WorldWideScience

Sample records for brain injury patients

  1. [Brain injury knowledge in family members of neurosurgical patients].

    Science.gov (United States)

    Navarro-Main, Blanca; Castaño-León, Ana M; Munarriz, Pablo M; Gómez, Pedro A; Rios-Lago, Marcos; Lagares, Alfonso

    Several studies have shown misconceptions about brain injury in different populations. The aim of this study was to assess the knowledge and perceptions about brain injury of family members of neurosurgical patients in our hospital. The participants (n=81) were relatives of patients admitted to the neurosurgery department between February and August 2016. They voluntarily completed a 19-item true-false format survey about brain injury based on a translation of other questionnaires used in previous studies from other countries (USA, Canada, UK, Ireland and New Zealand). Also, some sociodemographic data were collected (age, sex, education level and the patient's pathology). Data analysis was developed through graphical modelling with a regularisation parameter plotted on a network representing the association of the items of the questionnaire from the response pattern of participants. Data analysis showed two conceptual areas with a high rate of wrong answers: behaviour and management of patients, and expectations about acquired brain injury recovery. The results obtained in this study would enable us to objectify misconceptions about acquired brain injury in patients' relatives attended in the neurosurgery department. This lack of knowledge could be a great obstacle in patients' recovery process. Therefore, we suggest placing the emphasis on the provision of information on brain injury to patients' families, especially with regard to its symptoms and course of development. Copyright © 2017 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Relatives of patients with severe brain injury

    DEFF Research Database (Denmark)

    Norup, Anne; Petersen, Janne; Lykke Mortensen, Erik

    2015-01-01

    PRIMARY OBJECTIVE: To investigate trajectories and predictors of trajectories of anxiety and depression in relatives of patients with a severe brain injury during the first year after injury. RESEARCH DESIGN: A prospective longitudinal study with four repeated measurements. SUBJECTS: Ninety...... relatives of patients with severe brain injury. METHODS: The relatives were assessed on the anxiety and depression scales from the Symptom Checklist-90-Revised and latent variable growth curve models were used to model the trajectories. The effects of patient's age, patient's Glasgow Coma Score, level...... should focus not only on specific deficits in the patient, but also on how the emotional state and well-being of the relatives evolve, while trying to adjust and cope with a new life-situation....

  3. Caring for Patients with traumatic brain injury: a survey of nurses' perceptions.

    Science.gov (United States)

    Oyesanya, Tolu O; Brown, Roger L; Turkstra, Lyn S

    2017-06-01

    The purpose of this study was to determine nurses' perceptions about caring for patients with traumatic brain injury. Annually, it is estimated that over 10 million people sustain a traumatic brain injury around the world. Patients with traumatic brain injury and their families are often concerned with expectations about recovery and seek information from nurses. Nurses' perceptions of care might influence information provided to patients and families, particularly if inaccurate knowledge and perceptions are held. Thus, nurses must be knowledgeable about care of these patients. A cross-sectional survey, the Perceptions of Brain Injury Survey (PBIS), was completed electronically by 513 nurses between October and December 2014. Data were analysed with structural equation modelling, factor analysis, and pairwise comparisons. Using latent class analysis, authors were able to divide nurses into three homogeneous sub-groups based on perceived knowledge: low, moderate and high. Findings showed that nurses who care for patients with traumatic brain injury the most have the highest perceived confidence but the lowest perceived knowledge. Nurses also had significant variations in training. As there is limited literature on nurses' perceptions of caring for patients with traumatic brain injury, these findings have implications for training and educating nurses, including direction for development of nursing educational interventions. As the incidence of traumatic brain injury is growing, it is imperative that nurses be knowledgeable about care of patients with these injuries. The traumatic brain injury PBIS can be used to determine inaccurate perceptions about caring for patients with traumatic brain injury before educating and training nurses. © 2016 John Wiley & Sons Ltd.

  4. Pediatric acquired brain injury.

    Science.gov (United States)

    Bodack, Marie I

    2010-10-01

    Although pediatric patients are sometimes included in studies about visual problems in patients with acquired brain injury (ABI), few studies deal solely with children. Unlike studies dealing with adult patients, in which mechanisms of brain injury are divided into cerebral vascular accident (CVA) and traumatic brain injury (TBI), studies on pediatric patients deal almost exclusively with traumatic brain injury, specifically caused by accidents. Here we report on the vision problems of 4 pediatric patients, ages 3 to 18 years, who were examined in the ophthalmology/optometry clinic at a children's hospital. All patients had an internally caused brain injury and after the initial insult manifested problems in at least one of the following areas: acuity, binocularity, motility (tracking or saccades), accommodation, visual fields, and visual perceptual skills. Pediatric patients can suffer from a variety of oculo-visual problems after the onset of head injury. These patients may or may not be symptomatic and can benefit from optometric intervention. Copyright © 2010 American Optometric Association. Published by Elsevier Inc. All rights reserved.

  5. Outcomes in nursing home patients with traumatic brain injury.

    Science.gov (United States)

    Lueckel, Stephanie N; Kosar, Cyrus M; Teno, Joan M; Monaghan, Sean F; Heffernan, Daithi S; Cioffi, William G; Thomas, Kali S

    2018-05-09

    Traumatic brain injury is a leading cause of death and disability in the United States. In survivors, traumatic brain injury remains a leading contributor to long-term disability and results in many patients being admitted to skilled nursing facilities for postacute care. Despite this very large population of traumatic brain injury patients, very little is known about the long-term outcomes of traumatic brain injury survivors, including rates of discharge to home or risk of death in long-term nursing facilities. We hypothesized that patient demographics and functional status influence outcomes of patients with traumatic brain injury admitted to skilled nursing facilities. We conducted a retrospective cohort study of Medicare fee-for-service beneficiaries aged 65 and older discharged alive and directly from hospital to a skilled nursing facility between 2011 and 2014 using the prospectively maintained Federal Minimum Data Set combined with Medicare claims data and the Centers for Medicare and Medicaid Services Vital Status files. Records were reviewed for demographic and clinical characteristics at admission to the skilled nursing facility, including age, sex, cognitive function, ability to communicate, and motor function. Activities of daily living were reassessed at discharge to calculate functional improvement. We used robust Poisson regression with skilled nursing facility fixed effects to calculate relative risks and 99% confidence intervals for mortality and functional improvement associated with the demographic and clinical characteristics present at admission. Linear regression was used to calculate adjusted mean duration of stay. Overall, 87,292 Medicare fee-for-service beneficiaries with traumatic brain injury were admitted to skilled nursing facilities. The mean age was 84 years, with 74% of patients older than age 80. Generally, older age, male sex, and poor cognitive or functional status at admission to a skilled nursing facility were associated with

  6. Mismatch negativity, social cognition, and functional outcomes in patients after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hui-yan Sun

    2015-01-01

    Full Text Available Mismatch negativity is generated automatically, and is an early monitoring indicator of neuronal integrity impairment and functional abnormality in patients with brain injury, leading to decline of cognitive function. Antipsychotic medication cannot affect mismatch negativity. The present study aimed to explore the relationships of mismatch negativity with neurocognition, daily life and social functional outcomes in patients after brain injury. Twelve patients with traumatic brain injury and 12 healthy controls were recruited in this study. We examined neurocognition with the Wechsler Adult Intelligence Scale-Revised China, and daily and social functional outcomes with the Activity of Daily Living Scale and Social Disability Screening Schedule, respectively. Mismatch negativity was analyzed from electroencephalogram recording. The results showed that mismatch negativity amplitudes decreased in patients with traumatic brain injury compared with healthy controls. Mismatch negativity amplitude was negatively correlated with measurements of neurocognition and positively correlated with functional outcomes in patients after traumatic brain injury. Further, the most significant positive correlations were found between mismatch negativity in the fronto-central region and measures of functional outcomes. The most significant positive correlations were also found between mismatch negativity at the FCz electrode and daily living function. Mismatch negativity amplitudes were extremely positively associated with Social Disability Screening Schedule scores at the Fz electrode in brain injury patients. These experimental findings suggest that mismatch negativity might efficiently reflect functional outcomes in patients after traumatic brain injury.

  7. Patient Effort in Traumatic Brain Injury Inpatient Rehabilitation: Course and Associations With Age, Brain Injury Severity, and Time Postinjury

    Science.gov (United States)

    Seel, Ronald T.; Corrigan, John D.; Dijkers, Marcel P.; Barrett, Ryan S.; Bogner, Jennifer; Smout, Randall J.; Garmoe, William; Horn, Susan D.

    2016-01-01

    Objective To describe patients' level of effort in occupational, physical, and speech therapy sessions during traumatic brain injury (TBI) inpatient rehabilitation and to evaluate how age, injury severity, cognitive impairment, and time are associated with effort. Design Prospective, multicenter, longitudinal cohort study. Setting Acute TBI rehabilitation programs. Participants Patients (N=1946) receiving 138,555 therapy sessions. Interventions Not applicable. Main Outcome Measures Effort in rehabilitation sessions rated on the Rehabilitation Intensity of Therapy Scale, FIM, Comprehensive Severity Index brain injury severity score, posttraumatic amnesia (PTA), and Agitated Behavior Scale (ABS). Results The Rehabilitation Intensity of Therapy Scale effort ratings in individual therapy sessions closely conformed to a normative distribution for all 3 disciplines. Mean Rehabilitation Intensity of Therapy Scale ratings for patients' therapy sessions were higher in the discharge week than in the admission week (Prehabilitation, differences in effort ratings (Pcognitive scores and over time. In linear mixed-effects modeling, age and Comprehensive Severity Index brain injury severity score at admission, days from injury to rehabilitation admission, days from admission, and daily ratings of PTA and ABS score were predictors of level of effort (Prehabilitation setting using the Rehabilitation Intensity of Therapy Scale. Patients who sustain TBI show varying levels of effort in rehabilitation therapy sessions, with effort tending to increase over the stay. PTA and agitated behavior are primary risk factors that substantially reduce patient effort in therapies. PMID:26212400

  8. Medical Management of the Severe Traumatic Brain Injury Patient.

    Science.gov (United States)

    Marehbian, Jonathan; Muehlschlegel, Susanne; Edlow, Brian L; Hinson, Holly E; Hwang, David Y

    2017-12-01

    Severe traumatic brain injury (sTBI) is a major contributor to long-term disability and a leading cause of death worldwide. Medical management of the sTBI patient, beginning with prehospital triage, is aimed at preventing secondary brain injury. This review discusses prehospital and emergency department management of sTBI, as well as aspects of TBI management in the intensive care unit where advances have been made in the past decade. Areas of emphasis include intracranial pressure management, neuromonitoring, management of paroxysmal sympathetic hyperactivity, neuroprotective strategies, prognostication, and communication with families about goals of care. Where appropriate, differences between the third and fourth editions of the Brain Trauma Foundation guidelines for the management of severe traumatic brain injury are highlighted.

  9. Secondary injury in traumatic brain injury patients - A prospective ...

    African Journals Online (AJOL)

    Objective. Secondary insults of hypotension and hypoxia significantly impact on outcome in patients with traumatic brain injury (TBI). More than 4 hours' delay in evacuation of intracranial haematomas has been demonstrated to have an additional impact on outcome. The objective of this study was to document the ...

  10. Correlating learning and memory improvements to long-term potentiation in patients with brain injury

    Institute of Scientific and Technical Information of China (English)

    Xingfu Peng; Qian Yu

    2008-01-01

    BACKGROUND:Brain injury patients often exhibit learning and memory functional deficits.Long-term potentiation(LTP)is a representative index for studying learning and memory cellular models; the LTP index correlates to neural plasticity. OBJECTIVE:This study was designed to investigate correlations of learning and memory functions to LTP in brain injury patients,and to summarize the research advancements in mechanisms underlying brain functional improvements after rehabilitation intervention. RETRIEVAL STRATEGY:Using the terms "brain injuries,rehabilitation,learning and memory,long-term potentiation",manuscripts that were published from 2000-2007 were retrieved from the PubMed database.At the same time,manuscripts published from 2000-2007 were also retrieved from the Database of Chinese Scientific and Technical Periodicals with the same terms in the Chinese language.A total of 64 manuscripts were obtained and primarily screened.Inclusion criteria:studies on learning and memory,as well as LTP in brain injury patients,and studies focused on the effects of rehabilitation intervention on the two indices; studies that were recently published or in high-impact journals.Exclusion criteria:repetitive studies.LITERATURE EVALUATION:The included manuscripts primarily focused on correlations between learning and memory and LTP,the effects of brain injury on learning and memory,as well as LTP,and the effects of rehabilitation intervention on learning and memory after brain injury.The included 39 manuscripts were clinical,basic experimental,or review studies. DATA SYNTHESIS:Learning and memory closely correlates to LTP.The neurobiological basis of learning and memory is central nervous system plasticity,which involves neural networks,neural circuits,and synaptic connections,in particular,synaptic plasticity.LTP is considered to be an ideal model for studying synaptic plasticity,and it is also a classic model for studying neural plasticity of learning and memory.Brain injury

  11. Increased Intracranial Pressure during Hemodialysis in a Patient with Anoxic Brain Injury

    DEFF Research Database (Denmark)

    Lund, Anton; Damholt, Mette B; Strange, Ditte G

    2017-01-01

    Dialysis disequilibrium syndrome (DDS) is a serious neurological complication of hemodialysis, and patients with acute brain injury are at increased risk. We report a case of DDS leading to intracranial hypertension in a patient with anoxic brain injury and discuss the subsequent dialysis strateg...

  12. SPECT brain perfusion imaging in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Li Juan; Liu Baojun; Zhao Feng; He Lirong; Xia Yucheng

    2003-01-01

    Objective: To study the clinical value of SPECT brain perfusion imaging after mild traumatic brain injury and to evaluate the mechanism of brain blood flow changes in the brain traumatic symptoms. Methods: SPECT 99 Tc m -ethylene cysteinate dimer (ECD) brain perfusion imaging was performed on 39 patients with normal consciousness and normal computed tomography. The study was performed on 23 patients within 3 months after the accidental injury and on 16 patients at more than 3 months post-injury. The cerebellum was used as the reference site (100% maximum value). Any decrease in cerebral perfusion in cortex or basal ganglia to below 70%, or even to below 50% in the medial temporal lobe, compared to the cerebellar reference was considered abnormal. Results: The results of 23 patients (59%) were abnormal. Among them, 20 patients showed 74 focal lesions with an average of 3.7 per patient (15 studies performed within 3 months and 8 studies performed more than 3 months after injury). The remaining 3 showed diffuse hypoperfusion (two at the early stage and one at more than 3 months after the injury). The 13 abnormal studies performed at the early stage showed 58 lesions (average, 4.5 per patient), whereas there was a reduction to an average of 2.3 per patient in the 7 patients (total 16 lesions) at more than 3 months post-injury. In the 20 patients with focal lesions, mainly the following regions were involved: frontal lobes 43.2% (32/74), basal ganglia 24.3% (18/74) and temporal lobes 17.6% (13/74). Conclusions: 1) SPECT brain perfusion imaging is more sensitive than computed tomography in detecting brain lesions of mild traumatic brain injury. 2) SPECT brain perfusion imaging is more sensitive at early stage than at late stage after injury. 3) The most common complaints were headache, dizziness, memory deficit. The patients without loss of consciousness may present brain hypoperfusion, too. 4) The changes may explain a neurological component of the patient symptoms in

  13. [Consequence of secondary complications during the rehabilitation of patients with severe brain injury].

    Science.gov (United States)

    Dénes, Zoltán

    2009-01-25

    Recovery from brain injury is not only determined by the primary injury, but a very important element is the development of secondary complications which have a major role in determining the possibility of the achievement of available maximal functional abilities and the quality of life of the patients and their family after rehabilitation. This is why during medical treatment the prevention of secondary complications is at least as important as the prevention of primary injury. Determination of the most important secondary complications after severe brain injury, and observation of these effects on the rehabilitation process. Retrospective study in the Brain Injury Rehabilitation unit of the National Institute for Medical Rehabilitation in Hungary. 166 patients were treated with brain injury; the mean age of the patients was 33 (8-83) years in 2004. The majority of patients suffered traumatic brain injury in traffic accidents (125/166), while the rest of them through falls or acts of violence. Sixty-four patients were admitted directly from an intensive care unit, 18 from a second hospital ward (traumatology, neurosurgery or neurology) and the rest of the patients were treated in several different units before they were admitted for rehabilitation. The time that has elapsed between injury and rehabilitation admission was 50 days (21-177). At the time of admission 27 patients were in a vegetative state, 38 patients in a minimal conscious state, and 101 patients had already regained consciousness. 83 patients were hemiparetic, 54 presented tetraparesis, and 1 paraparesis, but 28 patients were not paretic. The most frequent complications in patients with severe brain injury at admission in our rehabilitation unit were: contractures (47%), pressure sores (35%), respiratory (14%) and urinary (11%) tract infections, malnutrition (20%). The functional outcome was worse in the cases arriving with secondary complications during the same rehabilitation period. The length of

  14. Caregiver burden in Danish family members of patients with severe brain injury

    DEFF Research Database (Denmark)

    Doser, Karoline; Norup, Anne

    2016-01-01

    OBJECTIVE: To investigate caregiver burden and factors associated with caregiver burden among family members of patients with severe brain injury in the chronic phase. Additionally, the study aimed at investigating differences in burden between parents and spouses. METHODS: Forty-four Danish...... caregivers of patients with severe brain injury were contacted 3-6 years post-injury and asked to complete a measure of caregiver burden. RESULTS: Medium, high and low levels of burden were observed in 45%, 16% and 39% of family members, respectively. Higher burden was seen in caregivers of patients...... with more severe injuries, who spent more time on caregiving and reported more unmet needs. Overall, spouses spent significantly more time taking care of their family member than parents and reported higher levels of burden. CONCLUSIONS: The findings emphasized the continuing consequences of brain injury...

  15. Chronic issues related to traumatic brain injury : traumatic brain injury is not an incident

    NARCIS (Netherlands)

    Grauwmeijer, Erik; van der Naalt, Joukje; ribbers, gerard

    2016-01-01

    Despite an increased awareness of the long-term consequences of traumatic brain injury, health care professionals often consider traumatic brain injury as an incident. However, patients with traumatic brain injury may experience long-term neurological, cognitive and behavioural problems. Due to the

  16. secondary injury in traumatic brain injury patients - a prospective study

    African Journals Online (AJOL)

    Objective. Secondary insults of hypotension and hypoxia significantly impact on outcome in patients with traumatic brain injury (TBI). More than 4 hours' delay in evacuation of intracranial haematomas has been demonstrated to have an additional impact on outcome. The objective of this study was to document the ...

  17. Missile injuries of the brain

    International Nuclear Information System (INIS)

    Kazmi, S.A.M.; Ashraf, A.T.; Qureshi, N.A.

    2001-01-01

    Data was analyzed relating to a consecutive series of 16 patients of penetrating brain injuries received at forward defense lines. Characteristics studied were the cause of injury, level of consciousness and various neurological deficits presented on initial examination, CT scan findings, the surgical procedures performed and the final outcome after one year of follow-up. One out of 16 patients, died due to severe associated injuries to abdominal viscera and major vessels. Meningitis occurred in one patient during the immediate postoperative period. All patients with motor weakness speech deficits and incontinence showed significant improvement. Hearing loss of one ear persisted in one patient. Two patients developed delayed onset seizures. It is concluded that, patients with penetrating brain injuries should be evacuated to the tertiary care neurosurgical centres as soon as possible. In operation only obviously necrotic brain and easily accessible metal and bone pieces should be removed. There is no need to explore the normal brain as it would only result in increased neurological deficits. The patients with such injuries should receive broad-spectrum antibiotics to prevent the infective complications. (author)

  18. The Evidence for Brain Injury in Whiplash Injuries

    Directory of Open Access Journals (Sweden)

    Michael P. Alexander

    2003-01-01

    Full Text Available The evidence that brain damage can occur in injuries that produce whiplash is reviewed. The clinical phenomena for the two injuries are the same. Pure whiplash injury implies no, or minimal head contact, but many patients also have head contact against a head rest or the steering wheel or windshield. The relative severity of the neck injury and the head injury distinguishes whiplash from mild closed head injury. If there is brain injury is some patients with whiplash, it, by definition, falls at the mildest end of the concussion spectrum. The relationship between these two injuries is examined.

  19. Patients with the most severe traumatic brain injury benefit from rehabilitation

    DEFF Research Database (Denmark)

    Poulsen, Ingrid; Norup, Anne; Liebach, Annette

    2014-01-01

    Patients with the most severe traumatic brain injury benefit from rehabilitation Ingrid Poulsen, Anne Norup, Annette Liebach, Lars Westergaard, Karin Spangsberg Kristensen, Tina Haren, & Lars Peter Kammersgaard Department for Neurorehabilitation, TBI Unit, Copenhagen University, Glostrup Hospital......., Hvidovre, Denmark Objectives: During the last couple of years, studies have indicated that even patients with the most severe traumatic brain injuries (TBI) benefit from rehabilitation despite what initially appears to be dismal prognosis. In Denmark, all patients with severe TBI have had an opportunity......-acute inpatient rehabilitation during a 12-year period followed an intensive interdisciplinary rehabilitation programme. Severity of injury was defined by Glasgow Coma Scale (GCS) score on rehabilitation admission and duration of post-traumatic amnesia (PTA). Patients were routinely measured...

  20. Effect of AVP on brain edema following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    XU Miao; SU Wei; HUANG Wei-dong; LU Yuan-qiang; XU Qiu-ping; CHEN Zhao-jun

    2007-01-01

    Objective: To evaluate plasma arginine vasopressin (AVP) level in patients with traumatic brain injury and investigate the role of AVP in the process of brain edema. Methods: A total of 30 patients with traumatic brain injury were involved in our study. They were divided into two groups by Glasgow Coma Scale: severe traumatic brain injury group (STBI, GCS≤ 8) and moderate traumatic brain injury group (MTBI, GCS>8).Samples of venous blood were collected in the morning at rest from 15 healthy volunteers (control group)and within 24 h after traumatic brain injury from these patients for AVP determinations by radioimmunoassay. The severity and duration of the brain edema were estimated by head CT scan.Results: plasma AVP levels (ng/L) were (mean±SD): control, 3.06±1.49; MTBI, 38.12±7.25; and STBI, 66.61±17.10.The plasma level of AVP was significantly increased within 24 h after traumatic brain injury and followed by the reduction of GCS, suggesting the deterioration of cerebral injury (P<0.01). And the AVP level was correlated with the severity (STBI r=0.919, P<0.01; MTBI r=0.724, P<0.01) and the duration of brain edema (STBI r=0.790, P<0.01; MTBI r=0.712, P<0.01). Conclusions: The plasma AVP level is closely associated with the severity of traumatic brain injury. AVP may play an important role in pathogenesis of brain edema after traumatic brain injury.

  1. Brain metabolism in patients with freezing of gait after hypoxic-ischemic brain injury

    OpenAIRE

    Yoon, Seo Yeon; Lee, Sang Chul; Kim, Na Young; An, Young-Sil; Kim, Yong Wook

    2017-01-01

    Abstract Movement disorders are 1 of the long-term neurological complications that can occur after hypoxic-ischemic brain injury (HIBI). However, freezing of gait (FOG) after HIBI is rare. The aim of this study was to examine the brain metabolism of patients with FOG after HIBI using F-18 fluoro-2-deoxy-D-glucose positron emission tomography (F-18 FDG PET). We consecutively enrolled 11 patients with FOG after HIBI. The patients’ overall brain metabolism was measured by F-18 FDG PET, and we co...

  2. Elevated lactate as an early marker of brain injury in inflicted traumatic brain injury

    International Nuclear Information System (INIS)

    Makoroff, Kathi L.; Cecil, Kim M.; Ball, William S.; Care, Marguerite

    2005-01-01

    Patients with inflicted traumatic brain injury and evidence of hypoxic-ischemic injury as indicated by elevated lactate on MRS tend to have worse early neurological status and early outcome scores. Lactate levels as sampled by MRS might predict early clinical outcome in inflicted traumatic brain injury. (orig.)

  3. Occupational therapy in patients after the brain injury with neglect syndrome

    OpenAIRE

    Říhová, Petra

    2015-01-01

    OF BACHELOR THESIS Title of bachelor thesis: Occupational therapy in patients after the brain injury with neglect syndrome This bachelor thesis is focused on summarizing the knowledge of the neglect syndrome, very interesting phenomenon accompanying brain injury. Thesis provides information about prevalence, etiopathogenesis, classification, clinical presentation and course of the disease. Special attention is devoted to diagnostic and therapeutic procedures and description of occupational th...

  4. Effect of Obesity on Motor Functional Outcome of Rehabilitating Traumatic Brain Injury Patients.

    Science.gov (United States)

    Le, David; Shafi, Shahid; Gwirtz, Patricia; Bennett, Monica; Reeves, Rustin; Callender, Librada; Dunklin, Cynthia; Cleveland, Samantha

    2015-08-01

    The aim of this study was to determine the association between obesity and functional motor outcome of patients undergoing inpatient rehabilitation after traumatic brain injury. This retrospective study at an urban acute inpatient rehabilitation center screened data from 761 subjects in the Traumatic Brain Injury Model System who were admitted from January 2010 to September 2013. Inclusion criteria consisted of age of 18 years or older and an abnormal Functional Independence Measure motor score. Body mass index was used to determine obesity in the study population. Patients with a body mass index of 30.0 kg/m or greater were considered obese. A total of 372 subjects met the criteria for inclusion in the study. Of these, 54 (13.2%) were obese. Both obese and nonobese patients showed similar improvement in Functional Independence Measure motor score (mean [SD], 30.4 [12.8] for the obese patients, P = 0.115, and 27.3 [13.1] for the nonobese patients). The mean (SD) Functional Independence Measure motor scores at discharge for the obese and nonobese patients were 63.0 (12.6) and 62.3 (10.1) (P = 0.6548), respectively. Obesity had no adverse impact on motor functional outcomes of the traumatic brain injury patients who underwent inpatient rehabilitation. Therefore, obesity should not be considered an obstacle in inpatient rehabilitation after traumatic brain injury, if patients are able to participate in necessary therapy.

  5. Touch-screen computerized education for patients with brain injuries.

    Science.gov (United States)

    Patyk, M; Gaynor, S; Kelly, J; Ott, V

    1998-01-01

    The use of computer technology for patient education has increased in recent years. This article describes a study that measures the attitudes and perceptions of healthcare professionals and laypeople regarding the effectiveness of a multimedia computer, the Brain Injury Resource Center (BIRC), as an educational tool. The study focused on three major themes: (a) usefulness of the information presented, (b) effectiveness of the multimedia touch-screen computer methodology, and (c) the appropriate time for making this resource available. This prospective study, conducted in an acute care medical center, obtained healthcare professionals' evaluations using a written survey and responses from patients with brain injury and their families during interviews. The findings have yielded excellent ratings as to the ease of understanding and usefulness of the BIRC. By using sight, sound, and touch, such a multimedia learning center has the potential to simplify patient and family education.

  6. Investigating nystagmus in patients with traumatic brain injury: A ...

    African Journals Online (AJOL)

    Background. Traumatic brain injury (TBI) is a health and socioeconomic concern worldwide. In patients with TBI, post-traumatic balance problems are often the result of damage to the vestibular system. Nystagmus is common in these patients, and can provide insight into the damage that has resulted from the trauma.

  7. Determinants of Glasgow outcome scale in patients with severe traumatic brain injury for better quality of life

    Science.gov (United States)

    Dharmajaya, R.; Sari, D. K.; Ganie, R. A.

    2018-03-01

    Primary and secondary brain injury may occur with severe traumatic brain injury. Secondary traumatic brain injury results in a more severe effect compared to primary traumatic brain injury. Therefore, prevention of secondary traumatic brain injury is necessary to obtain maximum therapeutic results and accurate determination of prognosis and better quality of life. This study aimed to determine accurate and noninvasive prognostic factors in patients with severe traumatic brain injury. It was a cohort study on 16 subjects. Intracranial pressure was monitored within the first 24 hours after traumatic brain injury. Examination of Brain-Derived Neurotrophic Factor (BDNF) and S100B protein were conducted four times. The severity of outcome was evaluated using Glasgow Outcome Scale (GOS) three months after traumatic brain injury. Intracranial pressure measurement performed 24 hours after traumatic brain injury, low S100B protein (6.16pg/ml) 48 hours after injury indicate good prognosis and were shown to be significant predictors (p<0.05) for determining the quality of GOS. The conclusion is patient with a moderate increase in intracranial pressure Intracranial pressure S100B protein, being inexpensive and non-invasive, can substitute BDNF and intracranial pressure measurements as a tool for determining prognosis 120 hours following traumatic brain injury.

  8. Clinical significance of determination of serum NSE and plasma ET, IGF-II, CNP levels in patients with acute brain injury

    International Nuclear Information System (INIS)

    Chen Bo

    2010-01-01

    Objective: To investigate the clinical significance of changes of plasma ET, IGF-II, CNP and serum NSE contents in patients with acute brain injury. Methods: Serum contents of neuron specific enolase (NSE) were measured with chemiluminescence immunoassay and plasma endothelin (ET), insulin-like growth factor-II (IGF-II) and C-type natriuretic peptide (CNP) were measured with radioimmunoassay in 30 patients with acute brain injury and 35 controls. Results: Serum contents of NSE and plasma IGF-II, CNP were not much different in patients with mild brain injury from those in controls (P >0.05), but plasma contents of ET were already significantly higher in patients with mild brain injury than those in controls(P < 0.01). The serum NSE and plasma ET levels in patients with moderate and severe brain injury were significantly higher than those in patients with mild brain injury and controls (P < 0.01). Decrease of plasma levels of IGF-II and CNP was not significant in patients with mild brain injury (vs controls). However, the plasma levels of IGF-II and CNP were significantly lower in patients with moderate and severe brain injury than those in patients with mild brain injury and controls (P <0.01). As a whole, the magnitude of changes of these parameters was proportional to the severity of the injury. Conclusion: Changes of serum NSE and plasma IGF-II, ET and CNP levels were closely related to the pathological process of brain injury. Determination of these parameters was of clinical importance for evaluation of the severity of injury and outcome prediction. (authors)

  9. Prevention of pressure ulcers in patients undergoing sub-acute rehabilitation after severe brain injury

    DEFF Research Database (Denmark)

    Sachs, Marianne Brostrup; Wolffbrandt, Mia Moth; Poulsen, Ingrid

    2018-01-01

    OBJECTIVE: The aim of this study was to uncover efforts made by healthcare professionals to prevent pressure ulcers (PUs) in patients with severe brain injury undergoing treatment at a sub-acute rehabilitation department. BACKGROUND: PUs is a major burden for patients and also generate considerable...... healthcare costs. PUs are, nevertheless, prevalent in both secondary and primary care. DESIGN: In this qualitative study, we performed 24-hour observation on four patients undergoing rehabilitation for severe brain injury. An observation guide was developed inspired by the Braden Scale and Spradley's theory...... that patients' rehabilitation days be planned in such a manner that activities, mobilisation and training are conducted throughout the day and evening. We also recommend that professional staff are encouraged to seek information about the former life of patients with severe brain injury. This article...

  10. Percutaneous dilatational tracheostomy for ICU patients with severe brain injury

    Directory of Open Access Journals (Sweden)

    Guo Dongyuan

    2014-12-01

    Full Text Available 【Abstract】Objective: To sum up our experience in percutaneous dilatational tracheostomy (PDT in ICU patient with severe brain injury. Methods: Between November 2011 and April 2014, PDTs were performed on 32 severe brain injury patients in ICU by a team of physicians and intensivists. The success rate, effi cacy, safety, and complications including stomal infection and bleeding, paratracheal insertion, pneumothorax, pneumomediastinum, tracheal laceration, as well as clinically significant tracheal stenosis were carefully monitored and recorded respectively. Results: The operations took 4-15 minutes (mean 9.1 minutes±4.2 minutes. Totally 4 cases suffered from complications in the operations: 3 cases of stomal bleeding, and 1 case of intratracheal bloody secretion, but none required intervention. Paratracheal insertion, pneumothorax, pneumomediastinum, tracheal laceration, or clinically signifi cant tracheal stenosis were not found in PDT patients. There was no procedure-related death occurring during or after PDT. Conclusion: Our study demonstrats that PDT is a safe, highly effective, and minimally invasive procedure. The appropriate sedation and airway management perioperatively help to reduce complication rates. PDT should be performed or supervised by a team of physicians with extensive experience in this procedure, and also an intensivist with experience in diffi cult airway management. Key words: Brain injuries; Percutaneous dilatational tracheostomy; ICU

  11. Patient Effort in Traumatic Brain Injury Inpatient Rehabilitation: Course and Associations With Age, Brain Injury Severity, and Time Postinjury.

    Science.gov (United States)

    Seel, Ronald T; Corrigan, John D; Dijkers, Marcel P; Barrett, Ryan S; Bogner, Jennifer; Smout, Randall J; Garmoe, William; Horn, Susan D

    2015-08-01

    To describe patients' level of effort in occupational, physical, and speech therapy sessions during traumatic brain injury (TBI) inpatient rehabilitation and to evaluate how age, injury severity, cognitive impairment, and time are associated with effort. Prospective, multicenter, longitudinal cohort study. Acute TBI rehabilitation programs. Patients (N=1946) receiving 138,555 therapy sessions. Not applicable. Effort in rehabilitation sessions rated on the Rehabilitation Intensity of Therapy Scale, FIM, Comprehensive Severity Index brain injury severity score, posttraumatic amnesia (PTA), and Agitated Behavior Scale (ABS). The Rehabilitation Intensity of Therapy Scale effort ratings in individual therapy sessions closely conformed to a normative distribution for all 3 disciplines. Mean Rehabilitation Intensity of Therapy Scale ratings for patients' therapy sessions were higher in the discharge week than in the admission week (Prehabilitation, differences in effort ratings (Prehabilitation admission, days from admission, and daily ratings of PTA and ABS score were predictors of level of effort (Prehabilitation setting using the Rehabilitation Intensity of Therapy Scale. Patients who sustain TBI show varying levels of effort in rehabilitation therapy sessions, with effort tending to increase over the stay. PTA and agitated behavior are primary risk factors that substantially reduce patient effort in therapies. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. Differences in Brain Adaptive Functional Reorganization in Right and Left Total Brachial Plexus Injury Patients.

    Science.gov (United States)

    Feng, Jun-Tao; Liu, Han-Qiu; Xu, Jian-Guang; Gu, Yu-Dong; Shen, Yun-Dong

    2015-09-01

    Total brachial plexus avulsion injury (BPAI) results in the total functional loss of the affected limb and induces extensive brain functional reorganization. However, because the dominant hand is responsible for more cognitive-related tasks, injuries on this side induce more adaptive changes in brain function. In this article, we explored the differences in brain functional reorganization after injuries in unilateral BPAI patients. We applied resting-state functional magnetic resonance imaging scanning to 10 left and 10 right BPAI patients and 20 healthy control subjects. The amplitude of low-frequency fluctuation (ALFF), which is a resting-state index, was calculated for all patients as an indication of the functional activity level of the brain. Two-sample t-tests were performed between left BPAI patients and controls, right BPAI patients and controls, and between left and right BPAI patients. Two-sample t-tests of the ALFF values revealed that right BPAIs induced larger scale brain reorganization than did left BPAIs. Both left and right BPAIs elicited a decreased ALFF value in the right precuneus (P right BPAI patients exhibited increased ALFF values in a greater number of brain regions than left BPAI patients, including the inferior temporal gyrus, lingual gyrus, calcarine sulcus, and fusiform gyrus. Our results revealed that right BPAIs induced greater extents of brain functional reorganization than left BPAIs, which reflected the relatively more extensive adaptive process that followed injuries of the dominant hand. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. The correlation of insulin resistance with the cerebral injury and stress reaction in patients with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Zhan Lan

    2017-04-01

    Full Text Available Objective: To study the correlation of insulin resistance with the cerebral injury and stress reaction in patients with traumatic brain injury (TBI. Methods: 78 patients who were diagnosed with acute traumatic brain injury in our hospital between May 2014 and August 2016 were selected as the TBI group, and 90 healthy volunteers who received physical examination during the same period were selected as the control group. The peripheral blood was collected to detect glucose, insulin and nerve injury marker molecules, stress hormones as well as oxidative stress reaction products, and the insulin resistance index (HOMA-IR was calculated. Results: The HOMA-IR index of TBI group was significantly higher than that of control group (P<0.05; serum neuron-specific enolase (NSE, ubiquitin carboxy-terminal hydrolase L1 (UCH-L1, S100β, myelin basic protein (MBP, glucagon, growth hormone, cortisol, malondialdehyde (MDA and 8-hydroxy-deoxyguanosine (8-OHdGlevels of TBI group were significantly higher than those of control group (P<0.05; serum NSE, UCH-L1, S100β, MBP, glucagon, growth hormone, cortisol, MDA and 8-OHdG levels of patients with high HOMA-IR were significantly higher than those of patients with low HOMA-IR (P<0.05. Conclusion: The insulin resistance increases significantly in patients with traumatic brain injury, and is closely related to the degree of cerebral injury and stress reaction.

  14. Traumatic brain injury : from impact to rehabilitation

    NARCIS (Netherlands)

    Halliday, J.; Absalom, A. R.

    Traumatic brain injury is a significant cause of mortality and morbidity in our society, particularly among the young. This review discusses the pathophysiology of traumatic brain injury, and current management from the acute phase through to rehabilitation of the traumatic brain injury patient.

  15. Dynamic change of serum protein S100b and its clinical significance in patients with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    CHEN Da-qing; ZHU Lie-lie

    2005-01-01

    Objective: To analyze the dynamic change of serum protein S100b in patients with traumatic brain injury and its clinical value in assessing brain damage. Methods: According to Glasgow coma scale (GCS), 102 cases of traumatic brain injury were divided into mild brain injury group (GCS≥13, n=31, Group A), moderate brain injury group (8brain injury group (GCS≤8, n=34, Group C). Serial S100b concentrations were analyzed by enzyme-linked immunosorbent assay (ELISA) in blood samples taken on admission, 12 h, 24 h, 48 h, 72 h and 7 days after traumatic brain injury. Results: The severe brain injury group showed significantly higher concentration of serum S100b, with earlier increase and longer duration, than the mild and moderate brain injury groups. The patients with higher S100b exhibited lower GCS scores and poor clinical prognosis. The increase in S100b could emerge before clinical image evidence indicated so. Conclusions: Serum S100b can be used as a sensitive index for assessment and prediction of traumatic brain injury severity and prognosis.

  16. Clinical significance of measurement of plasma ET-1 and CGRP levels in patients with traumatic brain injury

    International Nuclear Information System (INIS)

    Jing Daping; Cheng Guanghua

    2007-01-01

    Objective: To study the changes of plasma ET-1 and CGRP levels in patients with traumatic brain injury of different severity. Methods: 107 patients with traumatic brain injury were divided into three group on the basis of GCS: mild group (n=25, GCS>12), moderate group (n=33, GCS9-12) and severe group (n=49, GCS3-8). The plasma ET-1 and CGRP levels in these patients and 30 controls were determined with RIA. Results: 1) The plasma ET-1 levels in patients with traumatic brain injury were signilieantly higher than those in controls, the more severe the illness, the higher the ET-1 levels. 2)The plasma CGRP levels in patients of mild and moderate brain injury were found significantly higher than those in controls, while no significant differences were found between those in severe and control group. 3)The more severe the illness was, the lower CGRP/ET-1 ratio were found. Conclusion: The changes of plasma levels of ET-1 and CGRP and the CGRP/ET-1 ratio in the patients with traumatic brain injury were correlated with the severity of the illness, and might be of prognostic value. (authors)

  17. Fever in trauma patients: evaluation of risk factors, including traumatic brain injury.

    Science.gov (United States)

    Bengualid, Victoria; Talari, Goutham; Rubin, David; Albaeni, Aiham; Ciubotaru, Ronald L; Berger, Judith

    2015-03-01

    The role of fever in trauma patients remains unclear. Fever occurs as a response to release of cytokines and prostaglandins by white blood cells. Many factors, including trauma, can trigger release of these factors. To determine whether (1) fever in the first 48 hours is related to a favorable outcome in trauma patients and (2) fever is more common in patients with head trauma. Retrospective study of trauma patients admitted to the intensive care unit for at least 2 days. Data were analyzed by using multivariate analysis. Of 162 patients studied, 40% had fever during the first 48 hours. Febrile patients had higher mortality rates than did afebrile patients. When adjusted for severity of injuries, fever did not correlate with mortality. Neither the incidence of fever in the first 48 hours after admission to the intensive care unit nor the number of days febrile in the unit differed between patients with and patients without head trauma (traumatic brain injury). About 70% of febrile patients did not have a source found for their fever. Febrile patients without an identified source of infection had lower peak white blood cell counts, lower maximum body temperature, and higher minimum platelet counts than did febrile patients who had an infectious source identified. The most common infection was pneumonia. No relationship was found between the presence of fever during the first 48 hours and mortality. Patients with traumatic brain injury did not have a higher incidence of fever than did patients without traumatic brain injury. About 30% of febrile patients had an identifiable source of infection. Further studies are needed to understand the origin and role of fever in trauma patients. ©2015 American Association of Critical-Care Nurses.

  18. Role of Intravenous Levetiracetam in Seizure Prophylaxis of Severe Traumatic Brain Injury Patients

    Directory of Open Access Journals (Sweden)

    BATOOL F. KIRMANI

    2013-11-01

    Full Text Available Traumatic brain injury (TBI can cause seizures and the development of epilepsy. The incidence of seizures varies from 21% in patients with severe brain injuries to 50% in patients with war-related penetrating TBI. In the acute and sub-acute periods following injury, seizures can lead to increased intracranial pressure and cerebral edema, further complicating TBI management. Anticonvulsants should be used for seizure prophylaxis and treatment. Phenytoin is the most widely prescribed anticonvulsant in these patients. Intravenous levetiracetam, made available in 2006, is now being considered as an alternative to phenytoin in acute care settings. When compared with phenytoin, levetiracetam has fewer side-effects and drug-drug interactions. In the following, the role of levetiracetam in TBI care and the supporting evidence is discussed.

  19. Effect of Posttraumatic Serum Thyroid Hormone Levels on Severity and Mortality of Patients with Severe Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Forough Saki

    2012-02-01

    Full Text Available Traumatic brain injury (TBI is an important cause of death and disability in young adults ,and may lead to physical disabilities and long-term cognitive, behavioral psychological and social defects. There is a lack of definite result about the effect of thyroid hormones after traumatic brain injury in the severity and no data about their effect on mortality of the injury. The aim of this study is to evaluate the effect of thyroid hormones after traumatic brain injury in the severity and mortality and gain a clue in brain injury prognosis. In a longitudinal prospective study from February 2010 until February 2011, we checked serum levels of T3, T4, TSH and TBG of severely brain injured patients and compared the relationship of them with primary Glasgow Coma Scale (GCS score and mortality of patients. Statistical analysis used SPSS 11.5 software with using chi-square and Fisher exact test. Serum levels of T3 and T4 were decreased after brain trauma but not TSH and TBG. Mortality rates were higher in patients with lower T4 serum levels. The head injury was more severe in whom with low T3 and T4. Follow a severe brain injury a secondary hypothyroidism is happened due to pituitary dysfunction. Also, serum level of T3 and T4 on the first day admission affect on primary GCS score of patients which is an indicator of severity of brain injury. In addition, mortality rates of severely brain injured patients have a high correlation with the serum level of T4 in the first day admission.

  20. Improved Dysphagia After Decannulation of Tracheostomy in Patients With Brain Injuries.

    Science.gov (United States)

    Kim, Yong Kyun; Choi, Jung-Hwa; Yoon, Jeong-Gyu; Lee, Jang-Won; Cho, Sung Sik

    2015-10-01

    To investigate improved dysphagia after the decannulation of a tracheostomy in patients with brain injuries. The subjects of this study are patients with brain injuries who were admitted to the Department of Rehabilitation Medicine in Myongji Hospital and who underwent a decannulation between 2012 and 2014. A video fluoroscopic swallowing study (VFSS) was performed in order to investigate whether the patients' dysphagia had improved. We measured the following 5 parameters: laryngeal elevation, pharyngeal transit time, post-swallow pharyngeal remnant, upper esophageal width, and semisolid aspiration. We analyzed the patients' results from VFSS performed one month before and one month after decannulation. All VFSS images were recorded using a camcorder running at 30 frames per second. An AutoCAD 2D screen was used to measure laryngeal elevation, post-swallow pharyngeal remnant, and upper esophageal width. In this study, a number of dysphagia symptoms improved after decannulation. Laryngeal elevation, pharyngeal transit time, and semisolid aspiration showed no statistically significant differences (p>0.05), however after decannulation, the post-swallow pharyngeal remnant (pre 37.41%±24.80%, post 21.02%±11.75%; p<0.001) and upper esophageal width (pre 3.57±1.93 mm, post 4.53±2.05 mm; p<0.001) showed statistically significant differences. When decannulation is performed on patients with brain injuries who do not require a ventilator and who are able to independently excrete sputum, improved esophageal dysphagia can be expected.

  1. Brain Cholinergic Function and Response to Rivastigmine in Patients With Chronic Sequels of Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Östberg, Anna; Virta, Jere; Rinne, Juha O

    2018-01-01

    subjects for more than 1 year after at least moderate traumatic brain injury. Ten of the subjects were respondents and 7 nonrespondents to cholinergic medication. DESIGN:: Cholinergic function was assessed with [methyl-C] N-methylpiperidyl-4-acetate-PET (C-MP4A-PET), which reflects the activity...... was notably lower throughout the cortex in both respondents and nonrespondents, without significant differences between them. CONCLUSION:: Our study suggests that frontal cholinergic dysfunction is associated with the clinical response to cholinergic stimulation in patients with traumatic brain injury....

  2. Hypopituitarism after acute brain injury.

    Science.gov (United States)

    Urban, Randall J

    2006-07-01

    Acute brain injury has many causes, but the most common is trauma. There are 1.5-2.0 million traumatic brain injuries (TBI) in the United States yearly, with an associated cost exceeding 10 billion dollars. TBI is the most common cause of death and disability in young adults less than 35 years of age. The consequences of TBI can be severe, including disability in motor function, speech, cognition, and psychosocial and emotional skills. Recently, clinical studies have documented the occurrence of pituitary dysfunction after TBI and another cause of acute brain injury, subarachnoid hemorrhage (SAH). These studies have consistently demonstrated a 30-40% occurrence of pituitary dysfunction involving at least one anterior pituitary hormone following a moderate to severe TBI or SAH. Growth hormone (GH) deficiency is the most common pituitary hormone disorder, occurring in approximately 20% of patients when multiple tests of GH deficiency are used. Within 7-21 days of acute brain injury, adrenal insufficiency is the primary concern. Pituitary function can fluctuate over the first year after TBI, but it is well established by 1 year. Studies are ongoing to assess the effects of hormone replacement on motor function and cognition in TBI patients. Any subject with a moderate to severe acute brain injury should be screened for pituitary dysfunction.

  3. Increased Intracranial Pressure during Hemodialysis in a Patient with Anoxic Brain Injury

    Directory of Open Access Journals (Sweden)

    Anton Lund

    2017-01-01

    Full Text Available Dialysis disequilibrium syndrome (DDS is a serious neurological complication of hemodialysis, and patients with acute brain injury are at increased risk. We report a case of DDS leading to intracranial hypertension in a patient with anoxic brain injury and discuss the subsequent dialysis strategy. A 13-year-old girl was admitted after prolonged resuscitation from cardiac arrest. Computed tomography (CT revealed an inferior vena cava aneurysm and multiple pulmonary emboli as the likely cause. An intracranial pressure (ICP monitor was inserted, and, on day 3, continuous renal replacement therapy (CRRT was initiated due to acute kidney injury, during which the patient developed severe intracranial hypertension. CT of the brain showed diffuse cerebral edema. CRRT was discontinued, sedation was increased, and hypertonic saline was administered, upon which ICP normalized. Due to persistent hyperkalemia and overhydration, ultrafiltration and intermittent hemodialysis were performed separately on day 4 with a small dialyzer, low blood and dialysate flow, and high dialysate sodium content. During subsequent treatments, isolated ultrafiltration was well tolerated, whereas hemodialysis was associated with increased ICP necessitating frequent pauses or early cessation of dialysis. In patients at risk of DDS, hemodialysis should be performed with utmost care and continuous monitoring of ICP should be considered.

  4. Increased Intracranial Pressure during Hemodialysis in a Patient with Anoxic Brain Injury.

    Science.gov (United States)

    Lund, Anton; Damholt, Mette B; Strange, Ditte G; Kelsen, Jesper; Møller-Sørensen, Hasse; Møller, Kirsten

    2017-01-01

    Dialysis disequilibrium syndrome (DDS) is a serious neurological complication of hemodialysis, and patients with acute brain injury are at increased risk. We report a case of DDS leading to intracranial hypertension in a patient with anoxic brain injury and discuss the subsequent dialysis strategy. A 13-year-old girl was admitted after prolonged resuscitation from cardiac arrest. Computed tomography (CT) revealed an inferior vena cava aneurysm and multiple pulmonary emboli as the likely cause. An intracranial pressure (ICP) monitor was inserted, and, on day 3, continuous renal replacement therapy (CRRT) was initiated due to acute kidney injury, during which the patient developed severe intracranial hypertension. CT of the brain showed diffuse cerebral edema. CRRT was discontinued, sedation was increased, and hypertonic saline was administered, upon which ICP normalized. Due to persistent hyperkalemia and overhydration, ultrafiltration and intermittent hemodialysis were performed separately on day 4 with a small dialyzer, low blood and dialysate flow, and high dialysate sodium content. During subsequent treatments, isolated ultrafiltration was well tolerated, whereas hemodialysis was associated with increased ICP necessitating frequent pauses or early cessation of dialysis. In patients at risk of DDS, hemodialysis should be performed with utmost care and continuous monitoring of ICP should be considered.

  5. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  6. Symptomatic heterotopic ossification after very severe traumatic brain injury in 114 patients: incidence and risk factors

    DEFF Research Database (Denmark)

    Simonsen, Louise Lau; Sonne-Holm, Stig; Krasheninnikoff, Michael

    2007-01-01

    The incidence of heterotopic ossification (HO) among patients with traumatic brain injury (TBI) varies in the literature from 11 to 73.3%. The aim of this study was to determine the incidence of HO among patients with very severe TBI treated in a new established intensive rehabilitation Brain...... Injury Unit and to list some of the risk-predicting features. The study comprised an approximately complete, consecutive series of 114 adult patients from a well-defined geographical area, and with a posttraumatic amnesia period of at least 28 days, i.e. very severe TBI. Demographic and functional data...... as well as data about trauma severity and hospital stay of these patients have been registered prospectively in a database (Danish National Head Injury database) at the Brain Injury Unit where the sub acute rehabilitation took place. The present study was based retrospectively on this database, combined...

  7. Neuropsychological rehabilitation for traumatic brain injury patients

    Directory of Open Access Journals (Sweden)

    Marzena Chantsoulis

    2015-05-01

    Full Text Available The aim of this review is to discuss the basic forms of neuropsychological rehabilitation for patients with traumatic brain injury (TBI. More broadly, we discussed cognitive rehabilitation therapy (CRT which constitutes a fundamental component in therapeutic interaction at many centres worldwide. Equally presented is a comprehensive model of rehabilitation, the fundamental component of which is CRT. It should be noted that the principles of this approach first arose in Poland in the 1970s, in other words, several decades before their appearance in other programmemes. Taken into consideration are four factors conditioning the effectiveness of such a process: comprehensiveness, earlier interaction, universality and its individualized character. A comprehensive programmeme of rehabilitation covers: cognitive rehabilitation, individual and group rehabilitation with the application of a therapeutic environment, specialist vocational rehabilitation, as well as family psychotherapy. These training programmemes are conducted within the scope of the ‘Academy of Life,’ which provides support for the patients in their efforts and shows them the means by which they can overcome existing difficulties. Equally emphasized is the close cooperation of the whole team of specialists, as well as the active participation of the family as an essential condition for the effectiveness of rehabilitation and, in effect, a return of the patient to a relatively normal life. Also presented are newly developing neurothechnologies and the neuromarkers of brain injuries. This enables a correct diagnosis to be made and, as a result, the selection of appropriate methods for neuropsychological rehabilitation, including neurotherapy.

  8. Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase-II: A Phase II Randomized Trial.

    Science.gov (United States)

    Okonkwo, David O; Shutter, Lori A; Moore, Carol; Temkin, Nancy R; Puccio, Ava M; Madden, Christopher J; Andaluz, Norberto; Chesnut, Randall M; Bullock, M Ross; Grant, Gerald A; McGregor, John; Weaver, Michael; Jallo, Jack; LeRoux, Peter D; Moberg, Dick; Barber, Jason; Lazaridis, Christos; Diaz-Arrastia, Ramon R

    2017-11-01

    A relationship between reduced brain tissue oxygenation and poor outcome following severe traumatic brain injury has been reported in observational studies. We designed a Phase II trial to assess whether a neurocritical care management protocol could improve brain tissue oxygenation levels in patients with severe traumatic brain injury and the feasibility of a Phase III efficacy study. Randomized prospective clinical trial. Ten ICUs in the United States. One hundred nineteen severe traumatic brain injury patients. Patients were randomized to treatment protocol based on intracranial pressure plus brain tissue oxygenation monitoring versus intracranial pressure monitoring alone. Brain tissue oxygenation data were recorded in the intracranial pressure -only group in blinded fashion. Tiered interventions in each arm were specified and impact on intracranial pressure and brain tissue oxygenation measured. Monitors were removed if values were normal for 48 hours consecutively, or after 5 days. Outcome was measured at 6 months using the Glasgow Outcome Scale-Extended. A management protocol based on brain tissue oxygenation and intracranial pressure monitoring reduced the proportion of time with brain tissue hypoxia after severe traumatic brain injury (0.45 in intracranial pressure-only group and 0.16 in intracranial pressure plus brain tissue oxygenation group; p injury after severe traumatic brain injury based on brain tissue oxygenation and intracranial pressure values was consistent with reduced mortality and increased proportions of patients with good recovery compared with intracranial pressure-only management; however, the study was not powered for clinical efficacy. Management of severe traumatic brain injury informed by multimodal intracranial pressure and brain tissue oxygenation monitoring reduced brain tissue hypoxia with a trend toward lower mortality and more favorable outcomes than intracranial pressure-only treatment. A Phase III randomized trial to assess

  9. Excessive sleep need following traumatic brain injury: a case-control study of 36 patients.

    Science.gov (United States)

    Sommerauer, Michael; Valko, Philipp O; Werth, Esther; Baumann, Christian R

    2013-12-01

    Increased sleep need following traumatic brain injury, referred to in this study as post-traumatic pleiosomnia, is common, but so far its clinical impact and therapeutic implications have not been characterized. We present a case-control study of 36 patients with post-traumatic pleiosomnia, defined by an increased sleep need of at least 2 h per 24 h after traumatic brain injury, compared to 36 controls. We assessed detailed history, sleep-activity patterns with sleep logs and actigraphy, nocturnal sleep with polysomnography and daytime sleep propensity with multiple sleep latency tests. Actigraphy recordings revealed that traumatic brain injury (TBI) patients had longer estimated sleep durations than controls (10.8 h per 24 h, compared to 7.3 h). When using sleep logs, TBI patients underestimated their sleep need. During nocturnal sleep, patients had higher amounts of slow-wave sleep than controls (20 versus 13.8%). Multiple sleep latency tests revealed excessive daytime sleepiness in 15 patients (42%), and 10 of them had signs of chronic sleep deprivation. We conclude that post-traumatic pleiosomnia may be even more frequent than reported previously, because affected patients often underestimate their actual sleep need. Furthermore, these patients exhibit an increase in slow-wave sleep which may reflect recovery mechanisms, intrinsic consequences of diffuse brain damage or relative sleep deprivation. © 2013 European Sleep Research Society.

  10. Respiratory mechanics in brain injury: A review

    OpenAIRE

    Koutsoukou, Antonia; Katsiari, Maria; Orfanos, Stylianos E; Kotanidou, Anastasia; Daganou, Maria; Kyriakopoulou, Magdalini; Koulouris, Nikolaos G; Rovina, Nikoletta

    2016-01-01

    Several clinical and experimental studies have shown that lung injury occurs shortly after brain damage. The responsible mechanisms involve neurogenic pulmonary edema, inflammation, the harmful action of neurotransmitters, or autonomic system dysfunction. Mechanical ventilation, an essential component of life support in brain-damaged patients (BD), may be an additional traumatic factor to the already injured or susceptible to injury lungs of these patients thus worsening lung injury, in case ...

  11. The role of Tc-99m HMPAO brain perfusion SPECT in the psychiatric disability evaluation of patients with chronic traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    So, Young [Nuclear Medicne, Seoul National Univ., Seoul (Korea, Republic of); Lee, Kang Wook; Lee, Sun Woo; Ghi, Lek Sung; Song, Chang June [College of Medicine, Chungnam National Univ., Taejon (Korea, Republic of)

    2002-08-01

    We studied whether brain perfusion SPECT is useful in the psychiatric disability evaluation of patients with chronic traumatic brain injury (TBI). Sixty-nine patients (M:F=58:11, age 39 {+-} 14 years) who underwent Tc-99m HMPAO brain SPECT, brain MRI and neuropsychological (NP) tests during hospitalization in psychiatric wards for the psychiatric disability evaluation were included; the severity of injury was mild in 31, moderate in 17 and severe in 21. SPECT, MRI, NP tests were performed 6 {approx} 61 months (mean 23 months) post-injury. Diagnostic accuracy of SPECT and MRI to show hypoperfusion or abnormal signal intensity in patients with cognitive impairment represented by NP test results were compared. Forty-two patients were considered to have cognitive impairment on NP tests and 27 not. Brain SPECT showed 71% sensitivity and 85% specificity, while brain MRI showed 62% sensitivity and 93% specificity (p>0.05, McNemar test). SPECT found more cortical lesions and MRI was superior in detecting white matter lesions. sensitivity and specificity of 31 mild TBI patients were 45%, 90% for SPECT and 27%, 100% for MRI (p>0.05, McNemar test). Among 41 patients with normal brain MRI, SEPCT showed 63% sensitivity (50% for mild TBI) and 88% specificity (85% for malingerers). Brain SPECT has a supplementary role to neuropsychological tests in the psychiatric disability evaluation of chronic TBI patients by detecting more cortical lesions than MRI.

  12. The role of Tc-99m HMPAO brain perfusion SPECT in the psychiatric disability evaluation of patients with chronic traumatic brain injury

    International Nuclear Information System (INIS)

    So, Young; Lee, Kang Wook; Lee, Sun Woo; Ghi, Lek Sung; Song, Chang June

    2002-01-01

    We studied whether brain perfusion SPECT is useful in the psychiatric disability evaluation of patients with chronic traumatic brain injury (TBI). Sixty-nine patients (M:F=58:11, age 39 ± 14 years) who underwent Tc-99m HMPAO brain SPECT, brain MRI and neuropsychological (NP) tests during hospitalization in psychiatric wards for the psychiatric disability evaluation were included; the severity of injury was mild in 31, moderate in 17 and severe in 21. SPECT, MRI, NP tests were performed 6 ∼ 61 months (mean 23 months) post-injury. Diagnostic accuracy of SPECT and MRI to show hypoperfusion or abnormal signal intensity in patients with cognitive impairment represented by NP test results were compared. Forty-two patients were considered to have cognitive impairment on NP tests and 27 not. Brain SPECT showed 71% sensitivity and 85% specificity, while brain MRI showed 62% sensitivity and 93% specificity (p>0.05, McNemar test). SPECT found more cortical lesions and MRI was superior in detecting white matter lesions. sensitivity and specificity of 31 mild TBI patients were 45%, 90% for SPECT and 27%, 100% for MRI (p>0.05, McNemar test). Among 41 patients with normal brain MRI, SEPCT showed 63% sensitivity (50% for mild TBI) and 88% specificity (85% for malingerers). Brain SPECT has a supplementary role to neuropsychological tests in the psychiatric disability evaluation of chronic TBI patients by detecting more cortical lesions than MRI

  13. Cognitive activity limitations one year post-trauma in patients admitted to sub-acute rehabilitation after severe traumatic brain injury

    DEFF Research Database (Denmark)

    Sommer, Jens Bak; Norup, Anne; Poulsen, Ingrid

    2013-01-01

    Objective: To examine cognitive activity limitations and predictors of outcome 1 year post-trauma in patients admitted to sub-acute rehabilitation after severe traumatic brain injury. Subjects: The study included 119 patients with severe traumatic brain injury admitted to centralized sub-acute re......Objective: To examine cognitive activity limitations and predictors of outcome 1 year post-trauma in patients admitted to sub-acute rehabilitation after severe traumatic brain injury. Subjects: The study included 119 patients with severe traumatic brain injury admitted to centralized sub......-acute rehabilitation in the Eastern part of Denmark during a 5-year period from 2005 to 2009. Methods: Level of consciousness was assessed consecutively during rehabilitation and at 1 year post-trauma. Severity of traumatic brain injury was classified according to duration of post-traumatic amnesia. The cognitive...... subscale of Functional Independence MeasureTM (Cog-FIM) was used to assess cognitive activity limitations. Multivariate logistic regression analyses were performed to identify predictors of an independent level of functioning. Results: The majority of patients progressed to a post-confusional level...

  14. The Effect of Naloxone on Plasma ET-1 and CGRP Levels in Patients with Traumatic Brain Injury

    International Nuclear Information System (INIS)

    Zhang Chunyin; Guang Ming; Cai Liang; Chen Boxun; Gan Xilun

    2009-01-01

    To investigate the effect of naloxone on the changes of plasma ET-1 and CGRP levels in patients with traumatic brain injury, ninety patients with traumatic brain injury were randomly divided into naloxone treated group and conventionally treated group (both n=45). The plasma levels of ET-1 and CGRP in both groups before and after treatment and in 30 healthy controls were measured by RIA. The results showed that the plasma levels of ET-1 were significantly increased in the patient before treatment and decreased markedly after treatment in both groups. The magnitude of decrease of the plasma ET-1 levels in the naloxone treated group was significantly higher than that in the conventionally treated group (P<0.01). The plasma levels of CGRP were significantly decreased in the patients before treatment and increased markedly after treatment in both groups. The magnitude of increase of the plasma CGRP levels in the naloxone treated group was significantly higher than that in the conventionally treated group (P<0.01). The plasma ET-1 levels in patients with traumatic brain injury was remarkably increased and markedly decreased after treatment with naloxone. The plasma CGRP levels in patients with traumatic brain injury was remarkably decreased and markedly increased after treatment with naloxone. Naloxone has a favorable effect on patient with traumatic brain injury, it may protect the neural cells and improve their living quality. (authors)

  15. Early changes of serum insulin-like growth factor-II (IGF-II) levels in patients with acute brain injury

    International Nuclear Information System (INIS)

    Liu Cegang; Zhang Xinlu; Tao Jin; Xu Anding; Xu Shanshui; Huang Zhenpeng

    2003-01-01

    Objective: To investigate the early changes and clinical significance of serum Insulin-like growth factor-II (IGF-II) levels in patients with acute brain injury. Methods: Radioimmunoassay was used for measurement of the serum IGF-II concentration in 30 controls and 29 acute brain injury patients before and after treatment (within 1 day, at 3 and 7 days). Results: The serum IGF-II levels in brain injury patients at 1 day, 3 day 7 days after injury were 0.131 ± 0.047 ng/ml, 0.117 ± 0.046 ng/ml and 0.123 ±0.050 ng/ml respectively and were significantly lower than those in controls 0.44 ± 0.014 ng/ml, p<0.01. Differences among the values of the three days were not significant. Conclusion: IGF-II might play important role in the pathophysiological process of early acute brain injury

  16. Brain core temperature of patients with mild traumatic brain injury as assessed by DWI-thermometry

    International Nuclear Information System (INIS)

    Tazoe, Jun; Yamada, Kei; Akazawa, Kentaro; Sakai, Koji; Mineura, Katsuyoshi

    2014-01-01

    The aim of this study was to assess the brain core temperature of patients with mild traumatic brain injury (mTBI) using a noninvasive temperature measurement technique based on the diffusion coefficient of the cerebrospinal fluid. This retrospective study used the data collected from April 2008 to June 2011. The patient group comprised 20 patients with a Glasgow Coma Scale score of 14 or 15 who underwent magnetic resonance imaging within 30 days after head trauma. The normal control group comprised 14 subjects who volunteered for a brain checkup (known in Japan as ''brain dock''). We compared lateral ventricular (LV) temperature between patient and control groups. Follow-up studies were performed for four patients. LV temperature measurements were successfully performed for both patients and controls. Mean (±standard deviation) measured LV temperature was 36.9 ± 1.5 C in patients, 38.7 ± 1.8 C in follow-ups, and 37.9 ± 1.2 C in controls, showing a significant difference between patients and controls (P = 0.017). However, no significant difference was evident between patients and follow-ups (P = 0.595) or between follow-ups and controls (P = 0.465). A reduction in brain core temperature was observed in patients with mTBI, possibly due to a global decrease in metabolism. (orig.)

  17. Recovery of resting brain connectivity ensuing mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Rose Dawn Bharath

    2015-09-01

    Full Text Available Brains reveal amplified plasticity as they recover from an injury. We aimed to define time dependent plasticity changes in patients recovering from mild traumatic brain injury (mTBI. 25 subjects with mild head injury were longitudinally evaluated within 36 hours, 3 and 6 months using resting state functional connectivity (RSFC. Region of interest (ROI based connectivity differences over time within the patient group and in comparison with a healthy control group were analyzed at p<0.005. We found 33 distinct ROI pairs that revealed significant changes in their connectivity strength with time. Within three months, the majority of the ROI pairs had decreased connectivity in mTBI population, which increased and became comparable to healthy controls at 6 months. Initial imaging within 36 hours of injury revealed hyper connectivity predominantly involving the salience network and default mode network, which reduced at 3 months when lingual, inferior frontal and fronto-parietal networks revealed hyper connectivity. At six months all the evaluated networks revealed hyper connectivity and became comparable to the healthy controls. Our findings in a fairly homogenous group of patients with mTBI evaluated during the 6 month window of recovery defines time varying brain connectivity changes as the brain recovers from an injury. A majority of these changes were seen in the frontal and parietal lobes between 3-6 months after injury. Hyper connectivity of several networks supported normal recovery in the first six months and it remains to be seen in future studies whether this can predict an early and efficient recovery of brain function.

  18. The outcome after head injury in patients with radiologically demonstrated brain contusion

    International Nuclear Information System (INIS)

    Eide, P.K.; Tysnes, O.B.

    1993-01-01

    The early and late outcome was evaluated in head injury patients who presented brain contusion(s) on the cranial CT scan and in patients hospitalized for concussion. There was a high degree of concurrence between mortality and CT findings. Late complaints were common among cases of concussion of the brain. However, the frequency of impaired memory and concentration, speech problems, paresis and epileptic seizures was increased in cases where the CT scan showed brain contusion. Adaptive and social functioning was most impaired in cases with multifocal contusions in both hemispheres. 16 refs., 5 tabs

  19. Effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    WANG Qiong; LI Ai-lin; ZHI Da-shi; HUANG Hui-ling

    2007-01-01

    Objective:To study the effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury (STBI) using clinical microdialysis.Methods: Thirty-one patients with STBI ( GCS ≤8) were randomly divided into hypothermic group (Group A) and control group (Group B). Microdialysis catheters were inserted into the cerebral cortex of perilesional and normal brain tissue. All samples were analyzed using CMA microdialysis analyzer.Results: In comparison with the control group, lactate/glucose ratio ( L/G) , lactate/pyruvate ratio ( L/P) and glycerol (Gly) in perilensional tissue were significantly decreased; L/P in normal brain tissue was significantly decreased. In control group, L/G, L/P and Gly in perilensional tissue were higher than that in normal brain tissue. In the hypothermic group, L/P in perilensional tissue was higher than that in relative normal brain.Conclusions: Mild hypothermia protects brain tissues by decreasing L/G, L/P and Gly in perilensional tissue and L/P in "normal brain" tissues. The energy crisis and membrane phospholipid degradation in perilensional tissue are easier to happen after traumatic brain injury, and mild hypothermia protects brain better in perilensional tissue than in normal brain tissue.

  20. The Change in Nutritional Status in Traumatic Brain Injury Patients: A Retrospective Descriptive Study

    Science.gov (United States)

    Masha'al, Dina A.

    There is a high prevalence in malnutrition among traumatic brain injury (TBI) due to the hypermetabolism and hypercatabolism which develop post injury. Traumatic brain injury patients are different, even among themselves, in their energy requirements and response to nutritional therapy. This implies that there are other factors that affect the energy intake of these patients and enhance the incidence of malnutrition. This dissertation study examines the nutritional status of TBI patients upon admission to the intensive care unit (ICU) and during their hospital stay to describe baseline status, detect changes in nutritional status over 7 days, and identify the factors affecting the adequacy of energy intake and the change in nutritional status as a consequence. Anthropometric measurements, biomedical measurements, measures of severity of illness, daily health status, level of brain injury severity, and other data were collected from the medical records of 50 patients, who were ≥ 18 years old, mechanically ventilated in the first 24 hours of ICU admission, and had a Glasgow Coma Scale score between 3-12. These data were used to examine the previous relationships. Although there was no statistically significant change found in body mass index and weight, there was a significant change detected in other nutritional markers, including hemoglobin, albumin, and total lymphocyte levels over the 7 days of ICU and hospital stay. No significant relationship was found between the adequacy of energy intake and total prescribed energy, severity of illness, level of brain injury severity, daily health status, patient age, intracranial pressure, or time of feeding initiation. Findings may be used to develop and test interventions to improve nutritional status during the acute phase of TBI. This will lay a foundation for health care providers, including nurses, to establish standards for practice and nutrition protocols to assure optimal nutrition assessment and intervention in a

  1. Problems in accurately diagnosing and follow-up for a higher brain dysfunction after traumatic brain injury

    International Nuclear Information System (INIS)

    Hayakawa, Mineji; Ikoma, Katsunori; Oshiro, Akiko; Hoshino, Hirokatsu; Gando, Satoshi

    2007-01-01

    Recently, the occurrence of a higher brain dysfunction after brain injury has been socially noticed and epidemiological investigations have thus been performed. However, most of these previous investigations tended to be based on populations in a chronic stage after brain trauma. We hypothesized that some patients with a higher brain dysfunction were socially in extreme distress after being discharged from our hospital due to a lack of any follow-up treatment. We investigated this problem to identify possible problems in diagnosing and follow-up for a higher brain dysfunction after blunt traumatic brain injury at a tertiary emergency center. A questionnaire survey was performed for 204 blunt trauma patients who had been admitted during the period from January 2000 thorough December 2003. Clinical examinations were performed for patients suspected of having a higher brain dysfunction based on this questionnaire survey. Three patients had been already diagnosed to have a higher brain dysfunction while other 3 patients were newly diagnosed in this investigation. The newly diagnosed patients discharged from departments other than the neurosurgery department. Computed tomography (CT) was performed in 82% patients (65 patients) to diagnose major brain injury or bone fracture. No magnetic resonance image was performed to detect any minor brain injury in alert patients. Overlooking the occurrence of a higher brain dysfunction may result from an insufficient recognition of higher brain dysfunction and an insufficient sensitivity of the present diagnostic methods available for minor brain injury. An increased awareness regarding the potential of a higher brain dysfunction existing in such patients is therefore needed by the entire medical staff and the general public. (author)

  2. Early monitoring of PtiO2, PtiCO2, pH and brain temperat ure in patients with brain injuries and the clinical significanc e

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To explore the regulation of early br ain tissue metabolic changing after brain injuries and the clinical significance .   Methods: There were 17 patients with brain injuries. Early dire ct monitoring of PtiO2, PtiCO2, pH and brain temperature, dynami c observation of the relation between various parameters and clinics after brai n injuries were performed.   Results: Early changes of PtiO2, PtiCO2 and pH we re closely correlated with outcome. The death rate obviously increased when P tiO2 was continuously lower than 9 mm?Hg within 24 hours after injuries. Secondary brain injury prolonged and aggravated brain tissue metabolic disturban ce. When intracerebral pressure was over 30 mm?Hg PtiO2 began to de crea se. The brain temperature in brain death patients was evidently lower than axill ary temperature.   Conclusions: The direct monitoring of PtiO2, PtiC O2, pH and brain temperature is safe and accurate and can find early anoxia da mage to brain tissue and provide reliable basis for clinical therapy. It ha s an instructive significance in selecting and studying a new treatment method i n brain injuries. And it can be taken as a criterion in clinical judging brain d eaths.

  3. Graph Analysis of Functional Brain Networks for Cognitive Control of Action in Traumatic Brain Injury

    Science.gov (United States)

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H.; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P.

    2012-01-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly…

  4. Decision-making deficit of a patient with axonal damage after traumatic brain injury.

    Science.gov (United States)

    Yasuno, Fumihiko; Matsuoka, Kiwamu; Kitamura, Soichiro; Kiuchi, Kuniaki; Kosaka, Jun; Okada, Koji; Tanaka, Syohei; Shinkai, Takayuki; Taoka, Toshiaki; Kishimoto, Toshifumi

    2014-02-01

    Patients with traumatic brain injury (TBI) were reported to have difficulty making advantageous decisions, but the underlying deficits of the network of brain areas involved in this process were not directly examined. We report a patient with TBI who demonstrated problematic behavior in situations of risk and complexity after cerebral injury from a traffic accident. The Iowa gambling task (IGT) was used to reveal his deficits in the decision-making process. To examine underlying deficits of the network of brain areas, we examined T1-weighted structural MRI, diffusion tensor imaging (DTI) and Tc-ECD SPECT in this patient. The patient showed abnormality in IGT. DTI-MRI results showed a significant decrease in fractional anisotropy (FA) in the fasciculus between the brain stem and cortical regions via the thalamus. He showed significant decrease in gray matter volumes in the bilateral insular cortex, hypothalamus, and posterior cingulate cortex, possibly reflecting Wallerian degeneration secondary to the fasciculus abnormalities. SPECT showed significant blood flow decrease in the broad cortical areas including the ventromedial prefrontal cortex (VM). Our study showed that the patient had dysfunctional decision-making process. Microstructural abnormality in the fasciculus, likely from the traffic accident, caused reduced afferent feedback to the brain, resulting in less efficient decision-making. Our findings support the somatic-marker hypothesis (SMH), where somatic feedback to the brain influences the decision-making process. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Brain metabolism in patients with freezing of gait after hypoxic-ischemic brain injury: A pilot study.

    Science.gov (United States)

    Yoon, Seo Yeon; Lee, Sang Chul; Kim, Na Young; An, Young-Sil; Kim, Yong Wook

    2017-11-01

    Movement disorders are 1 of the long-term neurological complications that can occur after hypoxic-ischemic brain injury (HIBI). However, freezing of gait (FOG) after HIBI is rare. The aim of this study was to examine the brain metabolism of patients with FOG after HIBI using F-18 fluoro-2-deoxy-D-glucose positron emission tomography (F-18 FDG PET).We consecutively enrolled 11 patients with FOG after HIBI. The patients' overall brain metabolism was measured by F-18 FDG PET, and we compared their regional brain metabolic activity with that from 15 healthy controls using a voxel-by-voxel-based statistical mapping analysis. Additionally, we correlated each patient's FOG severity with the brain metabolism using a covariance analysis.Patients with FOG had significantly decreased brain glucose metabolism in the midbrain, bilateral thalamus, bilateral cingulate gyri, right supramarginal gyrus, right angular gyrus, right paracentral lobule, and left precentral gyrus (PFDR-corrected brain metabolism were noted in patients with FOG. The covariance analysis identified significant correlations between the FOG severity and the brain metabolism in the right lingual gyrus, left fusiform gyrus, and bilateral cerebellar crus I (Puncorrected brain regions in the gait-related neural network, including the cerebral cortex, subcortical structures, brainstem, and cerebellum, may significantly contribute to the development of FOG in HIBI. Moreover, the FOG severity may be associated with the visual cortex and cerebellar regions.

  6. Analysis of 127 peripartum hypoxic brain injuries from closed claims registered by the Danish Patient Insurance Association

    DEFF Research Database (Denmark)

    Bock, J.; Christoffersen, J.K.; Hedegaard, M.

    2008-01-01

    : The authors retrospectively investigated peripartum hypoxic brain injuries registered by the Danish Patient Insurance Association. RESULTS: From 1992 to 2004, 127 approved claims concerning peripartum hypoxic brain injuries were registered and subsequently analysed. Thirty-eight newborns died, and a majority...

  7. Patient perspectives on navigating the field of traumatic brain injury rehabilitation

    DEFF Research Database (Denmark)

    Graff, Heidi J; Christensen, Ulla; Poulsen, Ingrid

    2018-01-01

    PURPOSE: This study aimed to provide an understanding of the lived experience of rehabilitation in adults with traumatic brain injury (TBI) from hospital discharge up to four years post-injury. MATERIALS AND METHODS: We used a qualitative explorative design with semi-structured in-depth interview...... systematic follow-up programs    • Age-appropriate rehabilitation facilities    • Inclusion of patient and family in the planning of long-term rehabilitation....

  8. Brain core temperature of patients with mild traumatic brain injury as assessed by DWI-thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Tazoe, Jun; Yamada, Kei; Akazawa, Kentaro [Kyoto Prefectural University of Medicine, Department of Radiology, Graduate School of Medical Science, Kyoto City, Kyoto (Japan); Sakai, Koji [Kyoto University, Department of Human Health Science, Graduate School of Medicine, Kyoto (Japan); Mineura, Katsuyoshi [Kyoto Prefectural University of Medicine, Department of Neurosurgery, Graduate School of Medical Science, Kyoto City, Kyoto (Japan)

    2014-10-15

    The aim of this study was to assess the brain core temperature of patients with mild traumatic brain injury (mTBI) using a noninvasive temperature measurement technique based on the diffusion coefficient of the cerebrospinal fluid. This retrospective study used the data collected from April 2008 to June 2011. The patient group comprised 20 patients with a Glasgow Coma Scale score of 14 or 15 who underwent magnetic resonance imaging within 30 days after head trauma. The normal control group comprised 14 subjects who volunteered for a brain checkup (known in Japan as ''brain dock''). We compared lateral ventricular (LV) temperature between patient and control groups. Follow-up studies were performed for four patients. LV temperature measurements were successfully performed for both patients and controls. Mean (±standard deviation) measured LV temperature was 36.9 ± 1.5 C in patients, 38.7 ± 1.8 C in follow-ups, and 37.9 ± 1.2 C in controls, showing a significant difference between patients and controls (P = 0.017). However, no significant difference was evident between patients and follow-ups (P = 0.595) or between follow-ups and controls (P = 0.465). A reduction in brain core temperature was observed in patients with mTBI, possibly due to a global decrease in metabolism. (orig.)

  9. SPECT brain perfusion findings in mild or moderate traumatic brain injury

    International Nuclear Information System (INIS)

    Abu-Judeh, H.H.; Parker, R.; Aleksic, S.

    2000-01-01

    Background: The purpose of this manuscript is to present the findings in the largest series of SPECT brain perfusion imaging reported to date for mild or moderate traumatic brain injury. PATIENTS AND METHODS: This is a retrospective evaluation of 228 SPECT brain perfusion-imaging studies of patients who suffered mild or moderate traumatic brain injury with or without loss of consciousness (LOC). All patients had no past medical history of previous brain trauma, neurological, or psychiatric diseases, HIV, alcohol or drug abuse. The patient population included 135 males and 93 females. The ages ranged from 11-88 years (mean 40.8). The most common complaints were characteristic of the postconcussion syndrome: headaches 139/228 (61%); dizziness 61/228 (27%); and memory problems 63/228 (28%). LOC status was reported to be positive in 121/228 (53%), negative in 41/228 (18%), and unknown for 63/228 (28%). RESULTS: Normal studies accounted for 52/228 (23%). For abnormal studies (176/228 or 77%) the findings were as follows: basal ganglia hypoperfusion 338 lesions (55.2%); frontal lobe hypoperfusion 146 (23.8%); temporal lobes hypoperfusion 80 (13%); parietal lobes hypoperfusion 20 (3.7%); insular and or occipital lobes hypoperfusion 28 (4.6%). Patients' symptoms correlated with the SPECT brain perfusion findings. The SPECT BPI studies in 122/228 (54%) were done early within 3 months of the date of the accident, and for the remainder, 106/228 (46%) over 3 months and less than 3 years from the date of the injury. In early imaging, 382 lesions were detected; in 92 patients (average 4.2 lesions per study) imaging after 3 months detected 230 lesions: in 84 patients (average 2.7 lesions per study). CONCLUSIONS: Basal ganglia hypoperfusion is the most common abnormality following mild or moderate traumatic brain injury (p = 0.006), and is more common in patients complaining of memory problem (p = 0.0005) and dizziness (p = 0.003). Early imaging can detect more lesions than

  10. The relation between persistent coma and brain ischemia after severe brain injury.

    Science.gov (United States)

    Cheng, Quan; Jiang, Bing; Xi, Jian; Li, Zhen Yan; Liu, Jin Fang; Wang, Jun Yu

    2013-12-01

    To investigate the relation between brain ischemia and persistent vegetative state after severe traumatic brain injury. The 66 patients with severe brain injury were divided into two groups: The persistent coma group (coma duration ≥10 d) included 51 patients who had an admission Glasgow Coma Scale (GCS) of 5-8 and were unconscious for more than 10 d. There were 15 patients in the control group, their admission GCS was 5-8, and were unconscious for less than 10 d. The brain areas, including frontal, parietal, temporal, occipital lobes and thalamus, were measured by Single Photon Emission Computed Tomography (SPECT). In the first SPECT scan, multiple areas of cerebral ischemia were documented in all patients in both groups, whereas bilateral thalamic ischemia were presented in all patients in the persistent coma group and were absented in the control group. In the second SPECT scan taken during the period of analepsia, with an indication that unilateral thalamic ischemia were persisted in 28 of 41 patients in persistent coma group(28/41,68.29%). Persistent coma after severe brain injury is associated with bilateral thalamic ischemia.

  11. Brain Computer Interface: Assessment of Spinal Cord Injury Patient towards Motor Movement through EEG application

    Directory of Open Access Journals (Sweden)

    Syam Syahrull Hi-Fi

    2017-01-01

    Full Text Available Electroencephalography (EEG associated with motor task have been comprehensively investigated and it can also describe the brain activities while spinal cord injury (SCI patient with para/tetraplegia performing movement with their limbs. This paper reviews on conducted research regarding application of brain computer interface (BCI that offer alternative for neural impairments community such as spinal cord injury patient (SCI which include the experimental design, signal analysis of EEG band signal and data processing methods. The findings claim that the EEG signals of SCI patients associated with movement tasks can be stimulated through mental and motor task. Other than that EEG signal component such as alpha and beta frequency bands indicate significance for analysing the brain activity of subjects with SCI during movements.

  12. Seizures and the Role of Anticonvulsants After Traumatic Brain Injury.

    Science.gov (United States)

    Zimmermann, Lara L; Diaz-Arrastia, Ramon; Vespa, Paul M

    2016-10-01

    Posttraumatic seizures are a common complication of traumatic brain injury. Posttraumatic epilepsy accounts for 20% of symptomatic epilepsy in the general population and 5% of all epilepsy. Early posttraumatic seizures occur in more than 20% of patients in the intensive care unit and are associated with secondary brain injury and worse patient outcomes. Most posttraumatic seizures are nonconvulsive and therefore continuous electroencephalography monitoring should be the standard of care for patients with moderate or severe brain injury. The literature shows that posttraumatic seizures result in secondary brain injury caused by increased intracranial pressure, cerebral edema and metabolic crisis. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A Prospective Randomized Study of Brain Tissue Oxygen Pressure-Guided Management in Moderate and Severe Traumatic Brain Injury Patients

    Directory of Open Access Journals (Sweden)

    Chien-Min Lin

    2015-01-01

    Full Text Available The purpose of this study was to compare the effect of PbtO2-guided therapy with traditional intracranial pressure- (ICP- guided treatment on the management of cerebral variables, therapeutic interventions, survival rates, and neurological outcomes of moderate and severe traumatic brain injury (TBI patients. From 2009 to 2010, TBI patients with a Glasgow coma scale 20 mmHg, and 27 patients were treated with ICP-guided therapy (ICP 60 mmHg in the neurosurgical intensive care unit (NICU; demographic characteristics were similar across groups. The survival rate in the PbtO2-guided group was also significantly increased at 3 and 6 months after injury. Moreover, there was a significant correlation between the PbtO2 signal and Glasgow outcome scale-extended in patients from 1 to 6 months after injury. This finding demonstrates that therapy directed by PbtO2 monitoring is valuable for the treatment of patients with moderate and severe TBI and that increasing PaO2 to 150 mmHg may be efficacious for preventing cerebral hypoxic events after brain trauma.

  14. SPECT brain perfusion findings in mild or moderate traumatic brain injury.

    Science.gov (United States)

    Abu-Judeh, H H; Parker, R; Aleksic, S; Singh, M L; Naddaf, S; Atay, S; Kumar, M; Omar, W; El-Zeftawy, H; Luo, J Q; Abdel-Dayem, H M

    2000-01-01

    The purpose of this manuscript is to present the findings in the largest series of SPECT brain perfusion imaging reported to date for mild or moderate traumatic brain injury. This is a retrospective evaluation of 228 SPECT brain perfusion-imaging studies of patients who suffered mild or moderate traumatic brain injury with or without loss of consciousness (LOC). All patients had no past medical history of previous brain trauma, neurological, or psychiatric diseases, HIV, alcohol or drug abuse. The patient population included 135 males and 93 females. The ages ranged from 11-88 years (mean 40.8). The most common complaints were characteristic of the postconcussion syndrome: headaches 139/228 (61%); dizziness 61/228 (27%); and memory problems 63/228 (28%). LOC status was reported to be positive in 121/228 (53%), negative in 41/228 (18%), and unknown for 63/228 (28%). Normal studies accounted for 52/228 (23%). For abnormal studies (176/228 or 77%) the findings were as follows: basal ganglia hypoperfusion 338 lesions (55.2%); frontal lobe hypoperfusion 146 (23.8%); temporal lobes hypoperfusion 80 (13%); parietal lobes hypoperfusion 20 (3.7%); insular and or occipital lobes hypoperfusion 28 (4.6%). Patients' symptoms correlated with the SPECT brain perfusion findings. The SPECT BPI studies in 122/228 (54%) were done early within 3 months of the date of the accident, and for the remainder, 106/228 (46%) over 3 months and less than 3 years from the date of the injury. In early imaging, 382 lesions were detected; in 92 patients (average 4.2 lesions per study) imaging after 3 months detected 230 lesions: in 84 patients (average 2.7 lesions per study). Basal ganglia hypoperfusion is the most common abnormality following mild or moderate traumatic brain injury (p = 0.006), and is more common in patients complaining of memory problem (p = 0.0005) and dizziness (p = 0.003). Early imaging can detect more lesions than delayed imaging (p = 0.0011). SPECT brain perfusion

  15. Respiratory mechanics in brain injury: A review.

    Science.gov (United States)

    Koutsoukou, Antonia; Katsiari, Maria; Orfanos, Stylianos E; Kotanidou, Anastasia; Daganou, Maria; Kyriakopoulou, Magdalini; Koulouris, Nikolaos G; Rovina, Nikoletta

    2016-02-04

    Several clinical and experimental studies have shown that lung injury occurs shortly after brain damage. The responsible mechanisms involve neurogenic pulmonary edema, inflammation, the harmful action of neurotransmitters, or autonomic system dysfunction. Mechanical ventilation, an essential component of life support in brain-damaged patients (BD), may be an additional traumatic factor to the already injured or susceptible to injury lungs of these patients thus worsening lung injury, in case that non lung protective ventilator settings are applied. Measurement of respiratory mechanics in BD patients, as well as assessment of their evolution during mechanical ventilation, may lead to preclinical lung injury detection early enough, allowing thus the selection of the appropriate ventilator settings to avoid ventilator-induced lung injury. The aim of this review is to explore the mechanical properties of the respiratory system in BD patients along with the underlying mechanisms, and to translate the evidence of animal and clinical studies into therapeutic implications regarding the mechanical ventilation of these critically ill patients.

  16. "Shared Destiny": The Dynamics of Relationships in Families of Patients With Brain Injury.

    Science.gov (United States)

    Segev, Einav; Levinger, Miriam; Hochman, Yael

    2018-01-01

    This qualitative research focused on the relationships between family members of patients with acquired brain injury (ABI). The aim was to explore the dynamics between caregivers of the family member with a brain injury during rehabilitation hospitalization, and the relationships between them and the rest of the extended family. Twenty semistructured interviews were conducted with family members. In each family, the spouse of the patient and another family member involved in caregiving were interviewed. The importance of the relationships between family members during rehabilitation hospitalization justifies the examination undertaken in this research. Findings point at the change that took place in the relationships between family members because of the need to cope with a relative's injury. It is possible that direct intervention in the dynamics of the relationship, especially between the family of origin and the nuclear family of the injured person, can benefit extended families in coping with the crisis.

  17. Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury

    Science.gov (United States)

    Jolly, Amy; de Simoni, Sara; Bourke, Niall; Patel, Maneesh C; Scott, Gregory; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury leads to significant loss of brain volume, which continues into the chronic stage. This can be sensitively measured using volumetric analysis of MRI. Here we: (i) investigated longitudinal patterns of brain atrophy; (ii) tested whether atrophy is greatest in sulcal cortical regions; and (iii) showed how atrophy could be used to power intervention trials aimed at slowing neurodegeneration. In 61 patients with moderate-severe traumatic brain injury (mean age = 41.55 years ± 12.77) and 32 healthy controls (mean age = 34.22 years ± 10.29), cross-sectional and longitudinal (1-year follow-up) brain structure was assessed using voxel-based morphometry on T1-weighted scans. Longitudinal brain volume changes were characterized using a novel neuroimaging analysis pipeline that generates a Jacobian determinant metric, reflecting spatial warping between baseline and follow-up scans. Jacobian determinant values were summarized regionally and compared with clinical and neuropsychological measures. Patients with traumatic brain injury showed lower grey and white matter volume in multiple brain regions compared to controls at baseline. Atrophy over 1 year was pronounced following traumatic brain injury. Patients with traumatic brain injury lost a mean (± standard deviation) of 1.55% ± 2.19 of grey matter volume per year, 1.49% ± 2.20 of white matter volume or 1.51% ± 1.60 of whole brain volume. Healthy controls lost 0.55% ± 1.13 of grey matter volume and gained 0.26% ± 1.11 of white matter volume; equating to a 0.22% ± 0.83 reduction in whole brain volume. Atrophy was greatest in white matter, where the majority (84%) of regions were affected. This effect was independent of and substantially greater than that of ageing. Increased atrophy was also seen in cortical sulci compared to gyri. There was no relationship between atrophy and time since injury or age at baseline. Atrophy rates were related to memory performance at the end of the

  18. Rehabilitation of discourse impairments after acquired brain injury

    Directory of Open Access Journals (Sweden)

    Gigiane Gindri

    Full Text Available ABSTRACT Language impairments in patients with acquired brain injury can have a negative impact on social life as well as on other cognitive domains. Discourse impairments are among the most commonly reported communication deficits among patients with acquired brain damage. Despite advances in the development of diagnostic tools for detecting such impairments, few studies have investigated interventions to rehabilitate patients presenting with these conditions. Objective: The aim of this study was to present a systematic review of the methods used in the rehabilitation of discourse following acquired brain injury. Methods: The PubMed database was searched for articles using the following keywords: "rehabilitation", "neurological injury", "communication" and "discursive abilities". Results: A total of 162 abstracts were found, but only seven of these met criteria for inclusion in the review. Four studies involved samples of individuals with aphasia whereas three studies recruited samples of individuals with traumatic brain injury. Conclusion: All but one article found that patient performance improved following participation in a discourse rehabilitation program.

  19. The potential of neural transplantation for brain repair and regeneration following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Dong Sun

    2016-01-01

    Traumatic brain injury is a major health problem worldwide. Currently, there is no effective treatment to improve neural structural repair and functional recovery of patients in the clinic. Cell transplantation is a potential strategy to repair and regenerate the injured brain. This review article summarized recent de-velopment in cell transplantation studies for post-traumatic brain injury brain repair with varying types of cell sources. It also discussed the potential of neural transplantation to repair/promote recovery of the injured brain following traumatic brain injury.

  20. Cerebral perfusion pressure, microdialysis biochemistry and clinical outcome in patients with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Paraforou Theoniki

    2011-12-01

    Full Text Available Abstract Background Traumatic Brain Injury (TBI is a major cause of death and disability. It has been postulated that brain metabolic status, intracranial pressure (ICP and cerebral perfusion pressure (CPP are related to patients' outcome. The aim of this study was to investigate the relationship between CPP, ICP and microdialysis parameters and clinical outcome in TBIs. Results Thirty four individuals with severe brain injury hospitalized in an intensive care unit participated in this study. Microdialysis data were collected, along with ICP and CPP values. Glasgow Outcome Scale (GOS was used to evaluate patient outcome at 6 months after injury. Fifteen patients with a CPP greater than 75 mmHg, L/P ratio lower than 37 and Glycerol concentration lower than 72 mmol/l had an excellent outcome (GOS 4 or 5, as opposed to the remaining 19 patients. No patient with a favorable outcome had a CPP lower than 75 mmHg or Glycerol concentration and L/P ratio greater than 72 mmol/l and 37 respectively. Data regarding L/P ratio and Glycerol concentration were statistically significant at p = 0.05 when patients with favorable and unfavorable outcome were compared. In a logistic regression model adjusted for age, sex and Glasgow Coma Scale on admission, a CPP greater than 75 mmHg was marginally statistically significantly related to outcome at 6 months after injury. Conclusions Patients with favorable outcome had certain common features in terms of microdialysis parameters and CPP values. An individualized approach regarding CPP levels and cut -off points for Glycerol concentration and L/P ratio are proposed.

  1. Brain pathology after mild traumatic brain injury: an exploratory study by repeated magnetic resonance examination.

    Science.gov (United States)

    Lannsjö, Marianne; Raininko, Raili; Bustamante, Mariana; von Seth, Charlotta; Borg, Jörgen

    2013-09-01

    To explore brain pathology after mild traumatic brain injury by repeated magnetic resonance examination. A prospective follow-up study. Nineteen patients with mild traumatic brain injury presenting with Glasgow Coma Scale (GCS) 14-15. The patients were examined on day 2 or 3 and 3-7 months after the injury. The magnetic resonance protocol comprised conventional T1- and T2-weighted sequences including fluid attenuated inversion recovery (FLAIR), two susceptibility-weighted sequences to reveal haemorrhages, and diffusion-weighted sequences. Computer-aided volume comparison was performed. Clinical outcome was assessed by the Rivermead Post-Concussion Symptoms Questionnaire (RPQ), Hospital Anxiety and Depression Scale (HADS) and Glasgow Outcome Scale Extended (GOSE). At follow-up, 7 patients (37%) reported ≥  3 symptoms in RPQ, 5 reported some anxiety and 1 reported mild depression. Fifteen patients reported upper level of good recovery and 4 patients lower level of good recovery (GOSE 8 and 7, respectively). Magnetic resonance pathology was found in 1 patient at the first examination, but 4 patients (21%) showed volume loss at the second examination, at which 3 of them reported GOSE scores of 8. Loss of brain volume, demonstrated by computer-aided magnetic resonance imaging volumetry, may be a feasible marker of brain pathology after mild traumatic brain injury.

  2. Spinal cord injury drives chronic brain changes

    Directory of Open Access Journals (Sweden)

    Ignacio Jure

    2017-01-01

    Full Text Available Only a few studies have considered changes in brain structures other than sensory and motor cortex after spinal cord injury, although cognitive impairments have been reported in these patients. Spinal cord injury results in chronic brain neuroinflammation with consequent neurodegeneration and cognitive decline in rodents. Regarding the hippocampus, neurogenesis is reduced and reactive gliosis increased. These long-term abnormalities could explain behavioral impairments exhibited in humans patients suffering from spinal cord trauma.

  3. Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury.

    Science.gov (United States)

    Cole, James H; Jolly, Amy; de Simoni, Sara; Bourke, Niall; Patel, Maneesh C; Scott, Gregory; Sharp, David J

    2018-01-04

    Traumatic brain injury leads to significant loss of brain volume, which continues into the chronic stage. This can be sensitively measured using volumetric analysis of MRI. Here we: (i) investigated longitudinal patterns of brain atrophy; (ii) tested whether atrophy is greatest in sulcal cortical regions; and (iii) showed how atrophy could be used to power intervention trials aimed at slowing neurodegeneration. In 61 patients with moderate-severe traumatic brain injury (mean age = 41.55 years ± 12.77) and 32 healthy controls (mean age = 34.22 years ± 10.29), cross-sectional and longitudinal (1-year follow-up) brain structure was assessed using voxel-based morphometry on T1-weighted scans. Longitudinal brain volume changes were characterized using a novel neuroimaging analysis pipeline that generates a Jacobian determinant metric, reflecting spatial warping between baseline and follow-up scans. Jacobian determinant values were summarized regionally and compared with clinical and neuropsychological measures. Patients with traumatic brain injury showed lower grey and white matter volume in multiple brain regions compared to controls at baseline. Atrophy over 1 year was pronounced following traumatic brain injury. Patients with traumatic brain injury lost a mean (± standard deviation) of 1.55% ± 2.19 of grey matter volume per year, 1.49% ± 2.20 of white matter volume or 1.51% ± 1.60 of whole brain volume. Healthy controls lost 0.55% ± 1.13 of grey matter volume and gained 0.26% ± 1.11 of white matter volume; equating to a 0.22% ± 0.83 reduction in whole brain volume. Atrophy was greatest in white matter, where the majority (84%) of regions were affected. This effect was independent of and substantially greater than that of ageing. Increased atrophy was also seen in cortical sulci compared to gyri. There was no relationship between atrophy and time since injury or age at baseline. Atrophy rates were related to memory performance at the end of the follow

  4. Statistical analysis plan for the Erythropoietin in Traumatic Brain Injury trial: a randomised controlled trial of erythropoietin versus placebo in moderate and severe traumatic brain injury.

    LENUS (Irish Health Repository)

    Presneill, Jeffrey

    2014-01-01

    The Erythropoietin in Traumatic Brain Injury (EPO-TBI) trial aims to determine whether the administration of erythropoietin to patients with moderate or severe traumatic brain injury improves patient-centred outcomes.

  5. Blunt splenic injury and severe brain injury: a decision analysis and implications for care

    Science.gov (United States)

    Alabbasi, Thamer; Nathens, Avery B.; Tien, Col Homer

    2015-01-01

    Background The initial nonoperative management (NOM) of blunt splenic injuries in hemodynamically stable patients is common. In soldiers who experience blunt splenic injuries with concomitant severe brain injury while on deployment, however, NOM may put the injured soldier at risk for secondary brain injury from prolonged hypotension. Methods We conducted a decision analysis using a Markov process to evaluate 2 strategies for managing hemodynamically stable patients with blunt splenic injuries and severe brain injury — immediate splenectomy and NOM — in the setting of a field hospital with surgical capability but no angiography capabilities. We considered the base case of a 40-year-old man with a life expectancy of 78 years who experienced blunt trauma resulting in a severe traumatic brain injury and an isolated splenic injury with an estimated failure rate of NOM of 19.6%. The primary outcome measured was life expectancy. We assumed that failure of NOM would occur in the setting of a prolonged casualty evacuation, where surgical capability was not present. Results Immediate splenectomy was the slightly more effective strategy, resulting in a very modest increase in overall survival compared with NOM. Immediate splenectomy yielded a survival benefit of only 0.4 years over NOM. Conclusion In terms of overall survival, we would not recommend splenectomy unless the estimated failure rate of NOM exceeded 20%, which corresponds to an American Association for the Surgery of Trauma grade III splenic injury. For military patients for whom angiography may not be available at the field hospital and who require prolonged evacuation, immediate splenectomy should be considered for grade III–V injuries in the presence of severe brain injury. PMID:26100770

  6. Analysis of risk factor of unfavorable outcome in patients with diffuse brain injury from clinical, CT and magnetic resonance imaging findings

    International Nuclear Information System (INIS)

    Ishizaka, Hideo; Goto, Tadateru; Osada, Takahiro; Shiramizu, Hideki; Shibata, Masayoshi; Matsumae, Mitsunori

    2010-01-01

    We performed a statistical investigation of poor outcome factors for diffuse brain injury using the state of consciousness, age, gender, pupil abnormality, CT, and MRI findings upon arrival of diffuse brain injury patients to the hospital. We studied 93 diffuse brain injury patients but excluded those with multiple trauma of AIS 3 or above, those who tested positive for alcohol at the time of arrival at the hospital, and those who also exhibited a focal brain injury. Based on clinical findings made at the time patients arrived at the hospital, being older than 65 years of age, Glasgow coma scale (GCS) 7 and below, and having abnormal light reflexes were poor outcome factors. Regarding CT findings, being unable to see the suprasellar cistern, poor visualization of the ambient cistern, and subarachnoid hemorrhage (SAH) on the brain surface were poor outcome factors. Regarding MRI findings, the presence of basal ganglia injury and brainstem injury were poor outcome factors. Based on a stepwise logistic regression analysis of all poor outcome factors, it was revealed that being older than 65 years of age, having light reflex abnormalities, and the existence of brainstem injuries are all poor outcome factors, independent of each other. In addition, regarding injuries to the brain stem, midbrain injuries were the most prevalent and lateral injuries of the midbrain was the most prevalent poor outcome factor. However, in cases of injury to the brainstem only, recovery was good. (author)

  7. Diagnostic value of low-field MRI for acute poisoning brain injury

    International Nuclear Information System (INIS)

    Dang Lianrong; He Qinyi

    2012-01-01

    Objective: To investigate the value of low-field MIR in diagnosis of acute CO poisoning brain injury. Methods: The brain MIR and clinical data of 110 patients with acute CO poisoning brain injury confirmed by clinical examination were retrospectively analyzed. Results: Long T1 and T2 signal intensity was showed on MRI in cerebral hemispheres and globus pallidus symmetrically. There were three basic types of MIR manifestations, white matter of brain type, globus pallidus type and brain mixed type. Conclusions: MRI could be used for confirming the degree and range of acute CO poisoning brain injury. It has important clinical value in the diagnosis, staging and prognosis of patients with acute CO poisoning brain injury. (authors)

  8. Proton MR spectroscopy in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Kubas, Bożena; Łebkowski, Wojciech; Łebkowska, Urszula; Kułak, Wojciech; Tarasow, Eugeniusz; Walecki, Jerzy

    2010-01-01

    To assess the role of 1H MRS in the detection of changes in cerebral metabolite levels in pyramidal tracts after mild traumatic brain injury (MTBI) and to compare metabolite alterations to the clinical status (Glasgow Coma Scale). Study group consisted of 25 patients after mild traumatic brain injury, with a score of 11 to 15 in GCS. The MR studies were performed with a 1.5 T scanner. The results of spectra approximation (presented as metabolite ratios: NAA/Cr, NAA/Cho, Cho/Cr, lac/Cr, lip/Cr, Glx/Cr) were subjected to statistical analysis. MR spectra were recorded from a normal-appearing brain region: internal capsules and cerebral peduncles. Spectra from traumatic patients were compared with a control group including 34 healthy volunteers recorded with the same techniques. The statistical analysis revealed significant differences between the data obtained from various brain regions of the same patients after an MTBI and between the study and the control group. Proton MR spectroscopy detects changes in cerebral metabolite levels in apparently normal regions. In pyramidal tracts (internal capsules, cerebral peduncles), we noticed a significant reduction of NAA /Cho, lip/Cr, lac/Cr and Glx/Cr. In patients with mild brain injury, we can detect some metabolite abnormalities in normal-appearing brain structures. Proton MRS is a very useful tool for evaluation of major changes in metabolite levels in pyramidal tracts after mild traumatic brain injury

  9. Acute alcohol intoxication, diffuse axonal injury and intraventricular bleeding in patients with isolated blunt traumatic brain injury.

    Science.gov (United States)

    Matsukawa, Hidetoshi; Shinoda, Masaki; Fujii, Motoharu; Takahashi, Osamu; Murakata, Atsushi; Yamamoto, Daisuke

    2013-01-01

    The influence of blood alcohol level (BAL) on outcome remains unclear. This study investigated the relationships between BAL, type and number of diffuse axonal injury (DAI), intraventricular bleeding (IVB) and 6-month outcome. This study reviewed 419 patients with isolated blunt traumatic brain injury. First, it compared clinical and radiological characteristics between patients with good recovery and disability. Second, it compared BAL among DAI lesions. Third, it evaluated the correlation between the BAL and severity of IVB, number of DAI and corpus callosum injury lesions. Regardless of BAL, older age, male gender, severe Glasgow Coma Scale score (injury lesions. Acute alcohol intoxication was not associated with type and number of DAI lesion, IVB and disability. This study suggested that a specific type of traumatic lesion, specifically lesion on genu of corpus callosum and IVB, might be more vital for outcome.

  10. Delayed radiation injury of brain stem after radiotherapy in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Yang Yunli; Liu Yingxin; Xie Dong; Su Danke; Chen Mingzhong

    2002-01-01

    Objective: To study the clinical characteristics, MRI findings, diagnosis, treatment and prognostic factors of patients with radiation induced brain stem injury in nasopharyngeal carcinoma. Methods: From January 1991 to January 2001, 24 patients with radiation injury of brain stem were treated, 14 males and 10 females. The latency ranged from 6 to 38 months, with a median of 18 months. The lesions were located in the pons in 10 patients, mesencephalon + pons in 4, pons + medulla oblongata in 5, medulla oblongata in 2 and mesencephalon + pons + medulla oblongata in 3. MRI findings showed that the injury was chiefly presented as hypointensity foci on T 1 WI and hyperintensity foci on T 2 WI. Results: Eighteen patients were treated with dexamethasone in the early phase, with symptoms relieved in 12 patients but unimproved in 6 patients. Eight 44% patients died within the 8-38 months, leaving 16 patients surviving for 0.5 to 6.0 years. Conclusions: Radiation injury of brain stem has a short latency with severe symptoms, signifying poor prognosis. It is suggested that adequate reduction of irradiation volume and dose at the brain stem should be able to lower the incidence of brain stem injury

  11. The validity of the Brain Injury Cognitive Screen (BICS) as a neuropsychological screening assessment for traumatic and non-traumatic brain injury.

    Science.gov (United States)

    Vaughan, Frances L; Neal, Jo Anne; Mulla, Farzana Nizam; Edwards, Barbara; Coetzer, Rudi

    2017-04-01

    The Brain Injury Cognitive Screen (BICS) was developed as an in-service cognitive assessment battery for acquired brain injury patients entering community rehabilitation. The BICS focuses on domains that are particularly compromised following TBI, and provides a broader and more detailed assessment of executive function, attention and information processing than comparable screening assessments. The BICS also includes brief assessments of perception, naming, and construction, which were predicted to be more sensitive to impairments following non-traumatic brain injury. The studies reported here examine preliminary evidence for its validity in post-acute rehabilitation. In Study 1, TBI patients completed the BICS and were compared with matched controls. Patients with focal lesions and matched controls were compared in Study 2. Study 3 examined demographic effects in a sample of normative data. TBI and focal lesion patients obtained significantly lower composite memory, executive function and attention and information processing BICS scores than healthy controls. Injury severity effects were also obtained. Logistic regression analyses indicated that each group of BICS memory, executive function and attention measures reliably differentiated TBI and focal lesion participants from controls. Design Recall, Prospective Memory, Verbal Fluency, and Visual Search test scores showed significant independent regression effects. Other subtest measures showed evidence of sensitivity to brain injury. The study provides preliminary evidence of the BICS' sensitivity to cognitive impairment caused by acquired brain injury, and its potential clinical utility as a cognitive screen. Further validation based on a revised version of the BICS and more normative data are required.

  12. Acute alcohol intoxication in patients with mild traumatic brain injury : Characteristics, recovery, and outcome

    NARCIS (Netherlands)

    Scheenen, Myrthe E.; de Koning, Myrthe E.; van der Horn, Harm J.; Roks, C.M.A.A.; Yilmaz, Tansel; van der Naalt, Joukje; Spikman, Jacoba M.

    2016-01-01

    A substantial number of patients (30% to 50%) sustains a mild traumatic brain injury (mTBI) while they are under the influence of alcohol. An acute alcohol intoxication (AAI) at the time of injury has been subject of research in severe TBI, but little is known about the relation between AAI and

  13. Acute Alcohol Intoxication in Patients with Mild Traumatic Brain Injury : Characteristics, Recovery, and Outcome

    NARCIS (Netherlands)

    Scheenen, Myrthe E.; de Koning, Myrthe E.; van der Horn, Harm; Roks, Gerwin; Yilmaz, Tansel; van der Naalt, Joukje; Spikman, Jacoba M.

    2016-01-01

    A substantial number of patients (30% to 50%) sustains a mild traumatic brain injury (mTBI) while they are under the influence of alcohol. An acute alcohol intoxication (AAI) at the time of injury has been subject of research in severe TBI, but little is known about the relation between AAI and

  14. The association of functional oral intake and pneumonia in patients with severe Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Schow, Trine; Larsen, Klaus; Engberg, Aase Worså

    Abstract Objective(s): This study investigates the incidence and onset time of pneumonia for patients with severe Traumatic Brain Injury (TBI) in the early phase of rehabilitation, and identifies parameters associated with the risk of pneumonia. Design: Observational retrospective cohort study....... Setting: A subacute rehabilitation department, university hospital, Denmark. Participants: One-hundred and seventy-three patients aged 16-65 years with severe TBI admitted over a 5-year period. Patients are transferred to the Brain Injury Unit (BIU) as soon as they ventilate spontaneously. Intervention......: None Main Outcome Measure(s): Pneumonia. Results: Twenty-seven percent (27%) of the patients admitted to the BIU were in treatment for pneumonia and 12% developed pneumonia during rehabilitation, all but one within 19 days of admission. Of these patients, 81% received nothing by mouth. Three factors...

  15. Further validation of the Motivation for Traumatic Brain Injury Rehabilitation Questionnaire (MOT-Q) in patients with acquired brain injury.

    Science.gov (United States)

    Boosman, Hileen; van Heugten, Caroline M; Winkens, Ieke; Smeets, Sanne M J; Visser-Meily, Johanna M A

    2016-01-01

    The Motivation for Traumatic Brain Injury Rehabilitation Questionnaire (MOT-Q) evaluates motivation for rehabilitation in four subscales: Interest in rehabilitation, Lack of anger, Lack of denial, and Reliance on professional help. The objective of this study was to further validate the MOT-Q in 122 inpatients and 92 outpatients with acquired brain injury (ABI). The main measures were motivation for rehabilitation (MOT-Q), self-awareness (Patient Competency Rating Scale), and treatment motivation (Visual Analogue Scale). The MOT-Q showed adequate feasibility in terms of few items with missing responses and few undecided responses. We found no floor or ceiling effects, and significant item-total MOT-Q correlations for 29 of 31 items. Internal consistency was good for the MOT-Q total and acceptable to good for the subscales. The MOT-Q scores were significantly intercorrelated except for the subscales Lack of denial and Reliance on professional help in the inpatient group. The MOT-Q total and subscales were significantly associated with treatment motivation. The Lack of denial subscale showed no significant association with treatment motivation and no to moderate significant associations with self-awareness. In conclusion, the overall MOT-Q is a valid instrument to assess motivation for rehabilitation in patients with ABI. Further research is needed to examine the validity of the subscales.

  16. Reduction of hyperthermia in pediatric patients with severe traumatic brain injury: a quality improvement initiative.

    Science.gov (United States)

    Lovett, Marlina E; Moore-Clingenpeel, Melissa; Ayad, Onsy; O'Brien, Nicole

    2018-02-01

    OBJECTIVE Severe traumatic brain injury remains a leading cause of morbidity and mortality in the pediatric population. Providers focus on reducing secondary brain injury by avoiding hypoxemia, avoiding hypotension, providing normoventilation, treating intracranial hypertension, and reducing cerebral metabolic demand. Hyperthermia is frequently present in patients with severe traumatic brain injury, contributes to cerebral metabolic demand, and is associated with prolonged hospital admission as well as impaired neurological outcome. The objective of this quality improvement initiative was to reduce the duration of hyperthermia for pediatric patients with severe traumatic brain injury during the initial 72 hours of admission to the pediatric intensive care unit. METHODS A retrospective chart review was performed to evaluate the incidence and duration of hyperthermia within a preintervention cohort. The retrospective phase was followed by three 6-month intervention periods (intervention Phase 1, the maintenance phase, and intervention Phase 2). Intervention Phase 1 entailed placement of a cooling blanket on the bed prior to patient arrival and turning it on once the patient's temperature rose above normothermia. The maintenance phase focused on sustaining the results of Phase 1. Intervention Phase 2 focused on total prevention of hyperthermia by initiating cooling blanket use immediately upon patient arrival to the intensive care unit. RESULTS The median hyperthermia duration in the preintervention cohort (n = 47) was 135 minutes. This was reduced in the Phase 1 cohort (n = 9) to 45 minutes, increased in the maintenance phase cohort (n = 6) to 88.5 minutes, and decreased again in the Phase 2 cohort (n = 9) to a median value of 0 minutes. Eight percent of patients in the intervention cohorts required additional sedation to tolerate the cooling blanket. Eight percent of patients in the intervention cohorts became briefly hypothermic while on the cooling blanket. No

  17. [Hypoxic brain injuries notified to the Danish Patient Insurance Association during 1992-2004. Secondary publication

    DEFF Research Database (Denmark)

    Bock, J.; Christoffersen, J.K.; Hedegaard, M.

    2008-01-01

    We investigated the files of the Danish Patient Insurance Association for newborns suffering from hypoxic brain injuries. From 1992 to 2004, a total of 127 approved claims concerning peripartum hypoxic injury were registered. Thirty-eight newborns died and the majority of the 89 surviving children...

  18. Early detection of consciousness in patients with acute severe traumatic brain injury.

    Science.gov (United States)

    Edlow, Brian L; Chatelle, Camille; Spencer, Camille A; Chu, Catherine J; Bodien, Yelena G; O'Connor, Kathryn L; Hirschberg, Ronald E; Hochberg, Leigh R; Giacino, Joseph T; Rosenthal, Eric S; Wu, Ona

    2017-09-01

    See Schiff (doi:10.1093/awx209) for a scientific commentary on this article. Patients with acute severe traumatic brain injury may recover consciousness before self-expression. Without behavioural evidence of consciousness at the bedside, clinicians may render an inaccurate prognosis, increasing the likelihood of withholding life-sustaining therapies or denying rehabilitative services. Task-based functional magnetic resonance imaging and electroencephalography techniques have revealed covert consciousness in the chronic setting, but these techniques have not been tested in the intensive care unit. We prospectively enrolled 16 patients admitted to the intensive care unit for acute severe traumatic brain injury to test two hypotheses: (i) in patients who lack behavioural evidence of language expression and comprehension, functional magnetic resonance imaging and electroencephalography detect command-following during a motor imagery task (i.e. cognitive motor dissociation) and association cortex responses during language and music stimuli (i.e. higher-order cortex motor dissociation); and (ii) early responses to these paradigms are associated with better 6-month outcomes on the Glasgow Outcome Scale-Extended. Patients underwent functional magnetic resonance imaging on post-injury Day 9.2 ± 5.0 and electroencephalography on Day 9.8 ± 4.6. At the time of imaging, behavioural evaluation with the Coma Recovery Scale-Revised indicated coma (n = 2), vegetative state (n = 3), minimally conscious state without language (n = 3), minimally conscious state with language (n = 4) or post-traumatic confusional state (n = 4). Cognitive motor dissociation was identified in four patients, including three whose behavioural diagnosis suggested a vegetative state. Higher-order cortex motor dissociation was identified in two additional patients. Complete absence of responses to language, music and motor imagery was only observed in coma patients. In patients with behavioural evidence

  19. Early CT signs of progressive hemorrhagic injury following acute traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Wu-song; Zheng, Ping; Xu, Jun-fa; Guo, Yi-jun; Zeng, Jing-song; Yang, Wen-jin; Li, Gao-yi; He, Bin; Yu, Hui [Pudong New Area People' s Hospital, Department of Neurosurgery, Shanghai (China)

    2011-05-15

    Since progressive hemorrhagic injury (PHI) was introduced in neurosurgical literatures, several studies have been performed, the results of which have influenced doctors but do not define guidelines for the best treatment of PHI. PHI may be confirmed by a serial computerized tomography (CT) scan, and it has been shown to be associated with a fivefold increase in the risk of clinical worsening and is a significant cause of morbidity and mortality as well. So, early detection of PHI is practically important in a clinical situation. To analyze the early CT signs of progressive hemorrhagic injury following acute traumatic brain injury (TBI) and explore their clinical significances, PHI was confirmed by comparing the first and repeated CT scans. Data were analyzed and compared including times from injury to the first CT and signs of the early CT scan. Logistic regression analysis was used to show the risk factors related to PHI. A cohort of 630 TBI patients was evaluated, and there were 189 (30%) patients who suffered from PHI. For patients with their first CT scan obtained as early as 2 h post-injury, there were 116 (77.25%) cases who suffered from PHI. The differences between PHIs and non-PHIs were significant in the initial CT scans showing fracture, subarachnoid hemorrhage (SAH), brain contusion, epidural hematoma (EDH), subdural hematoma (SDH), and multiple hematoma as well as the times from injury to the first CT scan (P < 0.01). Logistic regression analysis showed that early CT scans (EDH, SDH, SAH, fracture, and brain contusion) were predictors of PHI (P < 0.01). For patients with the first CT scan obtained as early as 2 h post-injury, a follow-up CT scan should be performed promptly. If the initial CT scan shows SAH, brain contusion, and primary hematoma with brain swelling, an earlier and dynamic CT scan should be performed for detection of PHI as early as possible and the medical intervention would be enforced in time. (orig.)

  20. Early CT signs of progressive hemorrhagic injury following acute traumatic brain injury

    International Nuclear Information System (INIS)

    Tong, Wu-song; Zheng, Ping; Xu, Jun-fa; Guo, Yi-jun; Zeng, Jing-song; Yang, Wen-jin; Li, Gao-yi; He, Bin; Yu, Hui

    2011-01-01

    Since progressive hemorrhagic injury (PHI) was introduced in neurosurgical literatures, several studies have been performed, the results of which have influenced doctors but do not define guidelines for the best treatment of PHI. PHI may be confirmed by a serial computerized tomography (CT) scan, and it has been shown to be associated with a fivefold increase in the risk of clinical worsening and is a significant cause of morbidity and mortality as well. So, early detection of PHI is practically important in a clinical situation. To analyze the early CT signs of progressive hemorrhagic injury following acute traumatic brain injury (TBI) and explore their clinical significances, PHI was confirmed by comparing the first and repeated CT scans. Data were analyzed and compared including times from injury to the first CT and signs of the early CT scan. Logistic regression analysis was used to show the risk factors related to PHI. A cohort of 630 TBI patients was evaluated, and there were 189 (30%) patients who suffered from PHI. For patients with their first CT scan obtained as early as 2 h post-injury, there were 116 (77.25%) cases who suffered from PHI. The differences between PHIs and non-PHIs were significant in the initial CT scans showing fracture, subarachnoid hemorrhage (SAH), brain contusion, epidural hematoma (EDH), subdural hematoma (SDH), and multiple hematoma as well as the times from injury to the first CT scan (P < 0.01). Logistic regression analysis showed that early CT scans (EDH, SDH, SAH, fracture, and brain contusion) were predictors of PHI (P < 0.01). For patients with the first CT scan obtained as early as 2 h post-injury, a follow-up CT scan should be performed promptly. If the initial CT scan shows SAH, brain contusion, and primary hematoma with brain swelling, an earlier and dynamic CT scan should be performed for detection of PHI as early as possible and the medical intervention would be enforced in time. (orig.)

  1. Time Perception in Severe Traumatic Brain Injury Patients: A Study Comparing Different Methodologies

    Science.gov (United States)

    Mioni, G.; Mattalia, G.; Stablum, F.

    2013-01-01

    In this study, we investigated time perception in patients with traumatic brain injury (TBI). Fifteen TBI patients and 15 matched healthy controls participated in the study. Participants were tested with durations above and below 1s on three different temporal tasks that involved time reproduction, production, and discrimination tasks. Data…

  2. Triple Peripheral Nerve Injury Accompanying to Traumatic Brain Injury: A Case Report

    Directory of Open Access Journals (Sweden)

    Ižlknur Can

    2014-02-01

    Full Text Available Secondary injuries especially extremity fractures may be seen concurrently with traumatic brain injury (TBI. Peripheral nerve damages may accompany to these fractures and may be missed out, especially in acute stage. In this case report; damage of radial, ulnar and median nerves which was developed secondarily to distal humerus fracture that could not be detected in acute stage, in a patient who had motor vehicle accident (MVA. 29-year-old male patient was admitted with weakness in the right upper extremity. 9 months ago, he had traumatic brain injury because of MVA, and fracture of distal humerus was detected in follow-ups. Upon the suspect of the peripheral nerve injury, the diagnosis was confirmed with ENMG. The patient responded well to the rehabilitation program treatment. In a TBI patient, it must be kept in mind that there might be a secondary trauma and therefore peripheral nerve lesions may accompany to TBI.

  3. The Importance of Early Brain Injury after Subarachnoid Hemorrhage

    Science.gov (United States)

    Sehba, Fatima A.; Hou, Jack; Pluta, Ryszard M.; Zhang, John H.

    2012-01-01

    Aneurysmal subarachnoid hemorrhage (aSAH) is a medical emergency that accounts for 5% of all stroke cases. Individuals affected are typically in the prime of their lives (mean age 50 years). Approximately 12% of patients die before receiving medical attention, 33% within 48 hours and 50% within 30 days of aSAH. Of the survivors 50% suffer from permanent disability with an estimated lifetime cost more than double that of an ischemic stroke. Traditionally, spasm that develops in large cerebral arteries 3-7 days after aneurysm rupture is considered the most important determinant of brain injury and outcome after aSAH. However, recent studies show that prevention of delayed vasospasm does not improve outcome in aSAH patients. This finding has finally brought in focus the influence of early brain injury on outcome of aSAH. A substantial amount of evidence indicates that brain injury begins at the aneurysm rupture, evolves with time and plays an important role in patients’ outcome. In this manuscript we review early brain injury after aSAH. Due to the early nature, most of the information on this injury comes from animals and few only from autopsy of patients who died within days after aSAH. Consequently, we began with a review of animal models of early brain injury, next we review the mechanisms of brain injury according to the sequence of their temporal appearance and finally we discuss the failure of clinical translation of therapies successful in animal models of aSAH. PMID:22414893

  4. Psychometric properties of the Mini-Mental State Examination in patients with acquired brain injury in Turkey.

    Science.gov (United States)

    Elhan, Atilla H; Kutlay, Sehim; Küçükdeveci, Ayse A; Cotuk, Cigdem; Oztürk, Gülsah; Tesio, Luigi; Tennant, Alan

    2005-09-01

    To evaluate the psychometric properties of Mini-Mental State Examination (MMSE) in patients with acquired brain injury in Turkey. A total of 207 patients with acquired brain injury were assessed. Reliability was tested by internal consistency and the person separation index; internal construct validity by Rasch analysis; external construct validity by correlation with cognitive disability; and cross-cultural validity by differential item functioning analysis compared with Italian MMSE data. Reliability was adequate with a Cronbach's alpha of 0.75 and person separation index of 0.76. After collapsing some categories, and adjustment for differential item functioning, internal construct validity was supported by fit of the data to Rasch model. Differential item functioning for culture was found in 2 items and after adjustment, data could be pooled between Turkey and Italy. External construct validity was supported by expected associations. The Turkish version of the Mini-Mental State Examination can be used as a cognitive screening tool in acquired brain injury. Cross-cultural validity between Italy and Turkey is supported, given appropriate adjustment for differential item functioning. However, shortfalls in reliability at the individual level, as well as the presence of differential item functioning suggest that a better instrument should be developed to screen for cognitive deficits following acquired brain injury.

  5. Treatment for delayed brain injury after pituitary irradiation

    International Nuclear Information System (INIS)

    Fujii, Takashi; Misumi, Shuzoh; Shibasaki, Takashi; Tamura, Masaru; Kunimine, Hideo; Hayakawa, Kazushige; Niibe, Hideo; Miyazaki, Mizuho; Miyagi, Osamu.

    1988-01-01

    Treatment for delayed brain injury after pituitary irradiation is discussed. Six cases with delayed brain injury were treated with a combination of dexamethasone or betamethasone, with heparin, glycerol, dextran 40 and some vasodilators. Two cases with temporal lobe syndrome were treated in the early stages of brain injury for a period of over 12 months were almost completely cured, another two cases with chiasma syndrome were treated in the relatively late stages, showed a partial improvement. One case which was irradiated 120 GY during 13 years did not improve. The final case treated with steroids for a short period also resulted in failure and the patient underwent an operation for the removal of the necrotic mass three years after the radiotherapy. Steroid therapy started in the early stages of brain injury after irradiation for over the 12 months is thought to be effective. Heparin therapy was also effective in one out of three cases, but in one of the cases subarachnoid hemorrhage from a traumatic aneurysm occurred during the therapy. In an acute phase, showing edematous change of the injured brain, the administration of glycerol is also thought to be useful. But the effectiveness of the other medicines containing some vasodilators was obscure or doubtful. We propose the following : (1) A meticulous observation is essential for the patients who received high doses of irradiation to diagnose brain injury in the early reversible stage. (2) Steroids should be given immediately in this reversible stage of brain injury before the irreversible ''necrosis'' occurs. (3) Steroids should be maintained for a long period over 12 months. (4) Heparin therapy is also thought to be effective, but careful precautions to avoid hemorrhagic complications before the therapy should be scheduled. This recommended plan may also be used for the treatment of brain injuries after cranial irradiation for other intracranial tumors. (author)

  6. The association of functional oral intake and pneumonia in patients with severe traumatic brain injury

    DEFF Research Database (Denmark)

    Hansen, T.S.; Larsen, K.; Engberg, Anders

    2008-01-01

    MEASURE: Pneumonia. RESULTS: Twenty-seven percent of the patients admitted to the brain injury unit were in treatment for pneumonia; pneumonia developed in 12% of the patients during rehabilitation; the condition occurred within 19 days of admission in all but 1 patient. Of these patients, 81% received...

  7. Traumatic brain injury: Comparison between autopsy and ante-mortem CT.

    Science.gov (United States)

    Panzer, Stephanie; Covaliov, Lidia; Augat, Peter; Peschel, Oliver

    2017-11-01

    The aim of this study was to compare pathological findings after traumatic brain injury between autopsy and ante-mortem computed tomography (CT). A second aim was to identify changes in these findings between the primary posttraumatic CT and the last follow-up CT before death. Through the collaboration between clinical radiology and forensic medicine, 45 patients with traumatic brain injury were investigated. These patients had undergone ante-mortem CT as well as autopsy. During autopsy, the brain was cut in fronto-parallel slices directly after removal without additional fixation or subsequent histology. Typical findings of traumatic brain injury were compared between autopsy and radiology. Additionally, these findings were compared between the primary CT and the last follow-up CT before death. The comparison between autopsy and radiology revealed a high specificity (≥80%) in most of the findings. Sensitivity and positive predictive value were high (≥80%) in almost half of the findings. Sixteen patients had undergone craniotomy with subsequent follow-up CT. Thirteen conservatively treated patients had undergone a follow-up CT. Comparison between the primary CT and the last ante-mortem CT revealed marked changes in the presence and absence of findings, especially in patients with severe traumatic brain injury requiring decompression craniotomy. The main pathological findings of traumatic brain injury were comparable between clinical ante-mortem CT examinations and autopsy. Comparison between the primary CT after trauma and the last ante-mortem CT revealed marked changes in the findings, especially in patients with severe traumatic brain injury. Hence, clinically routine ante-mortem CT should be included in the process of autopsy interpretation. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  8. Mirror Asymmetry of Category and Letter Fluency in Traumatic Brain Injury and Alzheimer's Patients

    Science.gov (United States)

    Capitani, Erminio; Rosci, Chiara; Saetti, Maria Cristina; Laiacona, Marcella

    2009-01-01

    In this study we contrasted the Category fluency and Letter fluency performance of 198 normal subjects, 57 Alzheimer's patients and 57 patients affected by traumatic brain injury (TBI). The aim was to check whether, besides the prevalence of Category fluency deficit often reported among Alzheimer's patients, the TBI group presented the opposite…

  9. The use of antioxidants in the treatment of traumatic brain injury.

    Science.gov (United States)

    Venegoni, Whitney; Shen, Qiuhua; Thimmesch, Amanda R; Bell, Meredith; Hiebert, John B; Pierce, Janet D

    2017-06-01

    The aim of this study was to discuss secondary traumatic brain injury, the mitochondria and the use of antioxidants as a treatment. One of the leading causes of death globally is traumatic brain injury, affecting individuals in all demographics. Traumatic brain injury is produced by an external blunt force or penetration resulting in alterations in brain function or pathology. Often, with a traumatic brain injury, secondary injury causes additional damage to the brain tissue that can have further impact on recovery and the quality of life. Secondary injury occurs when metabolic and physiologic processes alter after initial injury and includes increased release of toxic free radicals that cause damage to adjacent tissues and can eventually lead to neuronal necrosis. Although antioxidants in the tissues can reduce free radical damage, the magnitude of increased free radicals overwhelms the body's reduced defence mechanisms. Supplementing the body's natural supply of antioxidants, such as coenzyme Q10, can attenuate oxidative damage caused by reactive oxygen species. Discussion paper. Research literature published from 2011-2016 in PubMed, CINAHL and Cochrane. Prompt and accurate assessment of patients with traumatic brain injury by nurses is important to ensure optimal recovery and reduced lasting disability. Thus, it is imperative that nurses be knowledgeable about the secondary injury that occurs after a traumatic brain injury and aware of possible antioxidant treatments. The use of antioxidants has potential to reduce the magnitude of secondary injury in patients who experience a traumatic brain injury. © 2017 John Wiley & Sons Ltd.

  10. Brain injury - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000163.htm Brain injury - discharge To use the sharing features on ... know was in the hospital for a serious brain injury. At home, it will take time for ...

  11. Traumatic Brain Injury Registry (TBI)

    Data.gov (United States)

    Department of Veterans Affairs — As the number of Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Traumatic Brain Injury (TBI) patients has grown, so has the need to track and monitor...

  12. Traumatic Brain Injury

    Science.gov (United States)

    ... brain injury Some traumatic brain injuries have lasting effects, and some do not. You may be left with disabilities. These can be physical, behavioral, communicative, and/or mental. Customized treatment helps you to have as full ...

  13. AFFECTIVE RESPONSES AFTER DIFFERENT INTENSITIES OF EXERCISE IN PATIENTS WITH TRAUMATIC BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    Patricia eRzezak

    2015-06-01

    Full Text Available BACKGROUND: Patients with traumatic brain injury (TBI usually have mood and anxiety symptoms secondary to their brain injury. Exercise may be a cost-effective intervention for the regulation of the affective responses of this population. However, there are no studies evaluating the effects of exercise or the optimal intensity of exercise for this clinical group. METHODS: Twelve male patients with moderate or severe TBI [mean age of 31.83 and SD of 9.53] and 12 age- and gender-matched healthy volunteers [mean age of 30.58 and SD of 9.53] participated in two sessions of exercise of high and moderate intensity. Anxiety and mood was evaluated, and subjective assessment of experience pre- and post-exercise was assessed. A mixed between and within-subjects GLM analysis was conducted to compare groups [TBI, control] over condition [baseline, session 1, session 2] allowing for group by condition interaction to be determined. Planned comparisons were also conducted to test study hypotheses.RESULTS: Although no group by condition interaction was observed, planned comparisons indicated that baseline differences between patients and controls in anxiety (Cohens’ d=1.80, tension (d=1.31, depression (d=1.18, anger (d=1.08, confusion (d=1.70, psychological distress (d=1.28 and physical symptoms (d=1.42 disappear after one session of exercise, independently of the intensity of exercise. CONCLUSIONS: A single-section of exercise, regardless of exercise intensity, had a positive effect on the affective responses of patients with TBI both by increasing positive valence feelings and decreasing negative ones. Exercise can be an easily accessible intervention that may alleviate depressive symptoms related to brain injury.

  14. Long-Term Functional and Psychosocial Outcomes After Hypoxic-Ischemic Brain Injury: A Case-Controlled Comparison to Traumatic Brain Injury.

    Science.gov (United States)

    Harbinson, Meredith; Zarshenas, Sareh; Cullen, Nora K

    2017-12-01

    Despite the increasing rate of survival from hypoxic-ischemic brain injury (HIBI), there is a paucity of evidence on the long-term functional outcomes after inpatient rehabilitation among these nontrauma patients compared to patients with traumatic brain injury (TBI). To compare functional and psychosocial outcomes of patients with HIBI to those of case-matched patients with TBI 4-11 years after brain insult. Retrospective, matched case-controlled study. Data at the time of rehabilitation admission and discharge were collected as part of a larger acquired brain injury (ABI) database at Toronto Rehabilitation Institute (TRI) between 1999 and 2009. This study consisted of 11 patients with HIBI and 11 patients with TBI that attended the neuro-rehabilitation day program at TRI during a similar time frame and were matched on age, admission Functional Independence Measure (FIM) scores, and acute care length of stay (ALOS). At 4-11 years following brain insult, patients were reassessed using the FIM, Disability Rating Scale (DRS), Personal Health Questionnaire Depression Scale (PHQ-9), and the Mayo-Portland Adaptability Inventory 4 (MPAI-4). At follow-up, patients with HIBI had significantly lower FIM motor and cognitive scores than patients with TBI (75.3 ± 20.6 versus 88.1 ± 4.78, P MPAI-4 at follow-up (P < .05). The study results suggest that patients with HIBI achieve less long-term functional improvements compared to patients with TBI. Further research is warranted to compare the components of inpatient rehabilitation while adjusting for demographics and clinical characteristics between these 2 groups of patients. III. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  15. Intracranial bleeding in patients with traumatic brain injury: A prognostic study

    Directory of Open Access Journals (Sweden)

    Mooney Jane

    2009-08-01

    Full Text Available Abstract Background Intracranial bleeding (IB is a common and serious consequence of traumatic brain injury (TBI. IB can be classified according to the location into: epidural haemorrhage (EDH subdural haemorrhage (SDH intraparenchymal haemorrhage (IPH and subarachnoid haemorrhage (SAH. Studies involving repeated CT scanning of TBI patients have found that IB can develop or expand in the 48 hours after injury. If IB enlarges after hospital admission and larger bleeds have a worse prognosis, this would provide a therapeutic rationale for treatments to prevent increase in the extent of bleeding. We analysed data from the Trauma Audit & Research Network (TARN, a large European trauma registry, to evaluate the association between the size of IB and mortality in patients with TBI. Methods We analysed 13,962 patients presenting to TARN participating hospitals between 2001 and 2008 with a Glasgow Coma Score (GCS less than 15 at presentation or any head injury with Abbreviated Injury Scale (AIS severity code 3 and above. The extent of intracranial bleeding was determined by the AIS code. Potential confounders were age, presenting Glasgow Coma Score, mechanism of injury, presence and nature of other brain injuries, and presence of extra-cranial injuries. The outcomes were in-hospital mortality and haematoma evacuation. We conducted a multivariable logistic regression analysis to evaluate the independent effect of large and small size of IB, in comparison with no bleeding, on patient outcomes. We also conducted a multivariable logistic regression analysis to assess the independent effect on mortality of large IB in comparison with small IB. Results Almost 46% of patients had at some type of IB. Subdural haemorrhages were present in 30% of the patients, with epidural and intraparenchymal present in approximately 22% each. After adjusting for potential confounders, we found that large IB, wherever located, was associated with increased mortality in

  16. The spectrum and outcome of paediatric traumatic brain injury in ...

    African Journals Online (AJOL)

    The spectrum and outcome of paediatric traumatic brain injury in ... to develop a comprehensive overview of traumatic brain injury (TBI) in children ... We reviewed the age, gender, outcomes, radiological findings and treatment of the patients.

  17. Brain SPECT in severs traumatic head injury

    International Nuclear Information System (INIS)

    Beaulieu, F.; Eder, V.; Pottier, J.M.; Baulieu, J.L.; Fournier, P.; Legros, B.; Chiaroni, P.; Dalonneau, M.

    2000-01-01

    The aim of this work was to compare the results of the early brain scintigraphy in traumatic brain injury to the long term neuropsychological behavior. Twenty four patients had an ECD-Tc99m SPECT, within one month after the trauma; scintigraphic abnormalities were evaluated according to a semi-quantitative analysis. The neuropsychological clinical investigation was interpreted by a synthetic approach to evaluate abnormalities related to residual motor deficit, frontal behavior, memory and language disorders. Fourteen patients (58%) had sequela symptoms. SPECT revealed 80 abnormalities and CT scan only 31. Statistical analysis of uptake values showed significantly lower uptake in left basal ganglia and brain stem in patients with sequela memory disorders. We conclude that the brain perfusion scintigraphy is able to detect more lesions than CT and that it could really help to predict the neuropsychological behavior after severe head injury. Traumatology could become in the future a widely accepted indication of perfusion SPECT. (authors)

  18. Risk of traumatic brain injuries in children younger than 24 months with isolated scalp hematomas.

    Science.gov (United States)

    Dayan, Peter S; Holmes, James F; Schutzman, Sara; Schunk, Jeffrey; Lichenstein, Richard; Foerster, Lillian A; Hoyle, John; Atabaki, Shireen; Miskin, Michelle; Wisner, David; Zuspan, SallyJo; Kuppermann, Nathan

    2014-08-01

    We aimed to determine the association between scalp hematoma characteristics and traumatic brain injuries in young children with blunt head trauma who have no other symptoms or signs suggestive of traumatic brain injuries (defined as "isolated scalp hematomas"). This was a secondary analysis of children younger than 24 months with minor blunt head trauma from a prospective cohort study in 25 Pediatric Emergency Care Applied Research Network emergency departments. Treating clinicians completed a structured data form. For children with isolated scalp hematomas, we determined the prevalence of and association between scalp hematoma characteristics and (1) clinically important traumatic brain injury (death, neurosurgery for traumatic brain injury, intubation >24 hours for traumatic brain injury, or positive computed tomography (CT) scan in association with hospitalization ≥2 nights for traumatic brain injury); and (2) traumatic brain injury on CT. Of 10,659 patients younger than 24 months were enrolled, 2,998 of 10,463 (28.7%) with complete data had isolated scalp hematomas. Clinically important traumatic brain injuries occurred in 12 patients (0.4%; 95% confidence interval [CI] 0.2% to 0.7%); none underwent neurosurgery (95% CI 0% to 0.1%). Of 570 patients (19.0%) for whom CTs were obtained, 50 (8.8%; 95% CI 6.6% to 11.4%) had traumatic brain injuries on CT. Younger age, non-frontal scalp hematoma location, increased scalp hematoma size, and severe injury mechanism were independently associated with traumatic brain injury on CT. In patients younger than 24 months with isolated scalp hematomas, a minority received CTs. Despite the occasional presence of traumatic brain injuries on CT, the prevalence of clinically important traumatic brain injuries was very low, with no patient requiring neurosurgery. Clinicians should use patient age, scalp hematoma location and size, and injury mechanism to help determine which otherwise asymptomatic children should undergo

  19. Surviving severe traumatic brain injury in Denmark

    DEFF Research Database (Denmark)

    Odgaard, Lene; Poulsen, Ingrid; Kammersgaard, Lars Peter

    2015-01-01

    PURPOSE: To identify all hospitalized patients surviving severe traumatic brain injury (TBI) in Denmark and to compare these patients to TBI patients admitted to highly specialized rehabilitation (HS-rehabilitation). PATIENTS AND METHODS: Patients surviving severe TBI were identified from...... severe TBI were admitted to HS-rehabilitation. Female sex, older age, and non-working status pre-injury were independent predictors of no HS-rehabilitation among patients surviving severe TBI. CONCLUSION: The incidence rate of hospitalized patients surviving severe TBI was stable in Denmark...

  20. Clinical treatment of traumatic brain injury complicated by cranial nerve injury.

    Science.gov (United States)

    Jin, Hai; Wang, Sumin; Hou, Lijun; Pan, Chengguang; Li, Bo; Wang, Hui; Yu, Mingkun; Lu, Yicheng

    2010-09-01

    To discuss the epidemiology, diagnosis and surgical treatment of cranial nerve injury following traumatic brain injury (TBI) for the sake of raising the clinical treatment of this special category of TBI. A retrospective analysis was made of 312 patients with cranial nerve injury among 3417 TBI patients, who were admitted for treatment in this hospital. A total of 312 patients (9.1%) involving either a single nerve or multiple nerves among the 12 pairs of cranial nerves were observed. The extent of nerve injury varied and involved the olfactory nerve (66 cases), optic nerve (78 cases), oculomotor nerve (56 cases), trochlear nerve (8 cases), trigeminal nerve (4 cases), abducent nerve (12 cases), facial nerve (48 cases), acoustic nerve (10 cases), glossopharyngeal nerve (8 cases), vagus nerve (6 cases), accessory nerve (10 cases) and hypoglossal nerve (6 cases). Imaging examination revealed skull fracture in 217 cases, complicated brain contusion in 232 cases, epidural haematoma in 194 cases, subarachnoid haemorrhage in 32 cases, nasal cerebrospinal fluid (CSF) leakage in 76 cases and ear CSF leakage in 8 cases. Of the 312 patients, 46 patients died; the mortality rate associated with low cranial nerve injury was as high as 73.3%. Among the 266 surviving patients, 199 patients received conservative therapy and 67 patients received surgical therapy; the curative rates among these two groups were 61.3% (122 patients) and 86.6% (58 patients), respectively. TBI-complicated cranial nerve injury is subject to a high incidence rate, a high mortality rate and a high disability rate. Our findings suggest that the chance of recovery may be increased in cases where injuries are amenable to surgical decompression. It is necessary to study all 12 pairs of cranial nerves systematically. Clinically, it is necessary to standardise surgical indications, operation timing, surgical approaches and methods for the treatment of TBI-complicated cranial nerve injury. 2010 Elsevier Ltd. All

  1. Injury of the inferior cerebellar peduncle in patients with mild traumatic brain injury: A diffusion tensor tractography study.

    Science.gov (United States)

    Jang, Sung Ho; Yi, Ji Hyun; Kwon, Hyeok Gyu

    2016-01-01

    No study on injury of the inferior cerebellar peduncle (ICP) in patients with mild traumatic brain injury (mTBI) has been reported. This study, using diffusion tensor tractography (DTT), attempted to demonstrate injury of the ICP in patients with mTBI. Three patients with mTBI resulting from a car accident and 18 normal healthy control subjects were enrolled in this study. Diffusion tensor imaging data were acquired at 2 months (patient 1) and 3 months (patients 2 and 3) after onset and the ICP was reconstructed. The Balance Error Scoring System was used for evaluation of balance at the same time diffusion tensor imaging scanning was performed. The ICPs were discontinued at the upper portion of the vertical cerebellar branch and the transverse cerebellar branch (patient 1) and the proximal portion of the transverse cerebellar branch (patients 2 and 3) compared to the normal control subjects. Regarding DTT parameters, in the three patients, the fibre number of the ICPs was decreased by more than 2 SD compared with those of subjects in the control group. Evaluation of the ICP using DTT would be useful in patients with a balance problem after mTBI.

  2. The impact of pre-injury anticoagulation therapy in the older adult patient experiencing a traumatic brain injury: A systematic review.

    Science.gov (United States)

    Smith, Karen; Weeks, Susan

    2012-01-01

    The objective of this systematic review is to synthesize the best available evidence on the impact of pre-injury anticoagulation therapy in the older adult patient who experiences a traumatic brain injury. Trauma in the elderly remains one of the most challenging problems for healthcare providers in the 21 century. The most recent United States (U.S.) census estimates that by the year 2020 more than 52 million Americans will be age 65 years or older, and one million of those will live to be over 100 years of age. In the older adult population, classified as age 65 years or greater, the two leading causes of injury were reported as motor vehicle crashes (MVC) and falls. We have become increasingly aware of the unique physiologic changes in this population that make them more susceptible to succumb to traumatic injuries than their younger counterparts. This is especially true in the anticoagulated patient with a traumatic brain injury.Traumatic brain injury (TBI) is defined as an injury occurring when an external force traumatizes the brain. It may also be known as an intracranial or head injury. TBI is classified depending on the mechanism of injury (blunt or penetrating), severity, and location of the assault. Damage to the brain, skull, and/or scalp transpires. TBI is the leading cause of death and disability in the U.S, and persons of all ages, races, ethnicities, and incomes are affected. In the past five to ten years, trauma services have recorded an increase in major trauma admissions of patients age 65 years and older. In review of the literature to date, it is recognized that outcomes following moderate to severe TBI in older adults are poor, with high rates of significant disability and mortality reported. A recent Australian study reported that 28% of older adults died in the hospital following a TBI and in Finland adults aged 75 years and older had the highest rates of TBI related hospitalizations and death. According to a systematic review of European

  3. Perinatal Hypoxic-Ischemic brain injury; MR findings

    International Nuclear Information System (INIS)

    Park, Dong Woo; Seo, Chang Hye

    1994-01-01

    To characterize the MR findings of hypoxic-ischemic brain injury and to assess the value of the MR imaging. SE T1-, T2-weighted, and IR brain MR images of 44 infants and children with the past history of perinatal hypoxic insults were reviewed. Abnormal brain MR findings of 8 patients with birth history of prematurity and 36 patients with birth history of full-term/posterm including 7 with severe anoxic insult history, were compared in regard to the location and the character of the lesions. MRI demonstrated the followings; (1)abnormal signal intensity lesions of subcortical and/or deep cerebral white matter, cortex, and deep gray matter, (2)atrophy of the cerebral white matter, cortex and corpus callosum, with/without ventriculomegaly, and (3)delay in myelination. Periventricular and deep white matter lesions were demonstrated in the prematurity, the deep white matter lesions and/ or subcortical white matter lesions in the term/post-term, and deep gray matter lesions in the 7 patients with severe anoxic insults history. MR imaging was useful in the diagnosis of the hypoxic-ischemic brain injury, and the white and gray matter lesions were correlated with the time of the injury and the severity of hypoxic insult

  4. Emotional distress and quality of life in relatives of patients with severe brain injury: the first month after injury

    DEFF Research Database (Denmark)

    Norup, Anne; Siert, Lars; Lykke Mortensen, Erik

    2010-01-01

    PRIMARY OBJECTIVE: To investigate emotional distress and quality of life in a sample of Danish relatives of patients with severe brain injury at admission to intensive rehabilitation in the sub-acute phase. RESEARCH DESIGN: Clinical convenience sample. METHODS AND PROCEDURES: Participants included...

  5. Social Cognition Impairments in Relation to General Cognitive Deficits, Injury Severity, and Prefrontal Lesions in Traumatic Brain Injury Patients

    NARCIS (Netherlands)

    Spikman, Jacoba M.; Timmerman, Marieke E.; Milders, Maarten V.; Veenstra, Wencke S.; van der Naalt, Joukje

    2012-01-01

    Impairments in social behavior are frequently found in moderate to severe traumatic brain injury (TBI) patients and are associated with an unfavorable outcome with regard to return to work and social reintegration. Neuropsychological tests measuring aspects of social cognition are thought to be

  6. Magnetic susceptibility artifacts in a diffuse brain injury and their pathological significance

    International Nuclear Information System (INIS)

    Taguchi, Yoshio; Miyakita, Yasuji; Matsuzawa, Motoshi; Sakakibara, Yohtaro; Takahara, Taro; Yamaguchi, Toshio

    1998-01-01

    In our study, FLAIR images and multishot echo planar imaging T2-weighted images (EPI T2-WI) were used in addition to conventional T1-weighted images, T2-weighted images and T2-weighted sagittal images. In this series we focused our attention on small parenchymatous lesions of a mild or moderate form of diffuse brain injury. These injuries are shown as high intensity areas on T2-weighted images (T2-high intensity lesions) but are not visualized in CT images. This series consisted of 29 patients who were diagnosed with diffuse brain injury and whose CT scans showed a Diffuse Injury I or II. Nineteen patients were studied in an acute or subacute stage. In all but 3 patients, small T2-high intensity lesions were found in the brain parenchyma. In the follow-up study brain edema was suggested because the lesions tended to be absent within 3 months in T2-weighted images and FLAIR. In 10 patients examined during a chronic stage. Small hemorrhages in patients with Diffuse Injury II were shown with variable intensities on the conventional T1- and T2-weighted images, but were visualized with low intensity in an EPI T2-WI. In diffuse brain injuries, small T2-high intensity lesions have been considered to be brain edema or ischemic insults. Our data however, suggested that microhemorrhages associated with brain edema were resent in most of the supratentorial lesions, and in more than a half of the lesions in the corpus callosum and the brain stem. These findings appear similar to contusions, which are defined as traumatic bruises of the neural parenchyma. The use of MRI has increased our understanding of in vivo pathological changes in mild or moderate forms of diffuse brain injury. (K.H.)

  7. Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications.

    Science.gov (United States)

    Hamed, Sherifa A

    2017-04-01

    Diabetes mellitus is a risk for brain injury. Brain injury is associated with acute and chronic hyperglycaemia, insulin resistance, hyperinsulinemia, diabetic ketoacidosis (DKA) and hypoglycaemic events in diabetic patients. Hyperglycemia is a cause of cognitive deterioration, low intelligent quotient, neurodegeneration, brain aging, brain atrophy and dementia. Areas covered: The current review highlights the experimental, clinical, neuroimaging and neuropathological evidence of brain injury induced by diabetes and its associated metabolic derangements. It also highlights the mechanisms of diabetes-induced brain injury. It seems that the pathogenesis of hyperglycemia-induced brain injury is complex and includes combination of vascular disease, oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis, reduction of neurotrophic factors, acetylcholinesterase (AChE) activation, neurotransmitters' changes, impairment of brain repair processes, impairment of brain glymphatic system, accumulation of amyloid β and tau phosphorylation and neurodegeneration. The potentials for prevention and treatment are also discussed. Expert commentary: We summarize the risks and the possible mechanisms of DM-induced brain injury and recommend strategies for neuroprotection and neurorestoration. Recently, a number of drugs and substances [in addition to insulin and its mimics] have shown promising potentials against diabetes-induced brain injury. These include: antioxidants, neuroinflammation inhibitors, anti-apoptotics, neurotrophic factors, AChE inhibitors, mitochondrial function modifiers and cell based therapies.

  8. Effect of brain-derived neurotrophic factor on the formation of psycho-vegetative syndrome with brain injury

    Directory of Open Access Journals (Sweden)

    Selyanina N.V.

    2016-09-01

    Full Text Available Aim: to determine the role of brain-derived neurotrophic factor in the formation and forecasting of psycho-vegetative syndrome in patients with cerebral mild to moderate injury. Material and Methods. There have been 150 patients with contusion of the brain, examined. Indicators of neurological, psycho-vegetative status, quantitative content of brain-derived neurotrophic factor (BDNF and nerve growth factor (NGF in the serum were studied. Results. At patients with brain contusion neurological, psycho-vegetative disturbances and decrease neurotrophic factors are determined. It was found to depend of the content of BDNF and psycho-vegetative indicators. Conclusion. The level of brain-derived neurotrophic factor serum (less than 300 pg/ml is a predictor of psycho-vegetative syndrome in the long term of the brain injury.

  9. Brain Injury Association of America

    Science.gov (United States)

    ... Only) 1-800-444-6443 Welcome to the Brain Injury Association of America (BIAA) Brain injury is not an event or an outcome. ... misunderstood, under-funded neurological disease. People who sustain brain injuries must have timely access to expert trauma ...

  10. Rehabilitation of awareness of deficits in patients with traumatic brain injury applying a user-friendly computerised intervention approach

    LENUS (Irish Health Repository)

    Morgan, Dr Jacinta

    2010-01-01

    Objective : Awareness of errors is an important prerequisite in rehabilitation. Few studies have investigated rehabilitation of error awareness following acquired brain injury. Pilot research has shown that receiving feedback about errors during a computerised task of sustained attention improves performance in patients who have sustained a traumatic brain injury. In this study, a computer-based intervention training programme aimed at improving error awareness was developed. \\r\

  11. Placebo-controlled trial of amantadine for severe traumatic brain injury

    DEFF Research Database (Denmark)

    Giacino, Joseph T; Whyte, John; Bagiella, Emilia

    2012-01-01

    Amantadine hydrochloride is one of the most commonly prescribed medications for patients with prolonged disorders of consciousness after traumatic brain injury. Preliminary studies have suggested that amantadine may promote functional recovery.......Amantadine hydrochloride is one of the most commonly prescribed medications for patients with prolonged disorders of consciousness after traumatic brain injury. Preliminary studies have suggested that amantadine may promote functional recovery....

  12. Aetiology and treatment outcome of severe traumatic brain injuries ...

    African Journals Online (AJOL)

    Background: Severe traumatic brain injury (TBI) is a major challenge to the patient, the relatives, the care givers, and the society in general. The primary and secondary injuries, and the high metabolism are formidable stages of the injury, each capable of taking the life of the patient. The objectives were to determine the ...

  13. Traumatic Brain Injury service (TBI) Service

    Data.gov (United States)

    Department of Veterans Affairs — This Service provides access to Tramatic Brain injury patient data consult notes. The service also provides one write service method writeNote. The Service supports...

  14. Mechanical injury induces brain endothelial-derived microvesicle release: Implications for cerebral vascular injury during traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Allison M. Andrews

    2016-02-01

    Full Text Available It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and mechanotransduction. However, our understanding of vascular remodeling following traumatic brain injury (TBI remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs, such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury. Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB, which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24 and 48 hrs. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 hrs post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing

  15. Mechanical Injury Induces Brain Endothelial-Derived Microvesicle Release: Implications for Cerebral Vascular Injury during Traumatic Brain Injury.

    Science.gov (United States)

    Andrews, Allison M; Lutton, Evan M; Merkel, Steven F; Razmpour, Roshanak; Ramirez, Servio H

    2016-01-01

    It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and strain. However, our understanding of vascular remodeling following traumatic brain injury (TBI) remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs), such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury). Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB), which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs) between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC) were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24, and 48 h. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 h post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing occludin following brain trauma

  16. Acute respiratory distress syndrome assessment after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Shahrooz Kazemi

    2016-01-01

    Full Text Available Background: Acute respiratory distress syndrome (ARDS is one of the most important complications associated with traumatic brain injury (TBI. ARDS is caused by inflammation of the lungs and hypoxic damage with lung physiology abnormalities associated with acute respiratory distress syndrome. Aim of this study is to determine the epidemiology of ARDS and the prevalence of risk factors. Methods: This prospective study performed on patients with acute traumatic head injury hospitalization in the intensive care unit of the Shohaday-e Haftom-e-Tir Hospital (September 2012 to September 2013 done. About 12 months, the data were evaluated. Information including age, sex, education, employment, drug and alcohol addiction, were collected and analyzed. The inclusion criteria were head traumatic patients and exclusion was the patients with chest trauma. Questionnaire was designed with doctors supervision of neurosurgery. Then the collected data were analysis. Results: In this study, the incidence of ARDS was 23.8% and prevalence of metabolic acidosis was 31.4%. Most injury with metabolic acidosis was Subarachnoid hemorrhage (SAH 48 (60% and Subdural hemorrhage (SDH was Next Level with 39 (48% Correlation between Glasgow Coma Scale (GCS and Respiratory Distress Syndrome (ARDS were significantly decreased (P< 0.0001. The level of consciousness in patients with skull fractures significantly lower than those without fractures (P= 0.009 [(2.3±4.6 vs (4.02±7.07]. Prevalence of metabolic acidosis during hospitalization was 80 patients (31.4%. Conclusion: Acute respiratory distress syndrome is a common complication of traumatic brain injury. Management and treatment is essential to reduce the mortality. In this study it was found the age of patients with ARDS was higher than patients without complications. ARDS risk factor for high blood pressure was higher in men. Most victims were pedestrians. The most common injury associated with ARDS was SDH. Our analysis

  17. Role of bromocriptine in multi-spectral manifestations of traumatic brain injury

    OpenAIRE

    Munakomi, Sunil; Bhattarai, Binod; Mohan Kumar, Bijoy

    2017-01-01

    Purpose: Despite the prevalence and cost of traumatic brain injury related disabilities, there is paucity in the literature on modern approaches to pharmacotherapy. Medications may promote recovery by enhancing some neurological functions without impacting others. Herein we discussed the role of bromocriptine in neurorehabilitation for patients with traumatic brain injury. Methods: A cohort comprising of 36 selective nonsurgical cases of traumatic brain injury in minimally conscious state ...

  18. Volumetric analysis of day of injury computed tomography is associated with rehabilitation outcomes after traumatic brain injury

    Science.gov (United States)

    Majercik, Sarah; Bledsoe, Joseph; Ryser, David; Hopkins, Ramona O.; Fair, Joseph E.; Frost, R. Brock; MacDonald, Joel; Barrett, Ryan; Horn, Susan; Pisani, David; Bigler, Erin D.; Gardner, Scott; Stevens, Mark; Larson, Michael J.

    2016-01-01

    Introduction Day-of-injury (DOI) brain lesion volumes in traumatic brain injury (TBI) patients are rarely used to predict long-term outcomes in the acute setting. The purpose of this study was to investigate the relationship between acute brain injury lesion volume and rehabilitation outcomes in patients with TBI at a Level One Trauma Center. Methods Patients with TBI who were admitted to our rehabilitation unit after the acute care trauma service from February 2009-July 2011 were eligible for the study. Demographic data and outcome variables including cognitive and motor FIM scores, length of stay (LOS) in the rehabilitation unit, and ability to return to home were obtained. DOI quantitative injury lesion volumes and degree of midline shift were obtained from day-of-injury (DOI) brain computed tomography (CT) scans. A multiple step-wise regression model including 13 independent variables was created. This model was used to predict post-rehabilitation outcomes, including FIM scores and ability to return to home. PInjury Severity Score 24.7±9.9, and head Abbreviated Injury Scale score 3.73±0.97. Acute hospital length of stay (LOS) was 12.3±8.9 days and rehabilitation LOS was 15.9±9.3 days. Day-of-injury TBI lesion volumes were inversely associated with cognitive FIM scores at rehabilitation admission (p=0.004) and discharge (p=0.004) and inversely associated with ability to be discharged to home after rehabilitation (p=0.006). Conclusion In a cohort of patients with moderate to severe TBI requiring a rehabilitation unit stay after the acute care hospital stay, DOI brain injury lesion volumes are associated with worse cognitive FIM scores at the time of rehabilitation admission and discharge. Smaller injury volumes were associated with eventual discharge to home. Volumetric neuroimaging in the acute injury phase may improve surgeons’ ultimate outcome predictions in TBI patients. Level of Evidence/Study Type Level V, case series, Prognostic/Epidemiological PMID

  19. Issues of cultural diversity in acquired brain injury (ABI) rehabilitation.

    Science.gov (United States)

    Lequerica, Anthony; Krch, Denise

    2014-01-01

    With the general population in the United States becoming increasingly diverse, it is important for rehabilitation professionals to develop the capacity to provide culturally sensitive treatment. This is especially relevant when working with minority populations who have a higher risk for brain injury and poorer rehabilitation outcomes. This article presents a number of clinical vignettes to illustrate how cultural factors can influence behavior in patients recovering from brain injury, as well as rehabilitation staff. The main objectives are to raise awareness among clinicians and stimulate research ideas by highlighting some real world examples of situations where a specialized, patient-centered approach needs to consider factors of cultural diversity. Because one's own world view impacts the way we see the world and interpret behavior, it is important to understand one's own ethnocentrism when dealing with a diverse population of patients with brain injury where behavioral sequelae are often expected. Being able to see behavior after brain injury with an open mind and taking into account cultural and contextual factors is an important step in developing culturally competent rehabilitation practices.

  20. The effect of music therapy on mood and anxiety-depression: an observational study in institutionalised patients with traumatic brain injury.

    Science.gov (United States)

    Guétin, S; Soua, B; Voiriot, G; Picot, M-C; Hérisson, C

    2009-02-01

    A previous study (carried out in 2003-2004) had included 34 patients with traumatic brain injury in order to study the feasibility and usefulness of music therapy in patients with this type of injury. To evaluate the effect of music therapy on mood, anxiety and depression in institutionalised patients with traumatic brain injury. A prospective, observational study. Thirteen patients with traumatic brain injury were included in the present study and took part in individual, weekly, 1-hour music therapy sessions over a period of 20 weeks. Each session was divided into two 30-minute periods - one devoted to listening to music (receptive music therapy) and the other to playing an instrument (active music therapy). The assessment criteria (measured at weeks 1, 5, 10, 15 and 20) were mood (on the face scale) and anxiety-depression (on the Hospital Anxiety and Depression [HAD] Scale). Mood was assessed immediately before and after the first music therapy session and every fifth session. Music therapy enabled a significant improvement in mood, from the first session onwards. This short-term effect was confirmed by the immediate changes in the scores after music therapy sessions (from 4.6+/-3.2 to 2.6+/-2; pMusic therapy also led to a significant reduction in anxiety-depression (pstudy (week 20). These results confirm the usefulness of music therapy in the treatment of anxiety-depression and mood in patients with traumatic brain injury. Music therapy could usefully form an integral part of the management programme for these patients.

  1. Use of yoked prisms in patients with acquired brain injury: a retrospective analysis.

    Science.gov (United States)

    Bansal, Surbhi; Han, Esther; Ciuffreda, Kenneth J

    2014-01-01

    The purpose of this retrospective study was to determine the clinical practices for prescribing yoked prisms, as well as to assess related patient responses, in a sample of visually-symptomatic patients having acquired brain injury (ABI). The clinical records of individuals with acquired brain injury (ABI) that were assessed for yoked prisms were reviewed retrospectively. This query resulted in 60 patient records for analysis between January 2011 and December 2012. The following diagnostic groups were analysed: homonymous hemianopsia (HH)/homonymous quadranopsia, abnormal egocentric localization (AEL) and visual neglect. HH/homonymous quadranopsia (58.3%) was the primary indication to prescribe yoked prisms, followed by visual neglect/unilateral spatial inattention (USI) (40.0%) and AEL (11.7%). The most common favourable patient responses were increased awareness of their blind visual field and improved gait, mobility and balance. The magnitude and direction of prisms prescribed were dependent upon the subjective responses in patients manifesting AEL. In contrast, base direction was dependent upon the direction of visual field loss in patients with HH/homonymous quadranopsia and visual neglect. Two-thirds of the present sample population responded favourably to the yoked prisms. The results of the present study should prove useful to clinicians for the successful prescription of yoked prisms as a treatment modality in patients presenting with the above three diagnoses.

  2. Persistent cognitive deficits after whiplash injury: a comparative study with mild traumatic brain injury patients and healthy volunteers.

    Science.gov (United States)

    Beeckmans, Kurt; Crunelle, Cleo; Van Ingelgom, Silke; Michiels, Karla; Dierckx, Eva; Vancoillie, Patrick; Hauman, Henri; Sabbe, Bernard

    2017-06-01

    In this study, we evaluated persistent cognitive deficits in whiplash injury (WI) patients and compared these to cognitive functioning in mild traumatic brain injury (MTBI) patients and healthy controls (HC). Sixty-one patients suffering from a WI were compared with 57 patients suffering from a MTBI and with 30 HC. They were examined with an extensive neuropsychological test battery assessing attention, memory, and visuospatial and executive functions. In both patient groups, participants showed persistent cognitive symptoms (more than 6 months post-injury). The two patient groups did not differ significantly with regard to measurements of attention, memory, and visuospatial and executive functions. The WI group, as compared to the HC group, was found to be significantly more deficient in speed of performance during sustained and divided attention, focused attention, alternating attention, the storage of new auditory-verbal unrelated information into memory, the long-term delayed recall of stored auditory-verbal related information from memory, abstract reasoning and accuracy of performance during planning and problem solving. No differences could be found between both groups concerning speed of information processing, visuospatial abilities and verbal fluency.

  3. Acute Alcohol Intoxication in Patients with Mild Traumatic Brain Injury: Characteristics, Recovery and Outcome

    NARCIS (Netherlands)

    Scheenen, Myrthe; de Koning, Myrthe; van der Horn, Harm; van der Naalt, Joukje; Spikman, Jacoba

    2015-01-01

    Objectives. To investigate the incidence of acute alcohol intoxication (AAI) at the time of sustaining mild traumatic brain injury (mTBI), describe the characteristics of this intoxicated subgroup, and evaluate recovery and outcome in comparison to sober mTBI patients. Methods. Multicenter cohort

  4. Perioperative Care for Pediatric Patients With Penetrating Brain Injury: A Review.

    Science.gov (United States)

    Mikhael, Marco; Frost, Elizabeth; Cristancho, Maria

    2017-05-19

    Traumatic brain injury (TBI) continues to be the leading cause of death and acquired disability in young children and adolescents, due to blunt or penetrating trauma, the latter being less common but more lethal. Penetrating brain injury (PBI) has not been studied extensively, mainly reported as case reports or case series, due to the assumption that both types of brain injury have common pathophysiology and consequently common management. However, recommendations and guidelines for the management of PBI differ from those of blunt TBI in regards to neuroimaging, intracranial pressure (ICP) monitoring, and surgical management including those pertaining to vascular injury. PBI was one of the exclusion criteria in the second edition of guidelines for the acute medical management of severe TBI in infants, children, and adolescents that was published in 2012 (it is referred to as "pediatric guidelines" in this review). Many reviews of TBI do not differentiate between the mechanisms of injury. We present an overview of PBI, its presenting features, epidemiology, and causes as well as an analysis of case series and the conclusions that may be drawn from those and other studies. More clinical trials specific to penetrating head injuries in children, focusing mainly on pathophysiology and management, are needed. The term PBI is specific to penetrating injury only, whereas TBI, a more inclusive term, describes mainly, but not only, blunt injury.

  5. Imaging of cerebral blood flow in patients with severe traumatic brain injury in the neurointensive care.

    Directory of Open Access Journals (Sweden)

    Elham eRostami

    2014-07-01

    Full Text Available Ischemia is a common and deleterious secondary injury following traumatic brain injury (TBI. A great challenge for the treatment of TBI patients in the neurointensive care unit (NICU is to detect early signs of ischemia in order to prevent further advancement and deterioration of the brain tissue. Today, several imaging techniques are available to monitor cerebral blood flow (CBF in the injured brain such as Positron emission tomography (PET, Single-photon emission computed tomography (SPECT, Xenon-CT, perfusion weighted magnetic resonance imaging (MRI and CT perfusion scan. An ideal imaging technique would enable continuous noninvasive measurement of blood flow and metabolism across the whole brain. Unfortunately, no current imaging method meets all these criteria. These techniques offer snapshots of the CBF. MRI may also provide some information about the metabolic state of the brain. PET provides images with high resolution and quantitative measurements of CBF and metabolism however it is a complex and costly method limited to few TBI centres. All of these methods except mobile Xenon-CT require transfer of TBI patients to the radiological department. Mobile Xenon-CT emerges as a feasible technique to monitor CBF in the NICU, with lower risk of adverse effects. Promising results have been demonstrated with Xenon-CT in predicting outcome in TBI patients. This review covers available imaging methods used to monitor CBF in patients with severe TBI.

  6. A high-definition fiber tracking report for patients with traumatic brain injury and their doctors.

    Science.gov (United States)

    Chmura, Jon; Presson, Nora; Benso, Steven; Puccio, Ava M; Fissel, Katherine; Hachey, Rebecca; Braun, Emily; Okonkwo, David O; Schneider, Walter

    2015-03-01

    We have developed a tablet-based application, the High-Definition Fiber Tracking Report App, to enable clinicians and patients in research studies to see and understand damage from Traumatic Brain Injury (TBI) by viewing 2-dimensional and 3-dimensional images of their brain, with a focus on white matter tracts with quantitative metrics. The goal is to visualize white matter fiber tract injury like bone fractures; that is, to make the "invisible wounds of TBI" understandable for patients. Using mobile computing technology (iPad), imaging data for individual patients can be downloaded remotely within hours of a magnetic resonance imaging brain scan. Clinicians and patients can view the data in the form of images of each tract, rotating animations of the tracts, 3-dimensional models, and graphics. A growing number of tracts can be examined for asymmetry, gaps in streamline coverage, reduced arborization (branching), streamline volume, and standard quantitative metrics (e.g., Fractional Anisotropy (FA)). Novice users can learn to effectively navigate and interact with the application (explain the figures and graphs representing normal and injured brain tracts) within 15 minutes of simple orientation with high accuracy (96%). The architecture supports extensive graphics, configurable reports, provides an easy-to-use, attractive interface with a smooth user experience, and allows for securely serving cases from a database. Patients and clinicians have described the application as providing dramatic benefits in understanding their TBI and improving their lives. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  7. Patients with severe acquired brain injury show increased arousal in tilt-table training

    DEFF Research Database (Denmark)

    Riberholt, Christian G; Thorlund, Jonas Bloch; Mehlsen, Jesper

    2013-01-01

    Patients with severe acquired brain injury (ABI) are often mobilised using a tilt-table. Complications such as orthostatic intolerance have been reported. The primary objective of this study was to investigate if using a tilt-table was feasible for mobilising patients with severe ABI admitted...... for sub-acute rehabilitation. We also investigated change in arousal, treatment duration before termination due to orthostatic reactions and change in muscle tone....

  8. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HuaHu; Wei-PingZhang; LeiZhang; ZhongChen; Er-QingWei

    2004-01-01

    Aquaporin-4 (AQP4) is one of the aquaporins (AQPs), a water channel family. In the brain, AQP4 is expressed in astroeyte foot processes, and plays an important role in water homeostasis and in the formation of brain edema. In our study, AQP4 expression in human brain specimens from patients with traumatic brain injury or different brain tumors was detected

  9. Effect of prophylactic hyperbaric oxygen treatment for radiation-induced brain injury after stereotactic radiosurgery of brain metastases

    International Nuclear Information System (INIS)

    Ohguri, Takayuki; Imada, Hajime; Kohshi, Kiyotaka; Kakeda, Shingo; Ohnari, Norihiro; Morioka, Tomoaki; Nakano, Keita; Konda, Nobuhide; Korogi, Yukunori

    2007-01-01

    Purpose: The purpose of the present study was to evaluate the prophylactic effect of hyperbaric oxygen (HBO) therapy for radiation-induced brain injury in patients with brain metastasis treated with stereotactic radiosurgery (SRS). Methods and Materials: The data of 78 patients presenting with 101 brain metastases treated with SRS between October 1994 and September 2003 were retrospectively analyzed. A total of 32 patients with 47 brain metastases were treated with prophylactic HBO (HBO group), which included all 21 patients who underwent subsequent or prior radiotherapy and 11 patients with common predictors of longer survival, such as inactive extracranial tumors and younger age. The other 46 patients with 54 brain metastases did not undergo HBO (non-HBO group). Radiation-induced brain injuries were divided into two categories, white matter injury (WMI) and radiation necrosis (RN), on the basis of imaging findings. Results: Radiation-induced brain injury occurred in 5 lesions (11%) in the HBO group (2 WMIs and 3 RNs) and in 11 (20%) in the non-HBO group (9 WMIs and 2 RNs). The WMI was less frequent for the HBO group than for the non-HBO group (p = 0.05), although multivariate analysis by logistic regression showed that WMI was not significantly correlated with HBO (p = 0.07). The 1-year actuarial probability of WMI was significantly better for the HBO group (2%) than for the non-HBO group (36%) (p < 0.05). Conclusions: The present study showed a potential value of prophylactic HBO for Radiation-induced WMIs, which justifies further evaluation to confirm its definite benefit

  10. Biomarkers of brain injury in the premature infant

    Directory of Open Access Journals (Sweden)

    Martha V. Douglas-Escobar

    2013-01-01

    Full Text Available The term encephalopathy of prematurity encompasses not only the acute brain injury (such as intraventricular hemorrhage but also complex disturbance on the infant’s subsequent brain development. In premature infants, the most frequent recognized source of brain injury is intraventricular hemorrhage (IVH and periventricular leukomalacia (PVL. Furthermore 20-25% infants with birth weigh less than 1,500 g will have IVH and that proportion increases to 45% if the birth weight is less than 500-750 g. In addition, nearly 60% of very low birth weight newborns will have hypoxic-ischemic injury. Therefore permanent lifetime neurodevelopmental disabilities are frequent in premature infants. Innovative approach to prevent or decrease brain injury in preterm infants requires discovery of biomarkers able to discriminate infants at risk for injury, monitor the progression of the injury and assess efficacy of neuroprotective clinical trials. In this article, we will review biomarkers studied in premature infants with IVH, Post-hemorrhagic ventricular dilation (PHVD and PVL including: S100b, Activin A, erythropoietin, chemokine CCL 18, GFAP and NFL will also be examined. Some of the most promising biomarkers for IVH are S100β and Activin. The concentrations of TGF-β1, MMP-9 and PAI-1 in cerebrospinal fluid could be used to discriminate patients that will require shunt after post-hemorrhagic ventricular dilation. Neonatal brain injury is frequent in premature infants admitted to the neonatal intensive care and we hope to contribute to the awareness and interest in clinical validation of established as well as novel neonatal brain injury biomarkers.

  11. Quality of Life Following Brain Injury: Perspectives from Brain Injury Association of America State Affiliates

    Science.gov (United States)

    Degeneffe, Charles Edmund; Tucker, Mark

    2012-01-01

    Objective: to examine the perspectives of brain injury professionals concerning family members' feelings about the quality of life experienced by individuals with brain injuries. Participants: participating in the study were 28 individuals in leadership positions with the state affiliates of the Brain Injury Association of America (BIAA). Methods:…

  12. Depression, anxiety and quality-of-life among relatives of patients with severe brain injury

    DEFF Research Database (Denmark)

    Norup, Anne; Welling, Karen-Lise; Qvist, Jesper

    2012-01-01

    Primary objective: To investigate the emotional well-being of relatives of patients with a severe brain injury in the acute setting, as well as risk factors associated with high anxiety and depression scores and impaired quality-of-life. Research design: Clinical convenience sample. Methods...

  13. Volumetric analysis of day of injury computed tomography is associated with rehabilitation outcomes after traumatic brain injury.

    Science.gov (United States)

    Majercik, Sarah; Bledsoe, Joseph; Ryser, David; Hopkins, Ramona O; Fair, Joseph E; Brock Frost, R; MacDonald, Joel; Barrett, Ryan; Horn, Susan; Pisani, David; Bigler, Erin D; Gardner, Scott; Stevens, Mark; Larson, Michael J

    2017-01-01

    Day-of-injury (DOI) brain lesion volumes in traumatic brain injury (TBI) patients are rarely used to predict long-term outcomes in the acute setting. The purpose of this study was to investigate the relationship between acute brain injury lesion volume and rehabilitation outcomes in patients with TBI at a level one trauma center. Patients with TBI who were admitted to our rehabilitation unit after the acute care trauma service from February 2009-July 2011 were eligible for the study. Demographic data and outcome variables including cognitive and motor Functional Independence Measure (FIM) scores, length of stay (LOS) in the rehabilitation unit, and ability to return to home were obtained. The DOI quantitative injury lesion volumes and degree of midline shift were obtained from DOI brain computed tomography scans. A multiple stepwise regression model including 13 independent variables was created. This model was used to predict postrehabilitation outcomes, including FIM scores and ability to return to home. A p value less than 0.05 was considered significant. Ninety-six patients were enrolled in the study. Mean age was 43 ± 21 years, admission Glasgow Coma Score was 8.4 ± 4.8, Injury Severity Score was 24.7 ± 9.9, and head Abbreviated Injury Scale score was 3.73 ± 0.97. Acute hospital LOS was 12.3 ± 8.9 days, and rehabilitation LOS was 15.9 ± 9.3 days. Day-of-injury TBI lesion volumes were inversely associated with cognitive FIM scores at rehabilitation admission (p = 0.004) and discharge (p = 0.004) and inversely associated with ability to be discharged to home after rehabilitation (p = 0.006). In a cohort of patients with moderate to severe TBI requiring a rehabilitation unit stay after the acute care hospital stay, DOI brain injury lesion volumes are associated with worse cognitive FIM scores at the time of rehabilitation admission and discharge. Smaller-injury volumes were associated with eventual discharge to home. Volumetric neuroimaging in the acute

  14. Ethnographic analysis of traumatic brain injury patients in the national Model Systems database.

    Science.gov (United States)

    Burnett, Derek M; Kolakowsky-Hayner, Stephanie A; Slater, Dan; Stringer, Anthony; Bushnik, Tamara; Zafonte, Ross; Cifu, David X

    2003-02-01

    To compare demographics, injury characteristics, therapy service and intensity, and outcome in minority versus nonminority patients with traumatic brain injury (TBI). Retrospective analysis. Twenty medical centers. Two thousand twenty patients (men, n=1,518; women, n=502; nonminority, n=1,168; minority, n=852) with TBI enrolled in the Traumatic Brain Injury Model Systems database. Not applicable. Age, gender, marital status, education, employment status, injury severity (based on Glasgow Coma Scale [GCS] admission score, length of posttraumatic amnesia, duration of unconsciousness), intensity (hours) of therapy rendered, rehabilitation length of stay (LOS), rehabilitation charges, discharge disposition, postinjury employment status, FIM instrument change scores, and FIM efficiency scores. Independent sample t tests were used to analyze continuous variables; chi-square analyses were used to evaluate categorical data. overall, minorities were found to be mostly young men who were single, unemployed, and less well educated, with a longer work week if employed when injured. motor vehicle crashes (MVCs) predominated as the cause of injury for both groups; however, minorities were more likely to sustain injury from acts of violence and auto-versus-pedestrian crashes. Minorities also had higher GCS scores on admission and shorter LOS. Rehabilitation services: significant differences were found in the types and intensity of rehabilitation services provided; these included physical therapy, occupational therapy, and speech-language pathology, but not psychology. Minority patients who sustain TBI generally tend to be young men with less social responsibility. Although MVCs predominate as the primary etiology, acts of violence and auto-versus-pedestrian incidents are more common in the minority population. Minorities tend to have higher GCS scores at admission. Also, the type and intensity of rehabilitation services provided differed significantly for the various

  15. Effect of methylphenidate on ICU and hospital length of stay in patients with severe and moderate traumatic brain injury.

    Science.gov (United States)

    Moein, Houshang; Khalili, Hossein A; Keramatian, Kamyar

    2006-09-01

    Traumatic brain injury is one of the major causes of death and disability among young people. Methylphenidate, a neural stimulant and protective drug, which has been mainly used for childhood attention deficit/hyperactivity disorder, has shown some benefits in late psychosocial problems in patients with traumatic brain injury. Its effect on arousal and consciousness has been also revealed in the sub-acute phase of traumatic brain injury. We studied its effect on the acute phase of moderate and severe traumatic brain injury (TBI) in relation to the length of ICU and hospital admission. Severely and moderately TBI patients (according to inclusion and exclusion criteria) were randomized to treatment and control groups. The treatment group received methylphenidate 0.3mg/kg per dose PO BID by the second day of admission until the time of discharge, and the control group received a placebo. Admission information and daily Glasgow Coma Scale (GCS) were recorded. Medical, surgical, and discharge plans for patients were determined by the attending physician, blinded to the study. Forty patients with severe TBI (GCS = 5-8) and 40 moderately TBI patients (GCS = 9-12) were randomly divided into treatment and control groups on the day of admission. In the severely TBI patients, both hospital and ICU length of stay, on average, were shorter in the treatment group compared with the control group. In the moderately TBI patients while ICU stay was shorter in the treatment group, there was no significant reduction of the period of hospitalization. There were no significant differences between the treatment and control groups in terms of age, sex, post resuscitation GCS, or brain CT scan findings, in either severely or moderately TBI patients. Methylphenidate was associated with reductions in ICU and hospital length of stay by 23% in severely TBI patients (P = 0.06 for ICU and P = 0.029 for hospital stay time). However, in the moderately TBI patients who received methylphenidate

  16. Functional brain imaging to investigate the higher brain dysfunction induced by diffuse brain injury

    International Nuclear Information System (INIS)

    Nariai, Tadashi; Inaji, Motoki; Ohno, Kikuo; Hiura, Mikio; Ishii, Kenji; Hosoda, Chihiro

    2011-01-01

    Higher brain dysfunction is the major problem of patients who recover from neurotrauma the prevents them from returning to their previous social life. Many such patients do not have focal brain damage detected with morphological imaging. We focused on studying the focal brain dysfunction that can be detected only with functional imaging with positron emission tomography (PET) in relation to the score of various cognition batteries. Patients who complain of higher brain dysfunction without apparent morphological cortical damage were recruited for this study. Thirteen patients with diffuse axonal injury (DAI) or cerebral concussion was included. They underwent a PET study to image glucose metabolism by 18 F-fluorodeoxyglucose (FDG), and central benodiazepine receptor (cBZD-R) (marker of neuronal body) by 11 C-flumazenil, together with cognition measurement by WAIS-R, WMS-R, and WCST etc. PET data were compared with age matched normal controls using statistical parametric mapping (SPM)2. DAI patients had a significant decrease in glucose matabolism and cBZD-R distribution in the cingulated cortex than normal controls. Patients diagnosed with concussion because of shorter consciousness disturbance also had abnormal FDG uptake and cBZD-R distribution. Cognition test scores were variable among patients. Degree of decreased glucose metabolism and cBZD-R distribution in the dominant hemishphere corresponded well to the severity of cognitive disturbance. PET molecular imaging was useful to depict focal cortical dysfunction of neurotrauma patients even when morphological change was not apparent. This method may be promising to clarify the pathophysiology of higher brain dysfunction of patients with diffuse axonal injury or chronic traumatic encephalopathy. (author)

  17. Missense Mutation of Brain Derived Neurotrophic Factor (BDNF Alters Neurocognitive Performance in Patients with Mild Traumatic Brain Injury: A Longitudinal Study.

    Directory of Open Access Journals (Sweden)

    Vairavan Narayanan

    Full Text Available The predictability of neurocognitive outcomes in patients with traumatic brain injury is not straightforward. The extent and nature of recovery in patients with mild traumatic brain injury (mTBI are usually heterogeneous and not substantially explained by the commonly known demographic and injury-related prognostic factors despite having sustained similar injuries or injury severity. Hence, this study evaluated the effects and association of the Brain Derived Neurotrophic Factor (BDNF missense mutations in relation to neurocognitive performance among patients with mTBI. 48 patients with mTBI were prospectively recruited and MRI scans of the brain were performed within an average 10.1 (SD 4.2 hours post trauma with assessment of their neuropsychological performance post full Glasgow Coma Scale (GCS recovery. Neurocognitive assessments were repeated again at 6 months follow-up. The paired t-test, Cohen's d effect size and repeated measure ANOVA were performed to delineate statistically significant differences between the groups [wildtype G allele (Val homozygotes vs. minor A allele (Met carriers] and their neuropsychological performance across the time point (T1 = baseline/ admission vs. T2 = 6th month follow-up. Minor A allele carriers in this study generally performed more poorly on neuropsychological testing in comparison wildtype G allele group at both time points. Significant mean differences were observed among the wildtype group in the domains of memory (M = -11.44, SD = 10.0, p = .01, d = 1.22, executive function (M = -11.56, SD = 11.7, p = .02, d = 1.05 and overall performance (M = -6.89 SD = 5.3, p = .00, d = 1.39, while the minor A allele carriers showed significant mean differences in the domains of attention (M = -11.0, SD = 13.1, p = .00, d = .86 and overall cognitive performance (M = -5.25, SD = 8.1, p = .01, d = .66.The minor A allele carriers in comparison to the wildtype G allele group, showed considerably lower scores at

  18. Evaluating the prognosis and degree of brain injury by combined S-100 protein and neuron specific enolase determination

    Institute of Scientific and Technical Information of China (English)

    Xihua Wang; Xinding Zhang

    2006-01-01

    Background:S-100 and neuron specific enolase(NSE)possess the characteristics of specific distribution in brain and relative stable content.Some studies suggest that combined detection of the both is of very importance for evaluating the degree of brain injury.OBJECTIVE: To observe the changes of S-100 protein and NSE levels at different time points after acute brain injury,and evaluate the values of combined detection detection of the both for different injury degrees,pathological changes and prognosis.DESIGN: Case-control observation SETTING: Department of Neurosurgery,Second Affiliated Hospital,Lanzhou University.PARTICIPANTS:Thirty-four inpatients with brain injury,19 males and 15 females,aged 15 to 73 years.who received treatment between September 2005 and May 2006 in the Department of Neurosurgery. Second Affiliated Hospital,Lanzhou University,were recruited.The patients were admitted to hospital at 24 hours after brain injury.After admission,skull CT confirmed that they suffered from brain injury.Following Glasgow coma score(GCS)on admission,the patients were assigned into 3 groups:severe group(GCS 3 to 8 points,n=15).moderate group(GCS 9 to 12 points,n=8)and mild group(GCS 13 to 15 points,n=11).Following Glasgow outcome scale(GOS)at 3 months after brain injury,the patients were assigned into good outcome group (GOS 4 to 5 points,good recovery and moderate disability included,n=19)and poor outcome group(GOS 1 to 3 points,severe disability,vegetative state and death,n=15).Ten subjects who received health examination concurrently were chosen as normal control group,including 6 males and 4 females,aged(45.4±14.3)years.In our laboratory,the normal level of NSE was≤15.2 ng/L,and that of S100 was≤0.105 μg/L.METHODS:①Blood samples of control group were collected when the subjects received health examination Blood samples of patients with brain injury were collected at 24 hours,3,7 and 14 days after injury.According to the instructions of NSE and S-100 kits

  19. Altered spontaneous brain activity in patients with acute spinal cord injury revealed by resting-state functional MRI.

    Directory of Open Access Journals (Sweden)

    Ling Zhu

    Full Text Available Previous neuroimaging studies have provided evidence of structural and functional reorganization of brain in patients with chronic spinal cord injury (SCI. However, it remains unknown whether the spontaneous brain activity changes in acute SCI. In this study, we investigated intrinsic brain activity in acute SCI patients using a regional homogeneity (ReHo analysis based on resting-state functional magnetic resonance imaging.A total of 15 patients with acute SCI and 16 healthy controls participated in the study. The ReHo value was used to evaluate spontaneous brain activity, and voxel-wise comparisons of ReHo were performed to identify brain regions with altered spontaneous brain activity between groups. We also assessed the associations between ReHo and the clinical scores in brain regions showing changed spontaneous brain activity.Compared with the controls, the acute SCI patients showed decreased ReHo in the bilateral primary motor cortex/primary somatosensory cortex, bilateral supplementary motor area/dorsal lateral prefrontal cortex, right inferior frontal gyrus, bilateral dorsal anterior cingulate cortex and bilateral caudate; and increased ReHo in bilateral precuneus, the left inferior parietal lobe, the left brainstem/hippocampus, the left cingulate motor area, bilateral insula, bilateral thalamus and bilateral cerebellum. The average ReHo values of the left thalamus and right insula were negatively correlated with the international standards for the neurological classification of spinal cord injury motor scores.Our findings indicate that acute distant neuronal damage has an immediate impact on spontaneous brain activity. In acute SCI patients, the ReHo was prominently altered in brain regions involved in motor execution and cognitive control, default mode network, and which are associated with sensorimotor compensatory reorganization. Abnormal ReHo values in the left thalamus and right insula could serve as potential biomarkers for

  20. Evaluation of the patient generated index as a measure of quality-of-life in people with severe traumatic brain injury.

    LENUS (Irish Health Repository)

    Hogan, Mark

    2013-01-01

    Quality-of-life (QoL) measures may be useful in quantifying the personal impact of an acquired brain injury and as an indicator of the effectiveness of service provision. This study investigated the validity of the patient generated index (PGI) as a measure of QoL with a sample of adults who had sustained a severe traumatic brain injury.

  1. Suboptimal compliance with evidence-based guidelines in patients with traumatic brain injuries.

    Science.gov (United States)

    Shafi, Shahid; Barnes, Sunni A; Millar, D; Sobrino, Justin; Kudyakov, Rustam; Berryman, Candice; Rayan, Nadine; Dubiel, Rosemary; Coimbra, Raul; Magnotti, Louis J; Vercruysse, Gary; Scherer, Lynette A; Jurkovich, Gregory J; Nirula, Raminder

    2014-03-01

    Evidence-based management (EBM) guidelines for severe traumatic brain injuries (TBIs) were promulgated decades ago. However, the extent of their adoption into bedside clinical practices is not known. The purpose of this study was to measure compliance with EBM guidelines for management of severe TBI and its impact on patient outcome. This was a retrospective study of blunt TBI (11 Level I trauma centers, study period 2008-2009, n = 2056 patients). Inclusion criteria were an admission Glasgow Coma Scale score ≤ 8 and a CT scan showing TBI, excluding patients with nonsurvivable injuries-that is, head Abbreviated Injury Scale score of 6. The authors measured compliance with 6 nonoperative EBM processes (endotracheal intubation, resuscitation, correction of coagulopathy, intracranial pressure monitoring, maintaining cerebral perfusion pressure ≥ 50 cm H2O, and discharge to rehabilitation). Compliance rates were calculated for each center using multivariate regression to adjust for patient demographics, physiology, injury severity, and TBI severity. The overall compliance rate was 73%, and there was wide variation among centers. Only 3 centers achieved a compliance rate exceeding 80%. Risk-adjusted compliance was worse than average at 2 centers, better than average at 1, and the remainder were average. Multivariate analysis showed that increased adoption of EBM was associated with a reduced mortality rate (OR 0.88; 95% CI 0.81-0.96, p < 0.005). Despite widespread dissemination of EBM guidelines, patients with severe TBI continue to receive inconsistent care. Barriers to adoption of EBM need to be identified and mitigated to improve patient outcomes.

  2. SPET brain perfusion imaging in mild traumatic brain injury without loss of consciousness and normal computed tomography.

    Science.gov (United States)

    Abu-Judeh, H H; Parker, R; Singh, M; el-Zeftawy, H; Atay, S; Kumar, M; Naddaf, S; Aleksic, S; Abdel-Dayem, H M

    1999-06-01

    We present SPET brain perfusion findings in 32 patients who suffered mild traumatic brain injury without loss of consciousness and normal computed tomography. None of the patients had previous traumatic brain injury, CVA, HIV, psychiatric disorders or a history of alcohol or drug abuse. Their ages ranged from 11 to 61 years (mean = 42). The study was performed in 20 patients (62%) within 3 months of the date of injury and in 12 (38%) patients more than 3 months post-injury. Nineteen patients (60%) were involved in a motor vehicle accident, 10 patients (31%) sustained a fall and three patients (9%) received a blow to the head. The most common complaints were headaches in 26 patients (81%), memory deficits in 15 (47%), dizziness in 13 (41%) and sleep disorders in eight (25%). The studies were acquired approximately 2 h after an intravenous injection of 740 MBq (20.0 mCi) of 99Tcm-HMPAO. All images were acquired on a triple-headed gamma camera. The data were displayed on a 10-grade colour scale, with 2-pixel thickness (7.4 mm), and were reviewed blind to the patient's history of symptoms. The cerebellum was used as the reference site (100% maximum value). Any decrease in cerebral perfusion in the cortex or basal ganglia less than 70%, or less than 50% in the medial temporal lobe, compared to the cerebellar reference was considered abnormal. The results show that 13 (41%) had normal studies and 19 (59%) were abnormal (13 studies performed within 3 months of the date of injury and six studies performed more than 3 months post-injury). Analysis of the abnormal studies revealed that 17 showed 48 focal lesions and two showed diffuse supratentorial hypoperfusion (one from each of the early and delayed imaging groups). The 12 abnormal studies performed early had 37 focal lesions and averaged 3.1 lesions per patient, whereas there was a reduction to--an average of 2.2 lesions per patient in the five studies (total 11 lesions) performed more than 3 months post-injury. In the

  3. Clinical evaluation of dose-volume-effect relationship in radiation injury of the brain

    International Nuclear Information System (INIS)

    Saito, Mari

    1990-01-01

    Radiation brain injury, including functional disturbances or morphological changes (brain atrophy, periventricular lucencies or ventricular dilatation), were studied by CT in patients with primary intracranial neoplasms who were followed-up for at least 5 months after receiving radiotherapy. Each of 33 patients with medulloblastoma, pinealregion tumor or malignant lymphoma received a total dose of 40-61 Gy by conventional fractionation using a whole brain irradiation field boosted by a localized field. Of these patients, 19 (58%) developed radiation brain injury. It was concluded that the volume-dose was one of the most important factors influencing the development of radiation brain injury. Age at the time of radiotherapy and time of follow-up after the treatment were also considered to be important factors. (author)

  4. Serial Mini-Mental Status Examination to Evaluate Cognitive Outcome in Patients with Traumatic Brain Injury.

    Science.gov (United States)

    Lee, Chung Nam; Koh, Young-Cho; Moon, Chang Taek; Park, Dong Sun; Song, Sang Woo

    2015-04-01

    This study was aimed at finding out the changes in cognitive dysfunction in patients with traumatic brain injury (TBI) and investigating the factors limiting their cognitive improvement. Between January 2010 and March 2014, 33 patients with TBI participated in serial mini-mental status examination (MMSE). Their cognitive functions were statistically analyzed to clarify their relationship with different TBI status. Patients who developed hydrocephalus were separately analyzed in regards to their cognitive function depending on the placement of ventriculoperitoneal shunt (VPS). Bi-frontal lobe injury (β=-10.441, p<0.001), contre-coup injury (β=-6.592, p=0.007), severe parenchymal injury (β=-7.210, p=0.012), temporal lobe injury (β=-5.524, p=0.027), and dominant hemisphere injury (β=-5.388, p=0.037) significantly lowered the final MMSE scores. The risk of down-grade in the prognosis was higher in severe parenchymal injury [odds ratio (OR)=13.41, 95% confidence interval (CI)=1.31-136.78], temporal lobe injury (OR=12.3, 95% CI=2.07-73.08), dominant hemisphere injury (OR=8.19, 95% CI=1.43-46.78), and bi-frontal lobe injury (OR=7.52, 95% CI=1.31-43.11). In the 11 post-traumatic hydrocephalus patients who underwent VPS, the final MMSE scores (17.7±6.8) substantially increased from the initial MMSE scores (11.2±8.6). Presence of bi-frontal lobe injury, temporal lobe injury, dominant hemisphere injury, and contre-coup injury and severe parenchymal injury adversely influenced the final MMSE scores. They can be concluded to be poor prognostic factors in terms of cognitive function in TBI patients. Development of hydrocephalus aggravates cognitive impairment with unpredictable time of onset. Thus, close observation and routine image follow-up are mandatory for early detection and surgical intervention for hydrocephalus.

  5. Clinical Utility of '99mTc-HMPAO Brain SPECT Findings in Chronic Head Injury

    International Nuclear Information System (INIS)

    Chung, Jin ll; Chung, Tae Sub; Suh, Jung Ho; Kim, Dong Ik; Lee, Jong Doo; Park, Chang Yoon; Kim, Young Soo

    1992-01-01

    Minima deterioration of cerebral perfusion or microanatomical changes were undetectable on conventional Brain CT or MRI. So evaluation of focal functional changes of the brain parenchyme is essential in chronic head injury patients, who did not show focal anatomical changes on these radiological studies. However, the patients who had longstanding neurologic sequelae following head injury, there had been no available imaging modalities for evaluating these patients precisely. Therefore we tried to detect the focal functional changes on the brain parenchyme using 99m Tc-HMPAO Brain SPECT on the patients of chronic head injuries. Twenty three patients who had suffered from headache, memory dysfunction, personality change and insomnia lasting more than six months following head injury were included in our cases, which showed no anatomical abnormalities on Brain CT or MRI. At first they underwent psychological test whether the symptoms were organic or not. Also we were able to evaluate the cerebral perfusion changes with 99m Tc-HMPAO Brain SPECT in 22 patients among the 23, which five patients were focal and 17 patients were nonfocally diffuse perfusion changes. Thus we can predict the perfusion changes such as local vascular deterioration or functional defects using 99m Tc-HMPAO Brain SPECT in the patients who had suffered from post-traumatic sequelae, which changes were undetectable on Brain CT or MRI.

  6. Randomized trial of two swallowing assessment approaches in patients with acquired brain injury

    DEFF Research Database (Denmark)

    Kjaersgaard, Annette; Nielsen, Lars Hedemann; Sjölund, Bengt H.

    2014-01-01

    trial. SETTING: Specialized, national neurorehabilitation centre. SUBJECTS: Adult patients with acquired brain injury. Six hundred and seventy-nine patients were assessed for eligibility and 138 were randomly allocated between June 2009 and April 2011. INTERVENTIONS: Assessment by Facial-Oral Tract....... Seven patients were left for analysis, 4 of whom developed aspiration pneumonia within 10 days after initiating oral intake (1 control/3 interventions). CONCLUSION: In the presence of a structured clinical assessment with the Facial-Oral Tract Therapy approach, it is unnecessary to undertake...

  7. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury.

    Science.gov (United States)

    Yang, Lianhong; Yang, Jianhua; Li, Guoqian; Li, Yi; Wu, Rong; Cheng, Jinping; Tang, Yamei

    2017-03-01

    The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.

  8. Prevention of pressure ulcers in patients undergoing subacute rehabilitation after severe brain injury: An observational study.

    Science.gov (United States)

    Sachs, Marianne Brostrup; Wolffbrandt, Mia Moth; Poulsen, Ingrid

    2018-01-09

    To uncover efforts made by healthcare professionals to prevent pressure ulcers in patients with severe brain injury undergoing treatment at a subacute rehabilitation department. Pressure ulcers are a major burden for patients and also generate considerable healthcare costs. Pressure ulcers are, nevertheless, prevalent in both secondary care and primary care. In this qualitative study, we performed 24-hour observation on four patients undergoing rehabilitation for severe brain injury. An observation guide was developed inspired by the Braden Scale and Spradley's theory and methods. Observations were analysed using content analysis. Patricia Benner's aspects of clinical grasp were employed in the interpretation of the observations. One overarching theme was identified: "Professionalism expressed by preventing intervention, involving the patient, employing clinical grasp and professional pride." Seven subcategories were summed up into the following three categories: organisation of clinical practice, professional assessment and interactions with the patient. The healthcare professionals' actions to prevent pressure ulcers consisted of attaining the necessary knowledge about pressure ulcer care and performing the activities. However, our observations revealed one important additional aspect: a very distinct impression that the healthcare professionals were committed to learning about the patients' former life and actively used this knowledge in their planning and provision of daily patient care. We believe this commitment has a very positive effect on prevention of pressure ulcers. Professional knowledge about prevention of pressure ulcer is a necessary requisite, but is not sufficient to ensure effective treatment. To transfer knowledge into practice, we recommend that patients' rehabilitation days be planned in such a manner that activities, mobilisation and training are conducted throughout the day and evening. We also recommend that professional staff are

  9. Brain activity patterns uniquely supporting visual feature integration after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anjali eRaja Beharelle

    2011-12-01

    Full Text Available Traumatic brain injury (TBI patients typically respond more slowly and with more variability than controls during tasks of attention requiring speeded reaction time. These behavioral changes are attributable, at least in part, to diffuse axonal injury (DAI, which affects integrated processing in distributed systems. Here we use a multivariate method sensitive to distributed neural activity to compare brain activity patterns of patients with chronic phase moderate-to-severe TBI to those of controls during performance on a visual feature-integration task assessing complex attentional processes that has previously shown sensitivity to TBI. The TBI patients were carefully screened to be free of large focal lesions that can affect performance and brain activation independently of DAI. The task required subjects to hold either one or three features of a target in mind while suppressing responses to distracting information. In controls, the multi-feature condition activated a distributed network including limbic, prefrontal, and medial temporal structures. TBI patients engaged this same network in the single-feature and baseline conditions. In multi-feature presentations, TBI patients alone activated additional frontal, parietal, and occipital regions. These results are consistent with neuroimaging studies using tasks assessing different cognitive domains, where increased spread of brain activity changes was associated with TBI. Our results also extend previous findings that brain activity for relatively moderate task demands in TBI patients is similar to that associated with of high task demands in controls.

  10. Brain protection by methylprednisolone in rats with spinal cord injury.

    Science.gov (United States)

    Chang, Chia-Mao; Lee, Ming-Hsueh; Wang, Ting-Chung; Weng, Hsu-Huei; Chung, Chiu-Yen; Yang, Jen-Tsung

    2009-07-01

    Traumatic spinal cord injury is clinically treated by high doses of methylprednisolone. However, the effect of methylprednisolone on the brain in spinal cord injury patients has been little investigated. This experimental study examined Bcl-2 and Bax protein expression and Nissl staining to evaluate an apoptosis-related intracellular signaling event and final neuron death, respectively. Spinal cord injury produced a significant apoptotic change and cell death not only in the spinal cord but also in the supraventricular cortex and hippocampal cornu ammonis 1 region in the rat brains. The treatment of methylprednisolone increased the Bcl-2/Bax ratio and prevented neuron death for 1-7 days after spinal cord injury. These findings suggest that rats with spinal cord injury show ascending brain injury that could be restricted through methylprednisolone management.

  11. Twitter and traumatic brain injury: A content and sentiment analysis of tweets pertaining to sport-related brain injury.

    Science.gov (United States)

    Workewych, Adriana M; Ciuffetelli Muzzi, Madeline; Jing, Rowan; Zhang, Stanley; Topolovec-Vranic, Jane; Cusimano, Michael D

    2017-01-01

    Sport-related traumatic brain injuries are a significant public health burden, with hundreds of thousands sustained annually in North America. While sports offer numerous physical and social health benefits, traumatic brain injuries such as concussion can seriously impact a player's life, athletic career, and sport enjoyment. The culture in many sports encourages winning at all costs, placing athletes at risk for traumatic brain injuries. As social media has become a central part of everyday life, the content of users' messages often reflects the prevailing culture related to a particular event or health issue. We hypothesized that Twitter data might be useful for understanding public perceptions and misperceptions of sport-related traumatic brain injuries. We performed a content and sentiment analysis of 7483 Twitter ® tweets related to traumatic brain injuries in sports collected during June and July 2013. We identified five major themes. Users tweeted about personal traumatic brain injuries experiences, reported traumatic brain injuries in professional athletes, shared research about sport-related concussions, and discussed policy and safety in injury prevention, such as helmet use. We identified mixed perceptions of and sentiment toward traumatic brain injuries in sports: both an understanding that brain injuries are serious and disregard for activities that might reduce the public burden of traumatic brain injuries were prevalent in our Twitter analysis. While the scientific and medical community considers a concussion a form of traumatic brain injuries, our study demonstrates a misunderstanding of this fact among the public. In our current digital age, social media can provide useful insight into the culture around a health issue, facilitating implementation of prevention and treatment strategies.

  12. Impaired cognitive functions in mild traumatic brain injury patients with normal and pathologic magnetic resonance imaging

    International Nuclear Information System (INIS)

    Kurca, E.; Sivak, S.; Kucera, P.

    2006-01-01

    Mild traumatic brain injury (MTBI) is a common neurological (neurotraumatological) diagnosis. As well as different subjective symptoms, many patients develop neuropsychological dysfunction with objective impairment of attention, memory and certain executive functions. Magnetic resonance imaging (MRI) is not routinely used in MTBI patients despite its proven greater sensitivity and specificity in comparison with computed tomography (CT). The patient group consisted of 30 persons with MTBI and the control group consisted of 30 sex- and age-matched healthy volunteers. Both groups underwent neurological examination, neuropsychological testing (including the Postconcussion Symptoms Scale questionnaire, PCSS) and brain MRI (the patient group within 96 h after injury). The analyzed groups did not differ significantly in terms of sex, age, or level or duration of education. MRI pathological findings (traumatic and nonspecific) were present in nine patients. Traumatic lesions were found in seven patients. Nonspecific white matter lesions were found in five healthy controls. There were significant differences between MTBI patients and controls in terms of subjective symptoms (PCSS) and selected neuropsychological tests. Statistically significant neuropsychological differences were found between MTBI patients with true traumatic lesions and MTBI patients with nonspecific lesions. There is evidence that MTBI patients with true traumatic MRI lesions are neuropsychologically different from MTBI patients with nonspecific MRI lesions or normal brain MRI. These results support the hypothesis that some acute MTBI signs and symptoms have a real organic basis which can be detected by selected new MRI modalities. (orig.)

  13. Impaired cognitive functions in mild traumatic brain injury patients with normal and pathologic magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kurca, E.; Sivak, S. [Comenius University, Clinic of Neurology, Jessenius Faculty of Medicine, Martin (Slovakia); Kucera, P. [Comenius University, 1st Clinic of Neurology, Faculty of Medicine, Bratislava (Slovakia)

    2006-09-15

    Mild traumatic brain injury (MTBI) is a common neurological (neurotraumatological) diagnosis. As well as different subjective symptoms, many patients develop neuropsychological dysfunction with objective impairment of attention, memory and certain executive functions. Magnetic resonance imaging (MRI) is not routinely used in MTBI patients despite its proven greater sensitivity and specificity in comparison with computed tomography (CT). The patient group consisted of 30 persons with MTBI and the control group consisted of 30 sex- and age-matched healthy volunteers. Both groups underwent neurological examination, neuropsychological testing (including the Postconcussion Symptoms Scale questionnaire, PCSS) and brain MRI (the patient group within 96 h after injury). The analyzed groups did not differ significantly in terms of sex, age, or level or duration of education. MRI pathological findings (traumatic and nonspecific) were present in nine patients. Traumatic lesions were found in seven patients. Nonspecific white matter lesions were found in five healthy controls. There were significant differences between MTBI patients and controls in terms of subjective symptoms (PCSS) and selected neuropsychological tests. Statistically significant neuropsychological differences were found between MTBI patients with true traumatic lesions and MTBI patients with nonspecific lesions. There is evidence that MTBI patients with true traumatic MRI lesions are neuropsychologically different from MTBI patients with nonspecific MRI lesions or normal brain MRI. These results support the hypothesis that some acute MTBI signs and symptoms have a real organic basis which can be detected by selected new MRI modalities. (orig.)

  14. Cerebral perfusion changes in traumatic diffuse brain injury. IMP SPECT studies

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Kawashima, Ryuta; Fukuda, Hiroshi; Ishii, Kiyoshi; Onuma, Takehide.

    1997-01-01

    Diffuse brain injury (DBI) is characterized by axonal degeneration and neuronal damage which cause diffuse brain atrophy. We have investigated the time course of abnormalities in cerebral perfusion distribution in cases of DBI by using Iodine-123-IMP SPECT, and the relationship to the appearance of diffuse brain atrophy. SPECT scans were performed on eight patients with diffuse brain injury due to closed cranial trauma in acute and chronic stages. All patients showed abnormalities in cerebral perfusion with decreases in perfusion, even in non-depicted regions on MRI, and the affected areas varied throughout the period of observation. Diffuse brain atrophy appeared in all patients. In some patients, diffuse brain atrophy was observed at or just after the time when the maximum number of lesions on SPECT were seen. The abnormalities in cerebral perfusion in cases of DBI might therefore be related to axonal degeneration and neuronal damage which causes diffuse brain atrophy. (author)

  15. Longitudinal volumetric changes following traumatic brain injury: a tensor-based morphometry study.

    Science.gov (United States)

    Farbota, Kimberly D M; Sodhi, Aparna; Bendlin, Barbara B; McLaren, Donald G; Xu, Guofan; Rowley, Howard A; Johnson, Sterling C

    2012-11-01

    After traumatic injury, the brain undergoes a prolonged period of degenerative change that is paradoxically accompanied by cognitive recovery. The spatiotemporal pattern of atrophy and the specific relationships of atrophy to cognitive changes are ill understood. The present study used tensor-based morphometry and neuropsychological testing to examine brain volume loss in 17 traumatic brain injury (TBI) patients and 13 controls over a 4-year period. Patients were scanned at 2 months, 1 year, and 4 years post-injury. High-dimensional warping procedures were used to create change maps of each subject's brain for each of the two intervals. TBI patients experienced volume loss in both cortical areas and white matter regions during the first interval. We also observed continuing volume loss in extensive regions of white matter during the second interval. Neuropsychological correlations indicated that cognitive tasks were associated with subsequent volume loss in task-relevant regions. The extensive volume loss in brain white matter observed well beyond the first year post-injury suggests that the injured brain remains malleable for an extended period, and the neuropsychological relationships suggest that this volume loss may be associated with subtle cognitive improvements.

  16. The BRAIN TRIAL: a randomised, placebo controlled trial of a Bradykinin B2 receptor antagonist (Anatibant in patients with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Rätsep Indrek

    2009-12-01

    Full Text Available Abstract Background Cerebral oedema is associated with significant neurological damage in patients with traumatic brain injury. Bradykinin is an inflammatory mediator that may contribute to cerebral oedema by increasing the permeability of the blood-brain barrier. We evaluated the safety and effectiveness of the non-peptide bradykinin B2 receptor antagonist Anatibant in the treatment of patients with traumatic brain injury. During the course of the trial, funding was withdrawn by the sponsor. Methods Adults with traumatic brain injury and a Glasgow Coma Scale score of 12 or less, who had a CT scan showing an intracranial abnormality consistent with trauma, and were within eight hours of their injury were randomly allocated to low, medium or high dose Anatibant or to placebo. Outcomes were Serious Adverse Events (SAE, mortality 15 days following injury and in-hospital morbidity assessed by the Glasgow Coma Scale (GCS, the Disability Rating Scale (DRS and a modified version of the Oxford Handicap Scale (HIREOS. Results 228 patients out of a planned sample size of 400 patients were randomised. The risk of experiencing one or more SAEs was 26.4% (43/163 in the combined Anatibant treated group, compared to 19.3% (11/57 in the placebo group (relative risk = 1.37; 95% CI 0·76 to 2·46. All cause mortality in the Anatibant treated group was 19% and in the placebo group 15.8% (relative risk 1.20, 95% CI 0.61 to 2.36. The mean GCS at discharge was 12.48 in the Anatibant treated group and 13.0 in the placebo group. Mean DRS was 11.18 Anatibant versus 9.73 placebo, and mean HIREOS was 3.94 Anatibant versus 3.54 placebo. The differences between the mean levels for GCS, DRS and HIREOS in the Anatibant and placebo groups, when adjusted for baseline GCS, showed a non-significant trend for worse outcomes in all three measures. Conclusion This trial did not reach the planned sample size of 400 patients and consequently, the study power to detect an increase in

  17. The BRAIN TRIAL: a randomised, placebo controlled trial of a Bradykinin B2 receptor antagonist (Anatibant) in patients with traumatic brain injury.

    Science.gov (United States)

    Shakur, Haleema; Andrews, Peter; Asser, Toomas; Balica, Laura; Boeriu, Cristian; Quintero, Juan Diego Ciro; Dewan, Yashbir; Druwé, Patrick; Fletcher, Olivia; Frost, Chris; Hartzenberg, Bennie; Mantilla, Jorge Mejia; Murillo-Cabezas, Francisco; Pachl, Jan; Ravi, Ramalingam R; Rätsep, Indrek; Sampaio, Cristina; Singh, Manmohan; Svoboda, Petr; Roberts, Ian

    2009-12-03

    Cerebral oedema is associated with significant neurological damage in patients with traumatic brain injury. Bradykinin is an inflammatory mediator that may contribute to cerebral oedema by increasing the permeability of the blood-brain barrier. We evaluated the safety and effectiveness of the non-peptide bradykinin B2 receptor antagonist Anatibant in the treatment of patients with traumatic brain injury. During the course of the trial, funding was withdrawn by the sponsor. Adults with traumatic brain injury and a Glasgow Coma Scale score of 12 or less, who had a CT scan showing an intracranial abnormality consistent with trauma, and were within eight hours of their injury were randomly allocated to low, medium or high dose Anatibant or to placebo. Outcomes were Serious Adverse Events (SAE), mortality 15 days following injury and in-hospital morbidity assessed by the Glasgow Coma Scale (GCS), the Disability Rating Scale (DRS) and a modified version of the Oxford Handicap Scale (HIREOS). 228 patients out of a planned sample size of 400 patients were randomised. The risk of experiencing one or more SAEs was 26.4% (43/163) in the combined Anatibant treated group, compared to 19.3% (11/57) in the placebo group (relative risk = 1.37; 95% CI 0.76 to 2.46). All cause mortality in the Anatibant treated group was 19% and in the placebo group 15.8% (relative risk 1.20, 95% CI 0.61 to 2.36). The mean GCS at discharge was 12.48 in the Anatibant treated group and 13.0 in the placebo group. Mean DRS was 11.18 Anatibant versus 9.73 placebo, and mean HIREOS was 3.94 Anatibant versus 3.54 placebo. The differences between the mean levels for GCS, DRS and HIREOS in the Anatibant and placebo groups, when adjusted for baseline GCS, showed a non-significant trend for worse outcomes in all three measures. This trial did not reach the planned sample size of 400 patients and consequently, the study power to detect an increase in the risk of serious adverse events was reduced. This trial

  18. Extracorporeal Membrane Oxygenation for the Support of a Potential Organ Donor with a Fatal Brain Injury before Brain Death Determination

    Directory of Open Access Journals (Sweden)

    Sung Wook Chang

    2016-05-01

    Full Text Available The shortage of available organ donors is a significant problem and various efforts have been made to avoid the loss of organ donors. Among these, extracorporeal membrane oxygenation (ECMO has been introduced to help support and manage potential donors. Many traumatic brain injury patients have healthy organs that might be eligible for donation for transplantation. However, the condition of a donor with a fatal brain injury may rapidly deteriorate prior to brain death determination; this frequently results in the loss of eligible donors. Here, we report the use of venoarterial ECMO to support a potential donor with a fatal brain injury before brain death determination, and thereby preserve donor organs. The patient successfully donated his liver and kidneys after brain death determination.

  19. Talking to Your Patients: A Clinician’s Guide to Treating Mild Traumatic Brain Injury

    Centers for Disease Control (CDC) Podcasts

    2010-10-05

    This podcast describes how to talk to your patients and provide health information about mild traumatic brain injury (mild TBI) that may help ease their concerns and can give them tools to help speed their recovery.  Created: 10/5/2010 by National Center for Injury Prevention and Control (NCIPC).   Date Released: 10/5/2010.

  20. Isolated traumatic brain injury and venous thromboembolism.

    Science.gov (United States)

    Van Gent, Jan-Michael; Bandle, Jesse; Calvo, Richard Y; Zander, Ashley L; Olson, Erik J; Shackford, Steven R; Peck, Kimberly A; Sise, C Beth; Sise, Michael J

    2014-08-01

    Traumatic brain injury (TBI) is considered an independent risk factor of venous thromboembolism (VTE). However, the role of TBI severity in VTE risk has not been determined. We hypothesized that increased severity of brain injury in patients with isolated TBI (iTBI) is associated with an increased incidence of VTE. The records of patients admitted from June 2006 to December 2011 were reviewed for injury data, VTE risk factors, results of lower extremity surveillance ultrasound, and severity of TBI. Patients were identified by DRG International Classification of Diseases-9th Rev. codes for TBI, and only those with a nonhead Abbreviated Injury Scale (AIS) score of 1 or lower, indicating minimal associated injury, were included. The association of iTBI and VTE was determined using a case-control design. Among iTBI patients, those diagnosed with VTE (cases) were matched for age, sex, and admission year to those without VTE (controls). Data were analyzed using conditional logistic regression. There were 345 iTBI patients: 41 cases (12%) and 304 controls (88%). A total of 151 controls could not be matched to an appropriate case and were excluded. Of the remaining 153 controls, 1 to 16 controls were matched to each of the 41 VTE cases. Compared with the controls, the cases had a higher mean head-AIS score (4.4 vs. 3.9, p = 0.001) and overall Injury Severity Score (20.4 vs. 16.8, p = 0.001). Following adjustment for all factors found to be associated with VTE (ventilator days, central line placement, operative time > 2 hours, chemoprophylaxis, history of VTE, and history of cancer), the cases were significantly more likely to have a greater head injury severity (head-AIS score ≥ 5; odds ratio, 5.25; 95% confidence interval, 1.59-17.30; p = 0.006). The incidence of VTE in iTBI patients was significantly associated with the severity of TBI. VTE surveillance protocols may be warranted in these high-risk patients, as early detection of VTE could guide subsequent therapy

  1. Secondary Insults of Traumatic Brain Injury in CCATT Patients Returning from Iraq/Afghanistan: 2001-2006

    Science.gov (United States)

    2010-08-31

    and hemorrhage. Hemorrhage is further divided into epidural hematoma , subdural hematoma , and intracerebral hematoma . Diffuse brain injuries...fiber Brain Injury Focal Injuries Contusion Laceration Hemorrhage Epidural Hematoma Subdural Hematoma Intracerebral Hematoma Diffuse

  2. Evaluation of the effectiveness of a novel brain and vestibular rehabilitation treatment modality in PTSD patients who have suffered combat related traumatic brain injuries

    Directory of Open Access Journals (Sweden)

    Frederick Robert Carrick

    2015-02-01

    Full Text Available Introduction: Blast-related head injuries are among the most prevalent injuries suffered by military personnel deployed in combat and mild traumatic brain injury (mTBI or concussion on the battlefield in Iraq/Afghanistan has resulted in its designation as a signature injury. Vestibular complaints are the most frequent sequelae of mTBI and vestibular rehabilitation (VR has been established as the most important treatment modality for this group of patients. Material and Methods:We studied the effectiveness of a novel brain and VR treatment PTSD in subjects who had suffered combat related traumatic brain injuries in terms of PTSD symptom reduction. The trial was registered as ClinicalTrials.gov Identifier: NCT02003352. (http://clinicaltrials.gov/ct2/show/NCT02003352?term=carrick&rank=6. We analyzed the difference in the Clinician Administered DSM-IV PTSD Scale (CAPS scores pre and post treatment using our subjects as their own matched controls. The study population consisted of 98 combat veterans maintaining an alpha of <0.05 and power of 80%. Results:Prior to treatment, 75 subjects representing 76.53 % of the sample were classified in the 2 most severe categories of PTSD. 41 subjects, representing 41.80 % of the total sample, were classified in the extreme category of PTSD and 34 subjects, representing 34.70 % of the total sample, were classified in the severe category of PTSD. After treatment we observed a large reduction in CAPS severity scores with both statistical and substantive significance. Discussion:Treatment of PTSD as a physical injury rather than a psychiatric disorder is associated with strong statistical and substantive significant outcomes associated with a decrease of PTSD classification. The stigma associated with neuropsychiatric disorders may be lessened when PTSD is treated with brain and VR with a potential decrease in suffering of patients, family and society.

  3. Diagnostic and treatment challenges in traumatic brain injury patients with severe neuropsychiatric symptoms: insights into psychiatric practice

    Directory of Open Access Journals (Sweden)

    Lauterbach MD

    2015-07-01

    Full Text Available Margo D Lauterbach,1 Paula L Notarangelo,1 Stephen J Nichols,2 Kristy S Lane,1 Vassilis E Koliatsos11The Neuropsychiatry Program at Sheppard Pratt, Sheppard Pratt Health System, Baltimore, MD, 2Department of Emergency Medicine, The University of Tennessee College of Medicine Chattanooga, Chattanooga, TN, USAAbstract: Traumatic brain injury (TBI causes a variety of neuropsychiatric problems that pose diagnostic and treatment challenges for providers. In this report, we share our experience as a referral neuropsychiatry program to assist the general psychiatrist when adult TBI patients with psychiatric symptoms present for evaluation and treatment. We completed a retrospective study of patients with moderate-to-severe TBI and severe neuropsychiatric impairments. We collected information on demographics, nature of injury, symptomatology, diagnoses, and treatments. Data analysis indicates that mood stabilization was a key concern, often requiring aggressive pharmacological management. Cognitive dysfunction was a problem for the majority of patients, but was only medicated in a third, due to poor efficacy or behavioral side effects. The co-occurrence of multiple TBI-related symptoms and diagnoses in this patient cohort emphasizes the need for individualized psychopharmacological approaches and interventions.Keywords: traumatic brain injury, neurobehavioral, treatment

  4. Traumatic brain injury and disturbed sleep and wakefulness.

    Science.gov (United States)

    Baumann, Christian R

    2012-09-01

    Traumatic brain injury is a frequent condition worldwide, and sleep-wake disturbances often complicate the course after the injuring event. Current evidence suggests that the most common sleep-wake disturbances following traumatic brain injury include excessive daytime sleepiness and posttraumatic hypersomnia, that is, increased sleep need per 24 h. The neuromolecular basis of posttraumatic sleep pressure enhancement is not entirely clear. First neuropathological and clinical studies suggest that impaired hypocretin (orexin) signalling might contribute to sleepiness, but direct or indirect traumatic injury also to other sleep-wake modulating systems in the brainstem and the mesencephalon is likely. Posttraumatic insomnia may be less common than posttraumatic sleepiness, but studies on its frequency revealed conflicting results. Furthermore, insomnia is often associated with psychiatric comorbidities, and some patients with posttraumatic disruption of their circadian rhythm may be misdiagnosed as insomnia patients. The pathophysiology of posttraumatic circadian sleep disorders remains elusive; however, there is some evidence that reduced evening melatonin production due to traumatic brain damage may cause disruption of circadian regulation of sleep and wakefulness.

  5. Functional brain study of chronic traumatic head injury

    International Nuclear Information System (INIS)

    Ceballos Alonso, Concepcion; Pelegrin Valero, Carmelo; Cordoba Diaz de Laspra, Elena

    2000-01-01

    Explosive aggressive behaviour is a significant clinical and medico-legal problem in patients suffering from head injury. However, experts in neuropsychiatry have proposed a specific category for this disorder: the o rganic aggressive syndrome: . The basic reason for proposing this diagnosis is that it describes the specificity of the violent conduct secondary to 'brain damage' with greater precision. Early diagnosis and treatment of the injury is critical. The impact of hnetium-99m-hexamethylpropuleneamine oxime (HMPAO) was examined for measuring brain damage in correlation to neuropsychological performance in patients with traumatic brain injury (TBI). We thus report the case of a twelve-year-old child with a history of CET, who presents with serious episodes of heteroaggressiveness and suggest the usefulness of single photon emission computerized tomography (SPECT) to establish the validity of this psychiatric diagnosis. The appearance of modern functional neuro-image techniques (SPECT) may help to increase the validity of clinical diagnoses in the field of psychiatry in general and of forensic psychiatry in particularly, as the related findings may be used as demarcation criteria to establish syndromic diagnoses (Au)

  6. Development of an Ontology for Rehabilitation: Traumatic Brain Injury

    Science.gov (United States)

    Grove, Michael J.

    2013-01-01

    Traumatic Brain Injury (TBI) rehabilitation interventions are very heterogeneous due to injury characteristics and pathology, patient demographics, healthcare settings, caregiver variability, and individualized, multi-discipline treatment plans. Consequently, comparing and generalizing the effectiveness of interventions is limited largely due to…

  7. Computed tomography and clinical outcome in patients with severe traumatic brain injury.

    Science.gov (United States)

    Stenberg, Maud; Koskinen, Lars-Owe D; Jonasson, Per; Levi, Richard; Stålnacke, Britt-Marie

    2017-01-01

    To study: (i) acute computed tomography (CT) characteristics and clinical outcome; (ii) clinical course and (iii) Corticosteroid Randomisation after Significant Head Injury acute calculator protocol (CRASH) model and clinical outcome in patients with severe traumatic brain injury (sTBI). Initial CT (CT i ) and CT 24 hours post-trauma (CT 24 ) were evaluated according to Marshall and Rotterdam classifications. Rancho Los Amigos Cognitive Scale-Revised (RLAS-R) and Glasgow Outcome Scale Extended (GOSE) were assessed at three months and one year post-trauma. The prognostic value of the CRASH model was evaluated. Thirty-seven patients were included. Marshall CT i and CT 24 were significantly correlated with RLAS-R at three months. Rotterdam CT 24 was significantly correlated with GOSE at three months. RLAS-R and the GOSE improved significantly from three months to one year. CRASH predicted unfavourable outcome at six months for 81% of patients with bad outcome and for 85% of patients with favourable outcome according to GOSE at one year. Neither CT nor CRASH yielded clinically useful predictions of outcome at one year post-injury. The study showed encouragingly many instances of significant recovery in this population of sTBI. The combination of lack of reliable prognostic indicators and favourable outcomes supports the case for intensive acute management and rehabilitation as the default protocol in the cases of sTBI.

  8. Posttraumatic stress disorder in patients with traumatic brain injury and amnesia for the event?

    Science.gov (United States)

    Warden, D L; Labbate, L A; Salazar, A M; Nelson, R; Sheley, E; Staudenmeier, J; Martin, E

    1997-01-01

    Frequency of DSM-III-R posttraumatic stress disorder (PTSD) was studied in 47 active-duty service members (46 male, 1 female; mean age 27 = 7) with moderate traumatic brain injury and neurogenic amnesia for the event. Patients had attained "oriented and cooperative" recovery level. When evaluated with a modified Present State Examination and other questions at various points from study entry to 24-month follow-up, no patients met full criteria for PTSD or met criterion B (reexperience); 6 (13%) met both C (avoidance) and D (arousal) criteria. Five of these 6 also had organic mood disorder, depressed type, and/or organic anxiety disorder. Posttraumatic amnesia following moderate head injury may protect against recurring memories and the development of PTSD. Some patients with neurogenic amnesia may develop a form of PTSD without the reexperiencing symptoms.

  9. Intervention and societal costs of residential community reintegration for patients with acquired brain injury: a cost-analysis of the Brain Integration Programme.

    Science.gov (United States)

    van Heugten, Caroline M; Geurtsen, Gert J; Derksen, R Elze; Martina, Juan D; Geurts, Alexander C H; Evers, Silvia M A A

    2011-06-01

    The objective of this study was to examine the intervention costs of a residential community reintegration programme for patients with acquired brain injury and to compare the societal costs before and after treatment. A cost-analysis was performed identifying costs of healthcare, informal care, and productivity losses. The costs in the year before the Brain Integration Programme (BIP) were compared with the costs in the year after the BIP using the following cost categories: care consumption, caregiver support, productivity losses. Dutch guidelines were used for cost valuation. Thirty-three cases participated (72% response). Mean age was 29.8 years, 59% traumatic brain injury. The BIP costs were €68,400. The informal care and productivity losses reduced significantly after BIP (p costs per patient were €48,449. After BIP these costs were €39,773; a significant reduction (p costs after the BIP advocates the allocation of resources and, from an economic perspective, favours reimbursement of the BIP costs by healthcare insurance companies. However, this cost-analysis is limited as it does not relate costs to clinical effectiveness. :

  10. Brain metabolism is significantly impaired at blood glucose below 6 mM and brain glucose below 1 mM in patients with severe traumatic brain injury

    OpenAIRE

    Meierhans, Roman; B?chir, Markus; Ludwig, Silke; Sommerfeld, Jutta; Brandi, Giovanna; Haberth?r, Christoph; Stocker, Reto; Stover, John F

    2010-01-01

    Introduction The optimal blood glucose target following severe traumatic brain injury (TBI) must be defined. Cerebral microdialysis was used to investigate the influence of arterial blood and brain glucose on cerebral glucose, lactate, pyruvate, glutamate, and calculated indices of downstream metabolism. Methods In twenty TBI patients, microdialysis catheters inserted in the edematous frontal lobe were dialyzed at 1 ?l/min, collecting samples at 60 minute intervals. Occult metabolic alteratio...

  11. Brain metabolism is significantly impaired at blood glucose below 6 mM and brain glucose beneath 1 mM in patients with severe traumatic brain injury.

    OpenAIRE

    Meierhans, R; Bechir, M; Ludwig, S; Sommerfeld, J; Brandi, G; Haberthur, C; Stocker, R; Stover, J F

    2010-01-01

    ABSTRACT: INTRODUCTION: The optimal blood glucose target following severe traumatic brain injury (TBI) must be defined. Cerebral microdialysis was used to investigate the influence of arterial blood and brain glucose on cerebral glucose, lactate, pyruvate, glutamate, and calculated indices of downstream metabolism. METHODS: In twenty TBI patients, microdialysis catheters inserted in the edematous frontal lobe were dialyzed at 1 mul/ min, collecting samples at 60 minute intervals. Occult metab...

  12. Multi-signal Visualization of Physiology (MVP): a novel visualization dashboard for physiological monitoring of Traumatic Brain Injury patients.

    Science.gov (United States)

    Sebastian, Kevin; Sari, Vivian; Loy, Liang Yu; Zhang, Feng; Zhang, Zhuo; Feng, Mengling

    2012-01-01

    To prevent Traumatic Brain Injury (TBI) patients from secondary brain injuries, patients' physiological readings are continuously monitored. However, the visualization dashboards of most existing monitoring devices cannot effectively present all physiological information of TBI patients and are also ineffective in facilitating neuro-clinicians for fast and accurate diagnosis. To address these shortcomings, we proposed a new visualization dashboard, namely the Multi-signal Visualization of Physiology (MVP). MVP makes use of multi-signal polygram to collate various physiological signals, and it also utilizes colors and the concept of "safe/danger zones" to assist neuro-clinicians to achieve fast and accurate diagnosis. Moreover, MVP allows neuro-clinicians to review historical physiological statuses of TBI patients, which can guide and optimize clinicians' diagnosis and prognosis decisions. The performance of MVP is tested and justified with an actual Philips monitoring device.

  13. Recovery of injured Broca's portion of arcuate fasciculus in the dominant hemisphere in a patient with traumatic brain injury

    OpenAIRE

    Jang, Sung Ho; Ha, Ji Wan; Kim, Hyun Young; Seo, You Sung

    2017-01-01

    Abstract Rationale: Recovery of injured AF in patients with traumatic brain injury (TBI) has not been reported. In this study, we report on a patient with TBI who recovered from an injury to Broca's portion of AF in the dominant hemisphere, diagnosed by diffusion tensor tractography (DTT). Patient concerns: A 28-year-old right-handed male patient suffered head trauma resulting from sliding while riding a motorcycle. Diagnoses: He was diagnosed with a traumatic contusional hemorrhage in the le...

  14. I-123 iomazenil single photon emission computed tomography for detecting loss of neuronal integrity in patients with traumatic brain injury

    OpenAIRE

    Abiko, Kagari; Ikoma, Katsunori; Shiga, Tohru; Katoh, Chietsugu; Hirata, Kenji; Kuge, Yuji; Kobayashi, Kentaro; Tamaki, Nagara

    2017-01-01

    Background Traumatic brain injury (TBI) causes brain dysfunction in many patients. Using C-11 flumazenil (FMZ) positron emission tomography (PET), we have detected and reported the loss of neuronal integrity, leading to brain dysfunction in TBI patients. Similarly to FMZ PET, I-123 iomazenil (IMZ) single photon emission computed tomography (SPECT) is widely used to determine the distribution of the benzodiazepine receptor (BZR) in the brain cortex. The purpose of this study is to examine whet...

  15. CONSEQUENCES OF SEVERE TRAUMATIC BRAIN INJURY IN CHILDREN AND THEIR TREATMENT

    Directory of Open Access Journals (Sweden)

    N.N. Zavadenko

    2006-01-01

    Full Text Available Traumatic brain injury is one of the major causes for invalidization in children. The research purpose is an integrated study of consequences of severe and moderate closed traumatic brain injury in children and evaluation of their dynamics during therapy by means of a no tropic medication — cerebrolysin (Ebewe Pharma, Austria. The total of 283 children aged from 4 to 14 years were examined in the longaterm period of severe and moderate closed traumatic brain injury, from 6 months to 4 years after injury. Their neurological status was characterized by nona specific focal symptoms along with evident motor coordination disturbances, elements of dynamic and staticoloa comotory ataxia, reduction in execution speed of serial movements. Statistically significant differences with ageamatched controls were confirmed for measures of acousticaverbal memory and sustained attention. Posttraumatic epilepsy developed in 16 (5,7% patients with the onset of secondarily generalized seizures in 4–12 months following the injury. Effectiveness of the no tropic medication was evaluated in 60 patients aged from 7 to 12 years, who were distributed into 2 equal groups. The research has confirmed a positive effect of no tropic medication in the treatment of traumatic brain injury consequences manifested in the regression of headaches, fatigue, motor coordination disturbances along with improvements of memory, attention, intellectual performance rates, as well as EEG characteristics.Key words: traumatic brain injury, consequences, children, therapy, nootropic medications.

  16. Direct cost associated with acquired brain injury in Ontario

    Directory of Open Access Journals (Sweden)

    Chen Amy

    2012-08-01

    Full Text Available Abstract Background Acquired Brain Injury (ABI from traumatic and non traumatic causes is a leading cause of disability worldwide yet there is limited research summarizing the health system economic burden associated with ABI. The objective of this study was to determine the direct cost of publicly funded health care services from the initial hospitalization to three years post-injury for individuals with traumatic (TBI and non-traumatic brain injury (nTBI in Ontario Canada. Methods A population-based cohort of patients discharged from acute hospital with an ABI code in any diagnosis position in 2004 through 2007 in Ontario was identified from administrative data. Publicly funded health care utilization was obtained from several Ontario administrative healthcare databases. Patients were stratified according to traumatic and non-traumatic causes of brain injury and whether or not they were discharged to an inpatient rehabilitation center. Health system costs were calculated across a continuum of institutional and community settings for up to three years after initial discharge. The continuum of settings included acute care emergency departments inpatient rehabilitation (IR complex continuing care home care services and physician visits. All costs were calculated retrospectively assuming the government payer’s perspective. Results Direct medical costs in an ABI population are substantial with mean cost in the first year post-injury per TBI and nTBI patient being $32132 and $38018 respectively. Among both TBI and nTBI patients those discharged to IR had significantly higher treatment costs than those not discharged to IR across all institutional and community settings. This tendency remained during the entire three-year follow-up period. Annual medical costs of patients hospitalized with a brain injury in Ontario in the first follow-up year were approximately $120.7 million for TBI and $368.7 million for nTBI. Acute care cost accounted for 46

  17. Occurrence and severity of agitated behavior after severe traumatic brain injury

    DEFF Research Database (Denmark)

    Moth Wolffbrandt, Mia; Poulsen, Ingrid; Engberg, Aase W

    2013-01-01

    To investigate the occurrence and severity of agitation in patients after severe traumatic brain injury (TBI), to identify predictors of agitation and to study interrater reliability for a translated version of the Agitated Behavior Scale (ABS).......To investigate the occurrence and severity of agitation in patients after severe traumatic brain injury (TBI), to identify predictors of agitation and to study interrater reliability for a translated version of the Agitated Behavior Scale (ABS)....

  18. Life Satisfaction Questionnaire (Lisat-9): Reliability and Validity for Patients with Acquired Brain Injury

    Science.gov (United States)

    Boonstra, Anne M.; Reneman, Michiel F.; Stewart, Roy E.; Balk, Gerlof A.

    2012-01-01

    The aim of this study was to determine the reliability and discriminant validity of the Dutch version of the life satisfaction questionnaire (Lisat-9 DV) to assess patients with an acquired brain injury. The reliability study used a test-retest design, and the validity study used a cross-sectional design. The setting was the general rehabilitation…

  19. Radiation Injury to the Brain

    Science.gov (United States)

    ... Hits since January 2003 RADIATION INJURY TO THE BRAIN Radiation treatments affect all cells that are targeted. ... fractions, duration of therapy, and volume of [healthy brain] nervous tissue irradiated influence the likelihood of injury. ...

  20. Brain injury in sports.

    Science.gov (United States)

    Lloyd, John; Conidi, Frank

    2016-03-01

    Helmets are used for sports, military, and transportation to protect against impact forces and associated injuries. The common belief among end users is that the helmet protects the whole head, including the brain. However, current consensus among biomechanists and sports neurologists indicates that helmets do not provide significant protection against concussion and brain injuries. In this paper the authors present existing scientific evidence on the mechanisms underlying traumatic head and brain injuries, along with a biomechanical evaluation of 21 current and retired football helmets. The National Operating Committee on Standards for Athletic Equipment (NOCSAE) standard test apparatus was modified and validated for impact testing of protective headwear to include the measurement of both linear and angular kinematics. From a drop height of 2.0 m onto a flat steel anvil, each football helmet was impacted 5 times in the occipital area. Skull fracture risk was determined for each of the current varsity football helmets by calculating the percentage reduction in linear acceleration relative to a 140-g skull fracture threshold. Risk of subdural hematoma was determined by calculating the percentage reduction in angular acceleration relative to the bridging vein failure threshold, computed as a function of impact duration. Ranking the helmets according to their performance under these criteria, the authors determined that the Schutt Vengeance performed the best overall. The study findings demonstrated that not all football helmets provide equal or adequate protection against either focal head injuries or traumatic brain injuries. In fact, some of the most popular helmets on the field ranked among the worst. While protection is improving, none of the current or retired varsity football helmets can provide absolute protection against brain injuries, including concussions and subdural hematomas. To maximize protection against head and brain injuries for football players of

  1. Using external lumbar CSF drainage to treat communicating external hydrocephalus in adult patients after acute traumatic or non-traumatic brain injury.

    Science.gov (United States)

    Manet, Romain; Payen, Jean-François; Guerin, Romain; Martinez, Orianne; Hautefeuille, Serge; Francony, Gilles; Gergelé, Laurent

    2017-10-01

    Despite various treatments to control intracranial pressure (ICP) after brain injury, patients may present a late onset of high ICP or a poor response to medications. External lumbar drainage (ELD) can be considered a therapeutic option if high ICP is due to communicating external hydrocephalus. We aimed at describing the efficacy and safety of ELD used in a cohort of traumatic or non-traumatic brain-injured patients. In this multicentre retrospective analysis, patients had a delayed onset of high ICP after the initial injury and/or a poor response to ICP treatments. ELD was considered in the presence of radiological signs of communicating external hydrocephalus. Changes in ICP values and side effects following the ELD procedure were reported. Thirty-three patients with a median age of 51 years (25-75th percentile: 34-61 years) were admitted after traumatic (n = 22) or non-traumatic (n = 11) brain injuries. Their initial Glasgow Coma Scale score was 8 (4-11). Eight patients underwent external ventricular drainage prior to ELD. Median time to ELD insertion was 5 days (4-8) after brain insult. In all patients, ELD was dramatically effective in lowering ICP: 25 mmHg (20-31) before versus 7 mmHg (3-10) after (p hydrocephalus has been made.

  2. Deep penetrating brain injury with 20 years asymptomatic survival. Case report

    International Nuclear Information System (INIS)

    Buczek, M.; Pieninski, A.

    1993-01-01

    Authors report the case of penetrating injury of the head with large metallic fragment embedded to the brain with 20 years asymptomatic survival. Patient sustained head injury during work, 20 years ago and for these period of time was not aware of having foreign body intracranially with excellent general condition and no signs of neurological deficit. Metal nail was detected incidentally by plain skull X-ray films( and subsequent CT scan) during routine procedures when patient was admitted for surgical procedure. In our opinion presented case is uncommon because of asymptomatic course. Most of penetrating head injuries are considered as life threatening due to sudden onset, severe general patient condition and possible deterioration according to the type of injury and extent of cerebral destruction. For those reasons earliest possible neurosurgical treatment is recommended. We emphasize the role of debridement for most of brain penetration injuries. (author)

  3. Intervention and societal costs of residential community reintegration for patients with acquired brain injury: a cost-analysis of the Brain Integration Programme

    NARCIS (Netherlands)

    Heugten, C.M. van; Geurtsen, G.J.; Derksen, R.E.; Martina, J.D.; Geurts, A.C.H.; Evers, S.M.

    2011-01-01

    OBJECTIVE: The objective of this study was to examine the intervention costs of a residential community reintegration programme for patients with acquired brain injury and to compare the societal costs before and after treatment. METHODS: A cost-analysis was performed identifying costs of

  4. Diverging volumetric trajectories following pediatric traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Emily L. Dennis

    2017-01-01

    Full Text Available Traumatic brain injury (TBI is a significant public health concern, and can be especially disruptive in children, derailing on-going neuronal maturation in periods critical for cognitive development. There is considerable heterogeneity in post-injury outcomes, only partially explained by injury severity. Understanding the time course of recovery, and what factors may delay or promote recovery, will aid clinicians in decision-making and provide avenues for future mechanism-based therapeutics. We examined regional changes in brain volume in a pediatric/adolescent moderate-severe TBI (msTBI cohort, assessed at two time points. Children were first assessed 2–5 months post-injury, and again 12 months later. We used tensor-based morphometry (TBM to localize longitudinal volume expansion and reduction. We studied 21 msTBI patients (5 F, 8–18 years old and 26 well-matched healthy control children, also assessed twice over the same interval. In a prior paper, we identified a subgroup of msTBI patients, based on interhemispheric transfer time (IHTT, with significant structural disruption of the white matter (WM at 2–5 months post injury. We investigated how this subgroup (TBI-slow, N = 11 differed in longitudinal regional volume changes from msTBI patients (TBI-normal, N = 10 with normal WM structure and function. The TBI-slow group had longitudinal decreases in brain volume in several WM clusters, including the corpus callosum and hypothalamus, while the TBI-normal group showed increased volume in WM areas. Our results show prolonged atrophy of the WM over the first 18 months post-injury in the TBI-slow group. The TBI-normal group shows a different pattern that could indicate a return to a healthy trajectory.

  5. Diffusion-weighted MR and apparent diffusion coefficient in the evaluation of severe brain injury

    International Nuclear Information System (INIS)

    Nakahara, M.; Ericson, K.; Bellander, B.M.

    2001-01-01

    Purpose: To study apparent diffusion coefficient (ADC) maps in severely brain-injured patients. Material and Methods: Four deeply comatose patients with severe brain injury were investigated with single-shot, diffusion-weighted, spin-echo echo planar imaging. The tetrahedral diffusion gradient configuration and four iterations of a set of b-values (one time of 0 mm2/s, and four times of 1000 mm2/s) were used to create isotropic ADC maps with high signal-to-noise ratio. ADC values of gray and white matter were compared among patients and 4 reference subjects. Results: one patient was diagnosed as clinically brain dead after the MR examination. The patient's ADC values of gray and white matter were significantly lower than those of 3 other brain-injured patients. In addition the ADC value of white matter was significantly lower than that of gray matter. Conclusion: The patient with fatal outcome shortly after MR examination differed significantly from other patients with severe brain injury but non-fatal outcome, with regard to ADC values in gray and white matter. This might indicate a prognostic value of ADC maps in the evaluation of traumatic brain injury

  6. Delusional jealousy and person directed hostility: 5-year follow-up of a patient after anoxic brain injury.

    Science.gov (United States)

    Shah, Rajendra; Faruqui, Rafey A

    2013-01-01

    This study presents a case report on the emergence of delusional jealousy and person-directed hostility in a patient following anoxic brain injury. The patient did not have a pre-injury history of mental illness, nor a family history of a psychotic disorder. This patient was followed-up over a 5-year period and his history of treatment response, violence risk management and successful rehabilitation are presented. This study also highlights issues in relation to continuation of treatment with antipsychotic medication, use of compulsory admission under the Mental Health Act and principles of risk assessment and risk management.

  7. Talking to Your Patients: A Clinician’s Guide to Treating Mild Traumatic Brain Injury

    Centers for Disease Control (CDC) Podcasts

    This podcast describes how to talk to your patients and provide health information about mild traumatic brain injury (mild TBI) that may help ease their concerns and can give them tools to help speed their recovery.

  8. Neuropsychiatric Disturbances and Hypopituitarism After Traumatic Brain Injury in an Elderly Man

    Directory of Open Access Journals (Sweden)

    Yi-Cheng Chang

    2006-01-01

    Full Text Available Neuropsychiatric or cognitive disturbances are common complications after traumatic brain injury. They are commonly regarded as irreversible sequelae of organic brain injuries. We report a case of hypopituitarism in a 77-year-old man who presented with long-term neuropsychiatric disturbances, including cognitive impairment, disturbed sleep patterns, personality change, loss of affect, and visual and auditory hallucinations after a traumatic subdural hemorrhage. The treatment response to hormone replacement therapy was nearly complete. Hypopituitarism is rarely considered in patients who sustain traumatic brain injury and the neuropsychiatric manifestations of posttraumatic hypopituitarism have rarely been reported. This case highlights the importance of hypopituitarism as a potential reversible cause of neuropsychiatric disturbances after traumatic brain injury.

  9. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury

    Science.gov (United States)

    De Simoni, Sara; Jenkins, Peter O; Bourke, Niall J; Fleminger, Jessica J; Jolly, Amy E; Patel, Maneesh C; Leech, Robert; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with

  10. Intervention and societal costs of residential community reintegration for patients with acquired brain injury: a cost-analysis of the Brain Integration Programme

    NARCIS (Netherlands)

    van Heugten, Caroline M.; Geurtsen, Gert J.; Derksen, R. Elze; Martina, Juan D.; Geurts, Alexander C. H.; Evers, Silvia M. A. A.

    2011-01-01

    The objective of this study was to examine the intervention costs of a residential community reintegration programme for patients with acquired brain injury and to compare the societal costs before and after treatment. A cost-analysis was performed identifying costs of healthcare, informal care, and

  11. Brain injury and altered brain growth in preterm infants: predictors and prognosis.

    Science.gov (United States)

    Kidokoro, Hiroyuki; Anderson, Peter J; Doyle, Lex W; Woodward, Lianne J; Neil, Jeffrey J; Inder, Terrie E

    2014-08-01

    To define the nature and frequency of brain injury and brain growth impairment in very preterm (VPT) infants by using MRI at term-equivalent age and to relate these findings to perinatal risk factors and 2-year neurodevelopmental outcomes. MRI scans at term-equivalent age from 3 VPT cohorts (n = 325) were reviewed. The severity of brain injury, including periventricular leukomalacia and intraventricular and cerebellar hemorrhage, was graded. Brain growth was assessed by using measures of biparietal width (BPW) and interhemispheric distance. Neurodevelopmental outcome at age 2 years was assessed across all cohorts (n = 297) by using the Bayley Scales of Infant Development, Second Edition (BSID-II) or Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III), and evaluation for cerebral palsy. Of 325 infants, 107 (33%) had some grade of brain injury and 33 (10%) had severe injury. Severe brain injury was more common in infants with lower Apgar scores, necrotizing enterocolitis, inotropic support, and patent ductus arteriosus. Severe brain injury was associated with delayed cognitive and motor development and cerebral palsy. Decreased BPW was related to lower gestational age, inotropic support, patent ductus arteriosus, necrotizing enterocolitis, prolonged parenteral nutrition, and oxygen at 36 weeks and was associated with delayed cognitive development. In contrast, increased interhemispheric distance was related to male gender, dexamethasone use, and severe brain injury. It was also associated with reduced cognitive development, independent of BPW. At term-equivalent age, VPT infants showed both brain injury and impaired brain growth on MRI. Severe brain injury and impaired brain growth patterns were independently associated with perinatal risk factors and delayed cognitive development. Copyright © 2014 by the American Academy of Pediatrics.

  12. [Intensive care treatment of traumatic brain injury in multiple trauma patients : Decision making for complex pathophysiology].

    Science.gov (United States)

    Trimmel, H; Herzer, G; Schöchl, H; Voelckel, W G

    2017-09-01

    Traumatic brain injury (TBI) and hemorrhagic shock due to uncontrolled bleeding are the major causes of death after severe trauma. Mortality rates are threefold higher in patients suffering from multiple injuries and additionally TBI. Factors known to impair outcome after TBI, namely hypotension, hypoxia, hypercapnia, acidosis, coagulopathy and hypothermia are aggravated by the extent and severity of extracerebral injuries. The mainstays of TBI intensive care may be, at least temporarily, contradictory to the trauma care concept for multiple trauma patients. In particular, achieving normotension in uncontrolled bleeding situations, maintenance of normocapnia in traumatic lung injury and thromboembolic prophylaxis are prone to discussion. Due to an ongoing uncertainty about the definition of normotensive blood pressure values, a cerebral perfusion pressure-guided cardiovascular management is of key importance. In contrast, there is no doubt that early goal directed coagulation management improves outcome in patients with TBI and multiple trauma. The timing of subsequent surgical interventions must be based on the development of TBI pathology; therefore, intensive care of multiple trauma patients with TBI requires an ongoing and close cooperation between intensivists and trauma surgeons in order to individualize patient care.

  13. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury.

    Science.gov (United States)

    De Simoni, Sara; Jenkins, Peter O; Bourke, Niall J; Fleminger, Jessica J; Hellyer, Peter J; Jolly, Amy E; Patel, Maneesh C; Cole, James H; Leech, Robert; Sharp, David J

    2018-01-01

    Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with measures of

  14. Use of the emotional Stroop to assess psychological trauma following traumatic brain injury.

    Science.gov (United States)

    Coates, Richard C

    2008-04-01

    A modified Stroop task was used to investigate the hypothesis that implicit memory may be a possible mechanism for the development of acute stress disorder (ASD) in patients who have suffered a closed head injury. Three groups of hospital patients were compared within 1 month post-trauma: road traffic accident (RTA) patients with a brain injury (n = 15), RTA patients without a brain injury (n = 13) and a control group of orthopaedic and plastics patients (n = 15). Participants named colours of five types of words: RTA-related words, words related to hospitalization, obsessive-compulsive disorder (OCD) words, positive words and neutral words. Participants were also administered the Acute Stress Disorder Interview and the State-Trait Anxiety Inventory. Both RTA patients with and without a brain injury demonstrated significant interference on words related to an RTA. Significant interference was unexpectedly observed for OCD words in RTA patients. Control patients did not display significant interference effects. Findings suggested that patients, both with and without explicit recall for an RTA, responded similarly on a task involving implicit memory for trauma. Possible implications for ASD and Post-traumatic Stress Disorder are discussed.

  15. Successful outcomes following neurorehabilitation in military traumatic brain injury patients in the United Kingdom.

    Science.gov (United States)

    Dharm-Datta, Shreshth; Gough, Michael R C; Porter, Patrick J; Duncan-Anderson, Jennifer; Olivier, Elizabeth; McGilloway, Emer; Etherington, John

    2015-10-01

    The Defence Medical Rehabilitation Centre Headley Court is the UK military rehabilitation unit. A pilot study identified the Mayo-Portland Adaptability Inventory-4 (MPAI-4) as the most appropriate rehabilitation outcome measure in young military patients with acquired brain injury. MPAI-4 scores were prospectively recorded for patients on admission and discharge. At 4 months, independent living and employment status were recorded. Inclusion criteria were all new admissions with traumatic brain injury (TBI). Before injury, all patients were fully employed and lived independently. In a 3-year period from April 2011, there were 91 TBI patients with complete admission-discharge episodes: by US Department of Defense criteria, 21 were mild, 35 were moderate, and 35 were severe. There was a significant positive relationship between TBI severity and MPAI-4 score on admission (χ = 12.77, df = 2, p = 0.0017).Median age was 27 years, and median duration of admission was 63 days. Employment and independent living status were available for 79 patients at 4 months. Seventy-three patients (92%) were in community-based employment, with 64 (81%) employed in a competitive or transitional work; 6 (8%) were unemployed or in sheltered work. Sixty-nine (87%) were living independently, and 10 (13%) were living with support in their own home, with no one requiring institutional care.Complete MPAI-4 scores were available for 79 patients. There were statistically and clinically significant improvements in MPAI-4 scores between admission and discharge for the overall group: median admission T score was 40.0 (95% confidence interval, 36.0-42.0) and on discharge was 31.0 (95% confidence interval, 27.0-36.0), a nine-point change (Z = 6.53, p MPAI-4 limitations. This study demonstrates significant functional improvements in military TBI patients following intensive inpatient multidisciplinary rehabilitation, which includes substantial vocational rehabilitation. At 4 months, 92% were employed

  16. Progressive increase in brain glucose metabolism after intrathecal administration of autologous mesenchymal stromal cells in patients with diffuse axonal injury.

    Science.gov (United States)

    Vaquero, Jesús; Zurita, Mercedes; Bonilla, Celia; Fernández, Cecilia; Rubio, Juan J; Mucientes, Jorge; Rodriguez, Begoña; Blanco, Edelio; Donis, Luis

    2017-01-01

    Cell therapy in neurological disability after traumatic brain injury (TBI) is in its initial clinical stage. We describe our preliminary clinical experience with three patients with diffuse axonal injury (DAI) who were treated with intrathecal administration of autologous mesenchymal stromal cells (MSCs). Three patients with established neurological sequelae due to DAI received intrathecally autologous MSCs. The total number of MSCs administered was 60 × 10 6 (one patient), 100 × 10 6 (one patient) and 300 × 10 6 (one patient). All three patients showed improvement after cell therapy, and subsequent studies with 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) showed a diffuse and progressive increase in brain glucose metabolism. Our present results suggest benefit of intrathecal administration of MSCs in patients with DAI, as well as a relationship between this type of treatment and increase in brain glucose metabolism. These preliminary findings raise the question of convenience of assessing the potential benefit of intrathecal administration of MSCs for brain diseases in which a decrease in glucose metabolism represents a crucial pathophysiological finding, such as Alzheimer's disease (AD) and other dementias. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  17. Time dysperception perspective for acquired brain injury

    Directory of Open Access Journals (Sweden)

    Federica ePiras

    2014-01-01

    Full Text Available Distortions of time perception are presented by a number of neuropsychiatric disorders. Here we survey timing abilities in clinical populations with acquired brain injuries in key cerebral areas recently implicated in human studies of timing. We purposely analyzed the complex relationship between cognitive and contextual factors involved in time estimation, as to characterize the correlation between timed and other cognitive behaviors in each group. We assume that interval timing is a solid construct to study cognitive dysfunctions following brain injury, as timing performance is a sensitive metric of information processing, while temporal cognition has the potential of influencing a wide range of cognitive processes. Moreover, temporal performance is a sensitive assay of damage to the underlying neural substrate after a brain insult. Further research in neurological and psychiatric patients will definitively answer the question of whether time distortions are manifestations of cognitive and behavioral symptoms of brain damage and definitively clarify their mechanisms.

  18. Loss of neuronal integrity: a cause of hypometabolism in patients with traumatic brain injury without MRI abnormality in the chronic stage

    International Nuclear Information System (INIS)

    Shiga, Tohru; Matsuyama, Tetsuaki; Kageyama, Hiroyuki; Kohno, Tomoya; Tamaki, Nagara; Ikoma, Katsunori; Isoyama, Hirotaka; Katoh, Chietsugu; Kuge, Yuji; Terae, Satoshi

    2006-01-01

    Traumatic brain injury (TBI) causes brain dysfunction in many patients. However, some patients have severe brain dysfunction but display no abnormalities on magnetic resonance imaging (MRI). There have been some reports of hypometabolism even in such patients. The purpose of this study was to investigate the relationship between metabolic abnormality and loss of neuronal integrity in TBI patients with some symptoms but without MRI abnormalities. The study population comprised ten patients with TBI and ten normal volunteers. All of the patients were examined at least 1 year after the injury. 15 O-labelled gas PET and [ 11 C]flumazenil (FMZ) positron emission tomography (PET) were carried out. The cerebral metabolic rate of oxygen (CMRO 2 ) and binding potential (BP) images of FMZ were calculated. Axial T2WI, T2*WI and FLAIR images were obtained. Coronal images were added in some cases. All of the patients had normal MRI findings, and all showed areas with abnormally low CMRO 2 . Low uptake on BP images was observed in six patients (60%). No lesions that showed low uptake on BP images were without low CMRO 2 . On the other hand, there were 14 lesions with low CMRO 2 but without BP abnormalities. These results indicate that there are metabolic abnormalities in TBI patients with some symptoms after brain injury but without abnormalities on MRI. Some of the hypometabolic lesions showed low BP, indicating a loss of neuronal integrity. Thus, FMZ PET may have potential to distinguish hypometabolism caused by neuronal loss from that caused by other factors. (orig.)

  19. Sleep Disorders Associated With Mild Traumatic Brain Injury Using Sport Concussion Assessment Tool 3.

    Science.gov (United States)

    Tkachenko, Nataliya; Singh, Kanwaljit; Hasanaj, Lisena; Serrano, Liliana; Kothare, Sanjeev V

    2016-04-01

    Sleep problems affect 30% to 80% of patients with mild traumatic brain injury. We assessed the prevalence of sleep disorders after mild traumatic brain injury and its correlation with other symptoms. Individuals with mild traumatic brain injury were assessed at the New York University Concussion Center during 2013-2014 with the Sports Concussion Assessment Tool, third edition, data following mild traumatic brain injury. The relationship between sleep problems (drowsiness, difficulty falling asleep, fatigue or low energy), psychiatric symptoms (sadness, nervousness or anxiousness), headache, and dizziness were analyzed by Spearman correlation and logistic regression using moderate to severe versus none to mild categorization. Ninety-three patients were retrospectively considered. The most common injury causes were falls (34.4%) and motor vehicle accidents (21.5%). There was a positive correlation between dizziness, headache, psychiatric problems (sadness, anxiety, irritability), and sleep problems (fatigue, drowsiness, and difficulty falling asleep) (P sleep symptoms (P Sleep symptoms became more severe with increased time interval from mild traumatic brain injury to Sport Concussion Assessment Tool 3 administration (odds ratio = 1.005, 1.006, and 1.008, P sleep disorders following mild traumatic brain injury and should be counseled and initiated with early interventions. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Severe traumatic brain injury managed with decompressive ...

    African Journals Online (AJOL)

    2012-05-29

    May 29, 2012 ... Patients with severe taumatic brain injury may develop intractable raised ICP resulting in high mortality ... Glasgow coma score was 8/15 (E1V3M4) and he had left ... An emergency right fronto-temporo-parietal decompressive.

  1. A patients perspective on eating difficulties following brain injury

    DEFF Research Database (Denmark)

    Kjaersgaard, Annette; Kristensen, Hanne Kaae; Borg, Tove

    Purpose: The aim of this study is to explore and interpret how persons with acquired brain injury (ABI) experience and adapt to reduced abilities to swallowing and eating - and clinical implications. Method: Explorative multiple-case study with qualitative interviews of six persons following ABI ...

  2. Mild Traumatic Brain Injury

    Science.gov (United States)

    ... mild Traumatic Brain Injury Resilience Families with Kids Depression Families & Friendships Tobacco Life Stress Spirituality Anger Physical Injury Stigma Health & Wellness Work Adjustment Community Peer-2-Peer Forum ...

  3. Serial lactate and admission SOFA scores in trauma: an analysis of predictive value in 724 patients with and without traumatic brain injury.

    Science.gov (United States)

    Dübendorfer, C; Billeter, A T; Seifert, B; Keel, M; Turina, M

    2013-02-01

    Arterial lactate, base excess (BE), lactate clearance, and Sequential Organ Failure Assessment (SOFA) score have been shown to correlate with outcome in severely injured patients. The goal of the present study was to separately assess their predictive value in patients suffering from traumatic brain injury (TBI) as opposed to patients suffering from injuries not related to the brain. A total of 724 adult trauma patients with an Injury Severity Score (ISS) ≥ 16 were grouped into patients without TBI (non-TBI), patients with isolated TBI (isolated TBI), and patients with a combination of TBI and non-TBI injuries (combined injuries). The predictive value of the above parameters was then analyzed using both uni- and multivariate analyses. The mean age of the patients was 39 years (77 % males), with a mean ISS of 32 (range 16-75). Mortality ranged from 14 % (non-TBI) to 24 % (combined injuries). Admission and serial lactate/BE values were higher in non-survivors of all groups (all p analysis revealed lactate to be the best overall predictor for increased mortality and further septic complications, irrespective of the leading injury. Lactate showed the best performance in predicting sepsis or death in all trauma patients except those with isolated TBI, and the differences were greatest in patients with substantial bleeding. Following isolated TBI, SOFA score was the only parameter which could differentiate survivors from non-survivors on admission, although the SOFA score, too, was not an independent predictor of death following multivariate analysis.

  4. Increased risk of pneumonia among ventilated patients with traumatic brain injury: every day counts!

    Science.gov (United States)

    Hui, Xuan; Haider, Adil H; Hashmi, Zain G; Rushing, Amy P; Dhiman, Nitasha; Scott, Valerie K; Selvarajah, Shalini; Haut, Elliott R; Efron, David T; Schneider, Eric B

    2013-09-01

    Patients with traumatic brain injury (TBI) frequently require mechanical ventilation (MV). The objective of this study was to examine the association between time spent on MV and the development of pneumonia among patients with TBI. Patients older than 18 y with head abbreviated injury scale (AIS) scores coded 1-6 requiring MV in the National Trauma Data Bank 2007-2010 data set were included. The study was limited to hospitals reporting pneumonia cases. AIS scores were calculated using ICDMAP-90 software. Patients with injuries in any other region with AIS score >3, significant burns, or a hospital length of stay >30 d were excluded. A generalized linear model was used to determine the approximate relative risk of developing all-cause pneumonia (aspiration pneumonia, ventilator-associated pneumonia [VAP], and infectious pneumonia identified by the International Classification of Disease, Ninth Revision, diagnosis code) for each day of MV, controlling for age, gender, Glasgow coma scale motor score, comorbidity (Charlson comorbidity index) score, insurance status, and injury type and severity. Among the 24,525 patients with TBI who required MV included in this study, 1593 (6.5%) developed all-cause pneumonia. After controlling for demographic and injury factors, each additional day on the ventilator was associated with a 7% increase in the risk of pneumonia (risk ratio 1.07, 95% confidence interval 1.07-1.08). Patients who have sustained TBIs and require MV are at higher risk for VAP than individuals extubated earlier; therefore, shortening MV exposure will likely reduce the risk of VAP. As patients with TBI frequently require MV because of neurologic impairment, it is key to develop aggressive strategies to expedite ventilator independence. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Gait and Glasgow Coma Scale scores can predict functional recovery in patients with traumatic brain injury☆

    Science.gov (United States)

    Bilgin, Sevil; Guclu-Gunduz, Arzu; Oruckaptan, Hakan; Kose, Nezire; Celik, Bülent

    2012-01-01

    Fifty-one patients with mild (n = 14), moderate (n = 10) and severe traumatic brain injury (n = 27) received early rehabilitation. Level of consciousness was evaluated using the Glasgow Coma Score. Functional level was determined using the Glasgow Outcome Score, whilst mobility was evaluated using the Mobility Scale for Acute Stroke. Activities of daily living were assessed using the Barthel Index. Following Bobath neurodevelopmental therapy, the level of consciousness was significantly improved in patients with moderate and severe traumatic brain injury, but was not greatly influenced in patients with mild traumatic brain injury. Mobility and functional level were significantly improved in patients with mild, moderate and severe traumatic brain injury. Gait recovery was more obvious in patients with mild traumatic brain injury than in patients with moderate and severe traumatic brain injury. Activities of daily living showed an improvement but this was insignificant except for patients with severe traumatic brain injury. Nevertheless, complete recovery was not acquired at discharge. Multiple regression analysis showed that gait and Glasgow Coma Scale scores can be considered predictors of functional outcomes following traumatic brain injury. PMID:25624828

  6. Brain Injury and Severe Eating Difficulties at Admission-Patient Perspective Nine to Fifteen Months after Discharge

    DEFF Research Database (Denmark)

    Kjærsgaard, Annette

    2017-01-01

    The purpose of this pilot study was to explore and interpret the way that individuals with acquired brain injury, admitted to inpatient neurorehabilitation with severe eating difficulties, experienced eating nine to fifteen months after discharge. Four individuals with acquired brain injury were ...... the patient perspective of adapting to and developing new strategies for activities related to eating, however, further prospective, longitudinal research in a larger scale and with repeated interviews is needed....... interviewed via qualitative semi-structured interviews. An explorative study was conducted to study eating difficulties. Qualitative content analysis was used. Four main themes emerged from the analysis: personal values related to eating, swallowing difficulties, eating and drinking, meals and social life...... the ability to eat reduced or lost completely, even temporarily, was unexpected and difficult, and caused strong emotional reactions, even 18 months after injury. Time spent using a feeding tube had a negative, but not persistent, impact on quality-of-life. The preliminary findings provide knowledge regarding...

  7. Long-term global and regional brain volume changes following severe traumatic brain injury: A longitudinal study with clinical correlates

    DEFF Research Database (Denmark)

    Sidaros, Annette; Skimminge, Arnold Jesper Møller; Liptrot, Matthew George

    2009-01-01

    with percent brain volume change (%BVC) ranging between − 0.6% and − 9.4% (mean − 4.0%). %BVC correlated significantly with injury severity, functional status at both scans, and with 1-year outcome. Moreover, %BVC improved prediction of long-term functional status over and above what could be predicted using......Traumatic brain injury (TBI) results in neurodegenerative changes that progress for months, perhaps even years post-injury. However, there is little information on the spatial distribution and the clinical significance of this late atrophy. In 24 patients who had sustained severe TBI we acquired 3D...... scan time point using SIENAX. Regional distribution of atrophy was evaluated using tensor-based morphometry (TBM). At the first scan time point, brain parenchymal volume was reduced by mean 8.4% in patients as compared to controls. During the scan interval, patients exhibited continued atrophy...

  8. Adding insult to brain injury: young adults' experiences of residing in nursing homes following acquired brain injury.

    Science.gov (United States)

    Dwyer, Aoife; Heary, Caroline; Ward, Marcia; MacNeela, Pádraig

    2017-08-28

    There is general consensus that adults under age 65 with acquired brain injury residing in nursing homes is inappropriate, however there is a limited evidence base on the issue. Previous research has relied heavily on third-party informants and qualitative studies have been of questionable methodological quality, with no known study adopting a phenomenological approach. This study explored the lived experiences of young adults with brain injury residing in aged care facilities. Interpretative phenomenological analysis was employed to collect and analyze data from six semi-structured interviews with participants regarding their experiences of living in nursing homes. Two themes were identified, including "Corporeal prison of acquired brain injury: broken selves" and "Existential prison of the nursing home: stagnated lives". Results illustrated that young adults with acquired brain injury can experience aged care as an existential prison in which their lives feel at a standstill. This experience was characterized by feelings of not belonging in a terminal environment, confinement, disempowerment, emptiness and hope for greater autonomy through rehabilitation. It is hoped that this study will provide relevant professionals, services and policy-makers with insight into the challenges and needs of young adults with brain injury facing these circumstances. Implications for rehabilitation This study supports the contention that more home-like and age-appropriate residential rehabilitation services for young adults with acquired brain injury are needed. As development of alternative accommodation is a lengthy process, the study findings suggest that the interim implementation of rehabilitative care in nursing homes should be considered. Taken together with existing research, it is proposed that nursing home staff may require training to deliver evidence-based rehabilitative interventions to those with brain injury. The present findings add support to the call for systemic

  9. Brain injury and severe eating difficulties at admission

    DEFF Research Database (Denmark)

    Kjærsgaard, Annette; Kaae Kristensen, Hanne

    Objective: The objective of this pilot study was to explore and interpret the way that individuals with acquired brain injury, admitted to inpatient neurorehabilitation with severe eating difficulties, experienced eating nine to fifteen months after discharge. Methods: Four individuals with acqui......Objective: The objective of this pilot study was to explore and interpret the way that individuals with acquired brain injury, admitted to inpatient neurorehabilitation with severe eating difficulties, experienced eating nine to fifteen months after discharge. Methods: Four individuals...... with acquired brain injury were interviewed via qualitative semi-structured interviews. An explorative study was conducted to study eating difficulties. Qualitative content analysis was used. Results: Four main themes emerged from the analysis: personal values related to eating, swallowing difficulties, eating......-of-life. The preliminary findings provide knowledge regarding the patient perspective of adapting to and developing new strategies for activities related to eating, however, further prospective, longitudinal research in a larger scale and with repeated interviews is needed....

  10. The emergence of artistic ability following traumatic brain injury

    OpenAIRE

    Midorikawa, Akira; Kawamura, Mitsuru

    2014-01-01

    In this study, the case of a patient who developed artistic ability following a traumatic brain injury is reported. The subject was a 49-year-old male who suffered brain injury at the age of 44 due to an accidental fall. At age 48, he began drawing with great enthusiasm and quickly developed a personal style with his own biomorphic iconography. At first, his drawing was restricted to realistic reproductions of photographs of buildings, but his style of drawing changed and became more personal...

  11. Correlation of serum GFAP, S100B and NSE contents with posttraumatic oxidative stress response and insulin resistance in patients with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Bing-Feng Tian

    2018-07-01

    Full Text Available Objective: To study the correlation of serum GFAP, S100B and NSE contents with posttraumatic oxidative stress response and insulin resistance in patients with traumatic brain injury. Methods: A total of 110 patients with traumatic brain injury who were treated in our hospital between January 2015 and December 2016 were collected as the observation group, and 60 healthy subjects who received physical examination in our hospital during the same period were collected as normal control group. Serum GFAP, S100B and NSE levels as well as oxidative stress index and insulin resistance index levels of two groups of subjects were detected, and Pearson test was used to further evaluate the correlation of serum GFAP, S100B and NSE contents with oxidative stress response and insulin resistance in patients with traumatic brain injury. Results: Serum GFAP, S100B and NSE contents of observation group were significantly higher than those of normal control group; serum oxidative stress indexes MDA, MPO and LPO contents were higher than those of normal control group while SOD and TAC contents were lower than those of normal control group; serum insulin resistance indexes GLU, INS and HOMA-IR levels were higher than those of control group. Pearson test showed that serum GFAP, S100B and NSE contents in patients with traumatic brain injury were directly correlated with post-traumatic oxidative stress and insulin resistance. Conclusion: The serum GFAP, S100B and NSE contents increase in patients with traumatic brain injury, and the increase is directly correlated with the oxidative stress and insulin resistance.

  12. Acute Respiratory Distress Syndrome in Severe Brain Injury

    Directory of Open Access Journals (Sweden)

    Yu. A. Churlyaev

    2009-01-01

    Full Text Available Objective: to study the development of acute respiratory distress syndrome (ARDS in victims with isolated severe brain injury (SBI. Subject and methods. 171 studies were performed in 16 victims with SBI. Their general condition was rated as very critical. The patients were divided into three groups: 1 non-ARDS; 2 Stage 1 ARDS; and 3 Stage 2 ARDS. The indicators of Stages 1 and 2 were assessed in accordance with the classification proposed by V. V. Moroz and A. M. Golubev. Intracranial pressure (ICP, extravascular lung water index, pulmonary vascular permeability, central hemodynamics, oxygenation index, lung anastomosis, the X-ray pattern of the lung and brain (computed tomography, and its function were monitored. Results. The hemispheric cortical level of injury of the brain with function compensation of its stem was predominantly determined in the controls; subcompensation and decompensation were ascertained in the ARDS groups. According to the proposed classification, these patients developed Stages 1 and 2 ARDS. When ARDS developed, there were rises in the level of extravascular lung fluid and pulmonary vascular permeability, a reduction in the oxygenation index (it was 6—12 hours later as compared with them, increases in a lung shunt and ICP; X-ray study revealed bilateral infiltrates in the absence of heart failure in Stage 2 ARDS. The correlation was positive between ICP and extravascular lung water index, and lung vascular permeability index (r>0.4;p<0.05. Conclusion. The studies have indicated that the classification proposed by V. V. Moroz and A. M. Golubev enables an early diagnosis of ARDS. One of its causes is severe brainstem injury that results in increased extravascular fluid in the lung due to its enhanced vascular permeability. The ICP value is a determinant in the diagnosis of secondary brain injuries. Key words: acute respiratory distress syndrome, extravascu-lar lung fluid, pulmonary vascular permeability, brain injury

  13. Longitudinal Examination of Resilience After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    Science.gov (United States)

    Marwitz, Jennifer H; Sima, Adam P; Kreutzer, Jeffrey S; Dreer, Laura E; Bergquist, Thomas F; Zafonte, Ross; Johnson-Greene, Douglas; Felix, Elizabeth R

    2018-02-01

    To evaluate (1) the trajectory of resilience during the first year after a moderate-severe traumatic brain injury (TBI); (2) factors associated with resilience at 3, 6, and 12 months postinjury; and (3) changing relationships over time between resilience and other factors. Longitudinal analysis of an observational cohort. Five inpatient rehabilitation centers. Patients with TBI (N=195) enrolled in the resilience module of the TBI Model Systems study with data collected at 3-, 6-, and 12-month follow-up. Not applicable. Connor-Davidson Resilience Scale. Initially, resilience levels appeared to be stable during the first year postinjury. Individual growth curve models were used to examine resilience over time in relation to demographic, psychosocial, and injury characteristics. After adjusting for these characteristics, resilience actually declined over time. Higher levels of resilience were related to nonminority status, absence of preinjury substance abuse, lower anxiety and disability level, and greater life satisfaction. Resilience is a construct that is relevant to understanding brain injury outcomes and has potential value in planning clinical interventions. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. Family needs in the chronic phase after severe brain injury in Denmark

    DEFF Research Database (Denmark)

    Doser, Karoline; Norup, Anne

    2014-01-01

    Abstract Objective: This preliminary study aimed at investigating (1) changes in the status of family members between time of injury and follow-up in the chronic phase and (2) the most important needs within the family in the chronic phase and whether the needs were perceived as met. Participants......: The sample comprised 42 relatives (76% female, mean age = 53 years) of patients with severe brain injury, who had received intensive sub-acute rehabilitation. The relatives were contacted in the chronic phase after brain injury. Outcome measure: A set of questions about demographics and time spent caregiving...... for the patient was completed. The relatives completed the revised version of the Family Needs Questionnaire, a questionnaire consisting of 37 items related to different needs following brain injury. Results: Significant changes in status were found in employment (z = -3.464, p = 0.001) and co-habitation (z = -3...

  15. Case Report - Severe traumatic brain injury managed with ...

    African Journals Online (AJOL)

    Patients with severe taumatic brain injury may develop intractable raised ICP resulting in high mortality and morbidity. This may be anticipated from the patient's clinical status and imaging findings even where intracranial monitoring is unavailable. Outcome may be improved by early and aggressive control of ICP and ...

  16. Microstructural brain injury in post-concussion syndrome after minor head injury

    International Nuclear Information System (INIS)

    Smits, Marion; Wielopolski, Piotr A.; Vernooij, Meike W.; Lugt, Aad van der; Houston, Gavin C.; Dippel, Diederik W.J.; Koudstaal, Peter J.; Hunink, M.G.M.

    2011-01-01

    After minor head injury (MHI), post-concussive symptoms commonly occur. The purpose of this study was to correlate the severity of post-concussive symptoms in MHI patients with MRI measures of microstructural brain injury, namely mean diffusivity (MD) and fractional anisotropy (FA), as well as the presence of microhaemorrhages. Twenty MHI patients and 12 healthy controls were scanned at 3 T using diffusion tensor imaging (DTI) and high-resolution gradient recalled echo (HRGRE) T2*-weighted sequences. One patient was excluded from the analysis because of bilateral subdural haematomas. DTI data were preprocessed using Tract Based Spatial Statistics. The resulting MD and FA images were correlated with the severity of post-concussive symptoms evaluated with the Rivermead Postconcussion Symptoms Questionnaire. The number and location of microhaemorrhages were assessed on the HRGRE T2*-weighted images. Comparing patients with controls, there were no differences in MD. FA was decreased in the right temporal subcortical white matter. MD was increased in association with the severity of post-concussive symptoms in the inferior fronto-occipital fasciculus (IFO), the inferior longitudinal fasciculus and the superior longitudinal fasciculus. FA was reduced in association with the severity of post-concussive symptoms in the uncinate fasciculus, the IFO, the internal capsule and the corpus callosum, as well as in the parietal and frontal subcortical white matter. Microhaemorrhages were observed in one patient only. The severity of post-concussive symptoms after MHI was significantly correlated with a reduction of white matter integrity, providing evidence of microstructural brain injury as a neuropathological substrate of the post-concussion syndrome. (orig.)

  17. Multi-scale mechanics of traumatic brain injury

    NARCIS (Netherlands)

    Cloots, R.J.H.

    2011-01-01

    Traumatic brain injury (TBI) can be caused by road traffic, sports-related or other types of accidents and often leads to permanent health issues or even death. For a good prevention or diagnosis of TBI, brain injury criteria are used to assess the probability of brain injury as a result of a

  18. Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Ming-Xiong Huang

    2014-01-01

    Full Text Available Traumatic brain injury (TBI is a leading cause of sustained impairment in military and civilian populations. However, mild TBI (mTBI can be difficult to detect using conventional MRI or CT. Injured brain tissues in mTBI patients generate abnormal slow-waves (1–4 Hz that can be measured and localized by resting-state magnetoencephalography (MEG. In this study, we develop a voxel-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mTBI on a single-subject basis. A normative database of resting-state MEG source magnitude images (1–4 Hz from 79 healthy control subjects was established for all brain voxels. The high-resolution MEG source magnitude images were obtained by our recent Fast-VESTAL method. In 84 mTBI patients with persistent post-concussive symptoms (36 from blasts, and 48 from non-blast causes, our method detected abnormalities at the positive detection rates of 84.5%, 86.1%, and 83.3% for the combined (blast-induced plus with non-blast causes, blast, and non-blast mTBI groups, respectively. We found that prefrontal, posterior parietal, inferior temporal, hippocampus, and cerebella areas were particularly vulnerable to head trauma. The result also showed that MEG slow-wave generation in prefrontal areas positively correlated with personality change, trouble concentrating, affective lability, and depression symptoms. Discussion is provided regarding the neuronal mechanisms of MEG slow-wave generation due to deafferentation caused by axonal injury and/or blockages/limitations of cholinergic transmission in TBI. This study provides an effective way for using MEG slow-wave source imaging to localize affected areas and supports MEG as a tool for assisting the diagnosis of mTBI.

  19. Clinical Utility of '9{sup 9m}Tc-HMPAO Brain SPECT Findings in Chronic Head Injury

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jin ll; Chung, Tae Sub; Suh, Jung Ho; Kim, Dong Ik; Lee, Jong Doo; Park, Chang Yoon; Kim, Young Soo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1992-03-15

    Minima deterioration of cerebral perfusion or microanatomical changes were undetectable on conventional Brain CT or MRI. So evaluation of focal functional changes of the brain parenchyme is essential in chronic head injury patients, who did not show focal anatomical changes on these radiological studies. However, the patients who had longstanding neurologic sequelae following head injury, there had been no available imaging modalities for evaluating these patients precisely. Therefore we tried to detect the focal functional changes on the brain parenchyme using {sup 99m}Tc-HMPAO Brain SPECT on the patients of chronic head injuries. Twenty three patients who had suffered from headache, memory dysfunction, personality change and insomnia lasting more than six months following head injury were included in our cases, which showed no anatomical abnormalities on Brain CT or MRI. At first they underwent psychological test whether the symptoms were organic or not. Also we were able to evaluate the cerebral perfusion changes with {sup 99m}Tc-HMPAO Brain SPECT in 22 patients among the 23, which five patients were focal and 17 patients were nonfocally diffuse perfusion changes. Thus we can predict the perfusion changes such as local vascular deterioration or functional defects using {sup 99m}Tc-HMPAO Brain SPECT in the patients who had suffered from post-traumatic sequelae, which changes were undetectable on Brain CT or MRI.

  20. Development of brain injury criteria (BrIC).

    Science.gov (United States)

    Takhounts, Erik G; Craig, Matthew J; Moorhouse, Kevin; McFadden, Joe; Hasija, Vikas

    2013-11-01

    Rotational motion of the head as a mechanism for brain injury was proposed back in the 1940s. Since then a multitude of research studies by various institutions were conducted to confirm/reject this hypothesis. Most of the studies were conducted on animals and concluded that rotational kinematics experienced by the animal's head may cause axonal deformations large enough to induce their functional deficit. Other studies utilized physical and mathematical models of human and animal heads to derive brain injury criteria based on deformation/pressure histories computed from their models. This study differs from the previous research in the following ways: first, it uses two different detailed mathematical models of human head (SIMon and GHBMC), each validated against various human brain response datasets; then establishes physical (strain and stress based) injury criteria for various types of brain injury based on scaled animal injury data; and finally, uses Anthropomorphic Test Devices (ATDs) (Hybrid III 50th Male, Hybrid III 5th Female, THOR 50th Male, ES-2re, SID-IIs, WorldSID 50th Male, and WorldSID 5th Female) test data (NCAP, pendulum, and frontal offset tests) to establish a kinematically based brain injury criterion (BrIC) for all ATDs. Similar procedures were applied to college football data where thousands of head impacts were recorded using a six degrees of freedom (6 DOF) instrumented helmet system. Since animal injury data used in derivation of BrIC were predominantly for diffuse axonal injury (DAI) type, which is currently an AIS 4+ injury, cumulative strain damage measure (CSDM) and maximum principal strain (MPS) were used to derive risk curves for AIS 4+ anatomic brain injuries. The AIS 1+, 2+, 3+, and 5+ risk curves for CSDM and MPS were then computed using the ratios between corresponding risk curves for head injury criterion (HIC) at a 50% risk. The risk curves for BrIC were then obtained from CSDM and MPS risk curves using the linear relationship

  1. Fitness to drive after traumatic brain injury

    NARCIS (Netherlands)

    Brouwer, WH; Withaar, FK

    This paper deals with the issue of fitness to drive in patients suffering from traumatic brain injury (TBI). Guidelines for assessment are proposed and three types of studies are reviewed: studies about impairments of attention and information processing, studies of driving competence, and driver

  2. Predictors of Hypopituitarism in Patients with Traumatic Brain Injury.

    Science.gov (United States)

    Silva, Paula P B; Bhatnagar, Saurabha; Herman, Seth D; Zafonte, Ross; Klibanski, Anne; Miller, Karen K; Tritos, Nicholas A

    2015-11-15

    Hypopituitarism may often occur in association with traumatic brain injury (TBI). Identification of reliable predictors of pituitary dysfunction is of importance in order to establish a rational testing approach. We searched the records of patients with TBI, who underwent neuroendocrine evaluation in our institution between 2007 and 2013. One hundred sixty-six adults (70% men) with TBI (median age: 41.6 years; range: 18-76) were evaluated at a median interval of 40.4 months (0.2-430.4).Of these, 31% had ≥1 pituitary deficiency, including 29% of patients with mild TBI and 35% with moderate/severe TBI. Growth hormone deficiency was the most common deficiency (21%); when body mass index (BMI)-dependent cutpoints were used, this was reduced to 15%. Central hypoadrenalism occurred in10%, who were more likely to have suffered a motor vehicle accident (MVA, p = 0.04), experienced post-traumatic seizures (p = 0.04), demonstrated any intracranial hemorrhage (p = 0.05), petechial brain hemorrhages (p = 0.017), or focal cortical parenchymal contusions (p = 0.02). Central hypothyroidism occurred in 8% and central hypogonadism in 12%; the latter subgroup had higher BMI (p = 0.03), were less likely to be working after TBI (p = 0.002), and had lower Global Assessment of Functioning (GAF) scores (p = 0.03). Central diabetes insipidus (DI) occurred in 6%, who were more likely to have experienced MVA (p hypopituitarism.

  3. Assessment of Students with Traumatic Brain Injury

    Science.gov (United States)

    Chesire, David J.; Buckley, Valerie A.; Canto, Angela I.

    2011-01-01

    The incidence of brain injuries, as well as their impact on individuals who sustain them, has received growing attention from American media in recent years. This attention is likely the result of high profile individuals suffering brain injuries. Greater public awareness of traumatic brain injuries (TBIs) has also been promoted by sources such as…

  4. The emergence of artistic ability following traumatic brain injury.

    Science.gov (United States)

    Midorikawa, Akira; Kawamura, Mitsuru

    2015-02-01

    In this study, the case of a patient who developed artistic ability following a traumatic brain injury is reported. The subject was a 49-year-old male who suffered brain injury at the age of 44 due to an accidental fall. At age 48, he began drawing with great enthusiasm and quickly developed a personal style with his own biomorphic iconography. At first, his drawing was restricted to realistic reproductions of photographs of buildings, but his style of drawing changed and became more personal and expressionistic over the following 6 months.

  5. Brain Injury Safety Tips and Prevention

    Science.gov (United States)

    ... submit" name="commit" type="submit" value="Submit" /> Brain Injury Safety Tips and Prevention Recommend on Facebook ... not grass or dirt. More HEADS UP Video: Brain Injury Safety and Prevention frame support disabled and/ ...

  6. Traumatic Brain Injury in Domestic Violence Victims: A Retrospective Study at the Barrow Neurological Institute.

    Science.gov (United States)

    Zieman, Glynnis; Bridwell, Ashley; Cárdenas, Javier F

    2017-02-15

    Domestic violence is a national health crisis, which affects people of all ages, races, and socioeconomic classes. Traumatic brain injury is common in victims because of the high frequency of head and neck injuries inflicted through abuse. These recurrent injuries can lead to chronic symptoms with high morbidity. We conducted a retrospective chart review of 115 patients with a history of head trauma as a result of domestic violence. All patients were seen in a subspecialty traumatic brain injury clinic, at which time information regarding their histories and self-reported symptoms were recorded. In total, 109 females and 6 males were included in our study, with an age range of 4-68 years. Overall, 88% reported more than one injury and 81% reported a history of loss of consciousness associated with their injuries. Only 21% sought medical help at the time of injury. Whereas 85% had a history of abuse in adulthood, 22% had experienced abuse in both childhood and adulthood, and 60% of the patients abused as children went on to be abused as adults. Headache was the most common chief complaint, but on a self-reported symptom severity scale, behavioral symptoms were the most severe. Psychiatric disease was present in 84% of patients. Traumatic brain injury is a frequent sequela of domestic violence, from which many victims sustain multiple injuries without seeking medical care. Brain injuries are often sustained over many years and lead to lasting physical, behavioral, and cognitive consequences. Better understanding of these injuries will lead to improved care for this population.

  7. Research in rehabilitation treatment for patients with severe traumatic Brain Injury

    DEFF Research Database (Denmark)

    Schow, Trine

    2010-01-01

    it difficult if not impossible to investigate treatment outcome. This thesis has dealt with one of the widely used rehabilitation approaches used for, among others, swallowing difficulties: Facial Oral Tract Therapy (FOTT) ©. The studies in this thesis show that swallowing difficulties often occur in patients......  The therapeutic rehabilitation of patients with traumatic brain injury (TBI) has a limited evidence-based foundation. The current rehabilitation approaches have been developed mainly through clinical practice. They often consist of many components that are defined in incomplete ways, making...... with severe TBI admitted for subacute rehabilitation (93%), pneumonia was found in 12%. The many components of FOTT are defined in a treatment manual; we developed and tested a method that can measure whether therapist uses FOTT appropriately. In addition, we developed and validated a FOTT clinical evaluation...

  8. Correlation between brain injury and dysphagia in adult patients with stroke

    Directory of Open Access Journals (Sweden)

    Nunes, Maria Cristina de Alencar

    2012-01-01

    Full Text Available Introduction: In the literature, the incidence of oropharyngeal dysphagia in patients with cerebrovascular accident (AVE ranges 20-90%. Some studies correlate the location of a stroke with dysphagia, while others do not. Objective: To correlate brain injury with dysphagia in patients with stroke in relation to the type and location of stroke. Method: A prospective study conducted at the Hospital de Clinicas with 30 stroke patients: 18 women and 12 men. All patients underwent clinical evaluation and swallowing nasolaryngofibroscopy (FEES®, and were divided based on the location of the injury: cerebral cortex, cerebellar cortex, subcortical areas, and type: hemorrhagic or transient ischemic. Results: Of the 30 patients, 18 had ischemic stroke, 10 had hemorrhagic stroke, and 2 had transient stroke. Regarding the location, 10 lesions were in the cerebral cortex, 3 were in the cerebral and cerebellar cortices, 3 were in the cerebral cortex and subcortical areas, and 3 were in the cerebral and cerebellar cortices and subcortical areas. Cerebral cortex and subcortical area ischemic strokes predominated in the clinical evaluation of dysphagia. In FEES®, decreased laryngeal sensitivity persisted following cerebral cortex and ischemic strokes. Waste in the pharyngeal recesses associated with epiglottic valleculae predominated in the piriform cortex in all lesion areas and in ischemic stroke. A patient with damage to the cerebral and cerebellar cortices from an ischemic stroke exhibited laryngeal penetration and tracheal aspiration of liquid and honey. Conclusion: Dysphagia was prevalent when a lesion was located in the cerebral cortex and was of the ischemic type.

  9. MICROGLIA ACTIVATION AS A BIOMARKER FOR TRAUMATIC BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    Diana G Hernadez-Ontiveros

    2013-03-01

    Full Text Available Traumatic brain injury (TBI has become the signature wound of wars in Afghanistan and Iraq. Injury may result from a mechanical force, a rapid acceleration-deceleration movement, or a blast wave. A cascade of secondary cell death events ensues after the initial injury. In particular, multiple inflammatory responses accompany TBI. A series of inflammatory cytokines and chemokines spreads to normal brain areas juxtaposed to the core impacted tissue. Among the repertoire of immune cells involved, microglia is a key player in propagating inflammation to tissues neighboring the core site of injury. Neuroprotective drug trials in TBI have failed, likely due to their sole focus on abrogating neuronal cell death and ignoring the microglia response despite these inflammatory cells’ detrimental effects on the brain. Another relevant point to consider is the veracity of results of animal experiments due to deficiencies in experimental design, such as incomplete or inadequate method description, data misinterpretation and reporting may introduce bias and give false-positive results. Thus, scientific publications should follow strict guidelines that include randomization, blinding, sample-size estimation and accurate handling of all data (Landis et al., 2012. A prolonged state of inflammation after brain injury may linger for years and predispose patients to develop other neurological disorders, such as Alzheimer’s disease. TBI patients display progressive and long-lasting impairments in their physical, cognitive, behavioral, and social performance. Here, we discuss inflammatory mechanisms that accompany TBI in an effort to increase our understanding of the dynamic pathological condition as the disease evolves over time and begin to translate these findings for defining new and existing inflammation-based biomarkers and treatments for TBI.

  10. Technetium-99m-HMPAO SPECT in the evaluation of patients with a remote history of traumatic brain injury: a comparison with x-ray computed tomography.

    Science.gov (United States)

    Gray, B G; Ichise, M; Chung, D G; Kirsh, J C; Franks, W

    1992-01-01

    The functional imaging modality has potential for demonstrating parenchymal abnormalities not detectable by traditional morphological imaging. Fifty-three patients with a remote history of traumatic brain injury (TBI) were studied with SPECT using 99mTc-hexamethylpropyleneamineoxime (HMPAO) and x-ray computed tomography (CT). Overall, 42 patients (80%) showed regional cerebral blood flow (rCBF) deficits by HMPAO SPECT, whereas 29 patients (55%) showed morphological abnormalities by CT. Out of 20 patients with minor head injury, 12 patients (60%) showed rCBF deficits and 5 patients (25%) showed CT abnormalities. Of 33 patients with major head injury, 30 patients (90%) showed rCBF deficits and 24 patients (72%) showed CT abnormalities. Thus, HMPAO SPECT was more sensitive than CT in detecting abnormalities in patients with a history of TBI, particularly in the minor head injury group. In the major head injury group, three patients showed localized cortical atrophy by CT and normal rCBF by HMPAO SPECT. In the evaluation of TBI patients, HMPAO SPECT is a useful technique to demonstrate regional brain dysfunction in the presence of morphological integrity as assessed by CT.

  11. Therapist-Assisted Rehabilitation of Visual Function and Hemianopia after Brain Injury

    DEFF Research Database (Denmark)

    Rasmussen, Rune Skovgaard; Schaarup, Anne Marie Heltoft; Overgaard, Karsten

    2018-01-01

    to a small extent during the first month after brain damage, and therefore the time window for spontaneous improvements is limited. One month after brain injury causing visual impairment, patients usually will experience chronically impaired vision and the need for compensatory vision rehabilitation...... is substantial. OBJECTIVE: The purpose of this study is to investigate whether rehabilitation with Neuro Vision Technology will result in a significant and lasting improvement in functional capacity in persons with chronic visual impairments after brain injury. Improving eyesight is expected to increase both...... physical and mental functioning, thus improving the quality of life. METHODS: This is a prospective open label trial in which participants with chronic visual field impairments are examined before and after the intervention. Participants typically suffer from stroke or traumatic brain injury...

  12. MRI of perinatal brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Mary; Allsop, Joanna [Imperial College, Robert Steiner MR Unit, Perinatal Imaging, MRC Clinical Sciences Centre, Hammersmith Hospital, London (United Kingdom); Martinez Biarge, Miriam [La Paz University Hospital, Dept of Neonatology, Madrid (Spain); Counsell, Serena [Imperial College, Robert Steiner MR Unit, Neonatal Medicine, MRC Clinical Sciences Centre, Hammersmith Hospital, London (United Kingdom); Cowan, Frances [Imperial College, Dept of Paediatrics, Hammersmith Hospital, London (United Kingdom)

    2010-06-15

    MRI is invaluable in assessing the neonatal brain following suspected perinatal injury. Good quality imaging requires adaptations to both the hardware and the sequences used for adults or older children. The perinatal and postnatal details often predict the pattern of lesions sustained and should be available to aid interpretation of the imaging findings. Perinatal lesions, the pattern of which can predict neurodevelopmental outcome, are at their most obvious on conventional imaging between 1 and 2 weeks from birth. Very early imaging during the first week may be useful to make management decisions in ventilated neonates but brain abnormalities may still be subtle using conventional sequences. Diffusion-weighted imaging (DWI) is very useful for the early identification of ischaemic tissue in the neonatal brain but may underestimate the final extent of injury, particularly basal ganglia and thalamic lesions. MR imaging is an excellent predictor of outcome following perinatal brain injury and can therefore be used as a biomarker in interventional trials designed to reduce injury and improve neurodevelopmental outcome. (orig.)

  13. MRI of perinatal brain injury

    International Nuclear Information System (INIS)

    Rutherford, Mary; Allsop, Joanna; Martinez Biarge, Miriam; Counsell, Serena; Cowan, Frances

    2010-01-01

    MRI is invaluable in assessing the neonatal brain following suspected perinatal injury. Good quality imaging requires adaptations to both the hardware and the sequences used for adults or older children. The perinatal and postnatal details often predict the pattern of lesions sustained and should be available to aid interpretation of the imaging findings. Perinatal lesions, the pattern of which can predict neurodevelopmental outcome, are at their most obvious on conventional imaging between 1 and 2 weeks from birth. Very early imaging during the first week may be useful to make management decisions in ventilated neonates but brain abnormalities may still be subtle using conventional sequences. Diffusion-weighted imaging (DWI) is very useful for the early identification of ischaemic tissue in the neonatal brain but may underestimate the final extent of injury, particularly basal ganglia and thalamic lesions. MR imaging is an excellent predictor of outcome following perinatal brain injury and can therefore be used as a biomarker in interventional trials designed to reduce injury and improve neurodevelopmental outcome. (orig.)

  14. A Study of Emotionalism in Patients Undergoing Rehabilitation following Severe Acquired Brain Injury

    Directory of Open Access Journals (Sweden)

    Joanna McGrath

    2000-01-01

    Full Text Available The present study describes the phenomenon of emotionalism in a sample of brain injured patients of mixed aetiology, with a view to identifying issues relevant to clinical management, and possible causal factors. 82 subjects with severe acquired brain injury undergoing rehabilitation participated in a structured interview in which they were asked to report the presence/absence of emotionalism and degree of distress associated with it. Their overt crying behaviour was also observed and recorded. Independent variables that predicted crying during the interview were identified using a multiple logistic regression procedure. Prevalence rates of emotionalism-tearfulness were high in this sample (52% self-report, 36–41% Emotionalism-laughter was much less common (13% Emotionalism-tearfulness was usually accompanied by negative affect, occurred in response to identifiable precipitants, and was often controllable. It was associated with major personal distress in about half the subjects who reported it. Independent variables which predicted crying behaviour were female gender and focal damage to the right cerebral hemisphere. It is concluded that an increased readiness to cry is common in people with severe acquired brain injury of mixed aetiology. The behaviour is meaningful, though not always distressing. The intensity of the behaviour is variable, and it may be most appropriate to regard emotionalism as a dimension rather than a syndrome. Implications for clinical management are discussed.

  15. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an external...

  16. Hyperbaric Oxygen Therapy Can Induce Angiogenesis and Regeneration of Nerve Fibers in Traumatic Brain Injury Patients

    Directory of Open Access Journals (Sweden)

    Sigal Tal

    2017-10-01

    Full Text Available Background: Recent clinical studies in stroke and traumatic brain injury (TBI victims suffering chronic neurological injury present evidence that hyperbaric oxygen therapy (HBOT can induce neuroplasticity.Objective: To assess the neurotherapeutic effect of HBOT on prolonged post-concussion syndrome (PPCS due to TBI, using brain microstructure imaging.Methods: Fifteen patients afflicted with PPCS were treated with 60 daily HBOT sessions. Imaging evaluation was performed using Dynamic Susceptibility Contrast-Enhanced (DSC and Diffusion Tensor Imaging (DTI MR sequences. Cognitive evaluation was performed by an objective computerized battery (NeuroTrax.Results: HBOT was initiated 6 months to 27 years (10.3 ± 3.2 years from injury. After HBOT, DTI analysis showed significantly increased fractional anisotropy values and decreased mean diffusivity in both white and gray matter structures. In addition, the cerebral blood flow and volume were increased significantly. Clinically, HBOT induced significant improvement in the memory, executive functions, information processing speed and global cognitive scores.Conclusions: The mechanisms by which HBOT induces brain neuroplasticity can be demonstrated by highly sensitive MRI techniques of DSC and DTI. HBOT can induce cerebral angiogenesis and improve both white and gray microstructures indicating regeneration of nerve fibers. The micro structural changes correlate with the neurocognitive improvements.

  17. Spreading depolarisations and outcome after traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Bullock, M Ross; Okonkwo, David O

    2011-01-01

    Pathological waves of spreading mass neuronal depolarisation arise repeatedly in injured, but potentially salvageable, grey matter in 50-60% of patients after traumatic brain injury (TBI). We aimed to ascertain whether spreading depolarisations are independently associated with unfavourable...

  18. 99mTc-HMPAO SPECT of the brain in mild to moderate traumatic brain injury patients: compared with CT--a prospective study.

    Science.gov (United States)

    Nedd, K; Sfakianakis, G; Ganz, W; Uricchio, B; Vernberg, D; Villanueva, P; Jabir, A M; Bartlett, J; Keena, J

    1993-01-01

    Single photon emission computed tomography (SPECT) with Technetium-99m hexamethyl propylenamine oxime (Tc-99m-HMPAO) was used in 20 patients with mild to moderate traumatic brain injury (TBI) to evaluate the effects of brain trauma on regional cerebral blood flow (rCBF). SPECT scan was compared with CT scan in 16 patients. SPECT showed intraparenchymal differences in rCBF more often than lesions diagnosed with CT scans (87.5% vs. 37.5%). In five of six patients with lesions in both modalities, the area of involvement was relatively larger on SPECT scans than on CT scans. Contrecoup changes were seen in five patients on SPECT alone, two patients with CT alone and one patient had contrecoup lesions on CT and SPECT. Of the eight patients (50%) with skull fractures, seven (43.7%) had rCBF findings on SPECT scan and five (31.3%) demonstrated decrease in rCBF in brain underlying the fracture. All these patients with fractures had normal brain on CT scans. Conversely, extra-axial lesions and fractures evident on CT did not visualize on SPECT, but SPECT demonstrated associated changes in rCBF. Although there is still lack of clinical and pathological correlation, SPECT appears to be a promising method for a more sensitive evaluation of axial lesions in patients with mild to moderate TBI.

  19. Revisited: A Systematic Review of Therapeutic Hypothermia for Adult Patients Following Traumatic Brain Injury.

    Science.gov (United States)

    Watson, Hannah I; Shepherd, Andrew A; Rhodes, Jonathan K J; Andrews, Peter J D

    2018-06-01

    Therapeutic hypothermia has been of topical interest for many years and with the publication of two international, multicenter randomized controlled trials, the evidence base now needs updating. The aim of this systematic review of randomized controlled trials is to assess the efficacy of therapeutic hypothermia in adult traumatic brain injury focusing on mortality, poor outcomes, and new pneumonia. The following databases were searched from January 1, 2011, to January 26, 2018: Cochrane Central Register of Controlled Trial, MEDLINE, PubMed, and EMBASE. Only foreign articles published in the English language were included. Only articles that were randomized controlled trials investigating adult traumatic brain injury sustained following an acute, closed head injury were included. Two authors independently assessed at each stage. Quality was assessed using the Cochrane Collaboration's tool for assessing the risk of bias. All extracted data were combined using the Mantel-Haenszel estimator for pooled risk ratio with 95% CIs. p value of less than 0.05 was considered statistically significant. All statistical analyses were conducted using RevMan 5 (Cochrane Collaboration, Version 5.3, Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014). Twenty-two studies with 2,346 patients are included. Randomized controlled trials with a low risk of bias show significantly more mortality in the therapeutic hypothermia group (risk ratio, 1.37; 95% CI, 1.04-1.79; p = 0.02), whereas randomized controlled trials with a high risk of bias show the opposite with a higher mortality in the control group (risk ratio, 0.70; 95% CI, 0.60-0.82; p < 0.00001). Overall, this review is in-keeping with the conclusions published by the most recent randomized controlled trials. High-quality studies show no significant difference in mortality, poor outcomes, or new pneumonia. In addition, this review shows a place for fever control in the management of traumatic brain injury.

  20. Blood Coagulation and Acid-Base Balance at Craniocerebral Hypothermia in Patients with Severe Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    V. E. Avakov

    2015-01-01

    Full Text Available Systemic therapeutic hypothermia has gained a negative reputation in treating multiple trauma patients and is regarded as one of the factors in the lethal triad of shock, acidosis, and hypothermia. This fact owes to no relationship between acidosis and hypothermia; the effects of the latter on coagulation are evident and complexly reversible in the presence of acidosis.Objective: to determine the impact of noninvasive local brain cooling on the metabolic and blood coagulation indicators of a patient with acute cerebral ischemia.Subjects and methods. The subjects of the study were 113 patients with severe brain injury, including that complicated by the involvement of stem structures, who underwent brain cooling in different modifications. In so doing, the val ues of acidbase balance and coagulation system in arterial and venous blood were investigated.Results. Local brain hypother mia was not found to affect coagulation while the baseline negative values of excess buffer bases showed positive values (a right shift by the end of cooling. Recommendations were given to prevent metabolic shifts.Conclusion. Patients at very high risk for bleeding may be safely cooled to a brain temperature of 32—34°C even in the presence of moderatetosevere acidosis. This is a great advantage of local hypothermia over systemic one.

  1. Prevalence and Predictors of Personality Change After Severe Brain Injury

    DEFF Research Database (Denmark)

    Norup, Anne; Mortensen, Erik Lykke

    2015-01-01

    of the Medical Outcomes Study 36-Item Short-Form Health Survey. Results Of the sample, 59.1% experienced personality change after acquired brain injury, and the most dominant changes were observed in the personality traits of neuroticism, extraversion, and conscientiousness. Changes in neuroticism were most......Objectives To investigate the prevalence of personality change after severe brain injury; to identify predictors of personality change; and to investigate whether personality change is associated with distress in family members. Design A longitudinal study of personality change. Setting...... often observed in patients with frontal or temporal lesions. Generally, personality changes in patients were not associated with more distress and lower HRQOL in family members; however, change in patient agreeableness was associated with lower HRQOL on the role limitations-emotional scale. Conclusions...

  2. Hypertonic saline solution reduces the oxidative stress responses in traumatic brain injury patients

    Directory of Open Access Journals (Sweden)

    Mojtaba Mojtahedzadeh

    2014-01-01

    Full Text Available Background: Oxidative stress processes play an important role in the pathogenesis of secondary brain injury after traumatic brain injury (TBI. Hypertonic saline (HTS has advantages as being preferred osmotic agent, but few studies investigated oxidant and antioxidant effects of HTS in TBI. This study was designed to compare two different regimens of HTS 5% with mannitol on TBI-induced oxidative stress. Materials and Methods: Thirty-three adult patients with TBI were recruited and have randomly received one of the three protocols: 125 cc of HTS 5% every 6 h as bolus, 500 cc of HTS 5%as infusion for 24 h or 1 g/kg mannitol of 20% as a bolus, repeated with a dose of 0.25-0.5 g/kg every 6 h based on patient′s response for 3 days. Serum total antioxidant power (TAP, reactive oxygen species (ROS and nitric oxide (NO were measured at baseline and daily for 3 days. Results: Initial serum ROS and NO levels in patients were higher than control(6.86± [3.2] vs. 1.57± [0.5] picoM, P = 0.001, 14.6± [1.6] vs. 7.8± [3.9] mM, P = 0.001, respectively. Levels of ROS have decreased for all patients, but reduction was significantly after HTS infusion and mannitol (3. 08 [±3.1] to 1.07 [±1.6], P = 0.001, 5.6 [±3.4] to 2.5 [±1.8], P = 0.003 respectively. During study, NO levels significantly decreased in HTS infusion but significantly increased in mannitol. TAP Levels had decreased in all patients during study especially in mannitol (P = 0.004. Conclusion: Hypertonic saline 5% has significant effects on the oxidant responses compared to mannitol following TBI that makes HTS as a perfect therapeutic intervention for reducing unfavorable outcomes in TBI patients.

  3. Exposure to Surgery and Anesthesia After Concussion Due to Mild Traumatic Brain Injury.

    Science.gov (United States)

    Abcejo, Arnoley S; Savica, Rodolfo; Lanier, William L; Pasternak, Jeffrey J

    2017-07-01

    To describe the epidemiology of surgical and anesthetic procedures in patients recently diagnosed as having a concussion due to mild traumatic brain injury. Study patients presented to a tertiary care center after a concussion due to mild traumatic brain injury from July 1, 2005, through June 30, 2015, and underwent a surgical procedure and anesthesia support under the direct or indirect care of a physician anesthesiologist. During the study period, 1038 patients met all the study inclusion criteria and subsequently received 1820 anesthetics. In this population of anesthetized patients, rates of diagnosed concussions due to sports injuries, falls, and assaults, but not motor vehicle accidents, increased during 2010-2011. Concussions were diagnosed in 965 patients (93%) within 1 week after injury. In the 552 patients who had surgery within 1 week after concussive injury, 29 (5%) had anesthesia and surgical procedures unrelated to their concussion-producing traumatic injury. The highest use of surgery occurred early after injury and most frequently required general anesthesia. Orthopedic and general surgical procedures accounted for 57% of procedures. Nine patients received 29 anesthetics before a concussion diagnosis, and all of these patients had been involved in motor vehicle accidents and received at least 1 anesthetic within 1 week of injury. Surgical and anesthesia use are common in patients after concussion. Clinicians should have increased awareness for concussion in patients who sustain a trauma and may need to take measures to avoid potentially injury-augmenting cerebral physiology in these patients. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  4. Eye tracking detects disconjugate eye movements associated with structural traumatic brain injury and concussion.

    Science.gov (United States)

    Samadani, Uzma; Ritlop, Robert; Reyes, Marleen; Nehrbass, Elena; Li, Meng; Lamm, Elizabeth; Schneider, Julia; Shimunov, David; Sava, Maria; Kolecki, Radek; Burris, Paige; Altomare, Lindsey; Mehmood, Talha; Smith, Theodore; Huang, Jason H; McStay, Christopher; Todd, S Rob; Qian, Meng; Kondziolka, Douglas; Wall, Stephen; Huang, Paul

    2015-04-15

    Disconjugate eye movements have been associated with traumatic brain injury since ancient times. Ocular motility dysfunction may be present in up to 90% of patients with concussion or blast injury. We developed an algorithm for eye tracking in which the Cartesian coordinates of the right and left pupils are tracked over 200 sec and compared to each other as a subject watches a short film clip moving inside an aperture on a computer screen. We prospectively eye tracked 64 normal healthy noninjured control subjects and compared findings to 75 trauma subjects with either a positive head computed tomography (CT) scan (n=13), negative head CT (n=39), or nonhead injury (n=23) to determine whether eye tracking would reveal the disconjugate gaze associated with both structural brain injury and concussion. Tracking metrics were then correlated to the clinical concussion measure Sport Concussion Assessment Tool 3 (SCAT3) in trauma patients. Five out of five measures of horizontal disconjugacy were increased in positive and negative head CT patients relative to noninjured control subjects. Only one of five vertical disconjugacy measures was significantly increased in brain-injured patients relative to controls. Linear regression analysis of all 75 trauma patients demonstrated that three metrics for horizontal disconjugacy negatively correlated with SCAT3 symptom severity score and positively correlated with total Standardized Assessment of Concussion score. Abnormal eye-tracking metrics improved over time toward baseline in brain-injured subjects observed in follow-up. Eye tracking may help quantify the severity of ocular motility disruption associated with concussion and structural brain injury.

  5. [Changes of focal and brainstem neurologic signs in patients with traumatic brain injury and their dependence on the -675 4G/5G polymorphism in the PAI-1 gene].

    Science.gov (United States)

    Potapov, O; Kmyta, O

    2014-09-01

    Regressive course of neurological signs and symptoms is an important factor of evaluating the clinical course and treatment efficacy of traumatic brain injury. This article presents changes evaluation of focal and brainstem symptoms in 200 patients with traumatic brain injury, and determines the association between these changes and the -675 4G/5G polymorphism in the PAI-1 gene. We have found a connection between 4G/4G and 4G/5G genotypes for the studied polymorphism and the changes of focal and brainstem symptoms in patients with traumatic brain injury. Thus, we have demonstrated that the clinical course of traumatic brain injury is influenced by the -675 4G/5G polymorphism in the PAI-1 gene.

  6. Who among patients with acquired brain injury returned to work after occupational rehabilitation? The rapid-return-to-work-cohort-study.

    Science.gov (United States)

    Aas, Randi Wågø; Haveraaen, Lise Aasen; Brouwers, Evelien P M; Skarpaas, Lisebet Skeie

    2017-07-20

    Acquired brain injury (ABI) is known to be severely disabling. On average, 40% of employees return to work (RTW) within two years after injury. There is, however, limited research on what might contribute to successful RTW. To examine factors that might impact the time-to first RTW for patients with ABI, participating in a RTW-program. The study was designed as a cohort study of patients on sick leave due to mild or moderate ABI (n = 137). The mean age of the patients was 51 years, and 58% were men. The most common diagnoses were stroke (75%) and traumatic brain injury (12%). Data were collected through questionnaires, and combined with register data on sickness absence. Survival analyses were used to analyse the effect of different variables on time to first RTW (full or partial), at one- and two-year follow-up. Generally, women (HR = 0.447; CI: 0.239-0.283) had higher RTW-rates than men, and patients with non-comorbid impairments returned to work earlier than patients with multiple impairments. Although not statistically significant, receiving individual consultations and participating in group-sessions were generally associated with a delayed RTW at both follow-up-times. The only service-related factor significantly associated with delayed RTW was meetings with the social insurance office (HR = 0.522; CI: 0.282-0.965), and only at one-year follow-up. Women and patients with non-comorbid impairments returned to work earlier than men and patients with multiple impairments. There seems to be an association between intense and long-lasting participation in the RTW program and prolonged time-to first-RTW, even after controlling for level of cognitive impairments and comorbidity. Implications for Rehabilitation Acquired brain injury (ABI) is known to be severely disabling, and persons with ABI often experience difficulties in regard to returning to work. This study provides information on prognostic factors that might contribute to return to work (RTW

  7. Patient Characterization Protocols for Psychophysiological Studies of Traumatic Brain Injury and Post-TBI Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Paul E. Rapp

    2013-07-01

    Full Text Available Psychophysiological investigations of traumatic brain injury (TBI are being conducted for several reasons, including the objective of learning more about the underlying physiological mechanisms of the pathological processes that can be initiated by a head injury. Additional goals include the development of objective physiologically based measures that can be used to monitor the response to treatment and to identify minimally symptomatic individuals who are at risk of delayed onset neuropsychiatric disorders following injury. Research programs studying TBI search for relationships between psychophysiological measures, particularly ERP component properties (e.g. timing, amplitude, scalp distribution, and a participant’s clinical condition. Moreover, the complex relationships between brain injury and psychiatric disorders are receiving increased research attention, and ERP technologies are making contributions to this effort. This review has two objectives supporting such research efforts. The first is to review evidence indicating that traumatic brain injury is a significant risk factor for post-injury neuropsychiatric disorders. The second objective is to introduce ERP researchers who are not familiar with neuropsychiatric assessment to the instruments that are available for characterizing traumatic brain injury, post-concussion syndrome, and psychiatric disorders. Specific recommendations within this very large literature are made. We have proceeded on the assumption that, as is typically the case in an ERP laboratory, the investigators are not clinically qualified and that they will not have access to participant medical records.

  8. Effects of atorvastatin on brain contusion volume and functional outcome of patients with moderate and severe traumatic brain injury; a randomized double-blind placebo-controlled clinical trial.

    Science.gov (United States)

    Farzanegan, Gholam Reza; Derakhshan, Nima; Khalili, Hosseinali; Ghaffarpasand, Fariborz; Paydar, Shahram

    2017-10-01

    The aim of the current study was to investigate the effects of atorvastatin on brain contusion volume and functional outcome of patients with moderate and severe traumatic brain injury (TBI). The study was conducted as a randomized clinical trial during a 16-month period from May 2015 and August 2016 in a level I trauma center in Shiraz, Southern Iran. We included 65 patients with moderate (GCS: 9-13) to severe (GCS: 5-8) TBI who had brain contusions of less than 30cc volume. We excluded those who required surgical intervention. Patients were randomly assigned to receive daily 20mg atorvastatin for 10days (n=21) or placebo in the same dosage (n=23). The brain contusion volumetry was performed on days 0, 3 and 7 utilizing spiral thin-cut brain CT-Scan (1-mm thickness). The outcome measured included modified Rankin scale (MRS), Glasgow Outcome Scale (GOS) and Disability rating Scale (DRS) which were all evaluated 3months post-injury. There was no significant difference between two study group regarding the baseline, 3rd day and 7th day of the contusion volume and the rate of contusion expansion. However, functional outcome scales of GOS, MRS and DRS at 3-months post-injury were significantly better in atorvastatin arm of the study compared to placebo (p values of 0.043, 0.039 and 0.030 respectively). Even though atorvastatin was not found to be more effective than placebo in reducing contusion expansion rate, it was associated with improved functional outcomes at 3-months following moderate to severe TBI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Further Controversies About Brain Tissue Oxygenation Pressure-Reactivity After Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Andresen, Morten; Donnelly, Joseph; Aries, Marcel

    2018-01-01

    arterial pressure and intracranial pressure. A new ORx index based on brain tissue oxygenation and cerebral perfusion pressure (CPP) has been proposed that similarly allows for evaluation of cerebrovascular reactivity. Conflicting results exist concerning its clinical utility. METHODS: Retrospective......BACKGROUND: Continuous monitoring of cerebral autoregulation is considered clinically useful due to its ability to warn against brain ischemic insults, which may translate to a relationship with adverse outcome. It is typically performed using the pressure reactivity index (PRx) based on mean...... analysis was performed in 85 patients with traumatic brain injury (TBI). ORx was calculated using three time windows of 5, 20, and 60 min. Correlation coefficients and individual "optimal CPP" (CPPopt) were calculated using both PRx and ORx, and relation to patient outcome investigated. RESULTS...

  10. Educational professionals' understanding of childhood traumatic brain injury.

    Science.gov (United States)

    Linden, Mark A; Braiden, Hannah-Jane; Miller, Sarah

    2013-01-01

    To determine the understanding of educational professionals around the topic of childhood brain injury and explore the factor structure of the Common Misconceptions about Traumatic Brain Injury Questionnaire (CM-TBI). Cross-sectional postal survey. The CM-TBI was posted to all educational establishments in one region of the UK. One representative from each school was asked to complete and return the questionnaire (n = 388). Differences were demonstrated between those participants who knew someone with a brain injury and those who did not, with a similar pattern being shown for those educators who had taught a child with brain injury. Participants who had taught a child with brain injury demonstrated greater knowledge in areas such as seatbelts/prevention, brain damage, brain injury sequelae, amnesia, recovery and rehabilitation. Principal components analysis suggested the existence of four factors and the discarding of half the original items of the questionnaire. In the first European study to explore this issue, it is highlighted that teachers are ill-prepared to cope with children who have sustained a brain injury. Given the importance of a supportive school environment in return to life following hospitalization, the lack of understanding demonstrated by teachers in this research may significantly impact on a successful return to school.

  11. Role of Melatonin in Traumatic Brain Injury and Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Mehar Naseem

    2014-01-01

    Full Text Available Brain and spinal cord are implicated in incidences of two of the most severe injuries of central nervous system (CNS. Traumatic brain injury (TBI is a devastating neurological deficit involving primary and secondary injury cascades. The primary and secondary mechanisms include complex consequences of activation of proinflammatory cytokines, cerebral edema, upregulation of NF-κβ, disruption of blood-brain barrier (BBB, and oxidative stress. Spinal cord injury (SCI includes primary and secondary injury cascades. Primary injury leads to secondary injury in which generation of free radicals and oxidative or nitrative damage play an important pathophysiological role. The indoleamine melatonin is a hormone secreted or synthesized by pineal gland in the brain which helps to regulate sleep and wake cycle. Melatonin has been shown to be a versatile hormone having antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. It has a special characteristic of crossing BBB. Melatonin has neuroprotective role in the injured part of the CNS after TBI and SCI. A number of studies have successfully shown its therapeutic value as a neuroprotective agent in the treatment of neurodegenerative diseases. Here in this review we have compiled the literature supporting consequences of CNS injuries, TBI and SCI, and the protective role of melatonin in it.

  12. Brain-computer interface after nervous system injury.

    Science.gov (United States)

    Burns, Alexis; Adeli, Hojjat; Buford, John A

    2014-12-01

    Brain-computer interface (BCI) has proven to be a useful tool for providing alternative communication and mobility to patients suffering from nervous system injury. BCI has been and will continue to be implemented into rehabilitation practices for more interactive and speedy neurological recovery. The most exciting BCI technology is evolving to provide therapeutic benefits by inducing cortical reorganization via neuronal plasticity. This article presents a state-of-the-art review of BCI technology used after nervous system injuries, specifically: amyotrophic lateral sclerosis, Parkinson's disease, spinal cord injury, stroke, and disorders of consciousness. Also presented is transcending, innovative research involving new treatment of neurological disorders. © The Author(s) 2014.

  13. Neuropsychology of traumatic brain injury: An expert overview.

    Science.gov (United States)

    Azouvi, P; Arnould, A; Dromer, E; Vallat-Azouvi, C

    Traumatic brain injury (TBI) is a serious healthcare problem, and this report is a selective review of recent findings on the epidemiology, pathophysiology and neuropsychological impairments following TBI. Patients who survive moderate-to-severe TBI frequently suffer from a wide range of cognitive deficits and behavioral changes due to diffuse axonal injury. These deficits include slowed information-processing and impaired long-term memory, attention, working memory, executive function, social cognition and self-awareness. Mental fatigue is frequently also associated and can exacerbate the consequences of neuropsychological deficits. Personality and behavioral changes can include combinations of impulsivity and apathy. Even mild TBI raises specific problems: while most patients recover within a few weeks or months, a minority of patients may suffer from long-lasting symptoms (post-concussion syndrome). The pathophysiology of such persistent problems remains a subject of debate, but seems to be due to both injury-related and non-injury-related factors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Quantification of structural changes in the corpus callosumin children with profound hypoxic-ischaemic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Stivaros, Stavros M. [Manchester Academic Health Science Centre, Academic Unit of Paediatric Radiology, Royal Manchester Children' s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester (United Kingdom); University of Manchester, Centre for Imaging Sciences, Institute of Population Health, Manchester (United Kingdom); Radon, Mark R. [The Walton Centre NHS Foundation Trust, Department of Neuroradiology, Liverpool (United Kingdom); Mileva, Reneta; Gledson, Ann; Keane, John A. [University of Manchester, School of Computer Science, Manchester (United Kingdom); Connolly, Daniel J.A.; Batty, Ruth [Sheffield Children' s Hospital NHS Foundation Trust, Department of Neuroradiology, Sheffield (United Kingdom); Cowell, Patricia E. [University of Sheffield, Department of Human Communication Sciences, Sheffield (United Kingdom); Hoggard, Nigel; Griffiths, Paul D. [University of Sheffield, Academic Unit of Radiology, Sheffield (United Kingdom); Wright, Neville B.; Tang, Vivian [Manchester Academic Health Science Centre, Academic Unit of Paediatric Radiology, Royal Manchester Children' s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester (United Kingdom)

    2016-01-15

    Birth-related acute profound hypoxic-ischaemic brain injury has specific patterns of damage including the paracentral lobules. To test the hypothesis that there is anatomically coherent regional volume loss of the corpus callosum as a result of this hemispheric abnormality. Study subjects included 13 children with proven acute profound hypoxic-ischaemic brain injury and 13 children with developmental delay but no brain abnormalities. A computerised system divided the corpus callosum into 100 segments, measuring each width. Principal component analysis grouped the widths into contiguous anatomical regions. We conducted analysis of variance of corpus callosum widths as well as support vector machine stratification into patient groups. There was statistically significant narrowing of the mid-posterior body and genu of the corpus callosum in children with hypoxic-ischaemic brain injury. Support vector machine analysis yielded over 95% accuracy in patient group stratification using the corpus callosum centile widths. Focal volume loss is seen in the corpus callosum of children with hypoxic-ischaemic brain injury secondary to loss of commissural fibres arising in the paracentral lobules. Support vector machine stratification into the hypoxic-ischaemic brain injury group or the control group on the basis of corpus callosum width is highly accurate and points towards rapid clinical translation of this technique as a potential biomarker of hypoxic-ischaemic brain injury. (orig.)

  15. Quantification of structural changes in the corpus callosumin children with profound hypoxic-ischaemic brain injury

    International Nuclear Information System (INIS)

    Stivaros, Stavros M.; Radon, Mark R.; Mileva, Reneta; Gledson, Ann; Keane, John A.; Connolly, Daniel J.A.; Batty, Ruth; Cowell, Patricia E.; Hoggard, Nigel; Griffiths, Paul D.; Wright, Neville B.; Tang, Vivian

    2016-01-01

    Birth-related acute profound hypoxic-ischaemic brain injury has specific patterns of damage including the paracentral lobules. To test the hypothesis that there is anatomically coherent regional volume loss of the corpus callosum as a result of this hemispheric abnormality. Study subjects included 13 children with proven acute profound hypoxic-ischaemic brain injury and 13 children with developmental delay but no brain abnormalities. A computerised system divided the corpus callosum into 100 segments, measuring each width. Principal component analysis grouped the widths into contiguous anatomical regions. We conducted analysis of variance of corpus callosum widths as well as support vector machine stratification into patient groups. There was statistically significant narrowing of the mid-posterior body and genu of the corpus callosum in children with hypoxic-ischaemic brain injury. Support vector machine analysis yielded over 95% accuracy in patient group stratification using the corpus callosum centile widths. Focal volume loss is seen in the corpus callosum of children with hypoxic-ischaemic brain injury secondary to loss of commissural fibres arising in the paracentral lobules. Support vector machine stratification into the hypoxic-ischaemic brain injury group or the control group on the basis of corpus callosum width is highly accurate and points towards rapid clinical translation of this technique as a potential biomarker of hypoxic-ischaemic brain injury. (orig.)

  16. Imaging evidence and recommendations for traumatic brain injury: advanced neuro- and neurovascular imaging techniques.

    Science.gov (United States)

    Wintermark, M; Sanelli, P C; Anzai, Y; Tsiouris, A J; Whitlow, C T

    2015-02-01

    Neuroimaging plays a critical role in the evaluation of patients with traumatic brain injury, with NCCT as the first-line of imaging for patients with traumatic brain injury and MR imaging being recommended in specific settings. Advanced neuroimaging techniques, including MR imaging DTI, blood oxygen level-dependent fMRI, MR spectroscopy, perfusion imaging, PET/SPECT, and magnetoencephalography, are of particular interest in identifying further injury in patients with traumatic brain injury when conventional NCCT and MR imaging findings are normal, as well as for prognostication in patients with persistent symptoms. These advanced neuroimaging techniques are currently under investigation in an attempt to optimize them and substantiate their clinical relevance in individual patients. However, the data currently available confine their use to the research arena for group comparisons, and there remains insufficient evidence at the time of this writing to conclude that these advanced techniques can be used for routine clinical use at the individual patient level. TBI imaging is a rapidly evolving field, and a number of the recommendations presented will be updated in the future to reflect the advances in medical knowledge. © 2015 by American Journal of Neuroradiology.

  17. Lymphocytes Contribute to the Pathophysiology of Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Arshed Nazmi

    2018-03-01

    Full Text Available BackgroundPeriventricular leukomalacia (PVL is the most common form of preterm brain injury affecting the cerebral white matter. This type of injury involves a multiphase process and is induced by many factors, including hypoxia–ischemia (HI and infection. Previous studies have suggested that lymphocytes play a significant role in the pathogenesis of brain injury, and the aim of this study was to determine the contribution of lymphocyte subsets to preterm brain injury.MethodsImmunohistochemistry on brain sections from neonatal mice was performed to evaluate the extent of brain injury in wild-type and T cell and B cell-deficient neonatal mice (Rag1−/− mice using a mouse model of HI-induced preterm brain injury. Flow cytometry was performed to determine the presence of different types of immune cells in mouse brains following HI. In addition, immunostaining for CD3 T cells and CD20 B cells was performed on postmortem preterm human infant brains with PVL.ResultsMature lymphocyte-deficient Rag1−/− mice showed protection from white matter loss compared to wild type mice as indicated by myelin basic protein immunostaining of mouse brains. CD3+ T cells and CD20+ B cells were observed in the postmortem preterm infant brains with PVL. Flow cytometry analysis of mouse brains after HI-induced injury showed increased frequency of CD3+ T, αβT and B cells at 7 days after HI in the ipsilateral (injured hemisphere compared to the contralateral (control, uninjured hemisphere.ConclusionLymphocytes were found in the injured brain after injury in both mice and humans, and lack of mature lymphocytes protected neonatal mice from HI-induced brain white matter injury. This finding provides insight into the pathology of perinatal brain injury and suggests new avenues for the development of therapeutic strategies.

  18. Current Opportunities for Clinical Monitoring of Axonal Pathology in Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Parmenion P. Tsitsopoulos

    2017-11-01

    Full Text Available Traumatic brain injury (TBI is a multidimensional and highly complex disease commonly resulting in widespread injury to axons, due to rapid inertial acceleration/deceleration forces transmitted to the brain during impact. Axonal injury leads to brain network dysfunction, significantly contributing to cognitive and functional impairments frequently observed in TBI survivors. Diffuse axonal injury (DAI is a clinical entity suggested by impaired level of consciousness and coma on clinical examination and characterized by widespread injury to the hemispheric white matter tracts, the corpus callosum and the brain stem. The clinical course of DAI is commonly unpredictable and it remains a challenging entity with limited therapeutic options, to date. Although axonal integrity may be disrupted at impact, the majority of axonal pathology evolves over time, resulting from delayed activation of complex intracellular biochemical cascades. Activation of these secondary biochemical pathways may lead to axonal transection, named secondary axotomy, and be responsible for the clinical decline of DAI patients. Advances in the neurocritical care of TBI patients have been achieved by refinements in multimodality monitoring for prevention and early detection of secondary injury factors, which can be applied also to DAI. There is an emerging role for biomarkers in blood, cerebrospinal fluid, and interstitial fluid using microdialysis in the evaluation of axonal injury in TBI. These biomarker studies have assessed various axonal and neuroglial markers as well as inflammatory mediators, such as cytokines and chemokines. Moreover, modern neuroimaging can detect subtle or overt DAI/white matter changes in diffuse TBI patients across all injury severities using magnetic resonance spectroscopy, diffusion tensor imaging, and positron emission tomography. Importantly, serial neuroimaging studies provide evidence for evolving axonal injury. Since axonal injury may be a key

  19. Perspective on Pediatric Traumatic Brain Injury | Igun | African ...

    African Journals Online (AJOL)

    Background: Traumatic brain injury is an important aspect of paediatric trauma because of its contribution to mortality ant post trauma seqeulae. Management of traumatic brain injury remains a challenge to surgeons, especially in developing countries. This study aims to determine the pattern of traumatic brain injury among ...

  20. Altered Recruitment of the Attention Network Is Associated with Disability and Cognitive Impairment in Pediatric Patients with Acquired Brain Injury

    Directory of Open Access Journals (Sweden)

    Sandra Strazzer

    2015-01-01

    Full Text Available We assessed abnormalities of brain functional magnetic resonance imaging (fMRI activity during a sustained attention task (Conners’ Continuous Performance Test (CCPT in 20 right-handed pediatric acquired brain injury (ABI patients versus 7 right-handed age-matched healthy controls, and we estimated the correlation of such abnormalities with clinical and cognitive deficits. Patients underwent the Wechsler Intelligence Scale for Children (WISC, Wisconsin Card Sorting Test, and Functional Independence Measure (FIM evaluations. During fMRI, patients and controls activated regions of the attention network. Compared to controls, ABI patients experienced a decreased average fMRI recruitment of the left cerebellum and a decreased deactivation of the left anterior cingulate cortex. With increasing task demand, compared to controls, ABI patients had an impaired ability to increase the recruitment of several posterior regions of the attention network. They also experienced a greater activation of frontal regions, which was correlated with worse performance on FIM, WISC, and fMRI CCPT. Such abnormal brain recruitment was significantly influenced by the type of lesion (focal versus diffuse axonal injury and time elapsed from the event. Pediatric ABI patients experienced an inability to optimize attention network recruitment, especially when task difficulty was increased, which likely contributes to their clinical and cognitive deficits.

  1. The Impact of Traumatic Brain Injury on the Aging Brain.

    Science.gov (United States)

    Young, Jacob S; Hobbs, Jonathan G; Bailes, Julian E

    2016-09-01

    Traumatic brain injury (TBI) has come to the forefront of both the scientific and popular culture. Specifically, sports-related concussions or mild TBI (mTBI) has become the center of scientific scrutiny with a large amount of research focusing on the long-term sequela of this type of injury. As the populace continues to age, the impact of TBI on the aging brain will become clearer. Currently, reports have come to light that link TBI to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as certain psychiatric diseases. Whether these associations are causations, however, is yet to be determined. Other long-term sequelae, such as chronic traumatic encephalopathy (CTE), appear to be associated with repetitive injuries. Going forward, as we gain better understanding of the pathophysiological process involved in TBI and subclinical head traumas, and individual traits that influence susceptibility to neurocognitive diseases, a clearer, more comprehensive understanding of the connection between brain injury and resultant disease processes in the aging brain will become evident.

  2. Divided attention and driving. The effects of aging and brain injury

    NARCIS (Netherlands)

    Withaar, Frederiec Kunna

    2000-01-01

    In this thesis, divided attention was investigated in four groups of subjects: closed head injury (CHI) patients, young control and healthy older subjects, and older subjects with cognitive impairments. It was studied how diffuse brain injury and normal and abnormal aging affect cognitive processes

  3. How does the human brain deal with a spinal cord injury?

    NARCIS (Netherlands)

    Bruehlmeier, M; Dietz, [No Value; Leenders, KL; Roelcke, U; Missimer, J; Curt, A

    1998-01-01

    The primary sensorimotor cortex of the adult brain is capable of significant reorganization of topographic maps after deafferentation and de-efferentation. Here we show that patients with spinal cord injury exhibit extensive changes in the activation of cortical and subcortical brain areas during

  4. Recovery of injured Broca's portion of arcuate fasciculus in the dominant hemisphere in a patient with traumatic brain injury.

    Science.gov (United States)

    Jang, Sung Ho; Ha, Ji Wan; Kim, Hyun Young; Seo, You Sung

    2017-12-01

    Recovery of injured AF in patients with traumatic brain injury (TBI) has not been reported. In this study, we report on a patient with TBI who recovered from an injury to Broca's portion of AF in the dominant hemisphere, diagnosed by diffusion tensor tractography (DTT). A 28-year-old right-handed male patient suffered head trauma resulting from sliding while riding a motorcycle. He was diagnosed with a traumatic contusional hemorrhage in the left frontal lobe, subarachnoid hemorrhage, and subdural hemorrhage in the left fronto-temporal lobe. He underwent craniectomy on the left fronto-temporal area, and hematoma removal for the subdural hemorrhage in the neurosurgery department of a university hospital. Two weeks after the injury, he was transferred to the rehabilitation department of another university hospital. He showed severe aphasia and brain MRI showed leukomalactic lesion in the left frontal lobe. The result WAB for the patient showed severe aphasia, with an aphasia quotient of 45.3 percentile. However, his aphasia improved rapidly by 9 months with an aphasia quotient at the 100.0 percentile. 2-week DTT detected discontinuity in the subcortical white matter at the branch to Broca's area of left AF. By contrast, on 9-month DTT, the discontinued portion of left AF was elongated to the left Broca's area. Recovery of injured Broca's portion of AF in the dominant hemisphere along with excellent improvement of aphasia was demonstrated in a patient with TBI. This study has important implications in brain rehabilitation because the mechanism of recovery from aphasia following TBI has not been elucidated. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  5. Traumatic brain injuries in children: A hospital-based study in Nigeria

    Directory of Open Access Journals (Sweden)

    David O Udoh

    2013-01-01

    Full Text Available Background: Traumatic Brain Injury (TBI is a significant cause of morbidity and mortality worldwide. Our previous studies showed a high frequency of motor vehicle accidents among neurosurgical patients. However, there is a dearth of data on head injuries in children in Nigeria. Aims: To determine the epidemiology of paediatric traumatic brain injuries. Setting and Design: This is a prospective analysis of paediatric head trauma at the University of Benin Teaching Hospital, a major referral centre for all traumatic brain injuries in Nigeria between October 2006 and September 2011. Materials and Methods: We studied the demographic, clinical and radiological data and treatment outcomes. Data was analysed using statistical package for the social sciences (SPSS 16.0. Results: We managed 127 cases of paediatric head injuries, 65 boys and 62 girls representing 13% of all head injuries managed over the 5-year period. They were aged 3 months to 17 years. The mean age was 7.4 years (median 7 years with peak incidence occurring at 6-8 years i.e. 31 (24.4% cases. Motor vehicle accidents resulted in 67.7%, falls 14% and violence 7%. The most frequent computed tomography finding was intracerebral haemorrhage. Mean duration of hospitalization was 18 days (median 11 days. Eleven patients died, mortality correlating well with severity and the presence of intracerebral haematoma. Conclusion: Head injuries in children are due to motor vehicle and motor vehicle-related accidents. Hence, rational priorities for prevention of head injuries in children should include prevention of vehicular, especially pedestrian, accidents in developing countries.

  6. [Traumatic brain injuries--forensic and expertise aspects].

    Science.gov (United States)

    Vuleković, Petar; Simić, Milan; Misić-Pavkov, Gordana; Cigić, Tomislav; Kojadinović, Zeljko; Dilvesi, Dula

    2008-01-01

    Traumatic brain injuries have major socio-economic importance due to their frequency, high mortality and serious consequences. According to their nature the consequences of these injuries may be classified as neurological, psychiatric and esthetic. Various lesions of brain structures cause neurological consequences such as disturbance of motor functions, sensibility, coordination or involuntary movements, speech disturbances and other deviations, as well as epilepsy. Psychiatric consequences include cognitive deficit, emotional disturbances and behavior disturbances. CRIMINAL-LEGAL ASPECT OF TRAUMATIC BRAIN INJURIES AND LITIGATION: Criminal-legal aspect of traumatic brain injuries expertise understands the qualification of these injuries as mild, serious and qualified serious body injuries as well as the expertise about the mechanisms of their occurrence. Litigation expertise includes the estimation of pain, fear, diminished, i.e. lost vital activity and disability, esthetic marring, and psychological suffer based on the diminished general vital activity and esthetic marring. Evaluation of consequences of traumatic brain injuries should be performed only when it can be positively confirmed that they are permanent, i.e. at least one year after the injury. Expertise of these injuries is interdisciplinary. Among clinical doctors the most competent medical expert is the one who is in charge for diagnostics and injury treatment, with the recommendation to avoid, if possible, the doctor who conducted treatment. For the estimation of general vital activity, the neurological consequences, pain and esthetic marring expertise, the most competent doctors are neurosurgeon and neurologist. Psychological psychiatric consequences and fear expertise have to be performed by the psychiatrist. Specialists of forensic medicine contribute with knowledge of criminal low and legal expertise.

  7. Therapeutic Sleep for Traumatic Brain Injury

    Science.gov (United States)

    2017-06-01

    AWARD NUMBER: W81XWH-16-1-0166 TITLE: Therapeutic Sleep for Traumatic Brain Injury PRINCIPAL INVESTIGATOR: Ravi Allada CONTRACTING...1. REPORT DATE June 2017 2. REPORT TYPE Annual 3. DATES COVERED 1June2016 - 31May2017 4. TITLE AND SUBTITLE Therapeutic Sleep for Traumatic Brain ...proposal will test the hypothesis that correcting sleep disorders can have a therapeutic effect onTraumatic Brain Injury (TBI) The majority of TBI

  8. Prognostic value of FOUR and GCS scores in determining mortality in patients with traumatic brain injury.

    Science.gov (United States)

    Saika, Amrit; Bansal, Sonia; Philip, Mariamma; Devi, Bhagavatula Indira; Shukla, Dhaval P

    2015-09-01

    The Glasgow Coma Scale (GCS) is considered the gold standard for assessment of unconsciousness in patients with traumatic brain injury (TBI) against which other scales are compared. To overcome the disadvantages of GCS, the Full Outline Of Unresponsiveness (FOUR) score was proposed. We aimed to compare the predictability of FOUR score and GCS for early mortality, after moderate and severe TBI. This is a prospective observational study of patients with moderate and severe TBI. Both FOUR and GCS scores were determined at admission. The primary outcome was mortality at the end of 2 weeks of injury. A total of 138 (117 males) patients were included in the study. Out of these, 17 (12.3 %) patients died within 2 weeks of injury. The mean GCS and FOUR scores were 9.5 (range, 3-13) and 11 (0-16), respectively. The total GCS and FOUR scores were significantly lower in patients who did not survive. At a cut-off score of 7 for FOUR score, the AUC was 0.97, with sensitivity of 97.5 and specificity of 88.2 % (p FOUR scores. The predictive value of the FOUR score on admission of patients with TBI is no better than the GCS score.

  9. Brain injuries from blast.

    Science.gov (United States)

    Bass, Cameron R; Panzer, Matthew B; Rafaels, Karen A; Wood, Garrett; Shridharani, Jay; Capehart, Bruce

    2012-01-01

    Traumatic brain injury (TBI) from blast produces a number of conundrums. This review focuses on five fundamental questions including: (1) What are the physical correlates for blast TBI in humans? (2) Why is there limited evidence of traditional pulmonary injury from blast in current military field epidemiology? (3) What are the primary blast brain injury mechanisms in humans? (4) If TBI can present with clinical symptoms similar to those of Post-Traumatic Stress Disorder (PTSD), how do we clinically differentiate blast TBI from PTSD and other psychiatric conditions? (5) How do we scale experimental animal models to human response? The preponderance of the evidence from a combination of clinical practice and experimental models suggests that blast TBI from direct blast exposure occurs on the modern battlefield. Progress has been made in establishing injury risk functions in terms of blast overpressure time histories, and there is strong experimental evidence in animal models that mild brain injuries occur at blast intensities that are similar to the pulmonary injury threshold. Enhanced thoracic protection from ballistic protective body armor likely plays a role in the occurrence of blast TBI by preventing lung injuries at blast intensities that could cause TBI. Principal areas of uncertainty include the need for a more comprehensive injury assessment for mild blast injuries in humans, an improved understanding of blast TBI pathophysiology of blast TBI in animal models and humans, the relationship between clinical manifestations of PTSD and mild TBI from blunt or blast trauma including possible synergistic effects, and scaling between animals models and human exposure to blasts in wartime and terrorist attacks. Experimental methodologies, including location of the animal model relative to the shock or blast source, should be carefully designed to provide a realistic blast experiment with conditions comparable to blasts on humans. If traditional blast scaling is

  10. Acupuncture for central pain affecting the ribcage following traumatic brain injury and rib fractures--a case report.

    Science.gov (United States)

    Donnellan, Clare P

    2006-09-01

    This case report describes the use of acupuncture in the management of chronic central pain in a 51 year old man following severe traumatic brain injury and multiple injuries including rib fractures. The patient reported rapid and significant improvements in pain and mood during a course of acupuncture treatment. Chronic pain following traumatic brain injury is a significant problem. Chronic pain after rib fractures is also commonly reported. Acupuncture is widely used in the management of pain but its use has been reported rarely in the traumatic brain injury literature. This case report suggests that acupuncture may be a useful option to consider in these patients. Outcome was assessed formally using a 0-10 verbal numerical rating scale for pain, and the Hospital Anxiety and Depression Scale (HADS) for psychological status before and after the course of treatment. These scales are widely used in clinical practice as well as in research involving patients with traumatic brain injury, although they have not been validated in this population. The changes in this patient's outcome scores were not consistent with the benefits he reported. Treatment of this patient highlighted the difficulties of using standardised self rating scales for patients with cognitive impairment. The report also discusses the effects of acupuncture on this patient's mood.

  11. Interdisciplinary facilitation of the minimal participation of patients with severe brain injury in early rehabilitation

    DEFF Research Database (Denmark)

    Pallesen, Hanne; Buhl, Inge

    2016-01-01

    ABSTRACT Aim: The purpose of the study was to shed light on the participatory aspect of early rehabilitation, when contact, communication and interaction between the patients and the professionals is minimal, because of the patients’ severe brain injury and complex conditions. Methodology...... of hospital charts and memos. The data were analyzed using a four-step phenomenological analysis and NVivo 10. Major findings: Participation comes into play in various practices around the patient. Three main themes seem to be important: (1) The dynamic interplay of the multidisciplinary team as an element...

  12. Clinically-Important Brain Injury and CT Findings in Pediatric Mild Traumatic Brain Injuries: A Prospective Study in a Chinese Reference Hospital

    Directory of Open Access Journals (Sweden)

    Huiping Zhu

    2014-03-01

    Full Text Available This study investigated injury patterns and the use of computed tomography (CT among Chinese children with mild traumatic brain injury (MTBI. We enrolled children with MTBI who were treated within 24 hours of head trauma in the emergency department of Wuhan Medical Care Center for Women and Children in Wuhan, China. Characteristics of MTBIs were analyzed by age and gender. Results of cranial CT scan and clinically-important brain injury (ciTBI for children were obtained. The definition of ciTBI was: death from TBI, intubation for more than 24 h for TBI, neurosurgery, or hospital admission of 2 nights or more. Of 455 eligible patients with MTBI, ciTBI occurred in two, and no one underwent neurosurgical intervention. CT scans were performed for 441 TBI patients (96.9%, and abnormal findings were reported for 147 patients (33.3%, 95% CI 29.0–37.8. Falls were the leading cause of MTBI (61.5%, followed by blows (18.9% and traffic collisions (14.1% for children in the 0–2 group and 10–14 group. For children aged between 3 and 9, the top three causes of TBI were falls, traffic collisions and blows. Leisure activity was the most reported activity when injuries occurred for all age groups. Sleeping/resting and walking ranked in the second and third place for children between 0 and 2 years of age, and walking and riding for the other two groups. The places where the majority injuries occurred were the home for the 0–2 and 3–9 years of age groups, and school for the 10–14 years of age group. There was no statistical difference between boys and girls with regard to the activity that caused the MTBI. This study highlights the important roles that parents and school administrators in the development of preventive measures to reduce the risk of traumatic brain injury in children. Also, identifying children who had a head trauma at very low risk of clinically important TBI for whom CT might be unnecessary is a priority area of research in China.

  13. A review of the International Brain Research Foundation novel approach to mild traumatic brain injury presented at the International Conference on Behavioral Health and Traumatic Brain Injury.

    Science.gov (United States)

    Polito, Mary Zemyan; Thompson, James W G; DeFina, Philip A

    2010-09-01

    "The International Conference on Behavioral Health and Traumatic Brain Injury" held at St. Joseph's Regional Medical Center in Paterson, NJ., from October 12 to 15, 2008, included a presentation on the novel assessment and treatment approach to mild traumatic brain injury (mTBI) by Philip A. DeFina, PhD, of the International Brain Research Foundation (IBRF). Because of the urgent need to treat a large number of our troops who are diagnosed with mTBI and post-traumatic stress disorder (PTSD), the conference was held to create a report for Congress titled "Recommendations to Improve the Care of Wounded Warriors NOW. March 12, 2009." This article summarizes and adds greater detail to Dr. DeFina's presentation on the current standard and novel ways to approach assessment and treatment of mTBI and PTSD. Pilot data derived from collaborative studies through the IBRF have led to the development of clinical and research protocols utilizing currently accepted, valid, and reliable neuroimaging technologies combined in novel ways to develop "neuromarkers." These neuromarkers are being evaluated in the context of an "Integrity-Deficit Matrix" model to demonstrate their ability to improve diagnostic accuracy, guide treatment programs, and possibly predict outcomes for patients suffering from traumatic brain injury.

  14. Holistic Practice in Traumatic Brain Injury Rehabilitation: Perspectives of Health Practitioners

    Science.gov (United States)

    Wright, Courtney J.; Zeeman, Heidi; Biezaitis, Valda

    2016-01-01

    Given that the literature suggests there are various (and often contradictory) interpretations of holistic practice in brain injury rehabilitation and multiple complexities in its implementation (including complex setting, discipline, and client-base factors), this study aimed to examine the experiences of practitioners in their conceptualization and delivery of holistic practice in their respective settings. Nineteen health practitioners purposively sampled from an extensive Brain Injury Network in Queensland, Australia participated in individual interviews. A systematic text analysis process using Leximancer qualitative analysis program was undertaken, followed by manual thematic analysis to develop overarching themes. The findings from this study have identified several items for future inter-professional development that will not only benefit the practitioners working in brain injury rehabilitation settings, but the patients and their families as well. PMID:27270604

  15. Holistic Practice in Traumatic Brain Injury Rehabilitation: Perspectives of Health Practitioners.

    Science.gov (United States)

    Wright, Courtney J; Zeeman, Heidi; Biezaitis, Valda

    2016-01-01

    Given that the literature suggests there are various (and often contradictory) interpretations of holistic practice in brain injury rehabilitation and multiple complexities in its implementation (including complex setting, discipline, and client-base factors), this study aimed to examine the experiences of practitioners in their conceptualization and delivery of holistic practice in their respective settings. Nineteen health practitioners purposively sampled from an extensive Brain Injury Network in Queensland, Australia participated in individual interviews. A systematic text analysis process using Leximancer qualitative analysis program was undertaken, followed by manual thematic analysis to develop overarching themes. The findings from this study have identified several items for future inter-professional development that will not only benefit the practitioners working in brain injury rehabilitation settings, but the patients and their families as well.

  16. Short-Term and Long-Term Outcomes of a Vocational Rehabilitation Program for Patients with Acquired Brain Injury in The Netherlands

    NARCIS (Netherlands)

    van Dongen, Caroline H.; Goossens, Paulien H.; van Zee, Inge E.; Verpoort, Kirsten N.; Vliet Vlieland, Thea P. M.; van Velzen, Judith M.

    2017-01-01

    Purpose To describe short-term and long-term work status after a vocational rehabilitation (VR) program in patients with acquired brain injury (ABI) in the Netherlands. Methods Patients with ABI who participated in a VR program between 2007 and 2010 were included in this study. The 4-month VR

  17. Diagnostic and treatment challenges in traumatic brain injury patients with severe neuropsychiatric symptoms: insights into psychiatric practice.

    Science.gov (United States)

    Lauterbach, Margo D; Notarangelo, Paula L; Nichols, Stephen J; Lane, Kristy S; Koliatsos, Vassilis E

    2015-01-01

    Traumatic brain injury (TBI) causes a variety of neuropsychiatric problems that pose diagnostic and treatment challenges for providers. In this report, we share our experience as a referral neuropsychiatry program to assist the general psychiatrist when adult TBI patients with psychiatric symptoms present for evaluation and treatment. We completed a retrospective study of patients with moderate-to-severe TBI and severe neuropsychiatric impairments. We collected information on demographics, nature of injury, symptomatology, diagnoses, and treatments. Data analysis indicates that mood stabilization was a key concern, often requiring aggressive pharmacological management. Cognitive dysfunction was a problem for the majority of patients, but was only medicated in a third, due to poor efficacy or behavioral side effects. The co-occurrence of multiple TBI-related symptoms and diagnoses in this patient cohort emphasizes the need for individualized psychopharmacological approaches and interventions.

  18. Coagulopathy and transfusion requirements in war related penetrating traumatic brain injury. A single centre study in a French role 3 medical treatment facility in Afghanistan.

    Science.gov (United States)

    Bordes, J; Joubert, C; Esnault, P; Montcriol, A; Nguyen, C; Meaudre, E; Dulou, R; Dagain, A

    2017-05-01

    Traumatic brain injury associated coagulopathy is frequent, either in isolated traumatic brain injury in civilian practice and in combat traumatic brain injury. In war zone, it is a matter of concern because head and neck are the second most frequent site of wartime casualty burden. Data focusing on transfusion requirements in patients with war related TBI coagulopathy are limited. A descriptive analysis was conducted of 77 penetrating traumatic brain injuries referred to a French role 3 medical treatment facility in Kabul, Afghanistan, deployed on the Kabul International Airport (KaIA), over a 30 months period. On 77 patients, 23 died during the prehospital phase and were not included in the study. Severe traumatic brain injury represented 50% of patients. Explosions were the most common injury mechanism. Extracranial injuries were present in 72% of patients. Traumatic brain injury coagulopathy was diagnosed in 67% of patients at role 3 admission. Red blood cell units (RBCu) were transfused in 39 (72%) patients, French lyophilized plasma (FLYP) in 41 (76%), and fresh whole blood (FWB) in 17 (31%). The results of this study support previous observations of coagulopathy as a frequent complication of traumatic brain injury. The majority of patients with war related penetrating traumatic brain injury presented with extracranial lesions. Most of them required a high level of transfusion capacity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Traumatic brain injuries in children: A hospital-based study in Nigeria

    African Journals Online (AJOL)

    Background: Traumatic Brain Injury (TBI) is a significant cause of morbidity and mortality worldwide. Our previous studies showed a high frequency of motor vehicle accidents among neurosurgical patients. However, there is a dearth of data on head injuries in children in Nigeria. Aims: To determine the epidemiology of ...

  20. SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury.

    Science.gov (United States)

    Abdel-Dayem, H M; Abu-Judeh, H; Kumar, M; Atay, S; Naddaf, S; El-Zeftawy, H; Luo, J Q

    1998-05-01

    The purpose of this atlas is to present a review of the literature showing the advantages of SPECT brain perfusion imaging (BPI) in mild or moderate traumatic brain injury (TBI) over other morphologic imaging modalities such as x-ray CT or MRI. The authors also present the technical recommendations for SPECT brain perfusion currently practiced at their center. For the radiopharmaceutical of choice, a comparison between early and delayed images using Tc-99m HMPAO and Tc-99m ECD showed that Tc-99m HMPAO is more stable in the brain with no washout over time. Therefore, the authors feel that Tc-99m HMPAO is preferable to Tc-99m ECD. Recommendations regarding standardizing intravenous injection, the acquisition, processing parameters, and interpretation of scans using a ten grade color scale, and use of the cerebellum as the reference organ are presented. SPECT images of 228 patients (age range, 11 to 88; mean, 40.8 years) with mild or moderate TBI and no significant medical history that interfered with the results of the SPECT BP were reviewed. The etiology of the trauma was in the following order of frequency: motor vehicle accidents (45%) followed by blow to the head (36%) and a fall (19%). Frequency of the symptoms was headache (60.9%), memory problems (27.6%), dizziness (26.7%), and sleep disorders (8.7%). Comparison between patients imaged early (3 months) from the time of the accident, showed that early imaging detected more lesions (4.2 abnormal lesions per study compared to 2.7 in those imaged more than 3 months after the accident). Of 41 patients who had mild traumatic injury without loss of consciousness and had normal CT, 28 studies were abnormal. Focal areas of hypoperfusion were seen in 77% (176 patients, 612 lesions) of the group of 228 patients. The sites of abnormalities were in the following order: basal ganglia and thalami, 55.2%, frontal lobes, 23.8%, temporal lobes, 13%, parietal, 3.7%, insular and occipital lobes together, 4.6%.

  1. Fatigue in adults with traumatic brain injury

    DEFF Research Database (Denmark)

    Mollayeva, Tatyana; Kendzerska, Tetyana; Mollayeva, Shirin

    2013-01-01

    BACKGROUND: Despite strong indications that fatigue is the most common and debilitating symptom after traumatic brain injury, little is known about its frequency, natural history, or relation to other factors. The current protocol outlines a strategy for a systematic review that will identify......, assess, and critically appraise studies that assessed predictors for fatigue and the consequences of fatigue on at least two separate time points following traumatic brain injury. METHODS/DESIGN: MEDLINE, EMBASE, the Cochrane Database of Systematic Reviews, CINAHL, and PsycINFO will be systematically...... searched for relevant peer-reviewed studies. Reference lists of eligible papers will also be searched. All English language studies with a longitudinal design that focus on fatigue in adults with primary-impact traumatic brain injury will be included. Studies on fatigue following brain injury due...

  2. Regional brain morphometry predicts memory rehabilitation outcome after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Gary E Strangman

    2010-10-01

    Full Text Available Cognitive deficits following traumatic brain injury (TBI commonly include difficulties with memory, attention, and executive dysfunction. These deficits are amenable to cognitive rehabilitation, but optimally selecting rehabilitation programs for individual patients remains a challenge. Recent methods for quantifying regional brain morphometry allow for automated quantification of tissue volumes in numerous distinct brain structures. We hypothesized that such quantitative structural information could help identify individuals more or less likely to benefit from memory rehabilitation. Fifty individuals with TBI of all severities who reported having memory difficulties first underwent structural MRI scanning. They then participated in a 12 session memory rehabilitation program emphasizing internal memory strategies (I-MEMS. Primary outcome measures (HVLT, RBMT were collected at the time of the MRI scan, immediately following therapy, and again at one month post-therapy. Regional brain volumes were used to predict outcome, adjusting for standard predictors (e.g., injury severity, age, education, pretest scores. We identified several brain regions that provided significant predictions of rehabilitation outcome, including the volume of the hippocampus, the lateral prefrontal cortex, the thalamus, and several subregions of the cingulate cortex. The prediction range of regional brain volumes were in some cases nearly equal in magnitude to prediction ranges provided by pretest scores on the outcome variable. We conclude that specific cerebral networks including these regions may contribute to learning during I-MEMS rehabilitation, and suggest that morphometric measures may provide substantial predictive value for rehabilitation outcome in other cognitive interventions as well.

  3. The neuroanatomy of active hand movement in patients with severe traumatic brain injury: Analysis of functional magnetic resonance imaging data

    Directory of Open Access Journals (Sweden)

    T. S. Mukhina

    2017-01-01

    Full Text Available Objective: to analyze the characteristics of the functional neuroanatomy of movements in severe traumatic brain injury (STBI patients with varying severity of motor defect versus that in healthy individuals for the study of brain neuroplasticity as a basis of compensation.Patients and methods. Functional magnetic resonance imaging (fMRI, 3T was used to analyze cerebral hemodynamic changes in 28 patients with STBI during an active right-hand finger tapping task. A control group consisted of 17 healthy individuals. The percentage of representation of individual brain structures involved in movements and volume activation (Vox was determined in fMRI responses.Results. The patient group showed a tendency for an increased fMRI response diffusion with the emergence of activation zones (the left frontal and parietal regions, as well as the occiptal and temporal regions of the cerebral hemispheres that are atypical for healthy individuals during motor exercises. This trend is more evident in patients with right-sided hemiparesis.Conclusion. The results of the study clarify the existing ideas about the neurophysiological mechanisms of motor impairment and compensation in traumatic brain injury, which is important for the development and improvement of neurorehabilitation techniques. There is evidence for the hypothesis that the extrapyramidal system may be actively involved in the compensation for post-traumatic musculoskeletal defect, which was earlier proposed by E.V. Sharova et al. (2014.

  4. Cooking breakfast after a brain injury

    OpenAIRE

    Tanguay, Annick N.; Davidson, Patrick S. R.; Guerrero Nuñez, Karla V.; Ferland, Mark B.

    2014-01-01

    Acquired brain injury (ABI) often compromises the ability to carry out instrumental activities of daily living such as cooking. ABI patients' difficulties with executive functions and memory result in less independent and efficient meal preparation. Accurately assessing safety and proficiency in cooking is essential for successful community reintegration following ABI, but in vivo assessment of cooking by clinicians is time-consuming, costly, and difficult to standardize. Accordingly, we exam...

  5. Parcellating the neuroanatomical basis of impaired decision-making in traumatic brain injury.

    Science.gov (United States)

    Newcombe, Virginia F J; Outtrim, Joanne G; Chatfield, Doris A; Manktelow, Anne; Hutchinson, Peter J; Coles, Jonathan P; Williams, Guy B; Sahakian, Barbara J; Menon, David K

    2011-03-01

    Cognitive dysfunction is a devastating consequence of traumatic brain injury that affects the majority of those who survive with moderate-to-severe injury, and many patients with mild head injury. Disruption of key monoaminergic neurotransmitter systems, such as the dopaminergic system, may play a key role in the widespread cognitive dysfunction seen after traumatic axonal injury. Manifestations of injury to this system may include impaired decision-making and impulsivity. We used the Cambridge Gambling Task to characterize decision-making and risk-taking behaviour, outside of a learning context, in a cohort of 44 patients at least six months post-traumatic brain injury. These patients were found to have broadly intact processing of risk adjustment and probability judgement, and to bet similar amounts to controls. However, a patient preference for consistently early bets indicated a higher level of impulsiveness. These behavioural measures were compared with imaging findings on diffusion tensor magnetic resonance imaging. Performance in specific domains of the Cambridge Gambling Task correlated inversely and specifically with the severity of diffusion tensor imaging abnormalities in regions that have been implicated in these cognitive processes. Thus, impulsivity was associated with increased apparent diffusion coefficient bilaterally in the orbitofrontal gyrus, insula and caudate; abnormal risk adjustment with increased apparent diffusion coefficient in the right thalamus and dorsal striatum and left caudate; and impaired performance on rational choice with increased apparent diffusion coefficient in the bilateral dorsolateral prefrontal cortices, and the superior frontal gyri, right ventrolateral prefrontal cortex, the dorsal and ventral striatum, and left hippocampus. Importantly, performance in specific cognitive domains of the task did not correlate with diffusion tensor imaging abnormalities in areas not implicated in their performance. The ability to

  6. Brain network dysregulation, emotion, and complaints after mild traumatic brain injury.

    Science.gov (United States)

    van der Horn, Harm J; Liemburg, Edith J; Scheenen, Myrthe E; de Koning, Myrthe E; Marsman, Jan-Bernard C; Spikman, Jacoba M; van der Naalt, Joukje

    2016-04-01

    To assess the role of brain networks in emotion regulation and post-traumatic complaints in the sub-acute phase after non-complicated mild traumatic brain injury (mTBI). Fifty-four patients with mTBI (34 with and 20 without complaints) and 20 healthy controls (group-matched for age, sex, education, and handedness) were included. Resting-state fMRI was performed at four weeks post-injury. Static and dynamic functional connectivity were studied within and between the default mode, executive (frontoparietal and bilateral frontal network), and salience network. The hospital anxiety and depression scale (HADS) was used to measure anxiety (HADS-A) and depression (HADS-D). Regarding within-network functional connectivity, none of the selected brain networks were different between groups. Regarding between-network interactions, patients with complaints exhibited lower functional connectivity between the bilateral frontal and salience network compared to patients without complaints. In the total patient group, higher HADS-D scores were related to lower functional connectivity between the bilateral frontal network and both the right frontoparietal and salience network, and to higher connectivity between the right frontoparietal and salience network. Furthermore, whereas higher HADS-D scores were associated with lower connectivity within the parietal midline areas of the bilateral frontal network, higher HADS-A scores were related to lower connectivity within medial prefrontal areas of the bilateral frontal network. Functional interactions of the executive and salience networks were related to emotion regulation and complaints after mTBI, with a key role for the bilateral frontal network. These findings may have implications for future studies on the effect of psychological interventions. © 2016 Wiley Periodicals, Inc.

  7. Antioxidant therapies in traumatic brain injury: a review

    Directory of Open Access Journals (Sweden)

    Romero-Rivera Hector Rolando

    2017-09-01

    Full Text Available Oxidative stress constitute one of the commonest mechanism of the secondary injury contributing to neuronal death in traumatic brain injury cases. The oxidative stress induced secondary injury blockade may be considered as to be a good alternative to improve the outcome of traumatic brain injury (TBI treatment. Due to absence of definitive therapy of traumatic brain injury has forced researcher to utilize unconventional therapies and its roles investigated in the improvement of management and outcome in recent year. Antioxidant therapies are proven effective in many preclinical studies and encouraging results and the role of antioxidant mediaction may act as further advancement in the traumatic brain injury management it may represent aonr of newer moadlaity in neurosurgical aramamentorium, this kind of therapy could be a good alternative or adjuct to the previously established neuroprotection agents in TBI.

  8. Utility of fractional anisotropy imaging analyzed by statistical parametric mapping for detecting minute brain lesions in chronic-stage patients who had mild or moderate traumatic brain injury

    International Nuclear Information System (INIS)

    Asano, Yoshitaka; Shinoda, Jun; Okumura, Ayumi; Aki, Tatsuki; Takenaka, Shunsuke; Miwa, Kazuhiro; Yamada, Mikito; Ito, Takeshi; Yokohama, Kazutoshi

    2012-01-01

    Diffusion tensor imaging (DTI) has recently evolved as valuable technique to investigate diffuse axonal injury (DAI). This study examined whether fractional anisotropy (FA) images analyzed by statistical parametric mapping (FA-SPM images) are superior to T 2 *-weighted gradient recalled echo (T2*GRE) images or fluid-attenuated inversion recovery (FLAIR) images for detecting minute lesions in traumatic brain injury (TBI) patients. DTI was performed in 25 patients with cognitive impairments in the chronic stage after mild or moderate TBI. The FA maps obtained from the DTI were individually compared with those from age-matched healthy control subjects using voxel-based analysis and FA-SPM images (p<0.001). Abnormal low-intensity areas on T2*GRE images (T2* lesions) were found in 10 patients (40.0%), abnormal high-intensity areas on FLAIR images in 4 patients (16.0%), and areas with significantly decreased FA on FA-SPM image in 16 patients (64.0%). Nine of 10 patients with T2* lesions had FA-SPM lesions. FA-SPM lesions topographically included most T2* lesions in the white matter and the deep brain structures, but did not include T2* lesions in the cortex/near-cortex or lesions containing substantial hemosiderin regardless of location. All 4 patients with abnormal areas on FLAIR images had FA-SPM lesions. FA-SPM imaging is useful for detecting minute lesions because of DAI in the white matter and the deep brain structures, which may not be visualized on T2*GRE or FLAIR images, and may allow the detection of minute brain lesions in patients with post-traumatic cognitive impairment. (author)

  9. Neurobehavioral Effects of Levetiracetam in Patients with Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Jared F Benge

    2013-12-01

    Full Text Available Moderate to severe traumatic brain injury (TBI is one of the leading causes of acquired epilepsy. Prophylaxis for seizures is the standard of care for individuals with moderate to severe injuries at risk for developing seizures, though relatively limited comparative data is available to guide clinicians in their choice of agents. There have however been experimental studies which demonstrate potential neuroprotective qualities of levetiracetam after TBI, and in turn there is hope that eventually such agents may improve neurobehavioral outcomes post-TBI. This mini-review summarizes the available studies and suggests areas for future studies.

  10. 4: Rehabilitation after traumatic brain injury.

    Science.gov (United States)

    Khan, Fary; Baguley, Ian J; Cameron, Ian D

    2003-03-17

    Traumatic brain injury (TBI) commonly affects younger people and causes life-long impairments in physical, cognitive, behavioural and social function. The cognitive, behavioural and personality deficits are usually more disabling than the residual physical deficits. Recovery from TBI can continue for at least 5 years after injury. Rehabilitation is effective using an interdisciplinary approach, and close liaison with the patient, family and carers. The focus is on issues such as retraining in activities of daily living, pain management, cognitive and behavioural therapies, and pharmacological management. The social burden of TBI is significant, and therefore family education and counselling, and support of patient and carers, is important. General practitioners play an important role in providing ongoing support in the community, monitoring for medical complications, behavioural and personality issues, social reintegration, carer coping skills and return-to-work issues.

  11. Visual rehabilitation with Retimax Vision Trainer in patients with severe Acquired Brain Injury: report of two cases

    Directory of Open Access Journals (Sweden)

    Margherita Chiari

    2014-04-01

    Full Text Available Retimax Vision Trainer is a device that has the purpose to improve visual function by means of the detection of a visual evoked potential associated with a sound feedback. We evaluated the effectiveness of rehabilitative treatment in two patients with Acquired Brain Injury (ABI. Results, subjectively appreciated, are objectively confirmed by the improvement of visual function.

  12. Patterns of neonatal hypoxic-ischaemic brain injury

    International Nuclear Information System (INIS)

    Vries, Linda S. de; Groenendaal, Floris

    2010-01-01

    Enormous progress has been made in assessing the neonatal brain, using magnetic resonance imaging (MRI). In this review, we will describe the use of MRI and proton magnetic resonance spectroscopy in detecting different patterns of brain injury in (full-term) human neonates following hypoxic-ischaemic brain injury and indicate the relevance of these findings in predicting neurodevelopmental outcome. (orig.)

  13. Patterns of neonatal hypoxic-ischaemic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Linda S. de [University Medical Centre, Department of Neonatology, Wilhelmina Children' s Hospital, Utrecht (Netherlands); Wilhelmina Children' s Hospital, University Medical Centre, Department of Neonatology, KE 04.123.1, P.O. Box 85090, Utrecht (Netherlands); Groenendaal, Floris [University Medical Centre, Department of Neonatology, Wilhelmina Children' s Hospital, Utrecht (Netherlands)

    2010-06-15

    Enormous progress has been made in assessing the neonatal brain, using magnetic resonance imaging (MRI). In this review, we will describe the use of MRI and proton magnetic resonance spectroscopy in detecting different patterns of brain injury in (full-term) human neonates following hypoxic-ischaemic brain injury and indicate the relevance of these findings in predicting neurodevelopmental outcome. (orig.)

  14. EFFECTS OF L-LYSINE AESCINAT ON INTRACRANIAL PRESSURE IN CRITICALLY ILL PATIENTS WITH SEVERE TRAUMATIC BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    S. S. Petrikov

    2016-01-01

    Full Text Available Abstract. Increased intracranial pressure results in cerebral blood flow decrease and cerebral edema formation. Correction of intracranial hypertension is one of the most important goals of intensive care in patients with severe traumatic brain injury. Objectives To determine the effects of L-lysine aescinat on ICP in patients with severe TBI.Material and methods. Twenty patients with TBI and Glasgow coma scale below 9 enrolled in the study. All patients were operated: 6 patients underwent craniotomy and intracranial hematoma removing; 11 — decompressive craniotomy and intracranial hematoma removing. In 3 patients only ICP-sensor was implanted. ICP-monitoring was used in all patients. Ten patients were randomized to L-lysine aescinat treatment (daily dose of 20 ml for 7 days after surgery (study group, 10 — to standard therapy (control group. We perfomed a comparative analysis of the mean ICP and the incidence of ICH within 7 days after surgery in the study and control groups.Results. The length of ICP monitoring was 6.4±3.7 days: in the control group — 7.6±4.9 days, in the study group — 5.2±1.4 days. Mean intracranial pressure was less in the study group as compared to patients in the control group. The number of intracranial hypertension episodes was higher in the control group compared with patients who received L-lysine aescinat.Conclusion. L-lysine aescinat treatment in patients with severe traumatic brain injury is accompanied by reduction of mean intracranial pressure and the number of intracranial hypertension episodes.

  15. Effect of equiosmolar solutions of hypertonic sodium lactate versus mannitol in craniectomy patients with moderate traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Muhammad R. Ahmad

    2014-03-01

    Full Text Available Background: Brain relaxation and prevention from cerebral edema are essential in craniectomy. Osmotherapy with 20% mannitol are generally used to withdraw fluid from the brain parenchyma, however may cause hemodynamic fluctuation, due to increase diuresis. On the other hand 0.5 M hypertonic sodium lactate (HSL appeared as an alternative of osmotherapy. This study  aimed to observe the effect of hypertonic sodium lactate (HSL on brain relaxation, blood glucose level and hemodynamic variables in craniectomy due to moderate brain injury.Methods: A randomized controlled study of 42 cases with moderate brain injury, aged 18 - 65 years, ASA 1 - 3, between September-November 2012, was carried out. The patients were divided into group M (n = 21 that received 2.5 mL/kg 20% mannitol and group HSL that received 2.5 mL/kg 0.5M HSL. Mean arterial pressures (MAP, central venous pressures (CVP and urine output were measured after induction, and at 15, 30, 45, 60 min after infusion. Brain relaxation was assessed at a four-point scale after opening the duramater. Blood glucose levels were measured before induction and at 60 min after the infusion. Appropriate statistical tests were used for comparison. Unpaired t-test was used to compare hemodynamic and blood glucose level, and chi-square was used to compare brain relaxation.Results: MAP at 60 minute was significantly higher in HSL group than M group (81.66 ± 7.85 vs 74.33 ± 6.18 mmHg; p = 0.002. There was no difference in brain relaxation (p = 0.988. A significant increase in blood glucose level was observed in group HSL (17.95 ± 11.46 mg/dL; p = 0.001.Conclusion: Half-molar HSL was as effective as 20% mannitol in producing brain relaxation, with better hemodynamic stability and gave significant increase in blood glucose level.Keywords: brain relaxation, hemodynamic, hypertonic sodium lactate, mannitol, traumatic brain injury

  16. Computer aided detection of brain micro-bleeds in traumatic brain injury

    Science.gov (United States)

    van den Heuvel, T. L. A.; Ghafoorian, M.; van der Eerden, A. W.; Goraj, B. M.; Andriessen, T. M. J. C.; ter Haar Romeny, B. M.; Platel, B.

    2015-03-01

    Brain micro-bleeds (BMBs) are used as surrogate markers for detecting diffuse axonal injury in traumatic brain injury (TBI) patients. The location and number of BMBs have been shown to influence the long-term outcome of TBI. To further study the importance of BMBs for prognosis, accurate localization and quantification are required. The task of annotating BMBs is laborious, complex and prone to error, resulting in a high inter- and intra-reader variability. In this paper we propose a computer-aided detection (CAD) system to automatically detect BMBs in MRI scans of moderate to severe neuro-trauma patients. Our method consists of four steps. Step one: preprocessing of the data. Both susceptibility (SWI) and T1 weighted MRI scans are used. The images are co-registered, a brain-mask is generated, the bias field is corrected, and the image intensities are normalized. Step two: initial candidates for BMBs are selected as local minima in the processed SWI scans. Step three: feature extraction. BMBs appear as round or ovoid signal hypo-intensities on SWI. Twelve features are computed to capture these properties of a BMB. Step four: Classification. To identify BMBs from the set of local minima using their features, different classifiers are trained on a database of 33 expert annotated scans and 18 healthy subjects with no BMBs. Our system uses a leave-one-out strategy to analyze its performance. With a sensitivity of 90% and 1.3 false positives per BMB, our CAD system shows superior results compared to state-of-the-art BMB detection algorithms (developed for non-trauma patients).

  17. Lateral automobile impacts and the risk of traumatic brain injury.

    Science.gov (United States)

    Bazarian, Jeffrey J; Fisher, Susan Gross; Flesher, William; Lillis, Robert; Knox, Kerry L; Pearson, Thomas A

    2004-08-01

    We determine the relative risk and severity of traumatic brain injury among occupants of lateral impacts compared with occupants of nonlateral impacts. This was a secondary analysis of the National Highway Traffic Safety Administration's National Automotive Sampling System, Crashworthiness Data Systems for 2000. Analysis was restricted to occupants of vehicles in which at least 1 person experienced an injury with Abbreviated Injury Scale score greater than 2. Traumatic brain injury was defined as an injury to the head or skull with an Abbreviated Injury Scale score greater than 2. Outcomes were analyzed using the chi2 test and multivariate logistic regression, with adjustment of variance to account for weighted probability sampling. Of the 1,115 occupants available for analysis, impact direction was lateral for 230 (18.42%) occupants and nonlateral for 885 (81.58%) occupants. One hundred eighty-seven (16.07%) occupants experienced a traumatic brain injury, 14.63% after lateral and 16.39% after nonlateral impact. The unadjusted relative risk of traumatic brain injury after lateral impact was 0.89 (95% confidence interval [CI] 0.51 to 1.56). After adjusting for several important crash-related variables, the relative risk of traumatic brain injury was 2.60 (95% CI 1.1 to 6.0). Traumatic brain injuries were more severe after lateral impact according to Abbreviated Injury Scale and Glasgow Coma Scale scores. The proportion of fatal or critical crash-related traumatic brain injuries attributable to lateral impact was 23.5%. Lateral impact is an important independent risk factor for the development of traumatic brain injury after a serious motor vehicle crash. Traumatic brain injuries incurred after lateral impact are more severe than those resulting from nonlateral impact. Vehicle modifications that increase head protection could reduce crash-related severe traumatic brain injuries by up to 61% and prevent up to 2,230 fatal or critical traumatic brain injuries each year

  18. Making waves in the brain: What are oscillations, and why modulating them makes sense for brain injury

    Directory of Open Access Journals (Sweden)

    Aleksandr ePevzner

    2016-04-01

    Full Text Available Traumatic brain injury (TBI can result in persistent cognitive, behavioral and emotional deficits. However, the vast majority of patients are not chronically hospitalized; rather they have to manage their disabilities once they are discharged to home. Promoting recovery to pre-injury level is important from a patient care as well as a societal perspective. Electrical neuromodulation is one approach that has shown promise in alleviating symptoms associated with neurological disorders such as in Parkinson’s disease and epilepsy. Consistent with this perspective, both animal and clinical studies have revealed that TBI alters physiological oscillatory rhythms. More recently several studies demonstrated that low frequency stimulation improves cognitive outcome in models of TBI. Specifically, stimulation of the septohippocampal circuit in the theta frequency entrained oscillations and improved spatial learning following traumatic brain injury. In order to evaluate the potential of electrical deep brain stimulation for clinical translation we review the basic neurophysiology of oscillations, their role in cognition and how they are changed post-TBI. Furthermore, we highlight several factors for future pre-clinical and clinical studies to consider, with the hope that it will promote a hypothesis driven approach to subsequent experimental designs and ultimately successful translation to improve outcome in patients with TBI.

  19. Reduced brain/serum glucose ratios predict cerebral metabolic distress and mortality after severe brain injury.

    Science.gov (United States)

    Kurtz, Pedro; Claassen, Jan; Schmidt, J Michael; Helbok, Raimund; Hanafy, Khalid A; Presciutti, Mary; Lantigua, Hector; Connolly, E Sander; Lee, Kiwon; Badjatia, Neeraj; Mayer, Stephan A

    2013-12-01

    The brain is dependent on glucose to meet its energy demands. We sought to evaluate the potential importance of impaired glucose transport by assessing the relationship between brain/serum glucose ratios, cerebral metabolic distress, and mortality after severe brain injury. We studied 46 consecutive comatose patients with subarachnoid or intracerebral hemorrhage, traumatic brain injury, or cardiac arrest who underwent cerebral microdialysis and intracranial pressure monitoring. Continuous insulin infusion was used to maintain target serum glucose levels of 80-120 mg/dL (4.4-6.7 mmol/L). General linear models of logistic function utilizing generalized estimating equations were used to relate predictors of cerebral metabolic distress (defined as a lactate/pyruvate ratio [LPR] ≥ 40) and mortality. A total of 5,187 neuromonitoring hours over 300 days were analyzed. Mean serum glucose was 133 mg/dL (7.4 mmol/L). The median brain/serum glucose ratio, calculated hourly, was substantially lower (0.12) than the expected normal ratio of 0.40 (brain 2.0 and serum 5.0 mmol/L). In addition to low cerebral perfusion pressure (P = 0.05) and baseline Glasgow Coma Scale score (P brain/serum glucose ratios below the median of 0.12 were independently associated with an increased risk of metabolic distress (adjusted OR = 1.4 [1.2-1.7], P brain/serum glucose ratios were also independently associated with in-hospital mortality (adjusted OR = 6.7 [1.2-38.9], P brain/serum glucose ratios, consistent with impaired glucose transport across the blood brain barrier, are associated with cerebral metabolic distress and increased mortality after severe brain injury.

  20. Early predictors of outcome after mild traumatic brain injury (UPFRONT) : An observational cohort study

    NARCIS (Netherlands)

    van der Naalt, J.; Timmerman, M.E.; de Koning, M.E.; van der Horn, H.J.; Scheenen, M.E.; Jacobs, B.; Hageman, G.; Yilmaz, T.; Roks, G.; Spikman, J.M.

    Background: Mild traumatic brain injury (mTBI) accounts for most cases of TBI, and many patients show incomplete long-term functional recovery. We aimed to create a prognostic model for functional outcome by combining demographics, injury severity, and psychological factors to identify patients at

  1. Pivotal role of anterior cingulate cortex in working memory after traumatic brain injury in youth

    Directory of Open Access Journals (Sweden)

    Fabienne eCazalis

    2011-01-01

    Full Text Available In this fMRI study, the functions of the Anterior Cingulate Cortex were studied in a group of adolescents who had sustained a moderate to severe Traumatic Brain Injury. A spatial working memory task with varying working memory loads, representing experimental conditions of increasing difficulty, was administered.In a cross-sectional comparison between the patients and a matched control group, patients performed worse than Controls, showing longer reaction times and lower response accuracy on the spatial working memory task. Brain imaging findings suggest a possible double-dissociation: activity of the Anterior Cingulate Cortex in the Traumatic Brain Injury group, but not in the Control group, was associated with task difficulty; conversely, activity of the left Sensorimotor Cortex in the Control group, but not in the TBI group, was correlated with task difficulty.In addition to the main cross-sectional study, a longitudinal study of a group of adolescent patients with moderate to severe Traumatic Brain Injury was done using fMRI and the same spatial working memory task. The patient group was studied at two time points: one time point during the post-acute phase and one time point 12 months later, during the chronic phase. Results indicated that patients' behavioral performance improved over time, suggesting cognitive recovery. Brain imaging findings suggest that, over this 12 month period, patients recruited less of the Anterior Cingulate Cortex and more of the left Sensorimotor Cortex in response to increasing task difficulty.The role of Anterior Cingulate Cortex in executive functions following a moderate to severe brain injury in adolescence is discussed within the context of conflicting models of the Anterior Cingulate Cortex functions in the existing literature.

  2. A qualitative study exploring nurses’ attitudes, confidence, and perceived barriers to implementing a traumatic brain injury nursing chart in Uganda

    Directory of Open Access Journals (Sweden)

    Leslie Wynveen

    2018-06-01

    Full Text Available Introduction: In Africa, traumatic brain injuries frequently result from road traffic injuries and assaults. Despite limited resources and the high costs of life-saving neurosurgical interventions, secondary brain injury prevention has the potential for improving outcomes. However, nurses and other medical personnel infrequently monitor vital signs, blood sugar, and pulse oximetry and only sporadically re-assess neurological status. Methods: In one-on-one, semi-structured interviews, 27 nurses from Mulago Hospital’s emergency centre, a tertiary care trauma hospital in Kampala, Uganda, provided feedback regarding a traumatic brain injury-focused education session and use of a nursing chart for detecting secondary brain injury. The interviews explored the nurses’ confidence and perceived barriers to long-term chart implementation and traumatic brain injury care, as well as their ideas for improving this intervention. Interviews were audio recorded, transcribed, and coded using ATLAS.ti: Qualitative Data Analysis and Research Software (Cleverbridge, Inc., Chicago, USA and Microsoft Word and Excel (Microsoft Office, Redmond, USA for thematic content analysis. Results: Key findings identified in the interviews included the nurses’ attitudes toward the chart and their feelings of increased confidence in assessing and caring for these patients. The main barriers to continuous implementation included inadequate staffing and resources. Conclusion: Nurses were receptive to the education session and nursing chart, and felt that it increased their confidence and improved their ability to care for traumatic brain injured patients. However, lack of supplies, overwhelming numbers of patients, and inadequate staffing interfered with consistent monitoring of patients. The nurses offered various suggestions for improving traumatic brain injury care that should be further investigated. More research is needed to assess the applicability of a standardised

  3. Radioimmunoassay of serum creatine kinase BB as index of brain damage after head injury

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J P; Jones, H M; Hitchcock, R; Adams, N; Thompson, R J [Addenbrooke' s Hospital, Cambridge (UK)

    1980-09-20

    Brain-type creatine kinase isoenzyme (CK-BB) was measured by radioimmunoassay in the serum of 54 patients with head injuries. CK-BB was not detectable in 476 out of 1006 controls, the remaining 530 normal samples containing a mean of 1.5 +- SDO.75 ..mu..g/l. The mean CK-BB concentrations in patients with mild, moderate, and fatal head injuries were all significantly higher than the control value (p<0.01 in each instance). Patients with serious head injury had serum concentrations many times the normal value, in two cases within 30 minutes after impact. Fatally injured patients continued to have high serum concentrations several days after injury. In less serious cases values approached normal within two or three days. Every patient with evidence of cerebral laceration, bruising, or swelling had a serum CK-BB concentration above normal. Raised concentrations were found in 14 out of 22 patients with concussion only. Thus the serum CK-BB concentration appears to be a sensitive index of brain damage and may prove useful in the management and follow-up of head-injured patients.

  4. Radioimmunoassay of serum creatine kinase BB as index of brain damage after head injury

    International Nuclear Information System (INIS)

    Phillips, J.P.; Jones, H.M.; Hitchcock, R.; Adams, N.; Thompson, R.J.

    1980-01-01

    Brain-type creatine kinase isoenzyme (CK-BB) was measured by radioimmunoassay in the serum of 54 patients with head injuries. CK-BB was not detectable in 476 out of 1006 controls, the remaining 530 normal samples containing a mean of 1.5 +- SDO.75 μg/l. The mean CK-BB concentrations in patients with mild, moderate, and fatal head injuries were all significantly higher than the control value (p<0.01 in each instance). Patients with serious head injury had serum concentrations many times the normal value, in two cases within 30 minutes after impact. Fatally injured patients continued to have high serum concentrations several days after injury. In less serious cases values approached normal within two or three days. Every patient with evidence of cerebral laceration, bruising, or swelling had a serum CK-BB concentration above normal. Raised concentrations were found in 14 out of 22 patients with concussion only. Thus the serum CK-BB concentration appears to be a sensitive index of brain damage and may prove useful in the management and follow-up of head-injured patients. (author)

  5. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1.

    Science.gov (United States)

    Henninger, Nils; Bouley, James; Sikoglu, Elif M; An, Jiyan; Moore, Constance M; King, Jean A; Bowser, Robert; Freeman, Marc R; Brown, Robert H

    2016-04-01

    Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptor Sarm1 (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model. Sarm1(-/-) mice developed fewer β-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared to Sarm1(+/+) mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function in Sarm1(-/-) animals. Finally, using in vivo proton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1(-/-) mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Driving, brain injury and assistive technology.

    Science.gov (United States)

    Lane, Amy K; Benoit, Dana

    2011-01-01

    Individuals with brain injury often present with cognitive, physical and emotional impairments which impact their ability to resume independence in activities of daily living. Of those activities, the resumption of driving privileges is cited as one of the greatest concerns by survivors of brain injury. The integration of driving fundamentals within the hierarchical model proposed by Keskinen represents the complexity of skills and behaviors necessary for driving. This paper provides a brief review of specific considerations concerning the driver with TBI and highlights current vehicle technology which has been developed by the automotive industry and by manufacturers of adaptive driving equipment that may facilitate the driving task. Adaptive equipment technology allows for compensation of a variety of operational deficits, whereas technological advances within the automotive industry provide drivers with improved safety and information systems. However, research has not yet supported the use of such intelligent transportation systems or advanced driving systems for drivers with brain injury. Although technologies are intended to improve the safety of drivers within the general population, the potential of negative consequences for drivers with brain injury must be considered. Ultimately, a comprehensive driving evaluation and training by a driving rehabilitation specialist is recommended for individuals with brain injury. An understanding of the potential impact of TBI on driving-related skills and knowledge of current adaptive equipment and technology is imperative to determine whether return-to-driving is a realistic and achievable goal for the individual with TBI.

  7. Impact of helmet use on traumatic brain injury from road traffic accidents in Cambodia.

    Science.gov (United States)

    Gupta, Saksham; Klaric, Katherine; Sam, Nang; Din, Vuthy; Juschkewitz, Tina; Iv, Vycheth; Shrime, Mark G; Park, Kee B

    2018-01-02

    Rapid urbanization and motorization without corresponding increases in helmet usage have made traumatic brain injury due to road traffic accidents a major public health crisis in Cambodia. This analysis was conducted to quantify the impact of helmets on severity of injury, neurosurgical indication, and functional outcomes at discharge for motorcycle operators who required hospitalization for a traumatic brain injury following a road traffic accident in Cambodia. The medical records of 491 motorcycle operators who presented to a major tertiary care center in Cambodia with traumatic brain injury were retrospectively analyzed using multivariate logistic regression. The most common injuries at presentation were contusions (47.0%), epidural hematomas (30.1%), subdural hematomas (27.9%), subarachnoid hemorrhages (12.4%), skull fractures (21.4%), and facial fractures (18.5%). Moderate-to-severe loss of consciousness was present in 36.3% of patients. Not wearing a helmet was associated with an odds ratio of 2.20 (95% confidence interval [CI], 1.15-4.22) for presenting with moderate to severe loss of consciousness compared to helmeted patients. Craniotomy or craniectomy was indicated for evacuation of hematoma in 20.0% of cases, and nonhelmeted patients had 3.21-fold higher odds of requiring neurosurgical intervention (95% CI, 1.25-8.27). Furthermore, lack of helmet usage was associated with 2.72-fold higher odds of discharge with functional deficits (95% CI, 1.14-6.49). In total, 30.1% of patients were discharged with severe functional deficits. Helmets demonstrate a protective effect and may be an effective public health intervention to significantly reduce the burden of traumatic brain injury in Cambodia and other developing countries with increasing rates of motorization across the world.

  8. Sports-related brain injuries: connecting pathology to diagnosis.

    Science.gov (United States)

    Pan, James; Connolly, Ian D; Dangelmajer, Sean; Kintzing, James; Ho, Allen L; Grant, Gerald

    2016-04-01

    Brain injuries are becoming increasingly common in athletes and represent an important diagnostic challenge. Early detection and management of brain injuries in sports are of utmost importance in preventing chronic neurological and psychiatric decline. These types of injuries incurred during sports are referred to as mild traumatic brain injuries, which represent a heterogeneous spectrum of disease. The most dramatic manifestation of chronic mild traumatic brain injuries is termed chronic traumatic encephalopathy, which is associated with profound neuropsychiatric deficits. Because chronic traumatic encephalopathy can only be diagnosed by postmortem examination, new diagnostic methodologies are needed for early detection and amelioration of disease burden. This review examines the pathology driving changes in athletes participating in high-impact sports and how this understanding can lead to innovations in neuroimaging and biomarker discovery.

  9. Graded Aerobic Treadmill Testing in Adolescent Traumatic Brain Injury Patients.

    Science.gov (United States)

    Cordingley, Dean M; Girardin, Richard; Morissette, Marc P; Reimer, Karen; Leiter, Jeff; Russell, Kelly; Ellis, Michael J

    2017-11-01

    To examine the safety and tolerability of clinical graded aerobic treadmill testing in recovering adolescent moderate and severe traumatic brain injury (TBI) patients referred to a multidisciplinary pediatric concussion program. We completed a retrospective case series of two moderate and five severe TBI patients (mean age, 17.3 years) who underwent initial Buffalo Concussion Treadmill Testing at a mean time of 71.6 days (range, 55-87) postinjury. Six patients completed one graded aerobic treadmill test each and one patient underwent initial and repeat testing. There were no complications. Five initial treadmill tests were completely tolerated and allowed an accurate assessment of exercise tolerance. Two initial tests were terminated early by the treatment team because of neurological and cardiorespiratory limitations. As a result of testing, two patients were cleared for aerobic exercise as tolerated and four patients were treated with individually tailored submaximal aerobic exercise programs resulting in subjective improvement in residual symptoms and/or exercise tolerance. Repeat treadmill testing in one patient performed after 1 month of treatment with submaximal aerobic exercise prescription was suggestive of improved exercise tolerance. One patient was able to tolerate aerobic exercise following surgery for posterior glottic stenosis. Preliminary results suggest that graded aerobic treadmill testing is a safe, well tolerated, and clinically useful tool to assess exercise tolerance in appropriately selected adolescent patients with TBI. Future prospective studies are needed to evaluate the effect of tailored submaximal aerobic exercise prescription on exercise tolerance and patient outcomes in recovering adolescent moderate and severe TBI patients.

  10. Evaluation after Traumatic Brain Injury

    Science.gov (United States)

    Trudel, Tina M.; Halper, James; Pines, Hayley; Cancro, Lorraine

    2010-01-01

    It is important to determine if a traumatic brain injury (TBI) has occurred when an individual is assessed in a hospital emergency room after a car accident, fall, or other injury that affects the head. This determination influences decisions about treatment. It is essential to screen for the injury, because the sooner they begin appropriate…

  11. Early prediction of favourable recovery 6 months after mild traumatic brain injury.

    NARCIS (Netherlands)

    Stulemeijer, M.; Werf, S.P. van der; Borm, G.F.; Vos, P.E.

    2008-01-01

    BACKGROUND: Predicting outcome after mild traumatic brain injury (MTBI) is notoriously difficult. Although it is recognised that milder head injuries do not necessarily mean better outcomes, less is known about the factors that do enable early identification of patients who are likely to recover

  12. Evaluating the CARE4Carer Blended Care Intervention for Partners of Patients With Acquired Brain Injury: Protocol for a Randomized Controlled Trial.

    Science.gov (United States)

    Cox, Vincent Cm; Schepers, Vera Pm; Ketelaar, Marjolijn; van Heugten, Caroline M; Visser-Meily, Johanna Ma

    2018-02-16

    Support programs for partners of patients with acquired brain injury are necessary since these partners experience several unfavorable consequences of caregiving, such as a high burden, emotional distress, and poor quality of life. Evidence-based support strategies that can be included in these support programs are psychoeducation, skill building, problem solving, and improving feelings of mastery. A promising approach would seem to be to combine web-based support with face-to-face consultations, creating a blended care intervention. This paper outlines the protocol of a randomized controlled trial to evaluate the CARE4Carer blended care intervention for partners of patients with acquired brain injury. A multicenter two-arm randomized controlled trial will be conducted. A total of 120 partners of patients with acquired brain injury will be recruited from five rehabilitation centers in the Netherlands. The blended care intervention consists of a nine-session web-based support program and two face-to-face consultations with a social worker. Themes that will be addressed are: giving partners insight into their own situation, including possible pitfalls and strengths, learning how to cope with the situation, getting a grip on thoughts and feelings, finding a better balance in the care for the patient with acquired brain injury, thinking about other possible care options, taking care of oneself, and communication. The intervention lasts 20 weeks and the control group will receive usual care. The outcome measures will be assessed at baseline and at 24- and 40-week follow-up. The primary outcome is caregiver mastery. Secondary outcome measures are strain, burden, family functioning, emotional functioning, coping, quality of life, participation, and social network. The effect of the intervention on the primary and secondary outcome measures will be determined. Additional a process evaluation will be conducted. The findings of this study will be used to improve the care for

  13. The relational neurobehavioral approach: can a non-aversive program manage adults with brain injury-related aggression without seclusion/restraint?

    Science.gov (United States)

    Kalapatapu, Raj K; Giles, Gordon M

    2017-11-01

    The Relational Neurobehavioral Approach (RNA) is a set of non-aversive intervention methods to manage individuals with brain injury-related aggression. New data on interventions used in the RNA and on how the RNA interventions can be used with patients with acquired brain injury (ABI) who have differing levels of functional impairment are provided in this paper. The study was conducted over a 6-week period in a secure 65-bed program for individuals with ABI that is housed in two units of a skilled nursing facility (SNF). Implementation of the RNA was compared between two units that housed patients with differing levels of functional impairment (n = 65 adults). Since this was a hierarchical clustered dataset, Generalized Estimating Equations regression was used in the analyses. RNA interventions used to manage the 495 aggressive incidents included the following: Aggression ignored, Closer observation, Talking to patient, Reassurance, Physical distraction, Isolation without seclusion, Immediate medication by mouth, Holding patient. Different interventions were implemented differentially by staff based on level of functional impairment and without use of seclusion or mechanical restraint. The RNA can be used to non-aversively manage aggression in patients with brain injury and with differing levels of functional impairment. Programs adopting the RNA can potentially manage brain injury-related aggression without seclusion or mechanical restraint. Implications for Rehabilitation The Relational Neurobehavioral Approach (RNA) is a set of non-aversive intervention methods to manage individuals with brain injury-related aggression. RNA methods can be used to manage aggression in patients with brain injury who have differing levels of functional impairment. Successful implementation of the RNA may allow for the management of brain injury-related aggression without seclusion or mechanical restraint.

  14. The clinical application of determination of plasma IL-6, TNF-α and cortisol (at 8:00 and 20:00) levels for assessment of severity of the disease in patients with acute brain injury

    International Nuclear Information System (INIS)

    Zhao Ruoyu; Bao Yimin; Yang Yongqing

    2009-01-01

    Objective: To investigate the clinical usefulness of determination of plasma IL-6, TNF-α and cortisol (at 8:00 and 24:00) levels in patients with acute brain injury. Methods: Plasma IL-6, TNF-α and cortisol (at 8:00 and 24:00) levels were determined with RIA in 112 patients with acute brain injury and 58 controls. The 112 patients were of 3 groups: (1) mild, Glascow score 13-15, n=46 (2) moderate, score 9-12, n=31 (3) severe, score 3-8, n=35. Results: The plasma IL-6, TNF -α and cortisol (at 8:00 and 24:00) levels were significantly higher in the patients with brain injury than those in the controls (P all 0.05). Conclusion: Plasma IL-6, TNF-α and cortisol levels could reflect the severity of the disease in patients with acute brain injury and determination of which would be clinically useful. (authors)

  15. Radiation-induced brain injury: A review

    Directory of Open Access Journals (Sweden)

    Michael eRobbins

    2012-07-01

    Full Text Available Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (> 6 months to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses > 30 Gy; white matter necrosis occurs at fractionated doses > 60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain

  16. Minocycline Attenuates Iron-Induced Brain Injury.

    Science.gov (United States)

    Zhao, Fan; Xi, Guohua; Liu, Wenqaun; Keep, Richard F; Hua, Ya

    2016-01-01

    Iron plays an important role in brain injury after intracerebral hemorrhage (ICH). Our previous study found minocycline reduces iron overload after ICH. The present study examined the effects of minocycline on the subacute brain injury induced by iron. Rats had an intracaudate injection of 50 μl of saline, iron, or iron + minocycline. All the animals were euthanized at day 3. Rat brains were used for immunohistochemistry (n = 5-6 per each group) and Western blotting assay (n = 4). Brain swelling, blood-brain barrier (BBB) disruption, and iron-handling proteins were measured. We found that intracerebral injection of iron resulted in brain swelling, BBB disruption, and brain iron-handling protein upregulation (p minocycline with iron significantly reduced iron-induced brain swelling (n = 5, p Minocycline significantly decreased albumin protein levels in the ipsilateral basal ganglia (p minocycline co-injected animals. In conclusion, the present study suggests that minocycline attenuates brain swelling and BBB disruption via an iron-chelation mechanism.

  17. Evaluation of the Addenbrooke's Cognitive Examination's validity in a brain injury rehabilitation setting.

    Science.gov (United States)

    Gaber, Tarek A-Z K

    2008-07-01

    Several reports have warned of the Mini Mental State Examination's (MMSE) inability to detect gross memory and high executive impairments. Addenbrooke's Cognitive Examination-Revised (ACE-R) has gained enormous popularity in dementia screening as it addresses the main shortcomings of MMSE. This study aimed at evaluating the use of ACE-R and to establish its sensitivity compared to MMSE in a cohort of brain injury patients. ACE-R was administered to a cohort of chronic brain injury patients. All patients had a cognitive impairment which was severe enough to prevent them working or studying. Patients with significant mental health, sensory, communication or physical impairments were excluded. Thirty-six patients were recruited, 31 males with a mean age of 37 years. For an upper cut-off value of 27/30 for MMSE and 88/100 for ACE-R, their sensitivities were 36% and 72%, respectively. For a lower cut-off value of 24/30 and 82/100 the tests sensitivities were 11% and 56%, respectively. Analysis of the ACE-R sub-tests indicated that memory and verbal fluency sub-tests showed the most dramatic impairment. MMSE is insensitive as a screening test in brain injury patients. The results show ACE-R to be a sensitive, easily administered test.

  18. Postinjury personality and outcome in acquired brain injury: the Millon Behavioral Medicine Diagnostic.

    Science.gov (United States)

    Beck, Kelley D; Franks, Susan F; Hall, James R

    2010-03-01

    To examine the relationship between postinjury personality and outcome in individuals with acquired brain injury. It was hypothesized that patients with differing levels of Introversive, Dejected, and Oppositional coping styles as described by Millon's Theory of Personality would show different outcomes after completion of a rehabilitation program. A retrospective chart review and completion of an outcome assessment was undertaken to examine study hypotheses. A postacute brain injury rehabilitation program. Fifty patients who completed the rehabilitation program between 2005 and 2008, who were 18 years of age or older, who possessed at least a sixth-grade reading level, and who completed a valid Millon Behavioral Medicine Diagnostic (MBMD) were selected. Rehabilitation therapists who worked with these patients were also recruited to assess patient outcomes. Charts of patients that met inclusion criteria were reviewed. Rehabilitation therapists completed the outcome measure retrospectively. The MBMD was used to predict outcome. The MBMD is a self-report questionnaire designed to assess psychosocial factors that relate to the course of medical treatment in chronic illness. The Mayo-Portland Adaptability Inventory (MPAI-4) was used to assess patient outcome. It is a 29-item assessment designed to evaluate the common physical, cognitive, emotional, behavioral, and social issues after acquired brain injury. Findings supported our hypotheses that patients with differing levels of Introversive and Oppositional Coping Styles would have significantly different outcomes after rehabilitation. Thus, individuals with mild/moderate to moderate/severe limitations had significantly greater scores on the Introversive and Oppositional coping compared with individuals with more successful outcomes. The results of this study support the idea that postinjury personality is an important factor in understanding outcome after completion of a brain-injury rehabilitation program

  19. Longitudinal Trajectories of Health Related Quality of Life in Danish Family Members of Individuals with Severe Brain Injury

    DEFF Research Database (Denmark)

    Norup, Anne; Snipes, Daniel J.; Siert, Lars

    2013-01-01

    – Emotional scores were higher when patients had high Rancho Los Amigos Scale scores at admission to early intensive rehabilitation in hospital. These results suggest that the acute and sub-acute periods after brain injury are an extremely difficult time psychologically for many families, and family......Scant research has examined health-related quality of life (HRQoL) in family members of patients with severe brain injury, even less has been done in Scandinavian countries, and none has examined this construct longitudinally. The current study therefore used multilevel modelling to investigate...... the trajectories of HRQoL in 94 Danish family members of patients with severe brain injury at five time points, beginning at the patient's stay in a neuro intensive care unit through one year after injury. The family members’ HRQoL scores significantly and strongly increased over time, and Role Limitations...

  20. Glibenclamide reduces secondary brain damage after experimental traumatic brain injury.

    Science.gov (United States)

    Zweckberger, K; Hackenberg, K; Jung, C S; Hertle, D N; Kiening, K L; Unterberg, A W; Sakowitz, O W

    2014-07-11

    Following traumatic brain injury (TBI) SUR1-regulated NCCa-ATP (SUR1/TRPM4) channels are transcriptionally up-regulated in ischemic astrocytes, neurons, and capillaries. ATP depletion results in depolarization and opening of the channel leading to cytotoxic edema. Glibenclamide is an inhibitor of SUR-1 and, thus, might prevent cytotoxic edema and secondary brain damage following TBI. Anesthetized adult Sprague-Dawley rats underwent parietal craniotomy and were subjected to controlled cortical impact injury (CCI). Glibenclamide was administered as a bolus injection 15min after CCI injury and continuously via osmotic pumps throughout 7days. In an acute trial (180min) mean arterial blood pressure, heart rate, intracranial pressure, encephalographic activity, and cerebral metabolism were monitored. Brain water content was assessed gravimetrically 24h after CCI injury and contusion volumes were measured by MRI scanning technique at 8h, 24h, 72h, and 7d post injury. Throughout the entire time of observation neurological function was quantified using the "beam-walking" test. Glibenclamide-treated animals showed a significant reduction in the development of brain tissue water content(80.47%±0.37% (glibenclamide) vs. 80.83%±0.44% (control); pbeam-walking test throughout 7days. In accordance to these results and the available literature, glibenclamide seems to have promising potency in the treatment of TBI. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Factors affecting mortality in severe traumatic brain injury in adults at ...

    African Journals Online (AJOL)

    Objective: To assess factors contributing to mortality of adult patients admitted to intensive care units for severe traumatic brain injury (TBI). Patients and methods: This is a retrospective, descriptive and analytical study. Included in the study were all adults patients admitted for severe TBI. From the hospital records, ...

  2. Relationship between trauma-induced coagulopathy and progressive hemorrhagic injury in patients with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Jia Liu; Heng-Li Tian

    2016-01-01

    Progressive hemorrhagic injury (PHI) can be divided into coagulopathy-related PHI and normal coagulation PHI.Coagulation disorders after traumatic brain injuries can be included in trauma-induced coagulopathy (TIC).Some studies showed that TIC is associated with PHI and increases the rates of disability and mortality.In this review,we discussed some mechanisms in TIC,which is of great importance in the development of PHI,including tissue factor (TF) hypothesis,protein C pathway and thrombocytopenia.The main mechanism in the relation of TIC to PHI is hypocoagulability.We also reviewed some coagulopathy parameters and proposed some possible risk factors,predictors and therapies.

  3. Patients "At Risk'' of Suffering from Persistent Complaints after Mild Traumatic Brain Injury : The Role of Coping, Mood Disorders, and Post-Traumatic Stress

    NARCIS (Netherlands)

    Scheenen, Myrthe E.; Spikman, Jacoba M.; de Koning, Myrthe E.; van der Horn, Harm J.; Roks, Gerwin; Hageman, Gerard; van der Naalt, Joukje

    2017-01-01

    Although most patients recover fully following mild traumatic brain injury (mTBI), a minority (15-25%) of all patients develop persistent post-traumatic complaints (PTC) that interfere with the resumption of previous activities. An early identification of patients who are at risk for PTC is

  4. Reversal of coagulopathy in critically ill patients with traumatic brain injury: recombinant factor VIIa is more cost-effective than plasma.

    Science.gov (United States)

    Stein, Deborah M; Dutton, Richard P; Kramer, Mary E; Scalea, Thomas M

    2009-01-01

    Traumatic brain injury (TBI) is the leading cause of death and disability after trauma. Coagulopathy is common in this patient population and requires rapid reversal to allow for safe neurosurgical intervention and prevent worsening of the primary injury. Typically reversal of coagulopathy is accomplished with the use of plasma. Recombinant factor VIIa (rFVIIa; NovoSeven, Novo Nordisk, Bagsvaerd, Denmark) has become increasingly used "off-label" in patients with neurosurgical emergencies to rapidly reverse coagulopathy. We hypothesized that the use of rFVIIa in this patient population would prove to be cost-effective as well as demonstrate clinical benefit. The trauma registry at the R Adams Cowley Shock Trauma Center was used to identify all coagulopatic trauma patients admitted between January 2002 and December 2007 with relatively isolated TBI (head Abbreviated Injury Scale score of >or=4). The medical records of patients were reviewed and demographics, injury-specific data, medications administered, laboratory values, blood product utilization, neurosurgical procedures, length of stay (LOS), discharge disposition, and outcome data were abstracted. Patients who received rFVIIa for reversal of coagulopathy were compared against those who did not receive rFVIIa. t Tests were used to compare differences between continuous variables, and chi2 analysis was used to compare categorical variables. A p value of percentage of patients with head Abbreviated Injury Scale score of 5 injuries, patients who underwent neurosurgical procedures and patients with preinjury warfarin use. There was no difference in total charges between these groups (mean US $63,403 in the conventionally treated group vs. $66,086). When patients who required admission to the intensive care unit were analyzed (n = 110, 50% received rFVIIa), total mean charges and costs were significantly lower in the group that received rFVIIa (mean US $108,900 vs. $77,907). Hospital LOS, days of mechanical

  5. Hypopituitarism after traumatic brain injury.

    Science.gov (United States)

    Fernandez-Rodriguez, Eva; Bernabeu, Ignacio; Castro, Ana I; Casanueva, Felipe F

    2015-03-01

    The prevalence of hypopituitarism after traumatic brain (TBI) injury is widely variable in the literature; a meta-analysis determined a pooled prevalence of anterior hypopituitarism of 27.5%. Growth hormone deficiency is the most prevalent hormone insufficiency after TBI; however, the prevalence of each type of pituitary deficiency is influenced by the assays used for diagnosis, severity of head trauma, and time of evaluation. Recent studies have demonstrated improvement in cognitive function and cognitive quality of life with substitution therapy in GH-deficient patients after TBI. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. TRAUMATIC BRAIN INJURY CHILDREN: A LITERATURE REVIEW

    Directory of Open Access Journals (Sweden)

    Denismar Borges de Miranda

    2013-09-01

    Full Text Available Objective: to know the scientific literature on head injury in children. Method: this study is an integrative review of published articles in the database SciELO the period 2000-2010. Results: 10 articles were analyzed, from which emerged four categories: causes of traumatic brain child infant prognosis of traumatic brain child, treating children victims of child head injury and complications of therapy used for child victims of traumatic brain injury in children. Conclusions: there is consensus among the authors investigated the factors associated with better prognosis of traumatic brain child, remain vague and uncertain. They add that the success of this customer service related to the control of complications arising from cerebral trauma and mostly are treatable and / or preventable.

  7. Orotracheal intubation and dysphagia: comparison of patients with and without brain damage

    Directory of Open Access Journals (Sweden)

    Aline Rodrigues Padovani

    2008-09-01

    Full Text Available Objectives: To compare the swallowing and feeding abilities in extubated patients with and without brain injury. Methods: A retrospective study including 44 patients aged 20 to 50 years submitted to prolonged orotracheal intubation (> 48 hours. Two groups were analyzed: Group 1 composed of nontraumatic brain injury patients, and Group 2 composed of patients with traumatic brain injury. Two scales for characterization of functional swallowing and feeding abilities were used to compare both groups; the levels of alertness, awareness and patient collaboration were also assessed. Rresults: The groups were equal in age, number and time of orotracheal intubation and extubation on the date of the assessment. Regarding the speech and language diagnosis, Group 1 presented higher percentage of functional swallowing and mild dysphagia, while Group 2 showed higher rates of moderate to severe dysphagia and severe dysphagia. The Functional Oral Intake Scale average was higher in Group 1. In addition, the injured brain group was sleepier, less collaborative and had less contact in the first evaluation. Cconclusions: In this study, patients who underwent prolonged orotracheal intubation had dysphagia in different degrees, but the patients with brain injury presented more frequent and severe disorder. Thus, this study suggested that orotracheal intubation cannot be considered as the single factor causing dysphagia, especially in neurological patients. Moreover, some cognitive factors may influence the possibility of providing oral feeding.

  8. Spatial patterns of whole brain grey and white matter injury in patients with occult spastic diplegic cerebral palsy.

    Science.gov (United States)

    Mu, Xuetao; Nie, Binbin; Wang, Hong; Duan, Shaofeng; Zhang, Zan; Dai, Guanghui; Ma, Qiaozhi; Shan, Baoci; Ma, Lin

    2014-01-01

    Spastic diplegic cerebral palsy (SDCP) is a common type of cerebral palsy (CP), which presents as a group of motor-impairment syndromes. Previous conventional MRI studies have reported abnormal structural changes in SDCP, such as periventricular leucomalacia. However, there are roughly 27.8% SDCP patients presenting normal appearance in conventional MRI, which were considered as occult SDCP. In this study, sixteen patients with occult SDCP and 16 age- and sex-matched healthy control subjects were collected and the data were acquired on a 3T MR system. We applied voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analysis to investigate whole brain grey and white matter injury in occult SDCP. By using VBM method, the grey matter volume reduction was revealed in the bilateral basal ganglia regions, thalamus, insula, and left cerebral peduncle, whereas the white matter atrophy was found to be located in the posterior part of corpus callosum and right posterior corona radiata in the occult SDCP patients. By using TBSS, reduced fractional anisotropy (FA) values were detected in multiple white matter regions, including bilateral white matter tracts in prefrontal lobe, temporal lobe, internal and external capsule, corpus callosum, cingulum, thalamus, brainstem and cerebellum. Additionally, several regions of white matter tracts injury were found to be significantly correlated with motor dysfunction. These results collectively revealed the spatial patterns of whole brain grey and white matter injury in occult SDCP.

  9. Prognostic significance of blood-brain barrier disruption in patients with severe nonpenetrating traumatic brain injury requiring decompressive craniectomy.

    Science.gov (United States)

    Ho, Kwok M; Honeybul, Stephen; Yip, Cheng B; Silbert, Benjamin I

    2014-09-01

    The authors assessed the risk factors and outcomes associated with blood-brain barrier (BBB) disruption in patients with severe, nonpenetrating, traumatic brain injury (TBI) requiring decompressive craniectomy. At 2 major neurotrauma centers in Western Australia, a retrospective cohort study was conducted among 97 adult neurotrauma patients who required an external ventricular drain (EVD) and decompressive craniectomy during 2004-2012. Glasgow Outcome Scale scores were used to assess neurological outcomes. Logistic regression was used to identify factors associated with BBB disruption, defined by a ratio of total CSF protein concentrations to total plasma protein concentration > 0.007 in the earliest CSF specimen collected after TBI. Of the 252 patients who required decompressive craniectomy, 97 (39%) required an EVD to control intracranial pressure, and biochemical evidence of BBB disruption was observed in 43 (44%). Presence of disruption was associated with more severe TBI (median predicted risk for unfavorable outcome 75% vs 63%, respectively; p = 0.001) and with worse outcomes at 6, 12, and 18 months than was absence of BBB disruption (72% vs 37% unfavorable outcomes, respectively; p = 0.015). The only risk factor significantly associated with increased risk for BBB disruption was presence of nonevacuated intracerebral hematoma (> 1 cm diameter) (OR 3.03, 95% CI 1.23-7.50; p = 0.016). Although BBB disruption was associated with more severe TBI and worse long-term outcomes, when combined with the prognostic information contained in the Corticosteroid Randomization after Significant Head Injury (CRASH) prognostic model, it did not seem to add significant prognostic value (area under the receiver operating characteristic curve 0.855 vs 0.864, respectively; p = 0.453). Biochemical evidence of BBB disruption after severe nonpenetrating TBI was common, especially among patients with large intracerebral hematomas. Disruption of the BBB was associated with more severe

  10. Interleukin-1 and acute brain injury

    Directory of Open Access Journals (Sweden)

    Katie N Murray

    2015-02-01

    Full Text Available Inflammation is the key host-defense response to infection and injury, yet also a major contributor to a diverse range of diseases, both peripheral and central in origin. Brain injury as a result of stroke or trauma is a leading cause of death and disability worldwide, yet there are no effective treatments, resulting in enormous social and economic costs. Increasing evidence, both preclinical and clinical, highlights inflammation as an important factor in stroke, both in determining outcome and as a contributor to risk. A number of inflammatory mediators have been proposed as key targets for intervention to reduce the burden of stroke, several reaching clinical trial, but as yet yielding no success. Many factors could explain these failures, including the lack of robust preclinical evidence and poorly designed clinical trials, in addition to the complex nature of the clinical condition. Lack of consideration in preclinical studies of associated co-morbidities prevalent in the clinical stroke population is now seen as an important omission in previous work. These co-morbidities (atherosclerosis, hypertension, diabetes, infection have a strong inflammatory component, supporting the need for greater understanding of how inflammation contributes to acute brain injury. Interleukin (IL-1 is the prototypical pro-inflammatory cytokine, first identified many years ago as the endogenous pyrogen. Research over the last 20 years or so reveals that IL-1 is an important mediator of neuronal injury and blocking the actions of IL-1 is beneficial in a number of experimental models of brain damage. Mechanisms underlying the actions of IL-1 in brain injury remain unclear, though increasing evidence indicates the cerebrovasculature as a key target. Recent literature supporting this and other aspects of how IL-1 and systemic inflammation in general contribute to acute brain injury are discussed in this review.

  11. Neural tension technique is no different from random passive movements in reducing spasticity in patients with traumatic brain injury

    DEFF Research Database (Denmark)

    Lorentzen, Jakob; Nielsen, Dorthe; Holm, Karl

    2012-01-01

    Purpose: Neural tension technique (NTT) is a therapy believed to reduce spasticity and to increase range of motion (ROM). This study compared the ability of NTT and random passive movements (RPMs) to reduce spasticity in the knee flexors in 10 spastic patients with brain injury. Methods: An RCT...

  12. Self-reported competency--validation of the Norwegian version of the patient competency rating scale for traumatic brain injury.

    Science.gov (United States)

    Sveen, Unni; Andelic, Nada; Bautz-Holter, Erik; Røe, Cecilie

    2015-01-01

    To evaluate the psychometric properties of the Norwegian version of the Patient Competency Rating Scale (PCRS) in patients with traumatic brain injury (TBI) at 12 months post-injury. Demographic and injury-related data were registered upon admission to the hospital in 148 TBI patients with mild, moderate, or severe TBI. At 12 months post-injury, competency in activities and global functioning were measured using the PCRS patient version and the Glasgow Outcome Scale-Extended (GOSE). Descriptive reliability statistics, factor analysis and Rasch modeling were applied to explore the psychometric properties of the PCRS. External validity was evaluated using the GOSE. The PCRS can be divided into three subscales that reflect interpersonal/emotional, cognitive, and activities of daily living competency. The three-factor solution explained 56.6% of the variance in functioning. The internal consistency was very good, with a Cronbach's α of 0.95. Item 30, "controlling my laughter", did not load above 0.40 on any factors and did not fit the Rasch model. The external validity of the subscales was acceptable, with correlations between 0.50 and 0.52 with the GOSE. The Norwegian version of the PCRS is reliable, has an acceptable construct and external validity, and can be recommended for use during the later phases of TBI.

  13. The clinical utility of MR diffusion tensor imaging and spatially normalized PET to evaluate traumatic brain injury patients with memory and cognitive impairments

    International Nuclear Information System (INIS)

    Okumura, Ayumi; Yasokawa, Yuuto; Nakayama, Noriyuki; Miwa, Kazuhiro; Shinoda, Jun; Iwama, Toru

    2005-01-01

    We detected and compared abnormal brain areas using both MR diffusion tensor imaging (DTI) and easy Z score imaging system (eZIS) of fluorodeoxyglucose (FDG)-PET for traumatic brain injury patients with memory and cognitive impairments. Twenty normal subjects and eighteen diffuse axonal injury patients with memory and cognitive impairments were studied with DTI and eZIS of 18 F-FDG-PET. DTI contained fractional anisotorophy (FA) analysis and the tractography for the corpus callosum. After PET imaging was performed, statistical analysis using eZIS was undergone with followed processing steps, including smoothing, normalization and z transformation with respect to normal database. Z score map was superimposed on 3D MRI brain. Group analysis was performed using statistical parametric mapping (SPM). In diffuse axonal injury patients, the decline of FA was observed around the corpus callosum in comparison with normal subjects and the reduction of glucose metabolism was shown in the cingulated association. These results suggest that the reduction of metabolism within the cingulated cortex indicated deprived neuronal activation caused by the impaired neuronal connectivity that was revealed with DTI. Furthermore, the metabolic abnormalities within the cingulated cortex may be responsible for memory and cognitive impairments. DTI and spatially normalized PET have a role in neuroimaging interpretation for patients with memory and cognition impairments be cause its 3D better visualization allows objective and systematic investigation. (author)

  14. Diagnosis and Management of Patients with Paroxysmal Sympathetic Hyperactivity following Acute Brain Injuries Using a Consensus-Based Diagnostic Tool: A Single Institutional Case Series.

    Science.gov (United States)

    Godo, Shigeo; Irino, Shigemi; Nakagawa, Atsuhiro; Kawazoe, Yu; Fujita, Motoo; Kudo, Daisuke; Nomura, Ryosuke; Shimokawa, Hiroaki; Kushimoto, Shigeki

    2017-09-01

    Paroxysmal sympathetic hyperactivity (PSH) is a distinct syndrome of episodic sympathetic hyperactivities following severe acquired brain injury, characterized by paroxysmal transient fever, tachycardia, hypertension, tachypnea, excessive diaphoresis and specific posturing. PSH remains to be an under-recognized condition with a diagnostic pitfall especially in the intensive care unit (ICU) settings due to the high prevalence of concomitant diseases that mimic PSH. A consensus set of diagnostic criteria named PSH-Assessment Measure (PSH-AM) has been developed recently, which is consisted of two components: a diagnosis likelihood tool derived from clinical characteristics of PSH, and a clinical feature scale assigned to the severity of each sympathetic hyperactivity. We herein present a case series of patients with PSH who were diagnosed and followed by using PSH-AM in our tertiary institutional medical and surgical ICU between April 2015 and March 2017 in order to evaluate the clinical efficacy of PSH-AM. Among 394 survivors of 521 patients admitted with acquired brain injury defined as acute brain injury at all levels of severity regardless of the presence of altered consciousness, including traumatic brain injury, stroke, infectious disease, and encephalopathy, 6 patients (1.5%) were diagnosed as PSH by using PSH-AM. PSH-AM served as a useful scoring system for early objective diagnosis, assessment of severity, and serial evaluation of treatment efficacy in the management of PSH in the ICU settings. In conclusion, critical care clinicians should consider the possibility of PSH and can use PSH-AM as a useful diagnostic and guiding tool in the management of PSH.

  15. Biomarker evidence of axonal injury in neuroasymptomatic HIV-1 patients.

    Directory of Open Access Journals (Sweden)

    Jan Jessen Krut

    Full Text Available Prevalence of neurocognitive impairment in HIV-1 infected patients is reported to be high. Whether this is a result of active HIV-related neurodegeneration is unclear. We examined axonal injury in HIV-1 patients by measuring the light subunit of neurofilament protein (NFL in CSF with a novel, sensitive method.With a cross-sectional design, CSF concentrations of neurofilament protein light (NFL (marker of neuronal injury, neopterin (intrathecal immunoactivation and CSF/Plasma albumin ratio (blood-brain barrier integrity were analyzed on CSF from 252 HIV-infected patients, subdivided into untreated neuroasymptomatics (n = 200, HIV-associated dementia (HAD (n = 14 and on combinations antiretroviral treatment (cART (n = 85, and healthy controls (n = 204. 46 HIV-infected patients were included in both treated and untreated groups, but sampled at different timepoints. Furthermore, 78 neuroasymptomatic patients were analyzed before and after treatment initiation.While HAD patients had the highest NFL concentrations, elevated CSF NFL was also found in 33% of untreated neuroasymptomatic patients, mainly in those with blood CD4+ cell counts below 250 cells/μL. CSF NFL concentrations in the untreated neuroasymptomatics and treated groups were equivalent to controls 18.5 and 3.9 years older, respectively. Neopterin correlated with NFL levels in untreated groups while the albumin ratio correlated with NFL in both untreated and treated groups.Increased CSF NFL indicates ongoing axonal injury in many neuroasymptomatic patients. Treatment decreases NFL, but treated patients retain higher levels than controls, indicating either continued virus-related injury or an aging-like effect of HIV infection. NFL correlates with neopterin and albumin ratio, suggesting an association between axonal injury, neuroinflammation and blood-brain barrier permeability. NFL appears to be a sensitive biomarker of subclinical and clinical brain injury in HIV and warrants further

  16. Patient perspectives on navigating the field of traumatic brain injury rehabilitation: a qualitative thematic analysis.

    Science.gov (United States)

    Graff, Heidi J; Christensen, Ulla; Poulsen, Ingrid; Egerod, Ingrid

    2018-04-01

    This study aimed to provide an understanding of the lived experience of rehabilitation in adults with traumatic brain injury (TBI) from hospital discharge up to four years post-injury. We used a qualitative explorative design with semi-structured in-depth interviews. Twenty participants with TBI were included from a level I Trauma Center in Denmark at 1-4 years post-injury. Qualitative thematic analysis was applied for data analysis. Three main themes emerged during analysis: A new life, Family involvement, and Rehabilitation impediments. These themes and their sub-themes described the patient perspective of TBI and rehabilitation post hospitalization. Participants reassessed their values and found a new life after TBI. Family caregivers negotiated rehabilitation services and helped the participant to overcome barriers to rehabilitation. Although participants were entitled to TBI rehabilitation, they had to fight for the services they were entitled to. Individuals with TBI found ways of coping after injury and created a meaningful life. Barriers to TBI rehabilitation were overcome with help from family caregivers rather than health care professionals. Future studies need to find ways to ease the burden on family caregivers and pave the way for more accessible rehabilitation in this vulnerable group of patients. Implications for rehabilitation TBI rehabilitation might benefit from:    • Increased transparency in rehabilitation options    • More systematic follow-up programs    • Age-appropriate rehabilitation facilities    • Inclusion of patient and family in the planning of long-term rehabilitation.

  17. Relationship between CT findings and prognosis in diffuse brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Akihito; Kuwana, Nobumasa; Mochimatsu, Yasuhiko; Fujino, Hideyo; Tokoro, Kazuhiko [Yokohama Minami Kyosai Hospital, Kanagawa (Japan)

    1984-12-01

    Types of diffuse brain injury (DBI) were classified based on a study of fifty patients with acute, severe head injuries. This study focused on findings of computed tomography (CT) and outcomes of the patients. The level of consciousness was estimated by the Glasgow Coma Scale; greater than 8 in 28 cases; 8 or less in 22 cases. The overall mortality rate was 28%, however the rate ranged from 8 to 67%, depending on the type of DBI. CT findings of DBI within 24 hours after head injury were classified into 5 type: diffuse cerebral swelling (DCS), isodense hemispheric swelling (IHS), deep-seated brain injury (DSI), subarachnoid hemorrhage (SAH) and normal findings. DSI demonstrated the highest mortality rate (67%), and IHS was the second (50%). However, there are many pediatric cases with excellent outcomes. Although both DCS and IHS occurred frequently in children, it was considered that these two conditions should be distinguished, because of the existence of some differences in the clinical course of the two. There were only 7 cases of SAH alone, but SAH was the most frequent associated finding in DBI, existing in 50% of 50 cases. SAH per se could not be regarded as a poor prognostic factor. It is the authors' impression that DBI without coup or contre-coup injuries can be readily diagnosed by CT scan and that DBI is an important clinical factor in the closed head injury cases.

  18. Recent neuroimaging techniques in mild traumatic brain injury.

    Science.gov (United States)

    Belanger, Heather G; Vanderploeg, Rodney D; Curtiss, Glenn; Warden, Deborah L

    2007-01-01

    Mild traumatic brain injury (TBI) is characterized by acute physiological changes that result in at least some acute cognitive difficulties and typically resolve by 3 months postinjury. Because the majority of mild TBI patients have normal structural magnetic resonance imaging (MRI)/computed tomography (CT) scans, there is increasing attention directed at finding objective physiological correlates of persistent cognitive and neuropsychiatric symptoms through experimental neuroimaging techniques. The authors review studies utilizing these techniques in patients with mild TBI; these techniques may provide more sensitive assessment of structural and functional abnormalities following mild TBI. Particular promise is evident with fMRI, PET, and SPECT scanning, as demonstrated by associations between brain activation and clinical outcomes.

  19. A ten-year analysis of the traumatic maxillofacial and brain injury patient in Amsterdam: incidence and aetiology

    NARCIS (Netherlands)

    Salentijn, E.G.; Peerdeman, S.M.; Boffano, P.; van den Bergh, B.; Forouzanfar, T.

    2014-01-01

    In the literature it is questioned if the presence of maxillofacial trauma is associated with the presence of brain injury. The aim of this study is to present a 10-year retrospective study of the incidence and aetiology of maxillofacial trauma associated with brain injury that required both oral

  20. A ten-year analysis of the traumatic maxillofacial and brain injury patient in Amsterdam: Incidence and aetiology

    NARCIS (Netherlands)

    Salentijn, E.G.; Peerdeman, S.M.; Boffano, P.; van den Bergh, B.; Forouzanfar, T.

    2014-01-01

    In the literature it is questioned if the presence of maxillofacial trauma is associated with the presence of brain injury. The aim of this study is to present a 10-year retrospective study of the incidence and aetiology of maxillofacial trauma associated with brain injury that required both oral

  1. Nutritional parameters predicting pressure ulcers and short-term mortality in patients with minimal conscious state as a result of traumatic and non-traumatic acquired brain injury

    OpenAIRE

    Montalcini, Tiziana; Moraca, Marta; Ferro, Yvelise; Romeo, Stefano; Serra, Sebastiano; Raso, Maria Girolama; Rossi, Francesco; Sannita, Walter G.; Dolce, Giuliano; Pujia, Arturo

    2015-01-01

    Background The association between malnutrition and worse outcomes as pressure ulcers and mortality is well established in a variety of setting. Currently none investigation was conducted in patients with long-term consequences of the acquired brain injury in which recovery from brain injury could be influenced by secondary complications. The aim of this study was to investigate the association between various nutritional status parameters (in particular albumin) and pressure ulcers formation...

  2. A factor analysis of Functional Independence and Functional Assessment Measure scores among focal and diffuse brain injury patients: The importance of bi-factor models.

    Science.gov (United States)

    Gunn, Sarah; Burgess, Gerald H; Maltby, John

    2018-04-28

    To explore the factor structure of the UK Functional Independence Measure and Functional Assessment Measure (FIM+FAM) among focal and diffuse acquired brain injury patients. Criterion standard. An NHS acute acquired brain injury inpatient rehabilitation hospital. Referred sample of 447 adults (835 cases after exclusions) admitted for inpatient treatment following an acquired brain injury significant enough to justify intensive inpatient neurorehabilitation. Not applicable. Functional Independence Measure and Functional Assessment Measure. Exploratory Factor Analysis suggested a two-factor structure to FIM+FAM scores, among both focal-proximate and diffuse-proximate acquired brain injury aetiologies. Confirmatory Factor Analysis suggested a three-factor bi-factor structure presented the best fit of the FIM+FAM score data across both aetiologies. However, across both analyses, a convergence was found towards a general factor, demonstrated by high correlations between factors in the Exploratory Factor Analysis, and by a general factor explaining the majority of the variance in scores on Confirmatory Factor Analysis. Our findings suggested that although factors describing specific functional domains can be derived from FIM+FAM item scores, there is a convergence towards a single factor describing overall functioning. This single factor informs the specific group factors (e.g. motor, psychosocial and communication function) following brain injury. Further research into the comparative value of the general and group factors as evaluative/prognostic measures is indicated. Copyright © 2018. Published by Elsevier Inc.

  3. Sport-related structural brain injury associated with arachnoid cysts: a systematic review and quantitative analysis.

    Science.gov (United States)

    Zuckerman, Scott L; Prather, Colin T; Yengo-Kahn, Aaron M; Solomon, Gary S; Sills, Allen K; Bonfield, Christopher M

    2016-04-01

    OBJECTIVE Arachnoid cysts (ACs) are congenital lesions bordered by an arachnoid membrane. Researchers have postulated that individuals with an AC demonstrate a higher rate of structural brain injury after trauma. Given the potential neurological consequences of a structural brain injury requiring neurosurgical intervention, the authors sought to perform a systematic review of sport-related structural-brain injury associated with ACs with a corresponding quantitative analysis. METHODS Titles and abstracts were searched systematically across the following databases: PubMed, Embase, CINAHL, and PsycINFO. The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Peer-reviewed case reports, case series, or observational studies that reported a structural brain injury due to a sport or recreational activity (hereafter referred to as sport-related) with an associated AC were included. Patients were excluded if they did not have an AC, suffered a concussion without structural brain injury, or sustained the injury during a non-sport-related activity (e.g., fall, motor vehicle collision). Descriptive statistical analysis and time to presentation data were summarized. Univariate logistic regression models to assess predictors of neurological deficit, open craniotomy, and cystoperitoneal shunt were completed. RESULTS After an initial search of 994 original articles, 52 studies were found that reported 65 cases of sport-related structural brain injury associated with an AC. The median age at presentation was 16 years (range 4-75 years). Headache was the most common presenting symptom (98%), followed by nausea and vomiting in 49%. Thirteen patients (21%) presented with a neurological deficit, most commonly hemiparesis. Open craniotomy was the most common form of treatment (49%). Bur holes and cyst fenestration were performed in 29 (45%) and 31 (48%) patients, respectively. Seven patients (11%) received

  4. Cognitive disorder and changes in cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury

    Institute of Scientific and Technical Information of China (English)

    Weiliang Zhao; Dezhi Kang; Yuanxiang Lin

    2008-01-01

    BACKGROUND: Learning and memory damage is one of the most permanent and the severest symptoms of traumatic brain injury; it can seriously influence the normal life and work of patients. Some research has demonstrated that cognitive disorder is closely related to nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor. OBJECTIVE: To summarize the cognitive disorder and changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury. RETRIEVAL STRATEGY: A computer-based online search was conducted in PUBMED for English language publications containing the key words "brain injured, cognitive handicap, acetylcholine, N-methyl-D aspartate receptors, neural cell adhesion molecule, brain-derived neurotrophic factor" from January 2000 to December 2007. There were 44 papers in total. Inclusion criteria: ① articles about changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury; ② articles in the same researching circle published in authoritative journals or recently published. Exclusion criteria: duplicated articles.LITERATURE EVALUATION: References were mainly derived from research on changes in these four factors following brain injury. The 20 included papers were clinical or basic experimental studies. DATA SYNTHESIS: After craniocerebral injury, changes in these four factors in brain were similar to those during recovery from cognitive disorder, to a certain degree. Some data have indicated that activation of nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor could greatly improve cognitive disorder following brain injury. However, there are still a lot of questions remaining; for example, how do these

  5. A prospective study of 39 patients with whiplash injury

    DEFF Research Database (Denmark)

    Karlsborg, M; Smed, A; Jespersen, H

    1997-01-01

    of whiplash injury were examined clinically three times; within 14 days, after 1 month and finally 7 months postinjury. In addition, MRI of the brain and the cervical spine, neuropsychological tests and motor evoked potentials (MEP) were done one month postinjury and repeated after 6 months, if abnormalities...... were found. RESULTS: The total recovery rate (asymptomatic patients) was 29% after 7 months. MRI was repeated in 6 patients. The correlation between MRI and the clinical findings was poor. Cognitive dysfunction as a symptom of brain injury was not found. Stress at the same time predicted more symptoms...

  6. Investigating the acute and long-term effects of traumatic brain injury on the immune and fibrinolytic system

    OpenAIRE

    MARIA DAGLAS

    2018-01-01

    Traumatic brain injury is a serious condition that results in long-term disability in most patients. This thesis investigated the early and long-term effects of the immune and fibrinolytic response (blood clot breakdown), and the link between these two systems after brain injury in mice. A unique discovery was that the chronic immune response, over a period of 8 months, directly contributes to a worse outcome after brain injury. We also found gender-specific differences occurring at the early...

  7. Viewing the functional consequences of traumatic brain injury by using brain SPECT.

    Science.gov (United States)

    Pavel, D; Jobe, T; Devore-Best, S; Davis, G; Epstein, P; Sinha, S; Kohn, R; Craita, I; Liu, P; Chang, Y

    2006-03-01

    High-resolution brain SPECT is increasingly benefiting from improved image processing software and multiple complementary display capabilities. This enables detailed functional mapping of the disturbances in relative perfusion occurring after TBI. The patient population consisted of 26 cases (ages 8-61 years)between 3 months and 6 years after traumatic brain injury.A very strong case can be made for the routine use of Brain SPECT in TBI. Indeed it can provide a detailed evaluation of multiple functional consequences after TBI and is thus capable of supplementing the clinical evaluation and tailoring the therapeutic strategies needed. In so doing it also provides significant additional information beyond that available from MRI/CT. The critical factor for Brain SPECT's clinical relevance is a carefully designed technical protocol, including displays which should enable a comprehensive description of the patterns found, in a user friendly mode.

  8. Brain functional connectivity and cognition in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Xiong, K.L.; Zhang, Y.L.; Chen, H.; Zhang, J.N.; Zhang, Y.; Qiu, M.G.

    2016-01-01

    The aim of this study was to analyze brain functional connectivity and its relationship to cognition in patients with mild traumatic brain injury (mTBI). Twenty-five patients with mTBI and 25 healthy control subjects were studied using resting-state functional MRI (rs-fMRI). Amplitudes of low-frequency fluctuations (ALFFs) and functional connectivity (FC) were calculated and correlated with cognition. Compared with the normal control group, the mTBI patients showed a significant decrease in working memory index (WMI) and processing speed index (PSI), as well as significantly decreased ALFFs in the cingulate gyrus, the middle frontal gyrus and superior frontal gyrus. In contrast, the mTBI patients' ALFFs in the left middle occipital gyrus, the left precuneus, and lingual gyrus increased. Additionally, FC significantly decreased in the thalamus, caudate nucleus, and right hippocampus in the mTBI patients. Statistical analysis further showed a significant positive correlation between the ALFF in the cingulate gyrus and the WMI (R 2 = 0.423, P < 0.05) and a significant positive correlation between the FC in the left thalamus and left middle frontal gyrus and the WMI (R 2 = 0.381, P < 0.05). rs-fMRI can reveal the functional state of the brain in patients with mTBI. This finding differed from observations of the normal control group and was significantly associated with clinical cognitive dysfunction. Therefore, rs-fMRI offers an objective imaging modality for treatment planning and prognosis assessment in patients with mTBI. (orig.)

  9. [Ecologic evaluation in the cognitive assessment of brain injury patients: generation and execution of script].

    Science.gov (United States)

    Baguena, N; Thomas-Antérion, C; Sciessere, K; Truche, A; Extier, C; Guyot, E; Paris, N

    2006-06-01

    Assessment of executive functions in an everyday life activity, evaluating brain injury subjects with script generation and execution tasks. We compared a script generation task to a script execution task, whereby subjects had to make a cooked dish. Two grids were used for the quotation, qualitative and quantitative, as well as the calculation of an anosognosis score. We checked whether the execution task was more sensitive to a dysexecutive disorder than the script generation task and compared the scores obtained in this evaluation with those from classical frontal tests. Twelve subjects with brain injury 6 years+/-4.79 ago and 12 healthy control subjects were tested. The subjects carried out a script generation task whereby they had to explain the necessary stages to make a chocolate cake. They also had to do a script execution task corresponding to the cake making. The 2 quotation grids were operational and complementary. The quantitative grid is more sensitive to a dysexecutive disorder. The brain injury subjects made more errors in the execution task. It is important to evaluate the executive functions of subjects with brain injury in everyday life tasks, not just in psychometric or script-generation tests. Indeed the ecological realization of a very simple task can reveal executive function difficulties such as the planning or the sequencing of actions, which are under-evaluated in laboratory tests.

  10. Microdialysis Monitoring in Clinical Traumatic Brain Injury and Its Role in Neuroprotective Drug Development.

    Science.gov (United States)

    Thelin, Eric Peter; Carpenter, Keri L H; Hutchinson, Peter J; Helmy, Adel

    2017-03-01

    Injuries to the central nervous system continue to be vast contributors to morbidity and mortality; specifically, traumatic brain injury (TBI) is the most common cause of death during the first four decades of life. Several modalities are used to monitor patients suffering from TBI in order to prevent detrimental secondary injuries. The microdialysis (MD) technique, introduced during the 1990s, presents the treating physician with a robust monitoring tool for brain chemistry in addition to conventional intracranial pressure monitoring. Nevertheless, some limitations remain, such as limited spatial resolution. Moreover, while there have been several attempts to develop new potential pharmacological therapies in TBI, there are currently no available drugs which have shown clinical efficacy that targets the underlying pathophysiology, despite various trials investigating a plethora of pharmaceuticals. Specifically in the brain, MD is able to demonstrate penetration of the drug through the blood-brain barrier into the brain extracellular space at potential site of action. In addition, the downstream effects of drug action can be monitored directly. In the future, clinical MD, together with other monitoring modalities, can identify specific pathological substrates which require tailored treatment strategies for patients suffering from TBI.

  11. Clinical review: Brain-body temperature differences in adults with severe traumatic brain injury

    Science.gov (United States)

    2013-01-01

    Surrogate or 'proxy' measures of brain temperature are used in the routine management of patients with brain damage. The prevailing view is that the brain is 'hotter' than the body. The polarity and magnitude of temperature differences between brain and body, however, remains unclear after severe traumatic brain injury (TBI). The focus of this systematic review is on the adult patient admitted to intensive/neurocritical care with a diagnosis of severe TBI (Glasgow Coma Scale score of less than 8). The review considered studies that measured brain temperature and core body temperature. Articles published in English from the years 1980 to 2012 were searched in databases, CINAHL, PubMed, Scopus, Web of Science, Science Direct, Ovid SP, Mednar and ProQuest Dissertations & Theses Database. For the review, publications of randomised controlled trials, non-randomised controlled trials, before and after studies, cohort studies, case-control studies and descriptive studies were considered for inclusion. Of 2,391 records identified via the search strategies, 37 were retrieved for detailed examination (including two via hand searching). Fifteen were reviewed and assessed for methodological quality. Eleven studies were included in the systematic review providing 15 brain-core body temperature comparisons. The direction of mean brain-body temperature differences was positive (brain higher than body temperature) and negative (brain lower than body temperature). Hypothermia is associated with large brain-body temperature differences. Brain temperature cannot be predicted reliably from core body temperature. Concurrent monitoring of brain and body temperature is recommended in patients where risk of temperature-related neuronal damage is a cause for clinical concern and when deliberate induction of below-normal body temperature is instituted. PMID:23680353

  12. Agmatine Attenuates Brain Edema and Apoptotic Cell Death after Traumatic Brain Injury.

    Science.gov (United States)

    Kim, Jae Young; Lee, Yong Woo; Kim, Jae Hwan; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2015-07-01

    Traumatic brain injury (TBI) is associated with poor neurological outcome, including necrosis and brain edema. In this study, we investigated whether agmatine treatment reduces edema and apoptotic cell death after TBI. TBI was produced by cold injury to the cerebral primary motor cortex of rats. Agmatine was administered 30 min after injury and once daily until the end of the experiment. Animals were sacrificed for analysis at 1, 2, or 7 days after the injury. Various neurological analyses were performed to investigate disruption of the blood-brain barrier (BBB) and neurological dysfunction after TBI. To examine the extent of brain edema after TBI, the expression of aquaporins (AQPs), phosphorylation of mitogen-activated protein kinases (MAPKs), and nuclear translocation of nuclear factor-κB (NF-κB) were investigated. Our findings demonstrated that agmatine treatment significantly reduces brain edema after TBI by suppressing the expression of AQP1, 4, and 9. In addition, agmatine treatment significantly reduced apoptotic cell death by suppressing the phosphorylation of MAPKs and by increasing the nuclear translocation of NF-κB after TBI. These results suggest that agmatine treatment may have therapeutic potential for brain edema and neural cell death in various central nervous system diseases.

  13. Centralized rehabilitation after servere traumatic brain injury

    DEFF Research Database (Denmark)

    Engberg, Aase Worså; Liebach, Annette; Nordenbo, Annette Mosbæk

    2006-01-01

    OBJECTIVES: To present results from the first 3 years of centralized subacute rehabilitation after very severe traumatic brain injury (TBI), and to compare results of centralized versus decentralized rehabilitation. MATERIAL AND METHODS: Prospectively, the most severely injured group of adults from...... post-trauma was 0.29, and at 1 year 0.055 per 100,000 population. By comparison of 39 patients from the centralized unit injured in 2000-2003 with 21 patients injured in 1982, 1987 or 1992 and with similar PTA- and age distributions and male/female ratio, Glasgow Outcome Scale score at discharge...

  14. Injury Response of Resected Human Brain Tissue In Vitro

    NARCIS (Netherlands)

    Verwer, Ronald W. H.; Sluiter, Arja A.; Balesar, Rawien A.; Baaijen, Johannes C.; de Witt Hamer, Philip C.; Speijer, Dave; Li, Yichen; Swaab, Dick F.

    2015-01-01

    Brain injury affects a significant number of people each year. Organotypic cultures from resected normal neocortical tissue provide unique opportunities to study the cellular and neuropathological consequences of severe injury of adult human brain tissue in vitro. The in vitro injuries caused by

  15. Traumatic brain injury: unmet support needs of caregivers and families in Florida.

    Directory of Open Access Journals (Sweden)

    Christina Dillahunt-Aspillaga

    Full Text Available Sustaining a Traumatic Brain Injury results in familial strain due to the significant impact the injury has upon the role and function of individuals and their families at home and in the community. Using the Stress Process Model of Caregiving, a caregiver needs assessment survey was developed and conducted to better understand the needs of individuals with a Traumatic Brain Injury and their caregivers. Survey results indicate that caregivers experience many challenges including unmet needs in areas of relational supports such as maintaining relationships, long-term emotional and financial support for themselves and the survivor, and the need for a patient or caregiver advocate. Implications for future practice are presented.

  16. Brain hemorrhage after electrical burn injury: Case report and probable mechanism.

    Science.gov (United States)

    Axayacalt, Gutierrez Aceves Guillermo; Alejandro, Ceja Espinosa; Marcos, Rios Alanis; Inocencio, Ruiz Flores Milton; Alfredo, Herrera Gonzalez Jose

    2016-01-01

    High-voltage electric injury may induce lesion in different organs. In addition to the local tissue damage, electrical injuries may lead to neurological deficits, musculoskeletal damage, and cardiovascular injury. Severe vascular damage may occur making the blood vessels involved prone to thrombosis and spontaneous rupture. Here, we present the case of a 39-year-old male who suffered an electrical burn with high tension wire causing intracranial bleeding. He presented with an electrical burn in the parietal area (entry zone) and the left forearm (exit zone). The head tomography scan revealed an intraparenchimatous bleeding in the left parietal area. In this case, the electric way was the scalp, cranial bone, blood vessels and brain, upper limb muscle, and skin. The damage was different according to the dielectric property in each tissue. The injury was in the scalp, cerebral blood vessel, skeletal muscle, and upper limb skin. The main damage was in brain's blood vessels because of the dielectric and geometric features that lead to bleeding, high temperature, and gas delivering. This is a report of a patient with an electric brain injury that can be useful to elucidate the behavior of the high voltage electrical current flow into the nervous system.

  17. Inflammation, caffeine and adenosine in neonatal hypoxic ischemic brain injury

    OpenAIRE

    Winerdal, Max

    2014-01-01

    Background: Brain injury during the neonatal period has potentially lifelong consequences for a child. Perinatal infections and inflammation can induce preterm birth and unfavorable cognitive development, Thus inflammation has received enthusiastic interest for potential therapeutic approaches seeking to protect the newborn brain. Experimental evidence demonstrates that inflammation induces brain injury succeeding the initial insult. A key cytokine in brain injury is the tumor necrosis factor...

  18. Vascular impairment as a pathological mechanism underlying long-lasting cognitive dysfunction after pediatric traumatic brain injury.

    Science.gov (United States)

    Ichkova, Aleksandra; Rodriguez-Grande, Beatriz; Bar, Claire; Villega, Frederic; Konsman, Jan Pieter; Badaut, Jerome

    2017-12-01

    Traumatic brain injury (TBI) is the leading cause of death and disability in children. Indeed, the acute mechanical injury often evolves to a chronic brain disorder with long-term cognitive, emotional and social dysfunction even in the case of mild TBI. Contrary to the commonly held idea that children show better recovery from injuries than adults, pediatric TBI patients actually have worse outcome than adults for the same injury severity. Acute trauma to the young brain likely interferes with the fine-tuned developmental processes and may give rise to long-lasting consequences on brain's function. This review will focus on cerebrovascular dysfunction as an important early event that may lead to long-term phenotypic changes in the brain after pediatric TBI. These, in turn may be associated with accelerated brain aging and cognitive dysfunction. Finally, since no effective treatments are currently available, understanding the unique pathophysiological mechanisms of pediatric TBI is crucial for the development of new therapeutic options. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Quantitative analysis of computed tomography images and early detection of cerebral edema for pediatric traumatic brain injury patients: retrospective study

    OpenAIRE

    Kim, Hakseung; Kim, Gwang-dong; Yoon, Byung C; Kim, Keewon; Kim, Byung-Jo; Choi, Young Hun; Czosnyka, Marek; Oh, Byung-Mo; Kim, Dong-Joo

    2014-01-01

    Background The purpose of this study was to identify whether the distribution of Hounsfield Unit (HU) values across the intracranial area in computed tomography (CT) images can be used as an effective diagnostic tool for determining the severity of cerebral edema in pediatric traumatic brain injury (TBI) patients. Methods CT images, medical records and radiology reports on 70 pediatric patients were collected. Based on radiology reports and the Marshall classification, the patients were group...

  20. Evaluation and limitations of 34-35 degree 3 day cooling hypothermia in patients with severe traumatic brain injury

    International Nuclear Information System (INIS)

    Masaoka, Hiroyuki; Takasato, Yoshio; Hayakawa, Takanori

    2008-01-01

    Since 2000, we adopted mild hypothermia of the present cooling protocol for 3 days at 34-35 degrees to improve outcomes of patients with severe traumatic brain injury (TBI). In the present study, we evaluated the efficacy and safety of this protocol retrospectively. Between 2000 and 2008, a total of 35 patients with severe TBI, 16 to 69 years of age, were enrolled. The initial Glasgow Coma Scale scores (GCS) of all patients ranged from 3 to 13, but many patients' GCS fell down immediately to under 5. All patients had intracranial mass lesions and brain swelling with significant midline shift and underwent hematoma removal operations and craniectomies (subdural hematoma (SDH) 22 cases, contusion 6 and bilateral brain swelling 7). Mild hypothermia was induced by surface cooling and continued 3 days at 34-35degC. Then, the patients were rewarmed at a rate 0.5degC/day. The Glasgow Outcome Scale at discharge indicated that 20 cases had a favorable outcome (57%) and the mortality rate was 20% in all patients. No patient had severe septic complication during the therapy. We found that this protocol did not improve the prognoses of patients aged 51 years and above, those with higher intracranial pressure (ICP) than 30 mmHg immediately after surgery and those with large contusion and diffuse axonal injury (DAI) findings on CT. Also subdural hematomas thicker than 18 mm and midline shift of greater than 16 mm on CT were predictive of a poor outcome. The GCS on admission, the presence of pupillary abnormalities were not predictable factors of outcome. Cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO 2 ) values measured immediately after operations by Xenon-CT, predicted accurately unfavorable outcome. Based on these findings, hypothermia therapy of the present protocol are safe and effective and the age, initial ICP, findings of initial damage and thickness of subdural hematomas or midline shift on CT are predictive factors of outcomes. (author)

  1. Optimal factors of diffusion tensor imaging predicting cortico spinal tract injury in patients with brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Min, Zhi Gang; Niu, Chen; Zhang, Qiu Li; Zhang, Ming [Dept. of Radiology, First Affiliated Hospital of Xi' an Jiaotong University, Xi' an (China); Qian, Yu Cheng [Dept. of Medical Imaging, School of Medicine, Jiangsu University, Zhenjiang (China)

    2017-09-15

    To identify the optimal factors in diffusion tensor imaging for predicting corticospinal tract (CST) injury caused by brain tumors. This prospective study included 33 patients with motor weakness and 64 patients with normal motor function. The movement of the CST, minimum distance between the CST and the tumor, and relative fractional anisotropy (rFA) of the CST on diffusion tensor imaging, were compared between patients with motor weakness and normal function. Logistic regression analysis was used to obtain the optimal factor predicting motor weakness. In patients with motor weakness, the displacement (8.44 ± 6.64 mm) of the CST (p = 0.009), minimum distance (3.98 ± 7.49 mm) between the CST and tumor (p < 0.001), and rFA (0.83 ± 0.11) of the CST (p < 0.001) were significantly different from those of the normal group (4.64 ± 6.65 mm, 14.87 ± 12.04 mm, and 0.98 ± 0.05, respectively) (p = 0.009, p < 0.001, and p < 0.001). The frequencies of patients with the CST passing through the tumor (6%, p = 0.002), CST close to the tumor (23%, p < 0.001), CST close to a malignant tumor (high grade glioma, metastasis, or lymphoma) (19%, p < 0.001), and CST passing through infiltrating edema (19%, p < 0.001) in the motor weakness group, were significantly different from those of the patients with normal motor function (0, 8, 1, and 10%, respectively). Logistic regression analysis showed that decreased rFA and CST close to a malignant tumor were effective variables related to motor weakness. Decreased fractional anisotropy, combined with closeness of a malignant tumor to the CST, is the optimal factor in predicting CST injury caused by a brain tumor.

  2. Radiation-induced brain injury: A review

    Energy Technology Data Exchange (ETDEWEB)

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G. [Department of Radiation Oncology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Wheeler, Kenneth T. [Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Department of Radiology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Chan, Michael D., E-mail: mrobbins@wakehealth.edu [Department of Radiation Oncology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States)

    2012-07-19

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  3. Radiation-induced brain injury: A review

    International Nuclear Information System (INIS)

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G.; Wheeler, Kenneth T.; Chan, Michael D.

    2012-01-01

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  4. Multi-disciplinary rehabilitation for acquired brain injury in adults of working age.

    Science.gov (United States)

    Turner-Stokes, Lynne; Pick, Anton; Nair, Ajoy; Disler, Peter B; Wade, Derick T

    2015-12-22

    severity of brain injury, setting and type and timing of rehabilitation offered. We identified a total of 19 studies involving 3480 people. Twelve studies were of good methodological quality and seven were of lower quality, according to the van Tulder scoring system. Within the subgroup of predominantly mild brain injury, 'strong evidence' suggested that most individuals made a good recovery when appropriate information was provided, without the need for additional specific interventions. For moderate to severe injury, 'strong evidence' showed benefit from formal intervention, and 'limited evidence' indicated that commencing rehabilitation early after injury results in better outcomes. For participants with moderate to severe ABI already in rehabilitation, 'strong evidence' revealed that more intensive programmes are associated with earlier functional gains, and 'moderate evidence' suggested that continued outpatient therapy could help to sustain gains made in early post-acute rehabilitation. The context of multi-disciplinary rehabilitation appears to influence outcomes. 'Strong evidence' supports the use of a milieu-oriented model for patients with severe brain injury, in which comprehensive cognitive rehabilitation takes place in a therapeutic environment and involves a peer group of patients. 'Limited evidence' shows that specialist in-patient rehabilitation and specialist multi-disciplinary community rehabilitation may provide additional functional gains, but studies serve to highlight the particular practical and ethical restraints imposed on randomisation of severely affected individuals for whom no realistic alternatives to specialist intervention are available. Problems following ABI vary. Consequently, different interventions and combinations of interventions are required to meet the needs of patients with different problems. Patients who present acutely to hospital with mild brain injury benefit from follow-up and appropriate information and advice. Those with

  5. Intelligence after traumatic brain injury: meta-analysis of outcomes and prognosis.

    Science.gov (United States)

    Königs, M; Engenhorst, P J; Oosterlaan, J

    2016-01-01

    Worldwide, 54-60 million individuals sustain traumatic brain injury (TBI) each year. This meta-analysis aimed to quantify intelligence impairments after TBI and to determine the value of age and injury severity in the prognosis of TBI. An electronic database search identified 81 relevant peer-reviewed articles encompassing 3890 patients. Full-scale IQ (FSIQ), performance IQ (PIQ) and verbal IQ (VIQ) impairments were quantified (Cohen's d) for patients with mild, moderate and severe TBI in the subacute phase of recovery and the chronic phase. Meta-regressions explored prognostic values of age and injury severity measures for intelligence impairments. The results showed that, in the subacute phase, FSIQ impairments were absent for patients with mild TBI, medium-sized for patients with moderate TBI (d = -0.61, P intelligence impairments, where children may have better recovery from mild TBI and poorer recovery from severe TBI than adults. Injury severity measures predict intelligence impairments and do not outperform one another. © 2015 EAN.

  6. 采用CT技术研究颅脑损伤患者的早期神经功能恢复:脑水肿和脑肿胀的比较%CT study of patients neurological function recovery in the acute stage of brain injury:compared brain swelling and brain edema

    Institute of Scientific and Technical Information of China (English)

    李龙; 池晓宇; 黄新才; 刘卫国; 蒋德清

    2002-01-01

    @@ ckground: Secondary clinical manifestations following brain injury may be due to either intracranial hemorrhage or brain edema and brain swelling.But brain swelling hasn't been understand adequately in clinical practice.Objective: 71 patients with brain edema or brain swelling following brain injury admitted to our hospital during Jan 1998 to Dec 1999 were selected for this study.Their CT findings were compared,and CT characters of traumatic brain swelling and neurological function recovery were analyzed emphatically.Unit: Department of Radiology,Guangdong Provincial Corps Hospital,Chinese People's Armed Police Forces.

  7. Traumatic brain injury pharmacological treatment: recommendations

    Directory of Open Access Journals (Sweden)

    Renato Anghinah

    Full Text Available ABSTRACT This article presents the recommendations on the pharmacological treatment employed in traumatic brain injury (TBI at the outpatient clinic of the Cognitive Rehabilitation after TBI Service of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil. A systematic assessment of the consensus reached in other countries, and of articles on TBI available in the PUBMED and LILACS medical databases, was carried out. We offer recommendations of pharmacological treatments in patients after TBI with different symptoms.

  8. Traumatic Brain Injury (TBI) in Kids

    Science.gov (United States)

    ... Information Share Facebook Twitter Pinterest Email Print Traumatic Brain Injury (TBI): Condition Information What is TBI? TBI ... external force that affects the functioning of the brain. It can be caused by a bump or ...

  9. Relationship between changes of N-methyl-D-aspartate receptor activity and brain edema after brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the relationship between the changes of N-methyl-D-aspartate (NMDA) receptor activity and brain edema after injury in rats.   Methods: The brain injury models were made by using a free-falling body. The treatment model was induced by means of injecting AP5 into lateral ventricle before brain injury; water contents in brain cortex were measured with dry-wet method; and NMDA receptor activity was detected with a radio ligand binding assay.   Results: The water contents began to increase at 30 minutes and reached the peak at 6 hours after brain injury. The maximal binding (Bmax) of NMDA receptor increased significantly at 15 minutes and reached the peak at 30 minutes, then decreased gradually and had the lowest value 6 hours after brain injury. Followed the treatment with AP5, NMDA receptor activity in the injured brain showed a normal value; and the water contents were lower than that of AP5-free injury group 24 hours after brain injury.   Conclusions: It suggests that excessive activation of NMDA receptor may be one of the most important factors to induce the secondary cerebral impairments, and AP5 may protect the brain from edema after brain injury.

  10. Traumatic brain injury, the hidden pandemic: A focused response to ...

    African Journals Online (AJOL)

    Introduction: Traumatic brain injury (TBI) has many potential cognitive, behavioural and psychological consequences, and contributes significantly to the national burden of disease and to ongoing violent behaviour. Few resources are available for the rehabilitation of patients with TBI in South Africa, and access to ...

  11. Prospective study of a community reintegration programme for patients with acquired chronic brain injury: effects on caregivers' emotional burden and family functioning.

    Science.gov (United States)

    Geurtsen, Gert J; van Heugten, Caroline M; Meijer, Ron; Martina, Juan D; Geurts, Alexander C H

    2011-01-01

    To examine the effects of a residential community reintegration programme for patients with psychosocial problems due to acquired chronic brain injury on caregivers' emotional burden and family functioning. A prospective cohort study with waiting list control and 1-year follow-up. Forty-one caregivers of which 28 female. Mean age was 48 ± 8.3 years and 33 caregivers were parents. A structured residential treatment programme was offered to the patients directed at domestic life, work, leisure time and social interactions. The Involvement Evaluation Questionnaire for Brain Injury (IEQ-BI) for emotional burden, the General Health Questionnaire (GHQ) for psychological health and the Family Assessment Device (FAD) for family functioning were used. There was an overall significant effect of Time for all outcome measures (MANOVA T(2 )= 9.1, F(15,317) = 64.1, p = 0.000). The effect sizes were moderate for three IEQ-BI sub-scales (partial η(2 )= 0.12-0.17) and small for two sub-scales (partial η(2 )= 0.05-0.09). The effect size for GHQ was moderate (partial η(2 )= 0.11). As for FAD no significant time effects were present (partial η(2 )= 0.00-0.04). Emotional burden and psychological health of the caregivers improved significantly when patients with acquired brain injury and psychosocial problems followed a residential community reintegration programme. Family dynamics remained stable.

  12. Participation in leisure activities during brain injury rehabilitation.

    Science.gov (United States)

    Fleming, Jennifer; Braithwaite, Helen; Gustafsson, Louise; Griffin, Janelle; Collier, Ann Maree; Fletcher, Stephanie

    2011-01-01

    To describe and compare pre- and post-injury leisure activities of individuals receiving brain injury rehabilitation and explore levels of leisure participation and satisfaction. Cross-sectional descriptive study incorporating a survey of current and past leisure activities. Questionnaires were completed by 40 individuals with an acquired brain injury receiving inpatient or outpatient rehabilitation. Shortened Version of the Nottingham Leisure Questionnaire and Changes in Leisure Questionnaire (developed for this study). Leisure participation declined following injury, particularly in social leisure activities. Pre-injury activities with high rates of discontinued or decreased participation were driving, going to pubs and parties, do-it-yourself activities and attending sports events. Inpatient participants generally attributed decreased participation to the hospital environment, whereas outpatient participants reported this predominantly as a result of disability. Post-injury levels of perceived leisure satisfaction were significantly lower for the inpatient group compared to pre-injury, but not for the outpatient group. Uptake of some new leisure activities was reported post-injury, however not at the rate to which participation declined. Leisure participation decreases during brain injury rehabilitation compared to pre-injury levels. Re-engagement in relevant, age-appropriate leisure activities needs to be addressed during rehabilitation to improve participation in this domain.

  13. Intracranial Monitoring after Severe Traumatic Brain Injury

    OpenAIRE

    Donnelly, Joseph

    2018-01-01

    Intracranial monitoring after severe traumatic brain injury offers the possibility for early detection and amelioration of physiological insults. In this thesis, I explore cerebral insults due raised intracranial pressure, decreased cerebral perfusion pressure and impaired cerebral pressure reactivity after traumatic brain injury. In chapter 2, the importance of intracranial pressure, cerebral perfusion pressure and pressure reactivity in regulating the cerebral circulation is elucidated ...

  14. Traumatic Brain Injury Inpatient Rehabilitation

    Science.gov (United States)

    Im, Brian; Schrer, Marcia J.; Gaeta, Raphael; Elias, Eileen

    2010-01-01

    Traumatic brain injuries (TBI) can cause multiple medical and functional problems. As the brain is involved in regulating nearly every bodily function, a TBI can affect any part of the body and aspect of cognitive, behavioral, and physical functioning. However, TBI affects each individual differently. Optimal management requires understanding the…

  15. [EEG markers of spontaneous recovery of vertical posture in patients with consequences of severe traumatic brain injury].

    Science.gov (United States)

    Zhavoronkova, L A; Zharikova, A V; Maksakova, O A

    2014-01-01

    9 patients (mean age 23.6 +/- 3.15 y.o.) with severe traumatic brain injury (TBI) and impairment of vertical posture were included in complex clinical and EEG study during spontaneous recovery of vertical posture (VP). Patients were included in three different groups according to severity of deficit according to MPAI, FIM and MMSE scales. EEG data have been compared to those of 10 healthy volunteers (mean age 22.8 +/- 0.67 yo.). In patients with moderate brain impairment and fast recovery of VP (over 2 weeks) change of posture from sitting to standup has been accompanied by EEG-signs similar to those of healthy people. These included predominant increase of coherence in right hemisphere for majority of frequency bands, although in more complex conditions EEG of these patients showed pathological signs. In patients with more severe deficit spontaneous recovery of VP has been accompanied by "hyper-reactive" change of EEG for all frequency bands without local specificity. This finding didn't depend on side ofbrain impairment and could be considered as marker of positive dynamics of VP restoration. In patients with most severe brain impairment and deficit of functions VP didn't recover after 3 month of observation. EEG-investigation has revealed absence of reactive change of EEG during passive verticalisation. This finding can be used as marker of negative prognosis.

  16. Brain injury impairs working memory and prefrontal circuit function

    Directory of Open Access Journals (Sweden)

    Colin James Smith

    2015-11-01

    Full Text Available More than 2.5 million Americans suffer a traumatic brain injury (TBI each year. Even mild to moderate traumatic brain injury causes long-lasting neurological effects. Despite its prevalence, no therapy currently exists to treat the underlying cause of cognitive impairment suffered by TBI patients. Following lateral fluid percussion injury (LFPI, the most widely used experimental model of TBI, we investigated alterations in working memory and excitatory/inhibitory synaptic balance in the prefrontal cortex. LFPI impaired working memory as assessed with a T-maze behavioral task. Field excitatory postsynaptic potentials recorded in the prefrontal cortex were reduced in slices derived from brain-injured mice. Spontaneous and miniature excitatory postsynaptic currents onto layer 2/3 neurons were more frequent in slices derived from LFPI mice while inhibitory currents onto layer 2/3 neurons were smaller after LFPI. Additionally, an increase in action potential threshold and concomitant decrease in firing rate was observed in layer 2/3 neurons in slices from injured animals. Conversely, no differences in excitatory or inhibitory synaptic transmission onto layer 5 neurons were observed; however, layer 5 neurons demonstrated a decrease in input resistance and action potential duration after LFPI. These results demonstrate synaptic and intrinsic alterations in prefrontal circuitry that may underlie working memory impairment caused by TBI.

  17. Neonatal hypoglycemic brain injury is a cause of infantile spasms

    OpenAIRE

    YANG, GUANG; ZOU, LI-PING; WANG, JING; SHI, XIUYU; TIAN, SHUPING; YANG, XIAOFAN; JU, JUN; YAO, HONGXIANG; LIU, YUJIE

    2016-01-01

    Neonatal hypoglycemic brain injury is one of the causes of infantile spasms. In the present study, the clinical history and auxiliary examination results of 18 patients who developed infantile spasms several months after neonatal hypoglycemia were retrospectively analyzed. Among the 666 patients with infantile spasms admitted to two pediatric centers between January 2008 and October 2012, 18 patients developed infantile spasms after being diagnosed with neonatal hypoglycemia, defined as a who...

  18. A Systematic Review of Investigations into Functional Brain Connectivity Following Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Alkinoos Athanasiou

    2017-10-01

    Full Text Available Background: Complete or incomplete spinal cord injury (SCI results in varying degree of motor, sensory and autonomic impairment. Long-lasting, often irreversible disability results from disconnection of efferent and afferent pathways. How does this disconnection affect brain function is not so clear. Changes in brain organization and structure have been associated with SCI and have been extensively studied and reviewed. Yet, our knowledge regarding brain connectivity changes following SCI is overall lacking.Methods: In this study we conduct a systematic review of articles regarding investigations of functional brain networks following SCI, searching on PubMed, Scopus and ScienceDirect according to PRISMA-P 2015 statement standards.Results: Changes in brain connectivity have been shown even during the early stages of the chronic condition and correlate with the degree of neurological impairment. Connectivity changes appear as dynamic post-injury procedures. Sensorimotor networks of patients and healthy individuals share similar patterns but new functional interactions have been identified as unique to SCI networks.Conclusions: Large-scale, multi-modal, longitudinal studies on SCI patients are needed to understand how brain network reorganization is established and progresses through the course of the condition. The expected insight holds clinical relevance in preventing maladaptive plasticity after SCI through individualized neurorehabilitation, as well as the design of connectivity-based brain-computer interfaces and assistive technologies for SCI patients.

  19. Severe Traumatic Brain Injury

    Science.gov (United States)

    ... TBI Online Concussion Training Press Room Guide to Writing about TBI in News and Social Media Living with TBI HEADS UP to Brain Injury Awareness Get Email Updates To receive email updates about this topic, ...

  20. MaLT - Combined Motor and Language Therapy Tool for Brain Injury Patients Using Kinect.

    Science.gov (United States)

    Wairagkar, Maitreyee; McCrindle, Rachel; Robson, Holly; Meteyard, Lotte; Sperrin, Malcom; Smith, Andy; Pugh, Moyra

    2017-03-23

    The functional connectivity and structural proximity of elements of the language and motor systems result in frequent co-morbidity post brain injury. Although rehabilitation services are becoming increasingly multidisciplinary and "integrated", treatment for language and motor functions often occurs in isolation. Thus, behavioural therapies which promote neural reorganisation do not reflect the high intersystem connectivity of the neurologically intact brain. As such, there is a pressing need for rehabilitation tools which better reflect and target the impaired cognitive networks. The objective of this research is to develop a combined high dosage therapy tool for language and motor rehabilitation. The rehabilitation therapy tool developed, MaLT (Motor and Language Therapy), comprises a suite of computer games targeting both language and motor therapy that use the Kinect sensor as an interaction device. The games developed are intended for use in the home environment over prolonged periods of time. In order to track patients' engagement with the games and their rehabilitation progress, the game records patient performance data for the therapist to interrogate. MaLT incorporates Kinect-based games, a database of objects and language parameters, and a reporting tool for therapists. Games have been developed that target four major language therapy tasks involving single word comprehension, initial phoneme identification, rhyme identification and a naming task. These tasks have 8 levels each increasing in difficulty. A database of 750 objects is used to programmatically generate appropriate questions for the game, providing both targeted therapy and unique gameplay every time. The design of the games has been informed by therapists and by discussions with a Public Patient Involvement (PPI) group. Pilot MaLT trials have been conducted with three stroke survivors for the duration of 6 to 8 weeks. Patients' performance is monitored through MaLT's reporting facility

  1. Fatal Hyperammonemic Brain Injury from Valproic Acid Exposure

    Directory of Open Access Journals (Sweden)

    Danny Bega

    2012-12-01

    Full Text Available Background: Hyperammonemia is known to cause neuronal injury, and can result from valproic acid exposure. Prompt reduction of elevated ammonia levels may prevent permanent neurological injury. We report a case of fatal hyperammonemic brain injury in a woman exposed to valproic acid. Case: A 38-year-old woman with schizoaffective disorder and recent increase in valproic acid dosage presented with somnolence and confusion and rapidly progressed to obtundation. Brain MRI showed diffuse bilateral restricted diffusion in nearly the entire cerebral cortex. She had normal liver function tests but serum ammonia level was severely elevated at 288 µmol/l. Genetic testing showed no mutation in urea cycle enzymes. Despite successful elimination of ammonia with hemodialysis she developed fatal cerebral edema. Conclusion: Cerebral edema secondary to hyperammonemia is potentially reversible if recognized early. Ammonia excretion can be facilitated by initiation of hemodialysis and administration of scavenging agents (sodium phenylacetate and sodium benzoate. Severe hyperammonemia can result from valproic acid exposure even in the absence of hepatotoxicity or inborn errors of metabolism. It is important to check serum ammonia in any patient with encephalopathy who has had recent valproic acid exposure.

  2. Attention to affective pictures in closed head injury: event-related brain potentials and cardiac responses.

    Science.gov (United States)

    Solbakk, Anne-Kristin; Reinvang, Ivar; Svebak, Sven; Nielsen, Christopher S; Sundet, Kjetil

    2005-02-01

    We examined whether closed head injury patients show altered patterns of selective attention to stimulus categories that naturally evoke differential responses in healthy people. Self-reported rating and electrophysiological (event-related potentials [ERPs], heart rate [HR]) responses to affective pictures were studied in patients with mild head injury (n = 20; CT/MRI negative), in patients with predominantly frontal brain lesions (n = 12; CT/MRI confirmed), and in healthy controls (n = 20). Affective valence similarly modulated HR and ERP responses in all groups, but group differences occurred that were independent of picture valence. The attenuation of P3-slow wave amplitudes in the mild head injury group indicates a reduction in the engagement of attentional resources to the task. In contrast, the general enhancement of ERP amplitudes at occipital sites in the group with primarily frontal brain injury may reflect disinhibition of input at sensory receptive areas, possibly due to a deficit in top-down modulation performed by anterior control systems.

  3. Oxidative stress following traumatic brain injury: enhancement of ...

    African Journals Online (AJOL)

    neuronal loss following traumatic brain injury and presents experimental and clinical evidence of the role of exogenous antioxidants as neuroprotectants. Method: We reviewed published literature on reactive oxygen species and their role in experimental and clinical brain injuries in journals and the Internet using Yahoo ...

  4. Clinical Comparison of 99mTc Exametazime and 123I Ioflupane SPECT in Patients with Chronic Mild Traumatic Brain Injury

    OpenAIRE

    Newberg, Andrew B.; Serruya, Mijail; Gepty, Andrew; Intenzo, Charles; Lewis, Todd; Amen, Daniel; Russell, David S.; Wintering, Nancy

    2014-01-01

    BACKGROUND: This study evaluated the clinical interpretations of single photon emission computed tomography (SPECT) using a cerebral blood flow and a dopamine transporter tracer in patients with chronic mild traumatic brain injury (TBI). The goal was to determine how these two different scan might be used and compared to each other in this patient population. METHODS AND FINDINGS: Twenty-five patients with persistent symptoms after a mild TBI underwent SPECT with both (99m)Tc exametazime to m...

  5. Prehospital plasma resuscitation associated with improved neurologic outcomes after traumatic brain injury.

    Science.gov (United States)

    Hernandez, Matthew C; Thiels, Cornelius A; Aho, Johnathon M; Habermann, Elizabeth B; Zielinski, Martin D; Stubbs, James A; Jenkins, Donald H; Zietlow, Scott P

    2017-09-01

    Trauma-related hypotension and coagulopathy worsen secondary brain injury in patients with traumatic brain injuries (TBIs). Early damage control resuscitation with blood products may mitigate hypotension and coagulopathy. Preliminary data suggest resuscitation with plasma in large animals improves neurologic function after TBI; however, data in humans are lacking. We retrospectively identified all patients with multiple injuries age >15 years with head injuries undergoing prehospital resuscitation with blood products at a single Level I trauma center from January 2002 to December 2013. Inclusion criteria were prehospital resuscitation with either packed red blood cells (pRBCs) or thawed plasma as sole colloid resuscitation. Patients who died in hospital and those using anticoagulants were excluded. Primary outcomes were Glasgow Outcomes Score Extended (GOSE) and Disability Rating Score (DRS) at dismissal and during follow-up. Of 76 patients meeting inclusion criteria, 53% (n = 40) received prehospital pRBCs and 47% (n = 36) received thawed plasma. Age, gender, injury severity or TBI severity, arrival laboratory values, and number of prehospital units were similar (all p > 0.05). Patients who received thawed plasma had an improved neurologic outcome compared to those receiving pRBCs (median GOSE 7 [7-8] vs. 5.5 [3-7], p plasma had improved functionality compared to pRBCs (median DRS 2 [1-3.5] vs. 9 [3-13], p plasma compared to pRBCs by both median GOSE (8 [7-8] vs. 6 [6-7], p plasma is associated with improved neurologic and functional outcomes at discharge and during follow-up compared to pRBCs alone. These preliminary data support the further investigation and use of plasma in the resuscitation of critically injured TBI patients. Therapeutic, level V.

  6. Diabetes Insipidus after Traumatic Brain Injury

    Science.gov (United States)

    Capatina, Cristina; Paluzzi, Alessandro; Mitchell, Rosalid; Karavitaki, Niki

    2015-01-01

    Traumatic brain injury (TBI) is a significant cause of morbidity and mortality in many age groups. Neuroendocrine dysfunction has been recognized as a consequence of TBI and consists of both anterior and posterior pituitary insufficiency; water and electrolyte abnormalities (diabetes insipidus (DI) and the syndrome of inappropriate antidiuretic hormone secretion (SIADH)) are amongst the most challenging sequelae. The acute head trauma can lead (directly or indirectly) to dysfunction of the hypothalamic neurons secreting antidiuretic hormone (ADH) or of the posterior pituitary gland causing post-traumatic DI (PTDI). PTDI is usually diagnosed in the first days after the trauma presenting with hypotonic polyuria. Frequently, the poor general status of most patients prevents adequate fluid intake to compensate the losses and severe dehydration and hypernatremia occur. Management consists of careful monitoring of fluid balance and hormonal replacement. PTDI is associated with high mortality, particularly when presenting very early following the injury. In many surviving patients, the PTDI is transient, lasting a few days to a few weeks and in a minority of cases, it is permanent requiring management similar to that offered to patients with non-traumatic central DI. PMID:26239685

  7. Diabetes Insipidus after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Cristina Capatina

    2015-07-01

    Full Text Available Traumatic brain injury (TBI is a significant cause of morbidity and mortality in many age groups. Neuroendocrine dysfunction has been recognized as a consequence of TBI and consists of both anterior and posterior pituitary insufficiency; water and electrolyte abnormalities (diabetes insipidus (DI and the syndrome of inappropriate antidiuretic hormone secretion (SIADH are amongst the most challenging sequelae. The acute head trauma can lead (directly or indirectly to dysfunction of the hypothalamic neurons secreting antidiuretic hormone (ADH or of the posterior pituitary gland causing post-traumatic DI (PTDI. PTDI is usually diagnosed in the first days after the trauma presenting with hypotonic polyuria. Frequently, the poor general status of most patients prevents adequate fluid intake to compensate the losses and severe dehydration and hypernatremia occur. Management consists of careful monitoring of fluid balance and hormonal replacement. PTDI is associated with high mortality, particularly when presenting very early following the injury. In many surviving patients, the PTDI is transient, lasting a few days to a few weeks and in a minority of cases, it is permanent requiring management similar to that offered to patients with non-traumatic central DI.

  8. An optimal frequency range for assessing the pressure reactivity index in patients with traumatic brain injury.

    Science.gov (United States)

    Howells, Tim; Johnson, Ulf; McKelvey, Tomas; Enblad, Per

    2015-02-01

    The objective of this study was to identify the optimal frequency range for computing the pressure reactivity index (PRx). PRx is a clinical method for assessing cerebral pressure autoregulation based on the correlation of spontaneous variations of arterial blood pressure (ABP) and intracranial pressure (ICP). Our hypothesis was that optimizing the methodology for computing PRx in this way could produce a more stable, reliable and clinically useful index of autoregulation status. The patients studied were a series of 131 traumatic brain injury patients. Pressure reactivity indices were computed in various frequency bands during the first 4 days following injury using bandpass filtering of the input ABP and ICP signals. Patient outcome was assessed using the extended Glasgow Outcome Scale (GOSe). The optimization criterion was the strength of the correlation with GOSe of the mean index value over the first 4 days following injury. Stability of the indices was measured as the mean absolute deviation of the minute by minute index value from 30-min moving averages. The optimal index frequency range for prediction of outcome was identified as 0.018-0.067 Hz (oscillations with periods from 55 to 15 s). The index based on this frequency range correlated with GOSe with ρ=-0.46 compared to -0.41 for standard PRx, and reduced the 30-min variation by 23%.

  9. Biomarkers of brain injury in neonatal encephalopathy treated with hypothermia.

    Science.gov (United States)

    Massaro, An N; Chang, Taeun; Kadom, Nadja; Tsuchida, Tammy; Scafidi, Joseph; Glass, Penny; McCarter, Robert; Baumgart, Stephen; Vezina, Gilbert; Nelson, Karin B

    2012-09-01

    To determine if early serum S100B and neuron-specific enolase (NSE) levels are associated with neuroradiographic and clinical evidence of brain injury in newborns with encephalopathy. Patients who received therapeutic whole-body hypothermia were prospectively enrolled in this observational study. Serum specimens were collected at 0, 12, 24, and 72 hours of cooling. S100B and NSE levels were measured by enzyme linked immunosorbent assay. Magnetic resonance imaging was performed in surviving infants at 7-10 days of life. Standardized neurologic examination was performed by a child neurologist at 14 days of life. Multiple linear regression analyses were performed to evaluate the association between S100B and NSE levels and unfavorable outcome (death or severe magnetic resonance imaging injury/significant neurologic deficit). Cutoff values were determined by receiver operating curve analysis. Newborns with moderate to severe encephalopathy were enrolled (n = 75). Median pH at presentation was 6.9 (range, 6.5-7.35), and median Apgar scores of 1 at 1 minute, 3 at 5 minutes, and 5 at 10 minutes. NSE and S100B levels were higher in patients with unfavorable outcomes across all time points. These results remained statistically significant after controlling for covariables, including encephalopathy grade at presentation, Apgar score at 5 minutes of life, initial pH, and clinical seizures. Elevated serum S100B and NSE levels measured during hypothermia were associated with neuroradiographic and clinical evidence of brain injury in encephalopathic newborns. These brain-specific proteins may be useful immediate biomarkers of cerebral injury severity. Copyright © 2012 Mosby, Inc. All rights reserved.

  10. Isolated medulla oblongata function after severe traumatic brain injury

    OpenAIRE

    Wijdicks, E; Atkinson, J; Okazaki, H

    2001-01-01

    The objective was to report the first pathologically confirmed case of partly functionally preserved medulla oblongata in a patient with catastrophic traumatic brain injury.
A patient is described with epidural haematoma with normal breathing and blood pressure and a retained coughing reflex brought on only by catheter suctioning of the carina. Multiple contusions in the thalami and pons were found but the medulla oblongata was spared at necropsy. 
In conclusion, medulla oblong...

  11. Invasive and non-invasive brain stimulation for treatment of neuropathic pain in patients with spinal cord injury: a review.

    Science.gov (United States)

    Nardone, Raffaele; Höller, Yvonne; Leis, Stefan; Höller, Peter; Thon, Natasha; Thomschewski, Aljoscha; Golaszewski, Stefan; Brigo, Francesco; Trinka, Eugen

    2014-01-01

    Past evidence has shown that invasive and non-invasive brain stimulation may be effective for relieving central pain. To perform a topical review of the literature on brain neurostimulation techniques in patients with chronic neuropathic pain due to traumatic spinal cord injury (SCI) and to assess the current evidence for their therapeutic efficacy. A MEDLINE search was performed using following terms: "Spinal cord injury", "Neuropathic pain", "Brain stimulation", "Deep brain stimulation" (DBS), "Motor cortex stimulation" (MCS), "Transcranial magnetic stimulation" (TMS), "Transcranial direct current stimulation" (tDCS), "Cranial electrotherapy stimulation" (CES). Invasive neurostimulation therapies, in particular DBS and epidural MCS, have shown promise as treatments for neuropathic and phantom limb pain. However, the long-term efficacy of DBS is low, while MCS has a relatively higher potential with lesser complications that DBS. Among the non-invasive techniques, there is accumulating evidence that repetitive TMS can produce analgesic effects in healthy subjects undergoing laboratory-induced pain and in chronic pain conditions of various etiologies, at least partially and transiently. Another very safe technique of non-invasive brain stimulation - tDCS - applied over the sensory-motor cortex has been reported to decrease pain sensation and increase pain threshold in healthy subjects. CES has also proved to be effective in managing some types of pain, including neuropathic pain in subjects with SCI. A number of studies have begun to use non-invasive neuromodulatory techniques therapeutically to relieve neuropathic pain and phantom phenomena in patients with SCI. However, further studies are warranted to corroborate the early findings and confirm different targets and stimulation paradigms. The utility of these protocols in combination with pharmacological approaches should also be explored.

  12. Validation of the Middlesex Elderly Assessment of Mental State (MEAMS) as a cognitive screening test in patients with acquired brain injury in Turkey.

    Science.gov (United States)

    Kutlay, Sehim; Kuçukdeveci, Ayse A; Elhan, Atilla H; Yavuzer, Gunes; Tennant, Alan

    2007-02-28

    Assessment of cognitive impairment with a valid cognitive screening tool is essential in neurorehabilitation. The aim of this study was to test the reliability and validity of the Turkish-adapted version of the Middlesex Elderly Assessment of Mental State (MEAMS) among acquired brain injury patients in Turkey. Some 155 patients with acquired brain injury admitted for rehabilitation were assessed by the adapted version of MEAMS at admission and discharge. Reliability was tested by internal consistency, intra-class correlation coefficient (ICC) and person separation index; internal construct validity by Rasch analysis; external construct validity by associations with physical and cognitive disability (FIM); and responsiveness by Effect Size. Reliability was found to be good with Cronbach's alpha of 0.82 at both admission and discharge; and likewise an ICC of 0.80. Person separation index was 0.813. Internal construct validity was good by fit of the data to the Rasch model (mean item fit -0.178; SD 1.019). Items were substantially free of differential item functioning. External construct validity was confirmed by expected associations with physical and cognitive disability. Effect size was 0.42 compared with 0.22 for cognitive FIM. The reliability and validity of the Turkish version of MEAMS as a cognitive impairment screening tool in acquired brain injury has been demonstrated.

  13. Abnormalities of Microcirculation and Intracranial and Cerebral Perfusion Pressures in Severe Brain Injury

    Directory of Open Access Journals (Sweden)

    Yu. A. Churlyaev

    2008-01-01

    Full Text Available Objective: to evaluate the states of microcirculation, cerebral perfusion intracranial pressures in patients with isolated severe brain injury (SBI and to determine their possible relationships. Subjects and methods. 148 studies were performed in 16 victims with SBI. According to the outcome of brain traumatic disease, the patients were divided into two groups: 1 those who had a good outcome (n=8 and 2 those who had a fatal outcome (n=8. Microcirculation was examined by skin laser Doppler flowmetry using a LAKK-01 capillary blood flow laser analyzer (LAZMA Research-and-Production Association, Russian Federation. All the victims underwent surgical interventions to remove epi-, subdural, and intracerebral hematomas. A Codman subdural/intraparenchymatous intracranial pressure (ICD sensor (Johnson & Johnson, United Kingdom was intraoperatively inserted in the victims. Cerebral perfusion pressure (CPP was calculated using the generally accepted formula: CPP = MBP (mean blood pressure — ICD. ICD, CPP, and microcirculation were studied on postoperative days 1, 3, 5, and 7. Their values were recorded simultaneously. Ninety and 58 studies were conducted in the group of patients with good and fatal outcomes, respectively. Results. No correlation between the changes in MBP, ICD, and microcirculatory parameters suggested that the value of ICD was determined by the nature of brain damage and it was the leading and determining indicator in the diagnosis and treatment of secondary cerebral lesions. The amplitude of low-frequency fluctuations directly correlated with ICD, which indicated that they might be used to evaluate cerebral perfusion and impaired cerebral circulation indirectly in victims with severe brain injury. Conclusion. The laser Doppler flowmetric technique makes it possible not only to qualitatively, but also quantitatively determine changes in the tissue blood flow system in severe brain injury. With this technique, both the local and central

  14. Comparison of analytical methods of brain [18F]FDG-PET after severe traumatic brain injury.

    Science.gov (United States)

    Madsen, Karine; Hesby, Sara; Poulsen, Ingrid; Fuglsang, Stefan; Graff, Jesper; Larsen, Karen B; Kammersgaard, Lars P; Law, Ian; Siebner, Hartwig R

    2017-11-01

    Loss of consciousness has been shown to reduce cerebral metabolic rates of glucose (CMRglc) measured by brain [ 18 F]FDG-PET. Measurements of regional metabolic patterns by normalization to global cerebral metabolism or cerebellum may underestimate widespread reductions. The aim of this study was to compare quantification methods of whole brain glucose metabolism, including whole brain [18F]FDG uptake normalized to uptake in cerebellum, normalized to injected activity, normalized to plasma tracer concentration, and two methods for estimating CMRglc. Six patients suffering from severe traumatic brain injury (TBI) and ten healthy controls (HC) underwent a 10min static [ 18 F]FDG-PET scan and venous blood sampling. Except from normalizing to cerebellum, all quantification methods found significant lower level of whole brain glucose metabolism of 25-33% in TBI patients compared to HC. In accordance these measurements correlated to level of consciousness. Our study demonstrates that the analysis method of the [ 18 F]FDG PET data has a substantial impact on the estimated whole brain cerebral glucose metabolism in patients with severe TBI. Importantly, the SUVR method which is often used in a clinical setting was not able to distinguish patients with severe TBI from HC at the whole-brain level. We recommend supplementing a static [ 18 F]FDG scan with a single venous blood sample in future studies of patients with severe TBI or reduced level of consciousness. This can be used for simple semi-quantitative uptake values by normalizing brain activity uptake to plasma tracer concentration, or quantitative estimates of CMRglc. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Role of bromocriptine in multi-spectral manifestations of traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Sunil Munakomi

    2017-04-01

    Conclusion: Bromocriptine improves neurological sequelae of traumatic brain injury as well as the overall outcome in the patients. If medication is given to promote recovery and treat its associated disabilities, clinicians should thoroughly outline the goals and closely monitor adverse effects.

  16. Preliminary questions before studying mild traumatic brain injury outcome.

    Science.gov (United States)

    Fayol, P; Carrière, H; Habonimana, D; Dumond, J-J

    2009-07-01

    To point out from the literature the issues in mild traumatic brain injury outcome. METHODOLOGY-RESULTS: The literature review allows to point out several different factors involved in the difficulty to study mild traumatic brain injury: mild traumatic brain injury definition, postconcussional syndrome definition, diagnosis threshold, severity and functional symptoms outcome, neuropsychological tests, unspecific syndrome feature, individual factors, confounding factors and treatment interventions. The mild traumatic brain injury outcome study is complicated by the definitions issues and especially their practical use and by the multiplicity and the intricate interrelationships among involved factors. The individual outcome and social cost weight is widely emphasized for an event still considered as medically trivial. The well-ordered preventive interventions necessity and the targeted treatment programs need for the persisting postconcussive symptoms complete our critical review.

  17. Molecular Mechanisms of Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Claire Thornton

    2012-01-01

    Full Text Available Fetal/neonatal brain injury is an important cause of neurological disability. Hypoxia-ischemia and excitotoxicity are considered important insults, and, in spite of their acute nature, brain injury develops over a protracted time period during the primary, secondary, and tertiary phases. The concept that most of the injury develops with a delay after the insult makes it possible to provide effective neuroprotective treatment after the insult. Indeed, hypothermia applied within 6 hours after birth in neonatal encephalopathy reduces neurological disability in clinical trials. In order to develop the next generation of treatment, we need to know more about the pathophysiological mechanism during the secondary and tertiary phases of injury. We review some of the critical molecular events related to mitochondrial dysfunction and apoptosis during the secondary phase and report some recent evidence that intervention may be feasible also days-weeks after the insult.

  18. Diurnal variation in Cotard's syndrome (copresent with Capgras delusion) following traumatic brain injury.

    Science.gov (United States)

    Butler, P V

    2000-08-01

    The aim of this paper is to document regular nocturnal intensification of delusional nihilistic and persecutory ideas (Cotard delusion) linked with extreme depersonalisation and hypervivid dreaming. A 17-year-old man presented with Cotard and Capgras delusions after sustaining multiple cognitive impairments secondary to traumatic brain injury. Delusional ideation fully resolved within 14 days of commencement of olanzapine 5 mg daily. This patient's experience of perceptual abnormalities and impairments in meta-abilities related to self-monitoring and critical inferencing lends support to multicomponent sensory processing accounts of brain injury related, content-specific delusional syndromes.

  19. Traumatic Brain Injuries during Development: Implications for Alcohol Abuse

    Directory of Open Access Journals (Sweden)

    Zachary M. Weil

    2017-07-01

    Full Text Available Traumatic brain injuries are strongly related to alcohol intoxication as by some estimates half or more of all brain injuries involve at least one intoxicated individual. Additionally, there is mounting evidence that traumatic brain injuries can themselves serve as independent risk factors for the development of alcohol use disorders, particularly when injury occurs during juvenile or adolescent development. Here, we will review the epidemiological and experimental evidence for this phenomenon and discuss potential psychosocial mediators including attenuation of negative affect and impaired decision making as well as neurochemical mediators including disruption in the glutamatergic, GABAergic, and dopaminergic signaling pathways and increases in inflammation.

  20. A Review of Magnetic Resonance Imaging and Diffusion Tensor Imaging Findings in Mild Traumatic Brain Injury

    Science.gov (United States)

    Shenton, ME; Hamoda, HM; Schneiderman, JS; Bouix, S; Pasternak, O; Rathi, Y; M-A, Vu; Purohit, MP; Helmer, K; Koerte, I; Lin, AP; C-F, Westin; Kikinis, R; Kubicki, M; Stern, RA; Zafonte, R

    2013-01-01

    Mild traumatic brain injury (mTBI), also referred to as concussion, remains a controversial diagnosis because the brain often appears quite normal on conventional computed tomography (CT) and magnetic resonance imaging (MRI) scans. Such conventional tools, however, do not adequately depict brain injury in mTBI because they are not sensitive to detecting diffuse axonal injuries (DAI), also described as traumatic axonal injuries (TAI), the major brain injuries in mTBI. Furthermore, for the 15 to 30% of those diagnosed with mTBI on the basis of cognitive and clinical symptoms, i.e., the “miserable minority,” the cognitive and physical symptoms do not resolve following the first three months post-injury. Instead, they persist, and in some cases lead to long-term disability. The explanation given for these chronic symptoms, i.e., postconcussive syndrome, particularly in cases where there is no discernible radiological evidence for brain injury, has led some to posit a psychogenic origin. Such attributions are made all the easier since both post-traumatic stress disorder (PTSD) and depression are frequently co-morbid with mTBI. The challenge is thus to use neuroimaging tools that are sensitive to DAI/TAI, such as diffusion tensor imaging (DTI), in order to detect brain injuries in mTBI. Of note here, recent advances in neuroimaging techniques, such as DTI, make it possible to characterize better extant brain abnormalities in mTBI. These advances may lead to the development of biomarkers of injury, as well as to staging of reorganization and reversal of white matter changes following injury, and to the ability to track and to characterize changes in brain injury over time. Such tools will likely be used in future research to evaluate treatment efficacy, given their enhanced sensitivity to alterations in the brain. In this article we review the incidence of mTBI and the importance of characterizing this patient population using objective radiological measures. Evidence

  1. Measurement of serum melatonin in intensive care unit patients: changes in traumatic brain injury, trauma and medical conditions

    Directory of Open Access Journals (Sweden)

    Marc A Seifman

    2014-11-01

    Full Text Available Melatonin is an endogenous hormone mainly produced by the pineal gland whose dysfunction leads to abnormal sleeping patterns. Changes in melatonin have been reported in acute traumatic brain injury (TBI, however the impact of environmental conditions typical of the intensive care unit (ICU has not been assessed. The aim of this study was to compare daily melatonin production in three patient populations treated at the ICU to differentiate the role of TBI versus ICU conditions. Forty-five patients were recruited and divided into severe TBI, trauma without TBI, medical conditions without trauma and compared to healthy volunteers. Serum melatonin levels were measured at four daily intervals at 0400h, 1000h, 1600h and 2200h for 7 days post-ICU admission by commercial ELISA. The geometric mean concentrations (95% confidence intervals of melatonin in these groups showed no difference being 8.3 (6.3-11.0, 9.3 (7.0-12.3 and 8.9 (6.6-11.9 pg/mL, respectively in TBI, trauma and intensive care cohorts. All of these patient groups demonstrated decreased melatonin concentrations when compared to control patients.This study suggests that TBI as well as ICU conditions, may have a role in the dysfunction of melatonin. Monitoring and possibly substituting melatonin acutely in these settings may assist in ameliorating longterm sleep dysfunction in all of these groups, and possibly contribute to reducing secondary brain injury in severe TBI.

  2. Detection of radiation brain injury of malignant glioma by 1H-MRS

    International Nuclear Information System (INIS)

    Zhang Mao; Jin Haiguo; Sun Shuquan; Bu Mingwei; Su Qingxiu; Liu Guigang; Sun Baosheng

    2011-01-01

    Objective: Using proton magnetic resonance spectroscopy ( 1 H-MRS) method, to evaluate the difference of radiation brain injury between volumetric modulated arc therapy (VMAT) and three-dimensional conformal radiation therapy (3DCRT) in patients with postoperative glioma after radiation therapy. Methods: 24 patients with malignant glioma (WHOII-IV grade glioma) confirmed with clinical surgery were selected, among them 12 patients were treated with VMAT technique, and another 12 patients with 3DCRT technique, all received DT60-66GY/30-33F dose prescriptions. 1 H-MRS examination was performed to analyze the change of metabolites in the brain tissues of region of interest (ROI) before and after radiotherapy,and the ratios of NAA/ Cr, Cho / Cr, NAA / Cho were computed. Results: The dose distribution of VMAT group was superior to 3DCRT group, the NAA/Cr in two groups after radiation were decreased compared with before radiation, there was a statistically difference in NAA/Cr after radiation between two groups (P<0.01). The Cho / Cr and NAA / Cho in two groups were increased compared with before radiation;after radiation, only NAA/Cho had a statistical difference between two groups (P<0.01). Conclusion: VMAT technique is superior to 3DCTR to reduce radiation brain injury in patients with postoperative glioma. (authors)

  3. Oxidant-Antioxidant Balance in Severe Brain Injury

    Directory of Open Access Journals (Sweden)

    N. N. Yepifantseva

    2010-01-01

    Full Text Available Objective: to study the time course of changes in oxidative status parameters and their relationship with inflammation mediators in the acute period of severe brain injury (SBI. Subjects and methods. One hundred and thirteen patients aged 17—67 years were examined. The injury was closed and open in 54 (47.8% and 59 (52.2% patients, respectively. Severe brain contusions were observed in 47 patients, diffuse axonal lesions were seen in 2, and intracranial hematomas were present in 64 patients. The Glasgow coma scores for admission consciousness loss were 6.8±0.25. A control group comprised 23 healthy individuals. The significance of differences was estimated by Student’s test, Wilcoxon-Mann-Whitney, test, Spearman’s correlation test. Venous blood samples were used to study total oxidative activity (TOA and total antioxidative activity (TAA, diene conjugates, lactic acid, albumin, transferrin (TF, ceruloplasmin, C-reactive protein, and lactoferrin (LF were measured in venous blood on disease days 1, 4, 7, 10, 14, and 21. The profile of plasma cytokines (IL-1j8, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, TNF-а, and IFN-y was studied by flow fluorometry on a Cytomics FC 500 cytofluorometer (Beckman Counlter, USA (reagents were from Bender Medsystems, Austria. Results. In SBI, there was an increase in oxidants, a reduction in antioxidant activity, and lipid peroxidation activation, which were closely related. The oxidation coefficient (TOA/TAA was 40 times greater than the normal values on days 7 to 10. The oxidation parameters were found to be associated with inflammation and cytokine-mediated immunological reactions. The time course of changes in the study proteins was characteristic for systemic inflammation and there was an association with oxidative processes only for ceruloplasm. TF was found to have an association with IL-5 and IL-10, which reflects its involvement in immunological reactions. The association with hypoxia was

  4. Evaluating the CARE4Carer Blended Care Intervention for Partners of Patients With Acquired Brain Injury : Protocol for a Randomized Controlled Trial

    NARCIS (Netherlands)

    Cox, Vincent Cm; Schepers, Vera Pm; Ketelaar, Marjolijn; van Heugten, Caroline M; Visser-Meily, Johanna Ma

    2018-01-01

    BACKGROUND: Support programs for partners of patients with acquired brain injury are necessary since these partners experience several unfavorable consequences of caregiving, such as a high burden, emotional distress, and poor quality of life. Evidence-based support strategies that can be included

  5. Prospective study of a community reintegration programme for patients with acquired chronic brain injury: effects on caregivers' emotional burden and family functioning

    NARCIS (Netherlands)

    Geurtsen, Gert J.; van Heugten, Caroline M.; Meijer, Ron; Martina, Juan D.; Geurts, Alexander C. H.

    2011-01-01

    Objective: To examine the effects of a residential community reintegration programme for patients with psychosocial problems due to acquired chronic brain injury on caregivers' emotional burden and family functioning. Design: A prospective cohort study with waiting list control and 1-year follow-up.

  6. Psychological Characteristics in Acute Mild Traumatic Brain Injury: An MMPI-2 Study.

    Science.gov (United States)

    Gass, Carlton S; Rogers, David; Kinne, Erica

    2017-01-01

    The psychological characteristics of acute traumatic brain injury (TBI) have received limited research focus, despite empirical evidence of their relevance for subsequent psychological adjustment and early therapeutic intervention. This study addressed a wide range of psychological features in 47 individuals who were hospitalized as a result of acute mild TBI (mTBI). Participants were screened from amongst consecutive TBI admissions for moderate to severe brain injury, and for pre-injury neurological, psychiatric, or substance abuse histories. Clinical and content scale scores on the MMPI-2 were explored in relation to patient gender, age, level of education, and extent of cognitive complaints. The results revealed diverse psychosocial problem areas across the sample, the most common of which were somatic and cognitive complaints, compromised insight, and a naively optimistic self-perception. The mediating roles of injury severity and demographic variables are discussed. Clinical implications and specific recommendations are presented.

  7. Structural imaging of mild traumatic brain injury may not be enough: overview of functional and metabolic imaging of mild traumatic brain injury.

    Science.gov (United States)

    Shin, Samuel S; Bales, James W; Edward Dixon, C; Hwang, Misun

    2017-04-01

    A majority of patients with traumatic brain injury (TBI) present as mild injury with no findings on conventional clinical imaging methods. Due to this difficulty of imaging assessment on mild TBI patients, there has been much emphasis on the development of diffusion imaging modalities such as diffusion tensor imaging (DTI). However, basic science research in TBI shows that many of the functional and metabolic abnormalities in TBI may be present even in the absence of structural damage. Moreover, structural damage may be present at a microscopic and molecular level that is not detectable by structural imaging modality. The use of functional and metabolic imaging modalities can provide information on pathological changes in mild TBI patients that may not be detected by structural imaging. Although there are various differences in protocols of positron emission tomography (PET), single photon emission computed tomography (SPECT), functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG) methods, these may be important modalities to be used in conjunction with structural imaging in the future in order to detect and understand the pathophysiology of mild TBI. In this review, studies of mild TBI patients using these modalities that detect functional and metabolic state of the brain are discussed. Each modality's advantages and disadvantages are compared, and potential future applications of using combined modalities are explored.

  8. A preliminary model for posttraumatic brain injury depression.

    Science.gov (United States)

    Malec, James F; Brown, Allen W; Moessner, Anne M; Stump, Timothy E; Monahan, Patrick

    2010-07-01

    To develop, based on previous research, and evaluate a model for depression after traumatic brain injury (TBI). Cross-sectional structural equation modeling (SEM) of data from consecutively recruited patients. Acute hospital and inpatient rehabilitation units. Adult patients (N=158) after hospital admission for moderate to severe TBI. Not applicable. External appraisal of ability in participants was measured by the Mayo-Portland Adaptability Inventory (MPAI-4) Ability Index completed by a TBI clinical nurse specialist. Patient self-appraisal of post-TBI ability and depression were measured by the Awareness Questionnaire and Beck Depression Inventory-II. Functional outcome 1 year after injury was assessed with the MPAI-4 Participation Index. Successive SEM resulted in a parsimonious model with excellent fit. Consistent with prior research, a moderately strong association between self-appraisal of post-TBI ability and depression was found. Injury severity, as measured by the duration of posttraumatic amnesia (PTA), was not significantly associated with post-TBI depression. The 1-year functional outcome was associated with depression and TBI severity. The strong association between self-appraisal of post-TBI ability and depression is consistent with the cognitive-behavioral model of depression and recommends consideration and further study of cognitive-behavioral therapy for post-TBI depression. The lack of association between TBI severity and depression may represent the indirect and proxy nature of current measures of TBI severity such as PTA. Emerging neuroimaging techniques (eg, diffusion tensor imaging, magnetic resonance imaging spectroscopy) may provide the more direct measures of disruption of brain function after TBI that are needed to advance this line of research. Copyright 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. The long-term risk of malignant astrocytic tumors after structural brain injury--a nationwide cohort study

    DEFF Research Database (Denmark)

    Munch, Tina Noergaard; Gørtz, Sanne; Wohlfahrt, Jan

    2015-01-01

    % CI: 0.49-0.90) compared with no injury. The specific long-term risks by type of injury were: traumatic brain injury RR = 0.32 (95% CI: 0.10-0.75); cerebral ischemic infarction RR = 0.69 (95% CI: 0.47-0.96); and intracerebral hemorrhage RR = 1.39 (95% CI: 0.64-2.60). CONCLUSION: We found no evidence......BACKGROUND: Neoplastic transformation of damaged astrocytes has been proposed as a possible pathological mechanism behind malignant astrocytic tumors. This study investigated the association between structural brain injuries causing reactive astrogliosis and long-term risk for malignant astrocytic...... tumors. METHODS: The cohort consisted of all individuals living in Denmark between 1978 and 2011. The personal identification number assigned to all individuals allowed retrieval of diagnoses of traumatic brain injury, cerebral ischemic infarction, and intracerebral hemorrhage from the National Patient...

  10. Comparison of analytical methods of brain [18F]FDG-PET after severe traumatic brain injury

    DEFF Research Database (Denmark)

    Madsen, Karine; Hesby, Sara; Poulsen, Ingrid

    2017-01-01

    BACKGROUND: Loss of consciousness has been shown to reduce cerebral metabolic rates of glucose (CMRglc) measured by brain [(18)F]FDG-PET. Measurements of regional metabolic patterns by normalization to global cerebral metabolism or cerebellum may underestimate widespread reductions. NEW METHOD......: The aim of this study was to compare quantification methods of whole brain glucose metabolism, including whole brain [18F]FDG uptake normalized to uptake in cerebellum, normalized to injected activity, normalized to plasma tracer concentration, and two methods for estimating CMRglc. Six patients suffering...... from severe traumatic brain injury (TBI) and ten healthy controls (HC) underwent a 10min static [(18)F]FDG-PET scan and venous blood sampling. RESULTS: Except from normalizing to cerebellum, all quantification methods found significant lower level of whole brain glucose metabolism of 25-33% in TBI...

  11. Increased Sleep Need and Reduction of Tuberomammillary Histamine Neurons after Rodent Traumatic Brain Injury.

    Science.gov (United States)

    Noain, Daniela; Büchele, Fabian; Schreglmann, Sebastian R; Valko, Philipp O; Gavrilov, Yuri V; Morawska, Marta M; Imbach, Lukas L; Baumann, Christian R

    2018-01-01

    Although sleep-wake disturbances are prevalent and well described after traumatic brain injury, their pathophysiology remains unclear, most likely because human traumatic brain injury is a highly heterogeneous entity that makes the systematic study of sleep-wake disturbances in relation to trauma-induced histological changes a challenging task. Despite increasing interest, specific and effective treatment strategies for post-traumatic sleep-wake disturbances are still missing. With the present work, therefore, we aimed at studying acute and chronic sleep-wake disturbances by electrophysiological means, and at assessing their histological correlates after closed diffuse traumatic brain injury in rats with the ultimate goal of generating a model of post-traumatic sleep-wake disturbances and associated histopathological findings that accurately represents the human condition. We assessed sleep-wake behavior by means of standard electrophysiological recordings before and 1, 7, and 28 days after sham or traumatic brain injury procedures. Sleep-wake findings were then correlated to immunohistochemically labeled and stereologically quantified neuronal arousal systems. Compared with control animals, we found that closed diffuse traumatic brain injury caused increased sleep need one month after trauma, and sleep was more consolidated. As histological correlate, we found a reduced number of histamine immunoreactive cells in the tuberomammillary nucleus, potentially related to increased neuroinflammation. Monoaminergic and hypocretinergic neurotransmitter systems in the hypothalamus and rostral brainstem were not affected, however. These results suggest that our rat traumatic brain injury model reflects human post-traumatic sleep-wake disturbances and associated histopathological findings very accurately, thus providing a study platform for novel treatment strategies for affected patients.

  12. Early endocrine alterations reflect prolonged stress and relate to one year functional outcome in patients with severe brain injury

    DEFF Research Database (Denmark)

    Marina, Djordje; Klose, Marianne; Nordenbo, Annette

    2015-01-01

    OBJECTIVE: Severe brain injury poses a risk of developing acute and chronic hypopituitarism. Pituitary hormone alterations developed in the early recovery phase after brain injury may have implications for long-term functional recovery. The objective was to assess the pattern and prevalence...

  13. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice.

    Science.gov (United States)

    Ma, Elise L; Smith, Allen D; Desai, Neemesh; Cheung, Lumei; Hanscom, Marie; Stoica, Bogdan A; Loane, David J; Shea-Donohue, Terez; Faden, Alan I

    2017-11-01

    Traumatic brain injury (TBI) has complex effects on the gastrointestinal tract that are associated with TBI-related morbidity and mortality. We examined changes in mucosal barrier properties and enteric glial cell response in the gut after experimental TBI in mice, as well as effects of the enteric pathogen Citrobacter rodentium (Cr) on both gut and brain after injury. Moderate-level TBI was induced in C57BL/6mice by controlled cortical impact (CCI). Mucosal barrier function was assessed by transepithelial resistance, fluorescent-labelled dextran flux, and quantification of tight junction proteins. Enteric glial cell number and activation were measured by Sox10 expression and GFAP reactivity, respectively. Separate groups of mice were challenged with Cr infection during the chronic phase of TBI, and host immune response, barrier integrity, enteric glial cell reactivity, and progression of brain injury and inflammation were assessed. Chronic CCI induced changes in colon morphology, including increased mucosal depth and smooth muscle thickening. At day 28 post-CCI, increased paracellular permeability and decreased claudin-1 mRNA and protein expression were observed in the absence of inflammation in the colon. Colonic glial cell GFAP and Sox10 expression were significantly increased 28days after brain injury. Clearance of Cr and upregulation of Th1/Th17 cytokines in the colon were unaffected by CCI; however, colonic paracellular flux and enteric glial cell GFAP expression were significantly increased. Importantly, Cr infection in chronically-injured mice worsened the brain lesion injury and increased astrocyte- and microglial-mediated inflammation. These experimental studies demonstrate chronic and bidirectional brain-gut interactions after TBI, which may negatively impact late outcomes after brain injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Secondary Damage after Traumatic Brain Injury: Epidemiology, Pathophysiology and Therapy

    NARCIS (Netherlands)

    D.C. Engel (Doortje Caroline)

    2008-01-01

    textabstractTraumatic brain injury (TBI) is defined as a microscopic or macroscopic injury to the brain caused by external physical forces. Road traffic accidents, falls, sports injuries (i.e. boxing), recreational accidents (i.e. parachute jumping), the use of firearms, assault, child abuse,

  15. Divided attention and driving. The effects of aging and brain injury

    OpenAIRE

    Withaar, Frederiec Kunna

    2000-01-01

    In this thesis, divided attention was investigated in four groups of subjects: closed head injury (CHI) patients, young control and healthy older subjects, and older subjects with cognitive impairments. It was studied how diffuse brain injury and normal and abnormal aging affect cognitive processes involved in divided attention tasks. Furthermore, it was investigated how deficits in divided attention relate to performance of instrumental activities of daily living (IADL), with an emphasis on ...

  16. Functional oral intake and time to reach unrestricted dieting for patients with traumatic brain injury

    DEFF Research Database (Denmark)

    Hansen, T.S.; Engberg, Anders; Larsen, K.

    2008-01-01

    . INTERVENTION: Facial oral tract therapy. MAIN OUTCOME MEASURE: Unrestricted dieting assessed by the Functional Oral Intake Scale (FOIS). RESULTS: We found that 93% of all patients had problems with functional oral intake at admission. Within 126 days of rehabilitation, 64% recovered to unrestricted dieting...... instrument (Wald chi(2)=44.40, Poral intake was found to be very common for patients with severe TBI admitted to a subacute rehabilitation department. For those who recovered during hospital rehabilitation......, return to unrestricted dieting happened within 126 days of rehabilitation. The chance of returning to unrestricted dieting depends on the severity of the brain injury and can be predicted by GCS score, RLAS level, FIM score, and functional oral intake at admission. These results are important when...

  17. Serial cranial ultrasonography or early MRI for detecting preterm brain injury?

    NARCIS (Netherlands)

    Plaisier, Annemarie; Raets, Marlou M A; Ecury-Goossen, Ginette M; Govaert, Paul; Feijen-Roon, Monique; Reiss, Irwin K M; Smit, Liesbeth S; Lequin, Maarten H; Dudink, Jeroen

    OBJECTIVE: To investigate detection ability and feasibility of serial cranial ultrasonography (CUS) and early MRI in preterm brain injury. DESIGN: Prospective cohort study. SETTING: Level III neonatal intensive care unit. PATIENTS: 307 infants, born below 29 weeks of gestation. METHODS: Serial CUS

  18. ECONOMIC LOSSES CAUSED BY TRAUMATIC BRAIN INJURY IN CHILDREN

    Directory of Open Access Journals (Sweden)

    S. A. Valiulina

    2015-01-01

    Full Text Available Background: Currently, analyzing the economic losses caused by health problems in population is of particular importance since it stipulates calculations of the volumes invested in healthcare systems in order to improve population’s health. Objective: The aim of our study was to find out economic losses caused by traumatic brain injury (TBI in children. Methods: The given work has utilized governmental statistical reports for Russia, for federal regions as well as for individual subjects. Direct medical expenses (medical services and indirect expenses (losses due to a temporary disability of parents having a sick child were calculated both in general and per patient. Results: Among all the direct medical costs of treatment of children with TBI inpatient care costs account for 85%. In the Central and Volga Federal District accounted for half of nationwide spending in general, brain injury and to provide certain kinds of healthcare. The structure of Russian costs as a result of the incidence of TBI children Moscow accounts for 20%. In Moscow, the cost of treating cases of traumatic brain injury in children is 3.2 times higher than the average for Russia. The resulting calculations of the value of health care costs attributable to a case of child head injury, behind the cost of treatment of the case of a child with head trauma, calculated according to the standards of Russia and the territories. This difference in the whole RF is 23%. Conclusion: The obtained findings have shown that in 2010 in Russia the magnitude of losses caused by TBI incidence in children amounted to 3 billion roubles or 0.008% of the gross product 1.2 billion roubles of which were direct expenses. However, this figure is considerably lower of the real amount; it becomes evident after the analysis of direct medical expenses per one case of pediatric TBI. Our calculations have shown that in Russia and in its regions the amount of expenses per one TBI patient is a quarter less

  19. Glucose variability negatively impacts long-term functional outcome in patients with traumatic brain injury.

    Science.gov (United States)

    Matsushima, Kazuhide; Peng, Monica; Velasco, Carlos; Schaefer, Eric; Diaz-Arrastia, Ramon; Frankel, Heidi

    2012-04-01

    Significant glycemic excursions (so-called glucose variability) affect the outcome of generic critically ill patients but has not been well studied in patients with traumatic brain injury (TBI). The purpose of this study was to evaluate the impact of glucose variability on long-term functional outcome of patients with TBI. A noncomputerized tight glucose control protocol was used in our intensivist model surgical intensive care unit. The relationship between the glucose variability and long-term (a median of 6 months after injury) functional outcome defined by extended Glasgow Outcome Scale (GOSE) was analyzed using ordinal logistic regression models. Glucose variability was defined by SD and percentage of excursion (POE) from the preset range glucose level. A total of 109 patients with TBI under tight glucose control had long-term GOSE evaluated. In univariable analysis, there was a significant association between lower GOSE score and higher mean glucose, higher SD, POE more than 60, POE 80 to 150, and single episode of glucose less than 60 mg/dL but not POE 80 to 110. After adjusting for possible confounding variables in multivariable ordinal logistic regression models, higher SD, POE more than 60, POE 80 to 150, and single episode of glucose less than 60 mg/dL were significantly associated with lower GOSE score. Glucose variability was significantly associated with poorer long-term functional outcome in patients with TBI as measured by the GOSE score. Well-designed protocols to minimize glucose variability may be key in improving long-term functional outcome. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Functional MRI for Assessment of the Default Mode Network in Acute Brain Injury

    DEFF Research Database (Denmark)

    Kondziella, Daniel; Fisher, Patrick M.; Larsen, Vibeke Andrée

    2017-01-01

    more challenging in critically ill patients because of cardiovascular vulnerability, intravenous sedation, and artificial ventilation. Methods: Using resting-state fMRI, we investigated the DMN in a convenience sample of patients with acute brain injury admitted to the intensive care unit. The DMN...

  1. New Antioxidant Drugs for Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Maria Luisa Tataranno

    2015-01-01

    Full Text Available The brain injury concept covers a lot of heterogeneity in terms of aetiology involving multiple factors, genetic, hemodynamic, metabolic, nutritional, endocrinological, toxic, and infectious mechanisms, acting in antenatal or postnatal period. Increased vulnerability of the immature brain to oxidative stress is documented because of the limited capacity of antioxidant enzymes and the high free radicals (FRs generation in rapidly growing tissue. FRs impair transmembrane enzyme Na+/K+-ATPase activity resulting in persistent membrane depolarization and excessive release of FR and excitatory aminoacid glutamate. Besides being neurotoxic, glutamate is also toxic to oligodendroglia, via FR effects. Neuronal cells die of oxidative stress. Excess of free iron and deficient iron/binding metabolising capacity are additional features favouring oxidative stress in newborn. Each step in the oxidative injury cascade has become a potential target for neuroprotective intervention. The administration of antioxidants for suspected or proven brain injury is still not accepted for clinical use due to uncertain beneficial effects when treatments are started after resuscitation of an asphyxiated newborn. The challenge for the future is the early identification of high-risk babies to target a safe and not toxic antioxidant therapy in combination with standard therapies to prevent brain injury and long-term neurodevelopmental impairment.

  2. Callus formation in bone fractures combined with brain injury in rat

    Directory of Open Access Journals (Sweden)

    Yu-Ping Chen

    2017-01-01

    Full Text Available Objective: The objective of this study was to determine the speed of bony union and the serum levels of biomarkers in the setting of bone fractures combined with brain injury. Materials and Methods: In this study, Sprague–Dawley rats were randomized into four groups: sham, brain injury, bone fracture, and bone fracture plus brain injury groups. The serum levels of biochemical markers, namely, nerve growth factor (NGF, Wnt-3a, Dickkopf-related protein-1, receptor-activator of NF-κB ligand, and adrenocorticotropic hormone (ACTH, were measured on the days 1, 3, 7, and 14 following injury. Bony union was evaluated using radiographs every week for 6 weeks. Results: Compared with the brain injury group and bone fracture group, the radiographs of the bone fracture plus brain injury group revealed enhanced callus formations in week 2. From week 3, the callus formation did not differ significantly among the groups. The serum levels of the biomarkers varied at different time points. The serum levels of NGF on days 1 and 3, Wnt-3a on days 3 and 14, and ACTH on days 1, 3, and 7 were significantly higher in the bone fracture plus brain injury group than in the bone fracture group. Conclusions: Brain injury increases callus formation in simultaneous bone fracture. Considering the time point, early NGF, Wnt-3a, and ACTH elevation might be associated with early callus formation enhancement. The results indicate that these brain injury-induced biomarkers might play crucial role in accelerating bone healing.

  3. Role of Non-neuronal Cells in Tauopathies After Brain Injury

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0422 TITLE: Role of Nonneuronal Cells in Tauopathies After Brain Injury PRINCIPAL INVESTIGATOR: Sally A. Frautschy...AND SUBTITLE 5a. CONTRACT NUMBER Role of Non-neuronal Cells in Tauopathies After Brain Injury 5b. GRANT NUMBER W81XWH-15-1-0422 5c. PROGRAM...traumatic brain injury (TBI), specific inflammatory factors (complement proteins) elevated during long asymptomatic prodromal period are responsible

  4. Traumatic Brain Injury Severity, Neuropathophysiology, and Clinical Outcome: Insights from Multimodal Neuroimaging

    Directory of Open Access Journals (Sweden)

    Andrei Irimia

    2017-10-01

    Full Text Available BackgroundThe relationship between the acute clinical presentation of patients with traumatic brain injury (TBI, long-term changes in brain structure prompted by injury and chronic functional outcome is insufficiently understood. In this preliminary study, we investigate how acute Glasgow coma score (GCS and epileptic seizure occurrence after TBIs are statistically related to functional outcome (as quantified using the Glasgow Outcome Score and to the extent of cortical thinning observed 6 months after the traumatic event.MethodsUsing multivariate linear regression, the extent to which the acute GCS and epileptic seizure occurrence (predictor variables correlate with structural brain changes (relative cortical atrophy was examined in a group of 33 TBI patients. The statistical significance of the correlation between relative cortical atrophy and the Glasgow Outcome Score was also investigated.ResultsA statistically significant correlative relationship between cortical thinning and the predictor variables (acute GCS and seizure occurrence was identified in the study sample. Regions where the statistical model was found to have highest statistical reliability in predicting both gray matter atrophy and neurological outcome include the frontopolar, middle frontal, postcentral, paracentral, middle temporal, angular, and lingual gyri. In addition, relative atrophy and GOS were also found to be significantly correlated over large portions of the cortex.ConclusionThis study contributes to our understanding of the relationship between clinical descriptors of acute TBI, the extent of injury-related chronic brain changes and neurological outcome. This is partly because the brain areas where cortical thinning was found to be correlated with GCS and with seizure occurrence are implicated in executive control, sensory function, motor acuity, memory, and language, all of which may be affected by TBI. Thus, our quantification suggests the existence of a

  5. Age and recovery from brain injury: legal opinions, clinical beliefs and experimental evidence.

    Science.gov (United States)

    Johnson, David A; Rose, F D; Brooks, B M; Eyers, S

    2003-01-01

    Despite considerable scientific evidence to the contrary, many medical practitioners maintain that children recover from brain injury better than adults. This belief, which is commonly referred to as the "Kennard Principle", has important ramifications for personal injury compensation claims in which the amount of financial damages claimed is partly based on medical experts' prognoses for recovery and long-term outcome. The present study investigated whether legal practitioners' beliefs are consistent with those of medical practitioners. Lawyers were asked to estimate their confidence in consultant neurologists' estimates of recovery in four clinically-based but fictitious case studies which differed only in the reported age of the patient. The lawyers showed more confidence in estimates which coincided with the Kennard Principle than those which did not. These results support previous findings in showing widespread belief that "younger is better" in recovery from brain injury. In consequence, it is likely that financial compensation for children with brain injury is currently being underestimated in litigation, thereby prejudicing the long-term outcome of the child.

  6. The application of a mathematical model linking structural and functional connectomes in severe brain injury

    Directory of Open Access Journals (Sweden)

    A. Kuceyeski

    2016-01-01

    Full Text Available Following severe injuries that result in disorders of consciousness, recovery can occur over many months or years post-injury. While post-injury synaptogenesis, axonal sprouting and functional reorganization are known to occur, the network-level processes underlying recovery are poorly understood. Here, we test a network-level functional rerouting hypothesis in recovery of patients with disorders of consciousness following severe brain injury. This hypothesis states that the brain recovers from injury by restoring normal functional connections via alternate structural pathways that circumvent impaired white matter connections. The so-called network diffusion model, which relates an individual's structural and functional connectomes by assuming that functional activation diffuses along structural pathways, is used here to capture this functional rerouting. We jointly examined functional and structural connectomes extracted from MRIs of 12 healthy and 16 brain-injured subjects. Connectome properties were quantified via graph theoretic measures and network diffusion model parameters. While a few graph metrics showed groupwise differences, they did not correlate with patients' level of consciousness as measured by the Coma Recovery Scale — Revised. There was, however, a strong and significant partial Pearson's correlation (accounting for age and years post-injury between level of consciousness and network diffusion model propagation time (r = 0.76, p < 0.05, corrected, i.e. the time functional activation spends traversing the structural network. We concluded that functional rerouting via alternate (and less efficient pathways leads to increases in network diffusion model propagation time. Simulations of injury and recovery in healthy connectomes confirmed these results. This work establishes the feasibility for using the network diffusion model to capture network-level mechanisms in recovery of consciousness after severe brain injury.

  7. An audit of the quality of care of traumatic brain injury at a busy ...

    African Journals Online (AJOL)

    Access to care bya dedicated neurosurgical unit is limited in the developing world, and the vast majority of patients who sustain a head injury are managed by general surgeons. Prevention of secondary brain injury is paramount. While the principles of management are relatively straightforward, delivering this care may be ...

  8. Fresh Frozen Plasma Modulates Brain Gene Expression in a Swine Model of Traumatic Brain Injury and Shock

    DEFF Research Database (Denmark)

    Sillesen, Martin; Bambakidis, Ted; Dekker, Simone E

    2017-01-01

    BACKGROUND: Resuscitation with fresh frozen plasma (FFP) decreases brain lesion size and swelling in a swine model of traumatic brain injury and hemorrhagic shock. We hypothesized that brain gene expression profiles after traumatic brain injury and hemorrhagic shock would be modulated by FFP resu...

  9. Effects of music production on cortical plasticity within cognitive rehabilitation of patients with mild traumatic brain injury.

    Science.gov (United States)

    Vik, Berit Marie Dykesteen; Skeie, Geir Olve; Vikane, Eirik; Specht, Karsten

    2018-01-01

    We explored the effects of playing the piano on patients with cognitive impairment after mild traumatic brain injury (mTBI) and, addressed the question if this approach would stimulate neural networks in re-routing neural connections and link up cortical circuits that had been functional inhibited due to disruption of brain tissue. Functional neuroimaging scans (fMRI) and neuropsychological tests were performed pre-post intervention. Three groups participated, one mTBI group (n = 7), two groups of healthy participants, one with music training (n = 11), one baseline group without music (n = 12). The music groups participated in 8 weeks music-supported intervention. The patient group revealed training-related neuroplasticity in the orbitofrontal cortex. fMRI results fit well with outcome from neuropsychological tests with significant enhancement of cognitive performance in the music groups. Ninety per cent of mTBI group returned to work post intervention. Here, for the first time, we demonstrated behavioural improvements and functional brain changes after 8 weeks of playing piano on patients with mTBI having attention, memory and social interaction problems. We present evidence for a causal relationship between musical training and reorganisation of neural networks promoting enhanced cognitive performance. These results add a novel music-supported intervention within rehabilitation of patients with cognitive deficits following mTBI.

  10. Improving outcome after traumatic brain injury--progress and challenges.

    Science.gov (United States)

    Gentleman, D

    1999-01-01

    This article describes the rapid advances in the head injury field which have taken place within the professional lifetime of many doctors in practice today. These have led to a better understanding of what happens in the injured brain and how these events might be manipulated to achieve better outcomes. Clinical tools we now take for granted, like the CT scanner and the Glasgow Coma Scale, were new developments 25 years ago. They provided a foundation on which clinicians and basic scientists could build what we now know: what to assess in the patient, how to respond to certain findings, what imaging to do, how to plan treatment rationally, how to minimise brain damage at different stages after injury, how to predict and measure outcome, what disabled survivors need, and how to organise the service to do the greatest good for the most people. Some of these topics raise as many questions as answers. The head injury field may be broad but it has essential unity. At one extreme, some patients have a life-threatening illness where the acts and omissions of the clinical team can powerfully influence not only survival but its quality. Later the drama of the acute phase gives way to the 'hidden disabilities' of the long-term deficits which so many survivors have. At the other end of the severity spectrum is the relatively vast number of people who suffer an apparently mild head injury, a few of whom deteriorate and need urgent treatment, and many of whom have unspectacular but, nevertheless, disabling problems. The article attempts to address this broad canvas. Clinicians, neuroscientists, policy makers, and service users must work together to address the major scientific, individual, and population challenges posed by head injury. Much has already been achieved, but much remains to be done, especially in translating 'what we know' into 'what we do'.

  11. Signal Transduction Pathways Involved in Brain Death-Induced Renal Injury

    NARCIS (Netherlands)

    Bouma, H. R.; Ploeg, R. J.; Schuurs, T. A.

    Kidneys derived from brain death organ donors show an inferior survival when compared to kidneys derived from living donors. Brain death is known to induce organ injury by evoking an inflammatory response in the donor. Neuronal injury triggers an inflammatory response in the brain, leading to

  12. Family and home in cognitive rehabilitation after brain injury

    DEFF Research Database (Denmark)

    Wulf-Andersen, Camilla; Mogensen, Jesper

    2017-01-01

    Acquired brain injury (ABI) severely affects both the injured patient and her/his family. This fact alone calls for a therapeutic approach addressing not only the individual victim of ABI but also her/his family. Additionally, the optimal outcome of posttraumatic cognitive rehabilitation may...... be best obtained by supplementing the institution-based cognitive training with home-based training. Moving cognitive training and other therapeutic interventions into the home environment does, however, constitute an additional challenge to the family structure and psychological wellbeing of all family...... members. We presently argue in favour of an increased utilization of family-based intervention programs for the families of brain injured patients – in general and especially in case of utilization of home-based rehabilitative training....

  13. Neuropsychiatric aspects of severe brain injuries

    Directory of Open Access Journals (Sweden)

    O. S. Zaitsev

    2012-01-01

    Full Text Available The state-of-the-art of Russian neuropsychiatry and priority developments in different psychopathological syndromes in severe brain injuries are assessed. Many cognitive and emotional impairments are explained in terms of the idea on the organization of psychic activity over time. It is emphasized that to achieve the premorbid levels of an interhemispheric interaction and functional asymmetry of the cerebral hemispheres affords psychic activity recovery. The experience in investigating, classifying, and treating various mental disorders occurring after severe brain injuries is generalized. The basic principles of psychopharmacotherapy and rehabilitation of victims are stated.

  14. Influence of Combat Blast-Related Mild Traumatic Brain Injury Acute Symptoms on Mental Health and Service Discharge Outcomes

    Science.gov (United States)

    2013-08-15

    Mild traumatic brain injury in an insured population: Subjective complaints and return to employment. Brain Inj. 6, 161 166. 15. Kraus, J., Schaffer, K...B., Haddon, W., Jr., and Long, W.B. (1974). The Injury Severity Score: A method for describing patients with multiple injuries and evaluating...consciousness predict neuropsychological decrements after concussion? Clin. J. Sport Med. 9, 193 198. 26. Gil, S., Caspi, Y., Ben Ari, I.Z., Koren, D., and

  15. Curcumin pretreatment attenuates brain lesion size and improves neurological function following traumatic brain injury in the rat.

    Science.gov (United States)

    Samini, Fariborz; Samarghandian, Saeed; Borji, Abasalt; Mohammadi, Gholamreza; bakaian, Mahdi

    2013-09-01

    Turmeric has been in use since ancient times as a condiment and due to its medicinal properties. Curcumin, the yellow coloring principle in turmeric, is a polyphenolic and a major active constituent. Besides anti-inflammatory, thrombolytic and anti-carcinogenic activities, curcumin also possesses strong antioxidant property. The neuroprotective effects of curcumin were evaluated in a weight drop model of cortical contusion trauma in rat. Male Wistar rats (350-400 g, n=9) were anesthetized with sodium pentobarbital (60 mg/kg i.p.) and subjected to head injury. Five days before injury, animals randomly received an i.p. bolus of either curcumin (50 and 100 mg/kg/day, n=9) or vehicle (n=9). Two weeks after the injury and drug treatment, animals were sacrificed and a series of brain sections, stained with hematoxylin and eosin (H&E) were evaluated for quantitative brain lesion volume. Two weeks after the injury, oxidative stress parameter (malondialdehyde) was also measured in the brain. Curcumin (100 mg/kg) significantly reduced the size of brain injury-induced lesions (Pcurcumin (100 mg/kg). Curcumin treatment significantly improved the neurological status evaluated during 2 weeks after brain injury. The study demonstrates the protective efficacy of curcumin in rat traumatic brain injury model. © 2013 Elsevier Inc. All rights reserved.

  16. Late-onset social anxiety disorder following traumatic brain injury.

    Science.gov (United States)

    Chaves, Cristiano; Trzesniak, Clarissa; Derenusson, Guilherme Nogueira; Araújo, David; Wichert-Ana, Lauro; Machado-de-Sousa, João Paulo; Carlotti, Carlos Gilberto; Nardi, Antonio E; Zuardi, Antônio W; de S Crippa, José Alexandre; Hallak, Jaime E C

    2012-01-01

    Neuropsychiatric sequelae are the predominant long-term disability after traumatic brain injury (TBI). This study reports a case of late-onset social anxiety disorder (SAD) following TBI. A patient that was spontaneous and extroverted up to 18-years-old started to exhibit significant social anxiety symptoms. These symptoms became progressively worse and he sought treatment at age 21. He had a previous history of traumatic brain injury (TBI) at age 17. Neuroimaging investigations (CT, SPECT and MRI) showed a bony protuberance on the left frontal bone, with mass effect on the left frontal lobe. He had no neurological signs or symptoms. The patient underwent neurosurgery with gross total resection of the lesion and the pathological examination was compatible with intradiploic haematoma. Psychiatric symptoms may be the only findings in the initial manifestation of slowly growing extra-axial space-occupying lesions that compress the frontal lobe from the outside. Focal neurological symptoms may occur only when the lesion becomes large. This case report underscores the need for careful exclusion of general medical conditions and TBI history in cases of late-onset SAD and may also contribute to the elucidation of the neurobiology of this disorder.

  17. Early predictors of outcome after mild traumatic brain injury (UPFRONT): an observational cohort study.

    Science.gov (United States)

    van der Naalt, Joukje; Timmerman, Marieke E; de Koning, Myrthe E; van der Horn, Harm J; Scheenen, Myrthe E; Jacobs, Bram; Hageman, Gerard; Yilmaz, Tansel; Roks, Gerwin; Spikman, Jacoba M

    2017-07-01

    Mild traumatic brain injury (mTBI) accounts for most cases of TBI, and many patients show incomplete long-term functional recovery. We aimed to create a prognostic model for functional outcome by combining demographics, injury severity, and psychological factors to identify patients at risk for incomplete recovery at 6 months. In particular, we investigated additional indicators of emotional distress and coping style at 2 weeks above early predictors measured at the emergency department. The UPFRONT study was an observational cohort study done at the emergency departments of three level-1 trauma centres in the Netherlands, which included patients with mTBI, defined by a Glasgow Coma Scale score of 13-15 and either post-traumatic amnesia lasting less than 24 h or loss of consciousness for less than 30 min. Emergency department predictors were measured either on admission with mTBI-comprising injury severity (GCS score, post-traumatic amnesia, and CT abnormalities), demographics (age, gender, educational level, pre-injury mental health, and previous brain injury), and physical conditions (alcohol use on the day of injury, neck pain, headache, nausea, dizziness)-or at 2 weeks, when we obtained data on mood (Hospital Anxiety and Depression Scale), emotional distress (Impact of Event Scale), coping (Utrecht Coping List), and post-traumatic complaints. The functional outcome was recovery, assessed at 6 months after injury with the Glasgow Outcome Scale Extended (GOSE). We dichotomised recovery into complete (GOSE=8) and incomplete (GOSE≤7) recovery. We used logistic regression analyses to assess the predictive value of patient information collected at the time of admission to an emergency department (eg, demographics, injury severity) alone, and combined with predictors of outcome collected at 2 weeks after injury (eg, emotional distress and coping). Between Jan 25, 2013, and Jan 6, 2015, data from 910 patients with mTBI were collected 2 weeks after injury; the final

  18. Neurosurgery and prognosis in patients with radiation-induced brain injury after nasopharyngeal carcinoma radiotherapy: a follow-up study

    International Nuclear Information System (INIS)

    Li, Yi; Shi, Xiaolei; Rong, Xiaoming; Peng, Ying; Tang, Yamei

    2013-01-01

    Radiotherapy is the standard radical treatment for nasopharyngeal carcinoma (NPC) and may cause radiation-induced brain injury (RI). Treatment for RI remains a challenge. We conducted this study to investigate the indications of neurosurgery, operation time and prognosis of patients with RI after NPC radiotherapy who underwent neurosurgical management. This was a follow-up study between January 2005 and July 2011. Fifteen NPC cases of RI who underwent neurosurgery were collected. Brain Magnetic resonance imaging (MRI), surgery and histology were studied. The outcome was assessed by LENT/SOMA scales and modified Rankin scale. Brain lesion resection (86.7%) was more common than decompressive craniotomy (13.3%). According to LENT/SOMA scale before and six months after surgery, 13 of 15, 12 of 15, 14 of 15, and 14 of 15 cases showed improvement at subjective, objective, management and analytic domains, respectively. 12 of 15 patients showed improvement of modified Rankin scale after surgery. Three patients who underwent emergency surgery showed significant improvement (average score increment of 2, 2.7, 2.7, 3 and 2 at LENT/SOMA scale subjective, objective, management, analytic, and modified Rankin scale, respectively), as compared with 12 cases underwent elective surgery (average score increment of 1, 1, 1.4, 1.8 and 1 at LENT SOMA scale subjective, objective, management, analytic, and modified Rankin scale, respectively). Neurosurgery, including brain necrotic tissue resection and decompressive craniotomy, improves the prognosis for RI patients, especially for those with indications of emergency surgery

  19. Effectiveness of a Treatment for Impairments in Social Cognition and Emotion Regulation (T-ScEmo) After Traumatic Brain Injury : A Randomized Controlled Trial

    NARCIS (Netherlands)

    Westerhof-Evers, Herma J.; Visser-Keizer, Annemarie C.; Fasotti, Luciano; Schonherr, Marleen C.; Vink, Martie; van der Naalt, Joukje; Spikman, Jacoba M.

    Objective: To evaluate the effects of a multifaceted Treatment for Social cognition and Emotion regulation (T-ScEmo) in patients with a traumatic brain injury.  Participants: Sixty-one patients with moderate to severe traumatic brain injury randomly assigned to an experimental T-ScEmo intervention

  20. Position of probe determines prognostic information of brain tissue PO2 in severe traumatic brain injury.

    Science.gov (United States)

    Ponce, Lucido L; Pillai, Shibu; Cruz, Jovany; Li, Xiaoqi; Julia, H; Gopinath, Shankar; Robertson, Claudia S

    2012-06-01

    Monitoring brain tissue PO2 (PbtO2) is part of multimodality monitoring of patients with traumatic brain injury (TBI). However, PbtO2 measurement is a sampling of only a small area of tissue surrounding the sensor tip. To examine the effect of catheter location on the relationship between PbtO2 and neurological outcome. A total of 405 patients who had PbtO2 monitoring as part of standard management of severe traumatic brain injury were studied. The relationships between probe location and resulting PbtO2 and outcome were examined. When the probe was located in normal brain, PbtO2 averaged 30.8 ± 18.2 compared with 25.6 ± 14.8 mm Hg when placed in abnormal brain (P < .001). Factors related to neurological outcome in the best-fit logistic regression model were age, PbtO2 probe position, postresuscitation motor Glasgow Coma Scale score, and PbtO2 trend pattern. Although average PbtO2 was significantly related to outcome in univariate analyses, it was not significant in the final logistic model. However, the interaction between PbtO2 and probe position was statistically significant. When the PbtO2 probe was placed in abnormal brain, the average PbtO2 was higher in those with a favorable outcome, 28.8 ± 12.0 mm Hg, compared with those with an unfavorable outcome, 19.5 ± 13.7 mm Hg (P = .01). PbtO2 and outcome were not related when the probe was placed in normal-appearing brain. These results suggest that the location of the PbtO2 probe determines the PbtO2 values and the relationship of PbtO2 to neurological outcome.

  1. Intravenous saline administration in patients with severe acquired brain injury and orthostatic intolerance for tilt-table mobilization

    DEFF Research Database (Denmark)

    Riberholt, Christian; Olesen, Niels; Hovind, Peter

    2018-01-01

    Primary objective: This study aimed to investigate the effect of intravenous saline administration on orthostatic hypotension (OH) during head up tilt (HUT) and the change in the renin–angiotensin–aldosterone system before and after HUT in patients with severe acquired brain injury (ABI). Research...... artery blood flow velocity. Blood samples were collected before and after two HUT sessions separated by 1 hour and saline was administered in between. Main outcomes and results: Patients’ ability to stand upright did not change after saline administration due to OH. The patients showed signs of reduced...... fluid administration. Research focusing on the ability to retain fluid after bed rest is warranted....

  2. Depression Anxiety Stress Scales (DASS-21): Factor Structure in Traumatic Brain Injury Rehabilitation.

    Science.gov (United States)

    Randall, Diane; Thomas, Matt; Whiting, Diane; McGrath, Andrew

    To confirm the construct validity of the Depression Anxiety Stress Scales-21 (DASS-21) by investigating the fit of published factor structures in a sample of adults with moderate to severe traumatic brain injury (posttraumatic amnesia > 24 hours). Archival data from 504 patient records at the Brain Injury Rehabilitation Unit at Liverpool Hospital, Australia. Participants were aged between 16 and 71 years and were engaged in a specialist rehabilitation program. The DASS-21. Two of the 6 models had adequate fit using structural equation modeling. The data best fit Henry and Crawford's quadripartite model, which comprised a Depression, Anxiety and Stress factor, as well as a General Distress factor. The data also adequately fit Lovibond and Lovibond's original 3-factor model, and the internal consistencies of each factor were very good (α = 0.82-0.90). This study confirms the structure and construct validity of the DASS-21 and provides support for its use as a screening tool in traumatic brain injury rehabilitation.

  3. Alterations of cerebral blood flow and cerebrovascular reserve in patients with chronic traumatic brain injury accompanying deteriorated intelligence

    International Nuclear Information System (INIS)

    Song, Ho Chun; Bom, Hee Seung

    2000-01-01

    The purpose of this study was to evaluate alterations of regional cerbral blood flow (CBF) and cerebrovascular reserve (CVR), and correlation between these alternations and cognitive dysfunctin in patients with chronic traumatic brain injury (TBI) and normal brain MRI findings. Thirty TBI patients and 19 healthy volunteers underwent rest/acetazolaminde brain SPECT using Tc-99m HMPAO. Korean-Wechsler Adult Intelligence scale test was also performed in the patient group. Statistical analysis was performed with statistical parametric mapping software (SPM '97). CBF was diminished in the left hemisphere including Wernicke's area in all patients with lower verbal scale scores. In addition, a reduction in CBF in the right frontal, temporal and parietal cortices was related with depressed scores in information, digital span, arithmetic and similarities. In patients with lower performance scale scores, CBF was mainly diminished in the right hemisphere including superior temporal and supramarginal gyri, premotor, primary somatomotor and a part of prefrontal cortices, left frontal lobe and supramarginal gyrus. CVR was diminished in sixty-four Brodmann's areas compared to control. A reduction in CVR was demonstrated bilaterally in the frontal and temporal lobes in patients with lower scores in both verbal and performance tests, and in addition, both inferior parietal and occipital lobes in information subset. Alterations of CBF and CVR were demonstrated in the symptomatic TBI patients with normal MRI finding. These alterations were correlated with the change of intelligence, of which the complex functions are subserved by multiple interconnected cortical structures.=20

  4. Clinical comparison of 99mTc exametazime and 123I Ioflupane SPECT in patients with chronic mild traumatic brain injury.

    Science.gov (United States)

    Newberg, Andrew B; Serruya, Mijail; Gepty, Andrew; Intenzo, Charles; Lewis, Todd; Amen, Daniel; Russell, David S; Wintering, Nancy

    2014-01-01

    This study evaluated the clinical interpretations of single photon emission computed tomography (SPECT) using a cerebral blood flow and a dopamine transporter tracer in patients with chronic mild traumatic brain injury (TBI). The goal was to determine how these two different scan might be used and compared to each other in this patient population. Twenty-five patients with persistent symptoms after a mild TBI underwent SPECT with both (99m)Tc exametazime to measure cerebral blood flow (CBF) and (123)I ioflupane to measure dopamine transporter (DAT) binding. The scans were interpreted by two expert readers blinded to any case information and were assessed for abnormal findings in comparison to 10 controls for each type of scan. Qualitative CBF scores for each cortical and subcortical region along with DAT binding scores for the striatum were compared to each other across subjects and to controls. In addition, symptoms were compared to brain scan findings. TBI patients had an average of 6 brain regions with abnormal perfusion compared to controls who had an average of 2 abnormal regions (pTBI symptoms. Both types of scans might have distinct uses in the evaluation of chronic TBI patients depending on the clinical scenario.

  5. Patients in a vegetative state following traumatic brain injury display a reduced intracortical modulation.

    Science.gov (United States)

    Bagnato, Sergio; Boccagni, Cristina; Sant'Angelo, Antonino; Prestandrea, Caterina; Rizzo, Silvia; Galardi, Giuseppe

    2012-10-01

    Patients in coma who fail to wake develop a condition known as a vegetative state (VS). While we know that some cortical activities exist in patients in VS, it remains unclear whether interneuronal modulation can be abnormal in the cerebral cortex of these patients. The aim of the study was to evaluate the inhibitory and excitatory interneuronal circuits in patients in VS following a traumatic brain injury. Cortical excitability was studied in 5 VS patients and in 10 healthy subjects using paired pulses transcranial magnetic stimulation (TMS). Resting motor threshold and intracortical inhibition and facilitation at short intervals (2 and 10 ms, respectively) were evaluated. Two patients were studied again after their level of consciousness transitioned into a minimally conscious state (MCS). Both intracortical inhibition and facilitation were significantly reduced in patients compared to healthy subjects (p<0.05). In addition, these results did not significantly change in the 2 patients who evolved into a MCS. This is the first report showing an abnormal cortical excitability in patients in VS. Our findings suggest a pathophysiological base for future work aiming to restore the lack of interneuronal transmission in patients in VS. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Sex, Gender, and Traumatic Brain Injury: A Commentary.

    Science.gov (United States)

    Colantonio, Angela

    2016-02-01

    The goal of this supplemental issue is to address major knowledge, research, and clinical practice gaps regarding the limited focus on brain injury in girls and women as well as limited analysis of the effect of sex and gender in research on acquired brain injury. Integrating sex and gender in research is recognized as leading to better science and, ultimately, to better clinical practice. A sex and gender analytical approach to rehabilitation research is crucial to understanding traumatic brain injury and improving quality of life outcomes for survivors. Put another way, the lack of focus on sex and gender reduces the rigor of research design, the generalizability of study findings, and the effectiveness of clinical implementation and knowledge dissemination practices. The articles in this supplement examine sex and gender using a variety of methodological approaches and research contexts. Recommendations for future research on acquired brain injury that consciously incorporates sex and gender are made throughout this issue. This supplement is a product of the Girls and Women with ABI Task Force of the American Congress of Rehabilitation Medicine. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. Neuroimaging in adult penetrating brain injury: a guide for radiographers

    International Nuclear Information System (INIS)

    Temple, Nikki; Donald, Cortny; Skora, Amanda; Reed, Warren

    2015-01-01

    Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Based on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings

  8. Neuroimaging in adult penetrating brain injury: a guide for radiographers

    Energy Technology Data Exchange (ETDEWEB)

    Temple, Nikki; Donald, Cortny; Skora, Amanda [Discipline of Medical Radiation Sciences, The University of Sydney, Lidcombe, New South Wales (Australia); Reed, Warren, E-mail: warren.reed@sydney.edu.au [Medical Image Optimisation and Perception Group, Discipline of Medical Radiation Sciences, The University of Sydney, Lidcombe, New South Wales (Australia)

    2015-06-15

    Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Based on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings.

  9. Impact of comprehensive day treatment on societal participation for persons with acquired brain injury.

    Science.gov (United States)

    Malec, J F

    2001-07-01

    To evaluate comprehensive day treatment (CDT) for survivors of brain injury by time since injury and to identify outcome predictors. Before and after. Rehabilitation center. Ninety-six program graduates; 17 dropouts with acquired brain injury. Comprehensive Day Treatment Program: daily group sessions to build cognitive and behavioral skills through a transdisciplinary approach, supportive feedback, and a variety of therapeutic modalities. Obtained outcome measures before and after the program, and at 1-year follow-up. Independent living status, vocational independence scale at program end and 1-year follow-up; and Rasch-analyzed Mayo-Portland Adaptability Inventory (MPAI-22) and goal attainment scaling (GAS) at program end. age, education, severity of initial injury, time since injury, and preadmission MPAI-22. Significant goal achievement on GAS and improvement on MPAI-22; increased societal participation at 1-year follow-up for those treated postacutely and many years after injury: 72% of graduates living independently; 39% working independently, 10% in transitional placements, and 18% in supported or volunteer work. Long-term outcomes were modestly related linearly to preadmission MPAI-22 and nonlinearly to time since injury. CDT improves societal participation even among persons with a long history of limited participation after brain injury. This de facto extended baseline analysis indicates the effectiveness of CDT and paves the way for randomized control trials of active treatment components. Relationships of predictors to outcomes are not sufficiently strong for patient selection. More effective interventions for vocational reintegration are needed for those most severely disabled after brain injury. Copyright 2001 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  10. Cystatin C Has a Dual Role in Post-Traumatic Brain Injury Recovery

    Directory of Open Access Journals (Sweden)

    Marina Martinez-Vargas

    2014-04-01

    Full Text Available Cathepsin B is one of the major lysosomal cysteine proteases involved in neuronal protein catabolism. This cathepsin is released after traumatic injury and increases neuronal death; however, release of cystatin C, a cathepsin inhibitor, appears to be a self-protective brain response. Here we describe the effect of cystatin C intracerebroventricular administration in rats prior to inducing a traumatic brain injury. We observed that cystatin C injection caused a dual response in post-traumatic brain injury recovery: higher doses (350 fmoles increased bleeding and mortality, whereas lower doses (3.5 to 35 fmoles decreased bleeding, neuronal damage and mortality. We also analyzed the expression of cathepsin B and cystatin C in the brains of control rats and of rats after a traumatic brain injury. Cathepsin B was detected in the brain stem, cerebellum, hippocampus and cerebral cortex of control rats. Cystatin C was localized to the choroid plexus, brain stem and cerebellum of control rats. Twenty-four hours after traumatic brain injury, we observed changes in both the expression and localization of both proteins in the cerebral cortex, hippocampus and brain stem. An early increase and intralysosomal expression of cystatin C after brain injury was associated with reduced neuronal damage.

  11. Artefact in Physiological Data Collected from Patients with Brain Injury: Quantifying the Problem and Providing a Solution Using a Factorial Switching Linear Dynamical Systems Approach.

    Science.gov (United States)

    Georgatzis, Konstantinos; Lal, Partha; Hawthorne, Christopher; Shaw, Martin; Piper, Ian; Tarbert, Claire; Donald, Rob; Williams, Christopher K I

    2016-01-01

    High-resolution, artefact-free and accurately annotated physiological data are desirable in patients with brain injury both to inform clinical decision-making and for intelligent analysis of the data in applications such as predictive modelling. We have quantified the quality of annotation surrounding artefactual events and propose a factorial switching linear dynamical systems (FSLDS) approach to automatically detect artefact in physiological data collected in the neurological intensive care unit (NICU). Retrospective analysis of the BrainIT data set to discover potential hypotensive events corrupted by artefact and identify the annotation of associated clinical interventions. Training of an FSLDS model on clinician-annotated artefactual events in five patients with severe traumatic brain injury. In a subset of 187 patients in the BrainIT database, 26.5 % of potential hypotensive events were abandoned because of artefactual data. Only 30 % of these episodes could be attributed to an annotated clinical intervention. As assessed by the area under the receiver operating characteristic curve metric, FSLDS model performance in automatically identifying the events of blood sampling, arterial line damping and patient handling was 0.978, 0.987 and 0.765, respectively. The influence of artefact on physiological data collected in the NICU is a significant problem. This pilot study using an FSLDS approach shows real promise and is under further development.

  12. A Danish national strategy for treatment and rehabilitation after acquired brain injury

    DEFF Research Database (Denmark)

    Engberg, Aase W

    2007-01-01

    This study describes the establishment of a Danish national strategy for treatment and rehabilitation of acquired brain injury, particularly traumatic brain injury, in 1997. The vision was to create a system of tax-financed continuous treatment, restoration of function, and outpatient rehabilitat......This study describes the establishment of a Danish national strategy for treatment and rehabilitation of acquired brain injury, particularly traumatic brain injury, in 1997. The vision was to create a system of tax-financed continuous treatment, restoration of function, and outpatient...

  13. Understanding Traumatic Brain Injury: An Introduction

    Science.gov (United States)

    Trudel, Tina M.; Scherer, Marcia J.; Elias, Eileen

    2009-01-01

    This article is the first of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received very limited national public policy attention and support. However since it has become the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained the attention of elected officials, military leaders,…

  14. Hypoxic brain injury and cortical blindness in a victim of a ...

    African Journals Online (AJOL)

    the number of cases described) also recorded predominantly cytotoxic effects of envenomation and relatively little neurological effects from this venom.[2] This makes the findings in our patient somewhat unique in that it represents the first case reported where cortical blindness (representative of a hypoxic injury to the brain).

  15. Oculometric Screening for Traumatic Brain Injury in Veterans

    Science.gov (United States)

    2017-06-01

    intake physicals as a detection method for acute injury and for management of brain health in military and VA hospitals. An immersive evaluation of the...risk of traumatic brain injury following deployment. Journal of Head Trauma Rehabilitation, 31(1), 28–35. xviii THIS PAGE INTENTIONALLY LEFT BLANK...device in operational units, military treatment facilities, or VA hospitals. This question will be answered through an immersive qualitative

  16. Decreased apparent diffusion coefficient in the pituitary and correlation with hypopituitarism in patients with traumatic brain injury.

    Science.gov (United States)

    Zheng, Ping; He, Bin; Guo, Yijun; Zeng, Jingsong; Tong, Wusong

    2015-07-01

    The relationship between microstructural abnormality in patients with traumatic brain injury (TBI) and hormone-secreting status remains unknown. In this study, the authors aimed to identify the role of the apparent diffusion coefficient (ADC) using a diffusion-weighted imaging (DWI) technique and to evaluate the association of such changes with hypopituitarism in patients with TBI. Diffusion-weighted images were obtained in 164 consecutive patients with TBI within 2 weeks after injury to generate the pituitary ADC as a measure of microstructural change. Patients with TBI were further grouped into those with and those without hypopituitarism based on the secretion status of pituitary hormones at 6 months postinjury. Thirty healthy individuals were enrolled in the study and underwent MRI examinations for comparison. Mean ADC values were compared between this control group, the patients with TBI and hypopituitarism, and the patients with TBI without hypopituitarism; correlational studies were also performed. Neurological outcome was assessed with the Glasgow Outcome Scale (GOS) for all TBI patients 6 months postinjury. In the TBI group, 84 patients had hypopituitarism and 80 had normal pituitary function. The pituitary ADC in TBI patients was significantly less than that in controls (1.83 ± 0.16 vs 4.13 ± 0.33, p correlated with neurological outcome at 6 months following TBI (r = 0.602, p correlated with hormone-secreting status in TBI patients. The authors suggest that pituitary ADC may be a useful biomarker to predict pituitary function in patients with TBI.

  17. Systemic, local and imaging biomarkers of brain injury: more needed, and better use of those already established?

    Directory of Open Access Journals (Sweden)

    Keri Linda Carpenter

    2015-02-01

    Full Text Available Much progress has been made over the past two decades in the treatment of severe acute brain injury, including traumatic brain injury and subarachnoid haemorrhage, resulting in a higher proportion of patients surviving with better outcomes. This has arisen from a combination of factors. These include improvements in procedures at the scene (pre-hospital and in the hospital emergency department, advances in neuromonitoring in the intensive care unit, both continuously at the bedside and intermittently in scans, evolution and refinement of protocol-driven therapy for better management of patients, and advances in surgical procedures and rehabilitation. Nevertheless, many patients still experience varying degrees of long-term disabilities post-injury with consequent demands on carers and resources, and there is room for improvement. Biomarkers are a key aspect of neuromonitoring. A broad definition of a biomarker is any observable feature that can be used to inform on the state of the patient, e.g. a molecular species, a feature on a scan, or a monitoring characteristic e.g. cerebrovascular pressure reactivity index. Biomarkers are usually quantitative measures, which can be utilised in diagnosis and monitoring of response to treatment. They are thus crucial to the development of therapies and may be utilised as surrogate endpoints in Phase II clinical trials. To date, there is no specific drug treatment for acute brain injury, and many seemingly promising agents emerging from pre-clinical animal models have failed in clinical trials. Large Phase III studies of clinical outcomes are costly, consuming time and resources. It is therefore important that adequate Phase II clinical studies with informative surrogate endpoints are performed employing appropriate biomarkers. In this article we review some of the available systemic, local and imaging biomarkers and technologies relevant in acute brain injury patients, and highlight gaps in the current

  18. An update on substance use and treatment following traumatic brain injury.

    Science.gov (United States)

    Graham, David P; Cardon, Aaron L

    2008-10-01

    Traumatic brain injury (TBI) is a leading cause of mortality and morbidity among young adults. Substance abusers constitute a disproportionate percentage of these patients. A history of substance abuse predicts increased disability, poorer prognosis, and delayed recovery. While consensus in the literature indicates that substance-abuse rates decline following injury, conflicting literature shows a significant history of brain injury in addicts. We reviewed the literature on substance abuse after TBI to explore the state of knowledge on TBI as a risk factor for substance abuse. While recent reviews regarding substance abuse in TBI patients concur that substance-abuse rates decline even after mild TBI, an emerging literature suggests mild TBI may cause subtle impairments in cognitive, executive, and decision-making functions that are often poorly recognized in early diagnosis and treatment. When combined with difficulties in psychosocial adjustment and coping skills, these impairments may increase the risk for chronic substance abuse in a subset of TBI patients. Preliminary results from veterans indicate these patterns hold in a combat-related post-traumatic stress disorder population with TBI. This increasingly prevalent combination presents a specific challenge in rehabilitation. While this comorbidity presents a challenge for the successful treatment and rehabilitation of both disorders, there is sparse evidence to recommend any specific treatment strategy for these individuals. Mild TBI and substance abuse are bidirectionally related both for risks and treatment. Further understanding the neuropsychiatric pathology and different effects of different types of injuries will likely improve the implementation of effective treatments for each of these two conditions.

  19. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury

    Directory of Open Access Journals (Sweden)

    Quan Jiang

    2016-01-01

    Full Text Available Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance imaging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic.

  20. Does age matter? Age and rehabilitation of visual field disorders after brain injury.

    Science.gov (United States)

    Schuett, Susanne; Zihl, Josef

    2013-04-01

    Homonymous visual field disorders (HVFD) are frequent and disabling consequences of acquired brain injury, particularly in older age. Their rehabilitation is therefore of great importance. Compensatory oculomotor therapy has been found to be effective in improving the associated functional impairments in reading and visual exploration. But older age is commonly considered to adversely affect practice-dependent functional plasticity and, thus, functional and rehabilitation outcome after acquired brain injury. The effect of age in the compensatory treatment of HVFD, however, has never been investigated hitherto. It remains unknown whether age determines not only patients' functional impairments but also the rehabilitation outcome and the required amount of treatment. We therefore present the first study to determine the effect of age in 38 patients with HVFD receiving compensatory oculomotor treatment for their reading and visual exploration impairments. We investigated whether older patients with HVFD (1) show more pronounced impairments and less spontaneous adaptation, (2) show lesser compensatory treatment-related improvement in reading and visual exploration, and (3) require a higher amount of treatment than younger patients. Our main finding is that older patients achieve the same treatment-induced improvements in reading and visual exploration with the same amount of treatment as younger patients; severity of functional impairment also did not differ between older and younger patients, at least in reading. Age does not seem to be a critical factor determining the functional and rehabilitation outcome in the compensatory treatment of HVFD. Older age per se is not necessarily associated with a decline in practice-dependent functional plasticity and adaptation. To the contrary, the effectiveness of compensatory treatment to reduce the functional impairments to a similar extent in younger and older patients with HVFD adds to the growing evidence for a life

  1. Isoflurane rescue therapy for bronchospasm reduces intracranial pressure in a patient with traumatic brain injury.

    Science.gov (United States)

    Gradisek, Primoz; Dolenc, Simon

    2016-01-01

    To assess the unusual use of a volatile anaesthetic for treatment of life-threatening bronchospasm in a patient with traumatic brain injury (TBI). Case report. This study presents a previously healthy 30-year-old man with severe TBI and bronchospasm-induced acute hypercapnia. He was treated with inhaled isoflurane in combination with monitoring of intracranial pressure (ICP) and regional cerebral blood flow (rCBF). Three-day-long isoflurane treatment resolved drug-refractory bronchospasm, decreased airway pressure and improved gas exchange, even at a low end-tidal concentration (0.3-0.5 vol%). Although rCBF was increased by 18 ml min(-1) 100 g(-1) during isoflurane treatment, there was a significant decrease in ICP (21 (SD = 3) mmHg, 9 (SD = 5) mmHg, 2 (SD = 3) mmHg; during pre-treatment, treatment and post-treatment, respectively; p < 0.001). Improved autoregulation due to lower partial pressure of carbon dioxide, restoration of carbon dioxide reactivity, isoflurane-induced regional differences in rCBF and improved microcirculation may have been responsible for the prompt and long-lasting normalization of ICP. The patient had no TBI-related disability at 6 months post-injury. Isoflurane at a low dose can be an effective and safe treatment option for drug-refractory bronchospasm in a patient with traumatic intracranial hypertension, provided that multimodality neuromonitoring is used.

  2. Music-Based Cognitive Remediation Therapy for Patients with Traumatic Brain Injury

    OpenAIRE

    Hegde, Shantala

    2014-01-01

    Traumatic brain injury (TBI) is one of the common causes of disability in physical, psychological, and social domains of functioning leading to poor quality of life. TBI leads to impairment in sensory, motor, language, and emotional processing, and also in cognitive functions such as attention, information processing, executive functions, and memory. Cognitive impairment plays a central role in functional recovery in TBI. Innovative methods such as music therapy to alleviate cognitive impairm...

  3. Assessment of performance validity in the Stroop Color and Word Test in mild traumatic brain injury patients: a criterion-groups validation design.

    Science.gov (United States)

    Guise, Brian J; Thompson, Matthew D; Greve, Kevin W; Bianchini, Kevin J; West, Laura

    2014-03-01

    The current study assessed performance validity on the Stroop Color and Word Test (Stroop) in mild traumatic brain injury (TBI) using criterion-groups validation. The sample consisted of 77 patients with a reported history of mild TBI. Data from 42 moderate-severe TBI and 75 non-head-injured patients with other clinical diagnoses were also examined. TBI patients were categorized on the basis of Slick, Sherman, and Iverson (1999) criteria for malingered neurocognitive dysfunction (MND). Classification accuracy is reported for three indicators (Word, Color, and Color-Word residual raw scores) from the Stroop across a range of injury severities. With false-positive rates set at approximately 5%, sensitivity was as high as 29%. The clinical implications of these findings are discussed. © 2012 The British Psychological Society.

  4. Hospitalizations for critically ill children with traumatic brain injuries: a longitudinal analysis.

    Science.gov (United States)

    Tilford, John M; Aitken, Mary E; Anand, K J S; Green, Jerril W; Goodman, Allen C; Parker, James G; Killingsworth, Jeffrey B; Fiser, Debra H; Adelson, P David

    2005-09-01

    This study examines the incidence, utilization of procedures, and outcomes for critically ill children hospitalized with traumatic brain injury over the period 1988-1999 to describe the benefits of improved treatment. Retrospective analysis of hospital discharges was conducted using data from the Health Care Cost and Utilization Project Nationwide Inpatient Sample that approximates a 20% sample of U.S. acute care hospitals. Hospital inpatient stays from all types of U.S. community hospitals. The study sample included all children aged 0-21 with a primary or secondary ICD-9-CM diagnosis code for traumatic brain injury and a procedure code for either endotracheal intubation or mechanical ventilation. None. Deaths occurring during hospitalization were used to calculate mortality rates. Use of intracranial pressure monitoring and surgical openings of the skull were investigated as markers for the aggressiveness of treatment. Patients were further classified by insurance status, household income, and hospital characteristics. Over the 12-yr study period, mortality rates decreased 8 percentage points whereas utilization of intracranial pressure monitoring increased by 11 percentage points. The trend toward more aggressive management of traumatic brain injury corresponded with improved hospital outcomes over time. Lack of insurance was associated with vastly worse outcomes. An estimated 6,437 children survived their traumatic brain injury hospitalization because of improved treatment, and 1,418 children died because of increased mortality risk associated with being uninsured. Improved treatment was valued at approximately dollar 17 billion, whereas acute care hospitalization costs increased by dollar 1.5 billion (in constant 2000 dollars). Increased mortality in uninsured children was associated with a dollar 3.76 billion loss in economic benefits. More aggressive management of pediatric traumatic brain injury appears to have contributed to reduced mortality rates over

  5. Prehospital helicopter transport and survival of patients with traumatic brain injury.

    Science.gov (United States)

    Bekelis, Kimon; Missios, Symeon; Mackenzie, Todd A

    2015-03-01

    To investigate the association of helicopter transport with survival of patients with traumatic brain injury (TBI), in comparison with ground emergency medical services (EMS). Helicopter utilization and its effect on the outcomes of TBI remain controversial. We performed a retrospective cohort study involving patients with TBI who were registered in the National Trauma Data Bank between 2009 and 2011. Regression techniques with propensity score matching were used to investigate the association of helicopter transport with survival of patients with TBI, in comparison with ground EMS. During the study period, there were 209,529 patients with TBI who were registered in the National Trauma Data Bank and met the inclusion criteria. Of these patients, 35,334 were transported via helicopters and 174,195 via ground EMS. For patients transported to level I trauma centers, 2797 deaths (12%) were recorded after helicopter transport and 8161 (7.8%) after ground EMS. Multivariable logistic regression analysis demonstrated an association of helicopter transport with increased survival [OR (odds ratio), 1.95; 95% confidence interval (CI), 1.81-2.10; absolute risk reduction (ARR), 6.37%]. This persisted after propensity score matching (OR, 1.88; 95% CI, 1.74-2.03; ARR, 5.93%). For patients transported to level II trauma centers, 1282 deaths (10.6%) were recorded after helicopter transport and 5097 (7.3%) after ground EMS. Multivariable logistic regression analysis demonstrated an association of helicopter transport with increased survival (OR, 1.81; 95% CI, 1.64-2.00; ARR 5.17%). This again persisted after propensity score matching (OR, 1.73; 95% CI, 1.55-1.94; ARR, 4.69). Helicopter transport of patients with TBI to level I and II trauma centers was associated with improved survival, in comparison with ground EMS.

  6. Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology.

    Science.gov (United States)

    Kulbe, Jacqueline R; Hall, Edward D

    2017-11-01

    In recent years, a new neurodegenerative tauopathy labeled Chronic Traumatic Encephalopathy (CTE), has been identified that is believed to be primarily a sequela of repeated mild traumatic brain injury (TBI), often referred to as concussion, that occurs in athletes participating in contact sports (e.g. boxing, American football, Australian football, rugby, soccer, ice hockey) or in military combatants, especially after blast-induced injuries. Since the identification of CTE, and its neuropathological finding of deposits of hyperphosphorylated tau protein, mechanistic attention has been on lumping the disorder together with various other non-traumatic neurodegenerative tauopathies. Indeed, brains from suspected CTE cases that have come to autopsy have been confirmed to have deposits of hyperphosphorylated tau in locations that make its anatomical distribution distinct for other tauopathies. The fact that these individuals experienced repetitive TBI episodes during their athletic or military careers suggests that the secondary injury mechanisms that have been extensively characterized in acute TBI preclinical models, and in TBI patients, including glutamate excitotoxicity, intracellular calcium overload, mitochondrial dysfunction, free radical-induced oxidative damage and neuroinflammation, may contribute to the brain damage associated with CTE. Thus, the current review begins with an in depth analysis of what is known about the tau protein and its functions and dysfunctions followed by a discussion of the major TBI secondary injury mechanisms, and how the latter have been shown to contribute to tau pathology. The value of this review is that it might lead to improved neuroprotective strategies for either prophylactically attenuating the development of CTE or slowing its progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Microdialysis Monitoring of CSF Parameters in Severe Traumatic Brain Injury Patients: A Novel Approach

    Science.gov (United States)

    Thelin, Eric P.; Nelson, David W.; Ghatan, Per Hamid; Bellander, Bo-Michael

    2014-01-01

    Background: Neuro-intensive care following traumatic brain injury (TBI) is focused on preventing secondary insults that may lead to irreversible brain damage. Microdialysis (MD) is used to detect deranged cerebral metabolism. The clinical usefulness of the MD is dependent on the regional localization of the MD catheter. The aim of this study was to analyze a new method of continuous cerebrospinal fluid (CSF) monitoring using the MD technique. The method was validated using conventional laboratory analysis of CSF samples. MD-CSF and regional MD-Brain samples were correlated to patient outcome. Materials and Methods: A total of 14 patients suffering from severe TBI were analyzed. They were monitored using (1) a MD catheter (CMA64-iView, n = 7448 MD samples) located in a CSF-pump connected to the ventricular drain and (2) an intraparenchymal MD catheter (CMA70, n = 8358 MD samples). CSF-lactate and CSF-glucose levels were monitored and were compared to MD-CSF samples. MD-CSF and MD-Brain parameters were correlated to favorable (Glasgow Outcome Score extended, GOSe 6–8) and unfavorable (GOSe 1–5) outcome. Results: Levels of glucose and lactate acquired with the CSF-MD technique could be correlated to conventional levels. The median MD recovery using the CMA64 catheter in CSF was 0.98 and 0.97 for glucose and lactate, respectively. Median MD-CSF (CMA 64) lactate (p = 0.0057) and pyruvate (p = 0.0011) levels were significantly lower in the favorable outcome group compared to the unfavorable group. No significant difference in outcome was found using the lactate:pyruvate ratio (LPR), or any of the regional MD-Brain monitoring in our analyzed cohort. Conclusion: This new technique of global MD-CSF monitoring correlates with conventional CSF levels of glucose and lactate, and the MD recovery is higher than previously described. Increase in lactate and pyruvate, without any effect on the LPR, correlates to unfavorable outcome, perhaps related to the

  8. Microdialysis monitoring of CSF parameters in severe traumatic brain injury patients: A novel approach

    Directory of Open Access Journals (Sweden)

    Eric Peter Thelin

    2014-09-01

    Full Text Available Background: Neuro-intensive care following traumatic brain injury is focused on preventing secondary insults that may lead to irreversible brain damage. Microdialysis (MD is used to detect deranged cerebral metabolism. The clinical usefulness of the MD is dependent on the regional localization of the MD catheter. The aim of this study was to analyze a new method of continuous cerebral spinal fluid (CSF monitoring using the MD technique. The method was validated using conventional laboratory analysis of CSF samples. MD-CSF and regional MD-Brain samples were correlated to patient outcome.Materials and method: A total of 14 patients suffering from severe TBI were analyzed. They were monitored using 1. A MD catheter (CMA64-iView, n=7448 MD samples located in a CSF-pump connected to the ventricular drain and 2. An intraparenchymal MD catheter (CMA70, n=8358 MD samples. CSF-lactate and CSF-glucose levels were monitored and were compared to MD-CSF samples. MD-CSF and MD-Brain parameters were correlated to favorable (Glasgow Outcome Score extended, GOSe 6-8 and unfavorable (GOSe 1-5 outcome. Results: Levels of glucose and lactate acquired with the CSF-MD technique could be correlated to conventional levels. The median extraction ratio using the CMA64 catheter in CSF was 0.98 and 0.97 for glucose and lactate, respectively. Median MD-CSF (CMA 64 lactate- (p=0.0057 and pyruvate (p=0.0011 levels were significantly lower in the favorable outcome group compared to the unfavorable group. No significant difference in outcome was found using the lactate:pyruvate ratio (LPR, or any of the regional MD-Brain monitoring in our analyzed cohort. Conclusions: This new technique of global MD-CSF monitoring correlates with conventional CSF-levels of glucose and lactate and the extraction ratio for the MD catheter is higher than previously described. Increase in lactate and pyruvate in CSF, without any effect on the LPR, correlates to unfavorable outcome.

  9. Destination memory in traumatic brain injuries.

    Science.gov (United States)

    Wili Wilu, Amina; Coello, Yann; El Haj, Mohamad

    2018-06-01

    Destination memory, which is socially driven, refers to the ability to remember to whom one has sent information. Our study investigated destination memory in patients with traumatic brain injuries (TBIs). Patients and control participants were invited to tell proverbs (e.g., "the pen is mightier than the sword") to pictures of celebrities (e.g., Barack Obama). Then they were asked to indicate to which celebrity they had previously told the proverbs. Besides the assessment of destination memory, participants performed a binding task in which they were required to associate letters with their corresponding location. Analysis demonstrated less destination memory and binding in patients with TBIs than in controls. In both populations, significant correlations were observed between destination memory and performances on the binding task. These findings demonstrate difficulty in the ability to attribute information to its appropriate destination in TBI patients, perhaps owing to difficulties in binding separate information together to form a coherent representation of an event in memory.

  10. Social cognition and its relationship to functional outcomes in patients with sustained acquired brain injury

    Directory of Open Access Journals (Sweden)

    Ubukata S

    2014-11-01

    Full Text Available Shiho Ubukata,1,2 Rumi Tanemura,2 Miho Yoshizumi,1 Genichi Sugihara,1 Toshiya Murai,1 Keita Ueda1 1Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, 2Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan Abstract: Deficits in social cognition are common after traumatic brain injury (TBI. However, little is known about how such deficits affect functional outcomes. The purpose of this study was to investigate the relationship between social cognition and functional outcomes in patients with TBI. We studied this relationship in 20 patients with TBI over the course of 1 year post-injury. Patients completed neurocognitive assessments and social cognition tasks. The social cognition tasks included an emotion-perception task and three theory of mind tasks: the Faux Pas test, Reading the Mind in the Eyes (Eyes test, and the Moving-Shapes paradigm. The Craig Handicap Assessment and Reporting Technique was used to assess functional outcomes. Compared with our database of normal subjects, patients showed impairments in all social cognition tasks. Multiple regression analysis revealed that theory of mind ability as measured by the Eyes test was the best predictor of the cognitive aspects of functional outcomes. The findings of this pilot study suggest that the degree to which a patient can predict what others are thinking is an important measure that can estimate functional outcomes over 1 year following TBI. Keywords: Eyes test, social emotion perception, social function, social participation, theory of mind

  11. Screening for hypopituitarism in 509 patients with traumatic brain injury or subarachnoid hemorrhage.

    Science.gov (United States)

    Kopczak, Anna; Kilimann, Ingo; von Rosen, Friedrich; Krewer, Carmen; Schneider, Harald Jörn; Stalla, Günter Karl; Schneider, Manfred

    2014-01-01

    We performed a screening on patients with traumatic brain injury (TBI) or subarachnoid hemorrhage (SAH) to determine the prevalence of post-traumatic hypopituitarism in neurorehabilitation in a cross-sectional, observational single-center study. In addition, the therapeutic consequences of our screening were analyzed retrospectively. From February 2006 to August 2009, patients between 18 and 65 years (n=509) with the diagnosis of TBI (n=340) or SAH (n=169) were screened within two weeks of admittance to neurorehabilitation as clinical routine. Blood was drawn to determine fasting cortisol, free thyroxine (fT4), prolactin, testosterone or estradiol, and insulin-like growth factor I (IGF-I). Patients with abnormalities in the screening or clinical signs of hypopituitarism received further stimulation tests: growth hormone releasing hormone -L-arginine-test and adrenocorticotrophic hormone (ACTH)-test (n=36); ACTH-test alone (n=26); or insulin tolerance test (n=56). In our screening of 509 patients, 28.5% showed lowered values in at least one hormone of the hypothalamus-pituitary axis and 4.5% in two or more axes. The most common disturbance was a decrease of testosterone in 40.7% of all men (in the following 13/131 men were given substitution therapy). Low fT4 was detected in 5.9% (n=3 were given substitution therapy). Low IGF-I was detected in 5.8%, low cortisol in 1.4%, and low prolactin in 0.2%; none were given substitution therapy. Further stimulation tests revealed growth hormone deficiency in 20.7% (n=19/92) and hypocortisolism in 23.7% (n=28/118). Laboratory values possibly indicating hypopituitarism (33%) were common but did not always implicate post-traumatic hypopituitarism. Laboratory values possibly indicating hypopituitarism were common in our screening but most patients were clinically not diagnosed as pituitary insufficient and did not receive hormone replacement therapy. A routine screening of all patients in neurorehabilitation without considering

  12. Intranasal epidermal growth factor treatment rescues neonatal brain injury

    Science.gov (United States)

    Scafidi, Joseph; Hammond, Timothy R.; Scafidi, Susanna; Ritter, Jonathan; Jablonska, Beata; Roncal, Maria; Szigeti-Buck, Klara; Coman, Daniel; Huang, Yuegao; McCarter, Robert J.; Hyder, Fahmeed; Horvath, Tamas L.; Gallo, Vittorio

    2014-02-01

    There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (less than 32 weeks' gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI. We demonstrated previously that the epidermal growth factor receptor (EGFR) has an important role in oligodendrocyte development. Here we examine whether enhanced EGFR signalling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioural recovery in the developing brain. Using an established mouse model of very preterm brain injury, we demonstrate that selective overexpression of human EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin-binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioural deficits on white-matter-specific paradigms. Inhibition of EGFR signalling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in oligodendrocyte progenitor cells at a specific time after injury is clinically feasible and potentially applicable to the treatment of premature children with white matter injury.

  13. Continuous EEG-SEP monitoring in severe brain injury.

    Science.gov (United States)

    Amantini, A; Fossi, S; Grippo, A; Innocenti, P; Amadori, A; Bucciardini, L; Cossu, C; Nardini, C; Scarpelli, S; Roma, V; Pinto, F

    2009-04-01

    To monitor acute brain injury in the neurological intensive care unit (NICU), we used EEG and somatosensory evoked potentials (SEP) in combination to achieve more accuracy in detecting brain function deterioration. Sixty-eight patients (head trauma and intracranial hemorrhage; GCSSEP and intracranial pressure monitoring (ICP). Fifty-five patients were considered "stable" or improving, considering the GCS and CT scan: in this group, SEP didn't show significant changes. Thirteen patients showed neurological deteriorations and, in all patients, cortical SEP showed significant alterations (amplitude decrease>50% often till complete disappearance). SEP deterioration anticipated ICP increase in 30%, was contemporary in 38%, and followed ICP increase in 23%. Considering SEP and ICP in relation to clinical course, all patients but one with ICP less than 20 mmHg were stable, while the three patients with ICP greater than 40 mmHg all died. Among the 26 patients with ICP of 20-40 mmHg, 17 were stable, while nine showed clinical and neurophysiological deterioration. Thus, there is a range of ICP values (20-40 mmHg) were ICP is scarcely indicative of clinical deterioration, rather it is the SEP changes that identify brain function deterioration. Therefore, SEP have a twofold interest with respect to ICP: their changes can precede an ICP increase and they can constitute a complementary tool to interpret ICP trends. It has been very important to associate SEP and EEG: about 60% of our patients were deeply sedated and, because of their relative insensitivity to anesthetics, only SEP allowed us to monitor brain damage evolution when EEG was scarcely valuable. We observed 3% of nonconvulsive status epilepticus compared to 18% of neurological deterioration. If the aim of neurophysiological monitoring is to "detect and protect", it may not be limited to detecting seizures, rather it should be able to identify brain deterioration, so we propose the combined monitoring of EEG with SEP.

  14. Neonatal ischemic brain injury: what every radiologist needs to know

    International Nuclear Information System (INIS)

    Badve, Chaitra A.; Khanna, Paritosh C.; Ishak, Gisele E.

    2012-01-01

    We present a pictorial review of neonatal ischemic brain injury and look at its pathophysiology, imaging features and differential diagnoses from a radiologist's perspective. The concept of perinatal stroke is defined and its distinction from hypoxic-ischemic injury is emphasized. A brief review of recent imaging advances is included and a diagnostic approach to neonatal ischemic brain injury is suggested. (orig.)

  15. Neonatal ischemic brain injury: what every radiologist needs to know

    Energy Technology Data Exchange (ETDEWEB)

    Badve, Chaitra A.; Khanna, Paritosh C.; Ishak, Gisele E. [Seattle Children' s Hospital, University of Washington Medical Center, Department of Radiology, Seattle, WA (United States)

    2012-05-15

    We present a pictorial review of neonatal ischemic brain injury and look at its pathophysiology, imaging features and differential diagnoses from a radiologist's perspective. The concept of perinatal stroke is defined and its distinction from hypoxic-ischemic injury is emphasized. A brief review of recent imaging advances is included and a diagnostic approach to neonatal ischemic brain injury is suggested. (orig.)

  16. Rehabilitation of executive function and social cognition impairments after brain injury.

    Science.gov (United States)

    Manly, Tom; Murphy, Fionnuala C

    2012-12-01

    Brain injury is a major cause of long-term disability. Executive and social cognition sequelae are associated with poor outcome. This review examines recent evidence on the efficacy of rehabilitation in these areas. Accumulating evidence shows that interventions that work with patients on developing insight and strategies to offset executive impairments can produce significant benefits. Training of specific capacities, such as working memory, holds some promise, but more needs to be known about effect generalization. Evidence on social cognition rehabilitation following brain injury is sparse. Although there are some encouraging early results, more information on the clinical significance of change for everyday function is required. Rehabilitation in these areas is inherently difficult but vital if outcomes are to improve. Significant gains have been reported, and further work applying appropriate methods is urgently required.

  17. An ultra high performance liquid chromatography with tandem mass spectrometry method for plasma and cerebrospinal fluid pharmacokinetics of rhein in patients with traumatic brain injury after administration of rhubarb decoction.

    Science.gov (United States)

    Wang, Yang; Fan, Rong; Luo, Jiekun; Tang, Tao; Xing, Zhihua; Xia, Zian; Peng, Weijun; Wang, Wenzhu; Lv, Huiying; Huang, Wei; Liang, Yizeng; Yi, Lunzhao; Lu, Hongmei; Huang, Xi

    2015-04-01

    Damage of blood-brain barrier is a common result of traumatic brain injury. This damage can open the blood-brain barrier and allow drug passage. An ultraperformance liquid chromatography with tandem mass spectrometry method was established to determine the concentration of rhein in the biofluids (plasma and cerebrospinal fluid) of patients with a compromised blood-brain barrier following traumatic brain injury after rhubarb administration. Furthermore, the pharmacokinetic profiles were analyzed. A triple-quadruple tandem mass spectrometer with electrospray ionization was used for rhein detection. The mass transition followed was m/z 283.06→239.0. The calibration curve was linear in the concentration range of 10-8000 ng/mL for the biofluids. The intra- and interday precisions were less than 10%. The relative standard deviation of recovery was less than 15% in biological matrices. The pharmacokinetic data showed that rhein was rapidly transported into biofluids, and exhibited a peak concentration 1 h after rhubarb administration. The elimination rate of rhein was slow. The AUCcerebrospinal fluid /AUCplasma (AUC is area under curve) of rhein was approximately 17%, indicating that portions of rhein could pass the impaired blood-brain barrier. The method was successfully applied to quantify rhein in the biofluids of all patients. The data presented can help to guide clinical applications of rhubarb for treating traumatic brain injury. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Penetrating Bihemispheric Traumatic Brain Injury: A Collective Review of Gunshot Wounds to the Head.

    Science.gov (United States)

    Turco, Lauren; Cornell, David L; Phillips, Bradley

    2017-08-01

    Head injuries that cross midline structures of the brain are bihemispheric. Other terms have been used to describe such injuries, but bihemispheric is the most accurate and should be standard nomenclature. Bihemispheric head injuries are associated with greater mortality and morbidity than other penetrating traumatic brain injuries (TBIs). Currently, there is a tendency to manage severe gunshot wounds (GSWs) to the head nonoperatively, despite reports of improved outcome in military patients treated aggressively. Thus, controversy exists in the management of civilian TBI. PubMed was searched for query terms, and PRISMA guidelines were used. Studies were selected by relevance and inclusion of data regarding etiology, diagnosis, and management of bihemispheric TBI. Case reports, studies not in English, and records lacking information on mechanism or bihemispheric injuries were excluded. Thirteen studies were included and most contained level IV evidence. The mean mortality rate of all head GSWs was 62% in adults and 32% in children. Bihemispheric GSWs had greater mortality rates of 82% in adults and 60% in children. There was a larger proportion of self-inflicted injury in studies with greater rates of bihemispheric injuries. Bihemispheric injuries have greater mortality rates than other penetrating TBI. Violation of midline brain structures such as the diencephalon and mesencephalon, increased rate of self-inflicted wounds, and lack of a standard management algorithm may increase the lethality of these injuries. Although bihemispheric injuries historically have been considered nonsalvageable, an aggressive surgical approach has been shown to improve outcomes, particularly in the military population. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. MicroRNAs as diagnostic markers and therapeutic targets for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Bridget Martinez

    2017-01-01

    Full Text Available Traumatic brain injury (TBI is characterized by primary damage to the brain from the external mechanical force and by subsequent secondary injury due to various molecular and pathophysiological responses that eventually lead to neuronal cell death. Secondary brain injury events may occur minutes, hours, or even days after the trauma, and provide valuable therapeutic targets to prevent further neuronal degeneration. At the present time, there is no effective treatment for TBI due, in part, to the widespread impact of numerous complex secondary biochemical and pathophysiological events occurring at different time points following the initial injury. MicroRNAs control a range of physiological and pathological functions such as development, differentiation, apoptosis and metabolism, and may serve as potential targets for progress assessment and intervention against TBI to mitigate secondary damage to the brain. This has implications regarding improving the diagnostic accuracy of brain impairment and long-term outcomes as well as potential novel treatments. Recent human studies have identified specific microRNAs in serum/plasma (miR-425-p, -21, -93, -191 and -499 and cerebro-spinal fluid (CSF (miR-328, -362-3p, -451, -486a as possible indicators of the diagnosis, severity, and prognosis of TBI. Experimental animal studies have examined specific microRNAs as biomarkers and therapeutic targets for moderate and mild TBI (e.g., miR-21, miR-23b. MicroRNA profiling was altered by voluntary exercise. Differences in basal microRNA expression in the brain of adult and aged animals and alterations in response to TBI (e.g., miR-21 have also been reported. Further large-scale studies with TBI patients are needed to provide more information on the changes in microRNA profiles in different age groups (children, adults, and elderly.

  20. Monitoring Agitated Behavior After acquired Brain Injury

    DEFF Research Database (Denmark)

    Aadal, Lena; Mortensen, Jesper; Nielsen, Jørgen Feldbaek

    2016-01-01

    Purpose: To describe the onset, duration, intensity, and nursing shift variation of agitated behavior in patients with acquired brain injury (ABI) at a rehabilitation hospital. Design: Prospective descriptive study. Methods: A total of 11 patients with agitated behavior were included. Agitated...... behavior was registered with the Agitated Behavior Scale (ABS). The nurse or therapist allocated the individual patient assessed ABS during each shift. Intensity of agitated behavior was tested using exact test. A within-subject shift effect was analyzed with repeated-measure ANOVA. Findings: The onset...... of agitated behavior was at a median of 14 (1–28) days from admission. Seven patients remained agitated beyond 3 weeks from onset. Severe intensity of agitation was observed in 86 of 453 nursing shifts. Differences in agitated behavior between day, evening, and night shifts were found, F(2.20) = 7.90, p...