, minimally conscious state). Among pharmacological approaches, Amantadine has shown the ability to accelerate functional recovery. Although with very low frequency, Zolpidem has shown the ability to improve the level of consciousness transiently and, possibly, also in a sustained fashion. Among neuromodulatory approaches, transcranial direct current stimulation has been shown to transiently improve behavioral responsiveness, but mostly in minimally conscious patients. New evidence for thalamic deep brain stimulation calls into question its cost/benefit trade-off. The growing understanding of the biology of disorders of consciousness has led to a renaissance in the development of therapeutic interventions for patients with disorders of consciousness. High-quality evidence is emerging for pharmacological (i.e. Amantadine) and neurostimulatory (i.e. transcranial direct current stimulation) interventions, although further studies are needed to delineate preconditions, optimal dosages, and timing of administration. Other exciting new approaches (e.g. low intensity focused ultrasound) still await systematic assessment. A crucial future direction should be the use of neuroimaging measures of functional and structural impairment as a means of tailoring patient-specific interventions.

  12. Injury and repair in perinatal brain injury: Insights from non-invasive MR perfusion imaging.

    Science.gov (United States)

    Wintermark, Pia

    2015-03-01

    Injury to the developing brain remains an important complication in critically ill newborns, placing them at risk for future neurodevelopment impairments. Abnormal brain perfusion is often a key mechanism underlying neonatal brain injury. A better understanding of how alternations in brain perfusion can affect normal brain development will permit the development of therapeutic strategies that prevent and/or minimize brain injury and improve the neurodevelopmental outcome of these high-risk newborns. Recently, non-invasive MR perfusion imaging of the brain has been successfully applied to the neonatal brain, which is known to be smaller and have lower brain perfusion compared to older children and adults. This article will present an overview of the potential role of non-invasive perfusion imaging by MRI to study maturation, injury, and repair in perinatal brain injury and demonstrate why this perfusion sequence is an important addition to current neonatal imaging protocols, which already include different sequences to assess the anatomy and metabolism of the neonatal brain.

  13. Mesenchymal Stem Cells in the Treatment of Traumatic Brain Injury

    Science.gov (United States)

    Hasan, Anwarul; Deeb, George; Rahal, Rahaf; Atwi, Khairallah; Mondello, Stefania; Marei, Hany Elsayed; Gali, Amr; Sleiman, Eliana

    2017-01-01

    Traumatic brain injury (TBI) is characterized by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. The primary insult to the brain initiates secondary injury cascades consisting of multiple complex biochemical responses of the brain that significantly influence the overall severity of the brain damage and clinical sequelae. The use of mesenchymal stem cells (MSCs) offers huge potential for application in the treatment of TBI. MSCs have immunosuppressive properties that reduce inflammation in injured tissue. As such, they could be used to modulate the secondary mechanisms of injury and halt the progression of the secondary insult in the brain after injury. Particularly, MSCs are capable of secreting growth factors that facilitate the regrowth of neurons in the brain. The relative abundance of harvest sources of MSCs also makes them particularly appealing. Recently, numerous studies have investigated the effects of infusion of MSCs into animal models of TBI. The results have shown significant improvement in the motor function of the damaged brain tissues. In this review, we summarize the recent advances in the application of MSCs in the treatment of TBI. The review starts with a brief introduction of the pathophysiology of TBI, followed by the biology of MSCs, and the application of MSCs in TBI treatment. The challenges associated with the application of MSCs in the treatment of TBI and strategies to address those challenges in the future have also been discussed.

  14. Effective protection of rabbits' explosive brain injury through blocking ...

    African Journals Online (AJOL)

    Effective protection of rabbits' explosive brain injury through blocking gap junction communication. ... Log in or Register to get access to full text downloads. ... an important role in spreading of apoptotic and necrotic signals from injured and ...

  15. Neurogenic fever after traumatic brain injury: an epidemiological study

    OpenAIRE

    Thompson, H; Pinto-Martin, J; Bullock, M.

    2003-01-01

    Objectives: To determine the incidence of neurogenic fever (NF) in a population of patients in the acute phase following severe traumatic brain injury (TBI); to identify factors associated with the development of NF following severe TBI in adults.

  16. Effective protection of rabbits' explosive brain injury through blocking ...

    African Journals Online (AJOL)

    Effective protection of rabbits' explosive brain injury through blocking gap junction communication. ... If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked ...

  17. Spreading depolarisations and outcome after traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Bullock, M Ross; Okonkwo, David O

    2011-01-01

    Pathological waves of spreading mass neuronal depolarisation arise repeatedly in injured, but potentially salvageable, grey matter in 50-60% of patients after traumatic brain injury (TBI). We aimed to ascertain whether spreading depolarisations are independently associated with unfavourable...

  18. Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Federal Interagency Traumatic Brain Injury Research (FITBIR) informatics system is an extensible, scalable informatics platform for TBI relevant imaging,...

  19. Better Sleep May Signal Recovery from Brain Injury

    Science.gov (United States)

    ... useful tool for assessing their recovery after traumatic brain injury," said study author Nadia Gosselin. She's an assistant professor in the department of psychology at the University of Montreal. "We found that ...

  20. Depletion of microglia exacerbates postischemic inflammation and brain injury

    National Research Council Canada - National Science Library

    Jin, Wei-Na; Shi, Samuel Xiang-Yu; Li, Zhiguo; Li, Minshu; Wood, Kristofer; Gonzales, Rayna J; Liu, Qiang

    2017-01-01

    ...). Although depletion of microglia has been linked to worse stroke outcomes, it remains unclear to what extent and by what mechanisms activated microglia influence ischemia-induced inflammation and injury in the brain...

  1. Demographic profile of severe traumatic brain injury admissions to ...

    African Journals Online (AJOL)

    TBI to the Red Cross War Memorial Children's Hospital (RCWMCH) and who ... intracranial monitoring for severe TBI (defined as a post- resuscitation ... Background. Paediatric traumatic brain injury (PTBI) is a major public health problem.

  2. Opioid Abuse after Traumatic Brain Injury: Evaluation Using Rodent Models

    Science.gov (United States)

    2013-07-01

    rats induces structural changes in brain regions associated with reward/risk circuitry including the nucleus accumbens, amygdala, hippocampus , and...to injury, animals underwent surgical implantation of a chronic indwelling venous catheter under isoflurane anesthesia with morphine pretreatment. A

  3. Traumatic Brain Injury and Metabolic Dysfunction Among Head ...

    African Journals Online (AJOL)

    3Chemical Pathology and Immunology, University of Ilorin, Ilorin ... Abstract. Traumatic Brain Injury (TBI) is a common health problem which is one of the main causes of chronic disability ... Twenty-five patients with TBI (16 men, 9 women; age.

  4. Defense Centers of Excellence for Psychological Health & Traumatic Brain Injury

    Science.gov (United States)

    ... Sign up Search: Defense Centers of Excellence For Psychological Health & Traumatic Brain Injury U.S. Department of Defense ... Reports Program Evaluation DoD/VA PH & TBI Registry Psychological Health About Psychological Health Psychological Health Resources About ...

  5. Cooking breakfast after a brain injury

    Directory of Open Access Journals (Sweden)

    Annick N. Tanguay

    2014-09-01

    Full Text Available Acquired brain injury (ABI often compromises the ability to carry out instrumental activities of daily living such as cooking. ABI patients’ difficulties with executive functions and memory result in less independent and efficient meal preparation. Accurately assessing safety and proficiency in cooking is essential for successful community reintegration following ABI, but in vivo assessment of cooking by clinicians is time-consuming, costly, and difficult to standardize. Accordingly, we examined the usefulness of a computerized meal preparation task (the Breakfast Task; Craik & Bialystok, 2006 as an indicator of real life meal preparation skills. Twenty-two ABI patients and 22 age-matched controls completed the Breakfast Task and the Rehabilitation Activities of Daily Living Survey (RADLS; Salmon, 2003. Patients also prepared actual meals, and were rated by members of the clinical team. As expected, the ABI patients had significant difficulty on all aspects of the Breakfast Task (failing to have all their foods ready at the same time, over- and under-cooking foods, setting fewer places at the table, and so on relative to controls. Surprisingly, however, patients’ Breakfast Task performance was not correlated with their in vivo meal preparation. These results indicate caution when endeavoring to replace traditional evaluation methods with computerized tasks for the sake of expediency.

  6. Traumatic brain injury: Changing concepts and approaches

    Institute of Scientific and Technical Information of China (English)

    Andrew Maas

    2016-01-01

    Traumatic brain injury (TBI) represents a huge global medical and public health problem across all ages and in all populations.In this review,we discussed the changing concepts and approaches.Globally,the incidence is increasing and in high income countries epidemiologic patterns are changing with consequences for prevention campaigns.TBI should not be viewed as an event,but as a progressive and chronic disease with lifetime consequences.In the clinical field,precision approaches to treatment are being developed,which require more accurate disease phenotyping.Recent advances in genomics,neuroimaging and biomarker development offer great opportunities to develop improved phenotyping and better disease characterization.In clinical research,randomized controlled clinical trials are being complemented by large data collections in broad TBI populations in comparative effectiveness designs.Global collaborations are being developed among funding agencies,research organizations and researchers.Only by combining efforts and collaboration will we be able to advance the field by providing long-needed evidence to support practice recommendations and to improve treatment.

  7. Evaluation of Head and Brain Injury Risk Functions Using Sub-Injurious Human Volunteer Data.

    Science.gov (United States)

    Sanchez, Erin J; Gabler, Lee F; McGhee, James S; Olszko, Ardyn V; Chancey, V Carol; Crandall, Jeff R; Panzer, Matthew B

    2017-08-15

    Risk assessment models are developed to estimate the probability of brain injury during head impact using mechanical response variables such as head kinematics and brain tissue deformation. Existing injury risk functions have been developed using different datasets based on human volunteer and scaled animal injury responses to impact. However, many of these functions have not been independently evaluated with respect to laboratory-controlled human response data. In this study, the specificity of 14 existing brain injury risk functions was assessed by evaluating their ability to correctly predict non-injurious response using previously conducted sled tests with well-instrumented human research volunteers. Six degrees-of-freedom head kinematics data were obtained for 335 sled tests involving subjects in frontal, lateral, and oblique sled conditions up to 16 Gs peak sled acceleration. A review of the medical reports associated with each individual test indicated no clinical diagnosis of mild or moderate brain injury in any of the cases evaluated. Kinematic-based head and brain injury risk probabilities were calculated directly from the kinematic data, while strain-based risks were determined through finite element model simulation of the 335 tests. Several injury risk functions substantially over predict the likelihood of concussion and diffuse axonal injury; proposed maximum principal strain-based injury risk functions predicted nearly 80 concussions and 14 cases of severe diffuse axonal injury out of the 335 non-injurious cases. This work is an important first step in assessing the efficacy of existing brain risk functions and highlights the need for more predictive injury assessment models.

  8. Brain injury and severe eating difficulties at admission

    DEFF Research Database (Denmark)

    Kjærsgaard, Annette; Kaae Kristensen, Hanne

    with acquired brain injury were interviewed via qualitative semi-structured interviews. An explorative study was conducted to study eating difficulties. Qualitative content analysis was used. Results: Four main themes emerged from the analysis: personal values related to eating, swallowing difficulties, eating......Objective: The objective of this pilot study was to explore and interpret the way that individuals with acquired brain injury, admitted to inpatient neurorehabilitation with severe eating difficulties, experienced eating nine to fifteen months after discharge. Methods: Four individuals...

  9. Psychotherapy after acquired brain injury: Is less more?

    Directory of Open Access Journals (Sweden)

    Rudi Coetzer

    2014-02-01

    Full Text Available This paper considers the challenges and dilemmas facing psychotherapists working with neurological patients, and in particular those who work in the context of under-resourced brain injury rehabilitation healthcare systems. Through the subjective process of reflective practice integral to clinical supervision, the author attempts to identify five core aspects of psychotherapy intended to augment post-acute long- term rehabilitation programmes and interventions after acquired brain injury.

  10. Fluid-percussion–induced traumatic brain injury model in rats

    OpenAIRE

    2010-01-01

    Traumatic brain injury (TBI) is a major cause of mortality and morbidity. Various attempts have been made to replicate clinical TBI using animal models. The fluid-percussion model (FP) is one of the oldest and most commonly used models of experimentally induced TBI. Both central (CFP) and lateral (LFP) variations of the model have been used. Developed initially for use in larger species, the standard FP device was adapted more than 20 years ago to induce consistent degrees of brain injury in ...

  11. Intravenous Fluid Therapy in Traumatic Brain Injury and Decompressive Craniectomy

    Science.gov (United States)

    Alvis-Miranda, Hernando Raphael; Castellar-Leones, Sandra Milena; Moscote-Salazar, Luis Rafael

    2014-01-01

    The patient with head trauma is a challenge for the emergency physician and for the neurosurgeon. Currently traumatic brain injury constitutes a public health problem. Knowledge of the various supportive therapeutic strategies in the pre-hospital and pre-operative stages is essential for optimal care. The immediate rapid infusion of large volumes of crystalloids to restore blood volume and blood pressure is now the standard treatment of patients with combined traumatic brain injury (TBI) and hemorrhagic shock (HS). The fluid in patients with brain trauma and especially in patients with brain injur y is a critical issue. In this context we present a review of the literature about the history, physiology of current fluid preparations, and a discussion regarding the use of fluid therapy in traumatic brain injury and decompressive craniectomy. PMID:27162857

  12. Intravenous Fluid Therapy in Traumatic Brain Injury and Decompressive Craniectomy

    Directory of Open Access Journals (Sweden)

    Hernando Raphael Alvis-Miranda

    2014-01-01

    Full Text Available The patient with head trauma is a challenge for the emergency physician and for the neurosurgeon. Currently traumatic brain injury constitutes a public health problem. Knowledge of the various supportive therapeutic strategies in the pre-hospital and pre-operative stages is essential for optimal care. The immediate rapid infusion of large volumes of crystalloids to restore blood volume and blood pressure is now the standard treatment of patients with combined traumatic brain injury (TBI and hemorrhagic shock (HS. The fluid in patients with brain trauma and especially in patients with brain injur y is a critical issue. In this context we present a review of the literature about the history, physiology of current fluid preparations, and a discussion regarding the use of fluid therapy in traumatic brain injury and decompressive craniectomy.

  13. Retinochoroidal changes after severe brain impact injury in rabbits

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate retinochoroidal changes and establisheye damage model after brain impact injury.Methods: An eye damage model after brain impact injury was established by striking the frontoparietal zone in rabbits with BIM-Ⅱ bioimpact machine. Seventeen rabbits were killed at 4 different intervals after injury. The pathological characteristics of the retinal and choroid damages were observed.Results: All the rabbits had severe brain injury with subarachnoid hemorrhage and brain contusion. The eye damage occurred in all of the 17 rabbits. Hemorrhage in optic nerve sheaths was observed and retinal edema and bleeding was discovered with ophthalmoscope. Histopathologic study displayed subarachnoid hemorrhage in the retrobulbar portion of the retinal nerve, general choroid blood vessel dilatation, retinal nerve fibre swelling within 6 hours after injury, and flat retinal detachment with subretinal proteinoid exudation, and degeneration and disappearance of the outer segment of the optic cell over 6 hours after injury.Conclusions: The pathological characteristic of the eye damage at early stage following brain impact injury is local circulation disturbance. At late stage, it features in retinal detachment, and optic cellular degeneration and necrosis.

  14. Transcranial amelioration of inflammation and cell death after brain injury

    Science.gov (United States)

    Roth, Theodore L.; Nayak, Debasis; Atanasijevic, Tatjana; Koretsky, Alan P.; Latour, Lawrence L.; McGavern, Dorian B.

    2014-01-01

    Traumatic brain injury (TBI) is increasingly appreciated to be highly prevalent and deleterious to neurological function. At present, no effective treatment options are available, and little is known about the complex cellular response to TBI during its acute phase. To gain insights into TBI pathogenesis, we developed a novel murine closed-skull brain injury model that mirrors some pathological features associated with mild TBI in humans and used long-term intravital microscopy to study the dynamics of the injury response from its inception. Here we demonstrate that acute brain injury induces vascular damage, meningeal cell death, and the generation of reactive oxygen species (ROS) that ultimately breach the glial limitans and promote spread of the injury into the parenchyma. In response, the brain elicits a neuroprotective, purinergic-receptor-dependent inflammatory response characterized by meningeal neutrophil swarming and microglial reconstitution of the damaged glial limitans. We also show that the skull bone is permeable to small-molecular-weight compounds, and use this delivery route to modulate inflammation and therapeutically ameliorate brain injury through transcranial administration of the ROS scavenger, glutathione. Our results shed light on the acute cellular response to TBI and provide a means to locally deliver therapeutic compounds to the site of injury.

  15. Bruxism after brain injury: successful treatment with botulinum toxin-A.

    Science.gov (United States)

    Ivanhoe, C B; Lai, J M; Francisco, G E

    1997-11-01

    Bruxism, the rhythmic grinding of teeth--usually during sleep--is not an infrequent complication of traumatic brain injury. Its prevalence in the general population is 21%, but its incidence after brain injury is unknown. Untreated, bruxism causes masseter hypertrophy, headache, temporomandibular joint destruction, and total dental wear. We report a case of complete resolution of postanoxic bruxism after treatment with botulinum toxin-A (BTX-A). The patient was a 28-year-old man with no history of bruxism who sustained an anoxic brain injury secondary to cardiac arrest of unknown etiology. On admission to our rehabilitation unit 2 months after the injury, the patient presented with severe bruxism and heavy dental wear. The patient was injected with a total of 200 units of BTX-A to each masseter and temporalis. There was total resolution of bruxism 2 days after injection, with no complications. On follow-up 3 months after injection, the patient remained free of bruxism. We propose that botulinum toxin be considered as a treatment for bruxism secondary to anoxic brain injury. Further studies regarding muscle selection and medication dosage are warranted to elucidate the toxin's efficacy in this condition.

  16. Modeling brain injury response for rotational velocities of varying directions and magnitudes.

    Science.gov (United States)

    Weaver, Ashley A; Danelson, Kerry A; Stitzel, Joel D

    2012-09-01

    An estimated 1.7 million people in the United States sustain a traumatic brain injury (TBI) annually. To investigate the effects of rotational motions on TBI risk and location, this study modeled rotational velocities of five magnitudes and 26 directions of rotation using the Simulated Injury Monitor finite element brain model. The volume fraction of the total brain exceeding a predetermined strain threshold, the Cumulative Strain Damage Measure (CSDM), was investigated to evaluate global model response. To evaluate regional response, this metric was computed relative to individual brain structures and termed the Structure Cumulative Strain Damage Measure (SCSDM). CSDM increased as input magnitude increased and varied with the direction of rotation. CSDM was 0.55-1.7 times larger in simulations with transverse plane rotation compared to those without transverse plane rotation. The largest SCSDM in the cerebrum and brainstem occurred with rotations in the transverse and sagittal planes, respectively. Velocities causing medial rotation of the cerebellum resulted in the largest SCSDM in this structure. For velocities of the same magnitude, injury risk calculated from CSDM varied from 0 to 97% with variations in the direction of rotation. These findings demonstrate injury risk, as estimated by CSDM and SCSDM, is affected by the direction of rotation and input magnitude, and these may be important considerations for injury prediction.

  17. Development of an Ontology for Rehabilitation: Traumatic Brain Injury

    Science.gov (United States)

    Grove, Michael J.

    2013-01-01

    Traumatic Brain Injury (TBI) rehabilitation interventions are very heterogeneous due to injury characteristics and pathology, patient demographics, healthcare settings, caregiver variability, and individualized, multi-discipline treatment plans. Consequently, comparing and generalizing the effectiveness of interventions is limited largely due to…

  18. Identity, grief and self-awareness after traumatic brain injury.

    Science.gov (United States)

    Carroll, Emma; Coetzer, Rudi

    2011-06-01

    The objective of this study was to investigate perceived identity change in adults with traumatic brain injury (TBI) and explore associations between identity change, grief, depression, self-esteem and self-awareness. The participants were 29 adults with TBI who were being followed up by a community brain injury rehabilitation service. Participants were longer post-injury than those more commonly studied. Time since injury ranged from 2.25 to 40 years (mean = 11.17 years, SD = 11.4 years). Participants completed a battery of questionnaires. Significant others and clinicians completed a parallel version of one of these measures. Questionnaires included the Head Injury Semantic Differential Scale (HISDS-III), Brain Injury Grief Inventory (BIGI), Hospital Anxiety and Depression Scale - Depression, Rosenberg Self-Esteem Scale (RSES) and the Awareness Questionnaire (Self/Significant other/Clinician versions). The main findings were that participants reported significant changes in self-concept with current self being viewed negatively in comparison to pre-injury self. Perceived identity change was positively associated with depression and grief and negatively associated with self-esteem and awareness. Awareness was negatively associated with self-esteem and positively associated with depression. These findings were consistent with previous research, revealing changes in identity following TBI. Further research is needed to increase our understanding of the psychological factors involved in emotional adjustment after TBI and to inform brain injury rehabilitation interventions, including psychotherapy approaches.

  19. Development of an Ontology for Rehabilitation: Traumatic Brain Injury

    Science.gov (United States)

    Grove, Michael J.

    2013-01-01

    Traumatic Brain Injury (TBI) rehabilitation interventions are very heterogeneous due to injury characteristics and pathology, patient demographics, healthcare settings, caregiver variability, and individualized, multi-discipline treatment plans. Consequently, comparing and generalizing the effectiveness of interventions is limited largely due to…

  20. Head motions while riding roller coasters: Implications for brain injury

    OpenAIRE

    Pfister, Bryan J.; Chickola, Larry; Smith, Douglas H.

    2009-01-01

    The risk of traumatic brain injury (TBI) while riding roller coasters has received substantial attention. Case reports of TBI around the time of riding roller coasters have led many medical professionals to assert that the high gravitational forces (G-forces) induced by roller coasters pose a significant TBI risk. Head injury research, however, has shown that G-forces alone cannot predict TBI. Established head injury criterions and procedures were employed to compare the potential of TBI betw...

  1. Changes in T lymphocyte subsets after severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Yulu Miao; Mingxia Zhang; Yulin Nie; Wan Zhao; Bin Huang; Zhengming Jiang; Shaoxiong Yu; Zhibin Huang; Hongjin Fu

    2007-01-01

    BACKGROUND: Besides local changes of cranial parenchymal cells, hemorrhage, etc., severe traumatic brain injuries also cause the changes of total body fluid and various functions, and the changes of lymphocytes and T lymphocyte subsets should be paid more attention to.OBJECTIVE: To reveal the changing laws of T lymphocyte subsets after severe traumatic brain injury, and compare with mild to moderate brain injury.DESIGN: A comparative observation.SETTINGS: Department of Neurosurgery, Longgang District Buji People's Hospital of Shenzhen City;Central Laboratory of Shenzhen Hospital of Prevention and Cure for Chronic Disease.PARTICIPANTS: All the subjects were selected from the Department of Neurosurgery, Longgang District Buji People's Hospital of Shenzhen City from August 2002 to August 2005. Thirty patients with severe brain injury, whose Glasgow coma score (GCS) was ≤ 8 points, were taken as the experimental group, including 21 males and 9 females, aging 16 - 62 years. Meanwhile, 30 patients with mild traumatic brain injury were taken as the control group (GCS ranged 14 - 15 points), including 18 males and 12 females, aging 15 - 58 years. All the subjects were in admission at 6 hours after injury, without disease of major organs before injury.Informed consents were obtained from all the patients or their relatives.conditions of pulmonaryinfections were observed at 4 days after injury. The differences of measurement data were compared with the t test.MAIN OUTCOME MEASURES: Changes of T lymphocytes subsets at 1 - 14 days after severe and mild or moderate traumatic injury.RESULTS: Finally, 28 and 25 patients with mild to moderate traumatic brain injury, whereas 25 and 21 patients with severe traumatic brain injury were analyzed at 7 and 14 days respectively, and the missed ones CD3, CD4, CD8, CD4/CD8 began to decrease, whereas CD8 increased in the experimental group, which were very significantly different from those in the control group (t =2.77 - 3.26, P < 0

  2. Traumatic Brain Injury Screening: Preliminary Findings in a US Army Brigade Combat Team

    Science.gov (United States)

    2009-01-01

    traumatic brain injury TRAUMATIC BRAIN INJURY ( TBI ) is often dis-cussed as a common injury of the war in... Traumatic Brain Injury Screening 17 TABLE 1 Screening results∗ Injury status Injured with TBI 907 (22.8) Injured without TBI 385 (9.7) Not injured 2681...remember the injury 335 (36.9) Total with TBI 907 (100) ∗Values represent n (%). TBI indicates traumatic brain

  3. The Role of Cytokines and Inflammatory Cells in Perinatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Ryan M. McAdams

    2012-01-01

    Full Text Available Perinatal brain injury frequently complicates preterm birth and leads to significant long-term morbidity. Cytokines and inflammatory cells are mediators in the common pathways associated with perinatal brain injury induced by a variety of insults, such as hypoxic-ischemic injury, reperfusion injury, toxin-mediated injury, and infection. This paper examines our current knowledge regarding cytokine-related perinatal brain injury and specifically discusses strategies for attenuating cytokine-mediated brain damage.

  4. [Guidelines for the management of severe traumatic brain injury. Part 3. Surgical management of severe traumatic brain injury (Options)].

    Science.gov (United States)

    Potapov, A A; Krylov, V V; Gavrilov, A G; Kravchuk, A D; Likhterman, L B; Petrikov, S S; Talypov, A E; Zakharova, N E; Solodov, A A

    2016-01-01

    Traumatic brain injury (TBI) is one of the main causes of mortality and severe disability in young and middle age patients. Patients with severe TBI, who are in coma, are of particular concern. Adequate diagnosis of primary brain injuries and timely prevention and treatment of secondary injury mechanisms markedly affect the possibility of reducing mortality and severe disability. The present guidelines are based on the authors' experience in developing international and national recommendations for the diagnosis and treatment of mild TBI, penetrating gunshot wounds of the skull and brain, severe TBI, and severe consequences of brain injury, including a vegetative state. In addition, we used the materials of international and national guidelines for the diagnosis, intensive care, and surgical treatment of severe TBI, which were published in recent years. The proposed recommendations for surgical treatment of severe TBI in adults are addressed primarily to neurosurgeons, neurologists, neuroradiologists, anesthesiologists, and intensivists who are routinely involved in treating these patients.

  5. Traumatic brain injury: unmet support needs of caregivers and families in Florida.

    Directory of Open Access Journals (Sweden)

    Christina Dillahunt-Aspillaga

    Full Text Available Sustaining a Traumatic Brain Injury results in familial strain due to the significant impact the injury has upon the role and function of individuals and their families at home and in the community. Using the Stress Process Model of Caregiving, a caregiver needs assessment survey was developed and conducted to better understand the needs of individuals with a Traumatic Brain Injury and their caregivers. Survey results indicate that caregivers experience many challenges including unmet needs in areas of relational supports such as maintaining relationships, long-term emotional and financial support for themselves and the survivor, and the need for a patient or caregiver advocate. Implications for future practice are presented.

  6. Systems Biology, Neuroimaging, Neuropsychology, Neuroconnectivity and Traumatic Brain Injury.

    Science.gov (United States)

    Bigler, Erin D

    2016-01-01

    The patient who sustains a traumatic brain injury (TBI) typically undergoes neuroimaging studies, usually in the form of computed tomography (CT) and magnetic resonance imaging (MRI). In most cases the neuroimaging findings are clinically assessed with descriptive statements that provide qualitative information about the presence/absence of visually identifiable abnormalities; though little if any of the potential information in a scan is analyzed in any quantitative manner, except in research settings. Fortunately, major advances have been made, especially during the last decade, in regards to image quantification techniques, especially those that involve automated image analysis methods. This review argues that a systems biology approach to understanding quantitative neuroimaging findings in TBI provides an appropriate framework for better utilizing the information derived from quantitative neuroimaging and its relation with neuropsychological outcome. Different image analysis methods are reviewed in an attempt to integrate quantitative neuroimaging methods with neuropsychological outcome measures and to illustrate how different neuroimaging techniques tap different aspects of TBI-related neuropathology. Likewise, how different neuropathologies may relate to neuropsychological outcome is explored by examining how damage influences brain connectivity and neural networks. Emphasis is placed on the dynamic changes that occur following TBI and how best to capture those pathologies via different neuroimaging methods. However, traditional clinical neuropsychological techniques are not well suited for interpretation based on contemporary and advanced neuroimaging methods and network analyses. Significant improvements need to be made in the cognitive and behavioral assessment of the brain injured individual to better interface with advances in neuroimaging-based network analyses. By viewing both neuroimaging and neuropsychological processes within a systems biology

  7. A clinical comparison of penetrating and blunt traumatic brain injuries.

    Science.gov (United States)

    Santiago, Luis A; Oh, Bryan C; Dash, Pramod K; Holcomb, John B; Wade, Charles E

    2012-01-01

    Traumatic brain injury (TBI) is a leading cause of injury death and long-term disability in the USA. It commonly results from blunt (closed) or penetrating trauma. The majority of civilian TBI is caused by falls or motor vehicle collisions, whereas military TBI mainly results from explosions. Although penetrating injuries are less common than closed injuries in the civilian population, they are far more lethal. Unfortunately, the pathophysiologic differences between penetrating and closed TBI remain poorly understood due to the lack of studies on the subject. Many studies on the prognostic factors of mortality and functional outcome after TBI exclude penetrating brain injuries from their series because they are believed to have a different pathophysiology. 125 Articles regarding brain injury were reviewed and summarized for this report. Despite the absence of a clear delineation between penetrating and blunt TBI, the current guidelines for penetrating TBI suggest defaulting to management strategies used for closed TBI with limited supportive evidence. Thus, injuries that appear to have different pathophysiologies and outcomes are managed equally and perhaps not optimally. In view of the incomplete understanding of the impact of mechanism of injury on TBI outcomes, as demonstrated in the current review, new research studies are required to improve evidence-based TBI guidelines tailored especially for penetrating injuries.

  8. Statistical analysis plan for the Erythropoietin in Traumatic Brain Injury trial: a randomised controlled trial of erythropoietin versus placebo in moderate and severe traumatic brain injury.

    LENUS (Irish Health Repository)

    Presneill, Jeffrey

    2014-01-01

    The Erythropoietin in Traumatic Brain Injury (EPO-TBI) trial aims to determine whether the administration of erythropoietin to patients with moderate or severe traumatic brain injury improves patient-centred outcomes.

  9. Utility of the brain injury screening index in identifying female prisoners with a traumatic brain injury and associated cognitive impairment.

    OpenAIRE

    O'Sullivan, Michelle

    2015-01-01

    An estimated 60.25% of offenders have a history of traumatic brain injury (TBI). There is currently no established valid or reliable screening tool for identifying female prisoners with a TBI and associated cognitive impairment available in the UK. Using a cross-sectional design, this study aimed to investigate the retest reliability and construct validity of the Brain Injury Screening Index (BISI). Convergent validity was explored using self-report measures of mood and neurodisability, as we...

  10. Neurological consequences of traumatic brain injuries in sports.

    Science.gov (United States)

    Ling, Helen; Hardy, John; Zetterberg, Henrik

    2015-05-01

    Traumatic brain injury (TBI) is common in boxing and other contact sports. The long term irreversible and progressive aftermath of TBI in boxers depicted as punch drunk syndrome was described almost a century ago and is now widely referred as chronic traumatic encephalopathy (CTE). The short term sequelae of acute brain injury including subdural haematoma and catastrophic brain injury may lead to death, whereas mild TBI, or concussion, causes functional disturbance and axonal injury rather than gross structural brain damage. Following concussion, symptoms such as dizziness, nausea, reduced attention, amnesia and headache tend to develop acutely but usually resolve within a week or two. Severe concussion can also lead to loss of consciousness. Despite the transient nature of the clinical symptoms, functional neuroimaging, electrophysiological, neuropsychological and neurochemical assessments indicate that the disturbance of concussion takes over a month to return to baseline and neuropathological evaluation shows that concussion-induced axonopathy may persist for years. The developing brains in children and adolescents are more susceptible to concussion than adult brain. The mechanism by which acute TBI may lead to the neurodegenerative process of CTE associated with tau hyperphosphorylation and the development of neurofibrillary tangles (NFTs) remains speculative. Focal tau-positive NFTs and neurites in close proximity to focal axonal injury and foci of microhaemorrhage and the predilection of CTE-tau pathology for perivascular and subcortical regions suggest that acute TBI-related axonal injury, loss of microvascular integrity, breach of the blood brain barrier, resulting inflammatory cascade and microglia and astrocyte activation are likely to be the basis of the mechanistic link of TBI and CTE. This article provides an overview of the acute and long-term neurological consequences of TBI in sports. Clinical, neuropathological and the possible pathophysiological

  11. Treatment for delayed brain injury after pituitary irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Takashi; Misumi, Shuzoh; Shibasaki, Takashi; Tamura, Masaru; Kunimine, Hideo; Hayakawa, Kazushige; Niibe, Hideo; Miyazaki, Mizuho; Miyagi, Osamu.

    1988-03-01

    Treatment for delayed brain injury after pituitary irradiation is discussed. Six cases with delayed brain injury were treated with a combination of dexamethasone or betamethasone, with heparin, glycerol, dextran 40 and some vasodilators. Two cases with temporal lobe syndrome were treated in the early stages of brain injury for a period of over 12 months were almost completely cured, another two cases with chiasma syndrome were treated in the relatively late stages, showed a partial improvement. One case which was irradiated 120 GY during 13 years did not improve. The final case treated with steroids for a short period also resulted in failure and the patient underwent an operation for the removal of the necrotic mass three years after the radiotherapy. Steroid therapy started in the early stages of brain injury after irradiation for over the 12 months is thought to be effective. Heparin therapy was also effective in one out of three cases, but in one of the cases subarachnoid hemorrhage from a traumatic aneurysm occurred during the therapy. In an acute phase, showing edematous change of the injured brain, the administration of glycerol is also thought to be useful. But the effectiveness of the other medicines containing some vasodilators was obscure or doubtful. We propose the following : (1) A meticulous observation is essential for the patients who received high doses of irradiation to diagnose brain injury in the early reversible stage. (2) Steroids should be given immediately in this reversible stage of brain injury before the irreversible ''necrosis'' occurs. (3) Steroids should be maintained for a long period over 12 months. (4) Heparin therapy is also thought to be effective, but careful precautions to avoid hemorrhagic complications before the therapy should be scheduled. This recommended plan may also be used for the treatment of brain injuries after cranial irradiation for other intracranial tumors.

  12. Traumatic brain injury-related hypopituitarism: a review and recommendations for screening combat veterans.

    Science.gov (United States)

    Guerrero, Arthur F; Alfonso, Abel

    2010-08-01

    Recent civilian data obtained in those sustaining head injuries, has found a high prevalence of pituitary dysfunction. Currently, there is no data available in the military population. We reviewed the literature for traumatic brain injury (TBI)-related hypopituitarism and found that the prevalence of anterior hypopituitarism may be as high as 30-80% after 24-36 months. Since many of the symptoms of hypopituitarism are similar to those of TBI, it is important to make clinicians caring for combat veterans aware of its occurrence. Herein, we provide an overview of the literature and recommendations for hormonal testing when TBI-related hypopituitarism is suspected.

  13. Trial of Oral Metoclopramide on Diurnal Bruxism of Brain Injury

    Science.gov (United States)

    Yi, Ho Sung; Seo, Mi Ri

    2013-01-01

    Bruxism is a diurnal or nocturnal parafunctional activity that includes tooth clenching, bracing, gnashing, and grinding. The dopaminergic system seems to be the key pathophysiology of bruxism and diminution of dopaminergic transmission at the prefrontal cortex seems to induce it. We report two patients with diurnal bruxism in whom a bilateral frontal lobe injury resulted from hemorrhagic stroke or traumatic brain injury. These patients' bruxism was refractory to bromocriptine but responded to low-dose metoclopramide therapy. We propose that administering low doses of metoclopramide is possibly a sound method for treating bruxism in a brain injury patient with frontal lobe hypoperfusion on positron emission tomography imaging. PMID:24466522

  14. [Penetrating head and brain injuries with nonmetal foreign bodies].

    Science.gov (United States)

    Potapov, A A; Okhlopkov, V A; Latyshev, Ya A; Serova, N K; Eolchiyan, S A

    2014-01-01

    Penetrating brain injuries (PBI) are common in neurosurgical practice. Most of them are civil or war-time missile and blast injuries. This type of trauma is widely presented in neurosurgical publication, textbooks and clinical evidence-based guidelines. At the same time, PBI by non-metallic foreign bodies are very rare. All the data are limited to case reports and small series of cases. Moreover, there are no clinical consideration on diagnosis, treatment, complication, outcome and prognosis of PBI by non-metallic penetrating brain injuries. In this review all the data are summarized to provide recommendations on the diagnosis and treatment of PBI by non-metallic foreign bodies.

  15. Anxiety disorders in children and adolescents in the second six months after traumatic brain injury.

    Science.gov (United States)

    Max, Jeffrey E; Lopez, Aholibama; Wilde, Elisabeth A; Bigler, Erin D; Schachar, Russell J; Saunders, Ann; Ewing-Cobbs, Linda; Chapman, Sandra B; Yang, Tony T; Levin, Harvey S

    2015-01-01

    The objective of this prospective longitudinal study was to assess the nature, rate, predictive variables, and neuroimaging characteristics of novel (new-onset) anxiety disorders (compared with no novel anxiety disorders) 6-12 months after pediatric traumatic brain injury (TBI). Psychiatric and psychosocial interviews were administered to children who sustained mild to severe TBI at baseline (soon after injury) and at the 12-month follow-up post-injury (n= 125). The psychiatric outcome of children 12-months post-injury revealed that novel anxiety disorders present in the second six months after TBI were heterogeneous and occurred in 13 (10.4%) participants. Novel anxiety disorder was significantly associated with concurrent novel depressive disorder and with novel personality change due to TBI. Novel anxiety disorder was marginally associated with younger age at injury and with pre-injury anxiety disorder in univariate analyses. Age at injury, pre-injury anxiety disorder, and personality change due to TBI were each significantly and independently related to novel anxiety disorder in a logistic regression analysis. There were no significant neuroimaging group differences. These findings suggest that the emergence of novel anxiety disorder after TBI might be related to a broader problem of affective dysregulation especially in younger children and those with a vulnerability even to pre-injury anxiety disorder.

  16. Intranasal epidermal growth factor treatment rescues neonatal brain injury

    Science.gov (United States)

    Scafidi, Joseph; Hammond, Timothy R.; Scafidi, Susanna; Ritter, Jonathan; Jablonska, Beata; Roncal, Maria; Szigeti-Buck, Klara; Coman, Daniel; Huang, Yuegao; McCarter, Robert J.; Hyder, Fahmeed; Horvath, Tamas L.; Gallo, Vittorio

    2014-02-01

    There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (less than 32 weeks' gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI. We demonstrated previously that the epidermal growth factor receptor (EGFR) has an important role in oligodendrocyte development. Here we examine whether enhanced EGFR signalling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioural recovery in the developing brain. Using an established mouse model of very preterm brain injury, we demonstrate that selective overexpression of human EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin-binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioural deficits on white-matter-specific paradigms. Inhibition of EGFR signalling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in oligodendrocyte progenitor cells at a specific time after injury is clinically feasible and potentially applicable to the treatment of premature children with white matter injury.

  17. Pathological Fingerprints, Systems Biology and Biomarkers of Blast Brain Injury

    Science.gov (United States)

    2010-06-01

    895–920. King, N.S. (2008). PTSD and traumatic brain injury: folklore and fact? Brain Inj. 22, 1–5. Kleindienst, A., Hesse , F., Bullock, M.R., and...to traumatic brain injury in nonhuman primates. J. Trauma 62, 199–206. Vinores, S.A., Herman , M.M., Rubinstein, L.J., and Marangos, P.J. (1984...trauma in children. Neurology. 2009;72:609–616. 23. Vinores SA, Herman MM, Rubinstein LJ, Marangos PJ. Electron mi- croscopic localization of neuron

  18. A prospective study to evaluate a new residential community reintegration programme for severe chronic brain injury: the Brain Integration Programme.

    NARCIS (Netherlands)

    Geurtsen, G.J.; Martina, J.D.; Heugten, C.M. van; Geurts, A.C.H.

    2008-01-01

    PURPOSE: To assess the effectiveness of a residential community reintegration programme for participants with chronic sequelae of severe acquired brain injury that hamper community functioning. DESIGN: Prospective cohort study. SUBJECTS: Twenty-four participants with acquired brain injury (traumatic

  19. Interleukin-1 as a pharmacological target in acute brain injury.

    Science.gov (United States)

    Brough, David; Rothwell, Nancy J; Allan, Stuart M

    2015-12-01

    What is the topic of this review? This review discusses the latest findings on the contribution of inflammation to brain injury, how inflammation is a therapeutic target, and details of recent and forthcoming clinical studies. What advances does it highlight? Here we highlight recent advances on the role and regulation of inflammasomes, and the latest clinical progress in targeting inflammation. Acute brain injury is one of the leading causes of mortality and disability worldwide. Despite this, treatments for acute brain injuries are limited, and there remains a massive unmet clinical need. Inflammation has emerged as a major contributor to non-communicable diseases, and there is now substantial and growing evidence that inflammation, driven by the cytokine interleukin-1 (IL-1), worsens acute brain injury. Interleukin-1 is regulated by large, multimolecular complexes called inflammasomes. Here, we discuss the latest research on the regulation of inflammasomes and IL-1 in the brain, preclinical efforts to establish the IL-1 system as a therapeutic target, and the promise of recent and future clinical studies on blocking the action of IL-1 for the treatment of brain injury. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  20. Biomarkers and acute brain injuries: interest and limits.

    Science.gov (United States)

    Mrozek, Ségolène; Dumurgier, Julien; Citerio, Giuseppe; Mebazaa, Alexandre; Geeraerts, Thomas

    2014-04-24

    For patients presenting with acute brain injury (such as traumatic brain injury, subarachnoid haemorrhage and stroke), the diagnosis and identification of intracerebral lesions and evaluation of the severity, prognosis and treatment efficacy can be challenging. The complexity and heterogeneity of lesions after brain injury are most probably responsible for this difficulty. Patients with apparently comparable brain lesions on imaging may have different neurological outcomes or responses to therapy. In recent years, plasmatic and cerebrospinal fluid biomarkers have emerged as possible tools to distinguish between the different pathophysiological processes. This review aims to summarise the plasmatic and cerebrospinal fluid biomarkers evaluated in subarachnoid haemorrhage, traumatic brain injury and stroke, and to clarify their related interests and limits for diagnosis and prognosis. For subarachnoid haemorrhage, particular interest has been focused on the biomarkers used to predict vasospasm and cerebral ischaemia. The efficacy of biomarkers in predicting the severity and outcome of traumatic brain injury has been stressed. The very early diagnostic performance of biomarkers and their ability to discriminate ischaemic from haemorrhagic stroke were studied.

  1. Biomarkers of brain injury in the premature infant

    Directory of Open Access Journals (Sweden)

    Martha V. Douglas-Escobar

    2013-01-01

    Full Text Available The term encephalopathy of prematurity encompasses not only the acute brain injury (such as intraventricular hemorrhage but also complex disturbance on the infant’s subsequent brain development. In premature infants, the most frequent recognized source of brain injury is intraventricular hemorrhage (IVH and periventricular leukomalacia (PVL. Furthermore 20-25% infants with birth weigh less than 1,500 g will have IVH and that proportion increases to 45% if the birth weight is less than 500-750 g. In addition, nearly 60% of very low birth weight newborns will have hypoxic-ischemic injury. Therefore permanent lifetime neurodevelopmental disabilities are frequent in premature infants. Innovative approach to prevent or decrease brain injury in preterm infants requires discovery of biomarkers able to discriminate infants at risk for injury, monitor the progression of the injury and assess efficacy of neuroprotective clinical trials. In this article, we will review biomarkers studied in premature infants with IVH, Post-hemorrhagic ventricular dilation (PHVD and PVL including: S100b, Activin A, erythropoietin, chemokine CCL 18, GFAP and NFL will also be examined. Some of the most promising biomarkers for IVH are S100β and Activin. The concentrations of TGF-β1, MMP-9 and PAI-1 in cerebrospinal fluid could be used to discriminate patients that will require shunt after post-hemorrhagic ventricular dilation. Neonatal brain injury is frequent in premature infants admitted to the neonatal intensive care and we hope to contribute to the awareness and interest in clinical validation of established as well as novel neonatal brain injury biomarkers.

  2. Biomarkers of brain injury in the premature infant.

    Science.gov (United States)

    Douglas-Escobar, Martha; Weiss, Michael D

    2012-01-01

    The term "encephalopathy of prematurity" encompasses not only the acute brain injury [such as intraventricular hemorrhage (IVH)] but also complex disturbance on the infant's subsequent brain development. In premature infants, the most frequent recognized source of brain injury is IVH and periventricular leukomalacia (PVL). Furthermore 20-25% infants with birth weigh less than 1,500 g will have IVH and that proportion increases to 45% if the birth weight is less than 500-750 g. In addition, nearly 60% of very low birth weight newborns will have hypoxic-ischemic injury. Therefore permanent lifetime neurodevelopmental disabilities are frequent in premature infants. Innovative approach to prevent or decrease brain injury in preterm infants requires discovery of biomarkers able to discriminate infants at risk for injury, monitor the progression of the injury, and assess efficacy of neuroprotective clinical trials. In this article, we will review biomarkers studied in premature infants with IVH, Post-hemorrhagic ventricular dilation (PHVD), and PVL including: S100b, Activin A, erythropoietin, chemokine CCL 18, GFAP, and NFL will also be examined. Some of the most promising biomarkers for IVH are S100β and Activin. The concentrations of TGF-β1, MMP-9, and PAI-1 in cerebrospinal fluid could be used to discriminate patients that will require shunt after PHVD. Neonatal brain injury is frequent in premature infants admitted to the neonatal intensive care and we hope to contribute to the awareness and interest in clinical validation of established as well as novel neonatal brain injury biomarkers.

  3. Cognitive consequences several years after severe pediatric traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Janez Ravnik

    2004-08-01

    Full Text Available Judgment of the cognitive deficits after severe pediatric traumatic brain injury was for long time under the influence of the so called Kennard's principle: the younger the child at the time of injury, the better the outcome. The purpose of our study was to assess cognitive deficits several years after severe traumatic brain injury in childhood, to evaluate the effect of age at injury and usefulness of various clinical factors for long-term outcome prediction. Sixteen children or adolescents, who experienced severe head injury at least six years ago, were neuropsychologically tested. Despite the absence of neurological deficits in the majority, deficits in various cognitive functions were still detected in one eight to one half of participants. Memory was most frequently affected. Those who were at the time of injury more than six years old, had on average better results on almost all tests. Age had the greatest impact on deficits of the frontal lobe functions. Clinical factors were of limited predictive value, length of coma was the most useful. The results indicate tendency that is opposite to the Kennard's principle: the younger the child, the worse are the consequences of traumatic brain injury. Children who had such injury need appropriate long-term treatment of their cognitive deficits.

  4. Autophagy in acute brain injury: feast, famine, or folly?

    Science.gov (United States)

    Smith, Craig M; Chen, Yaming; Sullivan, Mara L; Kochanek, Patrick M; Clark, Robert S B

    2011-07-01

    In the central nervous system, increased autophagy has now been reported after traumatic brain and spinal cord injury, cerebral ischemia, intracerebral hemorrhage, and seizures. This increase in autophagy could be physiologic, converting damaged or dysfunctional proteins, lipids, and/or organelles to their amino acid and fatty acid components for recycling. On the other hand, this increase in autophagy could be supraphysiologic, perhaps consuming and eliminating functional proteins, lipids, and/or organelles as well. Whether an increase in autophagy is beneficial (feast) or detrimental (famine) in brain likely depends on both the burden of intracellular substrate targeted for autophagy and the capacity of the cell's autophagic machinery. Of course, increased autophagy observed after brain injury could also simply be an epiphenomenon (folly). These divergent possibilities have clear ramifications for designing therapeutic strategies targeting autophagy after acute brain injury and are the subject of this review. This article is part of a Special Issue entitled "Autophagy and protein degradation in neurological diseases."

  5. Therapeutic effect of nimodipine on experimental brain injury

    Institute of Scientific and Technical Information of China (English)

    杨树源; 王增光

    2003-01-01

    Objective: To study the therapeutic effect of nimodipine on experimental brain injury.Methods: Experimental and control rabbits were subjected to a closed head injury. In one group nimodipine was given intravenously and the effect evaluated by electron microscopy, brain water content, calcium levels, transcranial Doppler, and intracranial pressure monitoring.Results: In rabbits treated with nimodipine the level of neuronal cytosolic free calcium was markedly decreased. There were less cellular damage and less spasm of the middle cerebral artery seen on electron microscopy. No difference regarding intracranial pressure changes between the two groups was noted. Conclusions: Nimodipine has a protective action on brain injury by blocking a series of pathological reactions induced by neuronal calcium overload, and by reducing the spasm of brain vessels and improving cerebral blood flow.

  6. Mechanisms of radiation-induced brain injury / Review

    Directory of Open Access Journals (Sweden)

    Nataša Šuštar

    2014-11-01

    Full Text Available Normal 0 21 false false false SL X-NONE X-NONE MicrosoftInternetExplorer4 Mechanisms of radiation-induced brain injury are not yet fully understood. Early failure occurs because of the effect of ionizing radiation on dividing endothelialcells and oligodendrocytes. Hypothetically, late radiation-induced brain injury is causedby chronic inflammation and oxidative stress. In the case of irradiation of thehippocampus, the failure of neurogenesis and cognitive decline could be consequencesof such pathological mechanisms. Due to lack of diagnostic tools, that could not more precisely define the brain injury after radiation, therapy, that may prevent such consequences in patients who require radiotherapy, is not currently known. This articlesummarizes research hypotheses regarding processes of the brain damage after radiation, prospects in the diagnosis and therapeutic approaches.

  7. Predictors for traumatic brain injuries evaluated through accident reconstructions.

    Science.gov (United States)

    Kleiven, Svein

    2007-10-01

    The aim of this study is to evaluate all the 58 available NFL cases and compare various predictors for mild traumatic brain injuries using a detailed and extensively validated finite element model of the human head. Global injury measures such as magnitude in angular and translational acceleration, change in angular velocity, head impact power (HIP) and HIC were also investigated with regard to their ability to predict the intracranial pressure and strains associated with injury. The brain material properties were modeled using a hyperelastic and viscoelastic constitutive law. Also, three different stiffness parameters, encompassing a range of published brain tissue properties, were tested. 8 tissue injury predictors were evaluated for 6 different regions, covering the entire cerebrum, as well as for the whole brain. In addition, 10 head kinematics based predictors were evaluated both for correlation with injury as well as with strain and pressure. When evaluating the results, a statistical correlation between strain, strain rate, product of strain and strain rate, Cumulative Strain Damage Measure (CSDM), strain energy density, maximum pressure, magnitude of minimum pressure, as well as von Mises effective stress, with injury was found when looking into specific regions of the brain. However, the maximal pressure in the gray matter showed a higher correlation with injury than other evaluated measures. On the other hand, it was possible, through the reconstruction of a motocross accident, to re-create the injury pattern in the brain of the injured rider using maximal principal strain. It was also found that a simple linear combination of peak change in rotational velocity and HIC showed a high correlation (R=0.98) with the maximum principal strain in the brain, in addition to being a significant predictor of injury. When applying the rotational and translational kinematics separately for one of the cases, it was found that the translational kinematics contribute

  8. Traumatic Brain Injury in K-12 Students II: Response to Instruction--When Will They Ever Learn?

    Science.gov (United States)

    Schutz, Larry E.; McNamara, Elizabeth A.

    2011-01-01

    Most students who have sustained severe traumatic brain injury (TBI) appear normal when they return to school. Hopeful parents, encouraged by deceptively positive medical feedback, expect a return to regular education. In the classroom, the students initially seem almost ready to resume learning, but instead they fall farther behind grade level…

  9. Mechanical Loading of Neurons and Astrocytes with Application to Blast Traumatic Brain Injury

    Science.gov (United States)

    2010-01-01

    traumatic brain injury ( TBI ). Neurons and astrocytes are susceptible to damage mechanisms arising from various...further developments may be pursued to unravel the key mechanical pathways potentially involved in TBI . 1. INTRODUCTION Traumatic brain injury ... injury mechanisms at the cellular level. This is especially important when studying traumatic brain injury ( TBI ). Neurons and astrocytes

  10. Social competence at 2 years following child traumatic brain injury.

    Science.gov (United States)

    Anderson, Vicki; Beauchamp, Miriam Helen; Yeates, Keith Owen; Crossley, Louise; Ryan, Nicholas Peter; Hearps, Stephen J C; Catroppa, Cathy

    2017-02-08

    Children with traumatic brain injury (TBI) are at risk of social impairment, but research is yet to document the trajectory of these skills post-injury and factors that may predict social problems. The study addressed these gaps in knowledge, reporting on findings from a prospective, longitudinal follow-up study which investigated social outcomes post injury and explored factors contributing to these outcomes at 2 years post-injury. The sample included 113 children, 74 with TBI and 39 typically developing (TD) controls. TBI participants were recruited on presentation to hospital. Parents rated pre-injury function at that time and all children underwent magnetic resonance imaging (MRI) scan. Participants were followed up at 2 years post-injury. Outcomes were social adjustment, social participation, social relationships, and social cognition. Predictors of social outcomes examined included brain lesion characteristics, child cognition (6 months post-TBI) and behavior and environmental factors (pre-injury and 2 years). Reduced social adjustment (p=.011) and social participation (pchildren with TBI compared to TD controls. Poor social adjustment was predicted by externalizing behaviour problems and younger age at injury. Reduced social participation was linked to internalizing behavior problems. Greater lesion volume, lower socioeconomic status and family burden contributed to poorer social relationships, while age at injury predicted social cognition. Within the TBI group, 23% of children exhibited social impairment: younger age at injury, greater pre-injury and current behavior problems and family dysfunction, poorer IQ, processing speed, and empathy were linked to impairment. Further follow-up is required to track social recovery and the influences of cognition, brain, and environment over time.

  11. Blast and the Consequences on Traumatic Brain Injury-Multiscale Mechanical Modeling of Brain

    Science.gov (United States)

    2011-02-17

    brain and spinal cord injury, is the largest contributor to a poor neurological outcome in survivors of brain and spinal cord trauma. Microscale...anatomical features of a 50th percentile male head, including the brain, falx and tentorium, cerebral spinal fluid (CSF), duramater, piamater, facial...discretized finite elements. (b) Sections of the head model; the right half of the head model is shown with the brain, the meningeal layers (dura

  12. Cognitive impairment and rehabilitation strategies after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Apurba Barman

    2016-01-01

    Full Text Available Traumatic brain injury (TBI is among the significant causes of morbidity and mortality in the present world. Around 1.6 million persons sustain TBI, whereas 200,000 die annually in India, thus highlighting the rising need for appropriate cognitive rehabilitation strategies. This literature review assesses the current knowledge of various cognitive rehabilitation training strategies. The entire spectrum of TBI severity; mild to severe, is associated with cognitive deficits of varying degree. Cognitive insufficiency is more prevalent and longer lasting in TBI persons than in the general population. A multidisciplinary approach with neuropsychiatric evaluation is warranted. Attention process training and tasks for attention deficits, compensatory strategies and errorless learning training for memory deficits, pragmatic language skills and social behavior guidance for cognitive-communication disorder, meta-cognitive strategy, and problem-solving training for executive disorder are the mainstay of therapy for cognitive deficits in persons with TBI. Cognitive impairments following TBI are common and vary widely. Different cognitive rehabilitation techniques and combinations in addition to pharmacotherapy are helpful in addressing various cognitive deficits.

  13. Correlation of brain-derived neurotrophic factor to cognitive impairment following traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Dezhi Kang; Zhang Guo

    2008-01-01

    BACKGROUND: In vitro and in vivo studies have confirmed that brain-derived neurotrophic factor (BDNF) can promote survival and differentiation of cholinergic, dopaminergic and motor neurons, and axonal regeneration. BDNF has neuroprotective effects on the nervous system. OBJECTIVE: To explore changes in BDNF expression and cognitive function in rats after brain injury DESIGN, TIME AND SETTING: The neuropathology experiment was performed at the Second Research Room, Department of Neurosurgery, Fujian Medical University (China) from July 2007 to July 2008. MATERIALS: A total of 72 healthy, male, Sprague Dawley, rats were selected for this study. METHODS: Rat models of mild and moderate traumatic brain injury were created by percussion, according to Feeney's method (n = 24, each group). A bone window was made in rats from the sham operation group (n = 24), but no attack was conducted. MAIN OUTCOME MEASURES: At days 1,2, 4 and 7 following injury, BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was examined by immunohistochemistry (streptavidin-biotin-peroxidase complex method). Changes in rat cognitive function were assessed by the walking test, balance-beam test and memory function detection. RESULTS: Cognitive impairment was aggravated at day 2, and recovered to normal at days 3 and 7 in rats from the mild and moderate traumatic brain injury groups. BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was increased at 1 day, decreased at day 2, and then gradually increased in the mild and moderate traumatic brain injury groups. BDNF expression was greater in rats from the moderate traumatic brain injury group than in the sham operation and mild traumatic brain injury groups (P < 0.05). CONCLUSION: BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain is correlated to cognitive impairment after traumatic brain injury. BDNF has a protective effect on cognitive function in rats

  14. Role of Melatonin in Traumatic Brain Injury and Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Mehar Naseem

    2014-01-01

    Full Text Available Brain and spinal cord are implicated in incidences of two of the most severe injuries of central nervous system (CNS. Traumatic brain injury (TBI is a devastating neurological deficit involving primary and secondary injury cascades. The primary and secondary mechanisms include complex consequences of activation of proinflammatory cytokines, cerebral edema, upregulation of NF-κβ, disruption of blood-brain barrier (BBB, and oxidative stress. Spinal cord injury (SCI includes primary and secondary injury cascades. Primary injury leads to secondary injury in which generation of free radicals and oxidative or nitrative damage play an important pathophysiological role. The indoleamine melatonin is a hormone secreted or synthesized by pineal gland in the brain which helps to regulate sleep and wake cycle. Melatonin has been shown to be a versatile hormone having antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. It has a special characteristic of crossing BBB. Melatonin has neuroprotective role in the injured part of the CNS after TBI and SCI. A number of studies have successfully shown its therapeutic value as a neuroprotective agent in the treatment of neurodegenerative diseases. Here in this review we have compiled the literature supporting consequences of CNS injuries, TBI and SCI, and the protective role of melatonin in it.

  15. Spreading depolarization monitoring in neurocritical care of acute brain injury.

    Science.gov (United States)

    Hartings, Jed A

    2017-04-01

    Spreading depolarizations are unique in being discrete pathologic entities that are well characterized experimentally and also occur commonly in patients with substantial acute brain injury. Here, we review essential concepts in depolarization monitoring, highlighting its clinical significance, interpretation, and future potential. Cortical lesion development in diverse animal models is mediated by tissue waves of mass spreading depolarization that cause the toxic loss of ion homeostasis and limit energy substrate supply through associated vasoconstriction. The signatures of such deterioration are observed in electrocorticographic recordings from perilesional cortex of patients with acute stroke or brain trauma. Experimental work suggests that depolarizations are triggered by energy supply-demand mismatch in focal hotspots of the injury penumbra, and depolarizations are usually observed clinically when other monitoring variables are within recommended ranges. These results suggest that depolarizations are a sensitive measure of relative ischemia and ongoing secondary injury, and may serve as a clinical guide for personalized, mechanistically targeted therapy. Both existing and future candidate therapies offer hope to limit depolarization recurrence. Electrocorticographic monitoring of spreading depolarizations in patients with acute brain injury provides a sensitive measure of relative energy shortage in focal, vulnerable brains regions and indicates ongoing secondary damage. Depolarization monitoring holds potential for targeted clinical trial design and implementation of precision medicine approaches to acute brain injury therapy.

  16. Central diabetes insipidus in pediatric severe traumatic brain injury.

    Science.gov (United States)

    Alharfi, Ibrahim M; Stewart, Tanya Charyk; Foster, Jennifer; Morrison, Gavin C; Fraser, Douglas D

    2013-02-01

    To determine the occurrence rate of central diabetes insipidus in pediatric patients with severe traumatic brain injury and to describe the clinical, injury, biochemical, imaging, and intervention variables associated with mortality. Retrospective chart and imaging review. Children's Hospital, level 1 trauma center. Severely injured (Injury Severity Score ≥ 12) pediatric trauma patients (>1 month and diabetes insipidus between January 2000 and December 2011. Of 818 severely injured trauma patients, 180 had severe traumatic brain injury with an overall mortality rate of 27.2%. Thirty-two of the severe traumatic brain injury patients developed acute central diabetes insipidus that responded to desamino-8-D-arginine vasopressin and/or vasopressin infusion, providing an occurrence rate of 18%. At the time of central diabetes insipidus diagnosis, median urine output and serum sodium were 6.8 ml/kg/hr (interquartile range = 5-11) and 154 mmol/L (interquartile range = 149-159), respectively. The mortality rate of central diabetes insipidus patients was 87.5%, with 71.4% declared brain dead after central diabetes insipidus diagnosis. Early central diabetes insipidus onset, within the first 2 days of severe traumatic brain injury, was strongly associated with mortality (p diabetes insipidus were more likely to have intracranial pressure monitoring (p = 0.03), have thiopental administered to induce coma (p = 0.04) and have received a decompressive craniectomy for elevated intracranial pressure (p = 0.04). The incidence of central diabetes insipidus in pediatric patients with severe traumatic brain injury is 18%. Mortality was associated with early central diabetes insipidus onset and cerebral edema on head computed tomography. Central diabetes insipidus nonsurvivors were less likely to have received intracranial pressure monitoring, thiopental coma and decompressive craniectomy.

  17. N-methyl-D-aspartate receptor subunit changes after traumatic injury to the developing brain.

    Science.gov (United States)

    Giza, Christopher C; Maria, Naomi S Santa; Hovda, David A

    2006-06-01

    Traumatic brain injury (TBI) is a major cause of disability in the pediatric population and can result in abnormal development. Experimental studies conducted in animals have revealed impaired plasticity following developmental TBI, even in the absence of significant anatomical damage. The N-methyl-D-aspartate receptor (NMDAR) is clearly involved in both normal development and in the pathophysiology of TBI. Following lateral fluid percussion injury in postnatal day (PND) 19 rats, we tested the hypothesis that TBI sustained at an early age would result in impaired NMDAR expression. Using immunoblotting and reverse transcriptase-polymerase chain reaction (RT-PCR), protein and RNA levels of NMDAR subunits were measured in the cerebral cortex and hippocampus on post-injury days (PID) 1, 2, 4, and 7 (though the PID7 analysis was only for protein) and compared with age-matched shams. Significant effects of hemisphere (analysis of variance [ANOVA], pPID1, PID2, PID4, and PID7, respectively. Within the cortex, there was a significant effect of injury (ANOVA, pPID1. It is known that NR2A expression levels increase during normal development, and in response to environmental stimuli. Our data suggest that injury-induced reduction in the expression of NR2A is one likely mechanism for the impaired experience-dependent neuroplasticity seen following traumatic injury to the immature brain.

  18. Control study of olanzapine combined magnesium valproate sustained-release tablets in treatment of personality changes due to brain injury mainly caused by impulsive attacks%奥氮平合并丙戊酸镁缓释片治疗以冲动攻击为主的脑外伤所致人格改变的对照研究

    Institute of Scientific and Technical Information of China (English)

    马驰; 邵晓林; 王尚红

    2014-01-01

    目的:探讨奥氮平联合丙戊酸镁缓释片治疗以冲动攻击为主的脑外伤所致人格改变的疗效与安全性。方法:将51例根据中国精神障碍分类与诊断标准第3版(CCMD-3)确诊为脑外伤所致人格改变的患者随机分为实验组(25例)和对照组(26例)。实验组患者应用奥氮平、丙戊酸镁缓释片,对照组患者应用丙戊酸镁缓释片治疗,疗程8周。两组患者于治疗前及治疗第1、2、4、6、8周时使用修改版外显攻击行为量表( MOAS)及副反应量表( TESS)评定临床疗效和不良反应。结果:两组患者间在治疗2周末起MOAS评分比较差异均有统计学意义(P<0.05),实验组患者评分降低更为明显,两组患者不良反应多为轻度,可耐受。结论:奥氮平合并丙戊酸镁缓释片治疗以冲动攻击为主的脑外伤所致人格改变起效更快,疗效好且安全,可快速控制冲动攻击行为。%Objective:To investigate effects and safety of olanzapine combined with magnesium valproate sustained-release tablets on personality change after traumatic brain injury. Methods:A total of 51 patients with personality change after traumatic brain injury diagnosed according to Chinese classification and diagnostic criteria of mental disorders 3rd edition (CCMD-3) were randomly divided into experimental group (25 cases) and control group (26 cases). The cases in experimental group were given olanzapine com-bined with magnesium valproate sustained-release tablets for 8 weeks, whereas those in control group were only given magnesium val-proate sustained release tablets for 8 weeks. The modified overt aggression scales ( MOAS) and treatment emergent symptom scale ( TESS) were used to evaluate the effects and adverse reactions for the two groups before and 1, 2, 4, 6, and 8 weeks after the treat-ment. Results:Starting from 2 weeks after the treatment, the differences of MOAS scores between the two groups were statistically sig

  19. The Relationship between Mid-face Fractures and Brain Injuries

    Directory of Open Access Journals (Sweden)

    Khalighi Sigaroudi A.

    2012-03-01

    Full Text Available Statement of Problem: Although advances in technology have led to improvements in man’s life in different aspects, statistics show that the incidence of fractures is increasing in different regions of the body. Recent studies show that midface fractures are strongly associated with patient's death. The exact relationship between different types of facial fractures and brain injuries is still controversial. Purpose: To evaluate individuals with midface fractures from different causes and determine if there is any relationship between various midface fractures and brain injuries. Materials and Methods: In this descriptive cross-sectional retrospective study, we assessed the hospital charts of all the patients with midface fractures at the trauma center of Poursina hospital. The complete medical record of each patient was reviewed. The etiologic and demographic data, the type of midface fracture and brain injury, and Glasgow coma scale (GCS were assessed. The data were analyzed by, the Chi-square, and the Fisher’s exact tests. The statistical package SPSS was used for all the analyses.Results: Of all the patients 47% had brain injury. The Important significant correlations were as follows: Le Fort III with Brain Contusion ( p =0.0001, nasal orbital ethmoid fractures with subdural hematoma ( p =0.0001, frontal fracture with subdural hematoma ( p =0.0001. Zygomatic complex fracture with Brain Contusion ( p =0.009. Nasal fracture correlated with Brain Contusion ( p =0.0001. The zygomatic complex fracture was the most prevalent fracture.Conclusion: Different midface fracture patterns have the risk of brain injury simultaneously. So midface fractures need more attention. According to the results, more attention is needed to be paid to driving rules specially the use of helmet and seat belt.

  20. Increased leakage of brain antigens after traumatic brain injury and effect of immune tolerance induced by cells on traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    YAN Hua; ZHANG Hong-wei; WU Qiao-li; ZHANG Guo-bin; LIU Kui; ZHI Da-shi; HU Zhen-bo; ZENG Xian-wei

    2012-01-01

    Background Although traumatic brain injury can lead to opening the blood-brain barrier and leaking of blood substances (including water) into brain tissue,few studies of brain antigens leaking into the blood and the pathways have been reported.Brain antigens result in damage to brain tissues by stimulating the immune system to produce anti-brain antibodies,but no treatment has been reported to reduce the production of anti-brain antibodies and protect the brain tissue.The aim of the study is to confirm the relationship between immune injury and arachnoid granulations following traumatic brain injury,and provide some new methods to inhibit the immune injury.Methods In part one,methylene blue was injected into the rabbits' cisterna magna after traumatic brain injury,and concentrations of methylene blue and tumor necrosis factor (TNF)-α in blood were detected to determine the permeability of arachnoid granulations.In part two,umbilical cord mesenchymal stem cells and immature dendritic cells were injected into veins,and concentrations of interleukin 1 (IL-1),IL-10,interferon (IFN)-y,transforming growth factor (TGF)-β,anti-brain antibodies (ABAb),and IL-12 were measured by ELISA on days 1,3,7,14 and 21 after injury,and the numbers of leukocytes in the blood were counted.Twenty-one days after injury,expression of glutamate in brain tissue was determined by immunohistochemical staining,and neuronal degeneration was detected by H&E staining.Results In part one,blood concentrations of methylene blue and TNF-α in the traumatic brain injury group were higher than in the control group (P <0.05).Concentrations of methylene blue and TNF-α in the trauma cerebrospinal fluid (CSF)injected group were higher than in the control cerebrospinal fluid injected group (P <0.05).In part two,concentrations of IL-1,IFN-y,ABAb,IL-12,expression of glutamate (Glu),neuronal degeneration and number of peripheral blood leukocytes were lower in the group with cell treatment compared to the

  1. The role of free radicals in traumatic brain injury.

    Science.gov (United States)

    O'Connell, Karen M; Littleton-Kearney, Marguerite T

    2013-07-01

    Traumatic brain injury (TBI) is a significant cause of death and disability in both the civilian and the military populations. The primary impact causes initial tissue damage, which initiates biochemical cascades, known as secondary injury, that expand the damage. Free radicals are implicated as major contributors to the secondary injury. Our review of recent rodent and human research reveals the prominent role of the free radicals superoxide anion, nitric oxide, and peroxynitrite in secondary brain injury. Much of our current knowledge is based on rodent studies, and the authors identified a gap in the translation of findings from rodent to human TBI. Rodent models are an effective method for elucidating specific mechanisms of free radical-induced injury at the cellular level in a well-controlled environment. However, human TBI does not occur in a vacuum, and variables controlled in the laboratory may affect the injury progression. Additionally, multiple experimental TBI models are accepted in rodent research, and no one model fully reproduces the heterogeneous injury seen in humans. Free radical levels are measured indirectly in human studies based on assumptions from the findings from rodent studies that use direct free radical measurements. Further study in humans should be directed toward large samples to validate the findings in rodent studies. Data obtained from these studies may lead to more targeted treatment to interrupt the secondary injury cascades.

  2. Violent, caring, unpredictable: public views on survivors of brain injury.

    Science.gov (United States)

    Linden, M A; Crothers, I R

    2006-12-01

    The purpose of the present work was to investigate how members of the public perceived survivors of brain injury. A 20-item list of attributes that could be used to describe characteristics of survivors of brain injury were given to 323 participants. One hundred and sixty-nine psychology students and 154 members of the public agreed to take part in the study. The effects of group (student and public), gender and socioeconomic status (low, moderate and high) on the attributes were assessed. Multivariate analysis of variance showed a statistically significant difference between the two groups with students holding more positive perceptions on 15 out of the 20 attributes. No effects of gender or socioeconomic status were found. The research suggests that members of the public hold less positive views on survivors of brain injury in respect to intellectual competency, ability to care and trustworthiness when compared to students.

  3. Neuromodulation of the conscious state following severe brain injuries.

    Science.gov (United States)

    Fridman, Esteban A; Schiff, Nicholas D

    2014-12-01

    Disorders of consciousness (DOC) following severe structural brain injuries globally affect the conscious state and the expression of goal-directed behaviors. In some subjects, neuromodulation with medications or electrical stimulation can markedly improve the impaired conscious state present in DOC. We briefly review recent studies and provide an organizing framework for considering the apparently widely disparate collection of medications and approaches that may modulate the conscious state in subjects with DOC. We focus on neuromodulation of the anterior forebrain mesocircuit in DOC and briefly compare mechanisms supporting recovery from structural brain injuries to those underlying facilitated emergence from unconsciousness produced by anesthesia. We derive some general principles for approaching the problem of restoration of consciousness after severe structural brain injuries, and suggest directions for future research.

  4. Traumatic brain injury and obesity induce persistent central insulin resistance.

    Science.gov (United States)

    Karelina, Kate; Sarac, Benjamin; Freeman, Lindsey M; Gaier, Kristopher R; Weil, Zachary M

    2016-04-01

    Traumatic brain injury (TBI)-induced impairments in cerebral energy metabolism impede tissue repair and contribute to delayed functional recovery. Moreover, the transient alteration in brain glucose utilization corresponds to a period of increased vulnerability to the negative effects of a subsequent TBI. In order to better understand the factors contributing to TBI-induced central metabolic dysfunction, we examined the effect of single and repeated TBIs on brain insulin signalling. Here we show that TBI induced acute brain insulin resistance, which resolved within 7 days following a single injury but persisted until 28 days following repeated injuries. Obesity, which causes brain insulin resistance and neuroinflammation, exacerbated the consequences of TBI. Obese mice that underwent a TBI exhibited a prolonged reduction of Akt (also known as protein kinase B) signalling, exacerbated neuroinflammation (microglial activation), learning and memory deficits, and anxiety-like behaviours. Taken together, the transient changes in brain insulin sensitivity following TBI suggest a reduced capacity of the injured brain to respond to the neuroprotective and anti-inflammatory actions of insulin and Akt signalling, and thus may be a contributing factor for the damaging neuroinflammation and long-lasting deficits that occur following TBI. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Brain Injury Risk from Primary Blast

    Science.gov (United States)

    2012-02-29

    injury has been studied extensively in air-containing organs such as the lungs , gastrointestinal tract, and ear due to their increased...veterans (Owens, 2008). Primary blast injury has been studied extensively in air-containing organs such as the lungs , gastrointestinal tract, and ear... contusions typically on or around the brainstem though there were no skull fractures for any blast intensity. Risk functions were developed that

  6. Brain MRI volumetry in a single patient with mild traumatic brain injury.

    Science.gov (United States)

    Ross, David E; Castelvecchi, Cody; Ochs, Alfred L

    2013-01-01

    This letter to the editor describes the case of a 42 year old man with mild traumatic brain injury and multiple neuropsychiatric symptoms which persisted for a few years after the injury. Initial CT scans and MRI scans of the brain showed no signs of atrophy. Brain volume was measured using NeuroQuant®, an FDA-approved, commercially available software method. Volumetric cross-sectional (one point in time) analysis also showed no atrophy. However, volumetric longitudinal (two points in time) analysis showed progressive atrophy in several brain regions. This case illustrated in a single patient the principle discovered in multiple previous group studies, namely that the longitudinal design is more powerful than the cross-sectional design for finding atrophy in patients with traumatic brain injury.

  7. Exposure to Surgery and Anesthesia After Concussion Due to Mild Traumatic Brain Injury.

    Science.gov (United States)

    Abcejo, Arnoley S; Savica, Rodolfo; Lanier, William L; Pasternak, Jeffrey J

    2017-07-01

    To describe the epidemiology of surgical and anesthetic procedures in patients recently diagnosed as having a concussion due to mild traumatic brain injury. Study patients presented to a tertiary care center after a concussion due to mild traumatic brain injury from July 1, 2005, through June 30, 2015, and underwent a surgical procedure and anesthesia support under the direct or indirect care of a physician anesthesiologist. During the study period, 1038 patients met all the study inclusion criteria and subsequently received 1820 anesthetics. In this population of anesthetized patients, rates of diagnosed concussions due to sports injuries, falls, and assaults, but not motor vehicle accidents, increased during 2010-2011. Concussions were diagnosed in 965 patients (93%) within 1 week after injury. In the 552 patients who had surgery within 1 week after concussive injury, 29 (5%) had anesthesia and surgical procedures unrelated to their concussion-producing traumatic injury. The highest use of surgery occurred early after injury and most frequently required general anesthesia. Orthopedic and general surgical procedures accounted for 57% of procedures. Nine patients received 29 anesthetics before a concussion diagnosis, and all of these patients had been involved in motor vehicle accidents and received at least 1 anesthetic within 1 week of injury. Surgical and anesthesia use are common in patients after concussion. Clinicians should have increased awareness for concussion in patients who sustain a trauma and may need to take measures to avoid potentially injury-augmenting cerebral physiology in these patients. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  8. Neuroendocrine Abnormalities in Patients with Traumatic Brain Injury

    Science.gov (United States)

    1991-01-01

    is common in head trauma. INJURY MECHANISMS Hypothalamic Injury The supraoptic nucleus (SON) is the most vulnerable area of the hypothalamus because...pothaIlimus. but portlif esscls to the antenorpituitat) ma) escape injur). (C) oss stalk transvecion ma% causect rupture of the A gportal sessels ssth...via the systemic circulation to the adrenal gland, where it stimulates secretion of cortisol and aldosterone . Thus, when the brain is traumatized

  9. Glyburide - Novel Prophylaxis and Effective Treatment for Traumatic Brain Injury

    Science.gov (United States)

    2010-08-01

    hemorrhagic shock. 15. SUBJECT TERMS blast, traumatic brain injury, neurogenic pulmonary edema, mortality, caspase-3, beta- amylase precursor... function and on pat hophysiological mani festations (IgG, caspase-3 and β-APP immunolabeling), ind ependent of transthoracic mechani sms of blast injury...Glendale Heights, IL). The tool was modified by removing the piston that normally drives the fastener, making the tool function like a firearm and

  10. Neurotherapy for chronic headache following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    David V Nelson; Mary Lee Esty

    2015-01-01

    Background:Chronic headache following traumatic brain injury (TBI) sustained in military service, while common, is highly challenging to treat with existing pharmacologic and non-pharmacologic interventions, and it may be complicated by co-morbid posttraumatic stress. Recently, a novel form of brainwave-based intervention known as the Flexyx Neurotherapy System (FNS), which involves minute pulses of electromagnetic energy stimulation of brainwave activity, has been suggested as a means to address symptoms of TBI. This study reports on a clinical series of patients with chronic headache following service-connected TBI treated with FNS. Methods: Nine veterans of the wars in Afghanistan and Iraq with moderate to severe chronic headaches following service-connected TBI complicated by posttraumatic stress symptoms were treated in 20 individual FNS sessions at the Brain Wellness and Biofeedback Center of Washington (in Bethesda, Maryland, USA). They periodically completed measures including the Brief Pain Inventory-Headache (BPI-HA), previous week worst and average pain ratings, the Posttraumatic Stress Disorder Checklist-Military version (PCL-M), and an individual treatment session numerical rating scale (NRS) for the degree of cognitive dysfunction. Data analyses included beginning-to-end of treatmentt-test comparisons for the BPI-HA, PCL-M, and cognitive dysfunction NRS. Results: All beginning-to-end of treatmentt-test comparisons for the BPI-HA, PCL-M, and cognitive dysfunction NRS indicated statistically significant decreases. All but one participant experienced a reduction in headaches along with reductions in posttraumatic stress and perceived cognitive dysfunction, with a subset experiencing the virtual elimination of headaches. One participant obtained modest headache relief but no improvements in posttraumatic stress or cognitive dysfunction. Conclusions: FNS may be a potentially efficacious treatment for chronic posttraumatic headache sustained in military

  11. Could cord blood cell therapy reduce preterm brain injury?

    Science.gov (United States)

    Li, Jingang; McDonald, Courtney A; Fahey, Michael C; Jenkin, Graham; Miller, Suzanne L

    2014-01-01

    Major advances in neonatal care have led to significant improvements in survival rates for preterm infants, but this occurs at a cost, with a strong causal link between preterm birth and neurological deficits, including cerebral palsy (CP). Indeed, in high-income countries, up to 50% of children with CP were born preterm. The pathways that link preterm birth and brain injury are complex and multifactorial, but it is clear that preterm birth is strongly associated with damage to the white matter of the developing brain. Nearly 90% of preterm infants who later develop spastic CP have evidence of periventricular white matter injury. There are currently no treatments targeted at protecting the immature preterm brain. Umbilical cord blood (UCB) contains a diverse mix of stem and progenitor cells, and is a particularly promising source of cells for clinical applications, due to ethical and practical advantages over other potential therapeutic cell types. Recent studies have documented the potential benefits of UCB cells in reducing brain injury, particularly in rodent models of term neonatal hypoxia-ischemia. These studies indicate that UCB cells act via anti-inflammatory and immuno-modulatory effects, and release neurotrophic growth factors to support the damaged and surrounding brain tissue. The etiology of brain injury in preterm-born infants is less well understood than in term infants, but likely results from episodes of hypoperfusion, hypoxia-ischemia, and/or inflammation over a developmental period of white matter vulnerability. This review will explore current knowledge about the neuroprotective actions of UCB cells and their potential to ameliorate preterm brain injury through neonatal cell administration. We will also discuss the characteristics of UCB-derived from preterm and term infants for use in clinical applications.

  12. Could cord blood cell therapy reduce preterm brain injury?

    Directory of Open Access Journals (Sweden)

    Jingang eLi

    2014-10-01

    Full Text Available Major advances in neonatal care have led to significant improvements in survival rates for preterm infants, but this occurs at a cost, with a strong causal link between preterm birth and neurological deficits, including cerebral palsy (CP. Indeed, in high-income countries, up to 50% of children with CP were born preterm. The pathways that link preterm birth and brain injury are complex and multifactorial, but it is clear that preterm birth is strongly associated with damage to the white matter of the developing brain. Nearly 90% of preterm infants who later develop spastic CP have evidence of periventricular white matter injury. There are currently no treatments targeted at protecting the immature preterm brain. Umbilical cord blood (UCB contains a diverse mix of stem and progenitor cells, and is a particularly promising source of cells for clinical applications, due to ethical and practical advantages over other potential therapeutic cell types. Recent studies have documented the potential benefits of UCB cells in reducing brain injury, particularly in rodent models of term neonatal hypoxia-ischemia. These studies indicate that UCB cells act via anti-inflammatory and immuno-modulatory effects, and release neurotrophic growth factors to support the damaged and surrounding brain tissue. The etiology of brain injury in preterm-born infants is less well understood than in term infants, but likely results from episodes of hypoperfusion, hypoxia-ischemia, and/or inflammation over a developmental period of white matter vulnerability. This review will explore current knowledge about the neuroprotective actions of UCB cells and their potential to ameliorate preterm brain injury through neonatal cell administration. We will also discuss the characteristics of UCB derived from preterm and term infants for use in clinical applications.

  13. Marriage after brain injury: review, analysis, and research recommendations.

    Science.gov (United States)

    Godwin, Emilie E; Kreutzer, Jeffrey S; Arango-Lasprilla, Juan Carlos; Lehan, Tara J

    2011-01-01

    This critical review of the literature examines marriage after traumatic brain injury. Studies reporting information on marital stability rates and studies examining the quality of marriages through the assessment of at least 1 relational domain have been included for review. Available findings are presented along with information on methodological limitations and knowledge gaps. A rationale for the adoption of a marriage and family therapy framework to clarify remaining inconsistencies is presented. Furthermore, specific marriage and family therapy relational models and corresponding measurement instruments are outlined. Finally, suggestions for future research and potential implications for brain injury rehabilitation outcomes are discussed.

  14. [Scandinavian guidelines for prehospital management of severe traumatic brain injury

    DEFF Research Database (Denmark)

    Sollid, S.; Sundstrom, T.; Kock-Jensen, C.

    2008-01-01

    Head trauma is the cause the death for many young persons. The number of fatalities can be reduced through systematic management. Prevention of secondary brain injury combined with the fastest possible transport to a neurosurgical unit, have been shown to effectively reduce mortality and morbidity....... Evidence-based guidelines already exist that focus on all steps in the process. In the present article members of the Scandinavian Neurotrauma Committee present recommendations on prehospital management of traumatic brain injury adapted to the infrastructure of the Nordic region Udgivelsesdato: 2008/6/26...

  15. [Scandinavian guidelines for prehospital management of severe traumatic brain injury

    DEFF Research Database (Denmark)

    Sollid, S.; Sundstrom, T.; Kock-Jensen, C.

    2008-01-01

    . Evidence-based guidelines already exist that focus on all steps in the process. In the present article members of the Scandinavian Neurotrauma Committee present recommendations on prehospital management of traumatic brain injury adapted to the infrastructure of the Nordic region Udgivelsesdato: 2008/6/26......Head trauma is the cause the death for many young persons. The number of fatalities can be reduced through systematic management. Prevention of secondary brain injury combined with the fastest possible transport to a neurosurgical unit, have been shown to effectively reduce mortality and morbidity...

  16. The profile of head injuries and traumatic brain injury deaths in Kashmir

    Directory of Open Access Journals (Sweden)

    Tabish Amin

    2008-06-01

    Full Text Available Abstract This study was conducted on patients of head injury admitted through Accident & Emergency Department of Sher-i-Kashmir Institute of Medical Sciences during the year 2004 to determine the number of head injury patients, nature of head injuries, condition at presentation, treatment given in hospital and the outcome of intervention. Traumatic brain injury (TBI deaths were also studied retrospectively for a period of eight years (1996 to 2003. The traumatic brain injury deaths showed a steady increase in number from year 1996 to 2003 except for 1999 that showed decline in TBI deaths. TBI deaths were highest in age group of 21–30 years (18.8%, followed by 11–20 years age group (17.8% and 31–40 years (14.3%. The TBI death was more common in males. Maximum number of traumatic brain injury deaths was from rural areas as compared to urban areas. To minimize the morbidity and mortality resulting from head injury there is a need for better maintenance of roads, improvement of road visibility and lighting, proper mechanical maintenance of automobile and other vehicles, rigid enforcement of traffic rules, compulsory wearing of crash helmets by motor cyclist and scooterists and shoulder belt in cars and imparting compulsory road safety education to school children from primary education level. Moreover, appropriate medical care facilities (including trauma centres need to be established at district level, sub-divisional and block levels to provide prompt and quality care to head injury patients

  17. The profile of head injuries and traumatic brain injury deaths in Kashmir.

    Science.gov (United States)

    Yattoo, Gh; Tabish, Amin

    2008-01-01

    This study was conducted on patients of head injury admitted through Accident & Emergency Department of Sher-i-Kashmir Institute of Medical Sciences during the year 2004 to determine the number of head injury patients, nature of head injuries, condition at presentation, treatment given in hospital and the outcome of intervention. Traumatic brain injury (TBI) deaths were also studied retrospectively for a period of eight years (1996 to 2003).The traumatic brain injury deaths showed a steady increase in number from year 1996 to 2003 except for 1999 that showed decline in TBI deaths. TBI deaths were highest in age group of 21-30 years (18.8%), followed by 11-20 years age group (17.8%) and 31-40 years (14.3%). The TBI death was more common in males. Maximum number of traumatic brain injury deaths was from rural areas as compared to urban areas.To minimize the morbidity and mortality resulting from head injury there is a need for better maintenance of roads, improvement of road visibility and lighting, proper mechanical maintenance of automobile and other vehicles, rigid enforcement of traffic rules, compulsory wearing of crash helmets by motor cyclist and scooterists and shoulder belt in cars and imparting compulsory road safety education to school children from primary education level. Moreover, appropriate medical care facilities (including trauma centres) need to be established at district level, sub-divisional and block levels to provide prompt and quality care to head injury patients.

  18. Neuroinflammation in animal models of traumatic brain injury

    Science.gov (United States)

    Chiu, Chong-Chi; Liao, Yi-En; Yang, Ling-Yu; Wang, Jing-Ya; Tweedie, David; Karnati, Hanuma K.; Greig, Nigel H.; Wang, Jia-Yi

    2016-01-01

    Traumatic brain injury (TBI) is a leading cause of mortality and morbidity worldwide. Neuroinflammation is prominent in the short and long-term consequences of neuronal injuries that occur after TBI. Neuroinflammation involves the activation of glia, including microglia and astrocytes, to release inflammatory mediators within the brain, and the subsequent recruitment of peripheral immune cells. Various animal models of TBI have been developed that have proved valuable to elucidate the pathophysiology of the disorder and to assess the safety and efficacy of novel therapies prior to clinical trials. These models provide an excellent platform to delineate key injury mechanisms that associate with types of injury (concussion, contusion, and penetration injuries) that occur clinically for the investigation of mild, moderate, and severe forms of TBI. Additionally, TBI modeling in genetically engineered mice, in particular, has aided the identification of key molecules and pathways for putative injury mechanisms, as targets for development of novel therapies for human TBI. This Review details the evidence showing that neuroinflammation, characterized by the activation of microglia and astrocytes and elevated production of inflammatory mediators, is a critical process occurring in various TBI animal models, provides a broad overview of commonly used animal models of TBI, and overviews representative techniques to quantify markers of the brain inflammatory process. A better understanding of neuroinflammation could open therapeutic avenues for abrogation of secondary cell death and behavioral symptoms that may mediate the progression of TBI. PMID:27382003

  19. Misconceptions on neuropsychological rehabilitation and traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Alberto García- Molina

    2013-12-01

    Full Text Available There are many misconceptions about traumatic brain injuries, their recovery and outcome; misconceptions that have their origin in a lack of information influenced by the image that the media show of the brain damage. Development. Based on clinical experience, the authors of this essay sets out his personal view on some of the most frequent misconceptions in the field of neuropsychological rehabilitation of traumatic brain injury: 1 All deficits are evident; 2 The recovery depends mainly on the involvement of the patient: more effort, more rapid recovery; 3 Two years after traumatic brain injury there is no possibility of improvement and recovery; and 4 The “miracle” of recovery will occur when is found the appropriate professional or treatment. These and other beliefs may influence directly or indirectly on the recovery process and the expectations placed on it by the families and patients. Conclusions. Provide accurate, clear and honest information, at the right time, helps patients and their families to better understand the deficits, the course of recovery and to adapt to the new reality resulting from a traumatic brain injury.

  20. Hyperbaric oxygen therapy improves cognitive functioning after brain injury

    Institute of Scientific and Technical Information of China (English)

    Su Liu; Guangyu Shen; Shukun Deng; Xiubin Wang; Qinfeng Wu; Aisong Guo

    2013-01-01

    Hyperbaric oxygen therapy has been widely applied and recognized in the treatment of brain injury;however, the correlation between the protective effect of hyperbaric oxygen therapy and changes of metabolites in the brain remains unclear. To investigate the effect and potential mechanism of hyperbaric oxygen therapy on cognitive functioning in rats, we established traumatic brain injury models using Feeney’s free fal ing method. We treated rat models with hyperbaric oxygen therapy at 0.2 MPa for 60 minutes per day. The Morris water maze test for spatial navigation showed that the average escape latency was significantly prolonged and cognitive function decreased in rats with brain injury. After treatment with hyperbaric oxygen therapy for 1 and 2 weeks, the rats’ spatial learning and memory abilities were improved. Hydrogen proton magnetic resonance spectroscopy analysis showed that the N-acetylaspartate/creatine ratio in the hippocampal CA3 region was sig-nificantly increased at 1 week, and the N-acetylaspartate/choline ratio was significantly increased at 2 weeks after hyperbaric oxygen therapy. Nissl staining and immunohistochemical staining showed that the number of nerve cells and Nissl bodies in the hippocampal CA3 region was significantly increased, and glial fibril ary acidic protein positive cells were decreased after a 2-week hyperbaric oxygen therapy treatment. Our findings indicate that hyperbaric oxygen therapy significantly im-proves cognitive functioning in rats with traumatic brain injury, and the potential mechanism is me-diated by metabolic changes and nerve cellrestoration in the hippocampal CA3 region.

  1. Hyperbaric oxygen therapy improves cognitive functioning after brain injury.

    Science.gov (United States)

    Liu, Su; Shen, Guangyu; Deng, Shukun; Wang, Xiubin; Wu, Qinfeng; Guo, Aisong

    2013-12-15

    Hyperbaric oxygen therapy has been widely applied and recognized in the treatment of brain injury; however, the correlation between the protective effect of hyperbaric oxygen therapy and changes of metabolites in the brain remains unclear. To investigate the effect and potential mechanism of hyperbaric oxygen therapy on cognitive functioning in rats, we established traumatic brain injury models using Feeney's free falling method. We treated rat models with hyperbaric oxygen therapy at 0.2 MPa for 60 minutes per day. The Morris water maze test for spatial navigation showed that the average escape latency was significantly prolonged and cognitive function decreased in rats with brain injury. After treatment with hyperbaric oxygen therapy for 1 and 2 weeks, the rats' spatial learning and memory abilities were improved. Hydrogen proton magnetic resonance spectroscopy analysis showed that the N-acetylaspartate/creatine ratio in the hippocampal CA3 region was significantly increased at 1 week, and the N-acetylaspartate/choline ratio was significantly increased at 2 weeks after hyperbaric oxygen therapy. Nissl staining and immunohistochemical staining showed that the number of nerve cells and Nissl bodies in the hippocampal CA3 region was significantly increased, and glial fibrillary acidic protein positive cells were decreased after a 2-week hyperbaric oxygen therapy treatment. Our findings indicate that hyperbaric oxygen therapy significantly improves cognitive functioning in rats with traumatic brain injury, and the potential mechanism is mediated by metabolic changes and nerve cell restoration in the hippocampal CA3 region.

  2. Moderate head injury: completing the clinical spectrum of brain trauma.

    Science.gov (United States)

    Rimel, R W; Giordani, B; Barth, J T; Jane, J A

    1982-09-01

    predictors of outcome after moderate head injury are measures of the severity of injury; and (c) more attention should be directed to patients with moderate head injury than to those with the most severe injuries, in whom brain damage is probably irreversible and all forms of management have demonstrated little success.

  3. Blast-induced traumatic brain injury: a new trend of blast injury research

    Institute of Scientific and Technical Information of China (English)

    Yan Zhao; Zheng-Guo Wang

    2015-01-01

    Blast injury has become the major life-and function-threatening injuries in recent warfares.There is increased research interest in the mental disorders caused by blast-induced traumatic brain injury (bTBI),which has been proved as one of the "signature wounds" in modern battlefield.We reviewed the recent progresses in bTBl-related researches and concluded that the new era of blast injury research has shifted from the traditional physical impairments to cognitive dysfunctional/mental disorders that are proved to be more related to the outcome of combat casualty care.

  4. Cognitive rehabilitation of attention deficits in traumatic brain injury using action video games: A controlled trial

    Directory of Open Access Journals (Sweden)

    Alexandra Vakili

    2016-12-01

    Full Text Available This paper investigates the utility and efficacy of a novel eight-week cognitive rehabilitation programme developed to remediate attention deficits in adults who have sustained a traumatic brain injury (TBI, incorporating the use of both action video game playing and a compensatory skills programme. Thirty-one male TBI patients, aged 18–65 years, were recruited from 2 Australian brain injury units and allocated to either a treatment or waitlist (treatment as usual control group. Results showed improvements in the treatment group, but not the waitlist control group, for performance on the immediate trained task (i.e. the video game and in non-trained measures of attention and quality of life. Neither group showed changes to executive behaviours or self-efficacy. The strengths and limitations of the study are discussed, as are the potential applications and future implications of the research.

  5. A mouse model of human repetitive mild traumatic brain injury

    OpenAIRE

    Kane, Michael J; Pérez, Mariana Angoa; Briggs, Denise I.; Viano, David C.; Kreipke, Christian W.; Kuhn, Donald M.

    2011-01-01

    A novel method for the study of repetitive mild traumatic brain injury (rmTBI) that models the most common form of head injury in humans is presented. Existing animal models of TBI impart focal, severe damage unlike that seen in repeated and mild concussive injuries, and few are configured for repetitive application. Our model is a modification of the Marmarou weight drop method and allows repeated head impacts to lightly anesthetized mice. A key facet of this method is the delivery of an imp...

  6. Brain-computer interface after nervous system injury.

    Science.gov (United States)

    Burns, Alexis; Adeli, Hojjat; Buford, John A

    2014-12-01

    Brain-computer interface (BCI) has proven to be a useful tool for providing alternative communication and mobility to patients suffering from nervous system injury. BCI has been and will continue to be implemented into rehabilitation practices for more interactive and speedy neurological recovery. The most exciting BCI technology is evolving to provide therapeutic benefits by inducing cortical reorganization via neuronal plasticity. This article presents a state-of-the-art review of BCI technology used after nervous system injuries, specifically: amyotrophic lateral sclerosis, Parkinson's disease, spinal cord injury, stroke, and disorders of consciousness. Also presented is transcending, innovative research involving new treatment of neurological disorders.

  7. Oligodendrogenesis after Cerebral Ischaemia and Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Zheng Gang Zhang

    2013-08-01

    Full Text Available Stroke and traumatic brain injury (TBI damage white and grey matter. Loss of oligodendrocytes and their myelin, impairs axonal function. Remyelination involves oligodendrogenesis during which new myelinating oligodendrocytes are generated by differentiated oligodendrocyte progenitor cells (OPCs. This article briefly reviews the processes of oligodendrogenesis in adult rodent brains, and promising experimental therapies targeting the neurovascular unit that reduce oligodendrocyte damage and amplify endogenous oligodendrogenesis after stroke and TBI.

  8. Death Associated Protein Kinases: Molecular Structure and Brain Injury

    OpenAIRE

    Claire Thornton; Carina Mallard; Rajanikant Krishnamurthy; Syam Nair; Henrik Hagberg

    2013-01-01

    Perinatal brain damage underlies an important share of motor and neurodevelopmental disabilities, such as cerebral palsy, cognitive impairment, visual dysfunction and epilepsy. Clinical, epidemiological, and experimental studies have revealed that factors such as inflammation, excitotoxicity and oxidative stress contribute considerably to both white and grey matter injury in the immature brain. A member of the death associated protein kinase (DAPk) family, DAPk1, has been implicated in cerebr...

  9. Music interventions for acquired brain injury.

    Science.gov (United States)

    Magee, Wendy L; Clark, Imogen; Tamplin, Jeanette; Bradt, Joke

    2017-01-20

    Acquired brain injury (ABI) can result in impairments in motor function, language, cognition, and sensory processing, and in emotional disturbances, which can severely reduce a survivor's quality of life. Music interventions have been used in rehabilitation to stimulate brain functions involved in movement, cognition, speech, emotions, and sensory perceptions. An update of the systematic review published in 2010 was needed to gauge the efficacy of music interventions in rehabilitation for people with ABI. To assess the effects of music interventions for functional outcomes in people with ABI. We expanded the criteria of our existing review to: 1) examine the efficacy of music interventions in addressing recovery in people with ABI including gait, upper extremity function, communication, mood and emotions, cognitive functioning, social skills, pain, behavioural outcomes, activities of daily living, and adverse events; 2) compare the efficacy of music interventions and standard care with a) standard care alone, b) standard care and placebo treatments, or c) standard care and other therapies; 3) compare the efficacy of different types of music interventions (music therapy delivered by trained music therapists versus music interventions delivered by other professionals). We searched the Cochrane Stroke Group Trials Register (January 2016), the Cochrane Central Register of Controlled Trials (CENTRAL) (2015, Issue 6), MEDLINE (1946 to June 2015), Embase (1980 to June 2015), CINAHL (1982 to June 2015), PsycINFO (1806 to June 2015), LILACS (1982 to January 2016), and AMED (1985 to June 2015). We handsearched music therapy journals and conference proceedings, searched dissertation and specialist music databases, trials and research registers, reference lists, and contacted relevant experts and music therapy associations to identify unpublished research. We imposed no language restriction. We performed the original search in 2009. We included all randomised controlled trials

  10. Prevalence, clinical features, and correlates of inappropriate sexual behavior after traumatic brain injury: a multicenter study.

    Science.gov (United States)

    Simpson, Grahame K; Sabaz, Mark; Daher, Maysaa

    2013-01-01

    Investigate the prevalence and clinical features of inappropriate sexual behavior (ISB) among a community-based cohort of clients of the New South Wales Brain Injury Rehabilitation program. All 11 community-based rehabilitation services of the statewide network. Five hundred seven clients with severe traumatic brain injury. Cross-sectional multicentre study. Overt Behavior Scale, Disability Rating Scale, Sydney Psychosocial Reintegration Scale-2, Health of the Nation Outcome Scale-Acquired Brain Injury, Care and Needs Scale. The point prevalence rate of ISBs was 8.9% (45/507) over the previous 3 months. Inappropriate sexual talk comprised 57.9% of all ISBs, followed by genital and nongenital touching behaviors (29.8%) and exhibitionism/public masturbation (10.5%). In 43 of 45 cases, ISBs were accompanied by other challenging behaviors, most often inappropriate social behavior, and/or aggression. Individuals who sustained more severe injuries and who were younger were significantly more likely to display ISBs. People displaying ISBs were more likely to display higher levels of challenging behaviors overall, lower levels of social participation, and more neuropsychiatric sequelae than 2 other groups: people displaying no challenging behaviors and people displaying challenging behaviors but no ISBs respectively. ISBs pose a complex clinical challenge among a minority of individuals with severe TBI.

  11. Nonlinear Dynamic Theory of Acute Cell Injuries and Brain Ischemia

    Science.gov (United States)

    Taha, Doaa; Anggraini, Fika; Degracia, Donald; Huang, Zhi-Feng

    2015-03-01

    Cerebral ischemia in the form of stroke and cardiac arrest brain damage affect over 1 million people per year in the USA alone. In spite of close to 200 clinical trials and decades of research, there are no treatments to stop post-ischemic neuron death. We have argued that a major weakness of current brain ischemia research is lack of a deductive theoretical framework of acute cell injury to guide empirical studies. A previously published autonomous model based on the concept of nonlinear dynamic network was shown to capture important facets of cell injury, linking the concept of therapeutic to bistable dynamics. Here we present an improved, non-autonomous formulation of the nonlinear dynamic model of cell injury that allows multiple acute injuries over time, thereby allowing simulations of both therapeutic treatment and preconditioning. Our results are connected to the experimental data of gene expression and proteomics of neuron cells. Importantly, this new model may be construed as a novel approach to pharmacodynamics of acute cell injury. The model makes explicit that any pro-survival therapy is always a form of sub-lethal injury. This insight is expected to widely influence treatment of acute injury conditions that have defied successful treatment to date. This work is supported by NIH NINDS (NS081347) and Wayne State University President's Research Enhancement Award.

  12. MRI-DTI Tractography to Quantify Brain Connectivity in Traumatic Brain Injury

    Science.gov (United States)

    2009-04-01

    to Traumatic Brain Injury and Alzheimer Disease ”, 5-th International Annual Symposium of the Brain Mapping and Intraoperative Surgical Planning... Alzheimer Disease , Proc Intl Soc Mag Reson Med 15: 343, 2007. 9. Singh M and Jeong J-W, “ICA based multi-fiber tractography” Proceedings, 17-th

  13. Abnormal whole-brain functional networks in homogeneous acute mild traumatic brain injury.

    NARCIS (Netherlands)

    Shumskaya, E.; Andriessen, T.; Norris, D.G.; Vos, P.E.

    2012-01-01

    Objectives: To evaluate the whole-brain resting-state networks in a homogeneous group of patients with acute mild traumatic brain injury (MTBI) and to identify alterations in functional connectivity induced by MTBI. Methods: Thirty-five patients with acute MTBI and 35 healthy control subjects, mat

  14. Abnormal whole-brain functional networks in homogeneous acute mild traumatic brain injury.

    NARCIS (Netherlands)

    Shumskaya, A.N.; Andriessen, T.M.J.C.; Norris, D.G.; Vos, P.E.

    2012-01-01

    OBJECTIVES: To evaluate the whole-brain resting-state networks in a homogeneous group of patients with acute mild traumatic brain injury (MTBI) and to identify alterations in functional connectivity induced by MTBI. METHODS: Thirty-five patients with acute MTBI and 35 healthy control subjects, match

  15. Brain network dysregulation, emotion, and complaints after mild traumatic brain injury

    NARCIS (Netherlands)

    van der Horn, Harm J.; Liemburg, Edith J.; Scheenen, Myrthe E.; de Koning, Myrthe E.; Marsman, Jan-Bernard C.; Spikman, Jacoba M.; van der Naalt, Joukje

    2016-01-01

    ObjectivesTo assess the role of brain networks in emotion regulation and post-traumatic complaints in the sub-acute phase after non-complicated mild traumatic brain injury (mTBI). Experimental designFifty-four patients with mTBI (34 with and 20 without complaints) and 20 healthy controls (group-matc

  16. Traumatic Brain Injury: Hope Through Research

    Science.gov (United States)

    ... make sure it fits properly when riding a bicycle, skateboarding, and playing sports like hockey and football. ... example, they are stimulating deep brain structures with electricity or magnetic fields and combining such therapy with ...

  17. Pivotal role of anterior cingulate cortex in working memory after traumatic brain injury in youth

    Directory of Open Access Journals (Sweden)

    Fabienne eCazalis

    2011-01-01

    Full Text Available In this fMRI study, the functions of the Anterior Cingulate Cortex were studied in a group of adolescents who had sustained a moderate to severe Traumatic Brain Injury. A spatial working memory task with varying working memory loads, representing experimental conditions of increasing difficulty, was administered.In a cross-sectional comparison between the patients and a matched control group, patients performed worse than Controls, showing longer reaction times and lower response accuracy on the spatial working memory task. Brain imaging findings suggest a possible double-dissociation: activity of the Anterior Cingulate Cortex in the Traumatic Brain Injury group, but not in the Control group, was associated with task difficulty; conversely, activity of the left Sensorimotor Cortex in the Control group, but not in the TBI group, was correlated with task difficulty.In addition to the main cross-sectional study, a longitudinal study of a group of adolescent patients with moderate to severe Traumatic Brain Injury was done using fMRI and the same spatial working memory task. The patient group was studied at two time points: one time point during the post-acute phase and one time point 12 months later, during the chronic phase. Results indicated that patients' behavioral performance improved over time, suggesting cognitive recovery. Brain imaging findings suggest that, over this 12 month period, patients recruited less of the Anterior Cingulate Cortex and more of the left Sensorimotor Cortex in response to increasing task difficulty.The role of Anterior Cingulate Cortex in executive functions following a moderate to severe brain injury in adolescence is discussed within the context of conflicting models of the Anterior Cingulate Cortex functions in the existing literature.

  18. Diffusion-weighted imaging predicts cognition in pediatric brain injury.

    Science.gov (United States)

    Babikian, Talin; Tong, Karen A; Galloway, Nicholas R; Freier-Randall, Mary-Catherin; Obenaus, André; Ashwal, Stephen

    2009-12-01

    Apparent diffusion coefficient maps from diffusion-weighted imaging predict gross neurologic outcome in adults with traumatic brain injury. Few studies in children have been reported, and none have used apparent diffusion coefficient maps to predict long-term (>1 year) neurocognitive outcomes. In this study, pooled regional and total brain diffusion coefficients were used to predict long-term outcomes in 17 pediatric brain injury patients. Apparent diffusion coefficient values were grouped into peripheral and deep gray and white matter, posterior fossa, and total brain. Regions of interest excluded areas that appeared abnormal on T(2)-weighted images. Apparent diffusion coefficient values from peripheral regions were inversely correlated with cognitive functioning. No significant correlations were apparent between the cognitive scores and apparent diffusion coefficient values for deep tissue or the posterior fossa. Regression analyses suggested that combined peripheral gray and white matter apparent diffusion coefficients explained 42% of the variance in the combined neurocognitive index. Peripheral gray diffusion coefficients alone explained an additional 20% of variance after accounting for clinical variables. These results suggest that obtaining apparent diffusion coefficient values, specifically from peripheral brain regions, may predict long-term outcome after pediatric brain injury. Discrepancies in the literature on this topic, as well as possible explanations, including sampling and clinical considerations, are discussed.

  19. Post-Traumatic Brain Injury: Genetic Susceptibility to Outcome.

    Science.gov (United States)

    Davidson, Jennilee; Cusimano, Michael D; Bendena, William G

    2015-08-01

    It is estimated that 2% of the population from industrialized countries live with lifelong disabilities resulting from traumatic brain injury (TBI) and roughly one in four adults are unable to return to work 1 year after injury because of physical or mental disabilities. TBI is a significant public health issue that causes substantial physical and economical repercussions for the individual and society. Electronic databases (PubMed, Web of Science, Google Scholar) were searched with the keywords traumatic brain injury, TBI, genes and TBI, TBI outcome, head injury. Human studies on non-penetrating traumatic brain injuries reported in English were included. To provide health care workers with the basic information for clinical management we summarize and compare the data on post-TBI outcome with regard to the impact of genetic variation: apolipoprotein E (APOE), brain-derived neurotrophic factor (BDNF), calcium channel, voltage dependent P/Q type, catechol-O-methyltransferase (COMT), dopamine receptor D2 and ankyrin repeat and kinase domain containing 1 (DRD2 and ANKK1), interleukin-1 (IL-1), interleukin-6 (IL-6), kidney and brain expressed protein (KIBRA), neurofilament, heavy polypeptide (NEFH), endothelial nitric oxide synthase 3 (NOS3), poly (ADP-ribose) polymerase-1 (PARP-1), protein phosphatase 3, catalytic subunit, gamma isozyme (PPP3CC), the serotonin transporter (5-HTT) gene solute carrier family 6 member (SLC6A4) and tumor protein 53 (TP53). It is evident that contradicting results are attributable to the heterogeneity of studies, thus further researches are warranted to effectively assess a relation between genetic traits and clinical outcome following traumatic injuries. © The Author(s) 2014.

  20. Potential risk factors for developing heterotopic ossification in patients with severe traumatic brain injury

    NARCIS (Netherlands)

    Kampen, P.J. van; Martina, J.D.; Vos, P.E.; Hoedemaekers, C.W.E.; Hendricks, H.T.

    2011-01-01

    BACKGROUND: Heterotopic ossification (HO) is a frequent complication after traumatic brain injury (TBI). The current preliminary study is intended to provide additional data on the potential roles that brain injury severity, concomitant orthopaedic trauma, and specific intensive care complicating ev

  1. Role of Interleukin-10 in Acute Brain Injuries

    Directory of Open Access Journals (Sweden)

    Joshua M. Garcia

    2017-06-01

    Full Text Available Interleukin-10 (IL-10 is an important anti-inflammatory cytokine expressed in response to brain injury, where it facilitates the resolution of inflammatory cascades, which if prolonged causes secondary brain damage. Here, we comprehensively review the current knowledge regarding the role of IL-10 in modulating outcomes following acute brain injury, including traumatic brain injury (TBI and the various stroke subtypes. The vascular endothelium is closely tied to the pathophysiology of these neurological disorders and research has demonstrated clear vascular endothelial protective properties for IL-10. In vitro and in vivo models of ischemic stroke have convincingly directly and indirectly shown IL-10-mediated neuroprotection; although clinically, the role of IL-10 in predicting risk and outcomes is less clear. Comparatively, conclusive studies investigating the contribution of IL-10 in subarachnoid hemorrhage are lacking. Weak indirect evidence supporting the protective role of IL-10 in preclinical models of intracerebral hemorrhage exists; however, in the limited number of clinical studies, higher IL-10 levels seen post-ictus have been associated with worse outcomes. Similarly, preclinical TBI models have suggested a neuroprotective role for IL-10; although, controversy exists among the several clinical studies. In summary, while IL-10 is consistently elevated following acute brain injury, the effect of IL-10 appears to be pathology dependent, and preclinical and clinical studies often paradoxically yield opposite results. The pronounced and potent effects of IL-10 in the resolution of inflammation and inconsistency in the literature regarding the contribution of IL-10 in the setting of acute brain injury warrant further rigorously controlled and targeted investigation.

  2. Tissue tears in the white matter after lateral fluid percussion brain injury in the rat: relevance to human brain injury.

    Science.gov (United States)

    Graham, D I; Raghupathi, R; Saatman, K E; Meaney, D; McIntosh, T K

    2000-02-01

    A characteristic feature of severe diffuse axonal injury in man is radiological evidence of the "shearing injury triad" represented by lesions, sometimes haemorrhagic, in the corpus callosum, deep white matter and the rostral brain stem. With the exception of studies carried out on the non-human primate, such lesions have not been replicated to date in the multiple and diverse rodent laboratory models of traumatic brain injury. The present report describes tissue tears in the white matter, particularly in the fimbria of Sprague-Dawley rats killed 12, 24, and 48 h and 7 days after lateral fluid percussion brain injury of moderate severity (2.1-2.4 atm). The lesions were most easily seen at 24 h when they appeared as foci of tissue rarefaction in which there were a few polymorphonuclear leucocytes. At the margins of these lesions, large amounts of accumulated amyloid precursor protein (APP) were found in axonal swellings and bulbs. By 1 week post-injury, there was macrophage infiltration with marked astrocytosis and early scar formation. This lesion is considered to be due to severe deformation of white matter and this is the first time that it has been identified reproducibly in a rodent model of head injury under controlled conditions.

  3. Association between the number of injuries sustained and 12-month disability outcomes: evidence from the injury-VIBES study.

    Directory of Open Access Journals (Sweden)

    Belinda J Gabbe

    Full Text Available To determine associations between the number of injuries sustained and three measures of disability 12-months post-injury for hospitalised patients.Data from 27,840 adult (18+ years participants, hospitalised for injury, were extracted for analysis from the Validating and Improving injury Burden Estimates (Injury-VIBES Study. Modified Poisson and linear regression analyses were used to estimate relative risks and mean differences, respectively, for a range of outcomes (Glasgow Outcome Scale-Extended, GOS-E; EQ-5D and 12-item Short Form health survey physical and mental component summary scores, PCS-12 and MCS-12 according to the number of injuries sustained, adjusted for age, sex and contributing study.More than half (54% of patients had an injury to more than one ICD-10 body region and 62% had sustained more than one Global Burden of Disease injury type. The adjusted relative risk of a poor functional recovery (GOS-E<7 and of reporting problems on each of the items of the EQ-5D increased by 5-10% for each additional injury type, or body region, injured. Adjusted mean PCS-12 and MCS-12 scores worsened with each additional injury type, or body region, injured by 1.3-1.5 points and 0.5 points, respectively.Consistent and strong relationships exist between the number of injury types and body regions injured and 12-month functional and health status outcomes. Existing composite measures of anatomical injury severity such as the NISS or ISS, which use up to three diagnoses only, may be insufficient for characterising or accounting for multiple injuries in disability studies. Future studies should consider the impact of multiple injuries to avoid under-estimation of injury burden.

  4. The association between hip and groin injuries in the elite junior football years and injuries sustained during elite senior competition.

    Science.gov (United States)

    Gabbe, B J; Bailey, M; Cook, J L; Makdissi, M; Scase, E; Ames, N; Wood, T; McNeil, J J; Orchard, J W

    2010-09-01

    To establish the relationship between the history of hip and groin injuries in elite junior football players prior to elite club recruitment and the incidence of hip and groin injuries during their elite career. Retrospective cohort study. Analysis of existing data. 500 Australian Football League (AFL) players drafted from 1999 to 2006 with complete draft medical assessment data. Previous history of hip/groin injury, anthropometric and demographic information. The number of hip/groin injuries resulting in > or =1 missed AFL game. Data for 500 players were available for analysis. 86 (17%) players reported a hip/groin injury in their junior football years. 159 (32%) players sustained a hip/groin injury in the AFL. Players who reported a previous hip or groin injury at the draft medical assessment demonstrated a rate of hip/groin injury in the AFL >6 times higher (IRR 6.24, 95% CI 4.43 to 8.77) than players without a pre-AFL hip or groin injury history. This study demonstrated that a hip or groin injury sustained during junior football years is a significant predictor of missed game time at the elite level due to hip/groin injury. The elite junior football period should be targeted for research to investigate and identify modifiable risk factors for the development of hip/groin injuries.

  5. A Systematic Process to Prioritize Prevention Activities: Sustaining Progress Toward the Reduction of Military Injuries

    Science.gov (United States)

    2010-01-01

    avoids overtraining and utilizes agility- ike training has been found to reduce physical training– elated injuries while meeting desired physical fıtness...M F A P ( S v d v C t 2 P A Systematic Process to Prioritize Prevention Activities Sustaining Progress Toward the Reduction of Military Injuries ...Schaefer, MD, MPH, Galen Barbour, MD, Kenneth S. Yew, MD, Bruce H. Jones, MD, MPH Background: To sustain progress toward injury reduction and other

  6. Association between the Number of Injuries Sustained and 12-Month Disability Outcomes: Evidence from the Injury-VIBES Study

    Science.gov (United States)

    Gabbe, Belinda J.; Simpson, Pam M.; Lyons, Ronan A.; Ameratunga, Shanthi; Harrison, James E.; Derrett, Sarah; Polinder, Suzanne; Davie, Gabrielle; Rivara, Frederick P.

    2014-01-01

    Objective To determine associations between the number of injuries sustained and three measures of disability 12-months post-injury for hospitalised patients. Methods Data from 27,840 adult (18+ years) participants, hospitalised for injury, were extracted for analysis from the Validating and Improving injury Burden Estimates (Injury-VIBES) Study. Modified Poisson and linear regression analyses were used to estimate relative risks and mean differences, respectively, for a range of outcomes (Glasgow Outcome Scale-Extended, GOS-E; EQ-5D and 12-item Short Form health survey physical and mental component summary scores, PCS-12 and MCS-12) according to the number of injuries sustained, adjusted for age, sex and contributing study. Findings More than half (54%) of patients had an injury to more than one ICD-10 body region and 62% had sustained more than one Global Burden of Disease injury type. The adjusted relative risk of a poor functional recovery (GOS-Einjuries in disability studies. Future studies should consider the impact of multiple injuries to avoid under-estimation of injury burden. PMID:25501651

  7. The contribution of astrocytes and microglia to traumatic brain injury.

    Science.gov (United States)

    Karve, Ila P; Taylor, Juliet M; Crack, Peter J

    2016-02-01

    Traumatic brain injury (TBI) represents a major cause of death and disability in developed countries. Brain injuries are highly heterogeneous and can also trigger other neurological complications, including epilepsy, depression and dementia. The initial injury often leads to the development of secondary sequelae; cellular hyperexcitability, vasogenic and cytotoxic oedema, hypoxia-ischaemia, oxidative stress and inflammation, all of which influence expansion of the primary lesion. It is widely known that inflammatory events in the brain following TBI contribute to the widespread cell death and chronic tissue degeneration. Neuroinflammation is a multifaceted response involving a number of cell types, both within the CNS and in the peripheral circulation. Astrocytes and microglia, cells of the CNS, are considered key players in initiating an inflammatory response after injury. These cells are capable of secreting various cytokines, chemokines and growth factors, and following injury to the CNS, undergo changes in morphology. Ultimately, these changes can influence the local microenvironment and thus determine the extent of damage and subsequent repair. This review will focus on the roles of microglia and astrocytes following TBI, highlighting some of the key processes, pathways and mediators involved in this response. Additionally, both the beneficial and the detrimental aspects of these cellular responses will be examined using evidence from animal models and human post-mortem TBI studies. © 2015 The British Pharmacological Society.

  8. Crash Simulator: Brain-and-Spine Injury Mechanics

    Science.gov (United States)

    Ivancevic, Vladimir G.; Reid, Darryn J.

    2015-11-01

    Recently, the first author has proposed a new coupled loading-rate hypothesis as a unique cause of both brain and spinal injuries, which states that they are both caused by a Euclidean jolt, an impulsive loading that strikes head and spine (or, any other part of the human body)- in several coupled degrees-of-freedom simultaneously. Injury never happens in a single direction only, nor is it ever caused by a static force. It is always an impulsive translational plus rotational force. The Euclidean jolt causes two basic forms of brain, spine and other musculo-skeletal injuries: (i) localized translational dislocations; and (ii) localized rotational disclinations. In the present Chapter, we first review this unique mechanics of a general human mechanical injury, and then describe how it can be predicted and controlled by a crash simulator toolbox. This rigorous Matlab toolbox has been developed using an existing thirdparty toolbox DiffMan, for accurately solving differential equations on smooth manifolds and mechanical Lie groups. The present crash simulator toolbox performs prediction/control of brain and spinal injuries within the framework of the Euclidean group SE(3) of rigid motions in our natural 3-dimensional space.

  9. Death Associated Protein Kinases: Molecular Structure and Brain Injury

    Directory of Open Access Journals (Sweden)

    Claire Thornton

    2013-07-01

    Full Text Available Perinatal brain damage underlies an important share of motor and neurodevelopmental disabilities, such as cerebral palsy, cognitive impairment, visual dysfunction and epilepsy. Clinical, epidemiological, and experimental studies have revealed that factors such as inflammation, excitotoxicity and oxidative stress contribute considerably to both white and grey matter injury in the immature brain. A member of the death associated protein kinase (DAPk family, DAPk1, has been implicated in cerebral ischemic damage, whereby DAPk1 potentiates NMDA receptor-mediated excitotoxicity through interaction with the NR2BR subunit. DAPk1 also mediate a range of activities from autophagy, membrane blebbing and DNA fragmentation ultimately leading to cell death. DAPk mRNA levels are particularly highly expressed in the developing brain and thus, we hypothesize that DAPk1 may play a role in perinatal brain injury. In addition to reviewing current knowledge, we present new aspects of the molecular structure of DAPk domains, and relate these findings to interacting partners of DAPk1, DAPk-regulation in NMDA-induced cerebral injury and novel approaches to blocking the injurious effects of DAPk1.

  10. Assessment of Cerebral Hemodynamics in Traumatic Brain Injury

    Science.gov (United States)

    2006-11-01

    haemorrhage, and 6 with subarach- noid hemorrhage from ruptured aneurysm . There were 4 cases of cerebral contusions and a single case of traumatic...B. Goldstein, 2003: Significance of Intracranial Pressure Pulse Morphology in Pediatric Traumatic Brain Injury. IEEE, 2491-2494. Anile, C., H. D

  11. Endogenous lipoid pneumonia in a cachectic patient after brain injury.

    Science.gov (United States)

    Zhang, Ji; Mu, Jiao; Lin, Wei; Dong, Hongmei

    2015-01-01

    Endogenous lipoid pneumonia (EnLP) is an uncommon non-life-threatening inflammatory lung disease that usually occurs in patients with conditions such as lung cancers, primary sclerosing cholangitis, and undifferentiated connective tissue disease. Here we report a case of EnLP in a paralytic and cachectic patient with bronchopneumonia after brain injury. A 40-year-old man experienced a severe brain injury in an automobile accident. He was treated for 1 month and his status plateaued. However, he became paralyzed and developed cachexia and ultimately died 145 days after the accident. Macroscopically, multifocal yellowish firm nodules were visible on scattered gross lesions throughout the lungs. Histologically, many foam cells had accumulated within the alveoli and alveolar walls accompanied by a surrounding interstitial infiltration of lymphocytes. The findings were in accordance with a diagnosis of EnLP. Bronchopneumonia was also noted. To our knowledge, there have been few reports of EnLP associated with bronchopneumonia and cachexia after brain injury. This uncommon pathogenesis should be well recognized by clinicians and forensic pathologists. The case reported here should prompt medical staff to increase the nutritional status and fight pulmonary infections in patients with brain injury to prevent the development of EnLP.

  12. Decompressive Craniectomy and Traumatic Brain Injury: A Review

    Science.gov (United States)

    Alvis-Miranda, Hernando; Castellar-Leones, Sandra Milena; Moscote-Salazar, Luis Rafael

    2013-01-01

    Intracranial hypertension is the largest cause of death in young patients with severe traumatic brain injury. Decompressive craniectomy is part of the second level measures for the management of increased intracranial pressure refractory to medical management as moderate hypothermia and barbiturate coma. The literature lack of concepts is their indications. We present a review on the state of the art. PMID:27162826

  13. Visual dysfunction is underestimated in patients with acquired brain injury.

    Science.gov (United States)

    Berthold-Lindstedt, Märta; Ygge, Jan; Borg, Kristian

    2017-04-06

    More than 50% of human cerebral activity is related to vision. Visual impairments are therefore common after acquired brain injury, although they are often overlooked. In order to evaluate the prevalence of visual deficits in our Out-patient Brain Injury Program, a structured screening questionnaire, the Visual Interview, was administered. A total of 170 patients with acquired brain injury, mean age 47 years, who were enrolled in the programme during 2010-12, underwent the Visual Interview. The interview consists of 18 questions concerning visual impairment and was performed on admission. The different types of visual impairment were compared with regard to sex and diagnosis. Fifty-four percent of the patients reported visual changes, mainly reading difficulties, photosensitivity, blurred vision and disorders of the visual field. Sixteen patients who did not experience visual changes also reported visual symptoms in 4-9 questions. Only slight differences were noted in the occurrence of visual symptoms when correlated with sex or diagnosis. Visual impairments are common after acquired brain injury, but some patients do not define their problems as vision-related. A structured questionnaire, covering the most common visual symptoms, is helpful for the rehabilitation team to facilitate assessment of visual changes.

  14. Prevalence and Predictors of Personality Change After Severe Brain Injury

    DEFF Research Database (Denmark)

    Norup, Anne; Mortensen, Erik Lykke

    2015-01-01

    of the Medical Outcomes Study 36-Item Short-Form Health Survey. Results Of the sample, 59.1% experienced personality change after acquired brain injury, and the most dominant changes were observed in the personality traits of neuroticism, extraversion, and conscientiousness. Changes in neuroticism were most...

  15. Injury Response of Resected Human Brain Tissue In Vitro.

    Science.gov (United States)

    Verwer, Ronald W H; Sluiter, Arja A; Balesar, Rawien A; Baaijen, Johannes C; de Witt Hamer, Philip C; Speijer, Dave; Li, Yichen; Swaab, Dick F

    2015-07-01

    Brain injury affects a significant number of people each year. Organotypic cultures from resected normal neocortical tissue provide unique opportunities to study the cellular and neuropathological consequences of severe injury of adult human brain tissue in vitro. The in vitro injuries caused by resection (interruption of the circulation) and aggravated by the preparation of slices (severed neuronal and glial processes and blood vessels) reflect the reaction of human brain tissue to severe injury. We investigated this process using immunocytochemical markers, reverse transcriptase quantitative polymerase chain reaction and Western blot analysis. Essential features were rapid shrinkage of neurons, loss of neuronal marker expression and proliferation of reactive cells that expressed Nestin and Vimentin. Also, microglia generally responded strongly, whereas the response of glial fibrillary acidic protein-positive astrocytes appeared to be more variable. Importantly, some reactive cells also expressed both microglia and astrocytic markers, thus confounding their origin. Comparison with post-mortem human brain tissue obtained at rapid autopsies suggested that the reactive process is not a consequence of epilepsy. © 2014 International Society of Neuropathology.

  16. Traumatic Brain Injury in Early Childhood: Developmental Effects and Interventions.

    Science.gov (United States)

    Lowenthal, Barbara; Lowenthal, Barbara

    1998-01-01

    Describes the unique effects of traumatic brain injury (TBI) on development in early childhood and offers suggestions for interventions in the cognitive, language, social-emotional, motor, and adaptive domains. Urges more intensive, long-term studies on the immediate and long-term effects of TBI. (Author/DB)

  17. Early Childhood Traumatic Brain Injuries: Effects on Development and Interventions.

    Science.gov (United States)

    Lowenthal, Barbara

    1998-01-01

    Describes the variety of possible effects of traumatic brain injuries (TBI) on early childhood development in the cognitive, language, social-emotional, motor, and adaptive domains. Suggests interventions which can assist young survivors and their families. Suggests that more long-term, intensive studies be conducted on the short- and long-term…

  18. Cognitive Rehabilitation for Children with Acquired Brain Injury

    Science.gov (United States)

    Slomine, Beth; Locascio, Gianna

    2009-01-01

    Cognitive deficits are frequent consequences of acquired brain injury (ABI) and often require intervention. We review the theoretical and empirical literature on cognitive rehabilitation in a variety of treatment domains including attention, memory, unilateral neglect, speech and language, executive functioning, and family involvement/education.…

  19. Novel Treatment for Patients with Traumatic Brain Injury (TBI)

    Science.gov (United States)

    2016-06-01

    with pressors after traumatic brain injury. J Am Coll Surg. 2005 Oct;201(4):536-45. 21. Earle SA, de Moya MA, Zuccarelli JE , Norenberg MD, Proctor KG... JE . Impact ofLow- dose Vasopressin on Trauma Outcome: Prospective Randomized Study. World Journal of Surgery. 2011 Feb;35(2):430-9. 30. Andrews PI

  20. [Neuroendocrine dysfunctions and their consequences following traumatic brain injury].

    Science.gov (United States)

    Czirják, Sándor; Rácz, Károly; Góth, Miklós

    2012-06-17

    Posttraumatic hypopituitarism is of major public health importance because it is more prevalent than previously thought. The prevalence of hypopituitarism in children with traumatic brain injury is unknown. Most cases of posttraumatic hypopituitarism remain undiagnosed and untreated in the clinical practice, and it may contribute to the severe morbidity seen in patients with traumatic brain injury. In the acute phase of brain injury, the diagnosis of adrenal insufficiency should not be missed. Determination of morning serum cortisol concentration is mandatory, because adrenal insufficiency can be life threatening. Morning serum cortisol lower than 200 nmol/L strongly suggests adrenal insufficiency. A complete hormonal investigation should be performed after one year of the trauma. Isolated growth hormone deficiency is the most common deficiency after traumatic brain injury. Sports-related chronic repetitive head trauma (because of boxing, kickboxing, football and ice hockey) may also result in hypopituitarism. Close co-operation between neurosurgeons, endocrinologists, rehabilitation physicians and representatives of other disciplines is important to provide better care for these patients.

  1. Issues of cultural diversity in acquired brain injury (ABI) rehabilitation.

    Science.gov (United States)

    Lequerica, Anthony; Krch, Denise

    2014-01-01

    With the general population in the United States becoming increasingly diverse, it is important for rehabilitation professionals to develop the capacity to provide culturally sensitive treatment. This is especially relevant when working with minority populations who have a higher risk for brain injury and poorer rehabilitation outcomes. This article presents a number of clinical vignettes to illustrate how cultural factors can influence behavior in patients recovering from brain injury, as well as rehabilitation staff. The main objectives are to raise awareness among clinicians and stimulate research ideas by highlighting some real world examples of situations where a specialized, patient-centered approach needs to consider factors of cultural diversity. Because one's own world view impacts the way we see the world and interpret behavior, it is important to understand one's own ethnocentrism when dealing with a diverse population of patients with brain injury where behavioral sequelae are often expected. Being able to see behavior after brain injury with an open mind and taking into account cultural and contextual factors is an important step in developing culturally competent rehabilitation practices.

  2. Traumatic Brain Injury and Special Education: An Information Resource Guide.

    Science.gov (United States)

    Stevens, Alice M.

    This resource guide of annotated references on traumatic brain injury (TBI) was created to help educators locate information from such disciplines as neurology, neuropsychology, rehabilitation, and pediatric medicine. Twenty-four resources published from 1990 to 1994 are listed, with annotations. The resources include research reports/reviews,…

  3. Predictors of Outcome following Acquired Brain Injury in Children

    Science.gov (United States)

    Johnson, Abigail R.; DeMatt, Ellen; Salorio, Cynthia F.

    2009-01-01

    Acquired brain injury (ABI) in children and adolescents can result from multiple causes, including trauma, central nervous system infections, noninfectious disorders (epilepsy, hypoxia/ischemia, genetic/metabolic disorders), tumors, and vascular abnormalities. Prediction of outcomes is important, to target interventions, allocate resources,…

  4. Assisting Students with a Traumatic Brain Injury in School Interventions

    Science.gov (United States)

    Aldrich, Erin M.; Obrzut, John E.

    2012-01-01

    Traumatic brain injury (TBI) in children and adolescents can significantly affect their lives and educational needs. Deficits are often exhibited in areas such as attention, concentration, memory, executive function, emotional regulation, and behavioral functioning, but specific outcomes are not particular to any one child or adolescent with a…

  5. A patients perspective on eating difficulties following brain injury

    DEFF Research Database (Denmark)

    Kjaersgaard, Annette; Kristensen, Hanne Kaae; Borg, Tove

    Purpose: The aim of this study is to explore and interpret how persons with acquired brain injury (ABI) experience and adapt to reduced abilities to swallowing and eating - and clinical implications. Method: Explorative multiple-case study with qualitative interviews of six persons following ABI ...

  6. Evaluation of a Health Education Programme about Traumatic Brain Injury

    Science.gov (United States)

    Garcia, Jane Mertz; Sellers, Debra M.; Hilgendorf, Amy E.; Burnett, Debra L.

    2014-01-01

    Objective: Our aim was to evaluate a health education programme (TBIoptions: Promoting Knowledge) designed to increase public awareness and understanding about traumatic brain injury (TBI) through in-person (classroom) and computer-based (electronic) learning environments. Design: We used a pre-post survey design with randomization of participants…

  7. Human plasma DNP level after severe brain injury

    Institute of Scientific and Technical Information of China (English)

    GAO Yi-lu; XIN Hui-ning; FENG Yi; FAN Ji-wei

    2006-01-01

    Objective: To determine the relationship between DNP level after human severe brain injury and hyponatremia as well as isorrhea.Methods: The peripheral venous plasma as control was collected from 8 volunteers. The peripheral venous plasma from 14 severe brain injury patients were collected in the 1, 3, 7 days after injury. Radioimmunoassay was used to detect the DNP concentration. Meanwhile, daily plasma and urine electrolytes, osmotic pressure as well as 24 h liquid intake and output volume were detected.Results: The normal adult human plasma DNP level was 62. 46 pg/ml ± 27. 56 pg/ml. In the experimental group, the plasma DNP levels were higher from day 1 today 3 in 8 of the 14 patients than those in the control group (P1 =0.05, P3 =0.03). Negative fluid balance occurred in 8 patients and hyponatremia in 7 patients. The increase of plasma DNP level was significantly correlated with the development of a negative fluid balance (r=-0.69,P<0.01) and hyponatremia (x2 =4.38, P<0.05).Conclusions: The increase of plasma DNP level is accompanied by the enhancement of natriuretic and diuretic responses in severe brain-injured patients, which is associated with the development of a negative fluid balance and hyponatremia after brain injury.

  8. School-Based Traumatic Brain Injury and Concussion Management Program

    Science.gov (United States)

    Davies, Susan C.

    2016-01-01

    Traumatic brain injuries (TBIs), including concussions, can result in a constellation of physical, cognitive, emotional, and behavioral symptoms that affect students' well-being and performance at school. Despite these effects, school personnel remain underprepared identify, educate, and assist this population of students. This article describes a…

  9. Clinimetrics and functional outcome one year after traumatic brain injury

    NARCIS (Netherlands)

    J.T.M. van Baalen (Bianca)

    2008-01-01

    textabstractThis thesis is based on the findings of the FuPro-TBI (Functional Prognosis in Traumatic Brain Injury) study, which was part of the national FuPro research programme which investigated the functional prognosis of four neurological disorders: multiple sclerosis (MS), stroke, amyotrofic l

  10. Death associated protein kinases: molecular structure and brain injury.

    Science.gov (United States)

    Nair, Syam; Hagberg, Henrik; Krishnamurthy, Rajanikant; Thornton, Claire; Mallard, Carina

    2013-07-04

    Perinatal brain damage underlies an important share of motor and neurodevelopmental disabilities, such as cerebral palsy, cognitive impairment, visual dysfunction and epilepsy. Clinical, epidemiological, and experimental studies have revealed that factors such as inflammation, excitotoxicity and oxidative stress contribute considerably to both white and grey matter injury in the immature brain. A member of the death associated protein kinase (DAPk) family, DAPk1, has been implicated in cerebral ischemic damage, whereby DAPk1 potentiates NMDA receptor-mediated excitotoxicity through interaction with the NR2BR subunit. DAPk1 also mediate a range of activities from autophagy, membrane blebbing and DNA fragmentation ultimately leading to cell death. DAPk mRNA levels are particularly highly expressed in the developing brain and thus, we hypothesize that DAPk1 may play a role in perinatal brain injury. In addition to reviewing current knowledge, we present new aspects of the molecular structure of DAPk domains, and relate these findings to interacting partners of DAPk1, DAPk-regulation in NMDA-induced cerebral injury and novel approaches to blocking the injurious effects of DAPk1.

  11. Opioid Abuse after Traumatic Brain Injury: Evaluation Using Rodent Models

    Science.gov (United States)

    2015-09-01

    compulsive buying and the burden perceived by caregivers after moderate-to-severe traumatic brain injury. Psychopathology. 2011;44:158-164. Rochat L...well as the progression from abuse to compulsive drug taking and addiction (Coluzzi and Pappagallo, 2005; Koob and Volkow, 2010). Physical dependence

  12. Opioid Abuse After Traumatic Brain Injury: Evaluation Using Rodet Models

    Science.gov (United States)

    2014-07-01

    impulsivity relates to compulsive buying and the burden perceived by caregivers after moderate-to-severe traumatic brain injury. Psychopathology...mechanism for the continued misuse/abuse of opioid drugs as well as the progression from abuse to compulsive drug taking and addiction (Coluzzi and

  13. Rehabilitation of discourse impairments after acquired brain injury

    Directory of Open Access Journals (Sweden)

    Gigiane Gindri

    Full Text Available ABSTRACT Language impairments in patients with acquired brain injury can have a negative impact on social life as well as on other cognitive domains. Discourse impairments are among the most commonly reported communication deficits among patients with acquired brain damage. Despite advances in the development of diagnostic tools for detecting such impairments, few studies have investigated interventions to rehabilitate patients presenting with these conditions. Objective: The aim of this study was to present a systematic review of the methods used in the rehabilitation of discourse following acquired brain injury. Methods: The PubMed database was searched for articles using the following keywords: "rehabilitation", "neurological injury", "communication" and "discursive abilities". Results: A total of 162 abstracts were found, but only seven of these met criteria for inclusion in the review. Four studies involved samples of individuals with aphasia whereas three studies recruited samples of individuals with traumatic brain injury. Conclusion: All but one article found that patient performance improved following participation in a discourse rehabilitation program.

  14. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1.

    Science.gov (United States)

    Henninger, Nils; Bouley, James; Sikoglu, Elif M; An, Jiyan; Moore, Constance M; King, Jean A; Bowser, Robert; Freeman, Marc R; Brown, Robert H

    2016-04-01

    Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptor Sarm1 (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model. Sarm1(-/-) mice developed fewer β-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared to Sarm1(+/+) mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function in Sarm1(-/-) animals. Finally, using in vivo proton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1(-/-) mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury.

  15. Hypofibrinogenemia in isolated traumatic brain injury in Indian patients

    Directory of Open Access Journals (Sweden)

    Chhabra Gaurav

    2010-12-01

    Full Text Available Coagulation abnormalities are common in patients with head injuries. However, the effect of brain injury on fibrinogen levels has not been well studied prospectively to assess coagulation abnormalities in patients with moderate and severe head injuries and correlate these abnormalities with the neurologic outcome. Consecutive patients with moderate (Glasgow Comma Scale (GCS,9-12 and severe (GCS≤8 head injuries were the subjects of this pilot study, All patients had coagulation parameters, including plasma fibrinogen levels measured. Clinical and computed tomography (CT scan findings and immediate clinical outcome were analyzed. Of the 100 patients enrolled, only seven (7% patients had hypofibrinogenemia (fibrinogen ≤200 mg/dL. The head injury was moderate in two patients and severe in five patients. Fibrinogen levels showed a progressively increasing trend in four patients (three with severe head injuries and one with moderate head injury. CT scan revealed subdural hematoma in five patients; extradural hematoma in one; and subarachnoid hemorrhage in another patient. Of the seven patients, two patients died during hospital. Large-scale prospective studies are needed to assess the fibrinogen level in patients with head injury and its impact on outcome.

  16. Past, Present, and Future of Traumatic Brain Injury Research.

    Science.gov (United States)

    Hawryluk, Gregory W J; Bullock, M Ross

    2016-10-01

    Traumatic brain injury (TBI) is the greatest cause of death and severe disability in young adults; its incidence is increasing in the elderly and in the developing world. Outcome from severe TBI has improved dramatically as a result of advancements in trauma systems and supportive critical care, however we remain without a therapeutic which acts directly to attenuate brain injury. Recognition of secondary injury and its molecular mediators has raised hopes for such targeted treatments. Unfortunately, over 30 late-phase clinical trials investigating promising agents have failed to translate a therapeutic for clinical use. Numerous explanations for this failure have been postulated and are reviewed here. With this historical context we review ongoing research and anticipated future trends which are armed with lessons from past trials, new scientific advances, as well as improved research infrastructure and funding. There is great hope that these new efforts will finally lead to an effective therapeutic for TBI as well as better clinical management strategies.

  17. Neuropathology of mild traumatic brain injury: relationship to neuroimaging findings.

    Science.gov (United States)

    Bigler, Erin D; Maxwell, William L

    2012-06-01

    Neuroimaging identified abnormalities associated with traumatic brain injury (TBI) are but gross indicators that reflect underlying trauma-induced neuropathology at the cellular level. This review examines how cellular pathology relates to neuroimaging findings with the objective of more closely relating how neuroimaging findings reveal underlying neuropathology. Throughout this review an attempt will be made to relate what is directly known from post-mortem microscopic and gross anatomical studies of TBI of all severity levels to the types of lesions and abnormalities observed in contemporary neuroimaging of TBI, with an emphasis on mild traumatic brain injury (mTBI). However, it is impossible to discuss the neuropathology of mTBI without discussing what occurs with more severe injury and viewing pathological changes on some continuum from the mildest to the most severe. Historical milestones in understanding the neuropathology of mTBI are reviewed along with implications for future directions in the examination of neuroimaging and neuropathological correlates of TBI.

  18. 78 FR 9929 - Current Traumatic Brain Injury State Implementation Partnership Grantees; Non-Competitive One...

    Science.gov (United States)

    2013-02-12

    ...-Competitive One-Year Extension Funds for Current Traumatic Brain Injury (TBI) State Implementation Partnership... Traumatic Brain Injury Act of 2008 (Pub. L. 110- 206). Under this authority, the HRSA TBI Program is charged... HUMAN SERVICES Health Resources and Services Administration Current Traumatic Brain Injury......

  19. Postdeployment Symptom Changes and Traumatic Brain Injury and/or Posttraumatic Stress Disorder in Men

    Science.gov (United States)

    2012-01-01

    traumatic brain injury ( TBI ) and posttraumatic stress disorder...stress disorder, TBI = traumatic brain injury . *Address all correspondence to Hilary J. Aralis, MS; Naval Health Research Center, Warfighter...both diagnoses. See Figure 1 for sampling details. Figure 1. Flow diagram outlining selection of final blast traumatic brain injury ( TBI ) and no TBI

  20. Penetrating Brain Injury after Suicide Attempt with Speargun

    Directory of Open Access Journals (Sweden)

    John Ross Williams

    2014-07-01

    Full Text Available Penetrating cranial injury by mechanisms other than are exceedingly rare, and so strategies and guidelines for the management of PBI are largely informed by data from higher-velocity penetrating injuries. Here we present a case of penetrating brain injury by the low velocity mechanism of a harpoon from an underwater fishing speargun in an attempted suicide by a 56-year-old Caucasian male. The case raised a number of interesting points in management of lower-velocity penetrating brain injury (LVPBI, including benefit in delaying foreign body removal to allow for tamponade; the importance of history taking in establishing the social/legal significance of the events surrounding the injury; the use of cerebral angiogram in all cases of PBI; advantages of using DECT to reduce artifact when available; and antibiotic prophylaxis in the context of idiosyncratic histories of usage of penetrating objects before coming in contact with the intracranial environment. We present here the management of the case in full along with an extended discussion and review of existing literature regarding key points in management of LVPBI vs. higher velocity forms of intracranial injury.

  1. The Citicoline Brain Injury Treatment (COBRIT) Trial: Design and Methods

    Science.gov (United States)

    Zafonte, Ross; Lee, Shing M.; Levin, Bruce; Diaz-Arrastia, Ramon; Ansel, Beth; Eisenberg, Howard; Timmons, Shelly D.; Temkin, Nancy; Novack, Thomas; Ricker, Joseph; Merchant, Randall; Jallo, Jack

    2009-01-01

    Abstract Traumatic brain injury (TBI) is a major cause of death and disability. In the United States alone approximately 1.4 million sustain a TBI each year, of which 50,000 people die, and over 200,000 are hospitalized. Despite numerous prior clinical trials no standard pharmacotherapy for the treatment of TBI has been established. Citicoline, a naturally occurring endogenous compound, offers the potential of neuroprotection, neurorecovery, and neurofacilitation to enhance recovery after TBI. Citicoline has a favorable side-effect profile in humans and several meta-analyses suggest a benefit of citicoline treatment in stroke and dementia. COBRIT is a randomized, double-blind, placebo-controlled, multi-center trial of the effects of 90 days of citicoline on functional outcome in patients with complicated mild, moderate, and severe TBI. In all, 1292 patients will be recruited over an estimated 32 months from eight clinical sites with random assignment to citicoline (1000 mg twice a day) or placebo (twice a day), administered enterally or orally. Functional outcomes are assessed at 30, 90, and 180 days after the day of randomization. The primary outcome consists of a set of measures that will be analyzed as a composite measure using a global test procedure at 90 days. The measures comprise the following core battery: the California Verbal Learning Test II; the Controlled Oral Word Association Test; Digit Span; Extended Glasgow Outcome Scale; the Processing Speed Index; Stroop Test part 1 and Stroop Test part 2; and Trail Making Test parts A and B. Secondary outcomes include survival, toxicity, and rate of recovery. PMID:19803786

  2. The citicoline brain injury treatment (COBRIT) trial: design and methods.

    Science.gov (United States)

    Zafonte, Ross; Friedewald, William T; Lee, Shing M; Levin, Bruce; Diaz-Arrastia, Ramon; Ansel, Beth; Eisenberg, Howard; Timmons, Shelly D; Temkin, Nancy; Novack, Thomas; Ricker, Joseph; Merchant, Randall; Jallo, Jack

    2009-12-01

    Traumatic brain injury (TBI) is a major cause of death and disability. In the United States alone approximately 1.4 million sustain a TBI each year, of which 50,000 people die, and over 200,000 are hospitalized. Despite numerous prior clinical trials no standard pharmacotherapy for the treatment of TBI has been established. Citicoline, a naturally occurring endogenous compound, offers the potential of neuroprotection, neurorecovery, and neurofacilitation to enhance recovery after TBI. Citicoline has a favorable side-effect profile in humans and several meta-analyses suggest a benefit of citicoline treatment in stroke and dementia. COBRIT is a randomized, double-blind, placebo-controlled, multi-center trial of the effects of 90 days of citicoline on functional outcome in patients with complicated mild, moderate, and severe TBI. In all, 1292 patients will be recruited over an estimated 32 months from eight clinical sites with random assignment to citicoline (1000 mg twice a day) or placebo (twice a day), administered enterally or orally. Functional outcomes are assessed at 30, 90, and 180 days after the day of randomization. The primary outcome consists of a set of measures that will be analyzed as a composite measure using a global test procedure at 90 days. The measures comprise the following core battery: the California Verbal Learning Test II; the Controlled Oral Word Association Test; Digit Span; Extended Glasgow Outcome Scale; the Processing Speed Index; Stroop Test part 1 and Stroop Test part 2; and Trail Making Test parts A and B. Secondary outcomes include survival, toxicity, and rate of recovery.

  3. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats

    Directory of Open Access Journals (Sweden)

    Huang Yen

    2011-09-01

    Full Text Available Abstract Background Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE. Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE. Methods We used a neonatal rat model of HIE by unilateral ligation of carotid artery and subsequent exposure to 8% oxygen for 2 hrs on postnatal day 7 (P7 rats. Neonatal rats were administered three dosages of an antibiotic, ceftriaxone, 48 hrs prior to experimental HIE. Neurobehavioral tests of treated rats were assessed. Brain sections from P14 rats were examined with Nissl and immunohistochemical stain, and TUNEL assay. GLT1 protein expression was evaluated by Western blot and immunohistochemistry. Results Pre-treatment with 200 mg/kg ceftriaxone significantly reduced the brain injury scores and apoptotic cells in the hippocampus, restored myelination in the external capsule of P14 rats, and improved the hypoxia-ischemia induced learning and memory deficit of P23-24 rats. GLT1 expression was observed in the cortical neurons of ceftriaxone treated rats. Conclusion These results suggest that pre-treatment of infants at risk for HIE with ceftriaxone may reduce subsequent brain injury.

  4. Perceptions of physical activity and walking in an early stage after stroke or acquired brain injury.

    Science.gov (United States)

    Törnbom, Karin; Sunnerhagen, Katharina S; Danielsson, Anna

    2017-01-01

    Physical activity has been established as being highly beneficial for health after stroke. There are considerable global efforts to find rehabilitation programs that encourage increased physical activity for persons with stroke. However, many persons with stroke or acquired brain injury do not reach recommended levels of physical activity and increased knowledge about why is needed. We aimed to explore views and experiences of physical activity and walking among persons with stroke or acquired brain injury. A qualitative study was conducted, among persons with stroke (n = 8) or acquired brain injury (n = 2) from a rehabilitation unit at Sahlgrenska University Hospital in Sweden. Semi-structured in-depth interviews were held about perceptions and experiences of walking and physical activity in general. Data were analyzed using qualitative content analysis, with categories that were determined inductively. Physical activity in general and walking ability more specifically were considered very important by the participants. However, physical activity was, regardless of exercising habits pre-injury, associated with different kinds of negative feelings and experiences. Commonly reported internal barriers in the current study were; fatigue, fear of falling or getting hurt in traffic, lack of motivation and depression. Reported external barriers were mostly related to walking, for example; bad weather, uneven ground, lack of company or noisy or too busy surroundings. Persons with stroke or acquired brain injury found it difficult to engage in and sustain an eligible level of physical activity. Understanding individual concerns about motivators and barriers surrounding physical activity may facilitate the work of forming tailor-made rehabilitation for these groups, so that the levels of physical activity and walking can increase.

  5. Perceptions of physical activity and walking in an early stage after stroke or acquired brain injury

    Science.gov (United States)

    2017-01-01

    Background Physical activity has been established as being highly beneficial for health after stroke. There are considerable global efforts to find rehabilitation programs that encourage increased physical activity for persons with stroke. However, many persons with stroke or acquired brain injury do not reach recommended levels of physical activity and increased knowledge about why is needed. We aimed to explore views and experiences of physical activity and walking among persons with stroke or acquired brain injury. Method A qualitative study was conducted, among persons with stroke (n = 8) or acquired brain injury (n = 2) from a rehabilitation unit at Sahlgrenska University Hospital in Sweden. Semi-structured in-depth interviews were held about perceptions and experiences of walking and physical activity in general. Data were analyzed using qualitative content analysis, with categories that were determined inductively. Results Physical activity in general and walking ability more specifically were considered very important by the participants. However, physical activity was, regardless of exercising habits pre-injury, associated with different kinds of negative feelings and experiences. Commonly reported internal barriers in the current study were; fatigue, fear of falling or getting hurt in traffic, lack of motivation and depression. Reported external barriers were mostly related to walking, for example; bad weather, uneven ground, lack of company or noisy or too busy surroundings. Conclusion Persons with stroke or acquired brain injury found it difficult to engage in and sustain an eligible level of physical activity. Understanding individual concerns about motivators and barriers surrounding physical activity may facilitate the work of forming tailor-made rehabilitation for these groups, so that the levels of physical activity and walking can increase. PMID:28273158

  6. Traumatic brain injury Nature and genetic influences

    Institute of Scientific and Technical Information of China (English)

    Yong Jiang; Xiaochuan Sun

    2008-01-01

    At present,much evidence indicates that TBI is similar in pathology and severity during the acute stage,yet may result in varied outcomes.Known prognostic factors,such as age and severity of injury and treatments,only partially explain this variability.In addition,it has been demonstrated that genetic polymorphisms may play an important role in TBI susceptibility,as well as outcome following TBI.

  7. Triple Peripheral Nerve Injury Accompanying to Traumatic Brain Injury: A Case Report

    Directory of Open Access Journals (Sweden)

    Ižlknur Can

    2014-02-01

    Full Text Available Secondary injuries especially extremity fractures may be seen concurrently with traumatic brain injury (TBI. Peripheral nerve damages may accompany to these fractures and may be missed out, especially in acute stage. In this case report; damage of radial, ulnar and median nerves which was developed secondarily to distal humerus fracture that could not be detected in acute stage, in a patient who had motor vehicle accident (MVA. 29-year-old male patient was admitted with weakness in the right upper extremity. 9 months ago, he had traumatic brain injury because of MVA, and fracture of distal humerus was detected in follow-ups. Upon the suspect of the peripheral nerve injury, the diagnosis was confirmed with ENMG. The patient responded well to the rehabilitation program treatment. In a TBI patient, it must be kept in mind that there might be a secondary trauma and therefore peripheral nerve lesions may accompany to TBI.

  8. Functional significance of brain glycogen in sustaining glutamatergic neurotransmission

    DEFF Research Database (Denmark)

    Sickmann, Helle M; Walls, Anne B; Schousboe, Arne

    2009-01-01

    The involvement of brain glycogen in sustaining neuronal activity has previously been demonstrated. However, to what extent energy derived from glycogen is consumed by astrocytes themselves or is transferred to the neurons in the form of lactate for oxidative metabolism to proceed is at present...... in co-cultures of cerebellar neurons and astrocytes. In the astrocytes it was shown that uptake of the glutamate analogue D-[3H]aspartate was impaired when glycogen degradation was inhibited irrespective of the presence of glucose, signifying that energy derived from glycogen degradation is important...... for the astrocytic compartment. By inhibiting glycogen degradation in co-cultures it was evident that glycogen provides energy to sustain glutamatergic neurotransmission, i.e. release and uptake of glutamate. The relocation of glycogen derived lactate to the neuronal compartment was investigated by employing d...

  9. Early CT signs of progressive hemorrhagic injury following acute traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Wu-song; Zheng, Ping; Xu, Jun-fa; Guo, Yi-jun; Zeng, Jing-song; Yang, Wen-jin; Li, Gao-yi; He, Bin; Yu, Hui [Pudong New Area People' s Hospital, Department of Neurosurgery, Shanghai (China)

    2011-05-15

    Since progressive hemorrhagic injury (PHI) was introduced in neurosurgical literatures, several studies have been performed, the results of which have influenced doctors but do not define guidelines for the best treatment of PHI. PHI may be confirmed by a serial computerized tomography (CT) scan, and it has been shown to be associated with a fivefold increase in the risk of clinical worsening and is a significant cause of morbidity and mortality as well. So, early detection of PHI is practically important in a clinical situation. To analyze the early CT signs of progressive hemorrhagic injury following acute traumatic brain injury (TBI) and explore their clinical significances, PHI was confirmed by comparing the first and repeated CT scans. Data were analyzed and compared including times from injury to the first CT and signs of the early CT scan. Logistic regression analysis was used to show the risk factors related to PHI. A cohort of 630 TBI patients was evaluated, and there were 189 (30%) patients who suffered from PHI. For patients with their first CT scan obtained as early as 2 h post-injury, there were 116 (77.25%) cases who suffered from PHI. The differences between PHIs and non-PHIs were significant in the initial CT scans showing fracture, subarachnoid hemorrhage (SAH), brain contusion, epidural hematoma (EDH), subdural hematoma (SDH), and multiple hematoma as well as the times from injury to the first CT scan (P < 0.01). Logistic regression analysis showed that early CT scans (EDH, SDH, SAH, fracture, and brain contusion) were predictors of PHI (P < 0.01). For patients with the first CT scan obtained as early as 2 h post-injury, a follow-up CT scan should be performed promptly. If the initial CT scan shows SAH, brain contusion, and primary hematoma with brain swelling, an earlier and dynamic CT scan should be performed for detection of PHI as early as possible and the medical intervention would be enforced in time. (orig.)

  10. Sustained attention and prediction: distinct brain maturation trajectories during adolescence.

    Directory of Open Access Journals (Sweden)

    Alix eThillay

    2015-09-01

    Full Text Available Adolescence is a key period for frontal cortex maturation necessary for the development of cognitive ability. Sustained attention and prediction are cognitive functions critical for optimizing sensory processing, and essential to efficiently adapt behaviors in an ever-changing world. The aim of the current study was to investigate the brain developmental trajectories of attentive and predictive processing through adolescence. We recorded EEG in 36 participants from the age of 12 to 24 years (three age groups: 12-14, 14-17, 18-24 years to target development during early and late adolescence, and early adulthood. We chose a visual target detection task which loaded upon sustained attention, and we manipulated target predictability. Continued maturation of sustained attention after age 12 was evidenced by improved performance (hits, false alarms and sensitivity in a detection task, associated with a frontal shift in the scalp topographies of the CNV and P3 responses, with increasing age. No effect of age was observed on predictive processing, with all ages showing similar benefits in reaction time, increases in P3 amplitude (indexing predictive value encoding and memorization, increases in CNV amplitude (corresponding to prediction implementation and reduction in target-P3 latency (reflecting successful prediction building and use, with increased predictive content. This suggests that adolescents extracted and used predictive information to generate predictions as well as adults.The present results show that predictive and attentive processing follow distinct brain developmental trajectories: prediction abilities seem mature by the age of 12 and sustained attention continues to improve after 12-years of age and is associated with maturational changes in the frontal cortices.

  11. Sustained attention and prediction: distinct brain maturation trajectories during adolescence

    Science.gov (United States)

    Thillay, Alix; Roux, Sylvie; Gissot, Valérie; Carteau-Martin, Isabelle; Knight, Robert T.; Bonnet-Brilhault, Frédérique; Bidet-Caulet, Aurélie

    2015-01-01

    Adolescence is a key period for frontal cortex maturation necessary for the development of cognitive ability. Sustained attention and prediction are cognitive functions critical for optimizing sensory processing, and essential to efficiently adapt behaviors in an ever-changing world. The aim of the current study was to investigate the brain developmental trajectories of attentive and predictive processing through adolescence. We recorded EEG in 36 participants from the age of 12–24 years (three age groups: 12–14, 14–17, 18–24 years) to target development during early and late adolescence, and early adulthood. We chose a visual target detection task which loaded upon sustained attention, and we manipulated target predictability. Continued maturation of sustained attention after age 12 was evidenced by improved performance (hits, false alarms (FAs) and sensitivity) in a detection task, associated with a frontal shift in the scalp topographies of the Contingent Negative Variation (CNV) and P3 responses, with increasing age. No effect of age was observed on predictive processing, with all ages showing similar benefits in reaction time, increases in P3 amplitude (indexing predictive value encoding and memorization), increases in CNV amplitude (corresponding to prediction implementation) and reduction in target-P3 latency (reflecting successful prediction building and use), with increased predictive content. This suggests that adolescents extracted and used predictive information to generate predictions as well as adults. The present results show that predictive and attentive processing follow distinct brain developmental trajectories: prediction abilities seem mature by the age of 12 and sustained attention continues to improve after 12-years of age and is associated with maturational changes in the frontal cortices. PMID:26483653

  12. Hippocampus, amygdala and global brain changes 10 years after childhood traumatic brain injury.

    Science.gov (United States)

    Beauchamp, M H; Ditchfield, M; Maller, J J; Catroppa, C; Godfrey, C; Rosenfeld, J V; Kean, M J; Anderson, V A

    2011-04-01

    Traumatic brain injury (TBI) in children results in damage to the developing brain, particularly in severely injured individuals. Little is known, however, of the long-term structural aspects of the brain following childhood TBI. This study investigated the integrity of the brain 10 years post-TBI using magnetic resonance imaging volumetrics in a sample of 49 participants with mild, moderate and severe TBI, evaluated against a normative sample of 20 individuals from a pediatric database with comparable age and gender distribution. Structural integrity was investigated in gray and white matter, and by manually segmenting two regions of interest (hippocampus, amygdala), potentially vulnerable to the effects of childhood TBI. The results indicate that more severe injuries caused a reduction in gray and white brain matter, while all TBI severity levels resulted in increased volumes of cerebrospinal fluid and smaller hippocampal volumes. In addition, enlarged amygdala volumes were detected in severely injured patients compared to their mild and moderate counterparts, suggesting that childhood TBI may disrupt the development of certain brain regions through diffuse pathological changes. The findings highlight the lasting impact of childhood TBI on the brain and the importance of monitoring brain structure in the long-term after early injury. Copyright © 2010 ISDN. Published by Elsevier Ltd. All rights reserved.

  13. Early attention impairment and recovery profiles after childhood traumatic brain injury.

    Science.gov (United States)

    Anderson, Vicki; Eren, Senem; Dob, Rian; Le Brocque, Robyne; Iselin, Greg; Davern, Timothy J; McKinlay, Lynne; Kenardy, Justin

    2012-01-01

    To examine recovery of attention from 3 to 6 months postinjury; to identify effects of injury severity and time since injury on performance; to explore whether complex attention skills (eg, shifting, divided attention, attentional control) are more vulnerable to traumatic brain injury (TBI), and slower to recover than simple attention skills (eg, attentional capacity, selective attention, sustained attention). Prospective longitudinal investigation. A total of 205 school-aged children with TBI were divided into groups according to injury severity (mild = 63%, moderate = 27%, severe = 10%). Emergency departments of 3 metropolitan children's hospitals across Australia. Standardized clinical measures of both simple and complex attention were administered at 3 months and 6 months postinjury. Attention skills were vulnerable to the impact of TBI. More severe injury affected attention skills most negatively. Significant recovery was observed over time. There were few interaction effects, with severity groups exhibiting similar levels of recovery over the 6 months post-TBI. No differences in recovery trajectories were detected for simple and complex attention. These findings have important clinical and educational implications, suggesting that children with TBI, and particularly those with more serious injuries, are most vulnerable to attention deficits in the acute stages postinjury. It is important that schools and families are aware of these limitations and structure expectations accordingly. For example, gradual return to school should be considered, and in the early stages of recovery, children should be provided with sufficient rest time, with reduced expectations for tasks such as homework.

  14. Relationship between Morphofunctional Changes in Open Traumatic Brain Injury and the Severity of Brain Damage in Rats.

    Science.gov (United States)

    Shakova, F M; Barskov, I V; Gulyaev, M V; Prokhorenko, S V; Romanova, G A; Grechko, A V

    2016-07-01

    A correlation between the severity of morphofunctional disturbances and the volume of brain tissue injury determined by MRT was demonstrated on the model of open traumatic brain injury in rats. A relationship between the studied parameters (limb placing and beam walking tests and histological changes) and impact force (the height of load fell onto exposed brain surface) was revealed.

  15. Emergent Endotracheal Intubation and Mortality in Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Fine, Philip R

    2008-11-01

    Full Text Available Objective: To determine the relationship between emergent intubation (emergency department and field intubation cases combined and mortality in patients with traumatic brain injury (TBI while controlling for injury severity.Methods: Retrospective observational study of 981 (35.2% intubated, 64.8% not intubated patients with TBI evaluating the association between intubation status and mortality. Logistic regression was used to analyze the data. Injury severity measures included Head/Neck Abbreviated Injury Scale (H-AIS, systolic blood pressure, type of head injury (blunt vs. penetrating, and a propensity score combining the effects of several other potential confounding variables. Age was also included in the model.Results: The simple association of emergent endotracheal intubation with death had an odds ratio (OR of 14.3 (95% CI = 9.4 – 21.9. The logistic regression model including relevant covariates and a propensity score that adjusted for injury severity and age yielded an OR of 5.9 (95% CI = 3.2 – 10.9.Conclusions: This study indicates that emergent intubation is associated with increased risk of death after controlling for a number of injury severity indicators. We discuss the need for optimal paramedic training, and an understanding of the factors that guide patient selection and the decision to intubate in the field. [WestJEM.2008;9:184-189

  16. Reorganization of Functional Connectivity as a Correlate of Cognitive Recovery in Acquired Brain Injury

    Science.gov (United States)

    Castellanos, Nazareth P.; Paul, Nuria; Ordonez, Victoria E.; Demuynck, Olivier; Bajo, Ricardo; Campo, Pablo; Bilbao, Alvaro; Ortiz, Tomas; del-Pozo, Francisco; Maestu, Fernando

    2010-01-01

    Cognitive processes require a functional interaction between specialized multiple, local and remote brain regions. Although these interactions can be strongly altered by an acquired brain injury, brain plasticity allows network reorganization to be principally responsible for recovery. The present work evaluates the impact of brain injury on…

  17. Traumatic Brain Injury Severity Affects Neurogenesis in Adult Mouse Hippocampus.

    Science.gov (United States)

    Wang, Xiaoting; Gao, Xiang; Michalski, Stephanie; Zhao, Shu; Chen, Jinhui

    2016-04-15

    Traumatic brain injury (TBI) has been proven to enhance neural stem cell (NSC) proliferation in the hippocampal dentate gyrus. However, various groups have reported contradictory results on whether TBI increases neurogenesis, partially due to a wide range in the severities of injuries seen with different TBI models. To address whether the severity of TBI affects neurogenesis in the injured brain, we assessed neurogenesis in mouse brains receiving different severities of controlled cortical impact (CCI) with the same injury device. The mice were subjected to mild, moderate, or severe TBI by a CCI device. The effects of TBI severity on neurogenesis were evaluated at three stages: NSC proliferation, immature neurons, and newly-generated mature neurons. The results showed that mild TBI did not affect neurogenesis at any of the three stages. Moderate TBI promoted NSC proliferation without increasing neurogenesis. Severe TBI increased neurogenesis at all three stages. Our data suggest that the severity of injury affects adult neurogenesis in the hippocampus, and thus it may partially explain the inconsistent results of different groups regarding neurogenesis following TBI. Further understanding the mechanism of TBI-induced neurogenesis may provide a potential approach for using endogenous NSCs to protect against neuronal loss after trauma.

  18. Impaired Cerebral Autoregulation during Head Up Tilt in Patients with Severe Brain Injury

    DEFF Research Database (Denmark)

    Riberholt, Christian Gunge; Olesen, Niels Damkjær; Thing, Mira;

    2016-01-01

    acquired brain injury and a low level of consciousness. Fourteen patients with severe acquired brain injury and orthostatic intolerance and fifteen healthy volunteers were enrolled. Blood pressure was evaluated by pulse contour analysis, heart rate and RR-intervals were determined by electrocardiography...... mean velocity and estimated cerebral perfusion pressure. Patients with acquired brain injury presented an increase in mean flow index during head-up tilt indicating impaired autoregulation (P ....1 Hz spectral power in patients compared to healthy controls suggesting baroreflex dysfunction. In conclusion, patients with severe acquired brain injury and orthostatic intolerance during head-up tilt have impaired cerebral autoregulation more than one month after brain injury....

  19. MICROGLIA ACTIVATION AS A BIOMARKER FOR TRAUMATIC BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    Diana G Hernadez-Ontiveros

    2013-03-01

    Full Text Available Traumatic brain injury (TBI has become the signature wound of wars in Afghanistan and Iraq. Injury may result from a mechanical force, a rapid acceleration-deceleration movement, or a blast wave. A cascade of secondary cell death events ensues after the initial injury. In particular, multiple inflammatory responses accompany TBI. A series of inflammatory cytokines and chemokines spreads to normal brain areas juxtaposed to the core impacted tissue. Among the repertoire of immune cells involved, microglia is a key player in propagating inflammation to tissues neighboring the core site of injury. Neuroprotective drug trials in TBI have failed, likely due to their sole focus on abrogating neuronal cell death and ignoring the microglia response despite these inflammatory cells’ detrimental effects on the brain. Another relevant point to consider is the veracity of results of animal experiments due to deficiencies in experimental design, such as incomplete or inadequate method description, data misinterpretation and reporting may introduce bias and give false-positive results. Thus, scientific publications should follow strict guidelines that include randomization, blinding, sample-size estimation and accurate handling of all data (Landis et al., 2012. A prolonged state of inflammation after brain injury may linger for years and predispose patients to develop other neurological disorders, such as Alzheimer’s disease. TBI patients display progressive and long-lasting impairments in their physical, cognitive, behavioral, and social performance. Here, we discuss inflammatory mechanisms that accompany TBI in an effort to increase our understanding of the dynamic pathological condition as the disease evolves over time and begin to translate these findings for defining new and existing inflammation-based biomarkers and treatments for TBI.

  20. Predictors of outcome after treatment of mild traumatic brain injury: a pilot study.

    Science.gov (United States)

    Leininger, Shelley; Strong, Carrie-Ann H; Donders, Jacobus

    2014-01-01

    To determine factors affecting outcome of comprehensive outpatient rehabilitation of individuals who sustained a mild traumatic brain injury. From a 4-year series of referrals, 49 nonconsecutive participants met criteria for mild traumatic brain injury (ie, loss of consciousness 12). Outpatient, community-based postconcussion clinic at a rehabilitation hospital. Participants and therapy staff completed the Mayo-Portland Adaptability Inventory-Fourth Edition (MPAI-4) at the initiation and conclusion of treatment. Participants were also administered the Trail Making Test at the start of treatment. Participants generally gave poorer adaptability ratings than staff at the beginning and discharge of treatment. Regression analyses revealed that after controlling for baseline ratings, psychiatric history was associated with worse participant-rated MPAI-4 Adjustment scores at treatment discharge, whereas better Trail Making Test Part B performance at initiation of treatment predicted better participant-rated MPAI-4 Ability at treatment discharge. Premorbid demographic and baseline neurocognitive factors should be taken into account prior to comprehensive treatment of mild traumatic brain injury, as they can influence long-term outcomes. Adaptability ratings from both staff and participants can be useful in gaining different perspectives and assessing factors affecting recovery.

  1. Arterial injuries after penetrating brain injury in civilians: risk factors on admission head computed tomography.

    Science.gov (United States)

    Bodanapally, Uttam K; Saksobhavivat, Nitima; Shanmuganathan, Kathirkamanathan; Aarabi, Bizhan; Roy, Ashis K

    2015-01-01

    The object of this study was to determine the specific CT findings of the injury profile in penetrating brain injury (PBI) that are risk factors related to intracranial arterial injuries. The authors retrospectively evaluated admission head CTs and accompanying digital subtraction angiography (DSA) studies from patients with penetrating trauma to the head in the period between January 2005 and December 2012. Two authors reviewed the CT images to determine the presence or absence of 30 injury profile variables and quantified selected variables. The CT characteristics in patients with and without arterial injuries were compared using univariate analysis, multivariate analysis, and receiver operating characteristic (ROC) curve analysis to determine the respective risk factors, independent predictors, and optimal threshold values for the continuous variables. Fifty-five patients were eligible for study inclusion. The risk factors for an intracranial arterial injury on univariate analysis were an entry wound over the frontobasal-temporal regions, a bihemispheric wound trajectory, a wound trajectory in proximity to the circle of Willis (COW), a subarachnoid hemorrhage (SAH), a higher SAH score, an intraventricular hemorrhage (IVH), and a higher IVH score. A trajectory in proximity to the COW was the best predictor of injury (OR 6.8 and p = 0.005 for all penetrating brain injuries [PBIs]; OR 13.3 and p = 0.001 for gunshot wounds [GSWs]). Significant quantitative variables were higher SAH and IVH scores. An SAH score of 3 (area under the ROC curve [AUC] for all PBIs 0.72; AUC for GSWs 0.71) and an IVH score of 3 (AUC for all PBIs 0.65; AUC for GSWs 0.65) could be used as threshold values to suggest an arterial injury. The risk factors identified may help radiologists suggest the possibility of arterial injury and prioritize neurointerventional consultation and potential DSA studies.

  2. Perinatal Hypoxic-Ischemic brain injury; MR findings

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Woo; Seo, Chang Hye [Inje University Pusan Paik Hospital, Pusan (Korea, Republic of)

    1994-09-15

    To characterize the MR findings of hypoxic-ischemic brain injury and to assess the value of the MR imaging. SE T1-, T2-weighted, and IR brain MR images of 44 infants and children with the past history of perinatal hypoxic insults were reviewed. Abnormal brain MR findings of 8 patients with birth history of prematurity and 36 patients with birth history of full-term/posterm including 7 with severe anoxic insult history, were compared in regard to the location and the character of the lesions. MRI demonstrated the followings; (1)abnormal signal intensity lesions of subcortical and/or deep cerebral white matter, cortex, and deep gray matter, (2)atrophy of the cerebral white matter, cortex and corpus callosum, with/without ventriculomegaly, and (3)delay in myelination. Periventricular and deep white matter lesions were demonstrated in the prematurity, the deep white matter lesions and/ or subcortical white matter lesions in the term/post-term, and deep gray matter lesions in the 7 patients with severe anoxic insults history. MR imaging was useful in the diagnosis of the hypoxic-ischemic brain injury, and the white and gray matter lesions were correlated with the time of the injury and the severity of hypoxic insult.

  3. Integrated undergraduate research experience for the study of brain injury.

    Science.gov (United States)

    Barnes, Clifford L; Sierra, Michelle; Delay, Eugene R

    2003-01-01

    We developed a series of hands-on laboratory exercises on "Brain Injury" designed around several pedagogical goals that included the development of: 1) knowledge of the scientific method, 2) student problem solving skills by testing cause and effect relationships, 3) student analytical and critical thinking skills by evaluating and interpreting data, identifying alternative explanations for data, and identifying confounding variables, and 4) student writing skills by reporting their findings in manuscript form. Students, facilitated by the instructor, developed a testable hypothesis on short-term effects of brain injury by analyzing lesion size and astrocytic activity. Four sequential laboratory exercises were used to present and practice ablation techniques, histological processing, microscopic visualization and image-capture, and computer aided image analysis. This exercise culminated in a laboratory report that mimicked a research article. The effectiveness of the laboratory sequence was assessed by measuring the acquisition of 1) content on anatomical, physiological, and cellular responses of the brain to traumatic brain injury, and 2) laboratory skills and methods of data-collection and analysis using surgical procedures, histology, microscopy, and image analysis. Post-course test scores, significantly greater than pre-course test scores and greater than scores from a similar but unstructured laboratory class, indicated that this hands-on approach to teaching an undergraduate research laboratory was successful. Potential variations in the integrated laboratory exercise, including multidisciplinary collaborations, are also noted.

  4. Substance Use and Mild Traumatic Brain Injury Risk Reduction and Prevention: A Novel Model for Treatment

    Directory of Open Access Journals (Sweden)

    Jennifer H. Olson-Madden

    2012-01-01

    Full Text Available Traumatic brain injury (TBI and substance use disorders (SUDs frequently co-occur. Individuals with histories of alcohol or other drug use are at greater risk for sustaining TBI, and individuals with TBI frequently misuse substances before and after injury. Further, a growing body of literature supports the relationship between comorbid histories of mild TBI (mTBI and SUDs and negative outcomes. Alcohol and other drug use are strongly associated with risk taking. Disinhibition, impaired executive function, and/or impulsivity as a result of mTBI also contribute to an individual’s proclivity towards risk-taking. Risk-taking behavior may therefore, be a direct result of SUD and/or history of mTBI, and risky behaviors may predispose individuals for subsequent injury or continued use of substances. Based on these findings, evaluation of risk-taking behavior associated with the co-occurrence of SUD and mTBI should be a standard clinical practice. Interventions aimed at reducing risky behavior among members of this population may assist in decreasing negative outcomes. A novel intervention (Substance Use and Traumatic Brain Injury Risk Reduction and Prevention (STRRP for reducing and preventing risky behaviors among individuals with co-occurring mTBI and SUD is presented. Areas for further research are discussed.

  5. Alterations in Daytime and Nighttime Activity in Piglets after Focal and Diffuse Brain Injury.

    Science.gov (United States)

    Olson, Emily; Badder, Carlie; Sullivan, Sarah; Smith, Colin; Propert, Kathleen; Margulies, Susan S

    2016-04-15

    We have developed and implemented a noninvasive, objective neurofunctional assessment for evaluating the sustained effects of traumatic brain injury (TBI) in piglets with both diffuse and focal injury types. Derived from commercial actigraphy methods in humans, this assessment continuously monitors the day/night activity of piglets using close-fitting jackets equipped with tri-axial accelerometers to monitor movements of the thorax. Acceleration metrics were correlated (N = 7 naïve piglets) with video images to define values associated with a range of activities, from recumbancy (rest) to running. Both focal (N = 8) and diffuse brain injury (N = 9) produced alterations in activity that were significant 4 days post-TBI. Compared to shams (N = 6) who acclimated to the animal facility 4 days after an anesthesia experience by blurring the distinction between day and night activity, post-TBI time-matched animals had larger fractions of inactive periods during the daytime than nighttime, and larger fractions of active time in the night were spent in high activity (e.g., constant walking, intermittent running) than during the day. These persistent disturbances in rest and activity are similar to those observed in human adults and children post-TBI, establishing actigraphy as a translational metric, used in both humans and large animals, for assessment of injury severity, progressions, and intervention.

  6. The impact of previous traumatic brain injury on health and functioning: a TRACK-TBI study.

    Science.gov (United States)

    Dams-O'Connor, Kristen; Spielman, Lisa; Singh, Ayushi; Gordon, Wayne A; Lingsma, Hester F; Maas, Andrew I R; Manley, Geoffrey T; Mukherjee, Pratik; Okonkwo, David O; Puccio, Ava M; Schnyer, David M; Valadka, Alex B; Yue, John K; Yuh, Esther L

    2013-12-15

    The idea that multiple traumatic brain injury (TBI) can have a cumulative detrimental effect on functioning is widely accepted. Most research supporting this idea comes from athlete samples, and it is not known whether remote history of previous TBI affects functioning after subsequent TBI in community-based samples. This study investigates whether a previous history of TBI with loss of consciousness (LOC) is associated with worse health and functioning in a sample of individuals who require emergency department care for current TBI. Twenty-three percent of the 586 individuals with current TBI in the Transforming Research and Clinical Knowledge in Traumatic Brain Injury study reported having sustained a previous TBI with LOC. Individuals with previous TBI were more likely to be unemployed (χ(2)=17.86; p=0.000), report a variety of chronic medical and psychiatric conditions (4.75≤χ(2)≥24.16; pTBI history. Those with a previous TBI had less-severe acute injuries, but experienced worse outcomes at 6-month follow-up. Results of a series of regression analyses controlling for demographics and acute injury severity indicated that individuals with previous TBI reported more mood symptoms, more postconcussive symptoms, lower life satisfaction, and had slower processing speed and poorer verbal learning, compared to those with no previous TBI history. These findings suggest that history of TBI with LOC may have important implications for health and psychological functioning after TBI in community-based samples.

  7. Mass spectrometry imaging of rat brain lipid profile changes over time following traumatic brain injury.

    Science.gov (United States)

    Roux, Aurelie; Muller, Ludovic; Jackson, Shelley N; Post, Jeremy; Baldwin, Katherine; Hoffer, Barry; Balaban, Carey D; Barbacci, Damon; Schultz, J Albert; Gouty, Shawn; Cox, Brian M; Woods, Amina S

    2016-10-15

    Mild traumatic brain injury (TBI) is a common public health issue that may contribute to chronic degenerative disorders. Membrane lipids play a key role in tissue responses to injury, both as cell signals and as components of membrane structure and cell signaling. This study demonstrates the ability of high resolution mass spectrometry imaging (MSI) to assess sequences of responses of lipid species in a rat controlled cortical impact model for concussion. A matrix of implanted silver nanoparticles was implanted superficially in brain sections for matrix-assisted laser desorption (MALDI) imaging of 50μm diameter microdomains across unfixed cryostat sections of rat brain. Ion-mobility time-of-flight MS was used to analyze and map changes over time in brain lipid composition in a rats after Controlled Cortical Impact (CCI) TBI. Brain MS images showed changes in sphingolipids near the CCI site, including increased ceramides and decreased sphingomyelins, accompanied by changes in glycerophospholipids and cholesterol derivatives. The kinetics differed for each lipid class; for example ceramides increased as early as 1 day after the injury whereas other lipids changes occurred between 3 and 7 days post injury. Silver nanoparticles MALDI matrix is a sensitive new tool for revealing previously undetectable cellular injury response and remodeling in neural, glial and vascular structure of the brain. Lipid biochemical and structural changes after TBI could help highlighting molecules that can be used to determine the severity of such injuries as well as to evaluate the efficacy of potential treatments. Copyright © 2016. Published by Elsevier B.V.

  8. Neurobehavioral Effects of Levetiracetam in Patients with Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Jared F Benge

    2013-12-01

    Full Text Available Moderate to severe traumatic brain injury (TBI is one of the leading causes of acquired epilepsy. Prophylaxis for seizures is the standard of care for individuals with moderate to severe injuries at risk for developing seizures, though relatively limited comparative data is available to guide clinicians in their choice of agents. There have however been experimental studies which demonstrate potential neuroprotective qualities of levetiracetam after TBI, and in turn there is hope that eventually such agents may improve neurobehavioral outcomes post-TBI. This mini-review summarizes the available studies and suggests areas for future studies.

  9. [The effects of dancing on the brain and possibilities as a form of rehabilitation in severe brain injuries].

    Science.gov (United States)

    Kullberg-Turtiainen, Marjo

    2013-01-01

    Very little research has been done on the effect of dancing on the rehabilitation of patients having a severe brain injury. In addition to motor problems, the symptom picture of the sequelae of severe brain injuries often involves strong fatigability, reduced physiological arousal, disturbances of coordination of attention, difficulties of emotional control and impairment of memory. This review deals with the neural foundation of dancing and the possibilities of dancing in the rehabilitation of severe brain injuries.

  10. Multicenter trial of early hypothermia in severe brain injury.

    Science.gov (United States)

    Clifton, Guy L; Drever, Pamala; Valadka, Alex; Zygun, David; Okonkwo, David

    2009-03-01

    The North American Brain Injury Study: Hypothermia IIR (NABIS:H IIR) is a randomized clinical trial designed to enroll 240 patients with severe brain injury between the ages of 16 and 45 years. The primary outcome measure is the dichotomized Glasgow Outcome Scale (GOS) at 6 months after injury. The study has the power to detect a 17.5% absolute difference in the percentage of patients with a good outcome with a power of 80%. All patients are randomized by waiver of consent unless family is immediately available. Enrollment is within 2.5 h of injury. Patients may be enrolled in the field by emergency medical services personnel affiliated with the study or by study personnel when the patient arrives at the emergency department. Patients who do not follow commands and have no exclusion criteria and who are enrolled in the hypothermia arm of the study are cooled to 35 degrees C as rapidly as possible by intravenous administration of up to 2 liters of chilled crystalloid. Those patients who meet the criteria for the second phase of the protocol (primarily a post-resuscitation GCS 3-8 without hypotension and without severe associated injuries) are cooled to 33 degrees C. Patients enrolled in the normothermia arm receive standard management at normothermia. As of December 2007, 74 patients had been randomized into phase II of the protocol. Patients in the hypothermia arm reached 35 degrees C in 2.7 +/- 1.1 (SD) h after injury and reached 33 degrees C at 4.4 +/- 1.5 h after injury.

  11. Brain Cholinergic Function and Response to Rivastigmine in Patients With Chronic Sequels of Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Östberg, Anna; Virta, Jere; Rinne, Juha O

    2017-01-01

    subjects for more than 1 year after at least moderate traumatic brain injury. Ten of the subjects were respondents and 7 nonrespondents to cholinergic medication. DESIGN:: Cholinergic function was assessed with [methyl-C] N-methylpiperidyl-4-acetate-PET (C-MP4A-PET), which reflects the activity...... was notably lower throughout the cortex in both respondents and nonrespondents, without significant differences between them. CONCLUSION:: Our study suggests that frontal cholinergic dysfunction is associated with the clinical response to cholinergic stimulation in patients with traumatic brain injury....

  12. Facilitated assessment of tissue loss following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anders eHånell

    2012-03-01

    Full Text Available All experimental models of traumatic brain injury (TBI result in a progressive loss of brain tissue. The extent of tissue loss reflects the injury severity and can be measured to evaluate the potential neuroprotective effect of experimental treatments. Quantitation of tissue volumes is commonly performed using evenly spaced brain sections stained using routine histochemical methods and digitally captured. The brain tissue areas are then measured and the corresponding volumes are calculated using the distance between the sections. Measurements of areas are usually performed using a general purpose image analysis software and the results are then transferred to another program for volume calculations. To facilitate the measurement of brain tissue loss we developed novel algorithms which automatically separate the areas of brain tissue from the surrounding image background and identify the ventricles. We implemented these new algorithms by creating a new computer program (SectionToVolume which also has functions for image organization, image adjustments and volume calculations. We analyzed brain sections from mice subjected to severe focal TBI using both SectionToVolume and ImageJ, a commonly used image analysis program. The volume measurements made by the two programs were highly correlated and analysis using SectionToVolume required considerably less time. The inter-rater reliability was high. Given the extensive use of brain tissue loss measurements in TBI research, SectionToVolume will likely be a useful tool for TBI research. We therefore provide both the source code and the program as attachments to this article.

  13. A systematic review on the influence of pre-existing disability on sustaining injury.

    Science.gov (United States)

    Yung, A; Haagsma, J A; Polinder, S

    2014-01-01

    To systematically review studies measuring the influence of pre-existing disability on the risk of sustaining an injury. Systematic review. Electronic databases searched included Medline (Pubmed), ProQuest, Ovid and EMBASE. Studies (1990-2010) in international peer-reviewed journals were identified with main inclusion criteria being that the study assessed involvement of injury sustained by persons with and without pre-existing disability. Studies were collated by design and methods, and evaluation of results. Twenty-two studies met the inclusion criteria of our review. All studies found that persons with disabilities were at a significantly higher risk of sustaining injuries than those without. Persons with disability had a 30-450% increased odds (odds ratio 1.3-5.5) of sustaining injury compared to persons without disability. Among persons with pre-existing disability, the high risk groups of sustaining an injury are children and elderly. People with disabilities experience a higher risk to sustain an injury in comparison to the healthy population. There is a high need for large epidemiological studies of injury among persons with disability, to better address these unique risk profiles in order to prevent additional disability or secondary conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Modulation of the cAMP signaling pathway after traumatic brain injury

    OpenAIRE

    Atkins, Coleen M.; Oliva, Anthony A.; Alonso, Ofelia F.; Pearse, Damien D.; Bramlett, Helen M; Dietrich, W. Dalton

    2007-01-01

    Traumatic brain injury (TBI) results in both focal and diffuse brain pathologies that are exacerbated by the inflammatory response and progress from hours to days after the initial injury. Using a clinically relevant model of TBI, the parasagittal fluid-percussion brain injury (FPI) model, we found injury-induced impairments in the cyclic AMP (cAMP) signaling pathway. Levels of cAMP were depressed in the ipsilateral parietal cortex and hippocampus, as well as activation of its downstream targ...

  15. Treatment of Social Competence in Military Veterans, Service Members, and Civilians with Traumatic Brain Injury

    Science.gov (United States)

    2015-08-01

    injury in the civilian population of the united states, 2005. J Head Trauma Rehabil 2008:23(6): 394-400. 2. Fischer H. A guide to u.S. Military...brain injury. Rehabilitation of traumatic brain injury; New York: Oxford University Press, Inc; 2005. 13. Morton MV, Wehman P. Psychosocial and...to social integration outcomes for adults with traumatic brain injury. Journal of Head Trauma Rehabilitation 2011:26(1): 30-42. 23. Blais MC

  16. Relationship between changes of N-methyl-D-aspartate receptor activity and brain edema after brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the relationship between the changes of N-methyl-D-aspartate (NMDA) receptor activity and brain edema after injury in rats.   Methods: The brain injury models were made by using a free-falling body. The treatment model was induced by means of injecting AP5 into lateral ventricle before brain injury; water contents in brain cortex were measured with dry-wet method; and NMDA receptor activity was detected with a radio ligand binding assay.   Results: The water contents began to increase at 30 minutes and reached the peak at 6 hours after brain injury. The maximal binding (Bmax) of NMDA receptor increased significantly at 15 minutes and reached the peak at 30 minutes, then decreased gradually and had the lowest value 6 hours after brain injury. Followed the treatment with AP5, NMDA receptor activity in the injured brain showed a normal value; and the water contents were lower than that of AP5-free injury group 24 hours after brain injury.   Conclusions: It suggests that excessive activation of NMDA receptor may be one of the most important factors to induce the secondary cerebral impairments, and AP5 may protect the brain from edema after brain injury.

  17. Sibling relationships and behavior after pediatric traumatic brain injury.

    Science.gov (United States)

    Swift, Erika E; Taylor, H Gerry; Kaugars, Astrida Seja; Drotar, Dennis; Yeates, Keith Owen; Wade, Shari L; Stancin, Terry

    2003-02-01

    To evaluate long-term outcomes for siblings of children with traumatic brain injury (TBI), measures of sibling relationships and sibling behavior were collected an average of 4 years postinjury. The study sample included participants in a larger longitudinal study who had school-aged siblings, including 34 with severe TBI, 30 with moderate TBI, and 39 with orthopedic injuries not involving brain insult (ORTHO group). Group comparisons revealed more negative sibling relationships in families of children with TBI than in families of children in the ORTHO group, but only for mixed-gender sibling pairings. Behavior problems in children with TBI predicted both sibling relationships and sibling behavior problems. The findings indicate a need to monitor the adjustment of siblings and sibling relationships after TBI and to include siblings in family interventions.

  18. Sigma-1 Receptor Modulates Neuroinflammation After Traumatic Brain Injury.

    Science.gov (United States)

    Dong, Hui; Ma, Yunfu; Ren, Zengxi; Xu, Bin; Zhang, Yunhe; Chen, Jing; Yang, Bo

    2016-07-01

    Traumatic brain injury (TBI) remains a significant clinical problem and contributes to one-third of all injury-related deaths. Activated microglia-mediated inflammatory response is a distinct characteristic underlying pathophysiology of TBI. Here, we evaluated the effect and possible mechanisms of the selective Sigma-1 receptor agonist 2-(4-morpholinethyl)-1-phenylcyclohexanecarboxylate (PRE-084) in mice TBI model. A single intraperitoneal injection 10 μg/g PRE-084, given 15 min after TBI significantly reduced lesion volume, lessened brain edema, attenuated modified neurological severity score, increased the latency time in wire hang test, and accelerated body weight recovery. Moreover, immunohistochemical analysis with Iba1 staining showed that PRE-084 lessened microglia activation. Meanwhile, PRE-084 reduced nitrosative and oxidative stress to proteins. Thus, Sigma-1 receptors play a major role in inflammatory response after TBI and may serve as useful target for TBI treatment in the future.

  19. The neuropathology and neurobiology of traumatic brain injury.

    Science.gov (United States)

    Blennow, Kaj; Hardy, John; Zetterberg, Henrik

    2012-12-06

    The acute and long-term consequences of traumatic brain injury (TBI) have received increased attention in recent years. In this Review, we discuss the neuropathology and neural mechanisms associated with TBI, drawing on findings from sports-induced TBI in athletes, in whom acute TBI damages axons and elicits both regenerative and degenerative tissue responses in the brain and in whom repeated concussions may initiate a long-term neurodegenerative process called dementia pugilistica or chronic traumatic encephalopathy (CTE). We also consider how the neuropathology and neurobiology of CTE in many ways resembles other neurodegenerative illnesses such as Alzheimer's disease, particularly with respect to mismetabolism and aggregation of tau, β-amyloid, and TDP-43. Finally, we explore how translational research in animal models of acceleration/deceleration types of injury relevant for concussion together with clinical studies employing imaging and biochemical markers may further elucidate the neurobiology of TBI and CTE.

  20. Traumatic Brain Injury and NADPH Oxidase: A Deep Relationship

    Directory of Open Access Journals (Sweden)

    Cristina Angeloni

    2015-01-01

    Full Text Available Traumatic brain injury (TBI represents one of the major causes of mortality and disability in the world. TBI is characterized by primary damage resulting from the mechanical forces applied to the head as a direct result of the trauma and by the subsequent secondary injury due to a complex cascade of biochemical events that eventually lead to neuronal cell death. Oxidative stress plays a pivotal role in the genesis of the delayed harmful effects contributing to permanent damage. NADPH oxidases (Nox, ubiquitary membrane multisubunit enzymes whose unique function is the production of reactive oxygen species (ROS, have been shown to be a major source of ROS in the brain and to be involved in several neurological diseases. Emerging evidence demonstrates that Nox is upregulated after TBI, suggesting Nox critical role in the onset and development of this pathology. In this review, we summarize the current evidence about the role of Nox enzymes in the pathophysiology of TBI.

  1. Magnetic micelles for DNA delivery to rat brains after mild traumatic brain injury.

    Science.gov (United States)

    Das, Mahasweta; Wang, Chunyan; Bedi, Raminder; Mohapatra, Shyam S; Mohapatra, Subhra

    2014-10-01

    Traumatic brain injury (TBI) causes significant mortality, long term disability and psychological symptoms. Gene therapy is a promising approach for treatment of different pathological conditions. Here we tested chitosan and polyethyleneimine (PEI)-coated magnetic micelles (CP-mag micelles or CPMMs), a potential MRI contrast agent, to deliver a reporter DNA to the brain after mild TBI (mTBI). CPMM-tomato plasmid (ptd) conjugate expressing a red-fluorescent protein (RFP) was administered intranasally immediately after mTBI or sham surgery in male SD rats. Evans blue extravasation following mTBI suggested CPMM-ptd entry into the brain via the compromised blood-brain barrier. Magnetofection increased the concentration of CPMMs in the brain. RFP expression was observed in the brain (cortex and hippocampus), lung and liver 48 h after mTBI. CPMM did not evoke any inflammatory response by themselves and were excreted from the body. These results indicate the possibility of using intranasally administered CPMM as a theranostic vehicle for mTBI. From the clinical editor: In this study, chitosan and PEI-coated magnetic micelles (CPMM) were demonstrated as potentially useful vehicles in traumatic brain injury in a rodent model. Magnetofection increased the concentration of CPMMs in the brain and, after intranasal delivery, CPMM did not evoke any inflammatory response and were excreted from the body.

  2. Direct cost associated with acquired brain injury in Ontario

    Directory of Open Access Journals (Sweden)

    Chen Amy

    2012-08-01

    Full Text Available Abstract Background Acquired Brain Injury (ABI from traumatic and non traumatic causes is a leading cause of disability worldwide yet there is limited research summarizing the health system economic burden associated with ABI. The objective of this study was to determine the direct cost of publicly funded health care services from the initial hospitalization to three years post-injury for individuals with traumatic (TBI and non-traumatic brain injury (nTBI in Ontario Canada. Methods A population-based cohort of patients discharged from acute hospital with an ABI code in any diagnosis position in 2004 through 2007 in Ontario was identified from administrative data. Publicly funded health care utilization was obtained from several Ontario administrative healthcare databases. Patients were stratified according to traumatic and non-traumatic causes of brain injury and whether or not they were discharged to an inpatient rehabilitation center. Health system costs were calculated across a continuum of institutional and community settings for up to three years after initial discharge. The continuum of settings included acute care emergency departments inpatient rehabilitation (IR complex continuing care home care services and physician visits. All costs were calculated retrospectively assuming the government payer’s perspective. Results Direct medical costs in an ABI population are substantial with mean cost in the first year post-injury per TBI and nTBI patient being $32132 and $38018 respectively. Among both TBI and nTBI patients those discharged to IR had significantly higher treatment costs than those not discharged to IR across all institutional and community settings. This tendency remained during the entire three-year follow-up period. Annual medical costs of patients hospitalized with a brain injury in Ontario in the first follow-up year were approximately $120.7 million for TBI and $368.7 million for nTBI. Acute care cost accounted for 46

  3. Acute respiratory distress syndrome assessment after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Shahrooz Kazemi

    2016-01-01

    Full Text Available Background: Acute respiratory distress syndrome (ARDS is one of the most important complications associated with traumatic brain injury (TBI. ARDS is caused by inflammation of the lungs and hypoxic damage with lung physiology abnormalities associated with acute respiratory distress syndrome. Aim of this study is to determine the epidemiology of ARDS and the prevalence of risk factors. Methods: This prospective study performed on patients with acute traumatic head injury hospitalization in the intensive care unit of the Shohaday-e Haftom-e-Tir Hospital (September 2012 to September 2013 done. About 12 months, the data were evaluated. Information including age, sex, education, employment, drug and alcohol addiction, were collected and analyzed. The inclusion criteria were head traumatic patients and exclusion was the patients with chest trauma. Questionnaire was designed with doctors supervision of neurosurgery. Then the collected data were analysis. Results: In this study, the incidence of ARDS was 23.8% and prevalence of metabolic acidosis was 31.4%. Most injury with metabolic acidosis was Subarachnoid hemorrhage (SAH 48 (60% and Subdural hemorrhage (SDH was Next Level with 39 (48% Correlation between Glasgow Coma Scale (GCS and Respiratory Distress Syndrome (ARDS were significantly decreased (P< 0.0001. The level of consciousness in patients with skull fractures significantly lower than those without fractures (P= 0.009 [(2.3±4.6 vs (4.02±7.07]. Prevalence of metabolic acidosis during hospitalization was 80 patients (31.4%. Conclusion: Acute respiratory distress syndrome is a common complication of traumatic brain injury. Management and treatment is essential to reduce the mortality. In this study it was found the age of patients with ARDS was higher than patients without complications. ARDS risk factor for high blood pressure was higher in men. Most victims were pedestrians. The most common injury associated with ARDS was SDH. Our analysis

  4. Stress and Traumatic Brain Injury: A Behavioral, Proteomics, and Histological Study

    Science.gov (United States)

    2011-03-07

    traumatic brain injury ( TBI ) can both result in lasting neurobehavioral abnormalities. Post- traumatic stress disorder and blast...factor on the battlefield INTRODUCTION Traumatic brain injury ( TBI ) is one of the leading causes of death and chronic disability worldwide (Bruns and...ulcer devel- opment. Brain Res. Bull. 25, 691–695. Jaffee, M. S., and Meyer, K. S. (2009). A brief overview of traumatic brain injury ( TBI ) and

  5. Traumatic Brain Injury in Qatar: Age Matters—Insights from a 4-Year Observational Study

    Directory of Open Access Journals (Sweden)

    Moamena El-Matbouly

    2013-01-01

    Full Text Available Background. Overall traumatic brain injury (TBI incidence and related death rates vary across different age groups. Objectives. To evaluate the incidence, causes, and outcome of TBI in adolescents and young adult population in Qatar. Method. This was a retrospective review of all TBIs admitted to the trauma center between January 2008 and December 2011. Demographics, mechanism of injury, morbidity, and mortality were analyzed in different age groups. Results. A total of 1665 patients with TBI were admitted; the majority were males (92% with a mean age of 28 ± 16 years. The common mechanism of injury was motor vehicle crashes and falls from height (51% and 35%, resp.. TBI was incidentally higher in young adults (34% and middle age group (21%. The most frequent injuries were contusion (40%, subarachnoid (25%, subdural (24%, and epidural hemorrhage (18%. The mortality rate was 11% among TBI patients. Mortality rates were 8% and 12% among adolescents and young adults, respectively. The highest mortality rate was observed in elderly patients (35%. Head AIS, ISS, and age were independent predictors for mortality. Conclusion. Adolescents and adults sustain significant portions of TBI, whereas mortality is much higher in the older group. Public awareness and injury prevention campaigns should target young population.

  6. Traumatic brain injury neuropsychology in Cali, Colombia

    Directory of Open Access Journals (Sweden)

    Quijano María Cristina

    2012-04-01

    Full Text Available Objetive: comparative analysis between control group and patients with TBI to determine whetherthere neuropsychological differences at 6 months of evolution, to guide timely interventioncommensurate with the needs of this population. Materials and methods: a total of 79 patientswith a history of TBI with a minimum of 6 months of evolution and 79 control subjects were evaluated.Both groups with a mean age of 34 and without previous neurological or psychiatric disorders and an average schooling of 11 years for the control group and 9 years for the TBI group.The Glasgow Coma Scale in the TBI group was classified as moderate with 11 points. The BriefNeuropsychological Evaluation in Spanish Neuropsi was applied to both groups. Results: significantdifferences (p≤0.05 in the tasks of orientation, attention, memory, language, reading andwriting were found. Conclusions: TBI generates significant neuropsychological changes, even sixmonths after discharge from the health service. It suggests that patients with head injury requiretreatment after overcoming the initial stage.

  7. Effects of magnesium sulfate on brain mitochondrial respiratory function in rats after experimental traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    许民辉; 代文光; 邓洵鼎

    2002-01-01

    Objective: To study the effects of magnesium sulfate on brain mitochondrial respiratory function in rats after experimental traumatic brain injury and the possible mechanism.Methods: The middle degree brain injury in rats was made by BIM-III multi-function impacting machine. The brain mitochondrial respiratory function was measured with oxygen electrode and the ultra-structural changes were observed with transmission electron microscope (TEM).Results: 1. The brain mitochondrial respiratory stage III and respiration control rate reduced significantly in the untreated groups within 24 and 72 hours. But treated Group A showed certain degree of recovery of respiratory function; treated Group B showed further improvement. 2. Untreated Group, treated Groups A and B had different degrees of mitochondrial ultra-structural damage respectively, which could be attenuated after the treatment with magnesium sulfate.Conclusions: The mitochondrial respiratory function decreases significantly after traumatic brain injury. But it can be apparently improved after magnesium sulfate management along with the attenuated damage of mitochondria discovered by TEM. The longer course of treatment can obtain a better improvement of mitochondrial respiratory function.

  8. Morphometry and diffusion MR imaging years after childhood traumatic brain injury.

    Science.gov (United States)

    Porto, Luciana; Jurcoane, Alina; Magerkurth, Joerg; Margerkurth, Joerg; Althaus, Jürgen; Zanella, Friedhelm; Hattingen, Elke; Kieslich, Matthias

    2011-11-01

    Our goal was to detect possible unrecognized injury in cerebral white matter (WM) in adult survivors of traumatic brain injury (TBI) during childhood, who showed no detectable axonal injury or chronic contusion on late conventional MRI. We used voxel-based morphometry (VBM) to detect subtle structural changes in brain morphology and diffusion-tensor imaging (DTI) to non-invasively probe WM integrity. By means of VBM and DTI we examined a group of 12 adult patients who suffered from childhood closed head injury without axonal injury on late conventional MRI. Patients sustained complicated mild or moderate-to-severe TBI with a mean of 7 points based on the Glasgow Coma Scale. The mean time after trauma was 19 years (range 7-31 years). For VBM, group comparisons of segmented T1-weighted grey matter and WM images were performed, while for DTI we compared the fractional anisotropy and mean diffusivity (MD) between the groups. Patients presented with higher MD in the right cerebral white matter, bilaterally in the forceps major and in the body and splenium of the corpus callosum. These findings were supported by VBM, which showed reduced WM volume bilaterally, mainly along the callosal splenium. Our results indicate that persistent focal long-term volume reduction and underlying WM structural changes may occur after TBI during childhood and that their effects extend into adulthood. Normal late conventional MR findings after childhood TBI do not rule out non-apparent axonal injury. Copyright © 2011 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  9. The Diagnosis of Traumatic Brain Injury on the Battlefield

    OpenAIRE

    Schmid, Kara E.; Frank C Tortella

    2012-01-01

    The conflicts in Iraq and Afghanistan have placed an increased awareness on traumatic brain injury (TBI). Various publications have estimated the incidence of TBI for our deployed servicemen, however all have been based on extrapolations of data sets or subjective evaluations due to our current method of diagnosing a TBI. Therefore it has been difficult to get an accurate rate and severity of deployment related TBIs, or the incidence of multiple TBIs our service members are experiencing. As s...

  10. Personalized Medicine in Veterans with Traumatic Brain Injuries

    Science.gov (United States)

    2012-05-01

    prepared a manuscript entitled “Select non-coding RNA in blood components provide novel clinically accessible biological surrogates for improved...Dooley C, Abbi B, Lange G. (2012). Select non-coding RNA in blood components provide novel clinically accessible biological surrogates for improved...in blood components provide novel clinically accessible biological surrogates for improved identification of traumatic brain injury in OEF/OIF

  11. Cognitive rehabilitation in children with acquired brain injuries

    OpenAIRE

    Hagberg-van't Hooft, Ingrid

    2005-01-01

    Deficits in attention, memory and executive functions are the most common cognitive dysfunctions after acquired brain injuries (ABI) and may have a major negative influence on academic and social adjustment. Neuropsychological measures can assess these dysfunctions and shortcomings in academic and social life, but there is a great need for new efficacious cognitive treatment programmes. The main aims of this thesis were to evaluate the direct and maintained effects of a ...

  12. Psychosocial consequences of mild traumatic brain injury in children

    DEFF Research Database (Denmark)

    Keightley, Michelle L; Côté, Pierre; Rumney, Peter

    2014-01-01

    OBJECTIVE: To synthesize the best available evidence regarding psychosocial consequences of mild traumatic brain injury (MTBI) in children. DATA SOURCES: MEDLINE, Embase, CINAHL, PsycINFO, and SPORTDiscus were searched (2001-2012). Inclusion criteria included published peer-reviewed reports......,914 records were screened; 101 of these articles were deemed scientifically admissible, of which 6 investigated the psychosocial consequences of MTBI in children. DATA EXTRACTION: Two reviewers independently extracted data from accepted studies into evidence tables. DATA SYNTHESIS: We conducted a best...

  13. A social identity approach to acquired brain injury (ABI)

    OpenAIRE

    Walsh, Stephen R.

    2014-01-01

    peer-reviewed The central argument put forward in this thesis is that, in the context of acquired brain injury (ABI) social identity matters. The first article is a theoretical paper which reviews an emerging literature that is trying to draw together social psychology and neuropsychology in the study of ABI. This article argues that the social identity approach is an appropriate vehicle for such integration and introduces the concept of identity sub-types based on belonging and based on p...

  14. Brain Injury Following Repetitive Apnea in Newborn Piglets

    Science.gov (United States)

    Schears, Gregory; Creed, Jennifer; Antoni, Diego; Zaitseva, Tatiana; Greeley, William; Wilson, David F.; Pastuszko, Anna

    Repetitive apnea is associated with a significant increase in extracellular dopamine, generation of free radicals as determined by o-tyrosine formation and increase in Fluoro-Jade staining of degenerating neurons. This increase in extracellular dopamine and of hydroxyl radicals in striatum of newborn brain is likely to be at least partly responsible for the neuronal injury and neurological side effects of repetitive apnea.

  15. Comment: importance of cognitive reserve in traumatic brain injury.

    Science.gov (United States)

    Bigler, Erin D

    2014-05-01

    The expectation for moderate to severe traumatic brain injury (TBI) is permanent damage and lasting deficits. However, in a multicenter investigation, Schneider et al.(1) show that by 1 year postinjury, one-fourth of patients with TBI achieve disability-free recovery (DFR), defined as a score of zero on the Disability Rating Scale. Of importance, cognitive reserve (CR) in the form of educational attainment was related to DFR.

  16. Transforming Research and Clinical Knowledge in Traumatic Brain Injury

    Science.gov (United States)

    2015-10-01

    Coremans J, Destoop M, Hulstijn W, Sabbe B (2010) Prefrontal, parietal and basal activation associated with the reordering of a two-element list held...Effect of COMT Val/Met genotype on frontal lobe functioning in traumatic brain injury. J Neuropsychiatry Clin Neurosci 16: 238–239 17. Lipsky RH, Sparling...Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, Goldman D, Weinberger DR (2001) Effect of COMT Val108/158 Met genotype on frontal lobe

  17. PTSD and traumatic brain injury: folklore and fact?

    Science.gov (United States)

    King, Nigel S

    2008-01-01

    A number of controversies and debates have arisen over the years surrounding the dual diagnosis of post-traumatic stress disorder (PTSD) and traumatic brain injury (TBI). Many of these have centred around the around the degree of protection provided by TBI against developing the disorder. The following is brief review of the literature in this area to help resolve some of these issues and to address a number of specific challenges which arise when working with this patient group.

  18. Is management of acute traumatic brain injury effective?

    OpenAIRE

    Lei, Jin; Gao, Guo-Yi; Jiang, Ji-Yao

    2012-01-01

    【Abstract】 Objective: To evaluate all the possible therapeutic measures concerning the acute management of traumatic brain injury (TBI) mentioned in Cochrane System-atic Reviews published in the Cochrane Database of Sys-tematic Reviews (CDSR). Methods: An exhausted literature search for all pub-lished Cochrane Systematic Reviews discussing therapeu-tic rather than prevention or rehabilitative interventions of TBI was conducted. We retrieved such databases as CDSR and Coch...

  19. Manic Symptoms Due to Methylphenidate Use in an Adolescent with Traumatic Brain Injury

    Science.gov (United States)

    Ekinci, Ozalp; Direk, Meltem Çobanoğullari; Ekinci, Nuran; Okuyaz, Cetin

    2016-01-01

    Almost one-fifth of children who sustain a traumatic brain injury (TBI) are under the risk of attention problems after injury. The efficacy and tolerability of methylphenidate (MPH) in children with a history of TBI have not been completely identified. In this case report, MPH-induced manic symptoms in an adolescent with TBI will be summarized. A male patient aged 17 years was admitted with the complaints of attention difficulties on schoolwork and forgetfullness which became evident after TBI. Long-acting MPH was administered with the dose of 18 mg/day for attention problems. After one week, patient presented with the complaints of talking to himself, delusional thoughts, irritability and sleeplessness. This case highlights the fact that therapeutic dose of MPH may cause mania-like symptoms in children with TBI. Close monitarization and slow dose titration are crucial when considering MPH in children with TBI. PMID:27489389

  20. Thrombocytopenia after therapeutic hypothermia in severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    QIU Wu-si; WANG Wei-min; DU Hong-ying; LIU Wei-guo; SHEN Hong; SHEN Lei-fen; ZHU Ming-lan

    2006-01-01

    Objective: To investigate the clinical characteristics and significance of thrombocytopenia after therapeutic hypothermia in severe traumatic brain injury (TBI).Methods: Ninety-six inpatients with severe brain injury were randomized into three groups: SBC (selective brain cooling ) group (n =24), MSH ( mild systemic hypothermia ) group ( n = 30), and control (normothermia) group ( n = 42). The platelet counts and prognosis were retrospectively analyzed.Results: Thrombocytopenia was present in 18 (75 % ), 23 (77 % ) and 15 (36 % ) patients in SBC group,MSH group and control group, respectively (P <0.01 ).Thrombocytopenia, in which the minimum platelet count was seen 3 days after hypothermia, showed no significant difference between SBC and MSH group (P > 0.05). Most platelet counts (37 cases, 90% ) in hypothermia group were returned to normal level after 1 to 2 days of natural rewarming. The platelet count in SBC group reduced by 16%, 27% and 29% at day 1, 3 and 5 respectively compared with the baseline value. Good recovery (GOS score 4-5) rate of thrombocytopenia 1 year after injury for hypothermia group ( 17 cases, 37 % ) was significantly lower than that of control group (P <0.01).Conclusions: Therapeutic hypothermia increases the incidence of thrombocytopenia in severe TBI, and patients with thrombocytopenia after therapeutic hypothermia are associated with unfavorable neurological prognosis.

  1. Emerging potential of exosomes for treatment of traumatic brain injury

    Science.gov (United States)

    Xiong, Ye; Mahmood, Asim; Chopp, Michael

    2017-01-01

    Traumatic brain injury (TBI) is one of the major causes of death and disability worldwide. No effective treatment has been identified from clinical trials. Compelling evidence exists that treatment with mesenchymal stem cells (MSCs) exerts a substantial therapeutic effect after experimental brain injury. In addition to their soluble factors, therapeutic effects of MSCs may be attributed to their generation and release of exosomes. Exosomes are endosomal origin small-membrane nano-sized vesicles generated by almost all cell types. Exosomes play a pivotal role in intercellular communication. Intravenous delivery of MSC-derived exosomes improves functional recovery and promotes neuroplasticity in rats after TBI. Therapeutic effects of exosomes derive from the exosome content, especially microRNAs (miRNAs). miRNAs are small non-coding regulatory RNAs and play an important role in posttranscriptional regulation of genes. Compared with their parent cells, exosomes are more stable and can cross the blood-brain barrier. They have reduced the safety risks inherent in administering viable cells such as the risk of occlusion in microvasculature or unregulated growth of transplanted cells. Developing a cell-free exosome-based therapy may open up a novel approach to enhancing multifaceted aspects of neuroplasticity and to amplifying neurological recovery, potentially for a variety of neural injuries and neurodegenerative diseases. This review discusses the most recent knowledge of exosome therapies for TBI, their associated challenges and opportunities.

  2. The clinical spectrum of sport-related traumatic brain injury.

    Science.gov (United States)

    Jordan, Barry D

    2013-04-01

    Acute and chronic sports-related traumatic brain injuries (TBIs) are a substantial public health concern. Various types of acute TBI can occur in sport, but detection and management of cerebral concussion is of greatest importance as mismanagement of this syndrome can lead to persistent or chronic postconcussion syndrome (CPCS) or diffuse cerebral swelling. Chronic TBI encompasses a spectrum of disorders that are associated with long-term consequences of brain injury, including chronic traumatic encephalopathy (CTE), dementia pugilistica, post-traumatic parkinsonism, post-traumatic dementia and CPCS. CTE is the prototype of chronic TBI, but can only be definitively diagnosed at autopsy as no reliable biomarkers of this disorder are available. Whether CTE shares neuropathological features with CPCS is unknown. Evidence suggests that participation in contact-collision sports may increase the risk of neurodegenerative disorders such as Alzheimer disease, but the data are conflicting. In this Review, the spectrum of acute and chronic sport-related TBI is discussed, highlighting how examination of athletes involved in high-impact sports has advanced our understanding of pathology of brain injury and enabled improvements in detection and diagnosis of sport-related TBI.

  3. Emerging potential of exosomes for treatment of traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Ye Xiong

    2017-01-01

    Full Text Available Traumatic brain injury (TBI is one of the major causes of death and disability worldwide. No effective treatment has been identified from clinical trials. Compelling evidence exists that treatment with mesenchymal stem cells (MSCs exerts a substantial therapeutic effect after experimental brain injury. In addition to their soluble factors, therapeutic effects of MSCs may be attributed to their generation and release of exosomes. Exosomes are endosomal origin small-membrane nano-sized vesicles generated by almost all cell types. Exosomes play a pivotal role in intercellular communication. Intravenous delivery of MSC-derived exosomes improves functional recovery and promotes neuroplasticity in rats after TBI. Therapeutic effects of exosomes derive from the exosome content, especially microRNAs (miRNAs. miRNAs are small non-coding regulatory RNAs and play an important role in posttranscriptional regulation of genes. Compared with their parent cells, exosomes are more stable and can cross the blood-brain barrier. They have reduced the safety risks inherent in administering viable cells such as the risk of occlusion in microvasculature or unregulated growth of transplanted cells. Developing a cell-free exosome-based therapy may open up a novel approach to enhancing multifaceted aspects of neuroplasticity and to amplifying neurological recovery, potentially for a variety of neural injuries and neurodegenerative diseases. This review discusses the most recent knowledge of exosome therapies for TBI, their associated challenges and opportunities.

  4. Brain injury impairs working memory and prefrontal circuit function

    Directory of Open Access Journals (Sweden)

    Colin James Smith

    2015-11-01

    Full Text Available More than 2.5 million Americans suffer a traumatic brain injury (TBI each year. Even mild to moderate traumatic brain injury causes long-lasting neurological effects. Despite its prevalence, no therapy currently exists to treat the underlying cause of cognitive impairment suffered by TBI patients. Following lateral fluid percussion injury (LFPI, the most widely used experimental model of TBI, we investigated alterations in working memory and excitatory/inhibitory synaptic balance in the prefrontal cortex. LFPI impaired working memory as assessed with a T-maze behavioral task. Field excitatory postsynaptic potentials recorded in the prefrontal cortex were reduced in slices derived from brain-injured mice. Spontaneous and miniature excitatory postsynaptic currents onto layer 2/3 neurons were more frequent in slices derived from LFPI mice while inhibitory currents onto layer 2/3 neurons were smaller after LFPI. Additionally, an increase in action potential threshold and concomitant decrease in firing rate was observed in layer 2/3 neurons in slices from injured animals. Conversely, no differences in excitatory or inhibitory synaptic transmission onto layer 5 neurons were observed; however, layer 5 neurons demonstrated a decrease in input resistance and action potential duration after LFPI. These results demonstrate synaptic and intrinsic alterations in prefrontal circuitry that may underlie working memory impairment caused by TBI.

  5. Extracellular N-acetylaspartate depletion in traumatic brain injury.

    Science.gov (United States)

    Belli, Antonio; Sen, Jon; Petzold, Axel; Russo, Salvatore; Kitchen, Neil; Smith, Martin; Tavazzi, Barbara; Vagnozzi, Roberto; Signoretti, Stefano; Amorini, Angela Maria; Bellia, Francesco; Lazzarino, Giuseppe

    2006-02-01

    N-Acetylaspartate (NAA) is almost exclusively localized in neurons in the adult brain and is present in high concentration in the CNS. It can be measured by proton magnetic resonance spectroscopy and is seen as a marker of neuronal damage and death. NMR spectroscopy and animal models have shown NAA depletion to occur in various types of chronic and acute brain injury. We investigated 19 patients with traumatic brain injury (TBI). Microdialysis was utilized to recover NAA, lactate, pyruvate, glycerol and glutamate, at 12-h intervals. These markers were correlated with survival and a 6-month Glasgow Outcome Score. Eleven patients died and eight survived. A linear mixed model analysis showed a significant effect of outcome and of the interaction between time of injury and outcome on NAA levels (p = 0.009 and p = 0.004, respectively). Overall, extracellular NAA was 34% lower in non-survivors. A significant non-recoverable fall was observed in this group from day 4 onwards, with a concomitant rise in lactate-pyruvate ratio and glycerol. These results suggest that mitochondrial dysfunction is a significant contributor to poor outcome following TBI and propose extracellular NAA as a potential marker for monitoring interventions aimed at preserving mitochondrial function.

  6. Percutaneous dilatational tracheostomy for ICU patients with severe brain injury

    Directory of Open Access Journals (Sweden)

    Guo Dongyuan

    2014-12-01

    Full Text Available 【Abstract】Objective: To sum up our experience in percutaneous dilatational tracheostomy (PDT in ICU patient with severe brain injury. Methods: Between November 2011 and April 2014, PDTs were performed on 32 severe brain injury patients in ICU by a team of physicians and intensivists. The success rate, effi cacy, safety, and complications including stomal infection and bleeding, paratracheal insertion, pneumothorax, pneumomediastinum, tracheal laceration, as well as clinically significant tracheal stenosis were carefully monitored and recorded respectively. Results: The operations took 4-15 minutes (mean 9.1 minutes±4.2 minutes. Totally 4 cases suffered from complications in the operations: 3 cases of stomal bleeding, and 1 case of intratracheal bloody secretion, but none required intervention. Paratracheal insertion, pneumothorax, pneumomediastinum, tracheal laceration, or clinically signifi cant tracheal stenosis were not found in PDT patients. There was no procedure-related death occurring during or after PDT. Conclusion: Our study demonstrats that PDT is a safe, highly effective, and minimally invasive procedure. The appropriate sedation and airway management perioperatively help to reduce complication rates. PDT should be performed or supervised by a team of physicians with extensive experience in this procedure, and also an intensivist with experience in diffi cult airway management. Key words: Brain injuries; Percutaneous dilatational tracheostomy; ICU

  7. MRI for premature neonatal brain injury: a case report.

    Science.gov (United States)

    Langham, Alexander

    2017-06-01

    This case report aims to extend analytical thinking and clinical reasoning of clinicians and radiographers when presented with diagnosing premature neonatal brain injuries (PNBI). The report considers the uses and merit of magnetic resonance imaging (MRI) in the primary assessment of PNBI. The traditional technique of cranial ultrasound as the first modality of choice can have several limitations, which includes a lower temporal resolution in its ability to differentiate grey-white matter distribution patterns, lower spatial resolution in its ability to accurately map white matter fibre tracts and distribution patterns which are critical in white matter injury pathological events. In this specific case report, MRI was useful for the assessment of haemorrhagic brain injury post partum.Therefore, should MRI be considered, the primary imaging modality in these cases when the concerns about PNBI is presented? This case study explores the current trends in MRI neonatal brain imaging and advancements being made in this field. © 2017 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology.

  8. Exosome platform for diagnosis and monitoring of traumatic brain injury.

    Science.gov (United States)

    Taylor, Douglas D; Gercel-Taylor, Cicek

    2014-09-26

    We have previously demonstrated the release of membranous structures by cells into their extracellular environment, which are termed exosomes, microvesicles or extracellular vesicles depending on specific characteristics, including size, composition and biogenesis pathway. With activation, injury, stress, transformation or infection, cells express proteins and RNAs associated with the cellular responses to these events. The exosomes released by these cells can exhibit an array of proteins, lipids and nucleic acids linked to these physiologic events. This review focuses on exosomes associated with traumatic brain injury, which may be both diagnostic and a causative factor in the progression of the injury. Based on current data, exosomes play essential roles as conveyers of intercellular communication and mediators of many of the pathological conditions associated with development, progression and therapeutic failures and cellular stress in a variety of pathologic conditions. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodelling, signal pathway activation through growth factor/receptor transfer, chemoresistance, immunologic activation and genetic exchange. These circulating exosomes not only represent a central mediator of the pro-inflammatory microenvironment linked with secondary brain injury, but their presence in the peripheral circulation may serve as a surrogate for biopsies, enabling real-time diagnosis and monitoring of neurodegenerative progression.

  9. Atypical moral judgment following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Angelica Muresan

    2012-07-01

    Full Text Available Previous research has shown an association between emotions, particularly social emotions, and moral judgments. Some studies suggested an association between blunted emotion and the utilitarian moral judgments observed in patients with prefrontal lesions. In order to investigate how prefrontal brain damage affects moral judgment, we asked a sample of 29 TBI patients (12 females and 17 males and 41 healthy participants (16 females and 25 males to judge 22 hypothetical dilemmas split into three different categories (non-moral, impersonal and personal moral. The TBI group presented a higher proportion of affirmative (utilitarian responses for personal moral dilemmas when compared to controls, suggesting an atypical pattern of utilitarian judgements. We also found a negative association between the performance on recognition of social emotions and the proportion of affirmative responses on personal moral dilemmas. These results suggested that the preference for utilitarian responses in this type of dilemmas is accompanied by difficulties in social emotion recognition. Overall, our findings suggest that deontological moral judgments are associated with normal social emotion processing and that frontal lobe plays an important role in both emotion and moral judgment.

  10. Bcl-2 gene therapy for apoptosis following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-feng; ZHENG Xue-sheng; LIU Wei-guo; FENG Jun-feng

    2006-01-01

    Objective: To investigate the therapeutic effect of Bcl- 2 fusion protein on apoptosis in brain following traumatic brain injury.Methods: Bcl-2 gene was cloned by RT-PCR. Bcl-2 and EGFP genes were linked together and inserted into pAdeno-X vector. This recombinant vector was packaged into infectious adenovirus in HEK293 cells. Ninety Wistar rats were assigned randomly into experimental group(n=45) and control group (n=45). All rats were subjected to traumatic brain injury. Then recombinant adenovirus (for experimental group) or saline (for control group) was injected into the traumatic brain. The expression of Bcl-2 fusion protein was investigated by Western blotting, immunohistochemistry and fluorescence microscopy. Apoptosis in the injured brain was studied by TUNEL. Animals' behavior capacity was evaluated by tiltboard test.Results: In the experimental group, many fluorescent cells were found around the traumatic locus,which were also proven to be Bcl-2-positive by immunohistochemistry. On the contrary, few Bcl-2-positive cells and no fluorescent cell were detected in the control group. Bcl-2 expression of experimental group was much higher than that of control group, which was illustrated by Western blotting. The apoptosis index of experimental group was 0.027 ± 0.005, and that of control group was 0.141±0.025 (P<0.01). Two weeks after injury, animals of the experimental group behaved better than those of the control group.Conclusions: A recombinant adenovirus vector expressing Bcl-2 fusion protein has been constructed. Bcl-2 fusion protein can suppress apoptosis and promote cell survival. Moreover, the behavior recovery of the injured animal is promoted. Bcl-2 fusion protein provides a way to track the target cells in vivo.

  11. Traumatic brain injury and bipolar psychosis in the Genomic Psychiatry Cohort.

    Science.gov (United States)

    Cieslak, Kristina; Pato, Michelle; Buckley, Peter; Pato, Carlos; Sobell, Janet L; Medeiros, Helena; Zhao, Yuan; Ahn, Hongshik; Malaspina, Dolores

    2016-06-01

    Approximately three million individuals in the United States sustain traumatic brain injury (TBI) every year, with documented impact on a range of neurological and psychiatric disturbances including mania, depression, and psychosis. Identification of subsets of individuals that may demonstrate increased propensity for posttraumatic symptoms and who may share genetic vulnerabilities for gene-environment interactions can enhance efforts to understand, predict, and prevent these phenomena. A sample of 11,489 cases from the Genomic Psychiatry Cohort (GPC), a NIMH-managed data repository for the investigation of schizophrenia and bipolar disorder, was used for this study. Cases were excluded if TBI was deemed causal to their mental illness. A k-means clustering algorithm was used to probe differences between schizophrenia and bipolar disorder associated with variables including onset age, hallucinations, delusions, head injury, and TBI. Cases were separated into an optimum number of seven clusters, with two clusters including all cases with brain injury. Bipolar disorder with psychosis and TBI were significantly correlated in one cluster in which 72% of cases were male and 99.2% sustained head injury. This cluster also carried the longest average period of unconsciousness. This study demonstrates an association of TBI with psychosis in a subset of bipolar cases, suggesting that traumatic stressors may have the ability to impact gene expression in a vulnerable population, and/or there is a heightened occurrence of TBI in individuals with underlying psychosis. Further studies should more closely examine the interplay between genetic variation in bipolar disorder and susceptibility to psychosis following TBI. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  12. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries

    Science.gov (United States)

    Mann, Aman P.; Scodeller, Pablo; Hussain, Sazid; Joo, Jinmyoung; Kwon, Ester; Braun, Gary B.; Mölder, Tarmo; She, Zhi-Gang; Kotamraju, Venkata Ramana; Ranscht, Barbara; Krajewski, Stan; Teesalu, Tambet; Bhatia, Sangeeta; Sailor, Michael J.; Ruoslahti, Erkki

    2016-06-01

    Traumatic brain injury (TBI) is a major health and socio-economic problem, but no pharmacological agent is currently approved for the treatment of acute TBI. Thus, there is a great need for advances in this field. Here, we describe a short peptide (sequence CAQK) identified by in vivo phage display screening in mice with acute brain injury. The CAQK peptide selectively binds to injured mouse and human brain, and systemically injected CAQK specifically homes to sites of brain injury in mouse models. The CAQK target is a proteoglycan complex upregulated in brain injuries. Coupling to CAQK increased injury site accumulation of systemically administered molecules ranging from a drug-sized molecule to nanoparticles. CAQK-coated nanoparticles containing silencing oligonucleotides provided the first evidence of gene silencing in injured brain parenchyma by systemically administered siRNA. These findings present an effective targeting strategy for the delivery of therapeutics in clinical management of acute brain injuries.

  13. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries

    Science.gov (United States)

    Mann, Aman P.; Scodeller, Pablo; Hussain, Sazid; Joo, Jinmyoung; Kwon, Ester; Braun, Gary B.; Mölder, Tarmo; She, Zhi-Gang; Kotamraju, Venkata Ramana; Ranscht, Barbara; Krajewski, Stan; Teesalu, Tambet; Bhatia, Sangeeta; Sailor, Michael J.; Ruoslahti, Erkki

    2016-01-01

    Traumatic brain injury (TBI) is a major health and socio-economic problem, but no pharmacological agent is currently approved for the treatment of acute TBI. Thus, there is a great need for advances in this field. Here, we describe a short peptide (sequence CAQK) identified by in vivo phage display screening in mice with acute brain injury. The CAQK peptide selectively binds to injured mouse and human brain, and systemically injected CAQK specifically homes to sites of brain injury in mouse models. The CAQK target is a proteoglycan complex upregulated in brain injuries. Coupling to CAQK increased injury site accumulation of systemically administered molecules ranging from a drug-sized molecule to nanoparticles. CAQK-coated nanoparticles containing silencing oligonucleotides provided the first evidence of gene silencing in injured brain parenchyma by systemically administered siRNA. These findings present an effective targeting strategy for the delivery of therapeutics in clinical management of acute brain injuries. PMID:27351915

  14. ECONOMIC LOSSES CAUSED BY TRAUMATIC BRAIN INJURY IN CHILDREN

    Directory of Open Access Journals (Sweden)

    S. A. Valiulina

    2015-01-01

    Full Text Available Background: Currently, analyzing the economic losses caused by health problems in population is of particular importance since it stipulates calculations of the volumes invested in healthcare systems in order to improve population’s health. Objective: The aim of our study was to find out economic losses caused by traumatic brain injury (TBI in children. Methods: The given work has utilized governmental statistical reports for Russia, for federal regions as well as for individual subjects. Direct medical expenses (medical services and indirect expenses (losses due to a temporary disability of parents having a sick child were calculated both in general and per patient. Results: Among all the direct medical costs of treatment of children with TBI inpatient care costs account for 85%. In the Central and Volga Federal District accounted for half of nationwide spending in general, brain injury and to provide certain kinds of healthcare. The structure of Russian costs as a result of the incidence of TBI children Moscow accounts for 20%. In Moscow, the cost of treating cases of traumatic brain injury in children is 3.2 times higher than the average for Russia. The resulting calculations of the value of health care costs attributable to a case of child head injury, behind the cost of treatment of the case of a child with head trauma, calculated according to the standards of Russia and the territories. This difference in the whole RF is 23%. Conclusion: The obtained findings have shown that in 2010 in Russia the magnitude of losses caused by TBI incidence in children amounted to 3 billion roubles or 0.008% of the gross product 1.2 billion roubles of which were direct expenses. However, this figure is considerably lower of the real amount; it becomes evident after the analysis of direct medical expenses per one case of pediatric TBI. Our calculations have shown that in Russia and in its regions the amount of expenses per one TBI patient is a quarter less

  15. Pharmacologically induced hypothermia attenuates traumatic brain injury in neonatal rats.

    Science.gov (United States)

    Gu, Xiaohuan; Wei, Zheng Zachory; Espinera, Alyssa; Lee, Jin Hwan; Ji, Xiaoya; Wei, Ling; Dix, Thomas A; Yu, Shan Ping

    2015-05-01

    Neonatal brain trauma is linked to higher risks of mortality and neurological disability. The use of mild to moderate hypothermia has shown promising potential against brain injuries induced by stroke and traumatic brain injury (TBI) in various experimental models and in clinical trials. Conventional methods of physical cooling, however, are difficult to use in acute treatments and in induction of regulated hypothermia. In addition, general anesthesia is usually required to mitigate the negative effects of shivering during physical cooling. Our recent investigations demonstrate the potential therapeutic benefits of pharmacologically induced hypothermia (PIH) using the neurotensin receptor (NTR) agonist HPI201 (formerly known as ABS201) in stroke and TBI models of adult rodents. The present investigation explored the brain protective effects of HPI201 in a P14 rat pediatric model of TBI induced by controlled cortical impact. When administered via intraperitoneal (i.p.) injection, HPI201 induced dose-dependent reduction of body and brain temperature. A 6-h hypothermic treatment, providing an overall 2-3°C reduction of brain and body temperature, showed significant effect of attenuating the contusion volume versus TBI controls. Attenuation occurs whether hypothermia is initiated 15min or 2h after TBI. No shivering response was seen in HPI201-treated animals. HPI201 treatment also reduced TUNEL-positive and TUNEL/NeuN-colabeled cells in the contusion area and peri-injury regions. TBI-induced blood-brain barrier damage was attenuated by HPI201 treatment, evaluated using the Evans Blue assay. HPI201 significantly decreased MMP-9 levels and caspase-3 activation, both of which are pro-apototic, while it increased anti-apoptotic Bcl-2 gene expression in the peri-contusion region. In addition, HPI201 prevented the up-regulation of pro-inflammatory tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6. In sensorimotor activity assessments, rats in the HPI201

  16. Resuscitation speed affects brain injury in a large animal model of traumatic brain injury and shock

    DEFF Research Database (Denmark)

    Sillesen, Martin; Jin, Guang; Johansson, Pär I

    2014-01-01

    infusion speed increment NS (n¿=¿7). Hemodynamic variables over a 6-hour observation phase were recorded. Following euthanasia, brains were harvested and lesion size as well as brain swelling was measured.ResultsBolus FFP resuscitation resulted in greater brain swelling (22.36¿±¿1.03% vs. 15.58¿±¿2.52%, p...

  17. Effects of antioxidant treatment on blast-induced brain injury.

    Directory of Open Access Journals (Sweden)

    Xiaoping Du

    Full Text Available Blast-induced traumatic brain injury has dramatically increased in combat troops in today's military operations. We previously reported that antioxidant treatment can provide protection to the peripheral auditory end organ, the cochlea. In the present study, we examined biomarker expression in the brains of rats at different time points (3 hours to 21 days after three successive 14 psi blast overpressure exposures to evaluate antioxidant treatment effects on blast-induced brain injury. Rats in the treatment groups received a combination of antioxidants (2,4-disulfonyl α-phenyl tertiary butyl nitrone and N-acetylcysteine one hour after blast exposure and then twice a day for the following two days. The biomarkers examined included an oxidative stress marker (4-hydroxy-2-nonenal, 4-HNE, an immediate early gene (c-fos, a neural injury marker (glial fibrillary acidic protein, GFAP and two axonal injury markers [amyloid beta (A4 precursor protein, APP, and 68 kDa neurofilament, NF-68]. The results demonstrate that blast exposure induced or up-regulated the following: 4-HNE production in the dorsal hippocampus commissure and the forceps major corpus callosum near the lateral ventricle; c-fos and GFAP expression in most regions of the brain, including the retrosplenial cortex, the hippocampus, the cochlear nucleus, and the inferior colliculus; and NF-68 and APP expression in the hippocampus, the auditory cortex, and the medial geniculate nucleus (MGN. Antioxidant treatment reduced the following: 4-HNE in the hippocampus and the forceps major corpus callosum, c-fos expression in the retrosplenial cortex, GFAP expression in the dorsal cochlear nucleus (DCN, and APP and NF-68 expression in the hippocampus, auditory cortex, and MGN. This preliminary study indicates that antioxidant treatment may provide therapeutic protection to the central auditory pathway (the DCN and MGN and the non-auditory central nervous system (hippocampus and retrosplenial cortex

  18. Risk factors for ventilator-associated pneumonia: among trauma patients with and without brain injury.

    Science.gov (United States)

    Gianakis, Anastasia; McNett, Molly; Belle, Josie; Moran, Cristina; Grimm, Dawn

    2015-01-01

    Ventilator-associated pneumonia (VAP) rates remain highest among trauma and brain injured patients; yet, no research compares VAP risk factors between the 2 groups. This retrospective, case-controlled study identified risk factors for VAP among critically ill trauma patients with and without brain injury. Data were abstracted on trauma patients with (cases) and without (controls) brain injury. Data gathered on n = 157 subjects. Trauma patients with brain injury had more emergent and field intubations. Age was strongest predictor of VAP in cases, and ventilator days predicted VAP in controls. Trauma patients with brain injury may be at higher risk for VAP.

  19. Application of Ultrasonic Techniques for Brain Injury Diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Kasili, P.M.; Mobley, J.; Norton, S.J.; Vo-Dinh, T.

    1999-09-19

    In this work, we evaluate methods for detecting brain injury using ultrasound. We have used simulations of ultrasonic fields in the head to model the phase distortion of the skull. In addition we present experimental data from the crania of large animals. The experimental data help us understand and evaluate the performance of different transducers in acquiring the backscatter data from the brain through the skull. Both the simulations and acquired data illustrate the superiority of lower-frequency (<= 1 MHz) ultrasonic fields for transcranial acquisition of signals from inside the brain. Additionally, the experimental work shows that the higher-frequency (5 MHz) ultrasound can also be useful in acquiring clean nearfield data to help detect the position of the inner boundary of the skull.

  20. Fetal inflammatory response and brain injury in the preterm newborn.

    Science.gov (United States)

    Malaeb, Shadi; Dammann, Olaf

    2009-09-01

    Preterm birth can be caused by intrauterine infection and maternal/fetal inflammatory responses. Maternal inflammation (chorioamnionitis) is often followed by a systemic fetal inflammatory response characterized by elevated levels of proinflammatory cytokines in the fetal circulation. The inflammation signal is likely transmitted across the blood-brain barrier and initiates a neuroinflammatory response. Microglial activation has a central role in this process and triggers excitotoxic, inflammatory, and oxidative damage in the developing brain. Neuroinflammation can persist over a period of time and sensitize the brain to subinjurious insults in early and chronic phases but may offer relative tolerance in the intermediate period through activation of endogenous anti-inflammatory, protective, and repair mechanisms. Neuroinflammatory injury not only destroys what exists but also changes what develops.

  1. Plasticity in the Neonatal Brain following Hypoxic-Ischaemic Injury

    Directory of Open Access Journals (Sweden)

    Eridan Rocha-Ferreira

    2016-01-01

    Full Text Available Hypoxic-ischaemic damage to the developing brain is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The developmental stage of the brain and the severity of the insult influence the selective regional vulnerability and the subsequent clinical manifestations. The increased susceptibility to hypoxia-ischaemia (HI of periventricular white matter in preterm infants predisposes the immature brain to motor, cognitive, and sensory deficits, with cognitive impairment associated with earlier gestational age. In term infants HI causes selective damage to sensorimotor cortex, basal ganglia, thalamus, and brain stem. Even though the immature brain is more malleable to external stimuli compared to the adult one, a hypoxic-ischaemic event to the neonate interrupts the shaping of central motor pathways and can affect normal developmental plasticity through altering neurotransmission, changes in cellular signalling, neural connectivity and function, wrong targeted innervation, and interruption of developmental apoptosis. Models of neonatal HI demonstrate three morphologically different types of cell death, that is, apoptosis, necrosis, and autophagy, which crosstalk and can exist as a continuum in the same cell. In the present review we discuss the mechanisms of HI injury to the immature brain and the way they affect plasticity.

  2. Investigation of elemental changes in brain tissues following excitotoxic injury

    Science.gov (United States)

    Siegele, Rainer; Howell, Nicholas R.; Callaghan, Paul D.; Pastuovic, Zeljko

    2013-07-01

    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca+2 cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca+2 cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma.

  3. Investigation of elemental changes in brain tissues following excitotoxic injury

    Energy Technology Data Exchange (ETDEWEB)

    Siegele, Rainer, E-mail: rns@ansto.gov.au [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Howell, Nicholas R.; Callaghan, Paul D. [Life Sciences, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Pastuovic, Zeljko [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2013-07-01

    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca{sup +2} cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca{sup +2} cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma.

  4. Factors influencing self-awareness following traumatic brain injury.

    Science.gov (United States)

    Richardson, Cally; McKay, Adam; Ponsford, Jennie L

    2015-01-01

    To examine self-awareness and injury-related, emotional and demographic factors across acute/subacute (3-12 months), medium-term (24-60 months), and long-term (120-240 months) time periods after traumatic brain injury (TBI), because unawareness of injury-related changes can affect engagement in rehabilitation and functional outcomes. A total of 168 individuals with mild to severe TBI and 105 of their close others. Awareness Questionnaire (AQ) and Hospital Anxiety and Depression Scale. Cross-sectional study. There were no significant differences in awareness as a function of time postinjury, except for the AQ motor/sensory domain wherein individuals with TBI at longer time periods displayed increased awareness of deficits than those at earlier time periods. Greater patient-other AQ discrepancy scores (interpreted as lower patient awareness) were associated with longer posttraumatic amnesia duration in the individual with TBI and also with increased self-reported depressive symptoms in the close others. Conversely, smaller AQ discrepancy scores (interpreted as better awareness) were associated with increased self-reported depressive symptoms by the individuals with TBI. This study highlights the limitations of using discrepancy scores to measure awareness, as ratings of injury-related changes are influenced by the mood of the individual with TBI and the close other, as well as by injury severity.

  5. [Running injuries sustained in a marathon race. Registration of the occurrence and types of injuries in the 1986 Arhus Marathon].

    Science.gov (United States)

    Jakobsen, B W; Krøner, K; Schmidt, S A; Jensen, J

    1989-08-28

    A questionnaire investigation was undertaken in connection with the Arhus Marathon Race in 1986, with the object of registering experience, previous running injuries, amount of training, running injuries, treatment and causes. A total of 831 replies were obtained (90%). Of these, there were 731 men and 100 women with an average age of 34.6 (11-77) years, duration og training 5.5 months, training distance 47.5 km/week and tempo 10.8 km/hour. Among these, 193 injuries were registered in 161 runners (19%). Eighty-nine had to stop sports for more than one week and 26 still had injuries which limited participation in sport after eight weeks. The injuries consisted of blisters (25%) and stress injuries (66%) particularly in the knee (37%) and leg (23%). Runners who sustained injuries were found to be significantly younger than non-injured runners, their training distance was less and training tempo lower. The causes of the injuries were mainly overexertion. The significance for the types of shoes for stress injuries was investigated and a tendency to increased risk of overexertion injuries was demonstrated on employing competition shoes and cheap jogging shoes.

  6. Regional mechanical properties of human brain tissue for computational models of traumatic brain injury.

    Science.gov (United States)

    Finan, John D; Sundaresh, Sowmya N; Elkin, Benjamin S; McKhann, Guy M; Morrison, Barclay

    2017-06-01

    To determine viscoelastic shear moduli, stress relaxation indentation tests were performed on samples of human brain tissue resected in the course of epilepsy surgery. Through the use of a 500µm diameter indenter, regional mechanical properties were measured in cortical grey and white matter and subregions of the hippocampus. All regions were highly viscoelastic. Cortical grey matter was significantly more compliant than the white matter or hippocampus which were similar in modulus. Although shear modulus was not correlated with the age of the donor, cortex from male donors was significantly stiffer than from female donors. The presented material properties will help to populate finite element models of the brain as they become more anatomically detailed. We present the first mechanical characterization of fresh, post-operative human brain tissue using an indentation loading mode. Indentation generates highly localized data, allowing structure-specific mechanical properties to be determined from small tissue samples resected during surgery. It also avoids pitfalls of cadaveric tissue and allows data to be collected before degenerative processes alter mechanical properties. To correctly predict traumatic brain injury, finite element models must calculate intracranial deformation during head impact. The functional consequences of injury depend on the anatomical structures injured. Therefore, morbidity depends on the distribution of deformation across structures. Accurate prediction of structure-specific deformation requires structure-specific mechanical properties. This data will facilitate deeper understanding of the physical mechanisms that lead to traumatic brain injury. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. The accumulation of brain injury leads to severe neuropathological and neurobehavioral changes after repetitive mild traumatic brain injury.

    Science.gov (United States)

    Gao, Huabin; Han, Zhaoli; Bai, Ruojing; Huang, Shan; Ge, Xintong; Chen, Fanglian; Lei, Ping

    2017-02-15

    Traumatic brain injury (TBI) is a major public health problem with long-term neurobehavioral sequela. The evidences have revealed that TBI is a risk factor for later development of neurodegenerative disease and both the single and repetitive brain injury can lead to the neurodegeneration. But whether the effects of accumulation play an important role in the neurodegenerative disease is still unknown. We utilized the Sprague Dawley (SD) rats to develop the animal models of repetitive mild TBI and single mild TBI in order to detect the neurobehavioral changes. The results of neurobehavioral test revealed that the repetitive mild TBI led to more severe behavioral injuries than the single TBI. There were more activated microglia cells and astrocytes in the repetitive mild TBI group than the single TBI group. In consistent with this, the levels of TNF-α and IL-6 were higher and the expression of IL-10 was lower in the repetitive mild TBI group compared with the single TBI group. The expression of amyloid precursor protein (APP) increased in the repetitive TBI group detected by ELISA and western blot. But the levels of total tau (Tau-5) and P-tau (ser202) seem no different between the two groups in most time point. In conclusion, repetitive mild TBI could lead to more severe neurobehavioral impairments and the effects of accumulation may be associated with the increased inflammation in the brain. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Olive leaf extract inhibits lead poisoning-induced brain injury**

    Institute of Scientific and Technical Information of China (English)

    Yu Wang; Shengqing Wang; Wenhui Cui; Jiujun He; Zhenfu Wang; Xiaolu Yang

    2013-01-01

    Olive leaves have an antioxidant capacity, and olive leaf extract can protect the blood, spleen and hippocampus in lead-poisoned mice. However, little is known about the effects of olive leaf extract on lead-induced brain injury. This study was designed to determine whether olive leaf extract can inhibit lead-induced brain injury, and whether this effect is associated with antioxidant capacity. First, we established a mouse model of lead poisoning by continuous intragastric administration of lead acetate for 30 days. Two hours after successful model establishment, lead-poisoned mice were given olive leaf extract at doses of 250, 500 or 1 000 mg/kg daily by intragastric administration for 50 days. Under the transmission electron microscope, olive leaf extract attenuated neuronal and capil ary injury and reduced damage to organel es and the matrix around the capil aries in the frontal lobe of the cerebral cortex in the lead-poisoned mice. Olive leaf extract at a dose of 1 000 mg/kg had the greatest protective effect. Spectrophotometry showed that olive leaf extract significantly in-creased the activities of superoxide dismutase, catalase, alkaline phosphatase and acid phospha-tase, while it reduced malondialdehyde content, in a dose-dependent manner. Furthermore, im-munohistochemical staining revealed that olive leaf extract dose-dependently decreased Bax pro-tein expression in the cerebral cortex of lead-poisoned mice. Our findings indicate that olive leaf extract can inhibit lead-induced brain injury by increasing antioxidant capacity and reducing apop-tosis.

  9. Neuropsychologic and functional outcome after complicated mild traumatic brain injury.

    Science.gov (United States)

    Kashluba, Shauna; Hanks, Robin A; Casey, Joseph E; Millis, Scott R

    2008-05-01

    To investigate the extent to which neuropsychologic and functional outcome after complicated mild traumatic brain injury (TBI) parallels that of moderate TBI recovery. A longitudinal study comparing neuropsychologic and functional status of persons with complicated mild TBI and moderate TBI at discharge from inpatient rehabilitation and at 1 year postinjury. Rehabilitation hospital with a Traumatic Brain Injury Model System. Persons with complicated mild TBI (n=102), each with an intracranial brain lesion documented through neuroimaging and a highest Glasgow Coma Scale (GCS) score in the emergency department between 13 and 15, and 127 persons with moderate TBI. Not applicable. FIM instrument, Disability Rating Scale, Community Integration Questionnaire, Wechsler Memory Scale logical memory I and II, Rey Auditory Verbal Learning Test, Trail-Making Test, Controlled Oral Word Association Test, Symbol Digit Modalities Test, Wisconsin Card Sorting Test, and block design. Few differences in neuropsychologic performance existed between the TBI groups. Less severely impaired information processing speed and verbal learning were seen in the complicated mild TBI group at rehabilitation discharge and 1 year postinjury. Despite overall improvement across cognitive domains within the complicated mild TBI group, some degree of impairment remained at 1 year postinjury on those measures that had identified participants as impaired soon after injury. No differences on functional ability measures were found between the TBI groups at either time period postinjury, with both groups exhibiting incomplete recovery of functional status at the 1-year follow-up. When classifying severity of TBI based on GCS scores, consideration of a moderate injury designation should be given to persons with an intracranial bleed and a GCS score between 13 and 15.

  10. Efficacy, dosage and duration of action of branched chain amino acid therapy for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Jaclynn eElkind

    2015-03-01

    Full Text Available Traumatic brain injury (TBI results in long-lasting cognitive impairments for which there is currently no accepted treatment. A well-established mouse model of mild to moderate TBI, lateral fluid percussion injury (FPI, shows changes in network excitability in the hippocampus including a decrease in net synaptic efficacy in area CA1 and an increase in net synaptic efficacy in dentate gyrus. Previous studies identified a novel therapy consisting of branched chain amino acids (BCAAs which restored normal mouse hippocampal responses and ameliorated cognitive impairment following FPI. However, the optimal BCAA dose and length of treatment needed to improve cognitive recovery is unknown. In the current study mice underwent FPI then consumed 100 mM BCAA supplemented water ad libitum for 2, 3, 4, 5 and 10 days. BCAA therapy ameliorated cognitive impairment at 5 and 10 days duration. Neither BCAA supplementation at 50 mM, nor BCAAs when dosed 5 days on then 5 days off, was sufficient to ameliorate cognitive impairment. These results suggest that brain injury causes alterations in hippocampal function which underlie and contribute to hippocampal cognitive impairment which are reversible with at least 5 days of BCAA treatment, and that sustaining this effect is dependent on continuous treatment. Our findings have profound implications for the clinical investigation of TBI therapy.

  11. Effects of NOS inhibitor on dentate gyrus neurogenesis after diffuse brain injury in the adult rats

    Institute of Scientific and Technical Information of China (English)

    SunLi-Sha; XuJiang-ping

    2004-01-01

    Objective To investigate the effects of selective nitric oxide synthase (NOS) inhibitors on dentate gyrus neurogenesis after diffuse brain injury (DBI) in the adult rat brain. Methods Adult male SD rats were subjected to diffuse brain injury (DBI) model. By using systemic bromodeoxyuridine (BrdU) to label dividing cells, we compared the proliferation rate of

  12. Art Therapy for Individuals with Traumatic Brain Injury: A Comprehensive Neurorehabilitation-Informed Approach to Treatment

    Science.gov (United States)

    Kline, Tori

    2016-01-01

    I describe an approach to art therapy treatment for survivors of traumatic brain injury developed at a rehabilitation facility for adults that serves inpatient, outpatient, and long-term residential clients. This approach is based on a review of the literature on traumatic brain injury, comprehensive neurorehabilitation, brain plasticity, and art…

  13. Art Therapy for Individuals with Traumatic Brain Injury: A Comprehensive Neurorehabilitation-Informed Approach to Treatment

    Science.gov (United States)

    Kline, Tori

    2016-01-01

    I describe an approach to art therapy treatment for survivors of traumatic brain injury developed at a rehabilitation facility for adults that serves inpatient, outpatient, and long-term residential clients. This approach is based on a review of the literature on traumatic brain injury, comprehensive neurorehabilitation, brain plasticity, and art…

  14. Signal Transduction Pathways Involved in Brain Death-Induced Renal Injury

    NARCIS (Netherlands)

    Bouma, H. R.; Ploeg, R. J.; Schuurs, T. A.

    2009-01-01

    Kidneys derived from brain death organ donors show an inferior survival when compared to kidneys derived from living donors. Brain death is known to induce organ injury by evoking an inflammatory response in the donor. Neuronal injury triggers an inflammatory response in the brain, leading to endoth

  15. Military-related traumatic brain injury and neurodegeneration.

    Science.gov (United States)

    McKee, Ann C; Robinson, Meghan E

    2014-06-01

    Mild traumatic brain injury (mTBI) includes concussion, subconcussion, and most exposures to explosive blast from improvised explosive devices. mTBI is the most common traumatic brain injury affecting military personnel; however, it is the most difficult to diagnose and the least well understood. It is also recognized that some mTBIs have persistent, and sometimes progressive, long-term debilitating effects. Increasing evidence suggests that a single traumatic brain injury can produce long-term gray and white matter atrophy, precipitate or accelerate age-related neurodegeneration, and increase the risk of developing Alzheimer's disease, Parkinson's disease, and motor neuron disease. In addition, repetitive mTBIs can provoke the development of a tauopathy, chronic traumatic encephalopathy. We found early changes of chronic traumatic encephalopathy in four young veterans of the Iraq and Afghanistan conflict who were exposed to explosive blast and in another young veteran who was repetitively concussed. Four of the five veterans with early-stage chronic traumatic encephalopathy were also diagnosed with posttraumatic stress disorder. Advanced chronic traumatic encephalopathy has been found in veterans who experienced repetitive neurotrauma while in service and in others who were accomplished athletes. Clinically, chronic traumatic encephalopathy is associated with behavioral changes, executive dysfunction, memory loss, and cognitive impairments that begin insidiously and progress slowly over decades. Pathologically, chronic traumatic encephalopathy produces atrophy of the frontal and temporal lobes, thalamus, and hypothalamus; septal abnormalities; and abnormal deposits of hyperphosphorylated tau as neurofibrillary tangles and disordered neurites throughout the brain. The incidence and prevalence of chronic traumatic encephalopathy and the genetic risk factors critical to its development are currently unknown. Chronic traumatic encephalopathy has clinical and

  16. Injury severity measures for predicting return-to-work after a traumatic brain injury.

    Science.gov (United States)

    Chien, Ding-Kuo; Hwang, Hei-Fen; Lin, Mau-Roung

    2017-01-01

    This study compared the ability of five injury severity measures, namely the Abbreviated Injury Scale to the Head (AIS-H), Glasgow Coma Scale (GCS), Glasgow Outcome Scale (GOS), Extended Glasgow Outcome Scale (GOSE), and Injury Severity Score (ISS), to predict return-to-work after a traumatic brain injury (TBI). Furthermore, factors potentially associated with return-to-work were investigated. In total, 207 individuals aged ≤65 years newly diagnosed with a TBI and employed at the time of injury were recruited and followed-up for 1year by telephone every 3 months. A bivariate proportional hazards model analysis revealed that all five injury severity measures were significantly associated with return-to-work after a TBI. The AIS-H and non-head ISS explained 23.8% of the variation in the duration of returning to work from discharge after hospitalization for a TBI; similarly, the GCS, GOS, GOSE, and ISS respectively accounted for 4.7%, 21.4%, 12.9%, and 48.4% of the variation. A multivariable analysis revealed that individuals with higher injury severity as measured by the ISS (hazard ratio [HR], 0.94; 95% confidence interval [CI], 0.92-0.97), a lack of autonomy in transportation (HR, 2.55; 95% CI, 1.23-5.32), cognitive impairment (HR, 0.47; 95% CI, 0.28-0.79), and depression (HR, 0.97; 95% CI, 0.95-0.99) were significantly less likely to be employed after a TBI. In conclusion, of the five injury severity measures, the ISS may be the most capable measure of predicting return-to-work after a TBI. In addition to injury severity, autonomy in transportation, cognitive function, and the depressive status may also influence the employment status during the first year after a TBI.

  17. The Relation of Focal Lesions to Cortical Thickness in Pediatric Traumatic Brain Injury.

    Science.gov (United States)

    Bigler, Erin D; Zielinski, Brandon A; Goodrich-Hunsaker, Naomi; Black, Garrett M; Huff, B S Trevor; Christiansen, Zachary; Wood, Dawn-Marie; Abildskov, Tracy J; Dennis, Maureen; Taylor, H Gerry; Rubin, Kenneth; Vannatta, Kathryn; Gerhardt, Cynthia A; Stancin, Terry; Yeates, Keith Owen

    2016-10-01

    In a sample of children with traumatic brain injury, this magnetic resonance imaging (MRI)-based investigation examined whether presence of a focal lesion uniquely influenced cortical thickness in any brain region. Specifically, the study explored the relation of cortical thickness to injury severity as measured by Glasgow Coma Scale score and length of stay, along with presence of encephalomalacia, focal white matter lesions or presence of hemosiderin deposition as a marker of shear injury. For comparison, a group of children without head injury but with orthopedic injury of similar age and sex were also examined. Both traumatic brain injury and orthopedic injury children had normally reduced cortical thickness with age, assumed to reflect neuronal pruning. However, the reductions observed within the traumatic brain injury sample were similar to those in the orthopedic injury group, suggesting that in this sample traumatic brain injury, per se, did not uniquely alter cortical thickness in any brain region at the group level. Injury severity in terms of Glasgow Coma Scale or longer length of stay was associated with greater reductions in frontal and occipitoparietal cortical thickness. However, presence of focal lesions were not related to unique changes in cortical thickness despite having a prominent distribution of lesions within frontotemporal regions among children with traumatic brain injury. Because focal lesions were highly heterogeneous, their association with cortical thickness and development appeared to be idiosyncratic, and not associated with group level effects.

  18. A comparison of the injuries sustained by female basketball and netball players.

    Science.gov (United States)

    McKay, G D; Payne, W R; Goldie, P A; Oakes, B W; Stanley, J J

    1996-03-01

    A prospective and reliable method of injury surveillance was implemented to document a comprehensive injury profile in female basketball and netball. The study further aimed to compare the injury profiles of the two sports. Trained observers viewed basketball and netball games, noting the occurrence of injuries. Injuries were confirmed by questioning all players on site after the game. Injured players completed a questionnaire and the progress of their injury was monitored by telephone interview. A total of 16,162 player participations were observed; 6,972 for basketball and 9,190 for netball. Comparable injury rates were observed for female basketball and netball players; 18.22 and 17.30 injuries per 1,000 participations, respectively. The ankle, hand and knee were the body parts injured most frequently in both sports, whilst head and neck injuries were prevalent in basketball only. Netball players sustained severe injuries at a rate 3.3 times that of female basketball players. The major and severe injuries occurred at an average of one injury in 625 games in female basketball and one in 250 games in netball. The ankle, knee and calf/shin were the body parts most frequently involved in the more serious injuries.

  19. Neuroendocrine abnormalities in patients with traumatic brain injury

    Science.gov (United States)

    Yuan, X. Q.; Wade, C. E.

    1991-01-01

    This article provides an overview of hypothalamic and pituitary alterations in brain trauma, including the incidence of hypothalamic-pituitary damage, injury mechanisms, features of the hypothalamic-pituitary defects, and major hypothalamic-pituitary disturbances in brain trauma. While hypothalamic-pituitary lesions have been commonly described at postmortem examination, only a limited number of clinical cases of traumatic hypothalamic-pituitary dysfunction have been reported, probably because head injury of sufficient severity to cause hypothalamic and pituitary damage usually leads to early death. With the improvement in rescue measures, an increasing number of severely head-injured patients with hypothalamic-pituitary dysfunction will survive to be seen by clinicians. Patterns of endocrine abnormalities following brain trauma vary depending on whether the injury site is in the hypothalamus, the anterior or posterior pituitary, or the upper or lower portion of the pituitary stalk. Injury predominantly to the hypothalamus can produce dissociated ACTH-cortisol levels with no response to insulin-induced hypoglycemia and a limited or failed metopirone test, hypothyroxinemia with a preserved thyroid-stimulating hormone response to thyrotropin-releasing hormone, low gonadotropin levels with a normal response to gonadotropin-releasing hormone, a variable growth hormone (GH) level with a paradoxical rise in GH after glucose loading, hyperprolactinemia, the syndrome of inappropriate ADH secretion (SIADH), temporary or permanent diabetes insipidus (DI), disturbed glucose metabolism, and loss of body temperature control. Severe damage to the lower pituitary stalk or anterior lobe can cause low basal levels of all anterior pituitary hormones and eliminate responses to their releasing factors. Only a few cases showed typical features of hypothalamic or pituitary dysfunction. Most severe injuries are sufficient to damage both structures and produce a mixed endocrine picture

  20. The nature and extent of war injuries sustained by combat specialty personnel killed and wounded in Afghanistan and Iraq, 2003-2011.

    Science.gov (United States)

    Schoenfeld, Andrew J; Dunn, John C; Bader, Julia O; Belmont, Philip J

    2013-08-01

    Previous studies regarding combat wounding have a limited translational capacity due to inclusion of soldiers from all military branches and occupational specialties as well as a lack of information regarding soldiers who died in theater. A search was performed of the Department of Defense Trauma Registry and Armed Forces Medical Examiner data set for the years 2003 to 2011 to identify all injured personnel with the military specialty 19D (cavalry scout). A manual search was conducted for each record identified, and age, rank, location and manner of injury, mechanism of injury, Injury Severity Score (ISS), and extent of wounding were abstracted. The incidence of injuries by body region and rates for specific types of wounds were determined. Statistically significant associations between rank, location of injury, manner of injury, body region involved, and injury mechanism were assessed using χ2 analysis. Associations between ISS, rank, manner of injury, and survival were evaluated by t test with Satterthwaite correction. A total of 701 casualties were identified with 3,189 distinct injuries. Mean (SD) age of injured personnel was 25.9 (6.0) years. Thirty-five percent of the cohort was composed of soldiers who died in theater. Explosions were the most common mechanism of injury (70%), while 18% of wounds occurred owing to gunshot. Extremity wounds and injuries to the head and neck represented 34% of casualty burden. Thoracic trauma occurred in 16%, and abdominal injuries occurred in 17%. Wounds with a frequency exceeding 5% included skin, extremity, facial, brain, and gastrointestinal injuries. Vascular injury occurred in 4%. Gunshot wounds were a greater cause of injury in Afghanistan (p = 0.001) and resulted in a higher percentage of thoracic injuries (p trauma sustained by combat-specific personnel seems to be different from that experienced by all soldiers deployed to a war zone.