WorldWideScience

Sample records for brain injury diagnosis

  1. HYPOPITUITARISM FOLLOWING TRAUMATIC BRAIN INJURY: DETERMINING FACTORS FOR DIAGNOSIS

    Directory of Open Access Journals (Sweden)

    FELIPE F eCASANUEVA

    2011-08-01

    Full Text Available Neuroendocrine dysfunction, long recognised as a consequence of traumatic brain injury (TBI, is a major cause of disability that includes physical and psychological involvement with long-term cognitive, behavioural and social changes.There is no standard procedure regarding at what time after trauma the diagnosis should be made. Also there is uncertainty on defining the best methods for diagnosis and testing and what types of patients should be selected for screening. Common criteria for evaluating these patients are required on account of the high prevalence of TBI worldwide and the potential new cases of hypopituitarism.

  2. Sports-related brain injuries: connecting pathology to diagnosis.

    Science.gov (United States)

    Pan, James; Connolly, Ian D; Dangelmajer, Sean; Kintzing, James; Ho, Allen L; Grant, Gerald

    2016-04-01

    Brain injuries are becoming increasingly common in athletes and represent an important diagnostic challenge. Early detection and management of brain injuries in sports are of utmost importance in preventing chronic neurological and psychiatric decline. These types of injuries incurred during sports are referred to as mild traumatic brain injuries, which represent a heterogeneous spectrum of disease. The most dramatic manifestation of chronic mild traumatic brain injuries is termed chronic traumatic encephalopathy, which is associated with profound neuropsychiatric deficits. Because chronic traumatic encephalopathy can only be diagnosed by postmortem examination, new diagnostic methodologies are needed for early detection and amelioration of disease burden. This review examines the pathology driving changes in athletes participating in high-impact sports and how this understanding can lead to innovations in neuroimaging and biomarker discovery.

  3. Application of Ultrasonic Techniques for Brain Injury Diagnosis

    International Nuclear Information System (INIS)

    Kasili, P.M.; Mobley, J.; Norton, S.J.; Vo-Dinh, T.

    1999-01-01

    In this work, we evaluate methods for detecting brain injury using ultrasound. We have used simulations of ultrasonic fields in the head to model the phase distortion of the skull. In addition we present experimental data from the crania of large animals. The experimental data help us understand and evaluate the performance of different transducers in acquiring the backscatter data from the brain through the skull. Both the simulations and acquired data illustrate the superiority of lower-frequency (<= 1 MHz) ultrasonic fields for transcranial acquisition of signals from inside the brain. Additionally, the experimental work shows that the higher-frequency (5 MHz) ultrasound can also be useful in acquiring clean nearfield data to help detect the position of the inner boundary of the skull

  4. Differential Diagnosis and Management of Incomplete Locked-In Syndrome after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Lauren Surdyke

    2017-01-01

    Full Text Available Locked-in syndrome (LIS is a rare diagnosis in which patients present with quadriplegia, lower cranial nerve paralysis, and mutism. It is clinically difficult to differentiate from other similarly presenting diagnoses with no standard approach for assessing such poorly responsive patients. The purpose of this case is to highlight the clinical differential diagnosis process and outcomes of a patient with LIS during acute inpatient rehabilitation. A 32-year-old female was admitted following traumatic brain injury. She presented with quadriplegia and mutism but was awake and aroused based on eye gaze communication. The rehabilitation team was able to diagnose incomplete LIS based on knowledge of neuroanatomy and clinical reasoning. Establishing this diagnosis allowed for an individualized treatment plan that focused on communication, coping, family training, and discharge planning. The patient was ultimately able to discharge home with a single caregiver, improving her quality of life. Continued evidence highlights the benefits of intensive comprehensive therapy for those with acquired brain injury such as LIS, but access is still limited for those with a seemingly poor prognosis. Access to a multidisciplinary, specialized team provides opportunity for continued assessment and individualized treatment as the patient attains more medical stability, improving long-term management.

  5. Cognitive, emotional and behavioral impairments following traumatic brain injury and the neuro-radiological diagnosis

    International Nuclear Information System (INIS)

    Shinoda, Jun; Asano, Yoshitaka

    2011-01-01

    Definition and diagnostic criteria in Japan of a high order brain functional impairment are explained and recent findings of the useful imaging for the criteria are discussed. The criteria of cognitive, emotional and behavioral impairments following brain injury (BI) defined by Ministry of Health, Labour and Welfare (MHLW) and National Rehabilitation Center for Persons with Disabilities contain 4 items of major symptoms, test findings, exclusion criteria and diagnosis. The criteria contain parts of diseases F04, F06 and F7 in ICD (International Classification of Diseases) 10, and conceivably correspond to such Western terms as the neuropsychological impairment, neurobehavioral impairment, cognitive disability and post-concussion syndrome. Head trauma is the major cause of BI and in the second item (test findings) of the diagnostic criteria above, imaging confirmation of the organic BI (mainly diffuse) is essential. For imaging technology of chronic diffuse injury, discussed are on findings of the structural MRI, diffusion tensor imaging (DTI), functional MRI; 18 F-fluorodeoxyglucose-positron emission tomography (FDG-PET); and single photon emission computed tomography (SPECT) with 99m Tc-ethyl-cysteinate dimmer and 123 I-iomazenil. Based on those findings, it is thought that the impairment of the high order brain functions by diffuse injury is caused by the dysfunction of the primarily injured region and by its consequent disorder of cingulated gyrus and frontal anterior medial region through disturbance of cerebral nerve transmission and control. It is also suggested that a part of the blast related mild traumatic BI in US ex-servicemen is caused by the light diffuse BI, which can only be identified by the fractional anisotropy-statistical parametric mapping image in DTI. Number of patients with the high order brain functional impairment is estimated to be about 300,000 in Japan, but only 1/3 of those are actually diagnosed to be of the disease. (T.T.)

  6. Mild traumatic brain injury diagnosis frequently remains unrecorded in subjects with craniofacial fractures.

    Science.gov (United States)

    Puljula, Jussi; Cygnel, Hanna; Mäkinen, Elina; Tuomivaara, Veli; Karttunen, Vesa; Karttunen, Ari; Hillbom, Matti

    2012-12-01

    Traumatic brain injuries (TBI) in subjects with craniofacial fractures are usually diagnosed by emergency room physicians. We investigated how often TBI remains unrecorded in these subjects, and whether diagnostic accuracy has improved after the implementation of new TBI guidelines. All subjects with craniofacial fractures admitted to Oulu University Hospital in 1999 and in 2007 were retrospectively identified. New guidelines for improving the diagnostic accuracy of TBI were implemented between 2000 and 2006. Clinical symptoms of TBI were gathered from notes on hospital charts and compared to the recorded diagnoses at discharge. Logistic regression was used to identify independent predictors for TBI to remain unrecorded. Of 194 subjects with craniofacial fracture, 111(57%) had TBI, 40 in 1999 and 71 in 2007. Fifty-one TBIs (46%) remained unrecorded at discharge, 48 being mild and 3 moderate-to-severe. Subjects with unrecorded TBI were significantly less frequently referred to follow-up visits. Failures to record the TBI diagnosis were less frequent (29/71, 41%) in 2007 than in 1999 (22/40, 55%), but the difference was not statistically significant. The most significant independent predictor for this failure was the clinical specialty (other than neurology/neurosurgery) of the examining physician (palcohol intoxication did not hamper the diagnosis of TBI. TBIs remain frequently unrecorded in subjects with craniofacial fractures. Recording of mild TBI slightly but insignificantly improved after the implementation of new guidelines. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Diagnosis and Management of Combined Central Diabetes Insipidus and Cerebral Salt Wasting Syndrome After Traumatic Brain Injury.

    Science.gov (United States)

    Wu, Xuehai; Zhou, Xiaolan; Gao, Liang; Wu, Xing; Fei, Li; Mao, Ying; Hu, Jin; Zhou, Liangfu

    2016-04-01

    Combined central diabetes insipidus and cerebral salt wasting syndrome after traumatic brain injury (TBI) is rare, is characterized by massive polyuria leading to severe water and electrolyte disturbances, and usually is associated with very high mortality mainly as a result of delayed diagnosis and improper management. We retrospectively reviewed the clinical presentation, management, and outcomes of 11 patients who developed combined central diabetes insipidus and cerebral salt wasting syndrome after traumatic brain injury to define distinctive features for timely diagnosis and proper management. The most typical clinical presentation was massive polyuria (10,000 mL/24 hours or >1000 mL/hour) refractory to vasopressin alone but responsive to vasopressin plus cortisone acetate. Other characteristic presentations included low central venous pressure, high brain natriuretic peptide precursor level without cardiac dysfunction, high 24-hour urine sodium excretion and hypovolemia, and much higher urine than serum osmolarity; normal serum sodium level and urine specific gravity can also be present. Timely and adequate infusion of sodium chloride was key in treatment. Of 11 patients, 5 had a good prognosis 3 months later (Extended Glasgow Outcome Scale score ≥6), 1 had an Extended Glasgow Outcome Scale score of 4, 2 died in the hospital of brain hernia, and 3 developed a vegetative state. For combined diabetes insipidus and cerebral salt wasting syndrome after traumatic brain injury, massive polyuria is a major typical presentation, and intensive monitoring of fluid and sodium status is key for timely diagnosis. To achieve a favorable outcome, proper sodium chloride supplementation and cortisone acetate and vasopressin coadministration are key. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The Traumatic Brain Injury Endpoints Development (TED) Initiative: Progress on a Public-Private Regulatory Collaboration to Accelerate Diagnosis and Treatment of Traumatic Brain Injury.

    Science.gov (United States)

    Manley, Geoffrey T; MacDonald, Christine L; Markowitz, Amy; Stephenson, Diane; Robbins, Ann; Gardner, Raquel C; Winkler, Ethan A; Bodien, Yelena; Taylor, Sabrina; Yue, John K; Kannan, Lakshmi; Kumar, Allison; McCrea, Michael; Wang, Kevin K W

    2017-03-31

    The Traumatic Brain Injury Endpoints Development (TED) Initiative is a 5-year, Department of Defense (DoD) funded project that is working toward the ultimate goal of developing better designed clinical trials, leading to more precise diagnosis, and effective treatments for traumatic brain injury (TBI). TED is comprised of leading academic clinician-scientists, along with innovative industry leaders in biotechnology and imaging technology, patient advocacy organizations, and philanthropists, working collaboratively with regulatory authorities, specifically the US Food and Drug Administration (FDA). The goals of the TED Initiative are to gain consensus and validation of TBI clinical outcome assessment measures and biomarkers for endorsement by global regulatory agencies for use in drug and device development processes. This manuscript summarizes the Initiative's Stage 1 progress over the first 18 months, including intensive engagement with a number of FDA divisions responsible for review and validation of biomarkers and clinical outcome assessments, progression into the prequalification phase of FDA's Medical Device Development Tool program for a candidate set of neuroimaging biomarkers, and receipt of FDA's Recognition of Research Importance Letter regarding TBI. Other signal achievements relate to the creation of the TED Metadataset, harmonizing study measures across eight major TBI studies, and the leadership role played by TED investigators in the conversion of the NINDS TBI Common Data Elements (CDEs) to Clinical Data Interchange Standards Consortium (CDISC) standards. This paper frames both the near-term expectations and the Initiative's long-term vision to accelerate approval of treatments for patients affected by TBI in urgent need of effective therapies.

  9. Mild Traumatic Brain Injury

    Science.gov (United States)

    ... mild Traumatic Brain Injury Resilience Families with Kids Depression Families & Friendships Tobacco Life Stress Spirituality Anger Physical Injury Stigma Health & Wellness Work Adjustment Community Peer-2-Peer Forum ...

  10. Brain injury - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000163.htm Brain injury - discharge To use the sharing features on ... know was in the hospital for a serious brain injury. At home, it will take time for ...

  11. Traumatic Brain Injury

    Science.gov (United States)

    ... brain injury Some traumatic brain injuries have lasting effects, and some do not. You may be left with disabilities. These can be physical, behavioral, communicative, and/or mental. Customized treatment helps you to have as full ...

  12. Experimental study of Gadofluorine M enhancement in early diagnosis of radiation brain injury by MRI in rats

    International Nuclear Information System (INIS)

    Bai Shoumin; Liao Chengde; Guo Ruomi; Huang Ying; Liang Biling; Shen Jun; Lu Taixiang

    2011-01-01

    Objective: To explore the value of Gadofluorine M, a novel MRI enhancement agent,in the diagnosis the early radiation brain injury. Methods: Seventy-two Wistar rats were randomly divided into 5 equal groups. To establish the radiation injury model, the rat's posterior brain was irradiated with 0 (blank controls), 25, 35, 45, 55, and 65 Gy, respectively. After irradiation MR plain scanning and Gadofluorine M enhancement scanning (after the T1WI and T2WI scanning Gf at the dosage of 0.1 mmol/kg was injected intravenously and scanning was performed again 12 h later) were performed once a week for 8 weeks. Another 12 rats were randomly divided into 2 equal groups to exposure to 55 and 65 Gy, respectively, and MR scanning was performed once a week for 8 weeks since the third week after MR. After T1WI and T2WI scanning Gd-DTPA was injected intravenously, MR was conducted again 30 min later, and Gf was injected intravenously (Gd-DTPA enhancement and Gf enhancement contrast). The MR image and the pixel count were compared. Since the third week 2 rats from the Gf enhancement scanning group and 1 rat from the Gd-DTPA enhancement and Gf enhancement contrast were killed after MR with their brains taken out to undergo pathological examination. Results: No abnormal signal changes were found in MRI in 25 and 35 Gy groups within 2 months after irradiation. A high signal in the Gf enhancement T1WI image was found in 45, 55, and 65 Gy groups within the period of 4-6 weeks after radiation. The signal intensity was significantly higher than that of the control, 25, and 35 Gy groups (F=2.15, P<0.05). The emerge time of this signal was negatively correlated with the dose of radiation (r =-0.62, P<0.05). When there was no obvious change was found by Gd-DTPA enhancement, a high signal representing change of injury could be found in Gf enhancement in the same rat. The signal intensity was significantly enhanced in Gf enhancement compared to the Gd-DTPA enhancement (F=2.74, P<0

  13. Perception of Barriers to the Diagnosis and Receipt of Treatment for Neuropsychiatric Disturbances After Traumatic Brain Injury.

    Science.gov (United States)

    Albrecht, Jennifer S; O'Hara, Lyndsay M; Moser, Kara A; Mullins, C Daniel; Rao, Vani

    2017-12-01

    To explore perceptions of barriers and facilitators to the diagnosis and receipt of treatment for neuropsychiatric disturbances (NPDs) after traumatic brain injury (TBI). Qualitative study using semistructured interviews and focus groups. A clinic specializing in the treatment of TBI NPDs, an urban trauma center, and a large urban academic hospital. A sample (N=33) of health care providers (n=10) who treat individuals with TBI, persons with TBI (n=18), and caregivers (n=5). Not applicable. Topic guides for the interviews and focus groups were guided by previous literature, clinical experience, and the goals of the project and focused on the 3 most common TBI NPDs: depression, anxiety, and posttraumatic stress disorder. The interviews and focus groups were audio-recorded and transcribed verbatim. We performed a conventional content analysis on the transcripts and grouped concepts into overall themes, incorporating feedback from stakeholders. Patient education, insurance, provider type, time since TBI, caregiver support, and recognition or screening for TBI NPDs were the most frequently mentioned barriers or facilitators to the diagnosis and treatment of TBI NPDs by both interview and focus group participants. We grouped these and other frequently mentioned concepts into 3 broad themes: education, access, and support. Each of these themes is explored in depth and supported with direct quotations. This study explored patient, caregiver, and health care provider and identified barriers and facilitators to the diagnosis and receipt of treatment for TBI NPDs. Barriers included poor provider education on TBI NPDs and limited access to care due to lack of insurance, transportation, and income. Facilitators included patient education on TBI NPDs and strong caregiver support. Future studies should develop and pilot interventions aimed at quality of care that address the identified barriers and facilitators. Copyright © 2017 American Congress of Rehabilitation Medicine

  14. Severe Traumatic Brain Injury

    Science.gov (United States)

    ... TBI Online Concussion Training Press Room Guide to Writing about TBI in News and Social Media Living with TBI HEADS UP to Brain Injury Awareness Get Email Updates To receive email updates about this topic, ...

  15. Pediatric acquired brain injury.

    Science.gov (United States)

    Bodack, Marie I

    2010-10-01

    Although pediatric patients are sometimes included in studies about visual problems in patients with acquired brain injury (ABI), few studies deal solely with children. Unlike studies dealing with adult patients, in which mechanisms of brain injury are divided into cerebral vascular accident (CVA) and traumatic brain injury (TBI), studies on pediatric patients deal almost exclusively with traumatic brain injury, specifically caused by accidents. Here we report on the vision problems of 4 pediatric patients, ages 3 to 18 years, who were examined in the ophthalmology/optometry clinic at a children's hospital. All patients had an internally caused brain injury and after the initial insult manifested problems in at least one of the following areas: acuity, binocularity, motility (tracking or saccades), accommodation, visual fields, and visual perceptual skills. Pediatric patients can suffer from a variety of oculo-visual problems after the onset of head injury. These patients may or may not be symptomatic and can benefit from optometric intervention. Copyright © 2010 American Optometric Association. Published by Elsevier Inc. All rights reserved.

  16. Children and young adults in a vegetative or minimally conscious state after brain injury. Diagnosis, rehabilitation and outcome.

    NARCIS (Netherlands)

    Eilander, H.J.

    2008-01-01

    Severe brain injury can result in long lasting loss of consciousness. After recovering from a comatose state, some patients move over into a vegetative state that remains for weeks, months or even years. The presence of patients in a prolonged unconscious state is demanding for families, as well as

  17. Brain injury in sports.

    Science.gov (United States)

    Lloyd, John; Conidi, Frank

    2016-03-01

    Helmets are used for sports, military, and transportation to protect against impact forces and associated injuries. The common belief among end users is that the helmet protects the whole head, including the brain. However, current consensus among biomechanists and sports neurologists indicates that helmets do not provide significant protection against concussion and brain injuries. In this paper the authors present existing scientific evidence on the mechanisms underlying traumatic head and brain injuries, along with a biomechanical evaluation of 21 current and retired football helmets. The National Operating Committee on Standards for Athletic Equipment (NOCSAE) standard test apparatus was modified and validated for impact testing of protective headwear to include the measurement of both linear and angular kinematics. From a drop height of 2.0 m onto a flat steel anvil, each football helmet was impacted 5 times in the occipital area. Skull fracture risk was determined for each of the current varsity football helmets by calculating the percentage reduction in linear acceleration relative to a 140-g skull fracture threshold. Risk of subdural hematoma was determined by calculating the percentage reduction in angular acceleration relative to the bridging vein failure threshold, computed as a function of impact duration. Ranking the helmets according to their performance under these criteria, the authors determined that the Schutt Vengeance performed the best overall. The study findings demonstrated that not all football helmets provide equal or adequate protection against either focal head injuries or traumatic brain injuries. In fact, some of the most popular helmets on the field ranked among the worst. While protection is improving, none of the current or retired varsity football helmets can provide absolute protection against brain injuries, including concussions and subdural hematomas. To maximize protection against head and brain injuries for football players of

  18. Brain injuries from blast.

    Science.gov (United States)

    Bass, Cameron R; Panzer, Matthew B; Rafaels, Karen A; Wood, Garrett; Shridharani, Jay; Capehart, Bruce

    2012-01-01

    Traumatic brain injury (TBI) from blast produces a number of conundrums. This review focuses on five fundamental questions including: (1) What are the physical correlates for blast TBI in humans? (2) Why is there limited evidence of traditional pulmonary injury from blast in current military field epidemiology? (3) What are the primary blast brain injury mechanisms in humans? (4) If TBI can present with clinical symptoms similar to those of Post-Traumatic Stress Disorder (PTSD), how do we clinically differentiate blast TBI from PTSD and other psychiatric conditions? (5) How do we scale experimental animal models to human response? The preponderance of the evidence from a combination of clinical practice and experimental models suggests that blast TBI from direct blast exposure occurs on the modern battlefield. Progress has been made in establishing injury risk functions in terms of blast overpressure time histories, and there is strong experimental evidence in animal models that mild brain injuries occur at blast intensities that are similar to the pulmonary injury threshold. Enhanced thoracic protection from ballistic protective body armor likely plays a role in the occurrence of blast TBI by preventing lung injuries at blast intensities that could cause TBI. Principal areas of uncertainty include the need for a more comprehensive injury assessment for mild blast injuries in humans, an improved understanding of blast TBI pathophysiology of blast TBI in animal models and humans, the relationship between clinical manifestations of PTSD and mild TBI from blunt or blast trauma including possible synergistic effects, and scaling between animals models and human exposure to blasts in wartime and terrorist attacks. Experimental methodologies, including location of the animal model relative to the shock or blast source, should be carefully designed to provide a realistic blast experiment with conditions comparable to blasts on humans. If traditional blast scaling is

  19. BRAIN DEATH DIAGNOSIS

    Directory of Open Access Journals (Sweden)

    Calixto Machado

    2009-10-01

    Full Text Available Brain death (BD diagnosis should be established based on the following set of principles, i.e. excluding major confusing factors, identifying the cause of coma, determining irreversibility, and precisely testing brainstem reflexes at all levels of the brainstem. Nonetheless, most criteria for BD diagnosis do not mention that this is not the only way of diagnosing death. The Cuban Commission for the Determination of Death has emphasized the aforesaid three possible situations for diagnosing death: a outside intensive care environment (without life support physicians apply the cardio-circulatory and respiratory criteria; b in forensic medicine circumstances, physicians utilize cadaveric signs (they do not even need a stethoscope; c in the intensive care environment (with life support when cardiorespiratory arrest occurs physicians utilize the cardio-circulatory and respiratory criteria. This methodology of diagnosing death, based on finding any of the death signs, is not related to the concept that there are different types of death. The irreversible loss of cardio-circulatory and respiratory functions can only cause death when ischemia and anoxia are prolonged enough to produce an irreversible destruction of the brain. The sign of irreversible loss of brain functions, that is to say BD diagnosis, is fully reviewed.

  20. Radiation Injury to the Brain

    Science.gov (United States)

    ... Hits since January 2003 RADIATION INJURY TO THE BRAIN Radiation treatments affect all cells that are targeted. ... fractions, duration of therapy, and volume of [healthy brain] nervous tissue irradiated influence the likelihood of injury. ...

  1. Clinical Utility of SPECT Neuroimaging in the Diagnosis and Treatment of Traumatic Brain Injury: A Systematic Review

    OpenAIRE

    Raji, Cyrus A.; Tarzwell, Robert; Pavel, Dan; Schneider, Howard; Uszler, Michael; Thornton, John; van Lierop, Muriel; Cohen, Phil; Amen, Daniel G.; Henderson, Theodore

    2014-01-01

    PURPOSE: This systematic review evaluated the clinical utility of single photon emission computed tomography (SPECT) in traumatic brain injury (TBI). METHODS: After defining a PICO Statement (Population, Intervention, Comparison and Outcome Statement), PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) criteria were applied to identify 1600 articles. After screening, 374 articles were eligible for review. Inclusion for review was focus on SPECT in the setting of mild,...

  2. Multi-scale mechanics of traumatic brain injury

    NARCIS (Netherlands)

    Cloots, R.J.H.

    2011-01-01

    Traumatic brain injury (TBI) can be caused by road traffic, sports-related or other types of accidents and often leads to permanent health issues or even death. For a good prevention or diagnosis of TBI, brain injury criteria are used to assess the probability of brain injury as a result of a

  3. Diagnosis and Management of Patients with Paroxysmal Sympathetic Hyperactivity following Acute Brain Injuries Using a Consensus-Based Diagnostic Tool: A Single Institutional Case Series.

    Science.gov (United States)

    Godo, Shigeo; Irino, Shigemi; Nakagawa, Atsuhiro; Kawazoe, Yu; Fujita, Motoo; Kudo, Daisuke; Nomura, Ryosuke; Shimokawa, Hiroaki; Kushimoto, Shigeki

    2017-09-01

    Paroxysmal sympathetic hyperactivity (PSH) is a distinct syndrome of episodic sympathetic hyperactivities following severe acquired brain injury, characterized by paroxysmal transient fever, tachycardia, hypertension, tachypnea, excessive diaphoresis and specific posturing. PSH remains to be an under-recognized condition with a diagnostic pitfall especially in the intensive care unit (ICU) settings due to the high prevalence of concomitant diseases that mimic PSH. A consensus set of diagnostic criteria named PSH-Assessment Measure (PSH-AM) has been developed recently, which is consisted of two components: a diagnosis likelihood tool derived from clinical characteristics of PSH, and a clinical feature scale assigned to the severity of each sympathetic hyperactivity. We herein present a case series of patients with PSH who were diagnosed and followed by using PSH-AM in our tertiary institutional medical and surgical ICU between April 2015 and March 2017 in order to evaluate the clinical efficacy of PSH-AM. Among 394 survivors of 521 patients admitted with acquired brain injury defined as acute brain injury at all levels of severity regardless of the presence of altered consciousness, including traumatic brain injury, stroke, infectious disease, and encephalopathy, 6 patients (1.5%) were diagnosed as PSH by using PSH-AM. PSH-AM served as a useful scoring system for early objective diagnosis, assessment of severity, and serial evaluation of treatment efficacy in the management of PSH in the ICU settings. In conclusion, critical care clinicians should consider the possibility of PSH and can use PSH-AM as a useful diagnostic and guiding tool in the management of PSH.

  4. Brain Injury Association of America

    Science.gov (United States)

    ... Only) 1-800-444-6443 Welcome to the Brain Injury Association of America (BIAA) Brain injury is not an event or an outcome. ... misunderstood, under-funded neurological disease. People who sustain brain injuries must have timely access to expert trauma ...

  5. Headache in military service members with a history of mild traumatic brain injury: A cohort study of diagnosis and classification.

    Science.gov (United States)

    Finkel, Alan G; Yerry, Juanita A; Klaric, John S; Ivins, Brian J; Scher, Ann; Choi, Young S

    2017-05-01

    Introduction Headaches after concussion are highly prevalent, relatively persistent and are being treated like primary headaches, especially migraine. Methods We studied all new patients seen between August 2008 and December 2009 assessed by a civilian headache specialist at the TBI Center at Womack Army Medical Center, Fort Bragg, NC. We report sample demographics, injuries and headache characteristics, including time from injury to headache onset, detailed descriptions and International Classification of Headache Disorders second edition primary headache diagnosis type. Results A total of 95 soldiers reported 166 headaches. The most common injury cited was a blast (53.7%). Most subjects (76.8%) recalled the onset of any headache within 7 days of injury. The most commonly diagnosed headache was a continuous type with migraine features ( n = 31 (18.7%)), followed by chronic migraine (type 1.5.1, n = 14 (8.4%)), migraine with aura (type 1.2.1, n = 10 (6.0%)), hemicrania continua (type 4.7, n = 12 (7.2%)), chronic cluster (type 3.1.2, n = 6 (3.6%)) and headaches not otherwise classifiable (type 14.1, n = 5 (3.0%)) also present. The most clinically important was a continuous headache with migraine features. Conclusion We present a series of patients seen in a military treatment facility for headache diagnosis after concussion in whom we found migraine, as well as uncommon primary headache types, at frequencies that were much higher than expected.

  6. Hypopituitarism after traumatic brain injury.

    Science.gov (United States)

    Fernandez-Rodriguez, Eva; Bernabeu, Ignacio; Castro, Ana I; Casanueva, Felipe F

    2015-03-01

    The prevalence of hypopituitarism after traumatic brain (TBI) injury is widely variable in the literature; a meta-analysis determined a pooled prevalence of anterior hypopituitarism of 27.5%. Growth hormone deficiency is the most prevalent hormone insufficiency after TBI; however, the prevalence of each type of pituitary deficiency is influenced by the assays used for diagnosis, severity of head trauma, and time of evaluation. Recent studies have demonstrated improvement in cognitive function and cognitive quality of life with substitution therapy in GH-deficient patients after TBI. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Clinical utility of SPECT neuroimaging in the diagnosis and treatment of traumatic brain injury: a systematic review.

    Directory of Open Access Journals (Sweden)

    Cyrus A Raji

    Full Text Available PURPOSE: This systematic review evaluated the clinical utility of single photon emission computed tomography (SPECT in traumatic brain injury (TBI. METHODS: After defining a PICO Statement (Population, Intervention, Comparison and Outcome Statement, PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria were applied to identify 1600 articles. After screening, 374 articles were eligible for review. Inclusion for review was focus on SPECT in the setting of mild, moderate, or severe TBI with cerebral lobar specificity of SPECT findings. Other inclusion criteria were comparison modalities in the same subjects and articles in English. Foreign language articles, SPECT studies that did not include comparison modalities, and case reports were not included for review. RESULTS: We identified 19 longitudinal and 52 cross-sectional studies meeting inclusion criteria. Three longitudinal studies examined diagnostic predictive value. The first showed positive predictive value increases from initial SPECT scan shortly after trauma to one year follow up scans, from 59% to 95%. Subsequent work replicated these results in a larger cohort. Longitudinal and cross sectional studies demonstrated SPECT lesion localization not detected by CT or MRI. The most commonly abnormal regions revealed by SPECT in cross-sectional studies were frontal (94% and temporal (77% lobes. SPECT was found to outperform both CT and MRI in both acute and chronic imaging of TBI, particularly mild TBI. It was also found to have a near 100% negative predictive value. CONCLUSIONS: This review demonstrates Level IIA evidence (at least one non-randomized controlled trial for the value of SPECT in TBI. Given its advantages over CT and MRI in the detection of mild TBI in numerous studies of adequate quality, and given its excellent negative predictive value, it may be an important second test in settings where CT or MRI are negative after a closed head injury with post-injury

  8. Clinical utility of SPECT neuroimaging in the diagnosis and treatment of traumatic brain injury: a systematic review.

    Science.gov (United States)

    Raji, Cyrus A; Tarzwell, Robert; Pavel, Dan; Schneider, Howard; Uszler, Michael; Thornton, John; van Lierop, Muriel; Cohen, Phil; Amen, Daniel G; Henderson, Theodore

    2014-01-01

    This systematic review evaluated the clinical utility of single photon emission computed tomography (SPECT) in traumatic brain injury (TBI). After defining a PICO Statement (Population, Intervention, Comparison and Outcome Statement), PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) criteria were applied to identify 1600 articles. After screening, 374 articles were eligible for review. Inclusion for review was focus on SPECT in the setting of mild, moderate, or severe TBI with cerebral lobar specificity of SPECT findings. Other inclusion criteria were comparison modalities in the same subjects and articles in English. Foreign language articles, SPECT studies that did not include comparison modalities, and case reports were not included for review. We identified 19 longitudinal and 52 cross-sectional studies meeting inclusion criteria. Three longitudinal studies examined diagnostic predictive value. The first showed positive predictive value increases from initial SPECT scan shortly after trauma to one year follow up scans, from 59% to 95%. Subsequent work replicated these results in a larger cohort. Longitudinal and cross sectional studies demonstrated SPECT lesion localization not detected by CT or MRI. The most commonly abnormal regions revealed by SPECT in cross-sectional studies were frontal (94%) and temporal (77%) lobes. SPECT was found to outperform both CT and MRI in both acute and chronic imaging of TBI, particularly mild TBI. It was also found to have a near 100% negative predictive value. This review demonstrates Level IIA evidence (at least one non-randomized controlled trial) for the value of SPECT in TBI. Given its advantages over CT and MRI in the detection of mild TBI in numerous studies of adequate quality, and given its excellent negative predictive value, it may be an important second test in settings where CT or MRI are negative after a closed head injury with post-injury neurological or psychiatric symptoms.

  9. Evaluation after Traumatic Brain Injury

    Science.gov (United States)

    Trudel, Tina M.; Halper, James; Pines, Hayley; Cancro, Lorraine

    2010-01-01

    It is important to determine if a traumatic brain injury (TBI) has occurred when an individual is assessed in a hospital emergency room after a car accident, fall, or other injury that affects the head. This determination influences decisions about treatment. It is essential to screen for the injury, because the sooner they begin appropriate…

  10. Clinico-pathological consideration of diffuse brain injury. Does it possible to diagnosis the diffuse axonal injury by using computed imagings?

    International Nuclear Information System (INIS)

    Fukuda, Tadaharu; Takeda, Hiroki; Matsumura, Hiroyuki; Izawa, Hitoshi; Nakanishi, Fuminori; Onitsuka, Toshirou; Nakajima, Satoshi; Hasue, Masamichi; Ito, Hiroshi

    1998-01-01

    We studied 146 cases with clinical symptoms equivalent to diffuse axonal injury (DAI) according to Gennarelli et al., and initial CT findings equivalent to diffuse injury I, II and III according to Marshall et al. The relationships between computed imagings (CI) assessments, various monitorings, higher order cerebral functions during follow-up, and long-term prognosis were investigated, and the feasibility of assessing the nature of diffuse brain damage by CI was examined. Each of the three CI conducted; computed tomography (CT), magnetic resonance imaging (MRI) T2-weighted image, and 123I-IMP single photon emission computed tomography (SPECT), by itself failed to achieve accurate assessment of outcome. No correlation was observed between acute phase CT finding and the highest WAIS or WISC score from 3 months to within 2 years after injury. Fifty percent of survivors had normal cerebro-ventricular index (CVI) calculated from chronic phase CT images. The correlation between chronic phase CVI and acute phase CT or MRI grade was weak. Even in cases with increased CVI and severe cerebral atrophy, improvement in higher order cerebral function was observed in young patients. In acute phase DAI, cerebral circulatory disorders such as cerebral blood flow and cerebral blood volume changes and electro-physiological disorders such as abnormal somato-sensory evoked potentials were present, and these disorders resolved with time in survivors. Recovery from these disorders tended to correlate with improvement of consciousness level. These findings indicate that the clinical symptoms of DAI are composed of reversible functional impairments. The current CI techniques cannot differentiate between irreversible neural damages and transient functional impairments, and also cannot predict the recovery process due to sprouting and other mechanisms. For these reasons, discrepancies exist between acute phase CI findings and outcomes, especially functional prognosis. (author)

  11. Potential of the Antibody Against cis-Phosphorylated Tau in the Early Diagnosis, Treatment, and Prevention of Alzheimer Disease and Brain Injury.

    Science.gov (United States)

    Lu, Kun Ping; Kondo, Asami; Albayram, Onder; Herbert, Megan K; Liu, Hekun; Zhou, Xiao Zhen

    2016-11-01

    Alzheimer disease (AD) and chronic traumatic encephalopathy (CTE) share a common neuropathologic signature-neurofibrillary tangles made of phosphorylated tau-but do not have the same pathogenesis or symptoms. Although whether traumatic brain injury (TBI) could cause AD has not been established, CTE is shown to be associated with TBI. Until recently, whether and how TBI leads to tau-mediated neurodegeneration was unknown. The unique prolyl isomerase Pin1 protects against the development of tau-mediated neurodegeneration in AD by converting the phosphorylated Thr231-Pro motif in tau (ptau) from the pathogenic cis conformation to the physiologic trans conformation, thereby restoring ptau function. The recent development of antibodies able to distinguish and eliminate both conformations specifically has led to the discovery of cis-ptau as a precursor of tau-induced pathologic change and an early driver of neurodegeneration that directly links TBI to CTE and possibly to AD. Within hours of TBI in mice or neuronal stress in vitro, neurons prominently produce cis-ptau, which causes and spreads cis-ptau pathologic changes, termed cistauosis. Cistauosis eventually leads to widespread tau-mediated neurodegeneration and brain atrophy. Cistauosis is effectively blocked by the cis-ptau antibody, which targets intracellular cis-ptau for proteasome-mediated degradation and prevents extracellular cis-ptau from spreading to other neurons. Treating TBI mice with cis-ptau antibody not only blocks early cistauosis but also prevents development and spreading of tau-mediated neurodegeneration and brain atrophy and restores brain histopathologic features and functional outcomes. Thus, cistauosis is a common early disease mechanism for AD, TBI, and CTE, and cis-ptau and its antibody may be useful for early diagnosis, treatment, and prevention of these devastating diseases.

  12. Traumatic Brain Injury Registry (TBI)

    Data.gov (United States)

    Department of Veterans Affairs — As the number of Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Traumatic Brain Injury (TBI) patients has grown, so has the need to track and monitor...

  13. Traumatic Brain Injury Inpatient Rehabilitation

    Science.gov (United States)

    Im, Brian; Schrer, Marcia J.; Gaeta, Raphael; Elias, Eileen

    2010-01-01

    Traumatic brain injuries (TBI) can cause multiple medical and functional problems. As the brain is involved in regulating nearly every bodily function, a TBI can affect any part of the body and aspect of cognitive, behavioral, and physical functioning. However, TBI affects each individual differently. Optimal management requires understanding the…

  14. Hypopituitarism after acute brain injury.

    Science.gov (United States)

    Urban, Randall J

    2006-07-01

    Acute brain injury has many causes, but the most common is trauma. There are 1.5-2.0 million traumatic brain injuries (TBI) in the United States yearly, with an associated cost exceeding 10 billion dollars. TBI is the most common cause of death and disability in young adults less than 35 years of age. The consequences of TBI can be severe, including disability in motor function, speech, cognition, and psychosocial and emotional skills. Recently, clinical studies have documented the occurrence of pituitary dysfunction after TBI and another cause of acute brain injury, subarachnoid hemorrhage (SAH). These studies have consistently demonstrated a 30-40% occurrence of pituitary dysfunction involving at least one anterior pituitary hormone following a moderate to severe TBI or SAH. Growth hormone (GH) deficiency is the most common pituitary hormone disorder, occurring in approximately 20% of patients when multiple tests of GH deficiency are used. Within 7-21 days of acute brain injury, adrenal insufficiency is the primary concern. Pituitary function can fluctuate over the first year after TBI, but it is well established by 1 year. Studies are ongoing to assess the effects of hormone replacement on motor function and cognition in TBI patients. Any subject with a moderate to severe acute brain injury should be screened for pituitary dysfunction.

  15. Missile injuries of the brain

    International Nuclear Information System (INIS)

    Kazmi, S.A.M.; Ashraf, A.T.; Qureshi, N.A.

    2001-01-01

    Data was analyzed relating to a consecutive series of 16 patients of penetrating brain injuries received at forward defense lines. Characteristics studied were the cause of injury, level of consciousness and various neurological deficits presented on initial examination, CT scan findings, the surgical procedures performed and the final outcome after one year of follow-up. One out of 16 patients, died due to severe associated injuries to abdominal viscera and major vessels. Meningitis occurred in one patient during the immediate postoperative period. All patients with motor weakness speech deficits and incontinence showed significant improvement. Hearing loss of one ear persisted in one patient. Two patients developed delayed onset seizures. It is concluded that, patients with penetrating brain injuries should be evacuated to the tertiary care neurosurgical centres as soon as possible. In operation only obviously necrotic brain and easily accessible metal and bone pieces should be removed. There is no need to explore the normal brain as it would only result in increased neurological deficits. The patients with such injuries should receive broad-spectrum antibiotics to prevent the infective complications. (author)

  16. Brain Injury Safety Tips and Prevention

    Science.gov (United States)

    ... submit" name="commit" type="submit" value="Submit" /> Brain Injury Safety Tips and Prevention Recommend on Facebook ... not grass or dirt. More HEADS UP Video: Brain Injury Safety and Prevention frame support disabled and/ ...

  17. MRI of perinatal brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Mary; Allsop, Joanna [Imperial College, Robert Steiner MR Unit, Perinatal Imaging, MRC Clinical Sciences Centre, Hammersmith Hospital, London (United Kingdom); Martinez Biarge, Miriam [La Paz University Hospital, Dept of Neonatology, Madrid (Spain); Counsell, Serena [Imperial College, Robert Steiner MR Unit, Neonatal Medicine, MRC Clinical Sciences Centre, Hammersmith Hospital, London (United Kingdom); Cowan, Frances [Imperial College, Dept of Paediatrics, Hammersmith Hospital, London (United Kingdom)

    2010-06-15

    MRI is invaluable in assessing the neonatal brain following suspected perinatal injury. Good quality imaging requires adaptations to both the hardware and the sequences used for adults or older children. The perinatal and postnatal details often predict the pattern of lesions sustained and should be available to aid interpretation of the imaging findings. Perinatal lesions, the pattern of which can predict neurodevelopmental outcome, are at their most obvious on conventional imaging between 1 and 2 weeks from birth. Very early imaging during the first week may be useful to make management decisions in ventilated neonates but brain abnormalities may still be subtle using conventional sequences. Diffusion-weighted imaging (DWI) is very useful for the early identification of ischaemic tissue in the neonatal brain but may underestimate the final extent of injury, particularly basal ganglia and thalamic lesions. MR imaging is an excellent predictor of outcome following perinatal brain injury and can therefore be used as a biomarker in interventional trials designed to reduce injury and improve neurodevelopmental outcome. (orig.)

  18. MRI of perinatal brain injury

    International Nuclear Information System (INIS)

    Rutherford, Mary; Allsop, Joanna; Martinez Biarge, Miriam; Counsell, Serena; Cowan, Frances

    2010-01-01

    MRI is invaluable in assessing the neonatal brain following suspected perinatal injury. Good quality imaging requires adaptations to both the hardware and the sequences used for adults or older children. The perinatal and postnatal details often predict the pattern of lesions sustained and should be available to aid interpretation of the imaging findings. Perinatal lesions, the pattern of which can predict neurodevelopmental outcome, are at their most obvious on conventional imaging between 1 and 2 weeks from birth. Very early imaging during the first week may be useful to make management decisions in ventilated neonates but brain abnormalities may still be subtle using conventional sequences. Diffusion-weighted imaging (DWI) is very useful for the early identification of ischaemic tissue in the neonatal brain but may underestimate the final extent of injury, particularly basal ganglia and thalamic lesions. MR imaging is an excellent predictor of outcome following perinatal brain injury and can therefore be used as a biomarker in interventional trials designed to reduce injury and improve neurodevelopmental outcome. (orig.)

  19. Hypopituitarism in Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Klose, Marianne; Feldt-Rasmussen, Ulla

    2015-01-01

    While hypopituitarism after traumatic brain injury (TBI) was previously considered rare, it is now thought to be a major cause of treatable morbidity among TBI survivors. Consequently, recommendations for assessment of pituitary function and replacement in TBI were recently introduced. Given...

  20. Family needs after brain injury

    DEFF Research Database (Denmark)

    Norup, Anne; Perrin, Paul B; Cuberos-Urbano, Gustavo

    2015-01-01

    OBJECTIVE: The objective of this study was to explore differences by country in the importance of family needs after traumatic brain injury (TBI), as well as differences in met/unmet needs. METHOD: Two hundred and seventy-one family members of an individual with TBI in Mexico, Colombia, Spain...

  1. Assessment of Students with Traumatic Brain Injury

    Science.gov (United States)

    Chesire, David J.; Buckley, Valerie A.; Canto, Angela I.

    2011-01-01

    The incidence of brain injuries, as well as their impact on individuals who sustain them, has received growing attention from American media in recent years. This attention is likely the result of high profile individuals suffering brain injuries. Greater public awareness of traumatic brain injuries (TBIs) has also been promoted by sources such as…

  2. Traumatic brain injury : from impact to rehabilitation

    NARCIS (Netherlands)

    Halliday, J.; Absalom, A. R.

    Traumatic brain injury is a significant cause of mortality and morbidity in our society, particularly among the young. This review discusses the pathophysiology of traumatic brain injury, and current management from the acute phase through to rehabilitation of the traumatic brain injury patient.

  3. Cerebral Vascular Injury in Traumatic Brain Injury.

    Science.gov (United States)

    Kenney, Kimbra; Amyot, Franck; Haber, Margalit; Pronger, Angela; Bogoslovsky, Tanya; Moore, Carol; Diaz-Arrastia, Ramon

    2016-01-01

    Traumatic cerebral vascular injury (TCVI) is a very frequent, if not universal, feature after traumatic brain injury (TBI). It is likely responsible, at least in part, for functional deficits and TBI-related chronic disability. Because there are multiple pharmacologic and non-pharmacologic therapies that promote vascular health, TCVI is an attractive target for therapeutic intervention after TBI. The cerebral microvasculature is a component of the neurovascular unit (NVU) coupling neuronal metabolism with local cerebral blood flow. The NVU participates in the pathogenesis of TBI, either directly from physical trauma or as part of the cascade of secondary injury that occurs after TBI. Pathologically, there is extensive cerebral microvascular injury in humans and experimental animal, identified with either conventional light microscopy or ultrastructural examination. It is seen in acute and chronic TBI, and even described in chronic traumatic encephalopathy (CTE). Non-invasive, physiologic measures of cerebral microvascular function show dysfunction after TBI in humans and experimental animal models of TBI. These include imaging sequences (MRI-ASL), Transcranial Doppler (TCD), and Near InfraRed Spectroscopy (NIRS). Understanding the pathophysiology of TCVI, a relatively under-studied component of TBI, has promise for the development of novel therapies for TBI. Published by Elsevier Inc.

  4. The Evidence for Brain Injury in Whiplash Injuries

    Directory of Open Access Journals (Sweden)

    Michael P. Alexander

    2003-01-01

    Full Text Available The evidence that brain damage can occur in injuries that produce whiplash is reviewed. The clinical phenomena for the two injuries are the same. Pure whiplash injury implies no, or minimal head contact, but many patients also have head contact against a head rest or the steering wheel or windshield. The relative severity of the neck injury and the head injury distinguishes whiplash from mild closed head injury. If there is brain injury is some patients with whiplash, it, by definition, falls at the mildest end of the concussion spectrum. The relationship between these two injuries is examined.

  5. Brain abscess - diagnosis and management

    International Nuclear Information System (INIS)

    Bhand, A.K

    2004-01-01

    Objective: To evaluate the clinical presentation, diagnosis, and sources of infection, surgical management outcome and microorganisms involved in the brain abscess in our locality. Subjects and Methods: All patients who were confirmed cases of brain abscess were entered into the study. Data collected on proforma, contained categories of age, gender, clinical presentation, diagnostic laboratory findings, computed tomography scans reports, associated anomalies, surgical management, culture reports antibiotic therapy, microbiologic features and treatment out come. Results: Out of 82 patients, 58 were males and 24 females. Mean age was 18 years (range 05 months to 55 years). Headache with papilloedema was the commonest presentation (82%). Neurological deficit was present in 46%. A source of infection was present in 89%. Otogenic source was the commonest (63%). CT scan was diagnostic in all (100%) cases. Solitary abscess was found in 79% of the cases while in 21 % of the cases multiple abscesses were found. Temporal lobe he commonest site involved (55%). Cultures were found positive for microorganism in 82% of the cases. Bactericides (38%) and Streptococci (25%) were the commonest isolates. Burr hole aspiration was done in only 38% of the cases while excision of the capsule along with aspiration was carried out in 62% of the cases. Over all morality was 22% in this series; causes of death were septicemia, ventriculitis and pneumonia. Conclusion: Diagnosis with CT scan, appropriate antibiotic therapy and complete removal of abscess along with excision capsule could reduce the mortality and neurological deficits from brain abscess. (author)

  6. The role of biomarkers and MEG-based imaging markers in the diagnosis of post-traumatic stress disorder and blast-induced mild traumatic brain injury.

    Science.gov (United States)

    Huang, Mingxiong; Risling, Mårten; Baker, Dewleen G

    2016-01-01

    Pervasive use of improvised explosive devices (IEDs), rocket-propelled grenades, and land mines in the recent conflicts in Iraq and Afghanistan has brought traumatic brain injury (TBI) and its impact on health outcomes into public awareness. Blast injuries have been deemed signature wounds of these wars. War-related TBI is not new, having become prevalent during WWI and remaining medically relevant in WWII and beyond. Medicine's past attempts to accurately diagnose and disentangle the pathophysiology of war-related TBI parallels current lines of inquiry and highlights limitations in methodology and attribution of symptom etiology, be it organic, psychological, or behavioral. New approaches and biomarkers are needed. Serological biomarkers and biomarkers of injury obtained with imaging techniques represent cornerstones in the translation between experimental data and clinical observations. Experimental models for blast related TBI and PTSD can generate critical data on injury threshold, for example for white matter injury from acceleration. Carefully verified and validated models can be evaluated with gene expression arrays and proteomics to identify new candidates for serological biomarkers. Such models can also be analyzed with diffusion MRI and microscopy in order to identify criteria for detection of diffuse white matter injuries, such as DAI (diffuse axonal injury). The experimental models can also be analyzed with focus on injury outcome in brain stem regions, such as locus coeruleus or nucleus raphe magnus that can be involved in response to anxiety changes. Mild (and some moderate) TBI can be difficult to diagnose because the injuries are often not detectable on conventional MRI or CT. There is accumulating evidence that injured brain tissues in TBI patients generate abnormal low-frequency magnetic activity (ALFMA, peaked at 1-4Hz) that can be measured and localized by magnetoencephalography (MEG). MEG imaging detects TBI abnormalities at the rates of 87

  7. Computerized tomography in diagnosis of cerebrocranial injury

    International Nuclear Information System (INIS)

    Kornienko, V.N.; Vasin, N.Ya.; Kuz'menko, V.A.

    1987-01-01

    The method of computerized tomographical examination are presented. Th KT-characters of concussion of the brain, its contusion of different severity, compressions in case of traumatic intracranial hematomas, contusion injuries, brain edema and different aftereffects of cerebrocranial injury are given. On the basis of comparison of the data of clinical and KT examination the dynamics of intracranial traumatic injuries in the course of treatment is described. The problems of therapeutic and surgical tactics depending on the degree and form of intracranial structure injuries and the phase of clinical course of posttraumatic process are discussed

  8. Differential diagnosis of radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, F

    1971-04-01

    A single haematological alteration is not sufficient to diagnose whether it is a radiation-induced change or not. For the differential diagnosis of possibly radiation-induced changes in the peripheral blood and blood-forming organs, information on the radiation exposure in terms of time, quality, quantity and localization, and the clinical symptoms have to be taken into account. Ionizing radiation within the dosage range considered here produces cell division delay, mitotic inhibition, chromosomal damage or interphase cell death; it thereby interferes with the steady-state equilibria in the cell-renewal systems of the organism (Bond et al., 1965; Little, 1968). The cause of haematological changes appearing immediately after a short-term, external whole-body radiation exposure has been described and analysed elsewhere in this Manual. The critical cell component is the 'stem cell compartment' which is highly radiosensitive and suffers damage but, because stem cells cannot be identified morphologically, a direct study of stem cell injury is not possible.

  9. MDCT diagnosis of penetrating diaphragm injury

    Energy Technology Data Exchange (ETDEWEB)

    Bodanapally, Uttam K.; Shanmuganathan, Kathirkamanathan; Mirvis, Stuart E.; Sliker, Clint W.; Fleiter, Thorsten R.; Sarada, Kamal; Miller, Lisa A. [University of Maryland School of Medicine, Department of Diagnostic Radiology, Baltimore, MD (United States); Stein, Deborah M. [University of Maryland, Department of Surgery, Shock Trauma Center, Baltimore, MD (United States); Alexander, Melvin [National Study Center for Trauma and Emergency Medical Systems, Baltimore, MD (United States)

    2009-08-15

    The purpose of the study was to determine the diagnostic sensitivity and specificity of multidetector CT (MDCT) in detection of diaphragmatic injury following penetrating trauma. Chest and abdominal CT examinations performed preoperatively in 136 patients after penetrating trauma to the torso with injury trajectory in close proximity to the diaphragm were reviewed by radiologists unaware of surgical findings. Signs associated with diaphragmatic injuries in penetrating trauma were noted. These signs were correlated with surgical diagnoses, and their sensitivity and specificity in assisting the diagnosis were calculated. CT confirmed diaphragmatic injury in 41 of 47 injuries (sensitivity, 87.2%), and an intact diaphragm in 71 of 98 patients (specificity, 72.4%). The overall accuracy of MDCT was 77%. The most accurate sign helping the diagnosis was contiguous injury on either side of the diaphragm in single-entry penetrating trauma (sensitivity, 88%; specificity, 82%). Thus MDCT has high sensitivity and good specificity in detecting penetrating diaphragmatic injuries. (orig.)

  10. MDCT diagnosis of penetrating diaphragm injury

    International Nuclear Information System (INIS)

    Bodanapally, Uttam K.; Shanmuganathan, Kathirkamanathan; Mirvis, Stuart E.; Sliker, Clint W.; Fleiter, Thorsten R.; Sarada, Kamal; Miller, Lisa A.; Stein, Deborah M.; Alexander, Melvin

    2009-01-01

    The purpose of the study was to determine the diagnostic sensitivity and specificity of multidetector CT (MDCT) in detection of diaphragmatic injury following penetrating trauma. Chest and abdominal CT examinations performed preoperatively in 136 patients after penetrating trauma to the torso with injury trajectory in close proximity to the diaphragm were reviewed by radiologists unaware of surgical findings. Signs associated with diaphragmatic injuries in penetrating trauma were noted. These signs were correlated with surgical diagnoses, and their sensitivity and specificity in assisting the diagnosis were calculated. CT confirmed diaphragmatic injury in 41 of 47 injuries (sensitivity, 87.2%), and an intact diaphragm in 71 of 98 patients (specificity, 72.4%). The overall accuracy of MDCT was 77%. The most accurate sign helping the diagnosis was contiguous injury on either side of the diaphragm in single-entry penetrating trauma (sensitivity, 88%; specificity, 82%). Thus MDCT has high sensitivity and good specificity in detecting penetrating diaphragmatic injuries. (orig.)

  11. Diagnosis of Acute Groin Injuries

    DEFF Research Database (Denmark)

    Serner, Andreas; Tol, Johannes L; Jomaah, Nabil

    2015-01-01

    BACKGROUND: Acute groin injuries are common in high-intensity sports, but there are insufficient data on injury characteristics such as injury mechanisms and clinical and radiological findings. PURPOSE: To describe these characteristics in a cohort of athletes. STUDY DESIGN: Cross-sectional study......; Level of evidence, 3. METHODS: A total of 110 male athletes (mean age, 25.6 ± 4.7 years) with sports-related acute groin pain were prospectively included within 7 days of injury from August 2012 to April 2014. Standardized history taking, a clinical examination, magnetic resonance imaging (MRI), and....../or ultrasound (US) were performed. RESULTS: The most frequent injury mechanism in soccer was kicking (40%), and change of direction was most frequent in other sports (31%). Clinically, adductor injuries accounted for 66% of all injuries and primarily involved the adductor longus on imaging (91% US, 93% MRI...

  12. Diagnosis and treatment of traumatic pancreatic injury

    International Nuclear Information System (INIS)

    Hirakawa, Akihiko; Isayama, Kenji; Nakatani, Toshio

    2011-01-01

    The diagnosis of traumatic pancreatic injury in the acute stage is difficult to establish blood tests and abdominal findings alone. Moreover, to determine treatment strategies, it is important not only that a pancreatic injury is diagnosed but also whether a pancreatic ductal injury can be found. At our center, to diagnose isolated pancreatic injuries, we actively perform endoscopic retrograde pancreatography (ERP) in addition to abdominal CT at the time of admission. For cases with complications such as abdominal and other organ injuries, we perform a laparotomy to ascertain whether a pancreatic duct injury is present. In regard to treatment options, for grade III injuries to the pancreatic body and tail, we basically choose distal pancreatectomy, but we also consider the Bracy method depending on the case. As for grade III injuries to the pancreatic head, we primarily choose pancreaticoduodenectomy, but also apply drainage if the situation calls for it. However, pancreatic injuries are often complicated by injuries of other regions of the body. Thus, diagnosis and treatment of pancreatic injury should be based on a comprehensive decision regarding early prioritization of treatment, taking hemodynamics into consideration after admission, and how to minimize complications such as anastomotic leak and pancreatic fistulas. (author)

  13. Preliminary questions before studying mild traumatic brain injury outcome.

    Science.gov (United States)

    Fayol, P; Carrière, H; Habonimana, D; Dumond, J-J

    2009-07-01

    To point out from the literature the issues in mild traumatic brain injury outcome. METHODOLOGY-RESULTS: The literature review allows to point out several different factors involved in the difficulty to study mild traumatic brain injury: mild traumatic brain injury definition, postconcussional syndrome definition, diagnosis threshold, severity and functional symptoms outcome, neuropsychological tests, unspecific syndrome feature, individual factors, confounding factors and treatment interventions. The mild traumatic brain injury outcome study is complicated by the definitions issues and especially their practical use and by the multiplicity and the intricate interrelationships among involved factors. The individual outcome and social cost weight is widely emphasized for an event still considered as medically trivial. The well-ordered preventive interventions necessity and the targeted treatment programs need for the persisting postconcussive symptoms complete our critical review.

  14. Traumatic Brain Injury (TBI) in Kids

    Science.gov (United States)

    ... Information Share Facebook Twitter Pinterest Email Print Traumatic Brain Injury (TBI): Condition Information What is TBI? TBI ... external force that affects the functioning of the brain. It can be caused by a bump or ...

  15. Quality of Life Following Brain Injury: Perspectives from Brain Injury Association of America State Affiliates

    Science.gov (United States)

    Degeneffe, Charles Edmund; Tucker, Mark

    2012-01-01

    Objective: to examine the perspectives of brain injury professionals concerning family members' feelings about the quality of life experienced by individuals with brain injuries. Participants: participating in the study were 28 individuals in leadership positions with the state affiliates of the Brain Injury Association of America (BIAA). Methods:…

  16. Chronic issues related to traumatic brain injury : traumatic brain injury is not an incident

    NARCIS (Netherlands)

    Grauwmeijer, Erik; van der Naalt, Joukje; ribbers, gerard

    2016-01-01

    Despite an increased awareness of the long-term consequences of traumatic brain injury, health care professionals often consider traumatic brain injury as an incident. However, patients with traumatic brain injury may experience long-term neurological, cognitive and behavioural problems. Due to the

  17. Diagnosis of climbing related overuse injuries

    International Nuclear Information System (INIS)

    Klauser, A.; Frauscher, F.; Helweg, G.; Nedden, D. zur; Hochholzer, T.; Kramer, J.

    2002-01-01

    Sport climbing shows an enormous increase in participation, evolving to more popularity, including even school sport activity on high standards. Therefore the number of climbing related injuries is increasing and becomes a more frequently encountered medical problem. Typical climbing associated injuries involve predominantly the upper limb. Overuse injuries are the most common climbing related injuries.The clinical examination is the first line investigation, which is often limited especially in the acute phase. However, an exact diagnosis is desireable for therapeutic management. Imaging modalities have shown to be capable for detection of climbing related injuries. An overview about the current use of x-ray, ultrasound and magnetic resonance imaging in different climbing related overuse injuries is presented. (orig.) [de

  18. Rehabilitation after traumatic brain injury.

    Science.gov (United States)

    Barnes, M P

    1999-01-01

    Head injury is a common disabling condition but regrettably facilities for rehabilitation are sparse. There is now increasing evidence of the efficacy of a comprehensive multidisciplinary rehabilitation team compared to natural recovery following brain injury. This chapter outlines some basic concepts of rehabilitation and emphasises the importance of valid and reliable outcome measures. The evidence of the efficacy of a rehabilitation programme is discussed in some detail. A number of specific rehabilitation problems are outlined including the management of spasticity, nutrition, pressure sores and urinary continence. The increasingly important role of assistive technology is illustrated, particularly in terms of communication aids and environmental control equipment. However, the major long-term difficulties after head injury focus around the cognitive, intellectual, behavioural and emotional problems. The complex management of these disorders is briefly addressed and the evidence of the efficacy of some techniques discussed. The importance of recognition of the vegetative stage and avoidance of misdiagnosis is emphasised. Finally, the important, but often neglected, area of employment rehabilitation is covered.

  19. Intracranial Monitoring after Severe Traumatic Brain Injury

    OpenAIRE

    Donnelly, Joseph

    2018-01-01

    Intracranial monitoring after severe traumatic brain injury offers the possibility for early detection and amelioration of physiological insults. In this thesis, I explore cerebral insults due raised intracranial pressure, decreased cerebral perfusion pressure and impaired cerebral pressure reactivity after traumatic brain injury. In chapter 2, the importance of intracranial pressure, cerebral perfusion pressure and pressure reactivity in regulating the cerebral circulation is elucidated ...

  20. Effect of AVP on brain edema following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    XU Miao; SU Wei; HUANG Wei-dong; LU Yuan-qiang; XU Qiu-ping; CHEN Zhao-jun

    2007-01-01

    Objective: To evaluate plasma arginine vasopressin (AVP) level in patients with traumatic brain injury and investigate the role of AVP in the process of brain edema. Methods: A total of 30 patients with traumatic brain injury were involved in our study. They were divided into two groups by Glasgow Coma Scale: severe traumatic brain injury group (STBI, GCS≤ 8) and moderate traumatic brain injury group (MTBI, GCS>8).Samples of venous blood were collected in the morning at rest from 15 healthy volunteers (control group)and within 24 h after traumatic brain injury from these patients for AVP determinations by radioimmunoassay. The severity and duration of the brain edema were estimated by head CT scan.Results: plasma AVP levels (ng/L) were (mean±SD): control, 3.06±1.49; MTBI, 38.12±7.25; and STBI, 66.61±17.10.The plasma level of AVP was significantly increased within 24 h after traumatic brain injury and followed by the reduction of GCS, suggesting the deterioration of cerebral injury (P<0.01). And the AVP level was correlated with the severity (STBI r=0.919, P<0.01; MTBI r=0.724, P<0.01) and the duration of brain edema (STBI r=0.790, P<0.01; MTBI r=0.712, P<0.01). Conclusions: The plasma AVP level is closely associated with the severity of traumatic brain injury. AVP may play an important role in pathogenesis of brain edema after traumatic brain injury.

  1. Psychiatric disorders and traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Marcelo Schwarzbold

    2008-09-01

    Full Text Available Marcelo Schwarzbold1, Alexandre Diaz1, Evandro Tostes Martins2, Armanda Rufino1, Lúcia Nazareth Amante1,3, Maria Emília Thais1, João Quevedo4, Alexandre Hohl1, Marcelo Neves Linhares1,5,6, Roger Walz1,61Núcleo de Pesquisas em Neurologia Clínica e Experimental (NUPNEC, Departamento de Clínica Médica, Hospital Universitário, UFSC, Florianópolis, SC, Brazil; 2Unidade de Terapia Intensiva, Hospital Governador Celso Ramos, Florianópolis, SC, Brazil; 3Departamento de Enfermagem, UFSC, Florianópolis, SC, Brazil; 4Laboratório de Neurociências, UNESC, Criciúma, SC, Brazil; 5Departamento de Cirurgia, Hospital Universitário, UFSC, Florianópolis, SC, Brazil; 6Centro de Cirurgia de Epilepsia de Santa Catarina (CEPESC, Hospital Governador Celso Ramos, Florianópolis, SC, BrazilAbstract: Psychiatric disorders after traumatic brain injury (TBI are frequent. Researches in this area are important for the patients’ care and they may provide hints for the comprehension of primary psychiatric disorders. Here we approach epidemiology, diagnosis, associated factors and treatment of the main psychiatric disorders after TBI. Finally, the present situation of the knowledge in this field is discussed.Keywords: psychiatric disorders, traumatic brain injury, neuropsychiatry, diagnostic, epidemiology, pathophysiology

  2. Neuropsychological rehabilitation for traumatic brain injury patients

    Directory of Open Access Journals (Sweden)

    Marzena Chantsoulis

    2015-05-01

    Full Text Available The aim of this review is to discuss the basic forms of neuropsychological rehabilitation for patients with traumatic brain injury (TBI. More broadly, we discussed cognitive rehabilitation therapy (CRT which constitutes a fundamental component in therapeutic interaction at many centres worldwide. Equally presented is a comprehensive model of rehabilitation, the fundamental component of which is CRT. It should be noted that the principles of this approach first arose in Poland in the 1970s, in other words, several decades before their appearance in other programmemes. Taken into consideration are four factors conditioning the effectiveness of such a process: comprehensiveness, earlier interaction, universality and its individualized character. A comprehensive programmeme of rehabilitation covers: cognitive rehabilitation, individual and group rehabilitation with the application of a therapeutic environment, specialist vocational rehabilitation, as well as family psychotherapy. These training programmemes are conducted within the scope of the ‘Academy of Life,’ which provides support for the patients in their efforts and shows them the means by which they can overcome existing difficulties. Equally emphasized is the close cooperation of the whole team of specialists, as well as the active participation of the family as an essential condition for the effectiveness of rehabilitation and, in effect, a return of the patient to a relatively normal life. Also presented are newly developing neurothechnologies and the neuromarkers of brain injuries. This enables a correct diagnosis to be made and, as a result, the selection of appropriate methods for neuropsychological rehabilitation, including neurotherapy.

  3. Respiratory mechanics in brain injury: A review

    OpenAIRE

    Koutsoukou, Antonia; Katsiari, Maria; Orfanos, Stylianos E; Kotanidou, Anastasia; Daganou, Maria; Kyriakopoulou, Magdalini; Koulouris, Nikolaos G; Rovina, Nikoletta

    2016-01-01

    Several clinical and experimental studies have shown that lung injury occurs shortly after brain damage. The responsible mechanisms involve neurogenic pulmonary edema, inflammation, the harmful action of neurotransmitters, or autonomic system dysfunction. Mechanical ventilation, an essential component of life support in brain-damaged patients (BD), may be an additional traumatic factor to the already injured or susceptible to injury lungs of these patients thus worsening lung injury, in case ...

  4. Traumatic Brain Injury in Kenya

    Directory of Open Access Journals (Sweden)

    Benson Kinyanjui

    2016-03-01

    Full Text Available Kenya has a disproportionately high rate of road traffic accidents each year, many of them resulting in traumatic brain injuries (TBIs. A review of articles written on issues pertaining to the medical treatment of people with TBI in the past 15 years in Kenya indicates a significantly high incidence of TBIs and a high mortality rate. This article reviews the available literature as a first step in exploring the status of rehabilitation of Kenyans with cognitive impairments and other disabilities resulting from TBIs. From this preliminary review, it is apparent that despite TBI being a pervasive public health problem in Kenya, it has not received due attention in the public and private sectors as evidenced by a serious lack of post-acute rehabilitation services for people with TBIs. Implications for this lack of services are discussed and recommendations are made for potential approaches to this problem.

  5. Therapeutic Sleep for Traumatic Brain Injury

    Science.gov (United States)

    2017-06-01

    AWARD NUMBER: W81XWH-16-1-0166 TITLE: Therapeutic Sleep for Traumatic Brain Injury PRINCIPAL INVESTIGATOR: Ravi Allada CONTRACTING...1. REPORT DATE June 2017 2. REPORT TYPE Annual 3. DATES COVERED 1June2016 - 31May2017 4. TITLE AND SUBTITLE Therapeutic Sleep for Traumatic Brain ...proposal will test the hypothesis that correcting sleep disorders can have a therapeutic effect onTraumatic Brain Injury (TBI) The majority of TBI

  6. Diagnosis of heel pad injuries

    DEFF Research Database (Denmark)

    Matteoli, Sara

    The biomechanics of in vivo heel pads has been investigated for more than 30 years, but unfortunately numerical results from the many individual investigators cannot be compared due to the different methodologies used, and the sometimes modest number of subjects investigated. The overall aim...... of the present thesis is to obtain a thorough understanding of the mechanical properties of in vivo human heel pad by studying the anatomical and physiological structure of healthy and diseased tissue, and to develop quantitative methods for diagnosing injuries. A compression device was built in order to record...... load-displacement curves from in vivo heel pads. To ensure applicability also for pathological feet, the device uses force levels lower than those needed to reproduce the physiological conditions of walking. One hundred twenty seven healthy volunteers were enrolled for compression tests and ultrasound...

  7. Elevated lactate as an early marker of brain injury in inflicted traumatic brain injury

    International Nuclear Information System (INIS)

    Makoroff, Kathi L.; Cecil, Kim M.; Ball, William S.; Care, Marguerite

    2005-01-01

    Patients with inflicted traumatic brain injury and evidence of hypoxic-ischemic injury as indicated by elevated lactate on MRS tend to have worse early neurological status and early outcome scores. Lactate levels as sampled by MRS might predict early clinical outcome in inflicted traumatic brain injury. (orig.)

  8. [Pancreatic injuries: diagnosis and management].

    Science.gov (United States)

    Chèvre, F; Tschantz, P

    2001-05-01

    Traumatic lesions of the pancreas are rare (3-12% of abdominal trauma). In Central Europe most of them are due to blunt trauma. We reviewed the series from four university and one central hospitals in Switzerland over a period of ten to twenty years. Among these 75 cases, 84% were consecutive to blunt trauma. All the cases with an open injury were operated on rapidly. 15 patients with blunt trauma were treated conservatively. Out of the 58 operated patients, 20 had a caudal resection, 3 a pancreatico-jejunal anastomosis and 1 a duodeno-pancreatectomy. The others were drained. Nine patients died, 5 of them as a direct consequence of the pancreatic lesions. The morbidity was high (48%). After an open abdominal trauma, or when the patient remains unstable after blunt trauma an emergency laparotomy should be undertaken. It can lead to damage control surgery as a first step when the general and local conditions are bad. When the patient is hemodynamicaly stable, a conservative approach should be considered. The best diagnostic tools are repeated CT-scan and amylasemia. A differed operation is indicated only if the general and local condition deteriorate.

  9. Diagnosis and treatment of radiation injuries

    International Nuclear Information System (INIS)

    Dalci, D.; Doerter, G.; Gueclue, I.

    2005-01-01

    This publication is the translation of IAEA Safety Reports Series No.2 ,Diagnosis and Treatment of Radiation Injuries. This report is directed at medical professionals who may be involved in the management of radiation injuries starting from the first few hours or days after an exposure of undefined severity. The principal aim of this publication is to provide guidelines to enable medical professionals to carry out prompt diagnostic measure and to offer emergency treatment. This report provides information in tabulated form on clinical criteria for dose assesment. Additionally, it discusses the appropriate dose-effect relationship in cases of external radiation involving either total body or local exposures, as well as internal contamination

  10. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an external...

  11. Fatigue in adults with traumatic brain injury

    DEFF Research Database (Denmark)

    Mollayeva, Tatyana; Kendzerska, Tetyana; Mollayeva, Shirin

    2013-01-01

    BACKGROUND: Despite strong indications that fatigue is the most common and debilitating symptom after traumatic brain injury, little is known about its frequency, natural history, or relation to other factors. The current protocol outlines a strategy for a systematic review that will identify......, assess, and critically appraise studies that assessed predictors for fatigue and the consequences of fatigue on at least two separate time points following traumatic brain injury. METHODS/DESIGN: MEDLINE, EMBASE, the Cochrane Database of Systematic Reviews, CINAHL, and PsycINFO will be systematically...... searched for relevant peer-reviewed studies. Reference lists of eligible papers will also be searched. All English language studies with a longitudinal design that focus on fatigue in adults with primary-impact traumatic brain injury will be included. Studies on fatigue following brain injury due...

  12. Traumatic Brain Injury (TBI) Data and Statistics

    Science.gov (United States)

    ... TBI Online Concussion Training Press Room Guide to Writing about TBI in News and Social Media Living with TBI HEADS UP to Brain Injury Awareness Get Email Updates To receive email updates about this topic, ...

  13. Traumatic Brain Injury service (TBI) Service

    Data.gov (United States)

    Department of Veterans Affairs — This Service provides access to Tramatic Brain injury patient data consult notes. The service also provides one write service method writeNote. The Service supports...

  14. Diagnostic value of low-field MRI for acute poisoning brain injury

    International Nuclear Information System (INIS)

    Dang Lianrong; He Qinyi

    2012-01-01

    Objective: To investigate the value of low-field MIR in diagnosis of acute CO poisoning brain injury. Methods: The brain MIR and clinical data of 110 patients with acute CO poisoning brain injury confirmed by clinical examination were retrospectively analyzed. Results: Long T1 and T2 signal intensity was showed on MRI in cerebral hemispheres and globus pallidus symmetrically. There were three basic types of MIR manifestations, white matter of brain type, globus pallidus type and brain mixed type. Conclusions: MRI could be used for confirming the degree and range of acute CO poisoning brain injury. It has important clinical value in the diagnosis, staging and prognosis of patients with acute CO poisoning brain injury. (authors)

  15. Spinal cord injury drives chronic brain changes

    Directory of Open Access Journals (Sweden)

    Ignacio Jure

    2017-01-01

    Full Text Available Only a few studies have considered changes in brain structures other than sensory and motor cortex after spinal cord injury, although cognitive impairments have been reported in these patients. Spinal cord injury results in chronic brain neuroinflammation with consequent neurodegeneration and cognitive decline in rodents. Regarding the hippocampus, neurogenesis is reduced and reactive gliosis increased. These long-term abnormalities could explain behavioral impairments exhibited in humans patients suffering from spinal cord trauma.

  16. Understanding Traumatic Brain Injury: An Introduction

    Science.gov (United States)

    Trudel, Tina M.; Scherer, Marcia J.; Elias, Eileen

    2009-01-01

    This article is the first of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received very limited national public policy attention and support. However since it has become the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained the attention of elected officials, military leaders,…

  17. Traumatic Brain Injury: Looking Back, Looking Forward

    Science.gov (United States)

    Bartlett, Sue; Lorenz, Laura; Rankin, Theresa; Elias, Eileen; Weider, Katie

    2011-01-01

    This article is the eighth of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received limited national attention and support. However, since it is the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained attention of elected officials, military leaders, policymakers, and the public. The…

  18. Triple Peripheral Nerve Injury Accompanying to Traumatic Brain Injury: A Case Report

    Directory of Open Access Journals (Sweden)

    Ižlknur Can

    2014-02-01

    Full Text Available Secondary injuries especially extremity fractures may be seen concurrently with traumatic brain injury (TBI. Peripheral nerve damages may accompany to these fractures and may be missed out, especially in acute stage. In this case report; damage of radial, ulnar and median nerves which was developed secondarily to distal humerus fracture that could not be detected in acute stage, in a patient who had motor vehicle accident (MVA. 29-year-old male patient was admitted with weakness in the right upper extremity. 9 months ago, he had traumatic brain injury because of MVA, and fracture of distal humerus was detected in follow-ups. Upon the suspect of the peripheral nerve injury, the diagnosis was confirmed with ENMG. The patient responded well to the rehabilitation program treatment. In a TBI patient, it must be kept in mind that there might be a secondary trauma and therefore peripheral nerve lesions may accompany to TBI.

  19. TRAUMATIC BRAIN INJURY CHILDREN: A LITERATURE REVIEW

    Directory of Open Access Journals (Sweden)

    Denismar Borges de Miranda

    2013-09-01

    Full Text Available Objective: to know the scientific literature on head injury in children. Method: this study is an integrative review of published articles in the database SciELO the period 2000-2010. Results: 10 articles were analyzed, from which emerged four categories: causes of traumatic brain child infant prognosis of traumatic brain child, treating children victims of child head injury and complications of therapy used for child victims of traumatic brain injury in children. Conclusions: there is consensus among the authors investigated the factors associated with better prognosis of traumatic brain child, remain vague and uncertain. They add that the success of this customer service related to the control of complications arising from cerebral trauma and mostly are treatable and / or preventable.

  20. Acute Respiratory Distress Syndrome in Severe Brain Injury

    Directory of Open Access Journals (Sweden)

    Yu. A. Churlyaev

    2009-01-01

    Full Text Available Objective: to study the development of acute respiratory distress syndrome (ARDS in victims with isolated severe brain injury (SBI. Subject and methods. 171 studies were performed in 16 victims with SBI. Their general condition was rated as very critical. The patients were divided into three groups: 1 non-ARDS; 2 Stage 1 ARDS; and 3 Stage 2 ARDS. The indicators of Stages 1 and 2 were assessed in accordance with the classification proposed by V. V. Moroz and A. M. Golubev. Intracranial pressure (ICP, extravascular lung water index, pulmonary vascular permeability, central hemodynamics, oxygenation index, lung anastomosis, the X-ray pattern of the lung and brain (computed tomography, and its function were monitored. Results. The hemispheric cortical level of injury of the brain with function compensation of its stem was predominantly determined in the controls; subcompensation and decompensation were ascertained in the ARDS groups. According to the proposed classification, these patients developed Stages 1 and 2 ARDS. When ARDS developed, there were rises in the level of extravascular lung fluid and pulmonary vascular permeability, a reduction in the oxygenation index (it was 6—12 hours later as compared with them, increases in a lung shunt and ICP; X-ray study revealed bilateral infiltrates in the absence of heart failure in Stage 2 ARDS. The correlation was positive between ICP and extravascular lung water index, and lung vascular permeability index (r>0.4;p<0.05. Conclusion. The studies have indicated that the classification proposed by V. V. Moroz and A. M. Golubev enables an early diagnosis of ARDS. One of its causes is severe brainstem injury that results in increased extravascular fluid in the lung due to its enhanced vascular permeability. The ICP value is a determinant in the diagnosis of secondary brain injuries. Key words: acute respiratory distress syndrome, extravascu-lar lung fluid, pulmonary vascular permeability, brain injury

  1. Functional brain study of chronic traumatic head injury

    International Nuclear Information System (INIS)

    Ceballos Alonso, Concepcion; Pelegrin Valero, Carmelo; Cordoba Diaz de Laspra, Elena

    2000-01-01

    Explosive aggressive behaviour is a significant clinical and medico-legal problem in patients suffering from head injury. However, experts in neuropsychiatry have proposed a specific category for this disorder: the o rganic aggressive syndrome: . The basic reason for proposing this diagnosis is that it describes the specificity of the violent conduct secondary to 'brain damage' with greater precision. Early diagnosis and treatment of the injury is critical. The impact of hnetium-99m-hexamethylpropuleneamine oxime (HMPAO) was examined for measuring brain damage in correlation to neuropsychological performance in patients with traumatic brain injury (TBI). We thus report the case of a twelve-year-old child with a history of CET, who presents with serious episodes of heteroaggressiveness and suggest the usefulness of single photon emission computerized tomography (SPECT) to establish the validity of this psychiatric diagnosis. The appearance of modern functional neuro-image techniques (SPECT) may help to increase the validity of clinical diagnoses in the field of psychiatry in general and of forensic psychiatry in particularly, as the related findings may be used as demarcation criteria to establish syndromic diagnoses (Au)

  2. Acute kidney injury: definition, diagnosis and epidemiology.

    Science.gov (United States)

    Rossaint, Jan; Zarbock, Alexander

    2016-02-01

    Acute kidney injury (AKI) is a common complication in hospitalized patients and great efforts by leading experts have been made in order to establish common definitions of AKI. The clinical use of these consensus definitions has led to a substantially improved understanding of AKI. In addition, the consensus definitions allow to compare AKI incidence and outcomes between different patient populations. As a result, it has become evident that AKI in the Western population represents a clinical syndrome with an incidence close to that of myocardial infarction. The aim of this review is to revisit the current concepts and definitions of AKI, to highlight its diagnosis, and to emphasize its epidemiological characteristics. Here, we will focus on the available literature reporting the epidemiology of AKI in critically ill patients. Sepsis, major surgery, and nephrotoxic drugs are the main causes of AKI in these patients, and its occurrence is associated with an increased risk for sustained chronic kidney injury. We also discuss the concept of renal angina as a possible future concept for improved clinical risk stratification to detect AKI. In this regard, we emphasize the importance of the use of novel biomarkers in the diagnosis of AKI, as they hold the potential to improve early diagnosis and prevention in the clinical setting.

  3. Driving, brain injury and assistive technology.

    Science.gov (United States)

    Lane, Amy K; Benoit, Dana

    2011-01-01

    Individuals with brain injury often present with cognitive, physical and emotional impairments which impact their ability to resume independence in activities of daily living. Of those activities, the resumption of driving privileges is cited as one of the greatest concerns by survivors of brain injury. The integration of driving fundamentals within the hierarchical model proposed by Keskinen represents the complexity of skills and behaviors necessary for driving. This paper provides a brief review of specific considerations concerning the driver with TBI and highlights current vehicle technology which has been developed by the automotive industry and by manufacturers of adaptive driving equipment that may facilitate the driving task. Adaptive equipment technology allows for compensation of a variety of operational deficits, whereas technological advances within the automotive industry provide drivers with improved safety and information systems. However, research has not yet supported the use of such intelligent transportation systems or advanced driving systems for drivers with brain injury. Although technologies are intended to improve the safety of drivers within the general population, the potential of negative consequences for drivers with brain injury must be considered. Ultimately, a comprehensive driving evaluation and training by a driving rehabilitation specialist is recommended for individuals with brain injury. An understanding of the potential impact of TBI on driving-related skills and knowledge of current adaptive equipment and technology is imperative to determine whether return-to-driving is a realistic and achievable goal for the individual with TBI.

  4. SPECT brain perfusion imaging in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Li Juan; Liu Baojun; Zhao Feng; He Lirong; Xia Yucheng

    2003-01-01

    Objective: To study the clinical value of SPECT brain perfusion imaging after mild traumatic brain injury and to evaluate the mechanism of brain blood flow changes in the brain traumatic symptoms. Methods: SPECT 99 Tc m -ethylene cysteinate dimer (ECD) brain perfusion imaging was performed on 39 patients with normal consciousness and normal computed tomography. The study was performed on 23 patients within 3 months after the accidental injury and on 16 patients at more than 3 months post-injury. The cerebellum was used as the reference site (100% maximum value). Any decrease in cerebral perfusion in cortex or basal ganglia to below 70%, or even to below 50% in the medial temporal lobe, compared to the cerebellar reference was considered abnormal. Results: The results of 23 patients (59%) were abnormal. Among them, 20 patients showed 74 focal lesions with an average of 3.7 per patient (15 studies performed within 3 months and 8 studies performed more than 3 months after injury). The remaining 3 showed diffuse hypoperfusion (two at the early stage and one at more than 3 months after the injury). The 13 abnormal studies performed at the early stage showed 58 lesions (average, 4.5 per patient), whereas there was a reduction to an average of 2.3 per patient in the 7 patients (total 16 lesions) at more than 3 months post-injury. In the 20 patients with focal lesions, mainly the following regions were involved: frontal lobes 43.2% (32/74), basal ganglia 24.3% (18/74) and temporal lobes 17.6% (13/74). Conclusions: 1) SPECT brain perfusion imaging is more sensitive than computed tomography in detecting brain lesions of mild traumatic brain injury. 2) SPECT brain perfusion imaging is more sensitive at early stage than at late stage after injury. 3) The most common complaints were headache, dizziness, memory deficit. The patients without loss of consciousness may present brain hypoperfusion, too. 4) The changes may explain a neurological component of the patient symptoms in

  5. Traumatic brain injuries in the construction industry.

    Science.gov (United States)

    Colantonio, Angela; McVittie, Doug; Lewko, John; Yin, Junlang

    2009-10-01

    This study analyses factors associated with work-related traumatic brain injury (TBI), specifically in the construction industry in Ontario, Canada. This cross-sectional study utilized data extracted from the Ontario Workplace Safety and Insurance Board (WSIB) records indicating concussion/intracranial injury that resulted in days off work in 2004-2005. Analyses of 218 TBI cases revealed that falls were the most common cause of injury, followed by being struck by or against an object. Mechanisms of injury and the temporal profile of injury also varied by age. For instance, a significantly higher proportion of injuries occurred in the mornings for young workers compared to older workers. The results of this study provide important information for prevention of TBI which suggest important age-specific strategies for workers in the construction industry.

  6. Molecular Mechanisms of Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Claire Thornton

    2012-01-01

    Full Text Available Fetal/neonatal brain injury is an important cause of neurological disability. Hypoxia-ischemia and excitotoxicity are considered important insults, and, in spite of their acute nature, brain injury develops over a protracted time period during the primary, secondary, and tertiary phases. The concept that most of the injury develops with a delay after the insult makes it possible to provide effective neuroprotective treatment after the insult. Indeed, hypothermia applied within 6 hours after birth in neonatal encephalopathy reduces neurological disability in clinical trials. In order to develop the next generation of treatment, we need to know more about the pathophysiological mechanism during the secondary and tertiary phases of injury. We review some of the critical molecular events related to mitochondrial dysfunction and apoptosis during the secondary phase and report some recent evidence that intervention may be feasible also days-weeks after the insult.

  7. Minocycline Attenuates Iron-Induced Brain Injury.

    Science.gov (United States)

    Zhao, Fan; Xi, Guohua; Liu, Wenqaun; Keep, Richard F; Hua, Ya

    2016-01-01

    Iron plays an important role in brain injury after intracerebral hemorrhage (ICH). Our previous study found minocycline reduces iron overload after ICH. The present study examined the effects of minocycline on the subacute brain injury induced by iron. Rats had an intracaudate injection of 50 μl of saline, iron, or iron + minocycline. All the animals were euthanized at day 3. Rat brains were used for immunohistochemistry (n = 5-6 per each group) and Western blotting assay (n = 4). Brain swelling, blood-brain barrier (BBB) disruption, and iron-handling proteins were measured. We found that intracerebral injection of iron resulted in brain swelling, BBB disruption, and brain iron-handling protein upregulation (p minocycline with iron significantly reduced iron-induced brain swelling (n = 5, p Minocycline significantly decreased albumin protein levels in the ipsilateral basal ganglia (p minocycline co-injected animals. In conclusion, the present study suggests that minocycline attenuates brain swelling and BBB disruption via an iron-chelation mechanism.

  8. Impact of Single-Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) and Positron Emission Tomography/Computed Tomography (PET/CT) in the Diagnosis of Traumatic Brain Injury (TBI): Case Report.

    Science.gov (United States)

    Molina-Vicenty, Irma L; Santiago-Sánchez, Michelaldemar; Vélez-Miró, Iván; Motta-Valencia, Keryl

    2016-09-01

    Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external force. TBI, a global leading cause of death and disability, is associated with serious social, economic, and health problems. In cases of mild-to-moderate brain damage, conventional anatomical imaging modalities may or may not detect the cascade of metabolic changes that have occurred or are occurring at the intracellular level. Functional nuclear medicine imaging and neurophysiological parameters can be used to characterize brain damage, as the former provides direct visualization of brain function, even in the absence of overt behavioral manifestations or anatomical findings. We report the case of a 30-year-old Hispanic male veteran who, after 2 traumatic brain injury events, developed cognitive and neuropsychological problems with no clear etiology in the presence of negative computed tomography (CT) findings.

  9. Virtual Reality for Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Elisa R. Zanier

    2018-05-01

    Full Text Available In this perspective, we discuss the potential of virtual reality (VR in the assessment and rehabilitation of traumatic brain injury, a silent epidemic of extremely high burden and no pharmacological therapy available. VR, endorsed by the mobile and gaming industries, is now available in more usable and cheaper tools allowing its therapeutic engagement both at the bedside and during the daily life at chronic stages after injury with terrific potential for a longitudinal disease modifying effect.

  10. Neuropsychiatric aspects of severe brain injuries

    Directory of Open Access Journals (Sweden)

    O. S. Zaitsev

    2012-01-01

    Full Text Available The state-of-the-art of Russian neuropsychiatry and priority developments in different psychopathological syndromes in severe brain injuries are assessed. Many cognitive and emotional impairments are explained in terms of the idea on the organization of psychic activity over time. It is emphasized that to achieve the premorbid levels of an interhemispheric interaction and functional asymmetry of the cerebral hemispheres affords psychic activity recovery. The experience in investigating, classifying, and treating various mental disorders occurring after severe brain injuries is generalized. The basic principles of psychopharmacotherapy and rehabilitation of victims are stated.

  11. Glibenclamide reduces secondary brain damage after experimental traumatic brain injury.

    Science.gov (United States)

    Zweckberger, K; Hackenberg, K; Jung, C S; Hertle, D N; Kiening, K L; Unterberg, A W; Sakowitz, O W

    2014-07-11

    Following traumatic brain injury (TBI) SUR1-regulated NCCa-ATP (SUR1/TRPM4) channels are transcriptionally up-regulated in ischemic astrocytes, neurons, and capillaries. ATP depletion results in depolarization and opening of the channel leading to cytotoxic edema. Glibenclamide is an inhibitor of SUR-1 and, thus, might prevent cytotoxic edema and secondary brain damage following TBI. Anesthetized adult Sprague-Dawley rats underwent parietal craniotomy and were subjected to controlled cortical impact injury (CCI). Glibenclamide was administered as a bolus injection 15min after CCI injury and continuously via osmotic pumps throughout 7days. In an acute trial (180min) mean arterial blood pressure, heart rate, intracranial pressure, encephalographic activity, and cerebral metabolism were monitored. Brain water content was assessed gravimetrically 24h after CCI injury and contusion volumes were measured by MRI scanning technique at 8h, 24h, 72h, and 7d post injury. Throughout the entire time of observation neurological function was quantified using the "beam-walking" test. Glibenclamide-treated animals showed a significant reduction in the development of brain tissue water content(80.47%±0.37% (glibenclamide) vs. 80.83%±0.44% (control); pbeam-walking test throughout 7days. In accordance to these results and the available literature, glibenclamide seems to have promising potency in the treatment of TBI. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Secondary injury in traumatic brain injury patients - A prospective ...

    African Journals Online (AJOL)

    Objective. Secondary insults of hypotension and hypoxia significantly impact on outcome in patients with traumatic brain injury (TBI). More than 4 hours' delay in evacuation of intracranial haematomas has been demonstrated to have an additional impact on outcome. The objective of this study was to document the ...

  13. secondary injury in traumatic brain injury patients - a prospective study

    African Journals Online (AJOL)

    Objective. Secondary insults of hypotension and hypoxia significantly impact on outcome in patients with traumatic brain injury (TBI). More than 4 hours' delay in evacuation of intracranial haematomas has been demonstrated to have an additional impact on outcome. The objective of this study was to document the ...

  14. Brain SPECT in severs traumatic head injury

    International Nuclear Information System (INIS)

    Beaulieu, F.; Eder, V.; Pottier, J.M.; Baulieu, J.L.; Fournier, P.; Legros, B.; Chiaroni, P.; Dalonneau, M.

    2000-01-01

    The aim of this work was to compare the results of the early brain scintigraphy in traumatic brain injury to the long term neuropsychological behavior. Twenty four patients had an ECD-Tc99m SPECT, within one month after the trauma; scintigraphic abnormalities were evaluated according to a semi-quantitative analysis. The neuropsychological clinical investigation was interpreted by a synthetic approach to evaluate abnormalities related to residual motor deficit, frontal behavior, memory and language disorders. Fourteen patients (58%) had sequela symptoms. SPECT revealed 80 abnormalities and CT scan only 31. Statistical analysis of uptake values showed significantly lower uptake in left basal ganglia and brain stem in patients with sequela memory disorders. We conclude that the brain perfusion scintigraphy is able to detect more lesions than CT and that it could really help to predict the neuropsychological behavior after severe head injury. Traumatology could become in the future a widely accepted indication of perfusion SPECT. (authors)

  15. Time dysperception perspective for acquired brain injury

    Directory of Open Access Journals (Sweden)

    Federica ePiras

    2014-01-01

    Full Text Available Distortions of time perception are presented by a number of neuropsychiatric disorders. Here we survey timing abilities in clinical populations with acquired brain injuries in key cerebral areas recently implicated in human studies of timing. We purposely analyzed the complex relationship between cognitive and contextual factors involved in time estimation, as to characterize the correlation between timed and other cognitive behaviors in each group. We assume that interval timing is a solid construct to study cognitive dysfunctions following brain injury, as timing performance is a sensitive metric of information processing, while temporal cognition has the potential of influencing a wide range of cognitive processes. Moreover, temporal performance is a sensitive assay of damage to the underlying neural substrate after a brain insult. Further research in neurological and psychiatric patients will definitively answer the question of whether time distortions are manifestations of cognitive and behavioral symptoms of brain damage and definitively clarify their mechanisms.

  16. Closed central slip injuries--a missed diagnosis?

    LENUS (Irish Health Repository)

    Nugent, N

    2011-09-01

    The extensor apparatus of the finger is a complex structure and injury can lead to significant digital dysfunction. Closed central slip injuries may be missed or diagnosis delayed because of lack of an open wound and often no radiographic abnormality, and can result in boutonniere deformities if untreated. This study aimed to quantify the number of patients attending with closed central slip injuries and to ascertain if the initial diagnosis was correct. The number of patients presenting to us over a 6 month period was recorded. The original diagnosis, time to diagnosis of central slip injury and the presence\\/absence of a boutonniere deformity were recorded. Ten patients were included in the study. Seven (70%) injuries were due to sport. Eight (80%) had a delayed diagnosis of central slip injury. Six (60%) had previously presented to general practitioners or emergency departments. Seven (70%) had boutonniere deformities. Closed central slip injuries can be missed. Simple clinical tests can diagnose central slip disruption.

  17. Radionuclidr diagnosis of brain tumors, brain inflammatory and traumatic lesions

    International Nuclear Information System (INIS)

    Badmaev, K.N.; Mel'kishev, V.F.; Dement'ev, E.V.; Svetlova, N.L.

    1982-01-01

    A complex of problems of radionuclide diagnosis of central nervous system diseases including tumors, traumas, vascular lessons, inflammatory processes is considered. The principles, technique and results of radionuclide xintigraphy of a tumor, depending on its localization are given. Radioindication of brain tumours in the operation is given

  18. Interleukin-1 and acute brain injury

    Directory of Open Access Journals (Sweden)

    Katie N Murray

    2015-02-01

    Full Text Available Inflammation is the key host-defense response to infection and injury, yet also a major contributor to a diverse range of diseases, both peripheral and central in origin. Brain injury as a result of stroke or trauma is a leading cause of death and disability worldwide, yet there are no effective treatments, resulting in enormous social and economic costs. Increasing evidence, both preclinical and clinical, highlights inflammation as an important factor in stroke, both in determining outcome and as a contributor to risk. A number of inflammatory mediators have been proposed as key targets for intervention to reduce the burden of stroke, several reaching clinical trial, but as yet yielding no success. Many factors could explain these failures, including the lack of robust preclinical evidence and poorly designed clinical trials, in addition to the complex nature of the clinical condition. Lack of consideration in preclinical studies of associated co-morbidities prevalent in the clinical stroke population is now seen as an important omission in previous work. These co-morbidities (atherosclerosis, hypertension, diabetes, infection have a strong inflammatory component, supporting the need for greater understanding of how inflammation contributes to acute brain injury. Interleukin (IL-1 is the prototypical pro-inflammatory cytokine, first identified many years ago as the endogenous pyrogen. Research over the last 20 years or so reveals that IL-1 is an important mediator of neuronal injury and blocking the actions of IL-1 is beneficial in a number of experimental models of brain damage. Mechanisms underlying the actions of IL-1 in brain injury remain unclear, though increasing evidence indicates the cerebrovasculature as a key target. Recent literature supporting this and other aspects of how IL-1 and systemic inflammation in general contribute to acute brain injury are discussed in this review.

  19. Recovery of resting brain connectivity ensuing mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Rose Dawn Bharath

    2015-09-01

    Full Text Available Brains reveal amplified plasticity as they recover from an injury. We aimed to define time dependent plasticity changes in patients recovering from mild traumatic brain injury (mTBI. 25 subjects with mild head injury were longitudinally evaluated within 36 hours, 3 and 6 months using resting state functional connectivity (RSFC. Region of interest (ROI based connectivity differences over time within the patient group and in comparison with a healthy control group were analyzed at p<0.005. We found 33 distinct ROI pairs that revealed significant changes in their connectivity strength with time. Within three months, the majority of the ROI pairs had decreased connectivity in mTBI population, which increased and became comparable to healthy controls at 6 months. Initial imaging within 36 hours of injury revealed hyper connectivity predominantly involving the salience network and default mode network, which reduced at 3 months when lingual, inferior frontal and fronto-parietal networks revealed hyper connectivity. At six months all the evaluated networks revealed hyper connectivity and became comparable to the healthy controls. Our findings in a fairly homogenous group of patients with mTBI evaluated during the 6 month window of recovery defines time varying brain connectivity changes as the brain recovers from an injury. A majority of these changes were seen in the frontal and parietal lobes between 3-6 months after injury. Hyper connectivity of several networks supported normal recovery in the first six months and it remains to be seen in future studies whether this can predict an early and efficient recovery of brain function.

  20. The spectrum and outcome of paediatric traumatic brain injury in ...

    African Journals Online (AJOL)

    The spectrum and outcome of paediatric traumatic brain injury in ... to develop a comprehensive overview of traumatic brain injury (TBI) in children ... We reviewed the age, gender, outcomes, radiological findings and treatment of the patients.

  1. Traumatic Brain Injury and Personality Change

    Science.gov (United States)

    Fowler, Marc; McCabe, Paul C.

    2011-01-01

    Traumatic brain injury (TBI) is the leading cause of death and lifelong disability in the United States for individuals below the age of 45. Current estimates from the Center for Disease Control (CDC) indicate that at least 1.4 million Americans sustain a TBI annually. TBI affects 475,000 children under age 14 each year in the United States alone.…

  2. Centralized rehabilitation after servere traumatic brain injury

    DEFF Research Database (Denmark)

    Engberg, Aase Worså; Liebach, Annette; Nordenbo, Annette Mosbæk

    2006-01-01

    OBJECTIVES: To present results from the first 3 years of centralized subacute rehabilitation after very severe traumatic brain injury (TBI), and to compare results of centralized versus decentralized rehabilitation. MATERIAL AND METHODS: Prospectively, the most severely injured group of adults fr...

  3. Fitness to drive after traumatic brain injury

    NARCIS (Netherlands)

    Brouwer, WH; Withaar, FK

    This paper deals with the issue of fitness to drive in patients suffering from traumatic brain injury (TBI). Guidelines for assessment are proposed and three types of studies are reviewed: studies about impairments of attention and information processing, studies of driving competence, and driver

  4. Working with Students with Traumatic Brain Injury

    Science.gov (United States)

    Lucas, Matthew D.

    2010-01-01

    The participation of a student with Traumatic Brain Injury (TBI) in general physical education can often be challenging and rewarding for the student and physical education teacher. This article addresses common characteristics of students with TBI and presents basic solutions to improve the education of students with TBI in the general physical…

  5. Psychiatric sequelae of traumatic brain injury: Retrospective ...

    African Journals Online (AJOL)

    Objective: Traumatic brain injury (TBI) is a public health problem and is associated with many complications. However little is known about the psychiatric sequelae of TBI in Nigeria. This study described the pattern and determinants of psychiatric sequelae among subjects with TBI. Materials and Methods: The study is a ...

  6. Narrative Language in Traumatic Brain Injury

    Science.gov (United States)

    Marini, Andrea; Galetto, Valentina; Zampieri, Elisa; Vorano, Lorenza; Zettin, Marina; Carlomagno, Sergio

    2011-01-01

    Persons with traumatic brain injury (TBI) often show impaired linguistic and/or narrative abilities. The present study aimed to document the features of narrative discourse impairment in a group of adults with TBI. 14 severe TBI non-aphasic speakers (GCS less than 8) in the phase of neurological stability and 14 neurologically intact participants…

  7. Traumatic Brain Injury: Nuclear Medicine Neuroimaging

    NARCIS (Netherlands)

    Sánchez-Catasús, Carlos A; Vállez Garcia, David; Le Riverend Morales, Eloísa; Galvizu Sánchez, Reinaldo; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; de Vries, Erik FJ; van Waarde, Aren; Leenders, Klaus L

    2014-01-01

    This chapter provides an up-to-date review of nuclear medicine neuroimaging in traumatic brain injury (TBI). 18F-FDG PET will remain a valuable tool in researching complex mechanisms associated with early metabolic dysfunction in TBI. Although evidence-based imaging studies are needed, 18F-FDG PET

  8. Beam diagnostics for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Nikol`skiy Yu.E.

    2012-06-01

    Full Text Available

    The paper presents aliterature review of domestic and foreign sources of modern methods of diagnostics imaging for traumatic brain injury. Information of the magnetic resonance imaging and computed tomography in the of this disease

  9. Severe traumatic brain injury managed with decompressive ...

    African Journals Online (AJOL)

    2012-05-29

    May 29, 2012 ... Patients with severe taumatic brain injury may develop intractable raised ICP resulting in high mortality ... Glasgow coma score was 8/15 (E1V3M4) and he had left ... An emergency right fronto-temporo-parietal decompressive.

  10. New Antioxidant Drugs for Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Maria Luisa Tataranno

    2015-01-01

    Full Text Available The brain injury concept covers a lot of heterogeneity in terms of aetiology involving multiple factors, genetic, hemodynamic, metabolic, nutritional, endocrinological, toxic, and infectious mechanisms, acting in antenatal or postnatal period. Increased vulnerability of the immature brain to oxidative stress is documented because of the limited capacity of antioxidant enzymes and the high free radicals (FRs generation in rapidly growing tissue. FRs impair transmembrane enzyme Na+/K+-ATPase activity resulting in persistent membrane depolarization and excessive release of FR and excitatory aminoacid glutamate. Besides being neurotoxic, glutamate is also toxic to oligodendroglia, via FR effects. Neuronal cells die of oxidative stress. Excess of free iron and deficient iron/binding metabolising capacity are additional features favouring oxidative stress in newborn. Each step in the oxidative injury cascade has become a potential target for neuroprotective intervention. The administration of antioxidants for suspected or proven brain injury is still not accepted for clinical use due to uncertain beneficial effects when treatments are started after resuscitation of an asphyxiated newborn. The challenge for the future is the early identification of high-risk babies to target a safe and not toxic antioxidant therapy in combination with standard therapies to prevent brain injury and long-term neurodevelopmental impairment.

  11. ischemic brain injury in neonatal rats

    African Journals Online (AJOL)

    Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, ... Methods: Forty-eight rats (P7-pups) were randomly assigned to one of four groups: ... Keywords: Hypoxic–ischemic brain injury, α-Lipoic acid, Cerebral infarct area, Edema, Antioxidants, .... Of the 48 rats initially used in the current study, 5.

  12. The Impact of Traumatic Brain Injury on the Aging Brain.

    Science.gov (United States)

    Young, Jacob S; Hobbs, Jonathan G; Bailes, Julian E

    2016-09-01

    Traumatic brain injury (TBI) has come to the forefront of both the scientific and popular culture. Specifically, sports-related concussions or mild TBI (mTBI) has become the center of scientific scrutiny with a large amount of research focusing on the long-term sequela of this type of injury. As the populace continues to age, the impact of TBI on the aging brain will become clearer. Currently, reports have come to light that link TBI to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as certain psychiatric diseases. Whether these associations are causations, however, is yet to be determined. Other long-term sequelae, such as chronic traumatic encephalopathy (CTE), appear to be associated with repetitive injuries. Going forward, as we gain better understanding of the pathophysiological process involved in TBI and subclinical head traumas, and individual traits that influence susceptibility to neurocognitive diseases, a clearer, more comprehensive understanding of the connection between brain injury and resultant disease processes in the aging brain will become evident.

  13. Relatives of patients with severe brain injury

    DEFF Research Database (Denmark)

    Norup, Anne; Petersen, Janne; Lykke Mortensen, Erik

    2015-01-01

    PRIMARY OBJECTIVE: To investigate trajectories and predictors of trajectories of anxiety and depression in relatives of patients with a severe brain injury during the first year after injury. RESEARCH DESIGN: A prospective longitudinal study with four repeated measurements. SUBJECTS: Ninety...... relatives of patients with severe brain injury. METHODS: The relatives were assessed on the anxiety and depression scales from the Symptom Checklist-90-Revised and latent variable growth curve models were used to model the trajectories. The effects of patient's age, patient's Glasgow Coma Score, level...... should focus not only on specific deficits in the patient, but also on how the emotional state and well-being of the relatives evolve, while trying to adjust and cope with a new life-situation....

  14. Perspective on Pediatric Traumatic Brain Injury | Igun | African ...

    African Journals Online (AJOL)

    Background: Traumatic brain injury is an important aspect of paediatric trauma because of its contribution to mortality ant post trauma seqeulae. Management of traumatic brain injury remains a challenge to surgeons, especially in developing countries. This study aims to determine the pattern of traumatic brain injury among ...

  15. Perinatal Hypoxic-Ischemic brain injury; MR findings

    International Nuclear Information System (INIS)

    Park, Dong Woo; Seo, Chang Hye

    1994-01-01

    To characterize the MR findings of hypoxic-ischemic brain injury and to assess the value of the MR imaging. SE T1-, T2-weighted, and IR brain MR images of 44 infants and children with the past history of perinatal hypoxic insults were reviewed. Abnormal brain MR findings of 8 patients with birth history of prematurity and 36 patients with birth history of full-term/posterm including 7 with severe anoxic insult history, were compared in regard to the location and the character of the lesions. MRI demonstrated the followings; (1)abnormal signal intensity lesions of subcortical and/or deep cerebral white matter, cortex, and deep gray matter, (2)atrophy of the cerebral white matter, cortex and corpus callosum, with/without ventriculomegaly, and (3)delay in myelination. Periventricular and deep white matter lesions were demonstrated in the prematurity, the deep white matter lesions and/ or subcortical white matter lesions in the term/post-term, and deep gray matter lesions in the 7 patients with severe anoxic insults history. MR imaging was useful in the diagnosis of the hypoxic-ischemic brain injury, and the white and gray matter lesions were correlated with the time of the injury and the severity of hypoxic insult

  16. Specific diagnosis of brain disease with double isotope brain scanning

    Energy Technology Data Exchange (ETDEWEB)

    Ell, P J; Lotritsch, K H; Hilbrand, E; Meixner, M; Barolin, G; Scholz, H [Landesunfallkrankenhaus, Feldkirch (Austria). Dept. of Nuclear Medicine; Landesnervenkrankenhaus, Feldkirch (Austria). Dept. of Neurology)

    1976-02-01

    25 patients with known cerebral disease (either CVA's or primary or secondary tumours) diagnosed by clinical and angiographic criteria were submitted to a double siotope imaging technique using sup(99m)TcO/sub 4/- and sup(99m)Tc-EHDP. The different biological behaviour of these radiopharmaceuticals has provided specific and differential diagnosis between vascular and neoplastic disease of the brain. sup(99m)Tc-EHDP is shown to be the tracer of choice for the imaging of CVA's and sup(99m)TcO/sub 4/- is confirmed as the tracer of choice for the imaging of primary or secondary tumours in the brain.

  17. Magnetic resonance imaging in diffuse brain injury

    International Nuclear Information System (INIS)

    Yokota, Hiroyuki; Yasuda, Kazuhiro; Mashiko, Kunihiro; Henmi, Hiroshi; Otsuka, Toshibumi; Kobayashi, Shiro; Nakazawa, Shozo

    1992-01-01

    Forty cases diagnosed as diffuse brain injury (DBI) were studied by magnetic resonance imaging (MRI) performed within 3 days after injury. These cases were divided into two groups, which were the concussion group and diffuse axonal injury (DAI) group established by Gennarelli. There were no findings on computerized tomography (CT) in the concussion group except for two cases which had a brain edema or subarachnoid hemorrhage. But on MRI, high intensity areas on T2 weighted imaging were demonstrated in the cerebral white matter in this group. Many lesions in this group were thought to be edemas of the cerebral white matter, because of the fact that on serial MRI, they were isointense. In mild types of DAI, the lesions on MRI were located only in the cerebral white matter, whereas, in the severe types of DAI, lesions were located in the basal ganglia, the corpus callosum, the dorsal part of the brain stem as well as in the cerebral white matter. As for CT findings, parenchymal lesions were not visualized especially in mild DAI. Our results suggested that the lesions in cerebral concussion were edemas in cerebral white matter. In mild DAI they were non-hemorrhagic contusion; and in severe DAI they were hemorrhagic contusions in the cerebral white matter, the basal ganglia, the corpus callosum or the dorsal part of the brain stem. (author)

  18. Determination of sensitivity, specificity and cut off point of visual- Motor Bender Gestalt Test in the diagnosis of traumatic brain injury

    Directory of Open Access Journals (Sweden)

    tayebeh Rezaie nasab

    2013-02-01

    Results: In this study, cut-off point was calculated as 6.5%, sensitivity as 55.8%, characteristic as 81.2%, and the area under the Roc curve as 0.69. Moreover, positive predictive value, negative predictive value and efficiency were 95.08%, 22.03%, and 59.17%, respectively. Conclusion: Results of this study revealed that Bender Gestalt Test is relatively weak in diagnosis of mild TBI. Hence, its characteristic is high and it was successful in diagnosing healthy individuals.

  19. Respiratory mechanics in brain injury: A review.

    Science.gov (United States)

    Koutsoukou, Antonia; Katsiari, Maria; Orfanos, Stylianos E; Kotanidou, Anastasia; Daganou, Maria; Kyriakopoulou, Magdalini; Koulouris, Nikolaos G; Rovina, Nikoletta

    2016-02-04

    Several clinical and experimental studies have shown that lung injury occurs shortly after brain damage. The responsible mechanisms involve neurogenic pulmonary edema, inflammation, the harmful action of neurotransmitters, or autonomic system dysfunction. Mechanical ventilation, an essential component of life support in brain-damaged patients (BD), may be an additional traumatic factor to the already injured or susceptible to injury lungs of these patients thus worsening lung injury, in case that non lung protective ventilator settings are applied. Measurement of respiratory mechanics in BD patients, as well as assessment of their evolution during mechanical ventilation, may lead to preclinical lung injury detection early enough, allowing thus the selection of the appropriate ventilator settings to avoid ventilator-induced lung injury. The aim of this review is to explore the mechanical properties of the respiratory system in BD patients along with the underlying mechanisms, and to translate the evidence of animal and clinical studies into therapeutic implications regarding the mechanical ventilation of these critically ill patients.

  20. Therapeutic irradiation and brain injury

    International Nuclear Information System (INIS)

    Sheline, G.E.; Wara, W.M.; Smith, V.

    1980-01-01

    This is a review and reanalysis of the literature on adverse effects of therapeutic irradiation on the brain. Reactions have been grouped and considered according to time of appearance. The emphasis of the analysis is on delayed reactions, especially those that occur from a few months to several years after irradiation. All dose specifications were converted into equivalent megavoltage rads. The data were analyzed in terms of total dose, overall treatment time and number of treatment fractions. Also discussed were acute radiation reactions, early delayed radiation reactions, somnolence and leukoencephalopathy post-irradiation/chemotherapy and combined effects of radiation and chemotherapy

  1. Surviving severe traumatic brain injury in Denmark

    DEFF Research Database (Denmark)

    Odgaard, Lene; Poulsen, Ingrid; Kammersgaard, Lars Peter

    2015-01-01

    PURPOSE: To identify all hospitalized patients surviving severe traumatic brain injury (TBI) in Denmark and to compare these patients to TBI patients admitted to highly specialized rehabilitation (HS-rehabilitation). PATIENTS AND METHODS: Patients surviving severe TBI were identified from...... severe TBI were admitted to HS-rehabilitation. Female sex, older age, and non-working status pre-injury were independent predictors of no HS-rehabilitation among patients surviving severe TBI. CONCLUSION: The incidence rate of hospitalized patients surviving severe TBI was stable in Denmark...

  2. Monitoring in traumatic brain injury.

    Science.gov (United States)

    Matz, P G; Pitts, L

    1997-01-01

    In the past several years, improvements in technology have advanced the monitoring capabilities for patients with TBI. The primary goal of monitoring the patient with TBI is to prevent secondary insults to the brain, primarily cerebral ischemia. Cerebral ischemia may occur early and without clinical correlation and portends a poor outcome. Measurement of ICP is the cornerstone of monitoring in the patient with TBI. Monitoring of ICP provides a measurement of CPP and a rough estimation of CBF. However, with alterations in pressure autoregulation, measurement of CPP does not always allow for determination of CBF. To circumvent this problem, direct measurements of CBF can be performed using clearance techniques (133Xe, N2O, Xe-CT) or invasive monitoring techniques (LDF, TDF, NIRS). Although direct and quantitative, clearance techniques do not allow for continuous monitoring. Invasive CBF monitoring techniques are new, and artifactual results can be problematic. The techniques of jugular venous saturation monitoring and TCD are well established and are powerful adjuncts to ICP monitoring. They allow the clinician to monitor cerebral oxygen extraction and blood flow velocity, respectively, for any given CPP. Use of TCD may predict posttraumatic vasospasm before clinical sequelae. Jugular venous saturation monitoring may detect clinically occult episodes of cerebral ischemia and increased oxygen extraction. Jugular venous saturation monitoring optimizes the use of hyperventilation in the treatment of intracranial hypertension. Although PET and SPECT scanning allow direct measurement of CMRO2, these techniques have limited application currently. Similarly, microdialysis is in its infancy but has demonstrated great promise for metabolic monitoring. EEG and SEP are excellent adjuncts to the monitoring arsenal and provide immediate information on current brain function. With improvements in electronic telemetry, functional monitoring by EEG or SEP may become an important

  3. Characteristics of Firearm Brain Injury Survivors in the Traumatic Brain Injury Model Systems (TBIMS) National Database: A Comparison of Assault and Self-Inflicted Injury Survivors.

    Science.gov (United States)

    Bertisch, Hilary; Krellman, Jason W; Bergquist, Thomas F; Dreer, Laura E; Ellois, Valerie; Bushnik, Tamara

    2017-11-01

    To characterize and compare subgroups of survivors with assault-related versus self-inflicted traumatic brain injuries (TBIs) via firearms at the time of inpatient rehabilitation and at 1-, 2-, and 5-year follow-up. Secondary analysis of data from the Traumatic Brain Injury Model Systems National Database (TBIMS NDB), a multicenter, longitudinal cohort study. Retrospective analyses of a subset of individuals enrolled in the TBIMS NDB. Individuals 16 years and older (N=399; 310 via assault, 89 via self-inflicted injury) with a primary diagnosis of TBI caused by firearm injury enrolled in the TBIMS NDB. Not applicable. Disability Rating Scale, Glasgow Outcome Scale-Extended, sociodemographic variables (sex, age, race, marital status), injury-related/acute care information (posttraumatic amnesia, loss of consciousness, time from injury to acute hospital discharge), and mental health variables (substance use history, psychiatric hospitalizations, suicide history, incarcerations). Individuals who survived TBI secondary to a firearm injury differed by injury mechanism (assault vs self-inflicted) on critical demographic, injury-related/acute care, and mental health variables at inpatient rehabilitation and across long-term recovery. Groups differed in terms of geographic area, age, ethnicity, education, marital status, admission Glasgow Coma Scale score, and alcohol abuse, suicide attempts, and psychiatric hospitalizations at various time points. These findings have implications for prevention (eg, mental health programming and access to firearms in targeted areas) and for rehabilitation planning (eg, by incorporating training with coping strategies and implementation of addictions-related services) for firearm-related TBI, based on subtype of injury. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. Inflammation, caffeine and adenosine in neonatal hypoxic ischemic brain injury

    OpenAIRE

    Winerdal, Max

    2014-01-01

    Background: Brain injury during the neonatal period has potentially lifelong consequences for a child. Perinatal infections and inflammation can induce preterm birth and unfavorable cognitive development, Thus inflammation has received enthusiastic interest for potential therapeutic approaches seeking to protect the newborn brain. Experimental evidence demonstrates that inflammation induces brain injury succeeding the initial insult. A key cytokine in brain injury is the tumor necrosis factor...

  5. Cooking breakfast after a brain injury

    OpenAIRE

    Tanguay, Annick N.; Davidson, Patrick S. R.; Guerrero Nuñez, Karla V.; Ferland, Mark B.

    2014-01-01

    Acquired brain injury (ABI) often compromises the ability to carry out instrumental activities of daily living such as cooking. ABI patients' difficulties with executive functions and memory result in less independent and efficient meal preparation. Accurately assessing safety and proficiency in cooking is essential for successful community reintegration following ABI, but in vivo assessment of cooking by clinicians is time-consuming, costly, and difficult to standardize. Accordingly, we exam...

  6. Cooking breakfast after a brain injury

    OpenAIRE

    Annick N. Tanguay; Patrick S. R. Davidson; Patrick S. R. Davidson; Patrick S. R. Davidson; K. Vanessa eGuerrero Nuñez; Mark B. Ferland; Mark B. Ferland; Mark B. Ferland

    2014-01-01

    Acquired brain injury (ABI) often compromises the ability to carry out instrumental activities of daily living such as cooking. ABI patients’ difficulties with executive functions and memory result in less independent and efficient meal preparation. Accurately assessing safety and proficiency in cooking is essential for successful community reintegration following ABI, but in vivo assessment of cooking by clinicians is time-consuming, costly, and difficult to standardize. Accordingly, we exa...

  7. Traumatic Brain Injury: Caregivers’ Problems and Needs

    OpenAIRE

    syed tajjudin syed hassan; WF Khaw; AR Rosna; J Husna

    2011-01-01

    Traumatic brain injury (TBI) is an increasingly major world health problem. This short review using the most pertinent articles on TBI caregiving problems and needs highlights the pressing issues. Articles focusing on both TBI-caregivers’ problems and needs are rarely found, especially for developing countries. Most TBI-caregiving is done by family members, whose altered lives portend burden and stresses which add to the overwhelming demand of caring for the TBI-survivor. Lack of information,...

  8. Cognitive Rehabilitation for Mild Traumatic Brain Injury

    Science.gov (United States)

    2009-06-08

    Cate Miller, Dr. Maria Mouratidis, Dr. George Prigatano, Dr. Carole Roth, LTC Michael Russell, LT Rick Schobitz, Dr. Joel Scholten, CAPT Edward Simmer...New York: The Guilford Press. Gordon W.A, Zafonte R., Cicerone, K., Cantor , J., Brown, M., Lombard, L., Goldsmith, R, & Chandna, T. (2006...Traumatic brain injury rehabilitation: State of the science. American Journal of Physical Medicine and Rehabilitation, 85, 343–82. Gordon, W.A., Cantor

  9. Radiation-induced brain injury: A review

    Directory of Open Access Journals (Sweden)

    Michael eRobbins

    2012-07-01

    Full Text Available Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (> 6 months to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses > 30 Gy; white matter necrosis occurs at fractionated doses > 60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain

  10. Primary blast-induced traumatic brain injury: lessons from lithotripsy

    Science.gov (United States)

    Nakagawa, A.; Ohtani, K.; Armonda, R.; Tomita, H.; Sakuma, A.; Mugikura, S.; Takayama, K.; Kushimoto, S.; Tominaga, T.

    2017-11-01

    Traumatic injury caused by explosive or blast events is traditionally divided into four mechanisms: primary, secondary, tertiary, and quaternary blast injury. The mechanisms of blast-induced traumatic brain injury (bTBI) are biomechanically distinct and can be modeled in both in vivo and in vitro systems. The primary bTBI injury mechanism is associated with the response of brain tissue to the initial blast wave. Among the four mechanisms of bTBI, there is a remarkable lack of information regarding the mechanism of primary bTBI. On the other hand, 30 years of research on the medical application of shock waves (SWs) has given us insight into the mechanisms of tissue and cellular damage in bTBI, including both air-mediated and underwater SW sources. From a basic physics perspective, the typical blast wave consists of a lead SW followed by shock-accelerated flow. The resultant tissue injury includes several features observed in primary bTBI, such as hemorrhage, edema, pseudo-aneurysm formation, vasoconstriction, and induction of apoptosis. These are well-described pathological findings within the SW literature. Acoustic impedance mismatch, penetration of tissue by shock/bubble interaction, geometry of the skull, shear stress, tensile stress, and subsequent cavitation formation are all important factors in determining the extent of SW-induced tissue and cellular injury. In addition, neuropsychiatric aspects of blast events need to be taken into account, as evidenced by reports of comorbidity and of some similar symptoms between physical injury resulting in bTBI and the psychiatric sequelae of post-traumatic stress. Research into blast injury biophysics is important to elucidate specific pathophysiologic mechanisms of blast injury, which enable accurate differential diagnosis, as well as development of effective treatments. Herein we describe the requirements for an adequate experimental setup when investigating blast-induced tissue and cellular injury; review SW physics

  11. Lateral automobile impacts and the risk of traumatic brain injury.

    Science.gov (United States)

    Bazarian, Jeffrey J; Fisher, Susan Gross; Flesher, William; Lillis, Robert; Knox, Kerry L; Pearson, Thomas A

    2004-08-01

    We determine the relative risk and severity of traumatic brain injury among occupants of lateral impacts compared with occupants of nonlateral impacts. This was a secondary analysis of the National Highway Traffic Safety Administration's National Automotive Sampling System, Crashworthiness Data Systems for 2000. Analysis was restricted to occupants of vehicles in which at least 1 person experienced an injury with Abbreviated Injury Scale score greater than 2. Traumatic brain injury was defined as an injury to the head or skull with an Abbreviated Injury Scale score greater than 2. Outcomes were analyzed using the chi2 test and multivariate logistic regression, with adjustment of variance to account for weighted probability sampling. Of the 1,115 occupants available for analysis, impact direction was lateral for 230 (18.42%) occupants and nonlateral for 885 (81.58%) occupants. One hundred eighty-seven (16.07%) occupants experienced a traumatic brain injury, 14.63% after lateral and 16.39% after nonlateral impact. The unadjusted relative risk of traumatic brain injury after lateral impact was 0.89 (95% confidence interval [CI] 0.51 to 1.56). After adjusting for several important crash-related variables, the relative risk of traumatic brain injury was 2.60 (95% CI 1.1 to 6.0). Traumatic brain injuries were more severe after lateral impact according to Abbreviated Injury Scale and Glasgow Coma Scale scores. The proportion of fatal or critical crash-related traumatic brain injuries attributable to lateral impact was 23.5%. Lateral impact is an important independent risk factor for the development of traumatic brain injury after a serious motor vehicle crash. Traumatic brain injuries incurred after lateral impact are more severe than those resulting from nonlateral impact. Vehicle modifications that increase head protection could reduce crash-related severe traumatic brain injuries by up to 61% and prevent up to 2,230 fatal or critical traumatic brain injuries each year

  12. Clinical treatment of traumatic brain injury complicated by cranial nerve injury.

    Science.gov (United States)

    Jin, Hai; Wang, Sumin; Hou, Lijun; Pan, Chengguang; Li, Bo; Wang, Hui; Yu, Mingkun; Lu, Yicheng

    2010-09-01

    To discuss the epidemiology, diagnosis and surgical treatment of cranial nerve injury following traumatic brain injury (TBI) for the sake of raising the clinical treatment of this special category of TBI. A retrospective analysis was made of 312 patients with cranial nerve injury among 3417 TBI patients, who were admitted for treatment in this hospital. A total of 312 patients (9.1%) involving either a single nerve or multiple nerves among the 12 pairs of cranial nerves were observed. The extent of nerve injury varied and involved the olfactory nerve (66 cases), optic nerve (78 cases), oculomotor nerve (56 cases), trochlear nerve (8 cases), trigeminal nerve (4 cases), abducent nerve (12 cases), facial nerve (48 cases), acoustic nerve (10 cases), glossopharyngeal nerve (8 cases), vagus nerve (6 cases), accessory nerve (10 cases) and hypoglossal nerve (6 cases). Imaging examination revealed skull fracture in 217 cases, complicated brain contusion in 232 cases, epidural haematoma in 194 cases, subarachnoid haemorrhage in 32 cases, nasal cerebrospinal fluid (CSF) leakage in 76 cases and ear CSF leakage in 8 cases. Of the 312 patients, 46 patients died; the mortality rate associated with low cranial nerve injury was as high as 73.3%. Among the 266 surviving patients, 199 patients received conservative therapy and 67 patients received surgical therapy; the curative rates among these two groups were 61.3% (122 patients) and 86.6% (58 patients), respectively. TBI-complicated cranial nerve injury is subject to a high incidence rate, a high mortality rate and a high disability rate. Our findings suggest that the chance of recovery may be increased in cases where injuries are amenable to surgical decompression. It is necessary to study all 12 pairs of cranial nerves systematically. Clinically, it is necessary to standardise surgical indications, operation timing, surgical approaches and methods for the treatment of TBI-complicated cranial nerve injury. 2010 Elsevier Ltd. All

  13. Clinical review: Brain-body temperature differences in adults with severe traumatic brain injury

    Science.gov (United States)

    2013-01-01

    Surrogate or 'proxy' measures of brain temperature are used in the routine management of patients with brain damage. The prevailing view is that the brain is 'hotter' than the body. The polarity and magnitude of temperature differences between brain and body, however, remains unclear after severe traumatic brain injury (TBI). The focus of this systematic review is on the adult patient admitted to intensive/neurocritical care with a diagnosis of severe TBI (Glasgow Coma Scale score of less than 8). The review considered studies that measured brain temperature and core body temperature. Articles published in English from the years 1980 to 2012 were searched in databases, CINAHL, PubMed, Scopus, Web of Science, Science Direct, Ovid SP, Mednar and ProQuest Dissertations & Theses Database. For the review, publications of randomised controlled trials, non-randomised controlled trials, before and after studies, cohort studies, case-control studies and descriptive studies were considered for inclusion. Of 2,391 records identified via the search strategies, 37 were retrieved for detailed examination (including two via hand searching). Fifteen were reviewed and assessed for methodological quality. Eleven studies were included in the systematic review providing 15 brain-core body temperature comparisons. The direction of mean brain-body temperature differences was positive (brain higher than body temperature) and negative (brain lower than body temperature). Hypothermia is associated with large brain-body temperature differences. Brain temperature cannot be predicted reliably from core body temperature. Concurrent monitoring of brain and body temperature is recommended in patients where risk of temperature-related neuronal damage is a cause for clinical concern and when deliberate induction of below-normal body temperature is instituted. PMID:23680353

  14. Injury Response of Resected Human Brain Tissue In Vitro

    NARCIS (Netherlands)

    Verwer, Ronald W. H.; Sluiter, Arja A.; Balesar, Rawien A.; Baaijen, Johannes C.; de Witt Hamer, Philip C.; Speijer, Dave; Li, Yichen; Swaab, Dick F.

    2015-01-01

    Brain injury affects a significant number of people each year. Organotypic cultures from resected normal neocortical tissue provide unique opportunities to study the cellular and neuropathological consequences of severe injury of adult human brain tissue in vitro. The in vitro injuries caused by

  15. Neonatal ischemic brain injury: what every radiologist needs to know

    International Nuclear Information System (INIS)

    Badve, Chaitra A.; Khanna, Paritosh C.; Ishak, Gisele E.

    2012-01-01

    We present a pictorial review of neonatal ischemic brain injury and look at its pathophysiology, imaging features and differential diagnoses from a radiologist's perspective. The concept of perinatal stroke is defined and its distinction from hypoxic-ischemic injury is emphasized. A brief review of recent imaging advances is included and a diagnostic approach to neonatal ischemic brain injury is suggested. (orig.)

  16. Secondary Damage after Traumatic Brain Injury: Epidemiology, Pathophysiology and Therapy

    NARCIS (Netherlands)

    D.C. Engel (Doortje Caroline)

    2008-01-01

    textabstractTraumatic brain injury (TBI) is defined as a microscopic or macroscopic injury to the brain caused by external physical forces. Road traffic accidents, falls, sports injuries (i.e. boxing), recreational accidents (i.e. parachute jumping), the use of firearms, assault, child abuse,

  17. Comorbidity of Headache and Depression After Mild Traumatic Brain Injury.

    Science.gov (United States)

    Lucas, Sylvia; Smith, Brendon M; Temkin, Nancy; Bell, Kathleen R; Dikmen, Sureyya; Hoffman, Jeanne M

    2016-02-01

    To examine headache and depression over time in individuals who sustained mild traumatic brain injury (mTBI). Prevalence of headache and depression early after mTBI and at 1 year postinjury as well as the relationship between the two are evaluated. Headache is the most common physical symptom and depression is among the most common psychiatric diagnosis after traumatic brain injury regardless of severity. Headache and depression have been found to be two independent factors related to poor outcome after mTBI, yet there appears to be a paucity of research exploring the comorbidity of these two conditions after injury. Longitudinal survey design over 1 year of 212 participants with mTBI who were admitted to a Level 1 trauma center for observation or other system injuries. Depression was based on a score ≥10 on the Patient Health Questionnaire-9. Headache was based on participant report of new or worse-than-preinjury headache since hospitalization (baseline) or within the previous 3 months at 1 year postinjury. The prevalence of headache and depression at baseline was 64% (135/212) and 15% (31/212), respectively. The prevalence of headache and depression at 1 year was 68% (127/187) and 27% (50/187), respectively. The co-occurrence of headache and depression increased from 11% (23/212) at baseline to 25% (46/187) at 1 year. At 1 year, the risk ratio of individuals who had headache to be depressed was 5.43 (95% CI 2.05-14.40) compared to those without headache (P headache is consistently high over the first year after injury, rate of depression increased over the first year for those who were followed. Given the high rate of comorbidity, those with headache may develop depression over time. Evaluation for possible depression in those with headache after mTBI should be conducted to address both conditions over the year following injury. © 2016 American Headache Society.

  18. Direct cost associated with acquired brain injury in Ontario

    Directory of Open Access Journals (Sweden)

    Chen Amy

    2012-08-01

    Full Text Available Abstract Background Acquired Brain Injury (ABI from traumatic and non traumatic causes is a leading cause of disability worldwide yet there is limited research summarizing the health system economic burden associated with ABI. The objective of this study was to determine the direct cost of publicly funded health care services from the initial hospitalization to three years post-injury for individuals with traumatic (TBI and non-traumatic brain injury (nTBI in Ontario Canada. Methods A population-based cohort of patients discharged from acute hospital with an ABI code in any diagnosis position in 2004 through 2007 in Ontario was identified from administrative data. Publicly funded health care utilization was obtained from several Ontario administrative healthcare databases. Patients were stratified according to traumatic and non-traumatic causes of brain injury and whether or not they were discharged to an inpatient rehabilitation center. Health system costs were calculated across a continuum of institutional and community settings for up to three years after initial discharge. The continuum of settings included acute care emergency departments inpatient rehabilitation (IR complex continuing care home care services and physician visits. All costs were calculated retrospectively assuming the government payer’s perspective. Results Direct medical costs in an ABI population are substantial with mean cost in the first year post-injury per TBI and nTBI patient being $32132 and $38018 respectively. Among both TBI and nTBI patients those discharged to IR had significantly higher treatment costs than those not discharged to IR across all institutional and community settings. This tendency remained during the entire three-year follow-up period. Annual medical costs of patients hospitalized with a brain injury in Ontario in the first follow-up year were approximately $120.7 million for TBI and $368.7 million for nTBI. Acute care cost accounted for 46

  19. Patterns of neonatal hypoxic-ischaemic brain injury

    International Nuclear Information System (INIS)

    Vries, Linda S. de; Groenendaal, Floris

    2010-01-01

    Enormous progress has been made in assessing the neonatal brain, using magnetic resonance imaging (MRI). In this review, we will describe the use of MRI and proton magnetic resonance spectroscopy in detecting different patterns of brain injury in (full-term) human neonates following hypoxic-ischaemic brain injury and indicate the relevance of these findings in predicting neurodevelopmental outcome. (orig.)

  20. Patterns of neonatal hypoxic-ischaemic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Linda S. de [University Medical Centre, Department of Neonatology, Wilhelmina Children' s Hospital, Utrecht (Netherlands); Wilhelmina Children' s Hospital, University Medical Centre, Department of Neonatology, KE 04.123.1, P.O. Box 85090, Utrecht (Netherlands); Groenendaal, Floris [University Medical Centre, Department of Neonatology, Wilhelmina Children' s Hospital, Utrecht (Netherlands)

    2010-06-15

    Enormous progress has been made in assessing the neonatal brain, using magnetic resonance imaging (MRI). In this review, we will describe the use of MRI and proton magnetic resonance spectroscopy in detecting different patterns of brain injury in (full-term) human neonates following hypoxic-ischaemic brain injury and indicate the relevance of these findings in predicting neurodevelopmental outcome. (orig.)

  1. Upper extremity weightlifting injuries: Diagnosis and management.

    Science.gov (United States)

    Golshani, Kayvon; Cinque, Mark E; O'Halloran, Peter; Softness, Kenneth; Keeling, Laura; Macdonell, J Ryan

    2018-03-01

    Common upper extremity injuries in resistance training athletes include muscle strains, ligament sprains, pectoralis major tendon ruptures, distal biceps tendon ruptures, and chronic shoulder pain and capsulolabral injuries. While each injury is unique in its specific anatomic location and mechanism, each is preventable with proper exercise technique, safety and maintenance of muscle balance. Conservative treatment is the therapeutic modality of choice and these injuries generally resolve with workout modification, appropriate recovery, anti-inflammatory medication, and physical therapy. If conservative treatment fails, surgical intervention is often successful and can return the weightlifter to a level of performance near their pre-injury level.

  2. Mechanical injury induces brain endothelial-derived microvesicle release: Implications for cerebral vascular injury during traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Allison M. Andrews

    2016-02-01

    Full Text Available It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and mechanotransduction. However, our understanding of vascular remodeling following traumatic brain injury (TBI remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs, such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury. Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB, which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24 and 48 hrs. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 hrs post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing

  3. Mechanical Injury Induces Brain Endothelial-Derived Microvesicle Release: Implications for Cerebral Vascular Injury during Traumatic Brain Injury.

    Science.gov (United States)

    Andrews, Allison M; Lutton, Evan M; Merkel, Steven F; Razmpour, Roshanak; Ramirez, Servio H

    2016-01-01

    It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and strain. However, our understanding of vascular remodeling following traumatic brain injury (TBI) remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs), such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury). Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB), which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs) between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC) were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24, and 48 h. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 h post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing occludin following brain trauma

  4. Evaluating Peripheral Vascular Injuries: Is Color Doppler Enough for Diagnosis?

    Directory of Open Access Journals (Sweden)

    Mohd Lateef Wani

    2014-03-01

    Full Text Available Background:: Vascular injury poses a serious threat to limb and life. Thus, diagnosis should be made immediately with minimally invasive methods. Doppler is a good aid in diagnosis of vascular injury. Methods:: The present prospective study was conducted on 150 patients who presented with soft signs (the signs which are suggestive but not confirmatory of vascular injury. They were subjected to color Doppler examination before exploration. The patients with the features of vascular injury on color Doppler were subjected to exploration. On the other hand, those who had normal Doppler were subjected to CT- angiography. Then, the findings of the exploration were matched with those of color Doppler. The data were analyzed using the SPSS statistical software. Results:: Out of the 150 Doppler examinations, 110 (73.33% were reported as positive, while 40 were reported as negative for vascular injury. These were subjected to CT-angiography and seven of them had the features of vascular injury on CT-angiography. All the patients with positive Doppler or CT angiography findings were subjected to exploration. Doppler had a sensitivity of 94% and specificity of 82.5% in diagnosis of vascular injury using Binary classification test. Conclusions:: Color Doppler is an easily available, reliable, and handy method of diagnosing a vascular injury. It has a very high sensitivity and specificity in diagnosis of vascular injuries.

  5. Skull Flexure from Blast Waves: A Mechanism for Brain Injury with Implications for Helmet Design

    Energy Technology Data Exchange (ETDEWEB)

    Moss, W C; King, M J; Blackman, E G

    2009-04-30

    Traumatic brain injury [TBI] has become a signature injury of current military conflicts, with debilitating, costly, and long-lasting effects. Although mechanisms by which head impacts cause TBI have been well-researched, the mechanisms by which blasts cause TBI are not understood. From numerical hydrodynamic simulations, we have discovered that non-lethal blasts can induce sufficient skull flexure to generate potentially damaging loads in the brain, even without a head impact. The possibility that this mechanism may contribute to TBI has implications for injury diagnosis and armor design.

  6. Pediatric Traumatic Brain Injury and Autism: Elucidating Shared Mechanisms

    Directory of Open Access Journals (Sweden)

    Rahul Singh

    2016-01-01

    Full Text Available Pediatric traumatic brain injury (TBI and autism spectrum disorder (ASD are two serious conditions that affect youth. Recent data, both preclinical and clinical, show that pediatric TBI and ASD share not only similar symptoms but also some of the same biologic mechanisms that cause these symptoms. Prominent symptoms for both disorders include gastrointestinal problems, learning difficulties, seizures, and sensory processing disruption. In this review, we highlight some of these shared mechanisms in order to discuss potential treatment options that might be applied for each condition. We discuss potential therapeutic and pharmacologic options as well as potential novel drug targets. Furthermore, we highlight advances in understanding of brain circuitry that is being propelled by improved imaging modalities. Going forward, advanced imaging will help in diagnosis and treatment planning strategies for pediatric patients. Lessons from each field can be applied to design better and more rigorous trials that can be used to improve guidelines for pediatric patients suffering from TBI or ASD.

  7. Electroencephalography and quantitative electroencephalography in mild traumatic brain injury.

    Science.gov (United States)

    Haneef, Zulfi; Levin, Harvey S; Frost, James D; Mizrahi, Eli M

    2013-04-15

    Mild traumatic brain injury (mTBI) causes brain injury resulting in electrophysiologic abnormalities visible in electroencephalography (EEG) recordings. Quantitative EEG (qEEG) makes use of quantitative techniques to analyze EEG characteristics such as frequency, amplitude, coherence, power, phase, and symmetry over time independently or in combination. QEEG has been evaluated for its use in making a diagnosis of mTBI and assessing prognosis, including the likelihood of progressing to the postconcussive syndrome (PCS) phase. We review the EEG and qEEG changes of mTBI described in the literature. An attempt is made to separate the findings seen during the acute, subacute, and chronic phases after mTBI. Brief mention is also made of the neurobiological correlates of qEEG using neuroimaging techniques or in histopathology. Although the literature indicates the promise of qEEG in making a diagnosis and indicating prognosis of mTBI, further study is needed to corroborate and refine these methods.

  8. Isolated traumatic brain injury and venous thromboembolism.

    Science.gov (United States)

    Van Gent, Jan-Michael; Bandle, Jesse; Calvo, Richard Y; Zander, Ashley L; Olson, Erik J; Shackford, Steven R; Peck, Kimberly A; Sise, C Beth; Sise, Michael J

    2014-08-01

    Traumatic brain injury (TBI) is considered an independent risk factor of venous thromboembolism (VTE). However, the role of TBI severity in VTE risk has not been determined. We hypothesized that increased severity of brain injury in patients with isolated TBI (iTBI) is associated with an increased incidence of VTE. The records of patients admitted from June 2006 to December 2011 were reviewed for injury data, VTE risk factors, results of lower extremity surveillance ultrasound, and severity of TBI. Patients were identified by DRG International Classification of Diseases-9th Rev. codes for TBI, and only those with a nonhead Abbreviated Injury Scale (AIS) score of 1 or lower, indicating minimal associated injury, were included. The association of iTBI and VTE was determined using a case-control design. Among iTBI patients, those diagnosed with VTE (cases) were matched for age, sex, and admission year to those without VTE (controls). Data were analyzed using conditional logistic regression. There were 345 iTBI patients: 41 cases (12%) and 304 controls (88%). A total of 151 controls could not be matched to an appropriate case and were excluded. Of the remaining 153 controls, 1 to 16 controls were matched to each of the 41 VTE cases. Compared with the controls, the cases had a higher mean head-AIS score (4.4 vs. 3.9, p = 0.001) and overall Injury Severity Score (20.4 vs. 16.8, p = 0.001). Following adjustment for all factors found to be associated with VTE (ventilator days, central line placement, operative time > 2 hours, chemoprophylaxis, history of VTE, and history of cancer), the cases were significantly more likely to have a greater head injury severity (head-AIS score ≥ 5; odds ratio, 5.25; 95% confidence interval, 1.59-17.30; p = 0.006). The incidence of VTE in iTBI patients was significantly associated with the severity of TBI. VTE surveillance protocols may be warranted in these high-risk patients, as early detection of VTE could guide subsequent therapy

  9. Cranium-brain trauma in computed tomographs - diagnosis and clinical correlation

    International Nuclear Information System (INIS)

    Wrasse, K.

    1982-01-01

    For the successful treatment of intracranial complications in the case of cranium-brain trauma a quick and exact diagnosis is necessary. The goal of this work was to test and evaluate the effectivity of computed tomography for neurotraumatology. Using 565 patients, who were acutely or at one time suffering from a cranium-brain trauma, the high validity of computed tomography for these injuries was proven. The following areas in question were studied with respect to the value of computed tomography in comparison to them: angiography, X-ray diagnostic, echoencephalography, brain scintigraphy, electroencephalography and neurological-psychopathological findings from cranium-brain trauma. Statement possibilities and difficulties of computed tomography are discussed in the cases of the following neurotraumatological diseases: extracranial hematomas; acute cranium-brain traumas; traumatic arachnoidal bleeding; diffuse brain edema; transtentorial herniation and brain contusions. At the end the diagnostic and therapeutic procedures in the case of cranium-brain trauma are presented. (orig.) [de

  10. 4: Rehabilitation after traumatic brain injury.

    Science.gov (United States)

    Khan, Fary; Baguley, Ian J; Cameron, Ian D

    2003-03-17

    Traumatic brain injury (TBI) commonly affects younger people and causes life-long impairments in physical, cognitive, behavioural and social function. The cognitive, behavioural and personality deficits are usually more disabling than the residual physical deficits. Recovery from TBI can continue for at least 5 years after injury. Rehabilitation is effective using an interdisciplinary approach, and close liaison with the patient, family and carers. The focus is on issues such as retraining in activities of daily living, pain management, cognitive and behavioural therapies, and pharmacological management. The social burden of TBI is significant, and therefore family education and counselling, and support of patient and carers, is important. General practitioners play an important role in providing ongoing support in the community, monitoring for medical complications, behavioural and personality issues, social reintegration, carer coping skills and return-to-work issues.

  11. Lymphocytes Contribute to the Pathophysiology of Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Arshed Nazmi

    2018-03-01

    Full Text Available BackgroundPeriventricular leukomalacia (PVL is the most common form of preterm brain injury affecting the cerebral white matter. This type of injury involves a multiphase process and is induced by many factors, including hypoxia–ischemia (HI and infection. Previous studies have suggested that lymphocytes play a significant role in the pathogenesis of brain injury, and the aim of this study was to determine the contribution of lymphocyte subsets to preterm brain injury.MethodsImmunohistochemistry on brain sections from neonatal mice was performed to evaluate the extent of brain injury in wild-type and T cell and B cell-deficient neonatal mice (Rag1−/− mice using a mouse model of HI-induced preterm brain injury. Flow cytometry was performed to determine the presence of different types of immune cells in mouse brains following HI. In addition, immunostaining for CD3 T cells and CD20 B cells was performed on postmortem preterm human infant brains with PVL.ResultsMature lymphocyte-deficient Rag1−/− mice showed protection from white matter loss compared to wild type mice as indicated by myelin basic protein immunostaining of mouse brains. CD3+ T cells and CD20+ B cells were observed in the postmortem preterm infant brains with PVL. Flow cytometry analysis of mouse brains after HI-induced injury showed increased frequency of CD3+ T, αβT and B cells at 7 days after HI in the ipsilateral (injured hemisphere compared to the contralateral (control, uninjured hemisphere.ConclusionLymphocytes were found in the injured brain after injury in both mice and humans, and lack of mature lymphocytes protected neonatal mice from HI-induced brain white matter injury. This finding provides insight into the pathology of perinatal brain injury and suggests new avenues for the development of therapeutic strategies.

  12. Seizures and the Role of Anticonvulsants After Traumatic Brain Injury.

    Science.gov (United States)

    Zimmermann, Lara L; Diaz-Arrastia, Ramon; Vespa, Paul M

    2016-10-01

    Posttraumatic seizures are a common complication of traumatic brain injury. Posttraumatic epilepsy accounts for 20% of symptomatic epilepsy in the general population and 5% of all epilepsy. Early posttraumatic seizures occur in more than 20% of patients in the intensive care unit and are associated with secondary brain injury and worse patient outcomes. Most posttraumatic seizures are nonconvulsive and therefore continuous electroencephalography monitoring should be the standard of care for patients with moderate or severe brain injury. The literature shows that posttraumatic seizures result in secondary brain injury caused by increased intracranial pressure, cerebral edema and metabolic crisis. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Traumatic brain injury pharmacological treatment: recommendations

    Directory of Open Access Journals (Sweden)

    Renato Anghinah

    Full Text Available ABSTRACT This article presents the recommendations on the pharmacological treatment employed in traumatic brain injury (TBI at the outpatient clinic of the Cognitive Rehabilitation after TBI Service of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil. A systematic assessment of the consensus reached in other countries, and of articles on TBI available in the PUBMED and LILACS medical databases, was carried out. We offer recommendations of pharmacological treatments in patients after TBI with different symptoms.

  14. Centralized rehabilitation after servere traumatic brain injury

    DEFF Research Database (Denmark)

    Engberg, Aase Worså; Liebach, Annette; Nordenbo, Annette Mosbæk

    2006-01-01

    OBJECTIVES: To present results from the first 3 years of centralized subacute rehabilitation after very severe traumatic brain injury (TBI), and to compare results of centralized versus decentralized rehabilitation. MATERIAL AND METHODS: Prospectively, the most severely injured group of adults from...... post-trauma was 0.29, and at 1 year 0.055 per 100,000 population. By comparison of 39 patients from the centralized unit injured in 2000-2003 with 21 patients injured in 1982, 1987 or 1992 and with similar PTA- and age distributions and male/female ratio, Glasgow Outcome Scale score at discharge...

  15. Protect Your Brain

    Centers for Disease Control (CDC) Podcasts

    At least three and a half million people in the U.S. sustained a traumatic brain injury (TBI), either with or without other injuries. This podcast discusses the importance of early diagnosis and treatment of brain injuries.

  16. Radiation-induced brain injury: A review

    Energy Technology Data Exchange (ETDEWEB)

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G. [Department of Radiation Oncology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Wheeler, Kenneth T. [Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Department of Radiology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Chan, Michael D., E-mail: mrobbins@wakehealth.edu [Department of Radiation Oncology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States)

    2012-07-19

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  17. Radiation-induced brain injury: A review

    International Nuclear Information System (INIS)

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G.; Wheeler, Kenneth T.; Chan, Michael D.

    2012-01-01

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  18. Splenic injury diagnosis & splenic salvage after trauma

    NARCIS (Netherlands)

    Olthof, D.C.

    2014-01-01

    Non-operative management (NOM) has replaced surgery as the treatment of choice for hemodynamically stable patients with splenic injury after trauma. The growing use of NOM for blunt abdominal organ injury has been made possible by the progress in the quality and availability of the multidetector CT

  19. Current status of fluid biomarkers in mild traumatic brain injury

    Science.gov (United States)

    Kulbe, Jacqueline R.; Geddes, James W.

    2015-01-01

    Mild traumatic brain injury (mTBI) affects millions of people annually and is difficult to diagnose. Mild injury is insensitive to conventional imaging techniques and diagnoses are often made using subjective criteria such as self-reported symptoms. Many people who sustain a mTBI develop persistent post-concussive symptoms. Athletes and military personnel are at great risk for repeat injury which can result in second impact syndrome or chronic traumatic encephalopathy. An objective and quantifiable measure, such as a serum biomarker, is needed to aid in mTBI diagnosis, prognosis, return to play/duty assessments, and would further elucidate mTBI pathophysiology. The majority of TBI biomarker research focuses on severe TBI with few studies specific to mild injury. Most studies use a hypothesis-driven approach, screening biofluids for markers known to be associated with TBI pathophysiology. This approach has yielded limited success in identifying markers that can be used clinically, additional candidate biomarkers are needed. Innovative and unbiased methods such as proteomics, microRNA arrays, urinary screens, autoantibody identification and phage display would complement more traditional approaches to aid in the discovery of novel mTBI biomarkers. PMID:25981889

  20. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  1. Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications.

    Science.gov (United States)

    Hamed, Sherifa A

    2017-04-01

    Diabetes mellitus is a risk for brain injury. Brain injury is associated with acute and chronic hyperglycaemia, insulin resistance, hyperinsulinemia, diabetic ketoacidosis (DKA) and hypoglycaemic events in diabetic patients. Hyperglycemia is a cause of cognitive deterioration, low intelligent quotient, neurodegeneration, brain aging, brain atrophy and dementia. Areas covered: The current review highlights the experimental, clinical, neuroimaging and neuropathological evidence of brain injury induced by diabetes and its associated metabolic derangements. It also highlights the mechanisms of diabetes-induced brain injury. It seems that the pathogenesis of hyperglycemia-induced brain injury is complex and includes combination of vascular disease, oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis, reduction of neurotrophic factors, acetylcholinesterase (AChE) activation, neurotransmitters' changes, impairment of brain repair processes, impairment of brain glymphatic system, accumulation of amyloid β and tau phosphorylation and neurodegeneration. The potentials for prevention and treatment are also discussed. Expert commentary: We summarize the risks and the possible mechanisms of DM-induced brain injury and recommend strategies for neuroprotection and neurorestoration. Recently, a number of drugs and substances [in addition to insulin and its mimics] have shown promising potentials against diabetes-induced brain injury. These include: antioxidants, neuroinflammation inhibitors, anti-apoptotics, neurotrophic factors, AChE inhibitors, mitochondrial function modifiers and cell based therapies.

  2. CT diagnosis of acute spinal injury

    International Nuclear Information System (INIS)

    Ohhama, Mitsuru; Niimiya, Hikosuke; Kimura, Ko; Yamazaki, Gyoji; Nasu, Yoshiro; Shioya, Akihide

    1982-01-01

    CT pictures of 22 acute spinal injuries with damage of the spinal cord were evaluated. In the cases of spinal cord damage with bone injury, changes in the vertebral canal were fully observed by CT. In some of spinal cord damages without bone injury, narrowing of the vertebral canal was demonstrated by CT combined with CT myelography and reconstruction. Evaluation of CT number showed a high density area in damaged spinal cord in some cases. CT was thus considered to be useful as an adjunct diagnostic aid. (Ueda, J.)

  3. Traumatic Brain Injury: Caregivers’ Problems and Needs

    Directory of Open Access Journals (Sweden)

    syed tajjudin syed hassan

    2011-03-01

    Full Text Available Traumatic brain injury (TBI is an increasingly major world health problem. This short review using the most pertinent articles on TBI caregiving problems and needs highlights the pressing issues. Articles focusing on both TBI-caregivers’ problems and needs are rarely found, especially for developing countries. Most TBI-caregiving is done by family members, whose altered lives portend burden and stresses which add to the overwhelming demand of caring for the TBI-survivor. Lack of information, fi nancial inadequacy, anxiety, distress, coping defi cits, poor adaptability, inadequate knowledge and skills, and a poor support system comprise the major problems. Dysfunctional communication between caregivers and care-receivers has been little researched. The major needs are focused on health and rehabilitation information, fi nancial advice and assistance, emotional and social support, and positive psychological encouragement. In time, health information needs may be met, but not emotional support. Information on TBI caregiving problems and unmet needs is critical to all relevant healthcare stakeholders. Keywords: caregivers, rehabilitation, traumatic brain injury

  4. Impaired Pituitary Axes Following Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Robert A. Scranton

    2015-07-01

    Full Text Available Pituitary dysfunction following traumatic brain injury (TBI is significant and rarely considered by clinicians. This topic has received much more attention in the last decade. The incidence of post TBI anterior pituitary dysfunction is around 30% acutely, and declines to around 20% by one year. Growth hormone and gonadotrophic hormones are the most common deficiencies seen after traumatic brain injury, but also the most likely to spontaneously recover. The majority of deficiencies present within the first year, but extreme delayed presentation has been reported. Information on posterior pituitary dysfunction is less reliable ranging from 3%–40% incidence but prospective data suggests a rate around 5%. The mechanism, risk factors, natural history, and long-term effect of treatment are poorly defined in the literature and limited by a lack of standardization. Post TBI pituitary dysfunction is an entity to recognize with significant clinical relevance. Secondary hypoadrenalism, hypothyroidism and central diabetes insipidus should be treated acutely while deficiencies in growth and gonadotrophic hormones should be initially observed.

  5. Ischemic preconditioning protects against ischemic brain injury

    Directory of Open Access Journals (Sweden)

    Xiao-meng Ma

    2016-01-01

    Full Text Available In this study, we hypothesized that an increase in integrin αv ß 3 and its co-activator vascular endothelial growth factor play important neuroprotective roles in ischemic injury. We performed ischemic preconditioning with bilateral common carotid artery occlusion for 5 minutes in C57BL/6J mice. This was followed by ischemic injury with bilateral common carotid artery occlusion for 30 minutes. The time interval between ischemic preconditioning and lethal ischemia was 48 hours. Histopathological analysis showed that ischemic preconditioning substantially diminished damage to neurons in the hippocampus 7 days after ischemia. Evans Blue dye assay showed that ischemic preconditioning reduced damage to the blood-brain barrier 24 hours after ischemia. This demonstrates the neuroprotective effect of ischemic preconditioning. Western blot assay revealed a significant reduction in protein levels of integrin αv ß 3, vascular endothelial growth factor and its receptor in mice given ischemic preconditioning compared with mice not given ischemic preconditioning 24 hours after ischemia. These findings suggest that the neuroprotective effect of ischemic preconditioning is associated with lower integrin αv ß 3 and vascular endothelial growth factor levels in the brain following ischemia.

  6. Twitter and traumatic brain injury: A content and sentiment analysis of tweets pertaining to sport-related brain injury.

    Science.gov (United States)

    Workewych, Adriana M; Ciuffetelli Muzzi, Madeline; Jing, Rowan; Zhang, Stanley; Topolovec-Vranic, Jane; Cusimano, Michael D

    2017-01-01

    Sport-related traumatic brain injuries are a significant public health burden, with hundreds of thousands sustained annually in North America. While sports offer numerous physical and social health benefits, traumatic brain injuries such as concussion can seriously impact a player's life, athletic career, and sport enjoyment. The culture in many sports encourages winning at all costs, placing athletes at risk for traumatic brain injuries. As social media has become a central part of everyday life, the content of users' messages often reflects the prevailing culture related to a particular event or health issue. We hypothesized that Twitter data might be useful for understanding public perceptions and misperceptions of sport-related traumatic brain injuries. We performed a content and sentiment analysis of 7483 Twitter ® tweets related to traumatic brain injuries in sports collected during June and July 2013. We identified five major themes. Users tweeted about personal traumatic brain injuries experiences, reported traumatic brain injuries in professional athletes, shared research about sport-related concussions, and discussed policy and safety in injury prevention, such as helmet use. We identified mixed perceptions of and sentiment toward traumatic brain injuries in sports: both an understanding that brain injuries are serious and disregard for activities that might reduce the public burden of traumatic brain injuries were prevalent in our Twitter analysis. While the scientific and medical community considers a concussion a form of traumatic brain injuries, our study demonstrates a misunderstanding of this fact among the public. In our current digital age, social media can provide useful insight into the culture around a health issue, facilitating implementation of prevention and treatment strategies.

  7. Evaluating paediatric brain injury services in NSW.

    Science.gov (United States)

    Badge, H; Hancock, J; Waugh, M-C

    2010-01-01

    Rehabilitation professionals strive to provide high-quality evidence-based services for children. Developing systems to measure and monitor the benefits of our services, and health outcomes for children is complex and challenging. The Community Outcome Project aims to introduce systematic outcome measurement across the network of paediatric community-based brain injury services within the New South Wales Brain Injury Rehabilitation Program (BIRP) to support clinical practice and service evaluation. A literature review informed the development of the evaluative framework and identified available paediatric outcome measures which may be appropriate. Extensive consultation with clinicians supported project planning and identified clinical priorities that the outcome measures needed to capture. Outcome measures were shortlisted by matching them to identified clinical priorities, and then trialled in clinical practice. Qualitative feedback regarding clinical utility and feasibility was obtained from clinical staff. The process has utilized change management strategies to ensure the success of the project and keep staff engaged. The process identified the three main clinical priorities for outcome measurement - family functioning, school performance and participation. Three outcome measures were chosen for the pilot project that is currently underway. They are Family Burden of Injury Interview, Academic Competence and Evaluation Scales and Child and Adolescent Scale of Participation. Plans for analyses of outcome data within the paediatric BIRP services are discussed. Extensive preparation is required to optimize staff engagement in a project that systematically introduces outcome measures that are useful to clinicians, clients and service providers. Managing the change required is a key focus of the project. Benefits and costs to clinicians and services will be discussed.

  8. Graph Analysis of Functional Brain Networks for Cognitive Control of Action in Traumatic Brain Injury

    Science.gov (United States)

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H.; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P.

    2012-01-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly…

  9. Chronic Traumatic Brain Injury in Amateur Boxers

    Directory of Open Access Journals (Sweden)

    M. Rahmati

    2008-04-01

    Full Text Available Introduction & objective: Despite of young and adolescence intent to the boxing sport, because of dominant aggression and direct blows contact to head, face and central nervous system, it is continuously criticize by different groups. The groups of sporting and physician conventions are distinguished boxing with physical and neuropsychological disorders and some groups believe that side effects of this sport are not more than other sports. For this base the aim of this study was to determine the chronic traumatic brain injury in a group amateur boxers.Materials & Methods: In a case-control study, three groups of sport men were considered, each group contained 20 randomly selected cases. The first group were amateur boxers with 4 years minimal activity(directly has been presented to the head blows, second group were amateur soccer players with 4 years minimal activity(has been presented to the not very severe head blows, third group were non athlete subjects .The groups were matched in weight, height, age and education .To understand brain disorder interview by medicine method has been used, then Wiskancin, Bonardele, Bender geshtalt, Kim karad visual memory, Benton and wechler memory (Alef type tests has been performed and EEG has got in the same hour and condition.Results: The homogeneity of between group variances was gained by the statistical method. Also between structural–visual abilities neuropsychological aspect in groups, significant difference has been gained (p= 0.000. In Kim karad visual memory test at the mild and long term visual memory deficit, significant differences between three groups was observed (P= 0.000, P=0.009 that least score has been belonged to the boxers. Also in boxers 6 abnormal EEGs is observed.Conclusion: It can be said that of four years amateur boxing can affect on boxers visual and memory perception and their spatial orientation. Additionally our study have showed that amateur boxing has a significant

  10. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HuaHu; Wei-PingZhang; LeiZhang; ZhongChen; Er-QingWei

    2004-01-01

    Aquaporin-4 (AQP4) is one of the aquaporins (AQPs), a water channel family. In the brain, AQP4 is expressed in astroeyte foot processes, and plays an important role in water homeostasis and in the formation of brain edema. In our study, AQP4 expression in human brain specimens from patients with traumatic brain injury or different brain tumors was detected

  11. Oxidative stress following traumatic brain injury: enhancement of ...

    African Journals Online (AJOL)

    neuronal loss following traumatic brain injury and presents experimental and clinical evidence of the role of exogenous antioxidants as neuroprotectants. Method: We reviewed published literature on reactive oxygen species and their role in experimental and clinical brain injuries in journals and the Internet using Yahoo ...

  12. White Matter Damage and Cognitive Impairment after Traumatic Brain Injury

    Science.gov (United States)

    Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

  13. Diagnosis of popliteus injuries with MR imaging

    International Nuclear Information System (INIS)

    Brown T.R.; Quinn, S.F.; Wensel, J.P.; Kim, J.H.; Demlow, T.

    1995-01-01

    The study included 24 patients where the diagnoses of popliteal injuries were prospectively made based on MR appearances. The study group was taken from 2412 consecutive knee MRIs. The injuries were characterized as to involving the muscular or tendinous portions of the popliteus apparatus. In 95.8% (23/24) of patients, the tears of the popliteus involved the muscular portion. The injuries were either partial and interstitial or complete. Three patients had tears of both the muscular and tendinous portions or the tendon alone. The anterior and posterior cruciate ligaments were torn in 16.7% (4/24) and 29.2% (7/24) of patients, respectively. There were medial and lateral meniscal tears in 45.8% (11/24) and 25% (6/24) of patients, respectively. There were injuries of the medial and lateral collateral ligaments in 8.3% (2/24) and 4.2% (1/24) of patients, respectively. Bone bruises and/or fractures were seen in 33.3% (8/24) patients. In 8.3% (2/24) of patients, the popliteus injury was an isolated finding. (orig./MG)

  14. Traumatic Brain Injuries during Development: Implications for Alcohol Abuse

    Directory of Open Access Journals (Sweden)

    Zachary M. Weil

    2017-07-01

    Full Text Available Traumatic brain injuries are strongly related to alcohol intoxication as by some estimates half or more of all brain injuries involve at least one intoxicated individual. Additionally, there is mounting evidence that traumatic brain injuries can themselves serve as independent risk factors for the development of alcohol use disorders, particularly when injury occurs during juvenile or adolescent development. Here, we will review the epidemiological and experimental evidence for this phenomenon and discuss potential psychosocial mediators including attenuation of negative affect and impaired decision making as well as neurochemical mediators including disruption in the glutamatergic, GABAergic, and dopaminergic signaling pathways and increases in inflammation.

  15. Antioxidant therapies in traumatic brain injury: a review

    Directory of Open Access Journals (Sweden)

    Romero-Rivera Hector Rolando

    2017-09-01

    Full Text Available Oxidative stress constitute one of the commonest mechanism of the secondary injury contributing to neuronal death in traumatic brain injury cases. The oxidative stress induced secondary injury blockade may be considered as to be a good alternative to improve the outcome of traumatic brain injury (TBI treatment. Due to absence of definitive therapy of traumatic brain injury has forced researcher to utilize unconventional therapies and its roles investigated in the improvement of management and outcome in recent year. Antioxidant therapies are proven effective in many preclinical studies and encouraging results and the role of antioxidant mediaction may act as further advancement in the traumatic brain injury management it may represent aonr of newer moadlaity in neurosurgical aramamentorium, this kind of therapy could be a good alternative or adjuct to the previously established neuroprotection agents in TBI.

  16. The potential of neural transplantation for brain repair and regeneration following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Dong Sun

    2016-01-01

    Traumatic brain injury is a major health problem worldwide. Currently, there is no effective treatment to improve neural structural repair and functional recovery of patients in the clinic. Cell transplantation is a potential strategy to repair and regenerate the injured brain. This review article summarized recent de-velopment in cell transplantation studies for post-traumatic brain injury brain repair with varying types of cell sources. It also discussed the potential of neural transplantation to repair/promote recovery of the injured brain following traumatic brain injury.

  17. Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase-II: A Phase II Randomized Trial.

    Science.gov (United States)

    Okonkwo, David O; Shutter, Lori A; Moore, Carol; Temkin, Nancy R; Puccio, Ava M; Madden, Christopher J; Andaluz, Norberto; Chesnut, Randall M; Bullock, M Ross; Grant, Gerald A; McGregor, John; Weaver, Michael; Jallo, Jack; LeRoux, Peter D; Moberg, Dick; Barber, Jason; Lazaridis, Christos; Diaz-Arrastia, Ramon R

    2017-11-01

    A relationship between reduced brain tissue oxygenation and poor outcome following severe traumatic brain injury has been reported in observational studies. We designed a Phase II trial to assess whether a neurocritical care management protocol could improve brain tissue oxygenation levels in patients with severe traumatic brain injury and the feasibility of a Phase III efficacy study. Randomized prospective clinical trial. Ten ICUs in the United States. One hundred nineteen severe traumatic brain injury patients. Patients were randomized to treatment protocol based on intracranial pressure plus brain tissue oxygenation monitoring versus intracranial pressure monitoring alone. Brain tissue oxygenation data were recorded in the intracranial pressure -only group in blinded fashion. Tiered interventions in each arm were specified and impact on intracranial pressure and brain tissue oxygenation measured. Monitors were removed if values were normal for 48 hours consecutively, or after 5 days. Outcome was measured at 6 months using the Glasgow Outcome Scale-Extended. A management protocol based on brain tissue oxygenation and intracranial pressure monitoring reduced the proportion of time with brain tissue hypoxia after severe traumatic brain injury (0.45 in intracranial pressure-only group and 0.16 in intracranial pressure plus brain tissue oxygenation group; p injury after severe traumatic brain injury based on brain tissue oxygenation and intracranial pressure values was consistent with reduced mortality and increased proportions of patients with good recovery compared with intracranial pressure-only management; however, the study was not powered for clinical efficacy. Management of severe traumatic brain injury informed by multimodal intracranial pressure and brain tissue oxygenation monitoring reduced brain tissue hypoxia with a trend toward lower mortality and more favorable outcomes than intracranial pressure-only treatment. A Phase III randomized trial to assess

  18. Aetiology and treatment outcome of severe traumatic brain injuries ...

    African Journals Online (AJOL)

    Background: Severe traumatic brain injury (TBI) is a major challenge to the patient, the relatives, the care givers, and the society in general. The primary and secondary injuries, and the high metabolism are formidable stages of the injury, each capable of taking the life of the patient. The objectives were to determine the ...

  19. Pathological Fingerprints, Systems Biology and Biomarkers of Blast Brain Injury

    Science.gov (United States)

    2010-06-01

    changes after blast injury. J. Trauma 56, 393–403. Murthy, J.M., Chopra, J.S., and Gulati, D.R. (1979). Subdural hematoma in an adult following a blast...neuronal damage), diffuse brain injury, and subdural hemorrhage. It is still controversial whether primary blast forces directly damage the brain, and if...emboli, leading to infarction (Guy et al., 2000a; Guy et al., 2000b). The most common types of TBI are diffuse axonal injury, contusion, and subdural

  20. Neonatal ischemic brain injury: what every radiologist needs to know

    Energy Technology Data Exchange (ETDEWEB)

    Badve, Chaitra A.; Khanna, Paritosh C.; Ishak, Gisele E. [Seattle Children' s Hospital, University of Washington Medical Center, Department of Radiology, Seattle, WA (United States)

    2012-05-15

    We present a pictorial review of neonatal ischemic brain injury and look at its pathophysiology, imaging features and differential diagnoses from a radiologist's perspective. The concept of perinatal stroke is defined and its distinction from hypoxic-ischemic injury is emphasized. A brief review of recent imaging advances is included and a diagnostic approach to neonatal ischemic brain injury is suggested. (orig.)

  1. Opioid Abuse after Traumatic Brain Injury: Evaluation Using Rodent Models

    Science.gov (United States)

    2015-09-01

    craniotomy was cut with a trephine by hand over the right motor cortex . An injury cannula was fashioned from the hub of a female leur-lock 20g needle...ABSTRACT This project evaluated the effect of a moderate-level brain injury on risk for opioid abuse using preclinical models in rats . We assessed the...effect of brain injury on the rewarding effects of oxycodone in three rat self-administration procedures and found significant differences in the

  2. Traumatic brain injury: caregivers' problems and needs.

    Science.gov (United States)

    Hassan, S T S; Khaw, W F; Rosna, A R; Husna, J

    2011-01-01

    Traumatic brain injury (TBI) is an increasingly major world health problem. This short review using the most pertinent articles on TBI caregiving problems and needs highlights the pressing issues. Articles focusing on both TBI-caregivers' problems and needs are rarely found, especially for developing countries. Most TBI-caregiving is done by family members, whose altered lives portend burden and stresses which add to the overwhelming demand of caring for the TBI-survivor. Lack of information, financial inadequacy, anxiety, distress, coping deficits, poor adaptability, inadequate knowledge and skills, and a poor support system comprise the major problems. Dysfunctional communication between caregivers and care-receivers has been little researched. The major needs are focused on health and rehabilitation information, financial advice and assistance, emotional and social support, and positive psychological encouragement. In time, health information needs may be met, but not emotional support. Information on TBI caregiving problems and unmet needs is critical to all relevant healthcare stakeholders.

  3. Monitoring Agitated Behavior After acquired Brain Injury

    DEFF Research Database (Denmark)

    Aadal, Lena; Mortensen, Jesper; Nielsen, Jørgen Feldbaek

    2016-01-01

    Purpose: To describe the onset, duration, intensity, and nursing shift variation of agitated behavior in patients with acquired brain injury (ABI) at a rehabilitation hospital. Design: Prospective descriptive study. Methods: A total of 11 patients with agitated behavior were included. Agitated...... behavior was registered with the Agitated Behavior Scale (ABS). The nurse or therapist allocated the individual patient assessed ABS during each shift. Intensity of agitated behavior was tested using exact test. A within-subject shift effect was analyzed with repeated-measure ANOVA. Findings: The onset...... of agitated behavior was at a median of 14 (1–28) days from admission. Seven patients remained agitated beyond 3 weeks from onset. Severe intensity of agitation was observed in 86 of 453 nursing shifts. Differences in agitated behavior between day, evening, and night shifts were found, F(2.20) = 7.90, p...

  4. Destination memory in traumatic brain injuries.

    Science.gov (United States)

    Wili Wilu, Amina; Coello, Yann; El Haj, Mohamad

    2018-06-01

    Destination memory, which is socially driven, refers to the ability to remember to whom one has sent information. Our study investigated destination memory in patients with traumatic brain injuries (TBIs). Patients and control participants were invited to tell proverbs (e.g., "the pen is mightier than the sword") to pictures of celebrities (e.g., Barack Obama). Then they were asked to indicate to which celebrity they had previously told the proverbs. Besides the assessment of destination memory, participants performed a binding task in which they were required to associate letters with their corresponding location. Analysis demonstrated less destination memory and binding in patients with TBIs than in controls. In both populations, significant correlations were observed between destination memory and performances on the binding task. These findings demonstrate difficulty in the ability to attribute information to its appropriate destination in TBI patients, perhaps owing to difficulties in binding separate information together to form a coherent representation of an event in memory.

  5. Brain injury in a forensic psychiatry population.

    Science.gov (United States)

    Colantonio, A; Stamenova, V; Abramowitz, C; Clarke, D; Christensen, B

    2007-12-01

    The prevalence and profile of adults with a history of traumatic brain injury (TBI) has not been studied in large North American forensic mental health populations. This study investigated how adults with a documented history of TBI differed with the non-TBI forensic population with respect to demographics, psychiatric diagnoses and history of offences. A retrospective chart review of all consecutive admissions to a forensic psychiatry programme in Toronto, Canada was conducted. Information on history of TBI, psychiatric diagnoses, living environments and types of criminal offences were obtained from medical records. History of TBI was ascertained in 23% of 394 eligible patient records. Compared to those without a documented history of TBI, persons with this history were less likely to be diagnosed with schizophrenia but more likely to have alcohol/substance abuse disorder. There were also differences observed with respect to offence profiles. This study provides evidence to support routine screening for a history of TBI in forensic psychiatry.

  6. Educational professionals' understanding of childhood traumatic brain injury.

    Science.gov (United States)

    Linden, Mark A; Braiden, Hannah-Jane; Miller, Sarah

    2013-01-01

    To determine the understanding of educational professionals around the topic of childhood brain injury and explore the factor structure of the Common Misconceptions about Traumatic Brain Injury Questionnaire (CM-TBI). Cross-sectional postal survey. The CM-TBI was posted to all educational establishments in one region of the UK. One representative from each school was asked to complete and return the questionnaire (n = 388). Differences were demonstrated between those participants who knew someone with a brain injury and those who did not, with a similar pattern being shown for those educators who had taught a child with brain injury. Participants who had taught a child with brain injury demonstrated greater knowledge in areas such as seatbelts/prevention, brain damage, brain injury sequelae, amnesia, recovery and rehabilitation. Principal components analysis suggested the existence of four factors and the discarding of half the original items of the questionnaire. In the first European study to explore this issue, it is highlighted that teachers are ill-prepared to cope with children who have sustained a brain injury. Given the importance of a supportive school environment in return to life following hospitalization, the lack of understanding demonstrated by teachers in this research may significantly impact on a successful return to school.

  7. Diabetes Insipidus after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Cristina Capatina

    2015-07-01

    Full Text Available Traumatic brain injury (TBI is a significant cause of morbidity and mortality in many age groups. Neuroendocrine dysfunction has been recognized as a consequence of TBI and consists of both anterior and posterior pituitary insufficiency; water and electrolyte abnormalities (diabetes insipidus (DI and the syndrome of inappropriate antidiuretic hormone secretion (SIADH are amongst the most challenging sequelae. The acute head trauma can lead (directly or indirectly to dysfunction of the hypothalamic neurons secreting antidiuretic hormone (ADH or of the posterior pituitary gland causing post-traumatic DI (PTDI. PTDI is usually diagnosed in the first days after the trauma presenting with hypotonic polyuria. Frequently, the poor general status of most patients prevents adequate fluid intake to compensate the losses and severe dehydration and hypernatremia occur. Management consists of careful monitoring of fluid balance and hormonal replacement. PTDI is associated with high mortality, particularly when presenting very early following the injury. In many surviving patients, the PTDI is transient, lasting a few days to a few weeks and in a minority of cases, it is permanent requiring management similar to that offered to patients with non-traumatic central DI.

  8. Delayed radiation injury to the brain

    International Nuclear Information System (INIS)

    Takano, Shingo; Yoshii, Yoshihiko; Okazaki, Masao; Nose, Tadao; Aida, Shinsuke

    1989-01-01

    The authors report four cases of delayed radiation injury to the brain. One case was diagnosed histologically, and the other three cases, by means of serial CT scans and clinical symptoms. In all cases, a low-density area was observed 4-15 months after radiotherapy, then the contrast-enhanced area appeared within the low-density area about 4 months later. The enhanced area was distant from the original tumor, but within the field of radiotherapy. In the relationship between CT scans and superimposed dose distributions, the enhanced area and the low-density area were always observed within a zone of more than 80% of the total doses, and, as for the irradiated doses, there was no difference between the two areas. However, a distinct difference between these two areas was noted in the MRI scans and histopathology. The enhanced area was imaged as an area of a high signal by means of Gd-DTPA enhanced T 1 -weighted images in two cases. In the one histologically verified case, the fibrinoid necrosis of the blood vessel and demyelination appeared significantly higher in the enhanced area than in the low-density area. In conclusion, when a low-density area was observed by CT scan within the field of radiotherapy, we also suspected radiation injury and considered steroid or anticoagulant therapy in order to reverse it. However, if an enhanced area appeared within the injured lesion, the area seemed to have become irreversible and surgical therapy might also be needed. (author)

  9. Diabetes Insipidus after Traumatic Brain Injury

    Science.gov (United States)

    Capatina, Cristina; Paluzzi, Alessandro; Mitchell, Rosalid; Karavitaki, Niki

    2015-01-01

    Traumatic brain injury (TBI) is a significant cause of morbidity and mortality in many age groups. Neuroendocrine dysfunction has been recognized as a consequence of TBI and consists of both anterior and posterior pituitary insufficiency; water and electrolyte abnormalities (diabetes insipidus (DI) and the syndrome of inappropriate antidiuretic hormone secretion (SIADH)) are amongst the most challenging sequelae. The acute head trauma can lead (directly or indirectly) to dysfunction of the hypothalamic neurons secreting antidiuretic hormone (ADH) or of the posterior pituitary gland causing post-traumatic DI (PTDI). PTDI is usually diagnosed in the first days after the trauma presenting with hypotonic polyuria. Frequently, the poor general status of most patients prevents adequate fluid intake to compensate the losses and severe dehydration and hypernatremia occur. Management consists of careful monitoring of fluid balance and hormonal replacement. PTDI is associated with high mortality, particularly when presenting very early following the injury. In many surviving patients, the PTDI is transient, lasting a few days to a few weeks and in a minority of cases, it is permanent requiring management similar to that offered to patients with non-traumatic central DI. PMID:26239685

  10. Brain injuries due to neonatal hypoglycemia: case report

    International Nuclear Information System (INIS)

    Kim, Dae Bong; Song, Chang Joon; Chang, Mae Young; Youn, Hyae Won

    2003-01-01

    Although hypoglycemia may be common among neonates, brain injuries resulting from isolated neonatal hypoglycemia are rare. The condition may cause neurological symptoms such as stupor, jitteriness, and seizures, though in their absence, diagnosis delayed or difficult. Hypoglycemia was diagnosed in a three-day-old neonate after he visited the emergency department with loose stool, poor oral intake, and decreased activity, first experienced two days earlier. Two days after his visity, several episodes of seizure occurred. T2 and diffusion-weighted magnetic resonance (MR) scanning, performed at 11 days of age, revealed bilateral and symmetrical high signal intensity lesions in occipital, parietal, and temporal lobes. We report the MR findings of hypoglycemic encephalopathy in a neonate

  11. Suicide after traumatic brain injury: a population study

    DEFF Research Database (Denmark)

    Teasdale, T W; Engberg, A W

    2001-01-01

    OBJECTIVES: To determine the rates of suicide among patients who have had a traumatic brain injury. METHODS: From a Danish population register of admissions to hospital covering the years 1979-93 patients were selected who had had either a concussion (n=126 114), a cranial fracture (n=7560......), or a cerebral contusion or traumatic intracranial haemorrhage (n=11 766). All cases of deaths by the end of the study period were identified. RESULTS: In the three diagnostic groups there had been 750 (0.59%), 46 (0.61%), and 99 (0.84%) cases of suicide respectively. Standardised mortality ratios, stratified...... by sex and age, showed that the incidence of suicide among the three diagnostic groups was increased relative to the general population (3.0, 2.7, and 4.1 respectively). In all diagnosis groups the ratios were higher for females than for males, and lower for patients injured before the age of 21 or after...

  12. Guillain Barre Syndrome Following Traumatic Brain Injury: A Rare Case

    Directory of Open Access Journals (Sweden)

    Kirac Unal

    2016-06-01

    Full Text Available Introduction Guillain-Barre syndrome (GBS is an immune-mediated acute inflammatory disorder of the peripheral nervous system. Infectious agents were usually accused of playing a role in the etiology of GBS. Guillain-Barre syndrome has rarely been reported following subdural and subarachnoid hemorrhage after head trauma. Case Presentation We report on a 63-year-old male patient presenting GBS following Traumatic Brain Injury (TBI. Only five other similar cases are described in the literature. Conclusions Sudden onset of GBS symptoms following trauma may erroneously be assessed as secondary complications of the TBI and can lead to unnecessary procedures such as computerized tomography (CT scan and magnetic resonance imaging (MRI for a definitive diagnosis and may be a waste of time.

  13. Visual agnosia and focal brain injury.

    Science.gov (United States)

    Martinaud, O

    Visual agnosia encompasses all disorders of visual recognition within a selective visual modality not due to an impairment of elementary visual processing or other cognitive deficit. Based on a sequential dichotomy between the perceptual and memory systems, two different categories of visual object agnosia are usually considered: 'apperceptive agnosia' and 'associative agnosia'. Impaired visual recognition within a single category of stimuli is also reported in: (i) visual object agnosia of the ventral pathway, such as prosopagnosia (for faces), pure alexia (for words), or topographagnosia (for landmarks); (ii) visual spatial agnosia of the dorsal pathway, such as cerebral akinetopsia (for movement), or orientation agnosia (for the placement of objects in space). Focal brain injuries provide a unique opportunity to better understand regional brain function, particularly with the use of effective statistical approaches such as voxel-based lesion-symptom mapping (VLSM). The aim of the present work was twofold: (i) to review the various agnosia categories according to the traditional visual dual-pathway model; and (ii) to better assess the anatomical network underlying visual recognition through lesion-mapping studies correlating neuroanatomical and clinical outcomes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Sports injury of the spine: imaging diagnosis

    International Nuclear Information System (INIS)

    Kainberger, F.; Weidekamm, C.; Matzner, M.; Trieb, K.

    2006-01-01

    Sports injuries, especially those due to trend sports, and overuse resulting from monotonous repetitive movement patterns may cause various spinal abnormalities. Indications for diagnostic imaging should be established more readily in this group of young patients than in adults, as there is a higher probability to find morphologic abnormalities. This diagnostic strategy should also be applied for MRI and CT investigations. Image findings should be interpreted with view on kinetic chains related to distinct sporting activities. (orig.)

  15. Neuroimaging biomarkers of preterm brain injury: toward developing the preterm connectome

    Energy Technology Data Exchange (ETDEWEB)

    Panigrahy, Ashok [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Children' s Hospital of Pittsburgh of UPMC, Department of Pediatric Radiology, Pittsburgh, PA (United States); Wisnowski, Jessica L. [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Southern California, Brain and Creativity Institute, Los Angeles, CA (United States); Furtado, Andre [Children' s Hospital of Pittsburgh of UPMC, Department of Pediatric Radiology, Pittsburgh, PA (United States); Lepore, Natasha [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Paquette, Lisa [Children' s Hospital Los Angeles, Center for Fetal and Neonatal Medicine, Los Angeles, CA (United States); Bluml, Stefan [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Southern California, Department of Biomedical Engineering, Los Angeles, CA (United States)

    2012-01-15

    For typically developing infants, the last trimester of fetal development extending into the first post-natal months is a period of rapid brain development. Infants who are born premature face significant risk of brain injury (e.g., intraventricular or germinal matrix hemorrhage and periventricular leukomalacia) from complications in the perinatal period and also potential long-term neurodevelopmental disabilities because these early injuries can interrupt normal brain maturation. Neuroimaging has played an important role in the diagnosis and management of the preterm infant. Both cranial US and conventional MRI techniques are useful in diagnostic and prognostic evaluation of preterm brain development and injury. Cranial US is highly sensitive for intraventricular hemorrhage (IVH) and provides prognostic information regarding cerebral palsy. Data are limited regarding the utility of MRI as a routine screening instrument for brain injury for all preterm infants. However, MRI might provide diagnostic or prognostic information regarding PVL and other types of preterm brain injury in the setting of specific clinical indications and risk factors. Further development of advanced MR techniques like volumetric MR imaging, diffusion tensor imaging, metabolic imaging (MR spectroscopy) and functional connectivity are necessary to provide additional insight into the molecular, cellular and systems processes that underlie brain development and outcome in the preterm infant. The adult concept of the ''connectome'' is also relevant in understanding brain networks that underlie the preterm brain. Knowledge of the preterm connectome will provide a framework for understanding preterm brain function and dysfunction, and potentially even a roadmap for brain plasticity. By combining conventional imaging techniques with more advanced techniques, neuroimaging findings will likely be used not only as diagnostic and prognostic tools, but also as biomarkers for long

  16. Neuroimaging biomarkers of preterm brain injury: toward developing the preterm connectome

    International Nuclear Information System (INIS)

    Panigrahy, Ashok; Wisnowski, Jessica L.; Furtado, Andre; Lepore, Natasha; Paquette, Lisa; Bluml, Stefan

    2012-01-01

    For typically developing infants, the last trimester of fetal development extending into the first post-natal months is a period of rapid brain development. Infants who are born premature face significant risk of brain injury (e.g., intraventricular or germinal matrix hemorrhage and periventricular leukomalacia) from complications in the perinatal period and also potential long-term neurodevelopmental disabilities because these early injuries can interrupt normal brain maturation. Neuroimaging has played an important role in the diagnosis and management of the preterm infant. Both cranial US and conventional MRI techniques are useful in diagnostic and prognostic evaluation of preterm brain development and injury. Cranial US is highly sensitive for intraventricular hemorrhage (IVH) and provides prognostic information regarding cerebral palsy. Data are limited regarding the utility of MRI as a routine screening instrument for brain injury for all preterm infants. However, MRI might provide diagnostic or prognostic information regarding PVL and other types of preterm brain injury in the setting of specific clinical indications and risk factors. Further development of advanced MR techniques like volumetric MR imaging, diffusion tensor imaging, metabolic imaging (MR spectroscopy) and functional connectivity are necessary to provide additional insight into the molecular, cellular and systems processes that underlie brain development and outcome in the preterm infant. The adult concept of the ''connectome'' is also relevant in understanding brain networks that underlie the preterm brain. Knowledge of the preterm connectome will provide a framework for understanding preterm brain function and dysfunction, and potentially even a roadmap for brain plasticity. By combining conventional imaging techniques with more advanced techniques, neuroimaging findings will likely be used not only as diagnostic and prognostic tools, but also as biomarkers for long-term neurodevelopmental

  17. Brain functional connectivity and cognition in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Xiong, K.L.; Zhang, Y.L.; Chen, H.; Zhang, J.N.; Zhang, Y.; Qiu, M.G.

    2016-01-01

    The aim of this study was to analyze brain functional connectivity and its relationship to cognition in patients with mild traumatic brain injury (mTBI). Twenty-five patients with mTBI and 25 healthy control subjects were studied using resting-state functional MRI (rs-fMRI). Amplitudes of low-frequency fluctuations (ALFFs) and functional connectivity (FC) were calculated and correlated with cognition. Compared with the normal control group, the mTBI patients showed a significant decrease in working memory index (WMI) and processing speed index (PSI), as well as significantly decreased ALFFs in the cingulate gyrus, the middle frontal gyrus and superior frontal gyrus. In contrast, the mTBI patients' ALFFs in the left middle occipital gyrus, the left precuneus, and lingual gyrus increased. Additionally, FC significantly decreased in the thalamus, caudate nucleus, and right hippocampus in the mTBI patients. Statistical analysis further showed a significant positive correlation between the ALFF in the cingulate gyrus and the WMI (R 2 = 0.423, P < 0.05) and a significant positive correlation between the FC in the left thalamus and left middle frontal gyrus and the WMI (R 2 = 0.381, P < 0.05). rs-fMRI can reveal the functional state of the brain in patients with mTBI. This finding differed from observations of the normal control group and was significantly associated with clinical cognitive dysfunction. Therefore, rs-fMRI offers an objective imaging modality for treatment planning and prognosis assessment in patients with mTBI. (orig.)

  18. CT and MRI diagnosis of acute hepatic injury

    International Nuclear Information System (INIS)

    Wang Rengui; Fumio Yamamoto; Pu Yonglin; Gao Yujie.

    1997-01-01

    To evaluate and compare MR and CT in diagnosis of acute traumatic hepatic laceration, ten patients with acute hepatic rupture underwent CT scan and/or MRI in the first 24 hours after injury. The injury was graded as mild ( 50% of one lobe). In the first 24 hours after injury, 33.3% (3/9) and 28.6%(2/7) of the hepatic injury demonstrated isodensity and isointensity on plain CT scan and T 1 -weighted images. All the lesions (100%) were clearly identified as marked hyperintensity on T 2 -weighted images. On T 2 WI, T 1 WI and non-contrast CT, 100%, 57.1% and 55.6% of the acute hepatic injuries could be graded respectively. Delayed complications occurred in four patients with deep hepatic injury about 1 to 3 weeks after injury. T 2 -weighted MR imaging is more sensitive and useful for detection of the type and severity of acute hepatic rupture. Follow-up MRI or CT within the first few weeks after injury is needed in patients with deep hepatic injury for detection of delayed complications

  19. Imaging of rare radiation injuries after radiosurgery for brain metastases

    International Nuclear Information System (INIS)

    Yamanaka, Kazuhiro; Yoshimura, Masaki; Iwai, Yoshiyasu

    2011-01-01

    Gamma knife radiosurgery (GKS) is generally an effective and safe treatment for brain metastases. We report 3 rare complicated cases after GKS due to radiation injury including image findings. Case 1: A 58-year-old man received whole brain radiation therapy for right occipital brain metastasis from lung cancer. However, local recurrence was noted and GKS was carried out 5 months later (size 28 mm, marginal dose 23 Gy (50% isodose)). Four years later, a cyst appeared and the patient developed apraxia and visual disturbance. Surgery was performed and the histopathology showed necrosis. Case 2: A 51-year-old woman received GKS for 4 brain metastases from breast cancer. The right occipital lobe lesion was treated with marginal dose of 18 Gy (size 24 mm, 50% isodose). Thirty-one months later, she developed left homonymous hemianopsia and MR imaging and CT scan showed intracerebral hemorrhage with cyst formation. An operation was performed and the histology revealed necrosis. Case 3: A 37-year-old man received GKS for left temporal brain metastasis from lung cancer (size 14 mm, marginal dose 23 Gy (50% isodose)). Twelve months later, the lesion increased in size again, so we carried out a second GKS on the same lesion (size 15 mm, marginal dose 23 Gy (50% isodose)). Thirty-five months later, massive peritumoral edema appeared and the patient developed left oculomotor palsy. An emergency operation was performed and the histopathological diagnosis was cavernous malformation that was thought to be induced by radiosurgery. Although the incidence is low, rare complications associated with radiation therapy can also occur by radiosurgery. (author)

  20. Brain protection by methylprednisolone in rats with spinal cord injury.

    Science.gov (United States)

    Chang, Chia-Mao; Lee, Ming-Hsueh; Wang, Ting-Chung; Weng, Hsu-Huei; Chung, Chiu-Yen; Yang, Jen-Tsung

    2009-07-01

    Traumatic spinal cord injury is clinically treated by high doses of methylprednisolone. However, the effect of methylprednisolone on the brain in spinal cord injury patients has been little investigated. This experimental study examined Bcl-2 and Bax protein expression and Nissl staining to evaluate an apoptosis-related intracellular signaling event and final neuron death, respectively. Spinal cord injury produced a significant apoptotic change and cell death not only in the spinal cord but also in the supraventricular cortex and hippocampal cornu ammonis 1 region in the rat brains. The treatment of methylprednisolone increased the Bcl-2/Bax ratio and prevented neuron death for 1-7 days after spinal cord injury. These findings suggest that rats with spinal cord injury show ascending brain injury that could be restricted through methylprednisolone management.

  1. A Review of Magnetic Resonance Imaging and Diffusion Tensor Imaging Findings in Mild Traumatic Brain Injury

    Science.gov (United States)

    Shenton, ME; Hamoda, HM; Schneiderman, JS; Bouix, S; Pasternak, O; Rathi, Y; M-A, Vu; Purohit, MP; Helmer, K; Koerte, I; Lin, AP; C-F, Westin; Kikinis, R; Kubicki, M; Stern, RA; Zafonte, R

    2013-01-01

    Mild traumatic brain injury (mTBI), also referred to as concussion, remains a controversial diagnosis because the brain often appears quite normal on conventional computed tomography (CT) and magnetic resonance imaging (MRI) scans. Such conventional tools, however, do not adequately depict brain injury in mTBI because they are not sensitive to detecting diffuse axonal injuries (DAI), also described as traumatic axonal injuries (TAI), the major brain injuries in mTBI. Furthermore, for the 15 to 30% of those diagnosed with mTBI on the basis of cognitive and clinical symptoms, i.e., the “miserable minority,” the cognitive and physical symptoms do not resolve following the first three months post-injury. Instead, they persist, and in some cases lead to long-term disability. The explanation given for these chronic symptoms, i.e., postconcussive syndrome, particularly in cases where there is no discernible radiological evidence for brain injury, has led some to posit a psychogenic origin. Such attributions are made all the easier since both post-traumatic stress disorder (PTSD) and depression are frequently co-morbid with mTBI. The challenge is thus to use neuroimaging tools that are sensitive to DAI/TAI, such as diffusion tensor imaging (DTI), in order to detect brain injuries in mTBI. Of note here, recent advances in neuroimaging techniques, such as DTI, make it possible to characterize better extant brain abnormalities in mTBI. These advances may lead to the development of biomarkers of injury, as well as to staging of reorganization and reversal of white matter changes following injury, and to the ability to track and to characterize changes in brain injury over time. Such tools will likely be used in future research to evaluate treatment efficacy, given their enhanced sensitivity to alterations in the brain. In this article we review the incidence of mTBI and the importance of characterizing this patient population using objective radiological measures. Evidence

  2. Traumatic Brain Injury Induces Genome-Wide Transcriptomic, Methylomic, and Network Perturbations in Brain and Blood Predicting Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Qingying Meng

    2017-02-01

    Full Text Available The complexity of the traumatic brain injury (TBI pathology, particularly concussive injury, is a serious obstacle for diagnosis, treatment, and long-term prognosis. Here we utilize modern systems biology in a rodent model of concussive injury to gain a thorough view of the impact of TBI on fundamental aspects of gene regulation, which have the potential to drive or alter the course of the TBI pathology. TBI perturbed epigenomic programming, transcriptional activities (expression level and alternative splicing, and the organization of genes in networks centered around genes such as Anax2, Ogn, and Fmod. Transcriptomic signatures in the hippocampus are involved in neuronal signaling, metabolism, inflammation, and blood function, and they overlap with those in leukocytes from peripheral blood. The homology between genomic signatures from blood and brain elicited by TBI provides proof of concept information for development of biomarkers of TBI based on composite genomic patterns. By intersecting with human genome-wide association studies, many TBI signature genes and network regulators identified in our rodent model were causally associated with brain disorders with relevant link to TBI. The overall results show that concussive brain injury reprograms genes which could lead to predisposition to neurological and psychiatric disorders, and that genomic information from peripheral leukocytes has the potential to predict TBI pathogenesis in the brain.

  3. ED utilization trends in sports-related traumatic brain injury.

    Science.gov (United States)

    Hanson, Holly R; Pomerantz, Wendy J; Gittelman, Mike

    2013-10-01

    Emergency department (ED) visits for sports-related traumatic brain injuries (TBIs) have risen. This study evaluated how the number and severity of admissions have changed as ED visits for sports-related TBIs have increased. A retrospective study of children aged 0 to 19 years at a level 1 trauma center was performed. Patients from 2002 to 2011 with a primary or secondary diagnosis of TBI were identified from the hospital's inpatient and outpatient trauma registries. Frequencies were used to characterize the population, χ(2) analysis was performed to determine differences between groups, and regression analysis looked at relationship between year and injury severity score or length of stay. Sport was responsible for injury in 3878 (15.4%) cases during the study period; 3506 (90.4%) were discharged from the hospital, and 372 (9.6%) were admitted. Seventy-three percent were male patients and 78% Caucasian; mean age was 13 ± 3.5 years. ED visits for sports-related TBIs increased 92% over the study period, yet there was no significant change (χ(2) = 9.8, df = 9, P = .37) in the percentage of children admitted. Mean injury severity score for those admitted decreased from 7.8 to 4.8 (β = -0.46; P = .006); length of stay trended downward (β = -0.05; P = .05). The percentage of children being admitted from the ED with sports-related TBI has not changed over the past 10 years. The severity of admitted sports-related TBI is decreasing. Additional research is needed to correlate these trends with other TBI mechanisms.

  4. Longitudinal Examination of Resilience After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    Science.gov (United States)

    Marwitz, Jennifer H; Sima, Adam P; Kreutzer, Jeffrey S; Dreer, Laura E; Bergquist, Thomas F; Zafonte, Ross; Johnson-Greene, Douglas; Felix, Elizabeth R

    2018-02-01

    To evaluate (1) the trajectory of resilience during the first year after a moderate-severe traumatic brain injury (TBI); (2) factors associated with resilience at 3, 6, and 12 months postinjury; and (3) changing relationships over time between resilience and other factors. Longitudinal analysis of an observational cohort. Five inpatient rehabilitation centers. Patients with TBI (N=195) enrolled in the resilience module of the TBI Model Systems study with data collected at 3-, 6-, and 12-month follow-up. Not applicable. Connor-Davidson Resilience Scale. Initially, resilience levels appeared to be stable during the first year postinjury. Individual growth curve models were used to examine resilience over time in relation to demographic, psychosocial, and injury characteristics. After adjusting for these characteristics, resilience actually declined over time. Higher levels of resilience were related to nonminority status, absence of preinjury substance abuse, lower anxiety and disability level, and greater life satisfaction. Resilience is a construct that is relevant to understanding brain injury outcomes and has potential value in planning clinical interventions. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Pathophysiology of repetitive head injury in sports. Prevention against catastrophic brain damage

    International Nuclear Information System (INIS)

    Mori, Tatsuro; Kawamata, Tatsuro; Katayama, Yoichi

    2008-01-01

    The most common head injury in sports is concussion and experiencing multiple concussions in a short period of time sometimes can cause severe brain damage. In this paper, we investigate severe brain damage due to repeated head injury in sports and discuss the pathophysiology of repeated sports injury. The majority of these severe cases are usually male adolescents or young adults that suffer a second head injury before they have recovered from the first head injury. All cases that could be confirmed by brain CT scan after the second injury revealed brain swelling associated with a thin subdural hematoma. We suggested that the existence of subdural hematoma is one of the major causes of brain swelling after repeated head injury in sports. Since repeated concussions occurring within a short period may have a risk for severe brain damage, the diagnosis for initial cerebral concussion should be done appropriately. To prevent catastrophic brain damage, the player who suffered from concussion should not engage in any sports before recovery. The american Academy of Neurology and Colorado Medical Society set a guideline to return to play after cerebral concussion. An international conference on concussion in sports was held at Prague in 2004. The summary and agreement of this meeting was published and the Sports Concussion Assessment Tool (SCAT) was introduced to treat sports-related concussion. In addition, a number of computerized cognitive assessment tests and test batteries have been developed to allow athletes to return to play. It is important that coaches, as well as players and trainers, understand the medical issues involved in concussion. (author)

  6. The imaging diagnosis of diffuse brain swelling due to severe brain trauma

    International Nuclear Information System (INIS)

    Shen Jianqiang; Hu Jiawang

    2008-01-01

    Objective: To discuss the clinical and pathological characteristics and the imaging types of the diffuse brain swelling due to severe brain trauma. Methods: The clinical data and CT and MR images on 48 cases with diffuse brain swelling due to severe brain trauma were analyzed. Results: Among these 48 cases of the diffuse brain swelling due to severe brain trauma, 33 cases were complicated with brain contusions (including 12 cases brain diffuse axonal injury, 1 case infarct of the right basal ganglion), 31 cases were complicated with hematoma (epidural, subdural or intracerebral), 27 cases were complicated with skull base fracture, and 10 cases were complicated with subarachnoid hematoma. The CT and MR imaging of the diffuse brain swelling included as followed: (1) Symmetrically diffuse brain swelling in both cerebral hemispheres with cerebral ventricles decreased or disappeared, without median line shift. (2)Diffuse brain swelling in one side cerebral hemisphere with cerebral ventricles decreased or disappeared at same side, and median line shift to other side. (3) Subarachnoid hematoma or little subcortex intracerebral hematoma were complicated. (4) The CT value of the cerebral could be equal, lower or higher comparing with normal. Conclusion: The pathological reason of diffuse brain swelling was the brain vessel expanding resulting from hypothalamus and brainstem injured in severe brain trauma. There were four CT and MR imaging findings in diffuse brain swelling. The diffuse brain swelling without hematoma may be caused by ischemical reperfusion injury. (authors)

  7. Diagnosis and treatment of radiation injuries

    International Nuclear Information System (INIS)

    1998-01-01

    This publication is directed at medical professionals who may be involved in the management of radiation injuries starting from the first few hours or days after an exposure of undefined severity (i.e. those handling the emergency situation may not know the extent and severity of the accident). Experience has shown that in addition to occupational physicians, the complete management of an emergency case involves other professionals such as haematologists, oncologists, plastic surgeons, dermatologists, vascular surgeons, psychiatrists and consultants in other medical specialities. The principal aim of this publication is to provide guidelines to enable medical professionals to carry out prompt diagnostic measures and to offer emergency treatment. This report provides information in tabulated form on clinical criteria for dose assessment. Additionally, it discusses the appropriate dose-effect relationship in cases of external radiation involving either total body or local exposures, as well as internal contamination

  8. Development of brain injury criteria (BrIC).

    Science.gov (United States)

    Takhounts, Erik G; Craig, Matthew J; Moorhouse, Kevin; McFadden, Joe; Hasija, Vikas

    2013-11-01

    Rotational motion of the head as a mechanism for brain injury was proposed back in the 1940s. Since then a multitude of research studies by various institutions were conducted to confirm/reject this hypothesis. Most of the studies were conducted on animals and concluded that rotational kinematics experienced by the animal's head may cause axonal deformations large enough to induce their functional deficit. Other studies utilized physical and mathematical models of human and animal heads to derive brain injury criteria based on deformation/pressure histories computed from their models. This study differs from the previous research in the following ways: first, it uses two different detailed mathematical models of human head (SIMon and GHBMC), each validated against various human brain response datasets; then establishes physical (strain and stress based) injury criteria for various types of brain injury based on scaled animal injury data; and finally, uses Anthropomorphic Test Devices (ATDs) (Hybrid III 50th Male, Hybrid III 5th Female, THOR 50th Male, ES-2re, SID-IIs, WorldSID 50th Male, and WorldSID 5th Female) test data (NCAP, pendulum, and frontal offset tests) to establish a kinematically based brain injury criterion (BrIC) for all ATDs. Similar procedures were applied to college football data where thousands of head impacts were recorded using a six degrees of freedom (6 DOF) instrumented helmet system. Since animal injury data used in derivation of BrIC were predominantly for diffuse axonal injury (DAI) type, which is currently an AIS 4+ injury, cumulative strain damage measure (CSDM) and maximum principal strain (MPS) were used to derive risk curves for AIS 4+ anatomic brain injuries. The AIS 1+, 2+, 3+, and 5+ risk curves for CSDM and MPS were then computed using the ratios between corresponding risk curves for head injury criterion (HIC) at a 50% risk. The risk curves for BrIC were then obtained from CSDM and MPS risk curves using the linear relationship

  9. Delayed radiation injury of brain stem after radiotherapy in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Yang Yunli; Liu Yingxin; Xie Dong; Su Danke; Chen Mingzhong

    2002-01-01

    Objective: To study the clinical characteristics, MRI findings, diagnosis, treatment and prognostic factors of patients with radiation induced brain stem injury in nasopharyngeal carcinoma. Methods: From January 1991 to January 2001, 24 patients with radiation injury of brain stem were treated, 14 males and 10 females. The latency ranged from 6 to 38 months, with a median of 18 months. The lesions were located in the pons in 10 patients, mesencephalon + pons in 4, pons + medulla oblongata in 5, medulla oblongata in 2 and mesencephalon + pons + medulla oblongata in 3. MRI findings showed that the injury was chiefly presented as hypointensity foci on T 1 WI and hyperintensity foci on T 2 WI. Results: Eighteen patients were treated with dexamethasone in the early phase, with symptoms relieved in 12 patients but unimproved in 6 patients. Eight 44% patients died within the 8-38 months, leaving 16 patients surviving for 0.5 to 6.0 years. Conclusions: Radiation injury of brain stem has a short latency with severe symptoms, signifying poor prognosis. It is suggested that adequate reduction of irradiation volume and dose at the brain stem should be able to lower the incidence of brain stem injury

  10. The clinical diagnosis of brain death

    African Journals Online (AJOL)

    Key words: brain death, diagnostic criteria, heartbeat. Death has been analysed in a heterogeneous .... angiography studies have also been used in order to evaluate brain circulation. According to some authors, the elective ... reflex response of spinal origin provoked by a sudden flexion of the neck and characterised by a.

  11. Brain injury and altered brain growth in preterm infants: predictors and prognosis.

    Science.gov (United States)

    Kidokoro, Hiroyuki; Anderson, Peter J; Doyle, Lex W; Woodward, Lianne J; Neil, Jeffrey J; Inder, Terrie E

    2014-08-01

    To define the nature and frequency of brain injury and brain growth impairment in very preterm (VPT) infants by using MRI at term-equivalent age and to relate these findings to perinatal risk factors and 2-year neurodevelopmental outcomes. MRI scans at term-equivalent age from 3 VPT cohorts (n = 325) were reviewed. The severity of brain injury, including periventricular leukomalacia and intraventricular and cerebellar hemorrhage, was graded. Brain growth was assessed by using measures of biparietal width (BPW) and interhemispheric distance. Neurodevelopmental outcome at age 2 years was assessed across all cohorts (n = 297) by using the Bayley Scales of Infant Development, Second Edition (BSID-II) or Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III), and evaluation for cerebral palsy. Of 325 infants, 107 (33%) had some grade of brain injury and 33 (10%) had severe injury. Severe brain injury was more common in infants with lower Apgar scores, necrotizing enterocolitis, inotropic support, and patent ductus arteriosus. Severe brain injury was associated with delayed cognitive and motor development and cerebral palsy. Decreased BPW was related to lower gestational age, inotropic support, patent ductus arteriosus, necrotizing enterocolitis, prolonged parenteral nutrition, and oxygen at 36 weeks and was associated with delayed cognitive development. In contrast, increased interhemispheric distance was related to male gender, dexamethasone use, and severe brain injury. It was also associated with reduced cognitive development, independent of BPW. At term-equivalent age, VPT infants showed both brain injury and impaired brain growth on MRI. Severe brain injury and impaired brain growth patterns were independently associated with perinatal risk factors and delayed cognitive development. Copyright © 2014 by the American Academy of Pediatrics.

  12. Ginsenoside Rg1 improves ischemic brain injury by balancing ...

    African Journals Online (AJOL)

    Ginsenoside Rg1 improves ischemic brain injury by balancing mitochondrial ... and autophagy-related proteins were determined by reat time-polymerase chain ... Treatment with autophagy inhibitors decreased the mitochondrial protective ...

  13. Loss of Financial Management Independence After Brain Injury: Survivors' Experiences.

    Science.gov (United States)

    Koller, Kathryn; Woods, Lindsay; Engel, Lisa; Bottari, Carolina; Dawson, Deirdre R; Nalder, Emily

    2016-01-01

    This pilot study explored the experiences of brain injury survivors after a change in financial management (FM) independence. Using a qualitative descriptive design, 6 participants with acquired brain injury were recruited from a community brain injury organization and participated in semistructured interviews. Data were analyzed using thematic analysis. Three themes emerged from the interviews: (1) trajectory of FM change, involving family members as key change agents; (2) current FM situation, involving FM strategies such as automatic deposits and restricted budgets; and (3) the struggle for control, in which survivors desired control while also accepting supports for FM. This study identifies some of the challenges brain injury survivors face in managing their finances and the adjustment associated with a loss of FM independence. Occupational therapists should be aware of clients' experiences when supporting them through a change in independence. Copyright © 2016 by the American Occupational Therapy Association, Inc.

  14. Spreading depolarisations and outcome after traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Bullock, M Ross; Okonkwo, David O

    2011-01-01

    Pathological waves of spreading mass neuronal depolarisation arise repeatedly in injured, but potentially salvageable, grey matter in 50-60% of patients after traumatic brain injury (TBI). We aimed to ascertain whether spreading depolarisations are independently associated with unfavourable...

  15. What Can I Do to Help Prevent Traumatic Brain Injury?

    Science.gov (United States)

    ... TBI Online Concussion Training Press Room Guide to Writing about TBI in News and Social Media Living with TBI HEADS UP to Brain Injury Awareness Get Email Updates To receive email updates about this topic, ...

  16. Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Federal Interagency Traumatic Brain Injury Research (FITBIR) informatics system is an extensible, scalable informatics platform for TBI relevant imaging,...

  17. Participation in leisure activities during brain injury rehabilitation.

    Science.gov (United States)

    Fleming, Jennifer; Braithwaite, Helen; Gustafsson, Louise; Griffin, Janelle; Collier, Ann Maree; Fletcher, Stephanie

    2011-01-01

    To describe and compare pre- and post-injury leisure activities of individuals receiving brain injury rehabilitation and explore levels of leisure participation and satisfaction. Cross-sectional descriptive study incorporating a survey of current and past leisure activities. Questionnaires were completed by 40 individuals with an acquired brain injury receiving inpatient or outpatient rehabilitation. Shortened Version of the Nottingham Leisure Questionnaire and Changes in Leisure Questionnaire (developed for this study). Leisure participation declined following injury, particularly in social leisure activities. Pre-injury activities with high rates of discontinued or decreased participation were driving, going to pubs and parties, do-it-yourself activities and attending sports events. Inpatient participants generally attributed decreased participation to the hospital environment, whereas outpatient participants reported this predominantly as a result of disability. Post-injury levels of perceived leisure satisfaction were significantly lower for the inpatient group compared to pre-injury, but not for the outpatient group. Uptake of some new leisure activities was reported post-injury, however not at the rate to which participation declined. Leisure participation decreases during brain injury rehabilitation compared to pre-injury levels. Re-engagement in relevant, age-appropriate leisure activities needs to be addressed during rehabilitation to improve participation in this domain.

  18. Cooking breakfast after a brain injury

    Directory of Open Access Journals (Sweden)

    Annick N. Tanguay

    2014-09-01

    Full Text Available Acquired brain injury (ABI often compromises the ability to carry out instrumental activities of daily living such as cooking. ABI patients’ difficulties with executive functions and memory result in less independent and efficient meal preparation. Accurately assessing safety and proficiency in cooking is essential for successful community reintegration following ABI, but in vivo assessment of cooking by clinicians is time-consuming, costly, and difficult to standardize. Accordingly, we examined the usefulness of a computerized meal preparation task (the Breakfast Task; Craik & Bialystok, 2006 as an indicator of real life meal preparation skills. Twenty-two ABI patients and 22 age-matched controls completed the Breakfast Task and the Rehabilitation Activities of Daily Living Survey (RADLS; Salmon, 2003. Patients also prepared actual meals, and were rated by members of the clinical team. As expected, the ABI patients had significant difficulty on all aspects of the Breakfast Task (failing to have all their foods ready at the same time, over- and under-cooking foods, setting fewer places at the table, and so on relative to controls. Surprisingly, however, patients’ Breakfast Task performance was not correlated with their in vivo meal preparation. These results indicate caution when endeavoring to replace traditional evaluation methods with computerized tasks for the sake of expediency.

  19. Visual problems associated with traumatic brain injury.

    Science.gov (United States)

    Armstrong, Richard A

    2018-02-28

    Traumatic brain injury (TBI) and its associated concussion are major causes of disability and death. All ages can be affected but children, young adults and the elderly are particularly susceptible. A decline in mortality has resulted in many more individuals living with a disability caused by TBI including those affecting vision. This review describes: (1) the major clinical and pathological features of TBI; (2) the visual signs and symptoms associated with the disorder; and (3) discusses the assessment of quality of life and visual rehabilitation of the patient. Defects in primary vision such as visual acuity and visual fields, eye movement including vergence, saccadic and smooth pursuit movements, and in more complex aspects of vision involving visual perception, motion vision ('akinopsia'), and visuo-spatial function have all been reported in TBI. Eye movement dysfunction may be an early sign of TBI. Hence, TBI can result in a variety of visual problems, many patients exhibiting multiple visual defects in combination with a decline in overall health. Patients with chronic dysfunction following TBI may require occupational, vestibular, cognitive and other forms of physical therapy. Such patients may also benefit from visual rehabilitation, including reading-related oculomotor training and the prescribing of spectacles with a variety of tints and prism combinations. © 2018 Optometry Australia.

  20. Effectiveness of Traumatic Brain Injury Management Guideline Introduction in Hungary.

    Science.gov (United States)

    Sorinola, Abayomi; Buki, Andras; Sandor, Janos; Czeiter, Endre

    2018-01-01

    To describe the impact of the Traumatic Brain Injury management guideline introduction in Hungary. Hospital discharge records (HDR) including age, gender, codes of interventions applied, ICD codes of diagnosed disorders of patients admitted between 01/01/2004 and 31/12/2010 with the diagnosis of intracranial injury (S06 by ICD10) from every inpatient institution in Hungary were collected from the database of National Health Insurance Fund (NHIF). The Case Fatality Ratios (CFR) for one week, one month and six months were calculated for the periods before and after the guideline introduction. The change of CFRs was applied as indicators for change of clinical quality elicited by the guideline. The centers together at one week, one month and six months had pre-guideline introduction CFRs of 23.4%, 37.7% and 47.5% and post-guideline introduction CFRs of 22.1%, 39.1%, and 50.0% respectively. The secondary institutions together at one week, one month and six months had pre-guideline introduction CFRs of 21.5%, 34.8% and 46.3% and post-guideline introduction CFRs of 21.9%, 37.0%, and 48.9% respectively. None of the CFRs showed significant change. The effectiveness of TBI management guideline adaptation in Hungary is poor. Without supportive financing and external auditing system, guideline introduction alone cannot achieve standard clinical practice and a reduction in CFR.

  1. Cognitive functions in drivers with brain injury : Anticipation and adaption

    OpenAIRE

    Lundqvist, Anna

    2001-01-01

    The purpose of this thesis was to improve the understanding of what cognitive functions are important for driving performance, investigate the impact of impaired cognitive functions on drivers with brain injury, and study adaptation strategies relevant for driving performance after brain injury. Finally, the predictive value of a neuropsychological test battery was evaluated for driving performance. Main results can be summarized in the following conclusions: (a) Cognitive functions in terms ...

  2. Oculometric Screening for Traumatic Brain Injury in Veterans

    Science.gov (United States)

    2017-06-01

    intake physicals as a detection method for acute injury and for management of brain health in military and VA hospitals. An immersive evaluation of the...risk of traumatic brain injury following deployment. Journal of Head Trauma Rehabilitation, 31(1), 28–35. xviii THIS PAGE INTENTIONALLY LEFT BLANK...device in operational units, military treatment facilities, or VA hospitals. This question will be answered through an immersive qualitative

  3. [Brain injury knowledge in family members of neurosurgical patients].

    Science.gov (United States)

    Navarro-Main, Blanca; Castaño-León, Ana M; Munarriz, Pablo M; Gómez, Pedro A; Rios-Lago, Marcos; Lagares, Alfonso

    Several studies have shown misconceptions about brain injury in different populations. The aim of this study was to assess the knowledge and perceptions about brain injury of family members of neurosurgical patients in our hospital. The participants (n=81) were relatives of patients admitted to the neurosurgery department between February and August 2016. They voluntarily completed a 19-item true-false format survey about brain injury based on a translation of other questionnaires used in previous studies from other countries (USA, Canada, UK, Ireland and New Zealand). Also, some sociodemographic data were collected (age, sex, education level and the patient's pathology). Data analysis was developed through graphical modelling with a regularisation parameter plotted on a network representing the association of the items of the questionnaire from the response pattern of participants. Data analysis showed two conceptual areas with a high rate of wrong answers: behaviour and management of patients, and expectations about acquired brain injury recovery. The results obtained in this study would enable us to objectify misconceptions about acquired brain injury in patients' relatives attended in the neurosurgery department. This lack of knowledge could be a great obstacle in patients' recovery process. Therefore, we suggest placing the emphasis on the provision of information on brain injury to patients' families, especially with regard to its symptoms and course of development. Copyright © 2017 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Traumatic Brain Injury in the Accident and Emergency Department of ...

    African Journals Online (AJOL)

    Background: Traumatic brain injury is a major public health problem in Nigeria, as it could be associated with long term and life long deficits. Unlike other parts of the world, in our country, motorcycles are possibly the main cause of this injury. Unfortunately, we do not have a national epidemiological data base yet. This study ...

  5. Traumatic Brain Injury: Persistent Misconceptions and Knowledge Gaps among Educators

    Science.gov (United States)

    Ettel, Deborah; Glang, Ann E.; Todis, Bonnie; Davies, Susan C.

    2016-01-01

    Each year approximately 700,000 U.S. children aged 0-19 years sustain a traumatic brain injury (TBI) placing them at risk for academic, cognitive, and behavioural challenges. Although TBI has been a special education disability category for 25 years, prevalence studies show that of the 145,000 students each year who sustain long-term injury from…

  6. Development of an Ontology for Rehabilitation: Traumatic Brain Injury

    Science.gov (United States)

    Grove, Michael J.

    2013-01-01

    Traumatic Brain Injury (TBI) rehabilitation interventions are very heterogeneous due to injury characteristics and pathology, patient demographics, healthcare settings, caregiver variability, and individualized, multi-discipline treatment plans. Consequently, comparing and generalizing the effectiveness of interventions is limited largely due to…

  7. Statistical analysis plan for the Erythropoietin in Traumatic Brain Injury trial: a randomised controlled trial of erythropoietin versus placebo in moderate and severe traumatic brain injury.

    LENUS (Irish Health Repository)

    Presneill, Jeffrey

    2014-01-01

    The Erythropoietin in Traumatic Brain Injury (EPO-TBI) trial aims to determine whether the administration of erythropoietin to patients with moderate or severe traumatic brain injury improves patient-centred outcomes.

  8. Adding insult to brain injury: young adults' experiences of residing in nursing homes following acquired brain injury.

    Science.gov (United States)

    Dwyer, Aoife; Heary, Caroline; Ward, Marcia; MacNeela, Pádraig

    2017-08-28

    There is general consensus that adults under age 65 with acquired brain injury residing in nursing homes is inappropriate, however there is a limited evidence base on the issue. Previous research has relied heavily on third-party informants and qualitative studies have been of questionable methodological quality, with no known study adopting a phenomenological approach. This study explored the lived experiences of young adults with brain injury residing in aged care facilities. Interpretative phenomenological analysis was employed to collect and analyze data from six semi-structured interviews with participants regarding their experiences of living in nursing homes. Two themes were identified, including "Corporeal prison of acquired brain injury: broken selves" and "Existential prison of the nursing home: stagnated lives". Results illustrated that young adults with acquired brain injury can experience aged care as an existential prison in which their lives feel at a standstill. This experience was characterized by feelings of not belonging in a terminal environment, confinement, disempowerment, emptiness and hope for greater autonomy through rehabilitation. It is hoped that this study will provide relevant professionals, services and policy-makers with insight into the challenges and needs of young adults with brain injury facing these circumstances. Implications for rehabilitation This study supports the contention that more home-like and age-appropriate residential rehabilitation services for young adults with acquired brain injury are needed. As development of alternative accommodation is a lengthy process, the study findings suggest that the interim implementation of rehabilitative care in nursing homes should be considered. Taken together with existing research, it is proposed that nursing home staff may require training to deliver evidence-based rehabilitative interventions to those with brain injury. The present findings add support to the call for systemic

  9. Internet and Social Media Use After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    Science.gov (United States)

    Baker-Sparr, Christina; Hart, Tessa; Bergquist, Thomas; Bogner, Jennifer; Dreer, Laura; Juengst, Shannon; Mellick, David; OʼNeil-Pirozzi, Therese M; Sander, Angelle M; Whiteneck, Gale G

    To characterize Internet and social media use among adults with moderate to severe traumatic brain injury (TBI) and to compare demographic and socioeconomic factors associated with Internet use between those with and without TBI. Ten Traumatic Brain Injury Model Systems centers. Persons with moderate to severe TBI (N = 337) enrolled in the TBI Model Systems National Database and eligible for follow-up from April 1, 2014, to March 31, 2015. Prospective cross-sectional observational cohort study. Internet usage survey. The proportion of Internet users with TBI was high (74%) but significantly lower than those in the general population (84%). Smartphones were the most prevalent means of Internet access for persons with TBI. The majority of Internet users with TBI had a profile account on a social networking site (79%), with more than half of the sample reporting multiplatform use of 2 or more social networking sites. Despite the prevalence of Internet use among persons with TBI, technological disparities remain in comparison with the general population. The extent of social media use among persons with TBI demonstrates the potential of these platforms for social engagement and other purposes. However, further research examining the quality of online activities and identifying potential risk factors of problematic use is recommended.

  10. [Traumatic brain injuries--forensic and expertise aspects].

    Science.gov (United States)

    Vuleković, Petar; Simić, Milan; Misić-Pavkov, Gordana; Cigić, Tomislav; Kojadinović, Zeljko; Dilvesi, Dula

    2008-01-01

    Traumatic brain injuries have major socio-economic importance due to their frequency, high mortality and serious consequences. According to their nature the consequences of these injuries may be classified as neurological, psychiatric and esthetic. Various lesions of brain structures cause neurological consequences such as disturbance of motor functions, sensibility, coordination or involuntary movements, speech disturbances and other deviations, as well as epilepsy. Psychiatric consequences include cognitive deficit, emotional disturbances and behavior disturbances. CRIMINAL-LEGAL ASPECT OF TRAUMATIC BRAIN INJURIES AND LITIGATION: Criminal-legal aspect of traumatic brain injuries expertise understands the qualification of these injuries as mild, serious and qualified serious body injuries as well as the expertise about the mechanisms of their occurrence. Litigation expertise includes the estimation of pain, fear, diminished, i.e. lost vital activity and disability, esthetic marring, and psychological suffer based on the diminished general vital activity and esthetic marring. Evaluation of consequences of traumatic brain injuries should be performed only when it can be positively confirmed that they are permanent, i.e. at least one year after the injury. Expertise of these injuries is interdisciplinary. Among clinical doctors the most competent medical expert is the one who is in charge for diagnostics and injury treatment, with the recommendation to avoid, if possible, the doctor who conducted treatment. For the estimation of general vital activity, the neurological consequences, pain and esthetic marring expertise, the most competent doctors are neurosurgeon and neurologist. Psychological psychiatric consequences and fear expertise have to be performed by the psychiatrist. Specialists of forensic medicine contribute with knowledge of criminal low and legal expertise.

  11. Treatment for delayed brain injury after pituitary irradiation

    International Nuclear Information System (INIS)

    Fujii, Takashi; Misumi, Shuzoh; Shibasaki, Takashi; Tamura, Masaru; Kunimine, Hideo; Hayakawa, Kazushige; Niibe, Hideo; Miyazaki, Mizuho; Miyagi, Osamu.

    1988-01-01

    Treatment for delayed brain injury after pituitary irradiation is discussed. Six cases with delayed brain injury were treated with a combination of dexamethasone or betamethasone, with heparin, glycerol, dextran 40 and some vasodilators. Two cases with temporal lobe syndrome were treated in the early stages of brain injury for a period of over 12 months were almost completely cured, another two cases with chiasma syndrome were treated in the relatively late stages, showed a partial improvement. One case which was irradiated 120 GY during 13 years did not improve. The final case treated with steroids for a short period also resulted in failure and the patient underwent an operation for the removal of the necrotic mass three years after the radiotherapy. Steroid therapy started in the early stages of brain injury after irradiation for over the 12 months is thought to be effective. Heparin therapy was also effective in one out of three cases, but in one of the cases subarachnoid hemorrhage from a traumatic aneurysm occurred during the therapy. In an acute phase, showing edematous change of the injured brain, the administration of glycerol is also thought to be useful. But the effectiveness of the other medicines containing some vasodilators was obscure or doubtful. We propose the following : (1) A meticulous observation is essential for the patients who received high doses of irradiation to diagnose brain injury in the early reversible stage. (2) Steroids should be given immediately in this reversible stage of brain injury before the irreversible ''necrosis'' occurs. (3) Steroids should be maintained for a long period over 12 months. (4) Heparin therapy is also thought to be effective, but careful precautions to avoid hemorrhagic complications before the therapy should be scheduled. This recommended plan may also be used for the treatment of brain injuries after cranial irradiation for other intracranial tumors. (author)

  12. Pharmacologic resuscitation for hemorrhagic shock combined with traumatic brain injury

    DEFF Research Database (Denmark)

    Jin, Guang; Duggan, Michael; Imam, Ayesha

    2012-01-01

    [Hex]) after traumatic brain injury (TBI) decreases brain swelling, without affecting size of the lesion. This study was performed to determine whether addition of VPA to Hex would decrease the lesion size in a clinically relevant large animal model of TBI + HS....

  13. Behavior Management for Children and Adolescents with Acquired Brain Injury

    Science.gov (United States)

    Slifer, Keith J.; Amari, Adrianna

    2009-01-01

    Behavioral problems such as disinhibition, irritability, restlessness, distractibility, and aggression are common after acquired brain injury (ABI). The persistence and severity of these problems impair the brain-injured individual's reintegration into family, school, and community life. Since the early 1980s, behavior analysis and therapy have…

  14. Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury

    Science.gov (United States)

    Bar-Kochba, Eyal; Scimone, Mark T.; Estrada, Jonathan B.; Franck, Christian

    2016-01-01

    In the United States over 1.7 million cases of traumatic brain injury are reported yearly, but predictive correlation of cellular injury to impact tissue strain is still lacking, particularly for neuronal injury resulting from compression. Given the prevalence of compressive deformations in most blunt head trauma, this information is critically important for the development of future mitigation and diagnosis strategies. Using a 3D in vitro neuronal compression model, we investigated the role of impact strain and strain rate on neuronal lifetime, viability, and pathomorphology. We find that strain magnitude and rate have profound, yet distinctively different effects on the injury pathology. While strain magnitude affects the time of neuronal death, strain rate influences the pathomorphology and extent of population injury. Cellular injury is not initiated through localized deformation of the cytoskeleton but rather driven by excess strain on the entire cell. Furthermore we find that, mechanoporation, one of the key pathological trigger mechanisms in stretch and shear neuronal injuries, was not observed under compression. PMID:27480807

  15. Penetrating Bihemispheric Traumatic Brain Injury: A Collective Review of Gunshot Wounds to the Head.

    Science.gov (United States)

    Turco, Lauren; Cornell, David L; Phillips, Bradley

    2017-08-01

    Head injuries that cross midline structures of the brain are bihemispheric. Other terms have been used to describe such injuries, but bihemispheric is the most accurate and should be standard nomenclature. Bihemispheric head injuries are associated with greater mortality and morbidity than other penetrating traumatic brain injuries (TBIs). Currently, there is a tendency to manage severe gunshot wounds (GSWs) to the head nonoperatively, despite reports of improved outcome in military patients treated aggressively. Thus, controversy exists in the management of civilian TBI. PubMed was searched for query terms, and PRISMA guidelines were used. Studies were selected by relevance and inclusion of data regarding etiology, diagnosis, and management of bihemispheric TBI. Case reports, studies not in English, and records lacking information on mechanism or bihemispheric injuries were excluded. Thirteen studies were included and most contained level IV evidence. The mean mortality rate of all head GSWs was 62% in adults and 32% in children. Bihemispheric GSWs had greater mortality rates of 82% in adults and 60% in children. There was a larger proportion of self-inflicted injury in studies with greater rates of bihemispheric injuries. Bihemispheric injuries have greater mortality rates than other penetrating TBI. Violation of midline brain structures such as the diencephalon and mesencephalon, increased rate of self-inflicted wounds, and lack of a standard management algorithm may increase the lethality of these injuries. Although bihemispheric injuries historically have been considered nonsalvageable, an aggressive surgical approach has been shown to improve outcomes, particularly in the military population. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury

    Science.gov (United States)

    Jolly, Amy; de Simoni, Sara; Bourke, Niall; Patel, Maneesh C; Scott, Gregory; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury leads to significant loss of brain volume, which continues into the chronic stage. This can be sensitively measured using volumetric analysis of MRI. Here we: (i) investigated longitudinal patterns of brain atrophy; (ii) tested whether atrophy is greatest in sulcal cortical regions; and (iii) showed how atrophy could be used to power intervention trials aimed at slowing neurodegeneration. In 61 patients with moderate-severe traumatic brain injury (mean age = 41.55 years ± 12.77) and 32 healthy controls (mean age = 34.22 years ± 10.29), cross-sectional and longitudinal (1-year follow-up) brain structure was assessed using voxel-based morphometry on T1-weighted scans. Longitudinal brain volume changes were characterized using a novel neuroimaging analysis pipeline that generates a Jacobian determinant metric, reflecting spatial warping between baseline and follow-up scans. Jacobian determinant values were summarized regionally and compared with clinical and neuropsychological measures. Patients with traumatic brain injury showed lower grey and white matter volume in multiple brain regions compared to controls at baseline. Atrophy over 1 year was pronounced following traumatic brain injury. Patients with traumatic brain injury lost a mean (± standard deviation) of 1.55% ± 2.19 of grey matter volume per year, 1.49% ± 2.20 of white matter volume or 1.51% ± 1.60 of whole brain volume. Healthy controls lost 0.55% ± 1.13 of grey matter volume and gained 0.26% ± 1.11 of white matter volume; equating to a 0.22% ± 0.83 reduction in whole brain volume. Atrophy was greatest in white matter, where the majority (84%) of regions were affected. This effect was independent of and substantially greater than that of ageing. Increased atrophy was also seen in cortical sulci compared to gyri. There was no relationship between atrophy and time since injury or age at baseline. Atrophy rates were related to memory performance at the end of the

  17. Hyper-connectivity of functional networks for brain disease diagnosis.

    Science.gov (United States)

    Jie, Biao; Wee, Chong-Yaw; Shen, Dinggang; Zhang, Daoqiang

    2016-08-01

    Exploring structural and functional interactions among various brain regions enables better understanding of pathological underpinnings of neurological disorders. Brain connectivity network, as a simplified representation of those structural and functional interactions, has been widely used for diagnosis and classification of neurodegenerative diseases, especially for Alzheimer's disease (AD) and its early stage - mild cognitive impairment (MCI). However, the conventional functional connectivity network is usually constructed based on the pairwise correlation among different brain regions and thus ignores their higher-order relationships. Such loss of high-order information could be important for disease diagnosis, since neurologically a brain region predominantly interacts with more than one other brain regions. Accordingly, in this paper, we propose a novel framework for estimating the hyper-connectivity network of brain functions and then use this hyper-network for brain disease diagnosis. Here, the functional connectivity hyper-network denotes a network where each of its edges representing the interactions among multiple brain regions (i.e., an edge can connect with more than two brain regions), which can be naturally represented by a hyper-graph. Specifically, we first construct connectivity hyper-networks from the resting-state fMRI (R-fMRI) time series by using sparse representation. Then, we extract three sets of brain-region specific features from the connectivity hyper-networks, and further exploit a manifold regularized multi-task feature selection method to jointly select the most discriminative features. Finally, we use multi-kernel support vector machine (SVM) for classification. The experimental results on both MCI dataset and attention deficit hyperactivity disorder (ADHD) dataset demonstrate that, compared with the conventional connectivity network-based methods, the proposed method can not only improve the classification performance, but also help

  18. Intranasal epidermal growth factor treatment rescues neonatal brain injury

    Science.gov (United States)

    Scafidi, Joseph; Hammond, Timothy R.; Scafidi, Susanna; Ritter, Jonathan; Jablonska, Beata; Roncal, Maria; Szigeti-Buck, Klara; Coman, Daniel; Huang, Yuegao; McCarter, Robert J.; Hyder, Fahmeed; Horvath, Tamas L.; Gallo, Vittorio

    2014-02-01

    There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (less than 32 weeks' gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI. We demonstrated previously that the epidermal growth factor receptor (EGFR) has an important role in oligodendrocyte development. Here we examine whether enhanced EGFR signalling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioural recovery in the developing brain. Using an established mouse model of very preterm brain injury, we demonstrate that selective overexpression of human EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin-binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioural deficits on white-matter-specific paradigms. Inhibition of EGFR signalling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in oligodendrocyte progenitor cells at a specific time after injury is clinically feasible and potentially applicable to the treatment of premature children with white matter injury.

  19. Medical Management of the Severe Traumatic Brain Injury Patient.

    Science.gov (United States)

    Marehbian, Jonathan; Muehlschlegel, Susanne; Edlow, Brian L; Hinson, Holly E; Hwang, David Y

    2017-12-01

    Severe traumatic brain injury (sTBI) is a major contributor to long-term disability and a leading cause of death worldwide. Medical management of the sTBI patient, beginning with prehospital triage, is aimed at preventing secondary brain injury. This review discusses prehospital and emergency department management of sTBI, as well as aspects of TBI management in the intensive care unit where advances have been made in the past decade. Areas of emphasis include intracranial pressure management, neuromonitoring, management of paroxysmal sympathetic hyperactivity, neuroprotective strategies, prognostication, and communication with families about goals of care. Where appropriate, differences between the third and fourth editions of the Brain Trauma Foundation guidelines for the management of severe traumatic brain injury are highlighted.

  20. Resuscitation speed affects brain injury in a large animal model of traumatic brain injury and shock

    DEFF Research Database (Denmark)

    Sillesen, Martin; Jin, Guang; Johansson, Pär I

    2014-01-01

    as lesion size (3285.44¿±¿130.81 mm3 vs. 2509.41¿±¿297.44 mm3, p¿=¿0.04). This was also associated with decreased cardiac output (NS: 4.37¿±¿0.12 l/min vs. 6.35¿±¿0.10 l/min, p¿brain compared......BackgroundOptimal fluid resuscitation strategy following combined traumatic brain injury (TBI) and hemorrhagic shock (HS) remain controversial and the effect of resuscitation infusion speed on outcome is not well known. We have previously reported that bolus infusion of fresh frozen plasma (FFP......) protects the brain compared with bolus infusion of 0.9% normal saline (NS). We now hypothesize reducing resuscitation infusion speed through a stepwise infusion speed increment protocol using either FFP or NS would provide neuroprotection compared with a high speed resuscitation protocol.Methods23...

  1. Biomarkers of brain injury in the premature infant

    Directory of Open Access Journals (Sweden)

    Martha V. Douglas-Escobar

    2013-01-01

    Full Text Available The term encephalopathy of prematurity encompasses not only the acute brain injury (such as intraventricular hemorrhage but also complex disturbance on the infant’s subsequent brain development. In premature infants, the most frequent recognized source of brain injury is intraventricular hemorrhage (IVH and periventricular leukomalacia (PVL. Furthermore 20-25% infants with birth weigh less than 1,500 g will have IVH and that proportion increases to 45% if the birth weight is less than 500-750 g. In addition, nearly 60% of very low birth weight newborns will have hypoxic-ischemic injury. Therefore permanent lifetime neurodevelopmental disabilities are frequent in premature infants. Innovative approach to prevent or decrease brain injury in preterm infants requires discovery of biomarkers able to discriminate infants at risk for injury, monitor the progression of the injury and assess efficacy of neuroprotective clinical trials. In this article, we will review biomarkers studied in premature infants with IVH, Post-hemorrhagic ventricular dilation (PHVD and PVL including: S100b, Activin A, erythropoietin, chemokine CCL 18, GFAP and NFL will also be examined. Some of the most promising biomarkers for IVH are S100β and Activin. The concentrations of TGF-β1, MMP-9 and PAI-1 in cerebrospinal fluid could be used to discriminate patients that will require shunt after post-hemorrhagic ventricular dilation. Neonatal brain injury is frequent in premature infants admitted to the neonatal intensive care and we hope to contribute to the awareness and interest in clinical validation of established as well as novel neonatal brain injury biomarkers.

  2. CT Angiography in the Diagnosis of Brain Death

    International Nuclear Information System (INIS)

    Sawicki, Marcin; Bohatyrewicz, Romuald; Walecka, Anna; Sołek-Pastuszka, Joanna; Rowiński, Olgierd; Walecki, Jerzy

    2014-01-01

    Summary Brain death is defined as the irreversible cessation of functioning of the entire brain, including the brainstem. Brain death is principally established using clinical criteria including coma, absence of brainstem reflexes and loss of central drive to breathe assessed with apnea test. In situations in which clinical testing cannot be performed or when uncertainty exists about the reliability of its parts due to confounding conditions ancillary tests (i.a. imaging studies) may be useful. The objective of ancillary tests in the diagnosis of brain death is to demonstrate the absence of cerebral electrical activity (EEG and evoked potentials) or cerebral circulatory arrest. In clinical practice catheter cerebral angiography, perfusion scintigraphy, transcranial Doppler sonography, CT angiography and MR angiography are used. Other methods, like perfusion CT, xenon CT, MR spectroscopy, diffusion weighted MRI and functional MRI are being studied as potentially useful in the diagnosis of brain death. CT angiography has recently attracted attention as a promising alternative to catheter angiography – a reference test in the diagnosis of brain death. Since 1998 several major studies were published and national guidelines were introduced in several countries (e.g. in France, Austria, Switzerland, the Netherlands and Canada). This paper reviews technique, characteristic findings and criteria for the diagnosis of cerebral circulatory arrest in CT angiography

  3. Proton MR spectroscopy in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Kubas, Bożena; Łebkowski, Wojciech; Łebkowska, Urszula; Kułak, Wojciech; Tarasow, Eugeniusz; Walecki, Jerzy

    2010-01-01

    To assess the role of 1H MRS in the detection of changes in cerebral metabolite levels in pyramidal tracts after mild traumatic brain injury (MTBI) and to compare metabolite alterations to the clinical status (Glasgow Coma Scale). Study group consisted of 25 patients after mild traumatic brain injury, with a score of 11 to 15 in GCS. The MR studies were performed with a 1.5 T scanner. The results of spectra approximation (presented as metabolite ratios: NAA/Cr, NAA/Cho, Cho/Cr, lac/Cr, lip/Cr, Glx/Cr) were subjected to statistical analysis. MR spectra were recorded from a normal-appearing brain region: internal capsules and cerebral peduncles. Spectra from traumatic patients were compared with a control group including 34 healthy volunteers recorded with the same techniques. The statistical analysis revealed significant differences between the data obtained from various brain regions of the same patients after an MTBI and between the study and the control group. Proton MR spectroscopy detects changes in cerebral metabolite levels in apparently normal regions. In pyramidal tracts (internal capsules, cerebral peduncles), we noticed a significant reduction of NAA /Cho, lip/Cr, lac/Cr and Glx/Cr. In patients with mild brain injury, we can detect some metabolite abnormalities in normal-appearing brain structures. Proton MRS is a very useful tool for evaluation of major changes in metabolite levels in pyramidal tracts after mild traumatic brain injury

  4. Brain biopsy for diagnosis of chlamydia encephalitis

    Directory of Open Access Journals (Sweden)

    I. A. Voznyuk

    2017-01-01

    Full Text Available This is the case of encephalitis associated with chlamydia infection of central nervous system. The diagnostic protocol of the patient included: a careful observation of somatic and neurological status, laboratory tests of blood and cerebrospinal fluid, neurovisualization. The results of the diagnostic protocol suggest that laboratory tests blood and cerebrospinal fluid possess low sensitivity and specificity. The MRI study has revealed the localization and inflammatory character of the changes in brain tissue; it has also helped to choose the most favorable area for the stereotaxic biopsy. The obtained tissue was evaluated by means of light (immunohistochemistry and electronic microscopy. The active chlamydia infection was estimated. The subsequent antibacterial etiotropic therapy resulted in the regression of the neurologic symptoms and remission.The intravitalpathomorphology study of the brain could be recommended for the management of the severe encephalitis of the unknown origin. 

  5. MRI findings and diagnosis of brain echinococcus

    International Nuclear Information System (INIS)

    Miriguli Shayiti; Jia Wenxiao

    2010-01-01

    Objective: To study the characteristic findings of brain echinococcosis on MRI. Methods: The MRI findings of 18 patients with pathologically confirmed brain echinococcosis were retrospectively reviewed. Results: Among the patients, there were 9 cases of cystic echinococcosis and 9 cases of alveolar echinococcosis. In cystic echinococcosis, MRI revealed homogeneously hypointensity on T 1 WI and hyperintensity on T 2 WI, while it showed low signal intensity inside the cysts on FLAIR and DWI. In 6 cases of cystic echinococcosis, no edema was detected surrounding the lesions, while edema resulting from cyst rupture was found in 3 cases. The cystic walls were visible in 6 cases, obscure in 3 cases. The ruptured hydatid cysts in 3 cases showed slight ring enhancement. Alveolar echinococcosis appeared as multiple lesions with isointensity on T 1 WI and hypointensity on T 2 WI, surrounded by vasogenic edema. The 'charcoal-like' hypointensity and innumerous hyperintense bubbles of 1-10 mm in diameter inside the lesions on T 2 -weighted MR images were characteristic for lesions of alveolar echinococcosis. The lesions revealed hypointensity on DWI and showed irregular ring enhancement after injection of Gd-DTPA. Perfusion-weighted MR imaging revealed low relative cerebral blood volume. Conclusion: MRI can demonstrate lesions of brain echinococcosis accurately due to its advantages of multiorientation and multiparameter. It is clinically valuable. (authors)

  6. Diagnosis and treatment of brain metastasis

    International Nuclear Information System (INIS)

    Sajama, Carlos; Lorenzoni, Jose; Tagle, Patricio

    2008-01-01

    Cerebral metastasis occur in 20 to 30 percent of patients with systemic cancer and are the most common type of intracranial tumor. The median survival of untreated patients is one month with a slightly longer survival in those treated with steroids. Patients treated with whole brain radiation therapy survive between 3 to 6 months. In selected cases survival can increase to 10 to 12 months with combination of surgery and radiotherapy or stereotactic radiosurgery alone or associated to radiotherapy. Most brain metastasis arise from lung, breast and melanomas. The most important criteria for selecting patients who will benefit from surgery or stereotactic radiosurgery are a Karnofsky score of 70 or more, systemic control of the cancer and absence of leptomeningeal involvement. Surgery is indicated in patients with a single lesion located in an accessible zone and stereotactic radiosurgery is indicated for lesions up to 3 cm of diameter, and in patients with up to 3 or 4 metastasis, no matter their location. The survival benefit of chemotherapy in brain metastasis has not been demonstrated

  7. Blunt splenic injury and severe brain injury: a decision analysis and implications for care

    Science.gov (United States)

    Alabbasi, Thamer; Nathens, Avery B.; Tien, Col Homer

    2015-01-01

    Background The initial nonoperative management (NOM) of blunt splenic injuries in hemodynamically stable patients is common. In soldiers who experience blunt splenic injuries with concomitant severe brain injury while on deployment, however, NOM may put the injured soldier at risk for secondary brain injury from prolonged hypotension. Methods We conducted a decision analysis using a Markov process to evaluate 2 strategies for managing hemodynamically stable patients with blunt splenic injuries and severe brain injury — immediate splenectomy and NOM — in the setting of a field hospital with surgical capability but no angiography capabilities. We considered the base case of a 40-year-old man with a life expectancy of 78 years who experienced blunt trauma resulting in a severe traumatic brain injury and an isolated splenic injury with an estimated failure rate of NOM of 19.6%. The primary outcome measured was life expectancy. We assumed that failure of NOM would occur in the setting of a prolonged casualty evacuation, where surgical capability was not present. Results Immediate splenectomy was the slightly more effective strategy, resulting in a very modest increase in overall survival compared with NOM. Immediate splenectomy yielded a survival benefit of only 0.4 years over NOM. Conclusion In terms of overall survival, we would not recommend splenectomy unless the estimated failure rate of NOM exceeded 20%, which corresponds to an American Association for the Surgery of Trauma grade III splenic injury. For military patients for whom angiography may not be available at the field hospital and who require prolonged evacuation, immediate splenectomy should be considered for grade III–V injuries in the presence of severe brain injury. PMID:26100770

  8. Extensive cortical rewiring after brain injury.

    Science.gov (United States)

    Dancause, Numa; Barbay, Scott; Frost, Shawn B; Plautz, Erik J; Chen, Daofen; Zoubina, Elena V; Stowe, Ann M; Nudo, Randolph J

    2005-11-02

    Previously, we showed that the ventral premotor cortex (PMv) underwent neurophysiological remodeling after injury to the primary motor cortex (M1). In the present study, we examined cortical connections of PMv after such lesions. The neuroanatomical tract tracer biotinylated dextran amine was injected into the PMv hand area at least 5 months after ischemic injury to the M1 hand area. Comparison of labeling patterns between experimental and control animals demonstrated extensive proliferation of novel PMv terminal fields and the appearance of retrogradely labeled cell bodies within area 1/2 of the primary somatosensory cortex after M1 injury. Furthermore, evidence was found for alterations in the trajectory of PMv intracortical axons near the site of the lesion. The results suggest that M1 injury results in axonal sprouting near the ischemic injury and the establishment of novel connections within a distant target. These results support the hypothesis that, after a cortical injury, such as occurs after stroke, cortical areas distant from the injury undergo major neuroanatomical reorganization. Our results reveal an extraordinary anatomical rewiring capacity in the adult CNS after injury that may potentially play a role in recovery.

  9. Injury timing alters metabolic, inflammatory and functional outcomes following repeated mild traumatic brain injury.

    Science.gov (United States)

    Weil, Zachary M; Gaier, Kristopher R; Karelina, Kate

    2014-10-01

    Repeated head injuries are a major public health concern both for athletes, and members of the police and armed forces. There is ample experimental and clinical evidence that there is a period of enhanced vulnerability to subsequent injury following head trauma. Injuries that occur close together in time produce greater cognitive, histological, and behavioral impairments than do injuries separated by a longer period. Traumatic brain injuries alter cerebral glucose metabolism and the resolution of altered glucose metabolism may signal the end of the period of greater vulnerability. Here, we injured mice either once or twice separated by three or 20days. Repeated injuries that were separated by three days were associated with greater axonal degeneration, enhanced inflammatory responses, and poorer performance in a spatial learning and memory task. A single injury induced a transient but marked increase in local cerebral glucose utilization in the injured hippocampus and sensorimotor cortex, whereas a second injury, three days after the first, failed to induce an increase in glucose utilization at the same time point. In contrast, when the second injury occurred substantially later (20days after the first injury), an increase in glucose utilization occurred that paralleled the increase observed following a single injury. The increased glucose utilization observed after a single injury appears to be an adaptive component of recovery, while mice with 2 injuries separated by three days were not able to mount this response, thus this second injury may have produced a significant energetic crisis such that energetic demands outstripped the ability of the damaged cells to utilize energy. These data strongly reinforce the idea that too rapid return to activity after a traumatic brain injury can induce permanent damage and disability, and that monitoring cerebral energy utilization may be a tool to determine when it is safe to return to the activity that caused the initial

  10. Role of Melatonin in Traumatic Brain Injury and Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Mehar Naseem

    2014-01-01

    Full Text Available Brain and spinal cord are implicated in incidences of two of the most severe injuries of central nervous system (CNS. Traumatic brain injury (TBI is a devastating neurological deficit involving primary and secondary injury cascades. The primary and secondary mechanisms include complex consequences of activation of proinflammatory cytokines, cerebral edema, upregulation of NF-κβ, disruption of blood-brain barrier (BBB, and oxidative stress. Spinal cord injury (SCI includes primary and secondary injury cascades. Primary injury leads to secondary injury in which generation of free radicals and oxidative or nitrative damage play an important pathophysiological role. The indoleamine melatonin is a hormone secreted or synthesized by pineal gland in the brain which helps to regulate sleep and wake cycle. Melatonin has been shown to be a versatile hormone having antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. It has a special characteristic of crossing BBB. Melatonin has neuroprotective role in the injured part of the CNS after TBI and SCI. A number of studies have successfully shown its therapeutic value as a neuroprotective agent in the treatment of neurodegenerative diseases. Here in this review we have compiled the literature supporting consequences of CNS injuries, TBI and SCI, and the protective role of melatonin in it.

  11. The Importance of Early Brain Injury after Subarachnoid Hemorrhage

    Science.gov (United States)

    Sehba, Fatima A.; Hou, Jack; Pluta, Ryszard M.; Zhang, John H.

    2012-01-01

    Aneurysmal subarachnoid hemorrhage (aSAH) is a medical emergency that accounts for 5% of all stroke cases. Individuals affected are typically in the prime of their lives (mean age 50 years). Approximately 12% of patients die before receiving medical attention, 33% within 48 hours and 50% within 30 days of aSAH. Of the survivors 50% suffer from permanent disability with an estimated lifetime cost more than double that of an ischemic stroke. Traditionally, spasm that develops in large cerebral arteries 3-7 days after aneurysm rupture is considered the most important determinant of brain injury and outcome after aSAH. However, recent studies show that prevention of delayed vasospasm does not improve outcome in aSAH patients. This finding has finally brought in focus the influence of early brain injury on outcome of aSAH. A substantial amount of evidence indicates that brain injury begins at the aneurysm rupture, evolves with time and plays an important role in patients’ outcome. In this manuscript we review early brain injury after aSAH. Due to the early nature, most of the information on this injury comes from animals and few only from autopsy of patients who died within days after aSAH. Consequently, we began with a review of animal models of early brain injury, next we review the mechanisms of brain injury according to the sequence of their temporal appearance and finally we discuss the failure of clinical translation of therapies successful in animal models of aSAH. PMID:22414893

  12. Clinical features, diagnosis and treatment of spinal injuries in children

    Directory of Open Access Journals (Sweden)

    Sorokovikov V.A.

    2018-04-01

    Full Text Available Spine injuries in children are of great social significance. Currently, the incidence of spinal cord injuries in children has increased; this is due to the use of modern imaging devices (digital X-ray examination, CT, MRI at the prehospital and hospital stages. For children, compression fractures of the vertebral body, which are associated with serious injuries to the musculoskeletal system, are more characteristic. Compression fractures of vertebral bodies (1–2 % with improper treatment can lead to aseptic necrosis of the vertebra, kyphoscoliosis and other pathological conditions, which often results in disability. When X-ray diagnosis of fractures of transverse and spinous processes, one should consider additional ossification points, which can be mistaken for fractures. Also, differential diagnosis should take into account congenital wedge vertebrae and other abnormalities of vertebral development, which can be mistaken for fractures. The publication presents the results of a comprehensive examination and treatment of 85 children with spine trauma. The age of the examined was from 3 months to 16 years. In 20 cases, we detected compression fractures of the spine at different levels (cervical – 1, upper-thoracic – 4, medium-thoracic – 10, lower-thoracic – 2, lumbar – 3. In 25 cases, a rotational subluxation of the C I vertebra was diagnosed, in 3 – a traumatic rupture of the intervertebral disc, in 29 – a fracture of the coccyx. Complicated injuries of the spine accompanied by lesions of the spinal cord and roots were noted in 7 patients. Given the anatomical and physiological features of spine injuries in children, conservative methods of treatment were predominantly used.

  13. Permissive hypercapnia and risk for brain injury and developmental impairment.

    Science.gov (United States)

    Hagen, Erika W; Sadek-Badawi, Mona; Carlton, David P; Palta, Mari

    2008-09-01

    Permissive hypercapnia is a respiratory-care strategy that is used to reduce the risk for lung injury. The goal of this study was to evaluate whether permissive hypercapnia is associated with higher risk for intraventricular hemorrhage and early childhood behavioral and functional problems than normocapnia among very low birth weight infants. Very low birth weight infants from a statewide cohort were eligible for this study when they were born at <32 weeks' gestational age and survived at least 24 hours. Infants were classified as receiving a permissive hypercapnia, normocapnia, or unclassifiable respiratory strategy during the first 24 hours after birth according to an algorithm based on Pco(2) values and respiratory-treatment decisions that were abstracted from medical charts. Intraventricular hemorrhage diagnosis was also abstracted from the medical chart. Behavioral and functional outcomes were assessed by parent interview at 2 to 3 years. Logistic regression was used to evaluate the relationship between intraventricular hemorrhage and respiratory strategy; ordinary linear regression was used to evaluate differences in behavior and function scores between children by respiratory strategy. Infants who received a permissive hypercapnia strategy were not more likely to have intraventricular hemorrhage than those with normocapnia. There were no differences in any of the behavioral or functional scores among children according to respiratory strategy. There was a significant interaction between care strategy and 1-minute Apgar score, indicating that infants with lower Apgar scores may be at higher risk for intraventricular hemorrhage with permissive hypercapnia. This study suggests that permissive hypercapnia does not increase risk for brain injury and impairment among very low birth weight children. The interaction between respiratory strategy and Apgar score is a potential worrisome exception to this conclusion. Future research should further evaluate the effect

  14. Functional brain imaging to investigate the higher brain dysfunction induced by diffuse brain injury

    International Nuclear Information System (INIS)

    Nariai, Tadashi; Inaji, Motoki; Ohno, Kikuo; Hiura, Mikio; Ishii, Kenji; Hosoda, Chihiro

    2011-01-01

    Higher brain dysfunction is the major problem of patients who recover from neurotrauma the prevents them from returning to their previous social life. Many such patients do not have focal brain damage detected with morphological imaging. We focused on studying the focal brain dysfunction that can be detected only with functional imaging with positron emission tomography (PET) in relation to the score of various cognition batteries. Patients who complain of higher brain dysfunction without apparent morphological cortical damage were recruited for this study. Thirteen patients with diffuse axonal injury (DAI) or cerebral concussion was included. They underwent a PET study to image glucose metabolism by 18 F-fluorodeoxyglucose (FDG), and central benodiazepine receptor (cBZD-R) (marker of neuronal body) by 11 C-flumazenil, together with cognition measurement by WAIS-R, WMS-R, and WCST etc. PET data were compared with age matched normal controls using statistical parametric mapping (SPM)2. DAI patients had a significant decrease in glucose matabolism and cBZD-R distribution in the cingulated cortex than normal controls. Patients diagnosed with concussion because of shorter consciousness disturbance also had abnormal FDG uptake and cBZD-R distribution. Cognition test scores were variable among patients. Degree of decreased glucose metabolism and cBZD-R distribution in the dominant hemishphere corresponded well to the severity of cognitive disturbance. PET molecular imaging was useful to depict focal cortical dysfunction of neurotrauma patients even when morphological change was not apparent. This method may be promising to clarify the pathophysiology of higher brain dysfunction of patients with diffuse axonal injury or chronic traumatic encephalopathy. (author)

  15. Fresh Frozen Plasma Modulates Brain Gene Expression in a Swine Model of Traumatic Brain Injury and Shock

    DEFF Research Database (Denmark)

    Sillesen, Martin; Bambakidis, Ted; Dekker, Simone E

    2017-01-01

    BACKGROUND: Resuscitation with fresh frozen plasma (FFP) decreases brain lesion size and swelling in a swine model of traumatic brain injury and hemorrhagic shock. We hypothesized that brain gene expression profiles after traumatic brain injury and hemorrhagic shock would be modulated by FFP resu...

  16. Brain injury and severe eating difficulties at admission

    DEFF Research Database (Denmark)

    Kjærsgaard, Annette; Kaae Kristensen, Hanne

    Objective: The objective of this pilot study was to explore and interpret the way that individuals with acquired brain injury, admitted to inpatient neurorehabilitation with severe eating difficulties, experienced eating nine to fifteen months after discharge. Methods: Four individuals with acqui......Objective: The objective of this pilot study was to explore and interpret the way that individuals with acquired brain injury, admitted to inpatient neurorehabilitation with severe eating difficulties, experienced eating nine to fifteen months after discharge. Methods: Four individuals...... with acquired brain injury were interviewed via qualitative semi-structured interviews. An explorative study was conducted to study eating difficulties. Qualitative content analysis was used. Results: Four main themes emerged from the analysis: personal values related to eating, swallowing difficulties, eating......-of-life. The preliminary findings provide knowledge regarding the patient perspective of adapting to and developing new strategies for activities related to eating, however, further prospective, longitudinal research in a larger scale and with repeated interviews is needed....

  17. [Hypopituitarism following traumatic brain injury: diagnostic and therapeutic issues].

    Science.gov (United States)

    Lecoq, A-L; Chanson, P

    2015-10-01

    Traumatic Brain Injury (TBI) is a well-known public health problem worldwide and is a leading cause of death and disability, particularly in young adults. Besides neurological and psychiatric issues, pituitary dysfunction can also occur after TBI, in the acute or chronic phase. The exact prevalence of post-traumatic hypopituitarism is difficult to assess due to the wide heterogeneity of published studies and bias in interpretation of hormonal test results in this specific population. Predictive factors for hypopituitarism have been proposed and are helpful for the screening. The pathophysiology of pituitary dysfunction after TBI is not well understood but the vascular hypothesis is privileged. Activation of pituitary stem/progenitor cells is probably involved in the recovery of pituitary functions. Those cells also play a role in the induction of pituitary tumors, highlighting their crucial place in pituitary conditions. This review updates the current data related to anterior pituitary dysfunction after TBI and discusses the bias and difficulties encountered in its diagnosis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. Traumatic brain injury and obesity induce persistent central insulin resistance.

    Science.gov (United States)

    Karelina, Kate; Sarac, Benjamin; Freeman, Lindsey M; Gaier, Kristopher R; Weil, Zachary M

    2016-04-01

    Traumatic brain injury (TBI)-induced impairments in cerebral energy metabolism impede tissue repair and contribute to delayed functional recovery. Moreover, the transient alteration in brain glucose utilization corresponds to a period of increased vulnerability to the negative effects of a subsequent TBI. In order to better understand the factors contributing to TBI-induced central metabolic dysfunction, we examined the effect of single and repeated TBIs on brain insulin signalling. Here we show that TBI induced acute brain insulin resistance, which resolved within 7 days following a single injury but persisted until 28 days following repeated injuries. Obesity, which causes brain insulin resistance and neuroinflammation, exacerbated the consequences of TBI. Obese mice that underwent a TBI exhibited a prolonged reduction of Akt (also known as protein kinase B) signalling, exacerbated neuroinflammation (microglial activation), learning and memory deficits, and anxiety-like behaviours. Taken together, the transient changes in brain insulin sensitivity following TBI suggest a reduced capacity of the injured brain to respond to the neuroprotective and anti-inflammatory actions of insulin and Akt signalling, and thus may be a contributing factor for the damaging neuroinflammation and long-lasting deficits that occur following TBI. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Early inflammatory response in rat brain after peripheral thermal injury.

    Science.gov (United States)

    Reyes, Raul; Wu, Yimin; Lai, Qin; Mrizek, Michael; Berger, Jamie; Jimenez, David F; Barone, Constance M; Ding, Yuchuan

    2006-10-16

    Previous studies have shown that the cerebral complications associated with skin burn victims are correlated with brain damage. The aim of this study was to determine whether systemic thermal injury induces inflammatory responses in the brain. Sprague Dawley rats (n=28) were studied in thermal injury and control groups. Animals from the thermal injury (n=14) and control (n=14) group were anesthetized and submerged to the neck vertically in 85 degrees C water for 6 s producing a third degree burn affecting 60-70% of the animal body surface area. The controls were submerged in 37 degrees C water for 6 s. Early expression of tumor necrosis factor-alpha (TNF-alpha), interleukin 1-beta (IL-1beta), and intracellular cell adhesion molecules (ICAM-1) protein levels in serum were determined at 3 (n=7) and 7 h (n=7) by enzyme-linked immunoabsorbent assay (ELISA). mRNA of TNF-alpha, IL-1beta, and ICAM-1 in the brain was measured at the same time points with a real-time reverse transcriptase-polymerase chain reaction (RT-PCR). An equal animal number was used for controls. Systemic inflammatory responses were demonstrated by dramatic up-regulations (5-50 fold) of TNF-alpha, IL-1beta, and ICAM-1 protein level in serum at 7 h after the thermal injury. However, as early as 3 h after peripheral thermal injury, a significant increase (3-15 fold) in mRNA expression of TNF-alpha, IL-1beta and ICAM-1 was observed in brain homogenates, with increased levels remaining at 7 h after injury. This study demonstrated an early inflammatory response in the brain after severe peripheral thermal injury. The cerebral inflammatory reaction was associated with expression of systemic cytokines and an adhesion molecule.

  20. Applied clinical and pathogenetic aspects of interdisciplinary cooperation in the diagnosis and treatment of concussion of brain

    Directory of Open Access Journals (Sweden)

    V. N. Hertsev

    2017-05-01

    Full Text Available The article discusses the issues of pathogenesis and diagnostics of different variants of dizziness, as one of the main symptoms of traumatic brain injury. Along with traumatic brain injury raises concussion of the labyrinth benign paroxysmal positional vertigo and others described a range of diagnostic assessment techniques and differential diagnosis of post-traumatic nystagmus, as well as the adequacy of the practical application of a number of vestibulometric studies, caloric tests, tests, medical maneuvers, and their effectiveness from a position of evidence-based medicine.

  1. Spiral CT aortography: an efficient technique for the diagnosis of traumatic aortic injury

    International Nuclear Information System (INIS)

    Wicky, S.; Capasso, P.; Meuli, R.; Schnyder, P.; Fischer, A.; Segesser, L. von

    1998-01-01

    The objective of this study was to assess the efficiency of spiral CT (SCT) aortography for diagnosing acute aortic lesions in blunt thoracic trauma patients. Between October 1992 and June 1997, 487 SCT scans of the chest were performed on blunt thoracic trauma patients. To assess aortic injury, the following SCT criteria were considered: hemomediastinum, peri-aortic hematoma, irregular aspect of the aortic wall, aortic pseudodiverticulum, intimal flap and traumatic dissection. Aortic injury was diagnosed on 14 SCT examinations (2.9 %), five of the patients having had an additional digital aortography that confirmed the aortic trauma. Twelve subjects underwent surgical repair of the thoracic aorta, which in all but one case confirmed the aortic injury. Two patients died before surgery from severe brain lesions. The aortic blunt lesions were confirmed at autopsy. According to the follow-up of the other 473 patients, we are aware of no false-negative SCT examination. Our limited series shows a sensitivity of 100 % and specificity of 99.8 % of SCT aortography in the diagnosis of aortic injury. It is concluded that SCT aortagraphy is an accurate diagnostic method for the assessment of aortic injury in blunt thoracic trauma patients. (orig.)

  2. [Scandinavian guidelines for prehospital management of severe traumatic brain injury

    DEFF Research Database (Denmark)

    Sollid, S.; Sundstrom, T.; Kock-Jensen, C.

    2008-01-01

    . Evidence-based guidelines already exist that focus on all steps in the process. In the present article members of the Scandinavian Neurotrauma Committee present recommendations on prehospital management of traumatic brain injury adapted to the infrastructure of the Nordic region Udgivelsesdato: 2008/6/26......Head trauma is the cause the death for many young persons. The number of fatalities can be reduced through systematic management. Prevention of secondary brain injury combined with the fastest possible transport to a neurosurgical unit, have been shown to effectively reduce mortality and morbidity...

  3. The emergence of artistic ability following traumatic brain injury

    OpenAIRE

    Midorikawa, Akira; Kawamura, Mitsuru

    2014-01-01

    In this study, the case of a patient who developed artistic ability following a traumatic brain injury is reported. The subject was a 49-year-old male who suffered brain injury at the age of 44 due to an accidental fall. At age 48, he began drawing with great enthusiasm and quickly developed a personal style with his own biomorphic iconography. At first, his drawing was restricted to realistic reproductions of photographs of buildings, but his style of drawing changed and became more personal...

  4. The emergence of artistic ability following traumatic brain injury.

    Science.gov (United States)

    Midorikawa, Akira; Kawamura, Mitsuru

    2015-02-01

    In this study, the case of a patient who developed artistic ability following a traumatic brain injury is reported. The subject was a 49-year-old male who suffered brain injury at the age of 44 due to an accidental fall. At age 48, he began drawing with great enthusiasm and quickly developed a personal style with his own biomorphic iconography. At first, his drawing was restricted to realistic reproductions of photographs of buildings, but his style of drawing changed and became more personal and expressionistic over the following 6 months.

  5. IMPACT INJURY DIAGNOSIS IN MANGO THROUGH STARCH DEGRADATION INDEX

    Directory of Open Access Journals (Sweden)

    FRANCISCO DE ASSIS DE SOUSA

    2017-01-01

    Full Text Available This study aimed to evaluate the use of starch degradation index (SDI in the diagnosis of areas of impact injuries in 'Tommy Atkins' mango, in different maturation stages. The experiment layout was a fully randomized factorial design (5 x 2, represented by five maturation stages and two handlings, with and without impact, with four replicates. SDI was determined through a subjective scale of scores indicating mango pulp darkened areas by reaction with iodine-potassium iodide solution. Subsequently, these scores were correlated with physicochemical quality variables. The results showed no influence of impact on fruit quality, in any of the studied maturation stages. Moreover, soluble solid contents increased throughout maturation stages, regardless of whether the fruits suffered impact or not. As a result, SDI is unsuitable to indicate fruit impact injury. However, there is a good correlation between SDI and pulp color, vitamin C, pH, titratable acidity, soluble solids, SS/ TA ratio and non-reducing sugars.

  6. Blast-induced traumatic brain injury: a new trend of blast injury research.

    Science.gov (United States)

    Zhao, Yan; Wang, Zheng-Guo

    2015-01-01

    Blast injury has become the major life- and function-threatening injuries in recent warfares. There is increased research interest in the mental disorders caused by blast-induced traumatic brain injury (bTBI), which has been proved as one of the "signature wounds" in modern battlefield. We reviewed the recent progresses in bTBI-related researches and concluded that the new era of blast injury research has shifted from the traditional physical impairments to cognitive dysfunctional/mental disorders that are proved to be more related to the outcome of combat casualty care.

  7. Music interventions for acquired brain injury.

    Science.gov (United States)

    Magee, Wendy L; Clark, Imogen; Tamplin, Jeanette; Bradt, Joke

    2017-01-20

    Acquired brain injury (ABI) can result in impairments in motor function, language, cognition, and sensory processing, and in emotional disturbances, which can severely reduce a survivor's quality of life. Music interventions have been used in rehabilitation to stimulate brain functions involved in movement, cognition, speech, emotions, and sensory perceptions. An update of the systematic review published in 2010 was needed to gauge the efficacy of music interventions in rehabilitation for people with ABI. To assess the effects of music interventions for functional outcomes in people with ABI. We expanded the criteria of our existing review to: 1) examine the efficacy of music interventions in addressing recovery in people with ABI including gait, upper extremity function, communication, mood and emotions, cognitive functioning, social skills, pain, behavioural outcomes, activities of daily living, and adverse events; 2) compare the efficacy of music interventions and standard care with a) standard care alone, b) standard care and placebo treatments, or c) standard care and other therapies; 3) compare the efficacy of different types of music interventions (music therapy delivered by trained music therapists versus music interventions delivered by other professionals). We searched the Cochrane Stroke Group Trials Register (January 2016), the Cochrane Central Register of Controlled Trials (CENTRAL) (2015, Issue 6), MEDLINE (1946 to June 2015), Embase (1980 to June 2015), CINAHL (1982 to June 2015), PsycINFO (1806 to June 2015), LILACS (1982 to January 2016), and AMED (1985 to June 2015). We handsearched music therapy journals and conference proceedings, searched dissertation and specialist music databases, trials and research registers, reference lists, and contacted relevant experts and music therapy associations to identify unpublished research. We imposed no language restriction. We performed the original search in 2009. We included all randomised controlled trials

  8. Neural Plasticity and Neurorehabilitation Following Traumatic Brain Injury

    Science.gov (United States)

    2011-04-01

    of Theresa Jones for sectioning and staining . To date, the brains have been sectioned and one set stained for Nissl . Using the Nissl stained ...three rehabilitations decreases contusion size compared to CCI-Yoked (#p=0.051). The remaining sets of brain sections have been stained with...optical densitometry, as appropriate, given staining patterns. Sample locations will be the remaining sensorimotor cortex around the injury, in the

  9. Oligodendrogenesis after Cerebral Ischaemia and Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Zheng Gang Zhang

    2013-08-01

    Full Text Available Stroke and traumatic brain injury (TBI damage white and grey matter. Loss of oligodendrocytes and their myelin, impairs axonal function. Remyelination involves oligodendrogenesis during which new myelinating oligodendrocytes are generated by differentiated oligodendrocyte progenitor cells (OPCs. This article briefly reviews the processes of oligodendrogenesis in adult rodent brains, and promising experimental therapies targeting the neurovascular unit that reduce oligodendrocyte damage and amplify endogenous oligodendrogenesis after stroke and TBI.

  10. Brain-computer interface after nervous system injury.

    Science.gov (United States)

    Burns, Alexis; Adeli, Hojjat; Buford, John A

    2014-12-01

    Brain-computer interface (BCI) has proven to be a useful tool for providing alternative communication and mobility to patients suffering from nervous system injury. BCI has been and will continue to be implemented into rehabilitation practices for more interactive and speedy neurological recovery. The most exciting BCI technology is evolving to provide therapeutic benefits by inducing cortical reorganization via neuronal plasticity. This article presents a state-of-the-art review of BCI technology used after nervous system injuries, specifically: amyotrophic lateral sclerosis, Parkinson's disease, spinal cord injury, stroke, and disorders of consciousness. Also presented is transcending, innovative research involving new treatment of neurological disorders. © The Author(s) 2014.

  11. Traumatic Brain Injury: Hope Through Research

    Science.gov (United States)

    ... fatigue or drowsiness; a lack of energy or motivation changes in sleep patterns (e.g., sleeping a ... nerve cells in the brain causing strange sensations, emotions, and behavior, or sometimes convulsions, muscle spasms, and ...

  12. Nonlinear Dynamic Theory of Acute Cell Injuries and Brain Ischemia

    Science.gov (United States)

    Taha, Doaa; Anggraini, Fika; Degracia, Donald; Huang, Zhi-Feng

    2015-03-01

    Cerebral ischemia in the form of stroke and cardiac arrest brain damage affect over 1 million people per year in the USA alone. In spite of close to 200 clinical trials and decades of research, there are no treatments to stop post-ischemic neuron death. We have argued that a major weakness of current brain ischemia research is lack of a deductive theoretical framework of acute cell injury to guide empirical studies. A previously published autonomous model based on the concept of nonlinear dynamic network was shown to capture important facets of cell injury, linking the concept of therapeutic to bistable dynamics. Here we present an improved, non-autonomous formulation of the nonlinear dynamic model of cell injury that allows multiple acute injuries over time, thereby allowing simulations of both therapeutic treatment and preconditioning. Our results are connected to the experimental data of gene expression and proteomics of neuron cells. Importantly, this new model may be construed as a novel approach to pharmacodynamics of acute cell injury. The model makes explicit that any pro-survival therapy is always a form of sub-lethal injury. This insight is expected to widely influence treatment of acute injury conditions that have defied successful treatment to date. This work is supported by NIH NINDS (NS081347) and Wayne State University President's Research Enhancement Award.

  13. Motorcycle crash-related emergency department visits and hospitalizations for traumatic brain injury in North Carolina.

    Science.gov (United States)

    Harmon, Katherine J; Marshall, Stephen W; Proescholdbell, Scott K; Naumann, Rebecca B; Waller, Anna E

    2015-01-01

    To examine statewide emergency department (ED) visit data for motorcycle crash morbidity and healthcare utilization due to traumatic brain injuries (TBIs) and non-TBIs. North Carolina ED data (2010-2012) and hospital discharge data (2009-2011). Statewide ED visits and hospitalizations due to injuries from traffic-related motorcycle crashes stratified by TBI status. Descriptive study. Descriptive statistics include age, sex, mode of transport, disposition, expected source of payment, hospital length of stay, and hospital charges. Over the study period, there were 18 780 ED visits and 3737 hospitalizations due to motorcycle crashes. Twelve percent of ED visits for motorcycle crashes and 26% of hospitalizations for motorcycle crashes had a diagnosis of TBI. Motorcycle crash-related hospitalizations with a TBI diagnosis had median hospital charges that were nearly $9000 greater than hospitalizations without a TBI diagnosis. Emergency department visits and hospitalizations due to motorcycle crashes with a TBI diagnosis consumed more healthcare resources than motorcycle crash-related ED visits and hospitalizations without a TBI diagnosis. Increased awareness of motorcyclists by other road users and increased use of motorcycle helmets are 2 strategies to mitigate the incidence and severity of motorcycle crash injuries, including TBIs.

  14. Neuroprotection from Brain Injury by Novel Estrogens

    Science.gov (United States)

    2001-08-01

    plate contained approxi- substituted estradlol. J. Steroid Blochem. 1988, 29, 657-664. mately 5000 cells as determined by a Neubauer hemacytometer (13...the brain was removed, and the base of the brain was photographed by a digital camera (Sony Preparation of animals MVC-FD5, Tokyo, Japan) for...chloride (TTC) in physiological saline at 37 0 C, and then fixed in 10% formalin. The stained slices were photographed by a digital camera (Sony MVC-FD5

  15. X-ray diagnosis in acute and chronic sport injuries

    Energy Technology Data Exchange (ETDEWEB)

    Martinek, H; Egkher, E; Schratter, H

    1982-09-01

    Stress X-ray and arthrography are of importance in the diagnosis of joint injuries. Stress X-rays are of great value to testify instability of acromioclavicular joint, metacarpophalangeal joint of the thumb, but also the knee and the ankle joint. With arthrography it is possible to show up a rupture of the rotator cuff of the shoulder and also a lesion of the triangular disc of the wrist. Indication, technique and the interpretation of the stress X-rays and the arthrogramms are discussed.

  16. Exposure to Surgery and Anesthesia After Concussion Due to Mild Traumatic Brain Injury.

    Science.gov (United States)

    Abcejo, Arnoley S; Savica, Rodolfo; Lanier, William L; Pasternak, Jeffrey J

    2017-07-01

    To describe the epidemiology of surgical and anesthetic procedures in patients recently diagnosed as having a concussion due to mild traumatic brain injury. Study patients presented to a tertiary care center after a concussion due to mild traumatic brain injury from July 1, 2005, through June 30, 2015, and underwent a surgical procedure and anesthesia support under the direct or indirect care of a physician anesthesiologist. During the study period, 1038 patients met all the study inclusion criteria and subsequently received 1820 anesthetics. In this population of anesthetized patients, rates of diagnosed concussions due to sports injuries, falls, and assaults, but not motor vehicle accidents, increased during 2010-2011. Concussions were diagnosed in 965 patients (93%) within 1 week after injury. In the 552 patients who had surgery within 1 week after concussive injury, 29 (5%) had anesthesia and surgical procedures unrelated to their concussion-producing traumatic injury. The highest use of surgery occurred early after injury and most frequently required general anesthesia. Orthopedic and general surgical procedures accounted for 57% of procedures. Nine patients received 29 anesthetics before a concussion diagnosis, and all of these patients had been involved in motor vehicle accidents and received at least 1 anesthetic within 1 week of injury. Surgical and anesthesia use are common in patients after concussion. Clinicians should have increased awareness for concussion in patients who sustain a trauma and may need to take measures to avoid potentially injury-augmenting cerebral physiology in these patients. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  17. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1.

    Science.gov (United States)

    Henninger, Nils; Bouley, James; Sikoglu, Elif M; An, Jiyan; Moore, Constance M; King, Jean A; Bowser, Robert; Freeman, Marc R; Brown, Robert H

    2016-04-01

    Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptor Sarm1 (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model. Sarm1(-/-) mice developed fewer β-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared to Sarm1(+/+) mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function in Sarm1(-/-) animals. Finally, using in vivo proton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1(-/-) mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats

    OpenAIRE

    McBride, Devin W.; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H.

    2015-01-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected ...

  19. Reducing Secondary Insults in Traumatic Brain Injury

    Science.gov (United States)

    2015-03-01

    could more reliably document the frequency of these events and help us understand the causes. Understand- ing the causes wi ll allow us to design...hypoperfusion. J Trauma 2003; 54(2): 312-9. 12. Manley G, Knudson MM, Morabito D, Damron S, Erickson V, Pitts L: Hypotension , hypoxia, and head injury

  20. Hospitalizations for critically ill children with traumatic brain injuries: a longitudinal analysis.

    Science.gov (United States)

    Tilford, John M; Aitken, Mary E; Anand, K J S; Green, Jerril W; Goodman, Allen C; Parker, James G; Killingsworth, Jeffrey B; Fiser, Debra H; Adelson, P David

    2005-09-01

    This study examines the incidence, utilization of procedures, and outcomes for critically ill children hospitalized with traumatic brain injury over the period 1988-1999 to describe the benefits of improved treatment. Retrospective analysis of hospital discharges was conducted using data from the Health Care Cost and Utilization Project Nationwide Inpatient Sample that approximates a 20% sample of U.S. acute care hospitals. Hospital inpatient stays from all types of U.S. community hospitals. The study sample included all children aged 0-21 with a primary or secondary ICD-9-CM diagnosis code for traumatic brain injury and a procedure code for either endotracheal intubation or mechanical ventilation. None. Deaths occurring during hospitalization were used to calculate mortality rates. Use of intracranial pressure monitoring and surgical openings of the skull were investigated as markers for the aggressiveness of treatment. Patients were further classified by insurance status, household income, and hospital characteristics. Over the 12-yr study period, mortality rates decreased 8 percentage points whereas utilization of intracranial pressure monitoring increased by 11 percentage points. The trend toward more aggressive management of traumatic brain injury corresponded with improved hospital outcomes over time. Lack of insurance was associated with vastly worse outcomes. An estimated 6,437 children survived their traumatic brain injury hospitalization because of improved treatment, and 1,418 children died because of increased mortality risk associated with being uninsured. Improved treatment was valued at approximately dollar 17 billion, whereas acute care hospitalization costs increased by dollar 1.5 billion (in constant 2000 dollars). Increased mortality in uninsured children was associated with a dollar 3.76 billion loss in economic benefits. More aggressive management of pediatric traumatic brain injury appears to have contributed to reduced mortality rates over

  1. Problems in CT diagnosis of the aging brain

    International Nuclear Information System (INIS)

    Kohlmeyer, K.

    1989-01-01

    The different methods of measuring the intracranial CSF spaces on CT images are described. The values obtained are demonstrated to separate the normal aging brain from the brain in senile dementia of Alzheimer's type. The CT criteria for the diagnosis of multiinfarctdementia are shown. The significance of CT studies in senile depression is discussed. The problem of vascular encephalopathy (leukoaraiosis) in normal aging of the brain and in dementia is considered in particular, and even the occurrence of intracranial space-occupying lesions and normal pressure hydrocephalus, as treatable causes of dementia and depression, are mentioned. The data and results of my own CT research on normal brain aging, dementia and depression are presented with reference to the literature. (orig.) [de

  2. Radiological diagnosis in patients with head injury alone or in combination with multiple trauma

    International Nuclear Information System (INIS)

    Rieger, J.; Linsenmaier, U.; Pfeifer, K.J.; Reiser, M.

    2002-01-01

    Purpose. Head injury alone or in combination with multiple trauma is the main cause of death and severe disability in individuals under 45 years old. This review is intended to describe the relevant imaging modalities, to analyze their specific value and limitations and to illustrate the most important radiologic findings. The indications for diagnostic imaging within the context of an interdisciplinary linkage of diagnostic and therapeutic measures are discussed.Material and methods. Recent publications are analyzed and compared to the experiences of our own hospital. In terms of a critical synoptic assessment the currently best standard of care is described in consideration of an interdisciplinary care concept.Results. Radiologic imaging modalities crucially contribute to the complete injury assessment and provide an indispensable basis for any therapeutic decision. Comprehensive neuromonitoring and reliable demonstration of delayed or secondary brain damage is impossible without modern imaging technology. Computed tomography (CT) further continues to be the most important imaging modality, while magnetic resonance imaging despite it's partly superior diagnostic informations remains reserved to particular diagnostic problems.Conclusions. Suitable constructive prerequisites, an interdisciplinary care concept and integration of the radiologist in hospital-adapted diagnostic and therapeutic algorithms significantly improves the outcome of patients with acute head injury. Beside the correct diagnosis itself the time to establish a diagnosis above all has a crucial impact on successful management and good outcome of these patients. (orig.) [de

  3. Estrone is neuroprotective in rats after traumatic brain injury.

    Science.gov (United States)

    Gatson, Joshua W; Liu, Ming-Mei; Abdelfattah, Kareem; Wigginton, Jane G; Smith, Scott; Wolf, Steven; Simpkins, James W; Minei, Joseph P

    2012-08-10

    In various animal and human studies, early administration of 17β-estradiol, a strong antioxidant, anti-inflammatory, and anti-apoptotic agent, significantly decreases the severity of injury in the brain associated with cell death. Estrone, the predominant estrogen in postmenopausal women, has been shown to be a promising neuroprotective agent. The overall goal of this project was to determine if estrone mitigates secondary injury following traumatic brain injury (TBI) in rats. Male rats were given either placebo (corn oil) or estrone (0.5 mg/kg) at 30 min after severe TBI. Using a controlled cortical impact device in rats that underwent a craniotomy, the right parietal cortex was injured using the impactor tip. Non-injured control and sham animals were also included. At 72 h following injury, the animals were perfused intracardially with 0.9% saline followed by 10% phosphate-buffered formalin. The whole brain was removed, sliced, and stained for TUNEL-positive cells. Estrone decreased cortical lesion volume (pcerebral cortical levels of TUNEL-positive staining (pprotective pathways such as the ERK1/2 and BDNF pathways, decreases ischemic secondary injury, and decreases apoptotic-mediated cell death. These results suggest that estrone may afford protection to those suffering from TBI.

  4. A patients perspective on eating difficulties following brain injury

    DEFF Research Database (Denmark)

    Kjaersgaard, Annette; Kristensen, Hanne Kaae; Borg, Tove

    Purpose: The aim of this study is to explore and interpret how persons with acquired brain injury (ABI) experience and adapt to reduced abilities to swallowing and eating - and clinical implications. Method: Explorative multiple-case study with qualitative interviews of six persons following ABI ...

  5. What Are Common Traumatic Brain Injury (TBI) Symptoms?

    Science.gov (United States)

    ... sleep habits Behavior or mood changes Trouble with memory, concentration, attention, or thinking Loss of consciousness lasting a few ... may have caused a TBI should seek medical attention. 4 ... Traumatic brain injury information page . Retrieved May 4, 2018, from https://www. ...

  6. Rehabilitation of discourse impairments after acquired brain injury

    Directory of Open Access Journals (Sweden)

    Gigiane Gindri

    Full Text Available ABSTRACT Language impairments in patients with acquired brain injury can have a negative impact on social life as well as on other cognitive domains. Discourse impairments are among the most commonly reported communication deficits among patients with acquired brain damage. Despite advances in the development of diagnostic tools for detecting such impairments, few studies have investigated interventions to rehabilitate patients presenting with these conditions. Objective: The aim of this study was to present a systematic review of the methods used in the rehabilitation of discourse following acquired brain injury. Methods: The PubMed database was searched for articles using the following keywords: "rehabilitation", "neurological injury", "communication" and "discursive abilities". Results: A total of 162 abstracts were found, but only seven of these met criteria for inclusion in the review. Four studies involved samples of individuals with aphasia whereas three studies recruited samples of individuals with traumatic brain injury. Conclusion: All but one article found that patient performance improved following participation in a discourse rehabilitation program.

  7. Effective protection of rabbits' explosive brain injury through blocking ...

    African Journals Online (AJOL)

    Background: The gap junction plays an important role in spreading of apoptotic and necrotic signals from injured and stressed cells to the neighboring viable cells. The present study was performed to investigate the important role of gap junction communication on rabbits' explosive brain injury. Methods: Explosion of paper ...

  8. Adolescents\\' experience of a parental traumatic brain injury | Harris ...

    African Journals Online (AJOL)

    The phenomenon of parental traumatic brain injury was characterised by denial, anger, grief, guilt, anxiety, over-protectiveness, social isolation, and change in many areas of the participants' lives. The adolescents coped using both approaches and avoidance styles of coping. Religion was a theme in the lives of all four ...

  9. Misconceptions about traumatic brain injuries among South African ...

    African Journals Online (AJOL)

    Objective. To investigate the incidence and type of misconceptions about traumatic brain injuries (TBIs) harboured by university students. Method. A convenience sample of 705 university students were recruited and data were collected using an electronic survey. The link to the survey was sent via e-mail to all registered ...

  10. Minor traumatic brain injuries – what is new? | Hollander ...

    African Journals Online (AJOL)

    Minor traumatic brain injuries – what is new? D Hollander, J Coventry, M Du Trevou. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors ...

  11. Traumatic Brain Injury: An Overview of School Re-Entry.

    Science.gov (United States)

    Tucker, Bonnie Foster; Colson, Steven E.

    1992-01-01

    This article presents a definition of traumatic brain injury (TBI); describes problem behavioral characteristics of students post-TBI and some possible solutions; examines academic, social, emotional, and cognitive factors; and outlines interventions to assist teachers in working constructively with TBI students. (JDD)

  12. Sex, Gender, and Traumatic Brain Injury: A Commentary.

    Science.gov (United States)

    Colantonio, Angela

    2016-02-01

    The goal of this supplemental issue is to address major knowledge, research, and clinical practice gaps regarding the limited focus on brain injury in girls and women as well as limited analysis of the effect of sex and gender in research on acquired brain injury. Integrating sex and gender in research is recognized as leading to better science and, ultimately, to better clinical practice. A sex and gender analytical approach to rehabilitation research is crucial to understanding traumatic brain injury and improving quality of life outcomes for survivors. Put another way, the lack of focus on sex and gender reduces the rigor of research design, the generalizability of study findings, and the effectiveness of clinical implementation and knowledge dissemination practices. The articles in this supplement examine sex and gender using a variety of methodological approaches and research contexts. Recommendations for future research on acquired brain injury that consciously incorporates sex and gender are made throughout this issue. This supplement is a product of the Girls and Women with ABI Task Force of the American Congress of Rehabilitation Medicine. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. Psychosocial consequences of mild traumatic brain injury in children

    DEFF Research Database (Denmark)

    Keightley, Michelle L; Côté, Pierre; Rumney, Peter

    2014-01-01

    OBJECTIVE: To synthesize the best available evidence regarding psychosocial consequences of mild traumatic brain injury (MTBI) in children. DATA SOURCES: MEDLINE, Embase, CINAHL, PsycINFO, and SPORTDiscus were searched (2001-2012). Inclusion criteria included published peer-reviewed reports...

  14. Investigating nystagmus in patients with traumatic brain injury: A ...

    African Journals Online (AJOL)

    Background. Traumatic brain injury (TBI) is a health and socioeconomic concern worldwide. In patients with TBI, post-traumatic balance problems are often the result of damage to the vestibular system. Nystagmus is common in these patients, and can provide insight into the damage that has resulted from the trauma.

  15. Traumatic Brain Injury and Its Effect on Students

    Science.gov (United States)

    Rosenthal, Stacy B.

    2012-01-01

    Over one million people suffer a traumatic brain injury every year, many of whom are students between the ages of 5 and 18. Using a qualitative case study approach, I wanted to discover the specific factors that both impede and help the school re-entry process for students in grades kindergarten through twelve so that these students can return to…

  16. School-Based Traumatic Brain Injury and Concussion Management Program

    Science.gov (United States)

    Davies, Susan C.

    2016-01-01

    Traumatic brain injuries (TBIs), including concussions, can result in a constellation of physical, cognitive, emotional, and behavioral symptoms that affect students' well-being and performance at school. Despite these effects, school personnel remain underprepared identify, educate, and assist this population of students. This article describes a…

  17. Traumatic brain injury in children | Coughlan | South African Family ...

    African Journals Online (AJOL)

    South African Family Practice. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 45, No 5 (2003) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Traumatic brain injury in children. M Coughlan, G Fieggen ...

  18. Traumatic brain injury in pediatric age group: Predictors of outcome ...

    African Journals Online (AJOL)

    Objective: To determine predictors for outcomes of traumatic brain injury (TBI) in infants and children younger than twelve years admitted to our pediatric intensive care units (PICU). Methods: This is a retrospective cohort study from 2004-5, done at the PICU of King Fahad Hofuf Hospital, Eastern Province, Saudi Arabia.

  19. Evaluation of a Health Education Programme about Traumatic Brain Injury

    Science.gov (United States)

    Garcia, Jane Mertz; Sellers, Debra M.; Hilgendorf, Amy E.; Burnett, Debra L.

    2014-01-01

    Objective: Our aim was to evaluate a health education programme (TBIoptions: Promoting Knowledge) designed to increase public awareness and understanding about traumatic brain injury (TBI) through in-person (classroom) and computer-based (electronic) learning environments. Design: We used a pre-post survey design with randomization of participants…

  20. Case Report - Severe traumatic brain injury managed with ...

    African Journals Online (AJOL)

    Patients with severe taumatic brain injury may develop intractable raised ICP resulting in high mortality and morbidity. This may be anticipated from the patient's clinical status and imaging findings even where intracranial monitoring is unavailable. Outcome may be improved by early and aggressive control of ICP and ...

  1. Traumatic brain injury, the hidden pandemic: A focused response to ...

    African Journals Online (AJOL)

    Introduction: Traumatic brain injury (TBI) has many potential cognitive, behavioural and psychological consequences, and contributes significantly to the national burden of disease and to ongoing violent behaviour. Few resources are available for the rehabilitation of patients with TBI in South Africa, and access to ...

  2. Demographic profile of severe traumatic brain injury admissions to ...

    African Journals Online (AJOL)

    Background. Paediatric traumatic brain injury (PTBI) is a major public health problem. However, recent epidemiological data for PTBI in South Africa (SA) are lacking. Objectives. To establish a demographic profile of severe PTBI admissions to the Red Cross War Memorial Children's Hospital (RCWMCH) over a 5-year ...

  3. Clinimetrics and functional outcome one year after traumatic brain injury

    NARCIS (Netherlands)

    J.T.M. van Baalen (Bianca)

    2008-01-01

    textabstractThis thesis is based on the findings of the FuPro-TBI (Functional Prognosis in Traumatic Brain Injury) study, which was part of the national FuPro research programme which investigated the functional prognosis of four neurological disorders: multiple sclerosis (MS), stroke, amyotrofic

  4. Predictors of Outcome following Acquired Brain Injury in Children

    Science.gov (United States)

    Johnson, Abigail R.; DeMatt, Ellen; Salorio, Cynthia F.

    2009-01-01

    Acquired brain injury (ABI) in children and adolescents can result from multiple causes, including trauma, central nervous system infections, noninfectious disorders (epilepsy, hypoxia/ischemia, genetic/metabolic disorders), tumors, and vascular abnormalities. Prediction of outcomes is important, to target interventions, allocate resources,…

  5. Assisting Students with a Traumatic Brain Injury in School Interventions

    Science.gov (United States)

    Aldrich, Erin M.; Obrzut, John E.

    2012-01-01

    Traumatic brain injury (TBI) in children and adolescents can significantly affect their lives and educational needs. Deficits are often exhibited in areas such as attention, concentration, memory, executive function, emotional regulation, and behavioral functioning, but specific outcomes are not particular to any one child or adolescent with a…

  6. Issues of cultural diversity in acquired brain injury (ABI) rehabilitation.

    Science.gov (United States)

    Lequerica, Anthony; Krch, Denise

    2014-01-01

    With the general population in the United States becoming increasingly diverse, it is important for rehabilitation professionals to develop the capacity to provide culturally sensitive treatment. This is especially relevant when working with minority populations who have a higher risk for brain injury and poorer rehabilitation outcomes. This article presents a number of clinical vignettes to illustrate how cultural factors can influence behavior in patients recovering from brain injury, as well as rehabilitation staff. The main objectives are to raise awareness among clinicians and stimulate research ideas by highlighting some real world examples of situations where a specialized, patient-centered approach needs to consider factors of cultural diversity. Because one's own world view impacts the way we see the world and interpret behavior, it is important to understand one's own ethnocentrism when dealing with a diverse population of patients with brain injury where behavioral sequelae are often expected. Being able to see behavior after brain injury with an open mind and taking into account cultural and contextual factors is an important step in developing culturally competent rehabilitation practices.

  7. The effect of injury diagnosis on illness perceptions and expected postconcussion syndrome and posttraumatic stress disorder symptoms.

    Science.gov (United States)

    Sullivan, Karen A; Edmed, Shannon L; Kempe, Chloe

    2014-01-01

    To determine if systematic variation of diagnostic terminology (ie, concussion, minor head injury [MHI], mild traumatic brain injury [mTBI]) following a standardized injury description produced different expected symptoms and illness perceptions. We hypothesized that worse outcomes would be expected of mTBI, compared with other diagnoses, and that MHI would be perceived as worse than concussion. 108 volunteers were randomly allocated to conditions in which they read a vignette describing a motor vehicle accident-related mTBI followed by a diagnosis of mTBI (n = 27), MHI (n = 24), concussion (n = 31), or, no diagnosis (n = 26). All groups rated (a) event "undesirability," (b) illness perception, and (c) expected postconcussion syndrome (PCS) and posttraumatic stress disorder (PTSD) symptoms 6 months after injury. There was a statistically significant group effect on undesirability (mTBI > concussion and MHI), PTSD symptomatology (mTBI and no diagnosis > concussion), and negative illness perception (mTBI and no diagnosis > concussion). In general, diagnostic terminology did not affect anticipated PCS symptoms 6 months after injury, but other outcomes were affected. Given that these diagnostic terms are used interchangeably, this study suggests that changing terminology can influence known contributors to poor mTBI outcome.

  8. MicroRNAs as diagnostic markers and therapeutic targets for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Bridget Martinez

    2017-01-01

    Full Text Available Traumatic brain injury (TBI is characterized by primary damage to the brain from the external mechanical force and by subsequent secondary injury due to various molecular and pathophysiological responses that eventually lead to neuronal cell death. Secondary brain injury events may occur minutes, hours, or even days after the trauma, and provide valuable therapeutic targets to prevent further neuronal degeneration. At the present time, there is no effective treatment for TBI due, in part, to the widespread impact of numerous complex secondary biochemical and pathophysiological events occurring at different time points following the initial injury. MicroRNAs control a range of physiological and pathological functions such as development, differentiation, apoptosis and metabolism, and may serve as potential targets for progress assessment and intervention against TBI to mitigate secondary damage to the brain. This has implications regarding improving the diagnostic accuracy of brain impairment and long-term outcomes as well as potential novel treatments. Recent human studies have identified specific microRNAs in serum/plasma (miR-425-p, -21, -93, -191 and -499 and cerebro-spinal fluid (CSF (miR-328, -362-3p, -451, -486a as possible indicators of the diagnosis, severity, and prognosis of TBI. Experimental animal studies have examined specific microRNAs as biomarkers and therapeutic targets for moderate and mild TBI (e.g., miR-21, miR-23b. MicroRNA profiling was altered by voluntary exercise. Differences in basal microRNA expression in the brain of adult and aged animals and alterations in response to TBI (e.g., miR-21 have also been reported. Further large-scale studies with TBI patients are needed to provide more information on the changes in microRNA profiles in different age groups (children, adults, and elderly.

  9. Abnormalities of Microcirculation and Intracranial and Cerebral Perfusion Pressures in Severe Brain Injury

    Directory of Open Access Journals (Sweden)

    Yu. A. Churlyaev

    2008-01-01

    Full Text Available Objective: to evaluate the states of microcirculation, cerebral perfusion intracranial pressures in patients with isolated severe brain injury (SBI and to determine their possible relationships. Subjects and methods. 148 studies were performed in 16 victims with SBI. According to the outcome of brain traumatic disease, the patients were divided into two groups: 1 those who had a good outcome (n=8 and 2 those who had a fatal outcome (n=8. Microcirculation was examined by skin laser Doppler flowmetry using a LAKK-01 capillary blood flow laser analyzer (LAZMA Research-and-Production Association, Russian Federation. All the victims underwent surgical interventions to remove epi-, subdural, and intracerebral hematomas. A Codman subdural/intraparenchymatous intracranial pressure (ICD sensor (Johnson & Johnson, United Kingdom was intraoperatively inserted in the victims. Cerebral perfusion pressure (CPP was calculated using the generally accepted formula: CPP = MBP (mean blood pressure — ICD. ICD, CPP, and microcirculation were studied on postoperative days 1, 3, 5, and 7. Their values were recorded simultaneously. Ninety and 58 studies were conducted in the group of patients with good and fatal outcomes, respectively. Results. No correlation between the changes in MBP, ICD, and microcirculatory parameters suggested that the value of ICD was determined by the nature of brain damage and it was the leading and determining indicator in the diagnosis and treatment of secondary cerebral lesions. The amplitude of low-frequency fluctuations directly correlated with ICD, which indicated that they might be used to evaluate cerebral perfusion and impaired cerebral circulation indirectly in victims with severe brain injury. Conclusion. The laser Doppler flowmetric technique makes it possible not only to qualitatively, but also quantitatively determine changes in the tissue blood flow system in severe brain injury. With this technique, both the local and central

  10. Acute Kidney Injury: Epidemiology, Diagnosis, Prognosis, and Future Directions

    Directory of Open Access Journals (Sweden)

    Joana Briosa Neves

    2015-07-01

    Full Text Available Acute kidney injury (AKI is a common problem highly associated with hospitalisation. AKI is the cause of harmful short-term consequences: longer hospital stays, greater disability after discharge, and greater risk of in-hospital mortality, as well as adverse long-term outcomes, such as progression to chronic kidney disease, development of cardiovascular disease, and increased risk of long-term mortality. The concept of AKI has changed since the introduction of the ‘Risk, Injury, Failure, Loss of kidney function, End-stage kidney disease’ (RIFLE classification. More recently, the ‘Kidney Disease Improving Global Outcomes’ (KDIGO classification appears to have provided increased diagnostic sensitivity and outcome-prediction capability. Novel biomarkers and further research on the role of the immune system in AKI may help improve the diagnosis, severity, outcome evaluation, and treatment of the condition. In this review we describe the epidemiology, diagnosis, and prognosis of AKI, as well as possible future directions for its clinical management.

  11. Mild traumatic brain injury: Impairment and disability assessment caveats.

    Science.gov (United States)

    Zasler, Nathan D; Martelli, Michael F

    2003-01-01

    Mild traumatic brain injury (MTBI) accounts for approximately 80% of all brain injuries, and persistent sequelae can impede physical, emotional, social, marital, vocational, and avocational functioning. Evaluation of impairment and disability following MTBI typically can involve such contexts as social security disability application, personal injury litigation, worker's compensation claims, disability insurance policy application, other health care insurance policy coverage issues, and the determination of vocational and occupational competencies and limitations. MTBI is still poorly understood and impairment and disability assessment in MTBI can present a significant diagnostic challenge. There are currently no ideal systems for rating impairment and disability for MTBI residua. As a result, medicolegal examiners and clinicians must necessarily familiarise themselves with the variety of disability and impairment evaluation protocols and understand their limitations. The current paper reviews recommended procedures and potential obstacles and confounding issues.

  12. Penetrating Brain Injury after Suicide Attempt with Speargun

    Directory of Open Access Journals (Sweden)

    John Ross Williams

    2014-07-01

    Full Text Available Penetrating cranial injury by mechanisms other than are exceedingly rare, and so strategies and guidelines for the management of PBI are largely informed by data from higher-velocity penetrating injuries. Here we present a case of penetrating brain injury by the low velocity mechanism of a harpoon from an underwater fishing speargun in an attempted suicide by a 56-year-old Caucasian male. The case raised a number of interesting points in management of lower-velocity penetrating brain injury (LVPBI, including benefit in delaying foreign body removal to allow for tamponade; the importance of history taking in establishing the social/legal significance of the events surrounding the injury; the use of cerebral angiogram in all cases of PBI; advantages of using DECT to reduce artifact when available; and antibiotic prophylaxis in the context of idiosyncratic histories of usage of penetrating objects before coming in contact with the intracranial environment. We present here the management of the case in full along with an extended discussion and review of existing literature regarding key points in management of LVPBI vs. higher velocity forms of intracranial injury.

  13. Relationship between CT findings and prognosis in diffuse brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Akihito; Kuwana, Nobumasa; Mochimatsu, Yasuhiko; Fujino, Hideyo; Tokoro, Kazuhiko [Yokohama Minami Kyosai Hospital, Kanagawa (Japan)

    1984-12-01

    Types of diffuse brain injury (DBI) were classified based on a study of fifty patients with acute, severe head injuries. This study focused on findings of computed tomography (CT) and outcomes of the patients. The level of consciousness was estimated by the Glasgow Coma Scale; greater than 8 in 28 cases; 8 or less in 22 cases. The overall mortality rate was 28%, however the rate ranged from 8 to 67%, depending on the type of DBI. CT findings of DBI within 24 hours after head injury were classified into 5 type: diffuse cerebral swelling (DCS), isodense hemispheric swelling (IHS), deep-seated brain injury (DSI), subarachnoid hemorrhage (SAH) and normal findings. DSI demonstrated the highest mortality rate (67%), and IHS was the second (50%). However, there are many pediatric cases with excellent outcomes. Although both DCS and IHS occurred frequently in children, it was considered that these two conditions should be distinguished, because of the existence of some differences in the clinical course of the two. There were only 7 cases of SAH alone, but SAH was the most frequent associated finding in DBI, existing in 50% of 50 cases. SAH per se could not be regarded as a poor prognostic factor. It is the authors' impression that DBI without coup or contre-coup injuries can be readily diagnosed by CT scan and that DBI is an important clinical factor in the closed head injury cases.

  14. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats

    Directory of Open Access Journals (Sweden)

    Huang Yen

    2011-09-01

    Full Text Available Abstract Background Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE. Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE. Methods We used a neonatal rat model of HIE by unilateral ligation of carotid artery and subsequent exposure to 8% oxygen for 2 hrs on postnatal day 7 (P7 rats. Neonatal rats were administered three dosages of an antibiotic, ceftriaxone, 48 hrs prior to experimental HIE. Neurobehavioral tests of treated rats were assessed. Brain sections from P14 rats were examined with Nissl and immunohistochemical stain, and TUNEL assay. GLT1 protein expression was evaluated by Western blot and immunohistochemistry. Results Pre-treatment with 200 mg/kg ceftriaxone significantly reduced the brain injury scores and apoptotic cells in the hippocampus, restored myelination in the external capsule of P14 rats, and improved the hypoxia-ischemia induced learning and memory deficit of P23-24 rats. GLT1 expression was observed in the cortical neurons of ceftriaxone treated rats. Conclusion These results suggest that pre-treatment of infants at risk for HIE with ceftriaxone may reduce subsequent brain injury.

  15. Decompressive craniectomy following brain injury: factors important ...

    African Journals Online (AJOL)

    2010-01-07

    Jan 7, 2010 ... Background: Decompressive craniectomy (DC) is often performed as an empirical lifesaving measure to protect the injured brain from the damaging effects of propagating oedema and intracranial hypertension. However, there are no clearly defined indications or specified guidelines for patient selection for ...

  16. Diagnosis of vascular injuries caused by hand-transmitted vibration.

    Science.gov (United States)

    Harada, N; Mahbub, M H

    2008-04-01

    For a reliable objective diagnosis of vascular injuries in hand-arm vibration syndrome (HAVS), the standardized cold provocation tests--finger skin temperature measurement during hand(s) immersion in cold water (FST test) and finger systolic blood pressure measurement during local cold exposure (FSBP test)--are widely used. In recent years there is a growing controversy regarding the diagnostic value of these tests. The aim of this study was to describe particularly the diagnostic performance of FST and FSBP tests, and also to focus on the problems and uncertainties regarding the test conditions and results, in the laboratory diagnosis of vascular injuries caused by hand-transmitted vibration. A review of pertinent published English- and Japanese-language articles and conference proceedings (between 1976 and 2006) was conducted. From the reports with regard to diagnostic significance of the FSBP test, it seems to be an important laboratory test for diagnosing vibration-induced white finger (VWF). On the other hand, despite a large number of research studies with the FST test, there is a lack of data for the standardized FST test, which can confirm the value of it in diagnosing VWF. Moreover, there is no agreement on effective parameter/s to quantify and compare the responses in FST induced by immersion in cold water. While assessing and staging vascular injuries in HAVS, inquiry regarding finger coldness appears to be useful. As there is no single test with satisfactory diagnostic ability for VWF, at present it is reasonable to use the cold provocation tests as a part of the comprehensive approach to evaluate HAVS patients. In addition to the objective methods, the index of finger coldness may be useful while diagnosing the vascular component of HAVS.

  17. Microglial Inflammasome Activation in Penetrating Ballistic-Like Brain Injury.

    Science.gov (United States)

    Lee, Stephanie W; Gajavelli, Shyam; Spurlock, Markus S; Andreoni, Cody; de Rivero Vaccari, Juan Pablo; Bullock, M Ross; Keane, Robert W; Dietrich, W Dalton

    2018-04-02

    Penetrating traumatic brain injury (PTBI) is a significant cause of death and disability in the United States. Inflammasomes are one of the key regulators of the interleukin (IL)-1β mediated inflammatory responses after traumatic brain injury. However, the contribution of inflammasome signaling after PTBI has not been determined. In this study, adult male Sprague-Dawley rats were subjected to sham procedures or penetrating ballistic-like brain injury (PBBI) and sacrificed at various time-points. Tissues were assessed by immunoblot analysis for expression of IL-1β, IL-18, and components of the inflammasome: apoptosis-associated speck-like protein containing a caspase-activation and recruitment domain (ASC), caspase-1, X-linked inhibitor of apoptosis protein (XIAP), nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3), and gasdermin-D (GSDMD). Specific cell types expressing inflammasome proteins also were evaluated immunohistochemically and assessed quantitatively. After PBBI, expression of IL-1β, IL-18, caspase-1, ASC, XIAP, and NLRP3 peaked around 48 h. Brain protein lysates from PTBI animals showed pyroptosome formation evidenced by ASC laddering, and also contained increased expression of GSDMD at 48 h after injury. ASC-positive immunoreactive neurons within the perilesional cortex were observed at 24 h. At 48 h, ASC expression was concentrated in morphologically activated cortical microglia. This expression of ASC in activated microglia persisted until 12 weeks following PBBI. This is the first report of inflammasome activation after PBBI. Our results demonstrate cell-specific patterns of inflammasome activation and pyroptosis predominantly in microglia, suggesting a sustained pro-inflammatory state following PBBI, thus offering a therapeutic target for this type of brain injury.

  18. Mechanisms of gender-linked ischemic brain injury

    Science.gov (United States)

    Liu, Mingyue; Dziennis, Suzan; Hurn, Patricia D.; Alkayed, Nabil J.

    2010-01-01

    Biological sex is an important determinant of stroke risk and outcome. Women are protected from cerebrovascular disease relative to men, an observation commonly attributed to the protective effect of female sex hormones, estrogen and progesterone. However, sex differences in brain injury persist well beyond the menopause and can be found in the pediatric population, suggesting that the effects of reproductive steroids may not completely explain sexual dimorphism in stroke. We review recent advances in our understanding of sex steroids (estradiol, progesterone and testosterone) in the context of ischemic cell death and neuroprotection. Understanding the molecular and cell-based mechanisms underlying sex differences in ischemic brain injury will lead to a better understanding of basic mechanisms of brain cell death and is an important step toward designing more effective therapeutic interventions in stroke. PMID:19531872

  19. Evaluation of ultrasound techniques for brain injury detection

    Science.gov (United States)

    Mobley, Joel; Kasili, Paul M.; Norton, Stephen J.; Vo-Dinh, Tuan

    1998-05-01

    In this work, we examine the physics underlying wave propagation in the head to evaluate various ultrasonic transducers for use in a brian injury detection device. The results of measurements of the attenuation coefficient and phase velocity for ultrasonic propagation in samples of brain tissue and skull bone from sheep are presented. The material properties are then used to investigate the propagation of ultrasonic pressure fields in the head. The ultrasound fields for three different transducers are calculated for propagation in a simulated brain/skull model. The model is constructed using speed-of-sound and mass density values of the two tissue types. The impact of the attenuation on the ultrasound fields is then examined. Finally, the relevant points drawn from these discussions are summarized. We hope to minimize the confounding effects of the skull by using sub-MHz ultrasound while maintaining the necessary temporal and spatial resolution to successfully detect injury in the brain.

  20. Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury.

    Science.gov (United States)

    Cole, James H; Jolly, Amy; de Simoni, Sara; Bourke, Niall; Patel, Maneesh C; Scott, Gregory; Sharp, David J

    2018-01-04

    Traumatic brain injury leads to significant loss of brain volume, which continues into the chronic stage. This can be sensitively measured using volumetric analysis of MRI. Here we: (i) investigated longitudinal patterns of brain atrophy; (ii) tested whether atrophy is greatest in sulcal cortical regions; and (iii) showed how atrophy could be used to power intervention trials aimed at slowing neurodegeneration. In 61 patients with moderate-severe traumatic brain injury (mean age = 41.55 years ± 12.77) and 32 healthy controls (mean age = 34.22 years ± 10.29), cross-sectional and longitudinal (1-year follow-up) brain structure was assessed using voxel-based morphometry on T1-weighted scans. Longitudinal brain volume changes were characterized using a novel neuroimaging analysis pipeline that generates a Jacobian determinant metric, reflecting spatial warping between baseline and follow-up scans. Jacobian determinant values were summarized regionally and compared with clinical and neuropsychological measures. Patients with traumatic brain injury showed lower grey and white matter volume in multiple brain regions compared to controls at baseline. Atrophy over 1 year was pronounced following traumatic brain injury. Patients with traumatic brain injury lost a mean (± standard deviation) of 1.55% ± 2.19 of grey matter volume per year, 1.49% ± 2.20 of white matter volume or 1.51% ± 1.60 of whole brain volume. Healthy controls lost 0.55% ± 1.13 of grey matter volume and gained 0.26% ± 1.11 of white matter volume; equating to a 0.22% ± 0.83 reduction in whole brain volume. Atrophy was greatest in white matter, where the majority (84%) of regions were affected. This effect was independent of and substantially greater than that of ageing. Increased atrophy was also seen in cortical sulci compared to gyri. There was no relationship between atrophy and time since injury or age at baseline. Atrophy rates were related to memory performance at the end of the follow

  1. Changes in brain-behavior relationships following a 3-month pilot cognitive intervention program for adults with traumatic brain injury

    OpenAIRE

    S. Porter; I.J. Torres; W. Panenka; Z. Rajwani; D. Fawcett; A. Hyder; N. Virji-Babul

    2017-01-01

    Facilitating functional recovery following brain injury is a key goal of neurorehabilitation. Direct, objective measures of changes in the brain are critical to understanding how and when meaningful changes occur, however, assessing neuroplasticity using brain based results remains a significant challenge. Little is known about the underlying changes in functional brain networks that correlate with cognitive outcomes in traumatic brain injury (TBI). The purpose of this pilot study was to asse...

  2. Early CT signs of progressive hemorrhagic injury following acute traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Wu-song; Zheng, Ping; Xu, Jun-fa; Guo, Yi-jun; Zeng, Jing-song; Yang, Wen-jin; Li, Gao-yi; He, Bin; Yu, Hui [Pudong New Area People' s Hospital, Department of Neurosurgery, Shanghai (China)

    2011-05-15

    Since progressive hemorrhagic injury (PHI) was introduced in neurosurgical literatures, several studies have been performed, the results of which have influenced doctors but do not define guidelines for the best treatment of PHI. PHI may be confirmed by a serial computerized tomography (CT) scan, and it has been shown to be associated with a fivefold increase in the risk of clinical worsening and is a significant cause of morbidity and mortality as well. So, early detection of PHI is practically important in a clinical situation. To analyze the early CT signs of progressive hemorrhagic injury following acute traumatic brain injury (TBI) and explore their clinical significances, PHI was confirmed by comparing the first and repeated CT scans. Data were analyzed and compared including times from injury to the first CT and signs of the early CT scan. Logistic regression analysis was used to show the risk factors related to PHI. A cohort of 630 TBI patients was evaluated, and there were 189 (30%) patients who suffered from PHI. For patients with their first CT scan obtained as early as 2 h post-injury, there were 116 (77.25%) cases who suffered from PHI. The differences between PHIs and non-PHIs were significant in the initial CT scans showing fracture, subarachnoid hemorrhage (SAH), brain contusion, epidural hematoma (EDH), subdural hematoma (SDH), and multiple hematoma as well as the times from injury to the first CT scan (P < 0.01). Logistic regression analysis showed that early CT scans (EDH, SDH, SAH, fracture, and brain contusion) were predictors of PHI (P < 0.01). For patients with the first CT scan obtained as early as 2 h post-injury, a follow-up CT scan should be performed promptly. If the initial CT scan shows SAH, brain contusion, and primary hematoma with brain swelling, an earlier and dynamic CT scan should be performed for detection of PHI as early as possible and the medical intervention would be enforced in time. (orig.)

  3. Early CT signs of progressive hemorrhagic injury following acute traumatic brain injury

    International Nuclear Information System (INIS)

    Tong, Wu-song; Zheng, Ping; Xu, Jun-fa; Guo, Yi-jun; Zeng, Jing-song; Yang, Wen-jin; Li, Gao-yi; He, Bin; Yu, Hui

    2011-01-01

    Since progressive hemorrhagic injury (PHI) was introduced in neurosurgical literatures, several studies have been performed, the results of which have influenced doctors but do not define guidelines for the best treatment of PHI. PHI may be confirmed by a serial computerized tomography (CT) scan, and it has been shown to be associated with a fivefold increase in the risk of clinical worsening and is a significant cause of morbidity and mortality as well. So, early detection of PHI is practically important in a clinical situation. To analyze the early CT signs of progressive hemorrhagic injury following acute traumatic brain injury (TBI) and explore their clinical significances, PHI was confirmed by comparing the first and repeated CT scans. Data were analyzed and compared including times from injury to the first CT and signs of the early CT scan. Logistic regression analysis was used to show the risk factors related to PHI. A cohort of 630 TBI patients was evaluated, and there were 189 (30%) patients who suffered from PHI. For patients with their first CT scan obtained as early as 2 h post-injury, there were 116 (77.25%) cases who suffered from PHI. The differences between PHIs and non-PHIs were significant in the initial CT scans showing fracture, subarachnoid hemorrhage (SAH), brain contusion, epidural hematoma (EDH), subdural hematoma (SDH), and multiple hematoma as well as the times from injury to the first CT scan (P < 0.01). Logistic regression analysis showed that early CT scans (EDH, SDH, SAH, fracture, and brain contusion) were predictors of PHI (P < 0.01). For patients with the first CT scan obtained as early as 2 h post-injury, a follow-up CT scan should be performed promptly. If the initial CT scan shows SAH, brain contusion, and primary hematoma with brain swelling, an earlier and dynamic CT scan should be performed for detection of PHI as early as possible and the medical intervention would be enforced in time. (orig.)

  4. Differential diagnosis of scintigraphic brain centres by 75Se selenite

    International Nuclear Information System (INIS)

    Bestagno, M.; Garraffa, V.; Rembado, R.; Guerra, U.

    1975-01-01

    Since standard brain scintigraphy with sup(99m)Tc is not always adequate for a satisfactory differential diagnosis of the radioactive foci detected, the possibilities of 75 Se sodium selenite were investigated. It was observed that in centres due to a vascular lesion the selenite concentration is always low, rising steeply in neoplasmic foci. The 75 Se-selenite scintigraphic method is considered highly valid, complementing that of sup(99m)Tc when this latter is unsuitable for diagnosis of the nature of cerebral foci [fr

  5. Patient Effort in Traumatic Brain Injury Inpatient Rehabilitation: Course and Associations With Age, Brain Injury Severity, and Time Postinjury

    Science.gov (United States)

    Seel, Ronald T.; Corrigan, John D.; Dijkers, Marcel P.; Barrett, Ryan S.; Bogner, Jennifer; Smout, Randall J.; Garmoe, William; Horn, Susan D.

    2016-01-01

    Objective To describe patients' level of effort in occupational, physical, and speech therapy sessions during traumatic brain injury (TBI) inpatient rehabilitation and to evaluate how age, injury severity, cognitive impairment, and time are associated with effort. Design Prospective, multicenter, longitudinal cohort study. Setting Acute TBI rehabilitation programs. Participants Patients (N=1946) receiving 138,555 therapy sessions. Interventions Not applicable. Main Outcome Measures Effort in rehabilitation sessions rated on the Rehabilitation Intensity of Therapy Scale, FIM, Comprehensive Severity Index brain injury severity score, posttraumatic amnesia (PTA), and Agitated Behavior Scale (ABS). Results The Rehabilitation Intensity of Therapy Scale effort ratings in individual therapy sessions closely conformed to a normative distribution for all 3 disciplines. Mean Rehabilitation Intensity of Therapy Scale ratings for patients' therapy sessions were higher in the discharge week than in the admission week (Prehabilitation, differences in effort ratings (Pcognitive scores and over time. In linear mixed-effects modeling, age and Comprehensive Severity Index brain injury severity score at admission, days from injury to rehabilitation admission, days from admission, and daily ratings of PTA and ABS score were predictors of level of effort (Prehabilitation setting using the Rehabilitation Intensity of Therapy Scale. Patients who sustain TBI show varying levels of effort in rehabilitation therapy sessions, with effort tending to increase over the stay. PTA and agitated behavior are primary risk factors that substantially reduce patient effort in therapies. PMID:26212400

  6. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice.

    Science.gov (United States)

    Ma, Elise L; Smith, Allen D; Desai, Neemesh; Cheung, Lumei; Hanscom, Marie; Stoica, Bogdan A; Loane, David J; Shea-Donohue, Terez; Faden, Alan I

    2017-11-01

    Traumatic brain injury (TBI) has complex effects on the gastrointestinal tract that are associated with TBI-related morbidity and mortality. We examined changes in mucosal barrier properties and enteric glial cell response in the gut after experimental TBI in mice, as well as effects of the enteric pathogen Citrobacter rodentium (Cr) on both gut and brain after injury. Moderate-level TBI was induced in C57BL/6mice by controlled cortical impact (CCI). Mucosal barrier function was assessed by transepithelial resistance, fluorescent-labelled dextran flux, and quantification of tight junction proteins. Enteric glial cell number and activation were measured by Sox10 expression and GFAP reactivity, respectively. Separate groups of mice were challenged with Cr infection during the chronic phase of TBI, and host immune response, barrier integrity, enteric glial cell reactivity, and progression of brain injury and inflammation were assessed. Chronic CCI induced changes in colon morphology, including increased mucosal depth and smooth muscle thickening. At day 28 post-CCI, increased paracellular permeability and decreased claudin-1 mRNA and protein expression were observed in the absence of inflammation in the colon. Colonic glial cell GFAP and Sox10 expression were significantly increased 28days after brain injury. Clearance of Cr and upregulation of Th1/Th17 cytokines in the colon were unaffected by CCI; however, colonic paracellular flux and enteric glial cell GFAP expression were significantly increased. Importantly, Cr infection in chronically-injured mice worsened the brain lesion injury and increased astrocyte- and microglial-mediated inflammation. These experimental studies demonstrate chronic and bidirectional brain-gut interactions after TBI, which may negatively impact late outcomes after brain injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Brain pathology after mild traumatic brain injury: an exploratory study by repeated magnetic resonance examination.

    Science.gov (United States)

    Lannsjö, Marianne; Raininko, Raili; Bustamante, Mariana; von Seth, Charlotta; Borg, Jörgen

    2013-09-01

    To explore brain pathology after mild traumatic brain injury by repeated magnetic resonance examination. A prospective follow-up study. Nineteen patients with mild traumatic brain injury presenting with Glasgow Coma Scale (GCS) 14-15. The patients were examined on day 2 or 3 and 3-7 months after the injury. The magnetic resonance protocol comprised conventional T1- and T2-weighted sequences including fluid attenuated inversion recovery (FLAIR), two susceptibility-weighted sequences to reveal haemorrhages, and diffusion-weighted sequences. Computer-aided volume comparison was performed. Clinical outcome was assessed by the Rivermead Post-Concussion Symptoms Questionnaire (RPQ), Hospital Anxiety and Depression Scale (HADS) and Glasgow Outcome Scale Extended (GOSE). At follow-up, 7 patients (37%) reported ≥  3 symptoms in RPQ, 5 reported some anxiety and 1 reported mild depression. Fifteen patients reported upper level of good recovery and 4 patients lower level of good recovery (GOSE 8 and 7, respectively). Magnetic resonance pathology was found in 1 patient at the first examination, but 4 patients (21%) showed volume loss at the second examination, at which 3 of them reported GOSE scores of 8. Loss of brain volume, demonstrated by computer-aided magnetic resonance imaging volumetry, may be a feasible marker of brain pathology after mild traumatic brain injury.

  8. Agmatine Attenuates Brain Edema and Apoptotic Cell Death after Traumatic Brain Injury.

    Science.gov (United States)

    Kim, Jae Young; Lee, Yong Woo; Kim, Jae Hwan; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2015-07-01

    Traumatic brain injury (TBI) is associated with poor neurological outcome, including necrosis and brain edema. In this study, we investigated whether agmatine treatment reduces edema and apoptotic cell death after TBI. TBI was produced by cold injury to the cerebral primary motor cortex of rats. Agmatine was administered 30 min after injury and once daily until the end of the experiment. Animals were sacrificed for analysis at 1, 2, or 7 days after the injury. Various neurological analyses were performed to investigate disruption of the blood-brain barrier (BBB) and neurological dysfunction after TBI. To examine the extent of brain edema after TBI, the expression of aquaporins (AQPs), phosphorylation of mitogen-activated protein kinases (MAPKs), and nuclear translocation of nuclear factor-κB (NF-κB) were investigated. Our findings demonstrated that agmatine treatment significantly reduces brain edema after TBI by suppressing the expression of AQP1, 4, and 9. In addition, agmatine treatment significantly reduced apoptotic cell death by suppressing the phosphorylation of MAPKs and by increasing the nuclear translocation of NF-κB after TBI. These results suggest that agmatine treatment may have therapeutic potential for brain edema and neural cell death in various central nervous system diseases.

  9. CONTRAST STUDY ON CT AND BA IN DIAGNOSIS OF PATIENTS WITH ATHEROTHROMBOTIC BRAIN INFARCTION

    Institute of Scientific and Technical Information of China (English)

    Mingshun Liu; Haixiang Gao; Xiaomei Fu; Po Ma

    2007-01-01

    Objectives: To explore applied value on CT and BA in diagnosis of patients with atherothrombotic brain infarction. Methods:CT and BA were examined in 246 patients with atherothrombotic brain infarction. Results:The different change of CT and BA were showed in 246 patients with atherothrombotic brain infarction. Conclusions: There were separately different advantage and shortcoming in CT and BA in diagnosis of atherothrombotic brain infarction. The value of clinical application of BA was important in diagnosis of atherothrombotic brain infarction.

  10. Emerging imaging tools for use with traumatic brain injury research.

    Science.gov (United States)

    Hunter, Jill V; Wilde, Elisabeth A; Tong, Karen A; Holshouser, Barbara A

    2012-03-01

    This article identifies emerging neuroimaging measures considered by the inter-agency Pediatric Traumatic Brain Injury (TBI) Neuroimaging Workgroup. This article attempts to address some of the potential uses of more advanced forms of imaging in TBI as well as highlight some of the current considerations and unresolved challenges of using them. We summarize emerging elements likely to gain more widespread use in the coming years, because of 1) their utility in diagnosis, prognosis, and understanding the natural course of degeneration or recovery following TBI, and potential for evaluating treatment strategies; 2) the ability of many centers to acquire these data with scanners and equipment that are readily available in existing clinical and research settings; and 3) advances in software that provide more automated, readily available, and cost-effective analysis methods for large scale data image analysis. These include multi-slice CT, volumetric MRI analysis, susceptibility-weighted imaging (SWI), diffusion tensor imaging (DTI), magnetization transfer imaging (MTI), arterial spin tag labeling (ASL), functional MRI (fMRI), including resting state and connectivity MRI, MR spectroscopy (MRS), and hyperpolarization scanning. However, we also include brief introductions to other specialized forms of advanced imaging that currently do require specialized equipment, for example, single photon emission computed tomography (SPECT), positron emission tomography (PET), encephalography (EEG), and magnetoencephalography (MEG)/magnetic source imaging (MSI). Finally, we identify some of the challenges that users of the emerging imaging CDEs may wish to consider, including quality control, performing multi-site and longitudinal imaging studies, and MR scanning in infants and children.

  11. Reintegrating Troops with Mild Traumatic Brain Injury (mTBI) into their Communities: Understanding the Scope and Timeline of Post-Deployment Driving Problems

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-08-2-0196 TITLE: Reintegrating Troops with Mild Traumatic Brain Injury (mTBI) into Their Communities: Understanding the...REPORT TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Reintegrating troops with mild traumatic brain injury...n=6), TBI (n=12), PTSD (n=7), and dual diagnosis (TBI/PTSD) n=19. Additional comparisons were made between 28 Family /Friends matched to their SMs

  12. Multiscale CNNs for Brain Tumor Segmentation and Diagnosis

    Directory of Open Access Journals (Sweden)

    Liya Zhao

    2016-01-01

    Full Text Available Early brain tumor detection and diagnosis are critical to clinics. Thus segmentation of focused tumor area needs to be accurate, efficient, and robust. In this paper, we propose an automatic brain tumor segmentation method based on Convolutional Neural Networks (CNNs. Traditional CNNs focus only on local features and ignore global region features, which are both important for pixel classification and recognition. Besides, brain tumor can appear in any place of the brain and be any size and shape in patients. We design a three-stream framework named as multiscale CNNs which could automatically detect the optimum top-three scales of the image sizes and combine information from different scales of the regions around that pixel. Datasets provided by Multimodal Brain Tumor Image Segmentation Benchmark (BRATS organized by MICCAI 2013 are utilized for both training and testing. The designed multiscale CNNs framework also combines multimodal features from T1, T1-enhanced, T2, and FLAIR MRI images. By comparison with traditional CNNs and the best two methods in BRATS 2012 and 2013, our framework shows advances in brain tumor segmentation accuracy and robustness.

  13. Multiscale CNNs for Brain Tumor Segmentation and Diagnosis.

    Science.gov (United States)

    Zhao, Liya; Jia, Kebin

    2016-01-01

    Early brain tumor detection and diagnosis are critical to clinics. Thus segmentation of focused tumor area needs to be accurate, efficient, and robust. In this paper, we propose an automatic brain tumor segmentation method based on Convolutional Neural Networks (CNNs). Traditional CNNs focus only on local features and ignore global region features, which are both important for pixel classification and recognition. Besides, brain tumor can appear in any place of the brain and be any size and shape in patients. We design a three-stream framework named as multiscale CNNs which could automatically detect the optimum top-three scales of the image sizes and combine information from different scales of the regions around that pixel. Datasets provided by Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized by MICCAI 2013 are utilized for both training and testing. The designed multiscale CNNs framework also combines multimodal features from T1, T1-enhanced, T2, and FLAIR MRI images. By comparison with traditional CNNs and the best two methods in BRATS 2012 and 2013, our framework shows advances in brain tumor segmentation accuracy and robustness.

  14. Experimental Traumatic Brain Injury Induces Bone Loss in Rats.

    Science.gov (United States)

    Brady, Rhys D; Shultz, Sandy R; Sun, Mujun; Romano, Tania; van der Poel, Chris; Wright, David K; Wark, John D; O'Brien, Terence J; Grills, Brian L; McDonald, Stuart J

    2016-12-01

    Few studies have investigated the influence of traumatic brain injury (TBI) on bone homeostasis; however, pathophysiological mechanisms involved in TBI have potential to be detrimental to bone. The current study assessed the effect of experimental TBI in rats on the quantity and quality of two different weight-bearing bones, the femur and humerus. Rats were randomly assigned into either sham or lateral fluid percussion injury (FPI) groups. Open-field testing to assess locomotion was conducted at 1, 4, and 12 weeks post-injury, with the rats killed at 1 and 12 weeks post-injury. Bones were analyzed using peripheral quantitative computed tomography (pQCT), histomorphometric analysis, and three-point bending. pQCT analysis revealed that at 1 and 12 weeks post-injury, the distal metaphyseal region of femora from FPI rats had reduced cortical content (10% decrease at 1 week, 8% decrease at 12 weeks; p in trabecular bone volume ratio at 1 week post-injury and a 27% reduction at 12 weeks post-injury in FPI rats compared to sham (p in bone quantity and mechanical properties of the femoral midshaft between sham and TBI animals. There were no differences in locomotor outcomes, which suggested that post-TBI changes in bone were not attributed to immobility. Taken together, these findings indicate that this rat model of TBI was detrimental to bone and suggests a link between TBI and altered bone remodeling.

  15. MICROGLIA ACTIVATION AS A BIOMARKER FOR TRAUMATIC BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    Diana G Hernadez-Ontiveros

    2013-03-01

    Full Text Available Traumatic brain injury (TBI has become the signature wound of wars in Afghanistan and Iraq. Injury may result from a mechanical force, a rapid acceleration-deceleration movement, or a blast wave. A cascade of secondary cell death events ensues after the initial injury. In particular, multiple inflammatory responses accompany TBI. A series of inflammatory cytokines and chemokines spreads to normal brain areas juxtaposed to the core impacted tissue. Among the repertoire of immune cells involved, microglia is a key player in propagating inflammation to tissues neighboring the core site of injury. Neuroprotective drug trials in TBI have failed, likely due to their sole focus on abrogating neuronal cell death and ignoring the microglia response despite these inflammatory cells’ detrimental effects on the brain. Another relevant point to consider is the veracity of results of animal experiments due to deficiencies in experimental design, such as incomplete or inadequate method description, data misinterpretation and reporting may introduce bias and give false-positive results. Thus, scientific publications should follow strict guidelines that include randomization, blinding, sample-size estimation and accurate handling of all data (Landis et al., 2012. A prolonged state of inflammation after brain injury may linger for years and predispose patients to develop other neurological disorders, such as Alzheimer’s disease. TBI patients display progressive and long-lasting impairments in their physical, cognitive, behavioral, and social performance. Here, we discuss inflammatory mechanisms that accompany TBI in an effort to increase our understanding of the dynamic pathological condition as the disease evolves over time and begin to translate these findings for defining new and existing inflammation-based biomarkers and treatments for TBI.

  16. Misconceptions about traumatic brain injuries among South African university students

    Directory of Open Access Journals (Sweden)

    Chrisma Pretorius

    2013-08-01

    Full Text Available Objective. To investigate the incidence and type of misconceptions about traumatic brain injuries (TBIs harboured by university students.  Method. A convenience sample of 705 university students were recruited and data were collected using an electronic survey. The link to the survey was sent via e-mail to all registered students at Stellenbosch University. The participants had to complete the Common Misconceptions about Traumatic Brain Injury (CM-TBI questionnaire.  Results. The findings of this study suggest that the students subscribe to misconceptions from each of the 7 categories of misconceptions about TBIs. The mean percentages of misconceptions about TBIs were calculated and the amnesia (mean 49.7% and unconsciousness (mean 46.1% categories were identified as the categories about which the respondents had the most misconceptions, while the mean percentages of misconceptions were lower for the categories of recovery (mean 27.6%, rehabilitation (mean 26.56%, prevention (mean 20.8%, brain injury sequelae (mean 18.7% and brain damage (mean 8.4%.  Conclusion. Generally, these findings appear to be in keeping with previous literature, which suggests that misconceptions about TBIs are common among the general population. This study’s identification of these misconceptions could help create awareness, provide a focus for information provision, and contribute to the development of educational intervention programmes tailored for the South African context.

  17. Systemic progesterone for modulating electrocautery-induced secondary brain injury.

    Science.gov (United States)

    Un, Ka Chun; Wang, Yue Chun; Wu, Wutian; Leung, Gilberto Ka Kit

    2013-09-01

    Bipolar electrocautery is an effective and commonly used haemostatic technique but it may also cause iatrogenic brain trauma due to thermal injury and secondary inflammatory reactions. Progesterone has anti-inflammatory and neuroprotective actions in traumatic brain injury. However, its potential use in preventing iatrogenic brain trauma has not been explored. We conducted a pilot animal study to investigate the effect of systemic progesterone on brain cellular responses to electrocautery-induced injury. Adult male Sprague-Dawley rats received standardized bipolar electrocautery (40 W for 2 seconds) over the right cerebral cortex. The treatment group received progesterone intraperitoneally 2 hours prior to surgery; the control group received the drug vehicle only. Immunohistochemical studies showed that progesterone could significantly reduce astrocytic hypertrophy on postoperative day 1, 3 and 7, as well as macrophage infiltration on day 3. The number of astrocytes, however, was unaffected. Our findings suggest that progesterone should be further explored as a neuroprotective agent against electrocautery-induced or other forms of iatrogenic trauma during routine neurosurgical procedures. Future studies may focus on different dosing regimens, neuronal survival, functional outcome, and to compare progesterone with other agents such as dexamethasone. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Reduced brain/serum glucose ratios predict cerebral metabolic distress and mortality after severe brain injury.

    Science.gov (United States)

    Kurtz, Pedro; Claassen, Jan; Schmidt, J Michael; Helbok, Raimund; Hanafy, Khalid A; Presciutti, Mary; Lantigua, Hector; Connolly, E Sander; Lee, Kiwon; Badjatia, Neeraj; Mayer, Stephan A

    2013-12-01

    The brain is dependent on glucose to meet its energy demands. We sought to evaluate the potential importance of impaired glucose transport by assessing the relationship between brain/serum glucose ratios, cerebral metabolic distress, and mortality after severe brain injury. We studied 46 consecutive comatose patients with subarachnoid or intracerebral hemorrhage, traumatic brain injury, or cardiac arrest who underwent cerebral microdialysis and intracranial pressure monitoring. Continuous insulin infusion was used to maintain target serum glucose levels of 80-120 mg/dL (4.4-6.7 mmol/L). General linear models of logistic function utilizing generalized estimating equations were used to relate predictors of cerebral metabolic distress (defined as a lactate/pyruvate ratio [LPR] ≥ 40) and mortality. A total of 5,187 neuromonitoring hours over 300 days were analyzed. Mean serum glucose was 133 mg/dL (7.4 mmol/L). The median brain/serum glucose ratio, calculated hourly, was substantially lower (0.12) than the expected normal ratio of 0.40 (brain 2.0 and serum 5.0 mmol/L). In addition to low cerebral perfusion pressure (P = 0.05) and baseline Glasgow Coma Scale score (P brain/serum glucose ratios below the median of 0.12 were independently associated with an increased risk of metabolic distress (adjusted OR = 1.4 [1.2-1.7], P brain/serum glucose ratios were also independently associated with in-hospital mortality (adjusted OR = 6.7 [1.2-38.9], P brain/serum glucose ratios, consistent with impaired glucose transport across the blood brain barrier, are associated with cerebral metabolic distress and increased mortality after severe brain injury.

  19. Diverging volumetric trajectories following pediatric traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Emily L. Dennis

    2017-01-01

    Full Text Available Traumatic brain injury (TBI is a significant public health concern, and can be especially disruptive in children, derailing on-going neuronal maturation in periods critical for cognitive development. There is considerable heterogeneity in post-injury outcomes, only partially explained by injury severity. Understanding the time course of recovery, and what factors may delay or promote recovery, will aid clinicians in decision-making and provide avenues for future mechanism-based therapeutics. We examined regional changes in brain volume in a pediatric/adolescent moderate-severe TBI (msTBI cohort, assessed at two time points. Children were first assessed 2–5 months post-injury, and again 12 months later. We used tensor-based morphometry (TBM to localize longitudinal volume expansion and reduction. We studied 21 msTBI patients (5 F, 8–18 years old and 26 well-matched healthy control children, also assessed twice over the same interval. In a prior paper, we identified a subgroup of msTBI patients, based on interhemispheric transfer time (IHTT, with significant structural disruption of the white matter (WM at 2–5 months post injury. We investigated how this subgroup (TBI-slow, N = 11 differed in longitudinal regional volume changes from msTBI patients (TBI-normal, N = 10 with normal WM structure and function. The TBI-slow group had longitudinal decreases in brain volume in several WM clusters, including the corpus callosum and hypothalamus, while the TBI-normal group showed increased volume in WM areas. Our results show prolonged atrophy of the WM over the first 18 months post-injury in the TBI-slow group. The TBI-normal group shows a different pattern that could indicate a return to a healthy trajectory.

  20. Home environment, brain injury, & school performance in LBW survivors.

    Science.gov (United States)

    Mahoney, Ashley Darcy; Pinto-Martin, Jennifer; Hanlon, Alexandra

    2014-01-01

    There has been substantial research on low birthweight (LBW) as a predictor of adverse educational and cognitive outcomes. LBW infants perform worse on cognitive battery tests compared to children born at normal birthweight; however, children exposed to similar risks do not all share the same experiences. The complex, interrelated factors responsible for poor cognitive and achievement performance vary for different populations, but researchers hypothesize that the home environment may influence the infants' long-term health outcomes. Examine the home environment as a moderator in the causal pathway from neonatal brain injury to school performance in a secondary analysis of a prospectively studied, geographically defined cohort from the Neonatal Brain Hemorrhage Study. The secondary analysis sample included 543 infants with birthweights of 501 to 2,000 g who were born consecutively in three community hospitals in New Jersey between 1984 and 1986. School performance at age 9 was measured by the Woodcock-Johnson Tests of Achievement. The home environment variables were tested and analyzed using multistep hierarchical regression modeling. A moderating effect between the variable neighborhood observations and brain injury was demonstrated for the outcome math score. The moderating relationship was found in the category of children without brain injury (β = 1.76, p = .005). There were statistically significant and potentially clinical meaningful models when looking at the home environmental variables as they relate to reading and math scores. The findings suggest that at least one variable within a LBW child's socio-environmental milieu can moderate the effects of perinatal brain injury on school performance outcomes.

  1. Multi-signal Visualization of Physiology (MVP): a novel visualization dashboard for physiological monitoring of Traumatic Brain Injury patients.

    Science.gov (United States)

    Sebastian, Kevin; Sari, Vivian; Loy, Liang Yu; Zhang, Feng; Zhang, Zhuo; Feng, Mengling

    2012-01-01

    To prevent Traumatic Brain Injury (TBI) patients from secondary brain injuries, patients' physiological readings are continuously monitored. However, the visualization dashboards of most existing monitoring devices cannot effectively present all physiological information of TBI patients and are also ineffective in facilitating neuro-clinicians for fast and accurate diagnosis. To address these shortcomings, we proposed a new visualization dashboard, namely the Multi-signal Visualization of Physiology (MVP). MVP makes use of multi-signal polygram to collate various physiological signals, and it also utilizes colors and the concept of "safe/danger zones" to assist neuro-clinicians to achieve fast and accurate diagnosis. Moreover, MVP allows neuro-clinicians to review historical physiological statuses of TBI patients, which can guide and optimize clinicians' diagnosis and prognosis decisions. The performance of MVP is tested and justified with an actual Philips monitoring device.

  2. Pituitary dysfunction following traumatic brain injury or subarachnoid haemorrhage - in "Endocrine Management in the Intensive Care Unit".

    LENUS (Irish Health Repository)

    Hannon, M J

    2012-02-01

    Traumatic brain injury and subarachnoid haemorrhage are important causes of morbidity and mortality in the developed world. There is a large body of evidence that demonstrates that both conditions may adversely affect pituitary function in both the acute and chronic phases of recovery. Diagnosis of hypopituitarism and accurate treatment of pituitary disorders offers the opportunity to improve mortality and outcome in both traumatic brain injury and subarachnoid haemorrhage. In this article, we will review the history and pathophysiology of pituitary function in the acute phase following traumatic brain injury and subarachnoid haemorrhage, and we will discuss in detail three key aspects of pituitary dysfunction which occur in the early course of TBI; acute cortisol deficiency, diabetes insipidus and SIAD.

  3. Neutrophils in traumatic brain injury (TBI): friend or foe?

    Science.gov (United States)

    Liu, Yang-Wuyue; Li, Song; Dai, Shuang-Shuang

    2018-05-17

    Our knowledge of the pathophysiology about traumatic brain injury (TBI) is still limited. Neutrophils, as the most abundant leukocytes in circulation and the first-line transmigrated immune cells at the sites of injury, are highly involved in the initiation, development, and recovery of TBI. Nonetheless, our understanding about neutrophils in TBI is obsolete, and mounting evidences from recent studies have challenged the conventional views. This review summarizes what is known about the relationships between neutrophils and pathophysiology of TBI. In addition, discussions are made on the complex roles as well as the controversial views of neutrophils in TBI.

  4. Neurobehavioral Effects of Levetiracetam in Patients with Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Jared F Benge

    2013-12-01

    Full Text Available Moderate to severe traumatic brain injury (TBI is one of the leading causes of acquired epilepsy. Prophylaxis for seizures is the standard of care for individuals with moderate to severe injuries at risk for developing seizures, though relatively limited comparative data is available to guide clinicians in their choice of agents. There have however been experimental studies which demonstrate potential neuroprotective qualities of levetiracetam after TBI, and in turn there is hope that eventually such agents may improve neurobehavioral outcomes post-TBI. This mini-review summarizes the available studies and suggests areas for future studies.

  5. Surgical management of traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Vidgeon, Steven; Strong, Anthony J

    2014-01-01

    in the treatment of TBI at 2 academic medical centers to document variations in real-world practice and evaluate the efficacies of different approaches on postsurgical course and long-term outcome. METHODS: Patients 18 years of age or older who required neurosurgical lesion evacuation or decompression for TBI were...... monitoring of spreading depolarizations; injury characteristics, physiological monitoring data, and 6-month outcomes were collected prospectively. CT scans and medical records were reviewed retrospectively to determine lesion characteristics, surgical indications, and procedures performed. RESULTS: Patients......%-52%), signs of mass effect (midline shift ≥ 5 mm: 43%-52%), and preoperative intracranial pressure (ICP). At VCU, however, surgeries were performed earlier (median 0.51 vs 0.83 days posttrauma, p performed...

  6. Radiation diagnosis of pelvic ring damages in acute injury

    International Nuclear Information System (INIS)

    Dytalov, M.M.

    2000-01-01

    Data on 58 victims with multifocal damages to the pelvic ring were used to examine the diagnostic potentialities of different radiation diagnostic techniques and to compare their resolving power. The later was 65.1, 83.3 and 94.7% in plain and multidimensional X-ray studies, and computed tomography, respectively. Complex of signs is described closed sacral fractures on the plain and oblique pelvic inlet (caudal) radiograms proposed, which could improve the diagnosis of fractures by 8.8 times, and an original orthopedic gauze-plate for the detection and estimation of invisible pelvic bone displacement, and an original procedure for pelvic X-ray study with target load in acute injury. This all can improve the quality of examination of casualties substantially and define indications for different treatments more precise [ru

  7. MRI patterns in prolonged low response states following traumatic brain injury in children and adolescents.

    Science.gov (United States)

    Patrick, Peter D; Mabry, Jennifer L; Gurka, Matthew J; Buck, Marcia L; Boatwright, Evelyn; Blackman, James A

    2007-01-01

    To explore the relationship between location and pattern of brain injury identified on MRI and prolonged low response state in children post-traumatic brain injury (TBI). This observational study compared 15 children who spontaneously recovered within 30 days post-TBI to 17 who remained in a prolonged low response state. 92.9% of children with brain stem injury were in the low response group. The predicted probability was 0.81 for brain stem injury alone, increasing to 0.95 with a regional pattern of injury to the brain stem, basal ganglia, and thalamus. Low response state in children post-TBI is strongly correlated with two distinctive regions of injury: the brain stem alone, and an injury pattern to the brain stem, basal ganglia, and thalamus. This study demonstrates the need for large-scale clinical studies using MRI as a tool for outcome assessment in children and adolescents following severe TBI.

  8. Brain Cholinergic Function and Response to Rivastigmine in Patients With Chronic Sequels of Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Östberg, Anna; Virta, Jere; Rinne, Juha O

    2018-01-01

    subjects for more than 1 year after at least moderate traumatic brain injury. Ten of the subjects were respondents and 7 nonrespondents to cholinergic medication. DESIGN:: Cholinergic function was assessed with [methyl-C] N-methylpiperidyl-4-acetate-PET (C-MP4A-PET), which reflects the activity...... was notably lower throughout the cortex in both respondents and nonrespondents, without significant differences between them. CONCLUSION:: Our study suggests that frontal cholinergic dysfunction is associated with the clinical response to cholinergic stimulation in patients with traumatic brain injury....

  9. Facilitated assessment of tissue loss following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anders eHånell

    2012-03-01

    Full Text Available All experimental models of traumatic brain injury (TBI result in a progressive loss of brain tissue. The extent of tissue loss reflects the injury severity and can be measured to evaluate the potential neuroprotective effect of experimental treatments. Quantitation of tissue volumes is commonly performed using evenly spaced brain sections stained using routine histochemical methods and digitally captured. The brain tissue areas are then measured and the corresponding volumes are calculated using the distance between the sections. Measurements of areas are usually performed using a general purpose image analysis software and the results are then transferred to another program for volume calculations. To facilitate the measurement of brain tissue loss we developed novel algorithms which automatically separate the areas of brain tissue from the surrounding image background and identify the ventricles. We implemented these new algorithms by creating a new computer program (SectionToVolume which also has functions for image organization, image adjustments and volume calculations. We analyzed brain sections from mice subjected to severe focal TBI using both SectionToVolume and ImageJ, a commonly used image analysis program. The volume measurements made by the two programs were highly correlated and analysis using SectionToVolume required considerably less time. The inter-rater reliability was high. Given the extensive use of brain tissue loss measurements in TBI research, SectionToVolume will likely be a useful tool for TBI research. We therefore provide both the source code and the program as attachments to this article.

  10. Environmental Enrichment Mitigates Deficits after Repetitive Mild Traumatic Brain Injury.

    Science.gov (United States)

    Liu, Xixia; Qiu, Jianhua; Alcon, Sasha; Hashim, Jumana; Meehan, William P; Mannix, Rebekah

    2017-08-15

    Although environmental enrichment has been shown to improve functional and histologic outcomes in pre-clinical moderate-to-severe traumatic brain injury (TBI), there are a paucity of pre-clinical data regarding enrichment strategies in the setting of repetitive mild traumatic brain injury (rmTBI). Given the vast numbers of athletes and those in the military who sustain rmTBI, the mounting evidence of the long-term and progressive sequelae of rmTBI, and the lack of targeted therapies to mitigate these sequelae, successful enrichment interventions in rmTBI could have large public health significance. Here, we evaluated enrichment strategies in an established pre-clinical rmTBI model. Seventy-one male C57BL/6 mice were randomized to two different housing conditions, environmental enrichment (EE) or normal condition (NC), then subjected to rmTBI injury (seven injuries in 9 days) or sham injury (anesthesia only). Functional outcomes in all four groups (NC-TBI, EE-TBI, NC-sham, and EE-sham) were assessed by motor, exploratory/anxiety, and mnemonic behavioral tests. At the synaptic level, N-methyl d-aspartate receptor (NMDAR) subunit expression of phosphorylated glutamate receptor 1 (GluR1), phosphorylated Ca 2+ /calmodulin-dependent protein kinase II (CaMKII), and calpain were evaluated by western blot. Compared to injured NC-TBI mice, EE-TBI mice had improved memory and decreased anxiety and exploratory activity post-injury. Treatment with enrichment also corresponded to normal NMDAR subunit expression, decreased GluR1 phosphorylation, decreased phosphorylated CaMKII, and normal calpain expression post-rmTBI. These data suggest that enrichment strategies may improve functional outcomes and mitigate synaptic changes post-rmTBI. Given that enrichment strategies are feasible in the clinical setting, particularly for athletes and soldiers for whom the risk of repetitive injury is greatest, these data suggest that clinical trials may be warranted.

  11. Incidence of Traumatic Brain Injury Across the Full Disease Spectrum: A Population-Based Medical Record Review Study

    Science.gov (United States)

    Leibson, Cynthia L.; Brown, Allen W.; Ransom, Jeanine E.; Diehl, Nancy N.; Perkins, Patricia K.; Mandrekar, Jay; Malec, James F.

    2012-01-01

    Background Extremely few objective estimates of traumatic brain injury incidence include all ages, both sexes, all injury mechanisms, and the full spectrum from very mild to fatal events. Methods We used unique Rochester Epidemiology Project medical records-linkage resources, including highly sensitive and specific diagnostic coding, to identify all Olmsted County, MN, residents with diagnoses suggestive of traumatic brain injury regardless of age, setting, insurance, or injury mechanism. Provider-linked medical records for a 16% random sample were reviewed for confirmation as definite, probable, possible (symptomatic), or no traumatic brain injury. We estimated incidence per 100,000 person-years for 1987–2000 and compared these record-review rates with rates obtained using Centers for Disease Control and Prevention (CDC) data-systems approach. For the latter, we identified all Olmsted County residents with any CDC-specified diagnosis codes recorded on hospital/emergency department administrative claims or death certificates 1987–2000. Results Of sampled individuals, 1257 met record-review criteria for incident traumatic brain injury; 56% were ages 16–64 years, 56% were male, 53% were symptomatic. Mechanism, sex, and diagnostic certainty differed by age. The incidence rate per 100,000 person-years was 558 (95% confidence interval = 528–590) versus 341 (331–350) using the CDC data system approach. The CDC approach captured only 40% of record-review cases. Seventy-four percent of missing cases presented to hospital/emergency department; none had CDC-specified codes assigned on hospital/emergency department administrative claims or death certificates; 66% were symptomatic. Conclusions Capture of symptomatic traumatic brain injuries requires a wider range of diagnosis codes, plus sampling strategies to avoid high rates of false-positive events. PMID:21968774

  12. Diagnostic terminology is not associated with contact-sport players' expectations of outcome from mild traumatic brain injury.

    Science.gov (United States)

    Edmed, Shannon L; Sullivan, Karen A

    2015-01-01

    To investigate the influence of the diagnostic terms 'concussion' and 'mild traumatic brain injury' (mTBI) on contact-sport players' injury perceptions and expected symptoms from a sport-related mTBI. It was hypothesized that contact-sport players would hold more negative injury perceptions and expect greater symptom disturbance from a sport-related injury that was diagnosed as an 'mTBI' compared to 'concussion' or an undiagnosed injury. One hundred and twenty-two contact-sport players were randomly allocated to one of three conditions in which they read a sport-related mTBI vignette that varied only according to whether the person depicted in the vignette was diagnosed with concussion (n = 40), mTBI (n = 41) or received no diagnosis (control condition; n = 41). After reading the vignette, participants rated their injury perceptions (perceived undesirability, chronicity and consequences) and expectations of post-concussion syndrome (PCS) and post-traumatic stress disorder (PTSD) symptoms 6 months post-injury. There were no significant differences in contact-sport players' injury perceptions or symptom expectations from a sport-related mTBI when it was diagnosed as an mTBI, concussion or when no diagnosis was given. Diagnostic terminology does not appear to have a potent influence on symptom expectation and injury perceptions in contact-sport players.

  13. Electrical bioimpedance enabling prompt intervention in traumatic brain injury

    Science.gov (United States)

    Seoane, Fernando; Atefi, S. Reza

    2017-05-01

    Electrical Bioimpedance (EBI) is a well spread technology used in clinical practice across the world. Advancements in Textile material technology with conductive textile fabrics and textile-electronics integration have allowed exploring potential applications for Wearable Measurement Sensors and Systems exploiting. The sensing principle of electrical bioimpedance is based on the intrinsic passive dielectric properties of biological tissue. Using a pair of electrodes, tissue is electrically stimulated and the electrical response can be sensed with another pair of surface electrodes. EBI spectroscopy application for cerebral monitoring of neurological conditions such as stroke and perinatal asphyxia in newborns have been justified using animal studies and computational simulations. Such studies have shown proof of principle that neurological pathologies indeed modify the dielectric composition of the brain that is detectable via EBI. Similar to stroke, Traumatic Brain Injury (TBI) also affects the dielectric properties of brain tissue that can be detected via EBI measurements. Considering the portable and noninvasive characteristics of EBI it is potentially useful for prehospital triage of TBI patients where. In the battlefield blast induced Traumatic Brain Injuries are very common. Brain damage must be assessed promptly to have a chance to prevent severe damage or eventually death. The relatively low-complexity of the sensing hardware required for EBI sensing and the already proven compatibility with textile electrodes suggest the EBI technology is indeed a candidate for developing a handheld device equipped with a sensorized textile cap to produce an examination in minutes for enabling medically-guided prompt intervention.

  14. Computed tomography in diagnosis of diffuse axonal injury

    International Nuclear Information System (INIS)

    Iwadate, Yasuo; Ono, Juniti; Okimura, Yoshitaka; Suda, Sumio; Isobe, Katsumi; Yamaura, Akira.

    1990-01-01

    Diffuse axonal injury (DAI) has been described in instances of prolonged traumatic coma on the basis of the neuropathological findings, but the same findings are also found in patients with cerebral concussion. Experimental studies confirm that the quality of survivors following trauma is directly proportional to the amount of primarily injured-axon. When the injured axon lies in a widespread area of the brain, outcome for the patient is always poor. In a series of 260 severely head-injured patients, based on their poor outcome, 69 (27%) were diagnosed as DAI. Because of their relatively good outcome, eighty-two patients (32%) were classified into non-DAI group. The predominant CT finding of DAI patients was intraparenchymal deep-seated hemorrhagic lesion. This was observed in 28 patients (41%). Normal CT was also observed in 11 patients (16%). On the other hand, 8 of the non-DAI group (10%) manifested deep-seated lesions. Diffuse cerebral swelling (DCS) appeared in both groups in the same incidence. Subarachnoid hematoma in the perimesencephalic cistern (SAH (PMC)) and intraventricular hematoma (IVH) were observed in 64% of the DAI group, and in 23% of the non-DAI group. The available evidence indicates that various types of hematoma seen in the deep-seated structures of the brain do not have an absolute diagnostic value, but the frequency of hematoma is thought to increase in proportion to the amount of injured-axon. (author)

  15. Brain Injury Lesion Imaging Using Preconditioned Quantitative Susceptibility Mapping without Skull Stripping.

    Science.gov (United States)

    Soman, S; Liu, Z; Kim, G; Nemec, U; Holdsworth, S J; Main, K; Lee, B; Kolakowsky-Hayner, S; Selim, M; Furst, A J; Massaband, P; Yesavage, J; Adamson, M M; Spincemallie, P; Moseley, M; Wang, Y

    2018-04-01

    Identifying cerebral microhemorrhage burden can aid in the diagnosis and management of traumatic brain injury, stroke, hypertension, and cerebral amyloid angiopathy. MR imaging susceptibility-based methods are more sensitive than CT for detecting cerebral microhemorrhage, but methods other than quantitative susceptibility mapping provide results that vary with field strength and TE, require additional phase maps to distinguish blood from calcification, and depict cerebral microhemorrhages as bloom artifacts. Quantitative susceptibility mapping provides universal quantification of tissue magnetic property without these constraints but traditionally requires a mask generated by skull-stripping, which can pose challenges at tissue interphases. We evaluated the preconditioned quantitative susceptibility mapping MR imaging method, which does not require skull-stripping, for improved depiction of brain parenchyma and pathology. Fifty-six subjects underwent brain MR imaging with a 3D multiecho gradient recalled echo acquisition. Mask-based quantitative susceptibility mapping images were created using a commonly used mask-based quantitative susceptibility mapping method, and preconditioned quantitative susceptibility images were made using precondition-based total field inversion. All images were reviewed by a neuroradiologist and a radiology resident. Ten subjects (18%), all with traumatic brain injury, demonstrated blood products on 3D gradient recalled echo imaging. All lesions were visible on preconditioned quantitative susceptibility mapping, while 6 were not visible on mask-based quantitative susceptibility mapping. Thirty-one subjects (55%) demonstrated brain parenchyma and/or lesions that were visible on preconditioned quantitative susceptibility mapping but not on mask-based quantitative susceptibility mapping. Six subjects (11%) demonstrated pons artifacts on preconditioned quantitative susceptibility mapping and mask-based quantitative susceptibility mapping

  16. Impact of Posttraumatic Stress Disorder and Injury Severity on Recovery in Children with Traumatic Brain Injury

    Science.gov (United States)

    Kenardy, Justin; Le Brocque, Robyne; Hendrikz, Joan; Iselin, Greg; Anderson, Vicki; McKinlay, Lynne

    2012-01-01

    The adverse impact on recovery of posttraumatic stress disorder (PTSD) in mild traumatic brain injury (TBI) has been demonstrated in returned veterans. The study assessed this effect in children's health outcomes following TBI and extended previous work by including a full range of TBI severity, and improved assessment of PTSD within a…

  17. Invisible Injuries: The Experiences of College Students with Histories of Mild Traumatic Brain Injury

    Science.gov (United States)

    Childers, Carrie; Hux, Karen

    2016-01-01

    This qualitative study explored the college life phenomenon as experienced by students with mild traumatic brain injury (MTBI). Previous research about such students has focused on topics including study strategy use, access of support services, and insights from caregivers or instructors. However, little attention has been paid to the perceptions…

  18. Relationship between changes of N-methyl-D-aspartate receptor activity and brain edema after brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the relationship between the changes of N-methyl-D-aspartate (NMDA) receptor activity and brain edema after injury in rats.   Methods: The brain injury models were made by using a free-falling body. The treatment model was induced by means of injecting AP5 into lateral ventricle before brain injury; water contents in brain cortex were measured with dry-wet method; and NMDA receptor activity was detected with a radio ligand binding assay.   Results: The water contents began to increase at 30 minutes and reached the peak at 6 hours after brain injury. The maximal binding (Bmax) of NMDA receptor increased significantly at 15 minutes and reached the peak at 30 minutes, then decreased gradually and had the lowest value 6 hours after brain injury. Followed the treatment with AP5, NMDA receptor activity in the injured brain showed a normal value; and the water contents were lower than that of AP5-free injury group 24 hours after brain injury.   Conclusions: It suggests that excessive activation of NMDA receptor may be one of the most important factors to induce the secondary cerebral impairments, and AP5 may protect the brain from edema after brain injury.

  19. Incidence and mortality of acquired brain injury in young Danish adults between 1994 and 2013

    DEFF Research Database (Denmark)

    Tibæk, Maiken; Forchhammer, Hysse Birgitte; Dehlendorff, Christian

    2017-01-01

    identified in the Danish National Patient Register. Incidence rates (IRs) and estimated annual percentage changes (EAPC) were estimated by Poisson regression. Mortality was estimated by the Kaplan–Meier estimator and adjusted hazard ratios (aHR) were computed using Cox regression with 1994–1998. Results......Background: We estimated the annually incidence and mortality of acquired brain injury (ABI) in people aged 15–30 years during 1994–2013. Methods: All Danes with a first-ever hospital diagnosis of ABI, including traumatic brain injury (TBI), encephalopathy, CNS-infection or brain tumour, were......: A total of 10,542 individuals were hospitalized with a first-time diagnosis of ABI. The IR for ABI decreased from 63.36 to 33.91/100,000 person-years from 1994 to 2013 [EAPC: −2.78% (95% CI: −3.26 to −2.28)] mainly driven by a decreasing IR of TBI [EAPC: −6.53% (95% CI: –9.57 to –3.39)] during 2007...

  20. Factors contributing to outcome following traumatic brain injury.

    Science.gov (United States)

    Ponsford, Jennie

    2013-01-01

    Traumatic brain injury results in some distinctive patterns of cognitive, behavioural and physical impairment which impact significantly on independent living skills and participation in work or study, social and leisure activities and interpersonal relationships. There is, however, still considerable variability in outcome across individuals in each of the reported domains. This has led to a significant body of research examining factors associated with outcome. A range of injury-related, personal and social factors have been shown to influence survival, as well as cognitive, functional and employment outcome. This paper reviews the factors associated with each of these aspects of outcome specifically injury-related factors, including neuroimaging findings, GCS and PTA, other injuries, and cognitive and behavioural impairments; demographic factors, including age, gender, genetic status, education, pre-injury IQ and employment status; and social factors including family and other social support, cultural factors, pre-injury psychiatric history and coping style. The paper identifies contributions and complex interrelationships of all of these factors to outcome following TBI. It concludes with a brief discussion of the implications of these factors for the rehabilitation process.

  1. Forensic applications of cerebral single photon emission computed tomography in mild traumatic brain injury.

    Science.gov (United States)

    Wortzel, Hal S; Filley, Christopher M; Anderson, C Alan; Oster, Timothy; Arciniegas, David B

    2008-01-01

    Traumatic brain injury (TBI) is a substantial source of mortality and morbidity world wide. Although most such injuries are relatively mild, accurate diagnosis and prognostication after mild TBI are challenging. These problems are complicated further when considered in medicolegal contexts, particularly civil litigation. Cerebral single photon emission computed tomography (SPECT) may contribute to the evaluation and treatment of persons with mild TBI. Cerebral SPECT is relatively sensitive to the metabolic changes produced by TBI. However, such changes are not specific to this condition, and their presence on cerebral SPECT imaging does not confirm a diagnosis of mild TBI. Conversely, the absence of abnormalities on cerebral SPECT imaging does not exclude a diagnosis of mild TBI, although such findings may be of prognostic value. The literature does not demonstrate consistent relationships between SPECT images and neuropsychological testing or neuropsychiatric symptoms. Using the rules of evidence shaped by Daubert v. Merrell Dow Pharmaceuticals, Inc., and its progeny to analyze the suitability of SPECT for forensic purposes, we suggest that expert testimony regarding SPECT findings should be admissible only as evidence to support clinical history, neuropsychological test results, and structural brain imaging findings and not as stand-alone diagnostic data.

  2. Touch-screen computerized education for patients with brain injuries.

    Science.gov (United States)

    Patyk, M; Gaynor, S; Kelly, J; Ott, V

    1998-01-01

    The use of computer technology for patient education has increased in recent years. This article describes a study that measures the attitudes and perceptions of healthcare professionals and laypeople regarding the effectiveness of a multimedia computer, the Brain Injury Resource Center (BIRC), as an educational tool. The study focused on three major themes: (a) usefulness of the information presented, (b) effectiveness of the multimedia touch-screen computer methodology, and (c) the appropriate time for making this resource available. This prospective study, conducted in an acute care medical center, obtained healthcare professionals' evaluations using a written survey and responses from patients with brain injury and their families during interviews. The findings have yielded excellent ratings as to the ease of understanding and usefulness of the BIRC. By using sight, sound, and touch, such a multimedia learning center has the potential to simplify patient and family education.

  3. Prevalence and Predictors of Personality Change After Severe Brain Injury

    DEFF Research Database (Denmark)

    Norup, Anne; Mortensen, Erik Lykke

    2015-01-01

    of the Medical Outcomes Study 36-Item Short-Form Health Survey. Results Of the sample, 59.1% experienced personality change after acquired brain injury, and the most dominant changes were observed in the personality traits of neuroticism, extraversion, and conscientiousness. Changes in neuroticism were most......Objectives To investigate the prevalence of personality change after severe brain injury; to identify predictors of personality change; and to investigate whether personality change is associated with distress in family members. Design A longitudinal study of personality change. Setting...... often observed in patients with frontal or temporal lesions. Generally, personality changes in patients were not associated with more distress and lower HRQOL in family members; however, change in patient agreeableness was associated with lower HRQOL on the role limitations-emotional scale. Conclusions...

  4. Outcomes in nursing home patients with traumatic brain injury.

    Science.gov (United States)

    Lueckel, Stephanie N; Kosar, Cyrus M; Teno, Joan M; Monaghan, Sean F; Heffernan, Daithi S; Cioffi, William G; Thomas, Kali S

    2018-05-09

    Traumatic brain injury is a leading cause of death and disability in the United States. In survivors, traumatic brain injury remains a leading contributor to long-term disability and results in many patients being admitted to skilled nursing facilities for postacute care. Despite this very large population of traumatic brain injury patients, very little is known about the long-term outcomes of traumatic brain injury survivors, including rates of discharge to home or risk of death in long-term nursing facilities. We hypothesized that patient demographics and functional status influence outcomes of patients with traumatic brain injury admitted to skilled nursing facilities. We conducted a retrospective cohort study of Medicare fee-for-service beneficiaries aged 65 and older discharged alive and directly from hospital to a skilled nursing facility between 2011 and 2014 using the prospectively maintained Federal Minimum Data Set combined with Medicare claims data and the Centers for Medicare and Medicaid Services Vital Status files. Records were reviewed for demographic and clinical characteristics at admission to the skilled nursing facility, including age, sex, cognitive function, ability to communicate, and motor function. Activities of daily living were reassessed at discharge to calculate functional improvement. We used robust Poisson regression with skilled nursing facility fixed effects to calculate relative risks and 99% confidence intervals for mortality and functional improvement associated with the demographic and clinical characteristics present at admission. Linear regression was used to calculate adjusted mean duration of stay. Overall, 87,292 Medicare fee-for-service beneficiaries with traumatic brain injury were admitted to skilled nursing facilities. The mean age was 84 years, with 74% of patients older than age 80. Generally, older age, male sex, and poor cognitive or functional status at admission to a skilled nursing facility were associated with

  5. Acute respiratory distress syndrome assessment after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Shahrooz Kazemi

    2016-01-01

    Full Text Available Background: Acute respiratory distress syndrome (ARDS is one of the most important complications associated with traumatic brain injury (TBI. ARDS is caused by inflammation of the lungs and hypoxic damage with lung physiology abnormalities associated with acute respiratory distress syndrome. Aim of this study is to determine the epidemiology of ARDS and the prevalence of risk factors. Methods: This prospective study performed on patients with acute traumatic head injury hospitalization in the intensive care unit of the Shohaday-e Haftom-e-Tir Hospital (September 2012 to September 2013 done. About 12 months, the data were evaluated. Information including age, sex, education, employment, drug and alcohol addiction, were collected and analyzed. The inclusion criteria were head traumatic patients and exclusion was the patients with chest trauma. Questionnaire was designed with doctors supervision of neurosurgery. Then the collected data were analysis. Results: In this study, the incidence of ARDS was 23.8% and prevalence of metabolic acidosis was 31.4%. Most injury with metabolic acidosis was Subarachnoid hemorrhage (SAH 48 (60% and Subdural hemorrhage (SDH was Next Level with 39 (48% Correlation between Glasgow Coma Scale (GCS and Respiratory Distress Syndrome (ARDS were significantly decreased (P< 0.0001. The level of consciousness in patients with skull fractures significantly lower than those without fractures (P= 0.009 [(2.3±4.6 vs (4.02±7.07]. Prevalence of metabolic acidosis during hospitalization was 80 patients (31.4%. Conclusion: Acute respiratory distress syndrome is a common complication of traumatic brain injury. Management and treatment is essential to reduce the mortality. In this study it was found the age of patients with ARDS was higher than patients without complications. ARDS risk factor for high blood pressure was higher in men. Most victims were pedestrians. The most common injury associated with ARDS was SDH. Our analysis

  6. The use of antioxidants in the treatment of traumatic brain injury.

    Science.gov (United States)

    Venegoni, Whitney; Shen, Qiuhua; Thimmesch, Amanda R; Bell, Meredith; Hiebert, John B; Pierce, Janet D

    2017-06-01

    The aim of this study was to discuss secondary traumatic brain injury, the mitochondria and the use of antioxidants as a treatment. One of the leading causes of death globally is traumatic brain injury, affecting individuals in all demographics. Traumatic brain injury is produced by an external blunt force or penetration resulting in alterations in brain function or pathology. Often, with a traumatic brain injury, secondary injury causes additional damage to the brain tissue that can have further impact on recovery and the quality of life. Secondary injury occurs when metabolic and physiologic processes alter after initial injury and includes increased release of toxic free radicals that cause damage to adjacent tissues and can eventually lead to neuronal necrosis. Although antioxidants in the tissues can reduce free radical damage, the magnitude of increased free radicals overwhelms the body's reduced defence mechanisms. Supplementing the body's natural supply of antioxidants, such as coenzyme Q10, can attenuate oxidative damage caused by reactive oxygen species. Discussion paper. Research literature published from 2011-2016 in PubMed, CINAHL and Cochrane. Prompt and accurate assessment of patients with traumatic brain injury by nurses is important to ensure optimal recovery and reduced lasting disability. Thus, it is imperative that nurses be knowledgeable about the secondary injury that occurs after a traumatic brain injury and aware of possible antioxidant treatments. The use of antioxidants has potential to reduce the magnitude of secondary injury in patients who experience a traumatic brain injury. © 2017 John Wiley & Sons Ltd.

  7. [International multicenter studies of treatment of severe traumatic brain injury].

    Science.gov (United States)

    Talypov, A E; Kordonsky, A Yu; Krylov, V V

    2016-01-01

    Despite the introduction of new diagnostic and therapeutic methods, traumatic brain injury (TBI) remains one of the leading cause of death and disability worldwide. Standards and recommendations on conservative and surgical treatment of TBI patients should be based on concepts and methods with proven efficacy. The authors present a review of studies of the treatment and surgery of severe TBI: DECRA, RESCUEicp, STITCH(TRAUMA), CRASH, CRASH-2, CAPTAIN, NABIS: H ll, Eurotherm 3235. Important recommendations of the international group IMPACT are considered.

  8. Isolated medulla oblongata function after severe traumatic brain injury

    OpenAIRE

    Wijdicks, E; Atkinson, J; Okazaki, H

    2001-01-01

    The objective was to report the first pathologically confirmed case of partly functionally preserved medulla oblongata in a patient with catastrophic traumatic brain injury.
A patient is described with epidural haematoma with normal breathing and blood pressure and a retained coughing reflex brought on only by catheter suctioning of the carina. Multiple contusions in the thalami and pons were found but the medulla oblongata was spared at necropsy. 
In conclusion, medulla oblong...

  9. Synergistic Mechanisms Between Traumatic Brain Injury and Migraine

    Science.gov (United States)

    2016-08-01

    Departmental seminar series), as well as locally at a Chicago chapter Society for Neuroscience conference. We will also present our studies in a poster to...We have started a collaboration with a MD from the local VA hospital. Dr. Joanne Tobacman is a specialist in brain extracellular matrix and...neurological diseases. She will examine tissue from the site of injury from mTBI mice and determine if there are any changes in extracellular matrix

  10. Socio-emotional behaviour following acquired brain injury

    OpenAIRE

    May, Michelle

    2014-01-01

    Introduction: Socio-emotional behaviour difficulties following acquired brain injury (ABI) have been shown to have a persisting negative effect on quality of life. A systematic review was carried out to look at the efficacy and clinical effectiveness of available psychological treatments for socio-emotional behaviour difficulties following ABI. Research was carried out to further understand socio-emotional behaviour by exploring the possible underlying cognitive aspects (specif...

  11. Neonatal hypoglycemic brain injury is a cause of infantile spasms

    OpenAIRE

    YANG, GUANG; ZOU, LI-PING; WANG, JING; SHI, XIUYU; TIAN, SHUPING; YANG, XIAOFAN; JU, JUN; YAO, HONGXIANG; LIU, YUJIE

    2016-01-01

    Neonatal hypoglycemic brain injury is one of the causes of infantile spasms. In the present study, the clinical history and auxiliary examination results of 18 patients who developed infantile spasms several months after neonatal hypoglycemia were retrospectively analyzed. Among the 666 patients with infantile spasms admitted to two pediatric centers between January 2008 and October 2012, 18 patients developed infantile spasms after being diagnosed with neonatal hypoglycemia, defined as a who...

  12. Clinimetrics and functional outcome one year after traumatic brain injury

    OpenAIRE

    Baalen, Bianca

    2008-01-01

    textabstractThis thesis is based on the findings of the FuPro-TBI (Functional Prognosis in Traumatic Brain Injury) study, which was part of the national FuPro research programme which investigated the functional prognosis of four neurological disorders: multiple sclerosis (MS), stroke, amyotrofic lateral sclerosis (ALS), and TBI. Frequently used measurement instruments were tested at different moments on their reliability and sensitivity to change. At the moment of discharge from hospital a r...

  13. Adolescents’ experience of a parental traumatic brain injury

    Directory of Open Access Journals (Sweden)

    D Harris

    2006-11-01

    Full Text Available This study explores the experiences of four adolescents, each living with a parent who has sustained a traumatic brain injury, against the theoretical backdrop of existential-phenomenological psychology. Opsomming Hierdie navorsing verken die belewenisse van vier adolessente wat saam met ‘n ouer wat ‘n traumatiese breinbesering opgedoen het, leef. *Please note: This is a reduced version of the abstract. Please refer to PDF for full text.

  14. Acromegaly resolution after traumatic brain injury: a case report

    OpenAIRE

    Cob, Alejandro

    2014-01-01

    Introduction Anterior hypopituitarism is a common complication of head trauma, with a prevalence of 30% to 70% among long-term survivors. This is a much higher frequency than previously thought and suggests that most cases of post-traumatic hypopituitarism remain undiagnosed and untreated. Symptoms of hypopituitarism are very unspecific and very similar to those in traumatic brain injury patients in general, which makes hypopituitarism difficult to diagnose. The factors that predict the likel...

  15. Accuracy of clinical tests in the diagnosis of anterior cruciate ligament injury: A systematic review

    NARCIS (Netherlands)

    M.S. Swain (Michael S.); N. Henschke (Nicholas); S.J. Kamper (Steven); A.S. Downie (Aron S.); B.W. Koes (Bart); C. Maher (Chris)

    2014-01-01

    textabstractBackground: Numerous clinical tests are used in the diagnosis of anterior cruciate ligament (ACL) injury but their accuracy is unclear. The purpose of this study is to evaluate the diagnostic accuracy of clinical tests for the diagnosis of ACL injury.Methods: Study Design: Systematic

  16. Percutaneous dilatational tracheostomy for ICU patients with severe brain injury

    Directory of Open Access Journals (Sweden)

    Guo Dongyuan

    2014-12-01

    Full Text Available 【Abstract】Objective: To sum up our experience in percutaneous dilatational tracheostomy (PDT in ICU patient with severe brain injury. Methods: Between November 2011 and April 2014, PDTs were performed on 32 severe brain injury patients in ICU by a team of physicians and intensivists. The success rate, effi cacy, safety, and complications including stomal infection and bleeding, paratracheal insertion, pneumothorax, pneumomediastinum, tracheal laceration, as well as clinically significant tracheal stenosis were carefully monitored and recorded respectively. Results: The operations took 4-15 minutes (mean 9.1 minutes±4.2 minutes. Totally 4 cases suffered from complications in the operations: 3 cases of stomal bleeding, and 1 case of intratracheal bloody secretion, but none required intervention. Paratracheal insertion, pneumothorax, pneumomediastinum, tracheal laceration, or clinically signifi cant tracheal stenosis were not found in PDT patients. There was no procedure-related death occurring during or after PDT. Conclusion: Our study demonstrats that PDT is a safe, highly effective, and minimally invasive procedure. The appropriate sedation and airway management perioperatively help to reduce complication rates. PDT should be performed or supervised by a team of physicians with extensive experience in this procedure, and also an intensivist with experience in diffi cult airway management. Key words: Brain injuries; Percutaneous dilatational tracheostomy; ICU

  17. Traumatic brain injury and disturbed sleep and wakefulness.

    Science.gov (United States)

    Baumann, Christian R

    2012-09-01

    Traumatic brain injury is a frequent condition worldwide, and sleep-wake disturbances often complicate the course after the injuring event. Current evidence suggests that the most common sleep-wake disturbances following traumatic brain injury include excessive daytime sleepiness and posttraumatic hypersomnia, that is, increased sleep need per 24 h. The neuromolecular basis of posttraumatic sleep pressure enhancement is not entirely clear. First neuropathological and clinical studies suggest that impaired hypocretin (orexin) signalling might contribute to sleepiness, but direct or indirect traumatic injury also to other sleep-wake modulating systems in the brainstem and the mesencephalon is likely. Posttraumatic insomnia may be less common than posttraumatic sleepiness, but studies on its frequency revealed conflicting results. Furthermore, insomnia is often associated with psychiatric comorbidities, and some patients with posttraumatic disruption of their circadian rhythm may be misdiagnosed as insomnia patients. The pathophysiology of posttraumatic circadian sleep disorders remains elusive; however, there is some evidence that reduced evening melatonin production due to traumatic brain damage may cause disruption of circadian regulation of sleep and wakefulness.

  18. Brain injury impairs working memory and prefrontal circuit function

    Directory of Open Access Journals (Sweden)

    Colin James Smith

    2015-11-01

    Full Text Available More than 2.5 million Americans suffer a traumatic brain injury (TBI each year. Even mild to moderate traumatic brain injury causes long-lasting neurological effects. Despite its prevalence, no therapy currently exists to treat the underlying cause of cognitive impairment suffered by TBI patients. Following lateral fluid percussion injury (LFPI, the most widely used experimental model of TBI, we investigated alterations in working memory and excitatory/inhibitory synaptic balance in the prefrontal cortex. LFPI impaired working memory as assessed with a T-maze behavioral task. Field excitatory postsynaptic potentials recorded in the prefrontal cortex were reduced in slices derived from brain-injured mice. Spontaneous and miniature excitatory postsynaptic currents onto layer 2/3 neurons were more frequent in slices derived from LFPI mice while inhibitory currents onto layer 2/3 neurons were smaller after LFPI. Additionally, an increase in action potential threshold and concomitant decrease in firing rate was observed in layer 2/3 neurons in slices from injured animals. Conversely, no differences in excitatory or inhibitory synaptic transmission onto layer 5 neurons were observed; however, layer 5 neurons demonstrated a decrease in input resistance and action potential duration after LFPI. These results demonstrate synaptic and intrinsic alterations in prefrontal circuitry that may underlie working memory impairment caused by TBI.

  19. Coping and emotional adjustment following traumatic brain injury.

    Science.gov (United States)

    Anson, Katie; Ponsford, Jennie

    2006-01-01

    To examine the association between coping style and emotional adjustment following traumatic brain injury. Thirty three individuals who had sustained a traumatic brain injury (mean duration of posttraumatic amnesia = 32 days) between 1(1/2) months and almost 7 years previously. Coping Scale for Adults, Hospital Anxiety and Depression Scale, Rosenberg Self-Esteem Scale, State-Trait Anger Expression Inventory, and the Sickness Impact Profile. Approximately 50% of the sample reported clinically significant levels of anxiety and depression. Coping characterized by avoidance, worry, wishful thinking, self-blame, and using drugs and alcohol was associated with higher levels of anxiety, depression, and psychosocial dysfunction and lower levels of self-esteem. Coping characterized by actively working on the problem and using humor and enjoyable activities to manage stress was associated with higher self-esteem. Lower premorbid intelligence (measured via the National Adult Reading Test) and greater self-awareness (measured via the Self-Awareness of Deficits Interview) were associated with an increased rate of maladaptive coping. The strong association between the style of coping used to manage stress and emotional adjustment suggests the possibility that emotional adjustment might be improved by the facilitation of more adaptive coping styles. It is also possible that improving emotional adjustment may increase adaptive coping. The development and evaluation of interventions aimed at facilitating adaptive coping and decreasing emotional distress represent important and potentially fruitful contributions to enhancing long-term outcome following brain injury.

  20. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats.

    Science.gov (United States)

    McBride, Devin W; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H

    2015-09-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 h after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in significantly elevated frontal lobe brain water content 24 and 72 h after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study's results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 h post-SBI. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats

    Science.gov (United States)

    McBride, Devin W.; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H.

    2015-01-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 hours after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in a significantly elevated frontal lobe brain water content 24 and 72 hours after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study’s results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 hours post-SBI. PMID:25975171

  2. Atypical moral judgment following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Angelica Muresan

    2012-07-01

    Full Text Available Previous research has shown an association between emotions, particularly social emotions, and moral judgments. Some studies suggested an association between blunted emotion and the utilitarian moral judgments observed in patients with prefrontal lesions. In order to investigate how prefrontal brain damage affects moral judgment, we asked a sample of 29 TBI patients (12 females and 17 males and 41 healthy participants (16 females and 25 males to judge 22 hypothetical dilemmas split into three different categories (non-moral, impersonal and personal moral. The TBI group presented a higher proportion of affirmative (utilitarian responses for personal moral dilemmas when compared to controls, suggesting an atypical pattern of utilitarian judgements. We also found a negative association between the performance on recognition of social emotions and the proportion of affirmative responses on personal moral dilemmas. These results suggested that the preference for utilitarian responses in this type of dilemmas is accompanied by difficulties in social emotion recognition. Overall, our findings suggest that deontological moral judgments are associated with normal social emotion processing and that frontal lobe plays an important role in both emotion and moral judgment.

  3. Secondary Insults of Traumatic Brain Injury in CCATT Patients Returning from Iraq/Afghanistan: 2001-2006

    Science.gov (United States)

    2010-08-31

    and hemorrhage. Hemorrhage is further divided into epidural hematoma , subdural hematoma , and intracerebral hematoma . Diffuse brain injuries...fiber Brain Injury Focal Injuries Contusion Laceration Hemorrhage Epidural Hematoma Subdural Hematoma Intracerebral Hematoma Diffuse

  4. MDD diagnosis based on partial-brain functional connection network

    Science.gov (United States)

    Yan, Gaoliang; Hu, Hailong; Zhao, Xiang; Zhang, Lin; Qu, Zehui; Li, Yantao

    2018-04-01

    Artificial intelligence (AI) is a hotspot in computer science research nowadays. To apply AI technology in all industries has been the developing direction for researchers. Major depressive disorder (MDD) is a common disease of serious mental disorders. The World Health Organization (WHO) reports that MDD is projected to become the second most common cause of death and disability by 2020. At present, the way of MDD diagnosis is single. Applying AI technology to MDD diagnosis and pathophysiological research will speed up the MDD research and improve the efficiency of MDD diagnosis. In this study, we select the higher degree of brain network functional connectivity by statistical methods. And our experiments show that the average accuracy of Logistic Regression (LR) classifier using feature filtering reaches 88.48%. Compared with other classification methods, both the efficiency and accuracy of this method are improved, which will greatly improve the process of MDD diagnose. In these experiments, we also define the brain regions associated with MDD, which plays a vital role in MDD pathophysiological research.

  5. Brain metabolism in patients with freezing of gait after hypoxic-ischemic brain injury

    OpenAIRE

    Yoon, Seo Yeon; Lee, Sang Chul; Kim, Na Young; An, Young-Sil; Kim, Yong Wook

    2017-01-01

    Abstract Movement disorders are 1 of the long-term neurological complications that can occur after hypoxic-ischemic brain injury (HIBI). However, freezing of gait (FOG) after HIBI is rare. The aim of this study was to examine the brain metabolism of patients with FOG after HIBI using F-18 fluoro-2-deoxy-D-glucose positron emission tomography (F-18 FDG PET). We consecutively enrolled 11 patients with FOG after HIBI. The patients’ overall brain metabolism was measured by F-18 FDG PET, and we co...

  6. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice

    Science.gov (United States)

    Traumatic brain injury (TBI) has complex effects on the gastrointestinal tract that are associated with TBI-related morbidity and mortality. We examined changes in mucosal barrier properties and enteric glial cell response in the gut after experimental TBI in mice, as well as effects of the enteric...

  7. ECONOMIC LOSSES CAUSED BY TRAUMATIC BRAIN INJURY IN CHILDREN

    Directory of Open Access Journals (Sweden)

    S. A. Valiulina

    2015-01-01

    Full Text Available Background: Currently, analyzing the economic losses caused by health problems in population is of particular importance since it stipulates calculations of the volumes invested in healthcare systems in order to improve population’s health. Objective: The aim of our study was to find out economic losses caused by traumatic brain injury (TBI in children. Methods: The given work has utilized governmental statistical reports for Russia, for federal regions as well as for individual subjects. Direct medical expenses (medical services and indirect expenses (losses due to a temporary disability of parents having a sick child were calculated both in general and per patient. Results: Among all the direct medical costs of treatment of children with TBI inpatient care costs account for 85%. In the Central and Volga Federal District accounted for half of nationwide spending in general, brain injury and to provide certain kinds of healthcare. The structure of Russian costs as a result of the incidence of TBI children Moscow accounts for 20%. In Moscow, the cost of treating cases of traumatic brain injury in children is 3.2 times higher than the average for Russia. The resulting calculations of the value of health care costs attributable to a case of child head injury, behind the cost of treatment of the case of a child with head trauma, calculated according to the standards of Russia and the territories. This difference in the whole RF is 23%. Conclusion: The obtained findings have shown that in 2010 in Russia the magnitude of losses caused by TBI incidence in children amounted to 3 billion roubles or 0.008% of the gross product 1.2 billion roubles of which were direct expenses. However, this figure is considerably lower of the real amount; it becomes evident after the analysis of direct medical expenses per one case of pediatric TBI. Our calculations have shown that in Russia and in its regions the amount of expenses per one TBI patient is a quarter less

  8. Pattern of brain injury and depressed heart rate variability in newborns with hypoxic ischemic encephalopathy.

    Science.gov (United States)

    Metzler, Marina; Govindan, Rathinaswamy; Al-Shargabi, Tareq; Vezina, Gilbert; Andescavage, Nickie; Wang, Yunfei; du Plessis, Adre; Massaro, An N

    2017-09-01

    BackgroundDecreased heart rate variability (HRV) is a measure of autonomic dysfunction and brain injury in newborns with hypoxic ischemic encephalopathy (HIE). This study aimed to characterize the relationship between HRV and brain injury pattern using magnetic resonance imaging (MRI) in newborns with HIE undergoing therapeutic hypothermia.MethodsHRV metrics were quantified in the time domain (α S , α L , and root mean square at short (RMS S ) and long (RMS L ) timescales) and frequency domain (relative low-(LF) and high-frequency (HF) power) over 24-27 h of life. The brain injury pattern shown by MRI was classified as no injury, pure cortical/white matter injury, mixed watershed/mild basal ganglia injury, predominant basal ganglia or global injury, and death. HRV metrics were compared across brain injury pattern groups using a random-effects mixed model.ResultsData from 74 infants were analyzed. Brain injury pattern was significantly associated with the degree of HRV suppression. Specifically, negative associations were observed between the pattern of brain injury and RMS S (estimate -0.224, SE 0.082, P=0.006), RMS L (estimate -0.189, SE 0.082, P=0.021), and LF power (estimate -0.044, SE 0.016, P=0.006).ConclusionDegree of HRV depression is related to the pattern of brain injury. HRV monitoring may provide insights into the pattern of brain injury at the bedside.

  9. Plasticity in the Neonatal Brain following Hypoxic-Ischaemic Injury

    Directory of Open Access Journals (Sweden)

    Eridan Rocha-Ferreira

    2016-01-01

    Full Text Available Hypoxic-ischaemic damage to the developing brain is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The developmental stage of the brain and the severity of the insult influence the selective regional vulnerability and the subsequent clinical manifestations. The increased susceptibility to hypoxia-ischaemia (HI of periventricular white matter in preterm infants predisposes the immature brain to motor, cognitive, and sensory deficits, with cognitive impairment associated with earlier gestational age. In term infants HI causes selective damage to sensorimotor cortex, basal ganglia, thalamus, and brain stem. Even though the immature brain is more malleable to external stimuli compared to the adult one, a hypoxic-ischaemic event to the neonate interrupts the shaping of central motor pathways and can affect normal developmental plasticity through altering neurotransmission, changes in cellular signalling, neural connectivity and function, wrong targeted innervation, and interruption of developmental apoptosis. Models of neonatal HI demonstrate three morphologically different types of cell death, that is, apoptosis, necrosis, and autophagy, which crosstalk and can exist as a continuum in the same cell. In the present review we discuss the mechanisms of HI injury to the immature brain and the way they affect plasticity.

  10. Investigation of elemental changes in brain tissues following excitotoxic injury

    International Nuclear Information System (INIS)

    Siegele, Rainer; Howell, Nicholas R.; Callaghan, Paul D.; Pastuovic, Zeljko

    2013-01-01

    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca +2 cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca +2 cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma

  11. Narrative discourse in children with early focal brain injury.

    Science.gov (United States)

    Reilly, J S; Bates, E A; Marchman, V A

    1998-02-15

    Children with early brain damage, unlike adult stroke victims, often go on to develop nearly normal language. However, the route and extent of their linguistic development are still unclear, as is the relationship between lesion site and patterns of delay and recovery. Here we address these questions by examining narratives from children with early brain damage. Thirty children (ages 3:7-10:10) with pre- or perinatal unilateral focal brain damage and their matched controls participated in a storytelling task. Analyses focused on linguistic proficiency and narrative competence. Overall, children with brain damage scored significantly lower than their age-matched controls on both linguistic (morphological and syntactic) indices and those targeting broader narrative qualities. Rather than indicating that children with brain damage fully catch up, these data suggest that deficits in linguistic abilities reassert themselves as children face new linguistic challenges. Interestingly, after age 5, site of lesion does not appear to be a significant factor and the delays we have witnessed do not map onto the lesion profiles observed in adults with analogous brain injuries.

  12. Investigation of elemental changes in brain tissues following excitotoxic injury

    Energy Technology Data Exchange (ETDEWEB)

    Siegele, Rainer, E-mail: rns@ansto.gov.au [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Howell, Nicholas R.; Callaghan, Paul D. [Life Sciences, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Pastuovic, Zeljko [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2013-07-01

    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca{sup +2} cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca{sup +2} cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma.

  13. Comparison of analytical methods of brain [18F]FDG-PET after severe traumatic brain injury

    DEFF Research Database (Denmark)

    Madsen, Karine; Hesby, Sara; Poulsen, Ingrid

    2017-01-01

    BACKGROUND: Loss of consciousness has been shown to reduce cerebral metabolic rates of glucose (CMRglc) measured by brain [(18)F]FDG-PET. Measurements of regional metabolic patterns by normalization to global cerebral metabolism or cerebellum may underestimate widespread reductions. NEW METHOD......: The aim of this study was to compare quantification methods of whole brain glucose metabolism, including whole brain [18F]FDG uptake normalized to uptake in cerebellum, normalized to injected activity, normalized to plasma tracer concentration, and two methods for estimating CMRglc. Six patients suffering...... from severe traumatic brain injury (TBI) and ten healthy controls (HC) underwent a 10min static [(18)F]FDG-PET scan and venous blood sampling. RESULTS: Except from normalizing to cerebellum, all quantification methods found significant lower level of whole brain glucose metabolism of 25-33% in TBI...

  14. The relation between persistent coma and brain ischemia after severe brain injury.

    Science.gov (United States)

    Cheng, Quan; Jiang, Bing; Xi, Jian; Li, Zhen Yan; Liu, Jin Fang; Wang, Jun Yu

    2013-12-01

    To investigate the relation between brain ischemia and persistent vegetative state after severe traumatic brain injury. The 66 patients with severe brain injury were divided into two groups: The persistent coma group (coma duration ≥10 d) included 51 patients who had an admission Glasgow Coma Scale (GCS) of 5-8 and were unconscious for more than 10 d. There were 15 patients in the control group, their admission GCS was 5-8, and were unconscious for less than 10 d. The brain areas, including frontal, parietal, temporal, occipital lobes and thalamus, were measured by Single Photon Emission Computed Tomography (SPECT). In the first SPECT scan, multiple areas of cerebral ischemia were documented in all patients in both groups, whereas bilateral thalamic ischemia were presented in all patients in the persistent coma group and were absented in the control group. In the second SPECT scan taken during the period of analepsia, with an indication that unilateral thalamic ischemia were persisted in 28 of 41 patients in persistent coma group(28/41,68.29%). Persistent coma after severe brain injury is associated with bilateral thalamic ischemia.

  15. Caring for a family member with a traumatic brain injury.

    Science.gov (United States)

    Knight, R G; Devereux, R; Godfrey, H P

    1998-06-01

    The responses to a questionnaire on subjective burden are reported for 52 primary caregivers of a group of persons with traumatic brain injuries sustained an average of 6 years previously. The aim of the study was to examine satisfaction with social support, perception of coping skills, and appraisal of symptoms as predictors of strain in the carers. A range of responses, both positive and negative, to the work of caring for a relative with a head injury was reported. A high prevalence rate of emotional and behavioural changes in the persons with head injuries was found and the amount of distress caused by these symptoms was found to be predictive of burden. The other factor important in predicting burden was the carers' ratings of their satisfaction with their ability to cope with the work of caregiving. Social support, injury severity, and the demographic characteristics of the persons with head injury and their carers were not significant predictors. Depression in the carers was also investigated and the variable most predictive of elevated depression scores was coping satisfaction. These findings reinforce the importance of strengthening carers coping resources in rehabilitation work with head injured persons and their families.

  16. Neuroradiolological diagnosis and follow-up of brain tumors

    International Nuclear Information System (INIS)

    Kummer, R. von

    1997-01-01

    Primary tumors of the brain and cerebral metastases cause considerable morbidity and mortality. To assess the chance for cure and to develop a valid concept of treatment, the exact assessment of the tumor's location, of the tumor's borders and malignancy is essential. Today, neuroradiological examination mainly with magnetic resonance imaging (MRI) allows an almost histological diagnosis and description of the tumor's extent. MRI is as well useful for studying the patient's short- and long-term follow-up clinical course. This is illustrated by 3 case histories. (orig.)

  17. Ancillary procedure for early diagnosis of brain damage in children

    International Nuclear Information System (INIS)

    Sumi, Masatoshi; Sha, Tenei; Ryo, Fukko; Kagawa, Kotaro.

    1979-01-01

    CT scan of the head was performed on 14 patients with cerebral palsy, 16 with central coordination disorders, and 16 controls, and findings showing cerebral atrophy and enlargement of the cerebral ventricle were obtained in cases both of cerebral palsy and of central coordination disorders. To objectify these findings, 10 items were selected and evaluated according to 4 grades (0 - 3) and were compared. As a result, it was concluded that CT scan is an excellent ancillary procedure for early diagnosis of brain damages. (Tsunoda, M.)

  18. The diagnosis and management of children with blunt injury of the chest.

    Science.gov (United States)

    Sartorelli, Kennith H; Vane, Dennis W

    2004-05-01

    Thoracic trauma remains a major source of morbidity and mortality in injured children, and is second only to brain injuries as a cause of death. The presence of a chest injury increases an injured child's mortality by 20-fold. Greater than 80% of chest injuries in children are secondary to blunt trauma. The compliant chest wall in children makes pulmonary contusions and rib fractures the most common chest injuries in children. Injuries to the great vessels, esophagus, and diaphragm are rare. Failure to promptly diagnose and treat these injuries results in increased morbidity and mortality.

  19. Cost prediction following traumatic brain injury: model development and validation.

    Science.gov (United States)

    Spitz, Gershon; McKenzie, Dean; Attwood, David; Ponsford, Jennie L

    2016-02-01

    The ability to predict costs following a traumatic brain injury (TBI) would assist in planning treatment and support services by healthcare providers, insurers and other agencies. The objective of the current study was to develop predictive models of hospital, medical, paramedical, and long-term care (LTC) costs for the first 10 years following a TBI. The sample comprised 798 participants with TBI, the majority of whom were male and aged between 15 and 34 at time of injury. Costing information was obtained for hospital, medical, paramedical, and LTC costs up to 10 years postinjury. Demographic and injury-severity variables were collected at the time of admission to the rehabilitation hospital. Duration of PTA was the most important single predictor for each cost type. The final models predicted 44% of hospital costs, 26% of medical costs, 23% of paramedical costs, and 34% of LTC costs. Greater costs were incurred, depending on cost type, for individuals with longer PTA duration, obtaining a limb or chest injury, a lower GCS score, older age at injury, not being married or defacto prior to injury, living in metropolitan areas, and those reporting premorbid excessive or problem alcohol use. This study has provided a comprehensive analysis of factors predicting various types of costs following TBI, with the combination of injury-related and demographic variables predicting 23-44% of costs. PTA duration was the strongest predictor across all cost categories. These factors may be used for the planning and case management of individuals following TBI. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  20. Biomarkers of brain injury in neonatal encephalopathy treated with hypothermia.

    Science.gov (United States)

    Massaro, An N; Chang, Taeun; Kadom, Nadja; Tsuchida, Tammy; Scafidi, Joseph; Glass, Penny; McCarter, Robert; Baumgart, Stephen; Vezina, Gilbert; Nelson, Karin B

    2012-09-01

    To determine if early serum S100B and neuron-specific enolase (NSE) levels are associated with neuroradiographic and clinical evidence of brain injury in newborns with encephalopathy. Patients who received therapeutic whole-body hypothermia were prospectively enrolled in this observational study. Serum specimens were collected at 0, 12, 24, and 72 hours of cooling. S100B and NSE levels were measured by enzyme linked immunosorbent assay. Magnetic resonance imaging was performed in surviving infants at 7-10 days of life. Standardized neurologic examination was performed by a child neurologist at 14 days of life. Multiple linear regression analyses were performed to evaluate the association between S100B and NSE levels and unfavorable outcome (death or severe magnetic resonance imaging injury/significant neurologic deficit). Cutoff values were determined by receiver operating curve analysis. Newborns with moderate to severe encephalopathy were enrolled (n = 75). Median pH at presentation was 6.9 (range, 6.5-7.35), and median Apgar scores of 1 at 1 minute, 3 at 5 minutes, and 5 at 10 minutes. NSE and S100B levels were higher in patients with unfavorable outcomes across all time points. These results remained statistically significant after controlling for covariables, including encephalopathy grade at presentation, Apgar score at 5 minutes of life, initial pH, and clinical seizures. Elevated serum S100B and NSE levels measured during hypothermia were associated with neuroradiographic and clinical evidence of brain injury in encephalopathic newborns. These brain-specific proteins may be useful immediate biomarkers of cerebral injury severity. Copyright © 2012 Mosby, Inc. All rights reserved.

  1. Signal Transduction Pathways Involved in Brain Death-Induced Renal Injury

    NARCIS (Netherlands)

    Bouma, H. R.; Ploeg, R. J.; Schuurs, T. A.

    Kidneys derived from brain death organ donors show an inferior survival when compared to kidneys derived from living donors. Brain death is known to induce organ injury by evoking an inflammatory response in the donor. Neuronal injury triggers an inflammatory response in the brain, leading to

  2. A SPECT study of language and brain reorganization three years after pediatric brain injury.

    Science.gov (United States)

    Chiu Wong, Stephanie B; Chapman, Sandra B; Cook, Lois G; Anand, Raksha; Gamino, Jacquelyn F; Devous, Michael D

    2006-01-01

    Using single photon emission computed tomography (SPECT), we investigated brain plasticity in children 3 years after sustaining a severe traumatic brain injury (TBI). First, we assessed brain perfusion patterns (i.e., the extent of brain blood flow to regions of the brain) at rest in eight children who suffered severe TBI as compared to perfusion patterns in eight normally developing children. Second, we examined differences in perfusion between children with severe TBI who showed good versus poor recovery in complex discourse skills. Specifically, the children were asked to produce and abstract core meaning for two stories in the form of a lesson. Inconsistent with our predictions, children with severe TBI showed areas of increased perfusion as compared to normally developing controls. Adult studies have shown the reverse pattern with TBI associated with reduced perfusion. With regard to the second aim and consistent with previously identified brain-discourse relations, we found a strong positive association between perfusion in right frontal regions and discourse abstraction abilities, with higher perfusion linked to better discourse outcomes and lower perfusion linked to poorer discourse outcomes. Furthermore, brain-discourse patterns of increased perfusion in left frontal regions were associated with lower discourse abstraction ability. The results are discussed in terms of how brain changes may represent adaptive and maladaptive plasticity. The findings offer direction for future studies of brain plasticity in response to neurocognitive treatments.

  3. Functional integrity in children with anoxic brain injury from drowning.

    Science.gov (United States)

    Ishaque, Mariam; Manning, Janessa H; Woolsey, Mary D; Franklin, Crystal G; Tullis, Elizabeth W; Beckmann, Christian F; Fox, Peter T

    2017-10-01

    Drowning is a leading cause of accidental injury and death in young children. Anoxic brain injury (ABI) is a common consequence of drowning and can cause severe neurological morbidity in survivors. Assessment of functional status and prognostication in drowning victims can be extremely challenging, both acutely and chronically. Structural neuroimaging modalities (CT and MRI) have been of limited clinical value. Here, we tested the utility of resting-state functional MRI (rs-fMRI) for assessing brain functional integrity in this population. Eleven children with chronic, spastic quadriplegia due to drowning-induced ABI were investigated. All were comatose immediately after the injury and gradually regained consciousness, but with varying ability to communicate their cognitive state. Eleven neurotypical children matched for age and gender formed the control group. Resting-state fMRI and co-registered T1-weighted anatomical MRI were acquired at night during drug-aided sleep. Network integrity was quantified by independent components analysis (ICA), at both group- and per-subject levels. Functional-status assessments based on in-home observations were provided by families and caregivers. Motor ICNs were grossly compromised in ABI patients both group-wise and individually, concordant with their prominent motor deficits. Striking preservations of perceptual and cognitive ICNs were observed, and the degree of network preservation correlated (ρ = 0.74) with the per-subject functional status assessments. Collectively, our findings indicate that rs-fMRI has promise for assessing brain functional integrity in ABI and, potentially, in other disorders. Furthermore, our observations suggest that the severe motor deficits observed in this population can mask relatively intact perceptual and cognitive capabilities. Hum Brain Mapp 38:4813-4831, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Effect of pheniramine maleate on reperfusion injury in brain tissue.

    Science.gov (United States)

    Yürekli, Ismail; Gökalp, Orhan; Kiray, Müge; Gökalp, Gamze; Ergüneş, Kazım; Salman, Ebru; Yürekli, Banu Sarer; Satoğlu, Ismail Safa; Beşir, Yüksel; Cakır, Habib; Gürbüz, Ali

    2013-12-06

    The aim of this study was to investigate the protective effects of methylprednisolone (Pn), which is a potent anti-inflammatory agent, and pheniramine maleate (Ph), which is an antihistaminic with some anti-inflammatory effects, on reperfusion injury in brain developing after ischemia of the left lower extremity of rats. Twenty-eight randomly selected male Sprague-Dawley rats were divided into 4 groups: Group 1 was the control group, Group 2 was the sham group (I/R), Rats in Group 3 were subjected to I/R and given Ph, and rats in Group 4 were subjected to I/R and given Pn. A tourniquet was applied at the level of left groin region of subjects in the I/R group after induction of anesthesia. One h of ischemia was performed with no drug administration. In the Ph group, half of a total dose of 10 mg/kg Ph was administered intraperitoneally before ischemia and the remaining half before reperfusion. In the Pn group, subjects received a single dose of 50 mg/kg Pn intraperitoneally at the 30th min of ischemia. Brains of all subjects were removed after 24 h for examination. Malondialdehyde (MDA) levels of the prefrontal cortex were significantly lower in the Ph group than in the I/R group (p<0.05). Superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzyme activities were found to be significantly higher in the Ph group than in the I/R group (p<0.05). Histological examination demonstrated that Ph had protective effects against I/R injury developing in the brain tissue. Ph has a protective effect against ischemia/reperfusion injury created experimentally in rat brains.

  5. Disability pensions in relation to traumatic brain injury: a population study

    DEFF Research Database (Denmark)

    Teasdale, T W; Engberg, A W

    2000-01-01

    From a Danish national register of hospitalizations, all patients were identified who had a discharge diagnosis of traumatic brain injury between the years 1979-1993 inclusive, at ages 18-66 years inclusive. These were classified as having suffered either a concussion (n = 74,398), a cranial...... fracture (n = 4,452) or a cerebral contusion (n = 8,141). Patients in each of these groups were then checked in annual registers of disability pension awards between 1979-1995. Disability pensions had been awarded to 16% of the concussion group, 18% of the fracture group, and 33% of the contusion group....... Date of application, grounds for the application, and the pension level awarded were noted. Analysis of the date of application for the disability pension revealed that in all groups a high proportion of the pension applications had been made prior to the injury. Among the concussion group, the pension...

  6. Improving outcome after traumatic brain injury--progress and challenges.

    Science.gov (United States)

    Gentleman, D

    1999-01-01

    This article describes the rapid advances in the head injury field which have taken place within the professional lifetime of many doctors in practice today. These have led to a better understanding of what happens in the injured brain and how these events might be manipulated to achieve better outcomes. Clinical tools we now take for granted, like the CT scanner and the Glasgow Coma Scale, were new developments 25 years ago. They provided a foundation on which clinicians and basic scientists could build what we now know: what to assess in the patient, how to respond to certain findings, what imaging to do, how to plan treatment rationally, how to minimise brain damage at different stages after injury, how to predict and measure outcome, what disabled survivors need, and how to organise the service to do the greatest good for the most people. Some of these topics raise as many questions as answers. The head injury field may be broad but it has essential unity. At one extreme, some patients have a life-threatening illness where the acts and omissions of the clinical team can powerfully influence not only survival but its quality. Later the drama of the acute phase gives way to the 'hidden disabilities' of the long-term deficits which so many survivors have. At the other end of the severity spectrum is the relatively vast number of people who suffer an apparently mild head injury, a few of whom deteriorate and need urgent treatment, and many of whom have unspectacular but, nevertheless, disabling problems. The article attempts to address this broad canvas. Clinicians, neuroscientists, policy makers, and service users must work together to address the major scientific, individual, and population challenges posed by head injury. Much has already been achieved, but much remains to be done, especially in translating 'what we know' into 'what we do'.

  7. Bryan Jennett and the field of traumatic brain injury. His intellectual and ethical heritage in neuro-intensive care.

    Science.gov (United States)

    Stocchetti, Nino; Citerio, Giuseppe; Maas, Andrew; Andrews, Peter; Teasdale, Graham

    2008-10-01

    William Bryan Jennett, one of the leading figures in neurosurgery of the twentieth century, has died on 26 January 2008, at the age of 81. He made fundamental contributions to the field of traumatic brain injury (TBI) that still shape diagnosis, management and prognosis worldwide, in the second part of the last century. This paper is meant to gratefully acknowledge his contributions and to reflect on the implications that his work has for neurointensive care today. Starting from his early steps, we tried to highlight his fundamental work on diagnosis of severity in TBI, on rescue, treatment and prognosis of severe TBI. Moreover, his contribution in the definition of vegetative state, minimally conscious state and brain death has been emphasized. The contribution of Professor Bryan Jennett was in fact seminal in many aspects: the application of a common language in brain damage evaluation, where GCS and GOS are now universally employed; a critical approach to TBI diagnosis and treatment, in the search of proven better therapies; a quantitative approach to TBI prognosis, based on large clinical series and appropriate statistics; a strong commitment to the ethical implication of survival after severe injury, including the vegetative status; social responsibility in the diagnosis of brain death and in organ donors procurement. For these reasons, he can be considered one of the leading figures in neurosurgery and neurology of the twentieth century. This paper is meant to gratefully acknowledge his contributions and to reflect on the implications that his work has for neuro-intensive care today.

  8. Regional brain morphometry predicts memory rehabilitation outcome after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Gary E Strangman

    2010-10-01

    Full Text Available Cognitive deficits following traumatic brain injury (TBI commonly include difficulties with memory, attention, and executive dysfunction. These deficits are amenable to cognitive rehabilitation, but optimally selecting rehabilitation programs for individual patients remains a challenge. Recent methods for quantifying regional brain morphometry allow for automated quantification of tissue volumes in numerous distinct brain structures. We hypothesized that such quantitative structural information could help identify individuals more or less likely to benefit from memory rehabilitation. Fifty individuals with TBI of all severities who reported having memory difficulties first underwent structural MRI scanning. They then participated in a 12 session memory rehabilitation program emphasizing internal memory strategies (I-MEMS. Primary outcome measures (HVLT, RBMT were collected at the time of the MRI scan, immediately following therapy, and again at one month post-therapy. Regional brain volumes were used to predict outcome, adjusting for standard predictors (e.g., injury severity, age, education, pretest scores. We identified several brain regions that provided significant predictions of rehabilitation outcome, including the volume of the hippocampus, the lateral prefrontal cortex, the thalamus, and several subregions of the cingulate cortex. The prediction range of regional brain volumes were in some cases nearly equal in magnitude to prediction ranges provided by pretest scores on the outcome variable. We conclude that specific cerebral networks including these regions may contribute to learning during I-MEMS rehabilitation, and suggest that morphometric measures may provide substantial predictive value for rehabilitation outcome in other cognitive interventions as well.

  9. Systematic review of clinical practice guidelines to identify recommendations for rehabilitation after stroke and other acquired brain injuries

    Science.gov (United States)

    Lannin, Natasha A; Hoffmann, Tammy

    2018-01-01

    Objectives Rehabilitation clinical practice guidelines (CPGs) contain recommendation statements aimed at optimising care for adults with stroke and other brain injury. The aim of this study was to determine the quality, scope and consistency of CPG recommendations for rehabilitation covering the acquired brain injury populations. Design Systematic review. Interventions Included CPGs contained recommendations for inpatient rehabilitation or community rehabilitation for adults with an acquired brain injury diagnosis (stroke, traumatic or other non-progressive acquired brain impairments). Electronic databases (n=2), guideline organisations (n=4) and websites of professional societies (n=17) were searched up to November 2017. Two independent reviewers used the Appraisal of Guidelines for Research and Evaluation (AGREE) II instrument, and textual syntheses were used to appraise and compare recommendations. Results From 427 papers screened, 20 guidelines met the inclusion criteria. Only three guidelines were rated high (>75%) across all domains of AGREE-II; highest rated domains were ‘scope and purpose’ (85.1, SD 18.3) and ‘clarity’ (76.2%, SD 20.5). Recommendations for assessment and for motor therapies were most commonly reported, however, varied in the level of detail across guidelines. Conclusion Rehabilitation CPGs were consistent in scope, suggesting little difference in rehabilitation approaches between vascular and traumatic brain injury. There was, however, variability in included studies and methodological quality. PROSPERO registration number CRD42016026936. PMID:29490958

  10. An overview of attention deficits after paediatric traumatic brain injury.

    Science.gov (United States)

    Ginstfeldt, Tim; Emanuelson, Ingrid

    2010-01-01

    Attention could be categorized into sustained, selective, shifting, divided and attention span. The primary objective was to evaluate the type of attention deficits that occurs after paediatric traumatic brain injury. Keywords were used such as 'attention', 'child', 'traumatic', 'brain' and 'injury' on MEDLINE articles published in 1991-2009. Articles found through MEDLINE were manually cross-referenced. Out of the examined categorizes, divided and sustained attention seem to be the most vulnerably, frequently displaying deficits in the children with TBI. Attention span seemed to be the most resistant and the shifting and selective categories falling somewhere in between. Most of the recovery is expected within the first year post-injury, even if some individuals continue to improve for years, and deficits often persist into adulthood. The attention domains are not affected to the same extent by TBI and this should be taken into consideration when evaluating a child. The commonly used tests also seem to differ in how sensitive they are in detecting deficits. The definition of attention domains and TBI would benefit to be stricter and agreed upon, to further facilitate research and rehabilitation programmes.

  11. Neuroimaging in adult penetrating brain injury: a guide for radiographers

    Energy Technology Data Exchange (ETDEWEB)

    Temple, Nikki; Donald, Cortny; Skora, Amanda [Discipline of Medical Radiation Sciences, The University of Sydney, Lidcombe, New South Wales (Australia); Reed, Warren, E-mail: warren.reed@sydney.edu.au [Medical Image Optimisation and Perception Group, Discipline of Medical Radiation Sciences, The University of Sydney, Lidcombe, New South Wales (Australia)

    2015-06-15

    Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Based on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings.

  12. Neuroimaging in adult penetrating brain injury: a guide for radiographers

    International Nuclear Information System (INIS)

    Temple, Nikki; Donald, Cortny; Skora, Amanda; Reed, Warren

    2015-01-01

    Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Based on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings

  13. Racial differences in employment outcomes after traumatic brain injury.

    Science.gov (United States)

    Arango-Lasprilla, Juan Carlos; Ketchum, Jessica M; Williams, Kelli; Kreutzer, Jeffrey S; Marquez de la Plata, Carlos D; O'Neil-Pirozzi, Therese M; Wehman, Paul

    2008-05-01

    To examine racial differences in employment status and occupational status 1 year after a traumatic brain injury (TBI). Retrospective study. Longitudinal dataset of the Traumatic Brain Injury Model Systems national database. Subjects with primarily moderate to severe TBI (3468 whites vs 1791 minorities) hospitalized between 1989 and 2005. Not applicable. Employment status (competitively employed or unemployed) and occupational status (professional/managerial, skilled, or manual labor) at 1 year postinjury. Race and/or ethnicity has a significant effect on employment status at 1 year postinjury (chi(1)(2)=58.23, Pstatus, sex, Disability Rating Scale at discharge, marital status, cause of injury, age, and education. The adjusted odds of being unemployed versus competitively employed are 2.17 times (95% confidence interval, 1.78-2.65) greater for minorities than for whites. Race and ethnicity does not have a significant effect on occupational status at 1 year postinjury. With this empirical evidence supporting racial differences in employment outcomes between minorities and whites at 1 year postinjury, priority should be given to tailoring interventions to maximize minority survivors' work-related productivity.

  14. Acetazolamide Mitigates Astrocyte Cellular Edema Following Mild Traumatic Brain Injury

    Science.gov (United States)

    Sturdivant, Nasya M.; Smith, Sean G.; Ali, Syed F.; Wolchok, Jeffrey C.; Balachandran, Kartik

    2016-09-01

    Non-penetrating or mild traumatic brain injury (mTBI) is commonly experienced in accidents, the battlefield and in full-contact sports. Astrocyte cellular edema is one of the major factors that leads to high morbidity post-mTBI. Various studies have reported an upregulation of aquaporin-4 (AQP4), a water channel protein, following brain injury. AZA is an antiepileptic drug that has been shown to inhibit AQP4 expression and in this study we investigate the drug as a therapeutic to mitigate the extent of mTBI induced cellular edema. We hypothesized that mTBI-mediated astrocyte dysfunction, initiated by increased intracellular volume, could be reduced when treated with AZA. We tested our hypothesis in a three-dimensional in vitro astrocyte model of mTBI. Samples were subject to no stretch (control) or one high-speed stretch (mTBI) injury. AQP4 expression was significantly increased 24 hours after mTBI. mTBI resulted in a significant increase in the cell swelling within 30 min of mTBI, which was significantly reduced in the presence of AZA. Cell death and expression of S100B was significantly reduced when AZA was added shortly before mTBI stretch. Overall, our data point to occurrence of astrocyte swelling immediately following mTBI, and AZA as a promising treatment to mitigate downstream cellular mortality.

  15. Fatal Hyperammonemic Brain Injury from Valproic Acid Exposure

    Directory of Open Access Journals (Sweden)

    Danny Bega

    2012-12-01

    Full Text Available Background: Hyperammonemia is known to cause neuronal injury, and can result from valproic acid exposure. Prompt reduction of elevated ammonia levels may prevent permanent neurological injury. We report a case of fatal hyperammonemic brain injury in a woman exposed to valproic acid. Case: A 38-year-old woman with schizoaffective disorder and recent increase in valproic acid dosage presented with somnolence and confusion and rapidly progressed to obtundation. Brain MRI showed diffuse bilateral restricted diffusion in nearly the entire cerebral cortex. She had normal liver function tests but serum ammonia level was severely elevated at 288 µmol/l. Genetic testing showed no mutation in urea cycle enzymes. Despite successful elimination of ammonia with hemodialysis she developed fatal cerebral edema. Conclusion: Cerebral edema secondary to hyperammonemia is potentially reversible if recognized early. Ammonia excretion can be facilitated by initiation of hemodialysis and administration of scavenging agents (sodium phenylacetate and sodium benzoate. Severe hyperammonemia can result from valproic acid exposure even in the absence of hepatotoxicity or inborn errors of metabolism. It is important to check serum ammonia in any patient with encephalopathy who has had recent valproic acid exposure.

  16. The significance of brain scintiscanning with Te-99m in the diagnosis of brain tumours

    International Nuclear Information System (INIS)

    Spengel, F.

    1973-01-01

    The author gives a short introduction to the technology and methods of brain scintiscanning and states his reasons for using the γ source 99 m Tc as test substance. The pathophysiological causes of the accumulation of this nuclide in tumour tissue are discussed, and the normal brain scan is illustrated by models. After this, the scintiscans with tu1our diagnosis obtained in the 2nd university clinic for internal diseases in the period between 1968 and 1970 are listed. 11 of these cases are treated in detail in a casuistics, and the findings are discussed. (orig.) [de

  17. Are boys and girls that different? An analysis of traumatic brain injury in children.

    LENUS (Irish Health Repository)

    Collins, Niamh C

    2013-08-01

    The Phillips Report on traumatic brain injury (TBI) in Ireland found that injury was more frequent in men and that gender differences were present in childhood. This study determined when gender differences emerge and examined the effect of gender on the mechanism of injury, injury type and severity and outcome.

  18. Factors affecting radiation injury after interstitial brachytherapy for brain tumors

    International Nuclear Information System (INIS)

    Leibel, S.A.; Gutin, P.H.; Davis, R.L.

    1991-01-01

    The effects of brachytherapy on normal brain tissue are not easily delineated in the clinical setting because of the presence of concurrent radiation-induced changes in the coexistent brain tumor. Sequential morphologic studies performed after the implantation of radioactive sources into the brains of experimental animals have provided a better understanding of the character and magnitude of the structural changes produced by interstitial irradiation on normal brain tissue. Furthermore, the clinical experience accumulated thus far provides not only relevant information, but also some guidelines for future treatment policies. In this paper, the authors summarize the experimental findings and review the pathologic and clinical features of brain injury caused by interstitial brachytherapy. A number of studies in the older literature examined the effects of radioisotopes such as radium-226 (38--43), radon-22 (44--46), gold-198 (29,47--50), tantalum-182 (29,51,52) yttrium-9- (50,53,54), and cobalt-60 (29,50,55). This review is restricted to low- and high-activity encapsulated iodine-125 ( 125 I) and iridium-192 ( 192 Ir), the isotopes that are most commonly used in current clinical practice

  19. Aging exacerbates intracerebral hemorrhage-induced brain injury.

    Science.gov (United States)

    Lee, Jae-Chul; Cho, Geum-Sil; Choi, Byung-Ok; Kim, Hyoung Chun; Kim, Won-Ki

    2009-09-01

    Aging may be an important factor affecting brain injury by intracerebral hemorrhage (ICH). In the present study, we investigated the responses of glial cells and monocytes to intracerebral hemorrhage in normal and aged rats. ICH was induced by microinjecting autologous whole blood (15 microL) into the striatum of young (4 month old) and aged (24 month old) Sprague-Dawley rats. Age-dependent relations of brain tissue damage with glial and macrophageal responses were evaluated. Three days after ICH, activated microglia/macrophages with OX42-positive processes and swollen cytoplasm were more abundantly distributed around and inside the hemorrhagic lesions. These were more dramatic in aged versus the young rats. Western blot and immunohistochemistry analyses showed that the expression of interleukin-1beta protein after ICH was greater in aged rats, whereas the expression of GFAP and ciliary neurotrophic factor protein after ICH was significantly lower in aged rats. These results suggest that ICH causes more severe brain injury in aged rats most likely due to overactivation of microglia/macrophages and concomitant repression of reactive astrocytes.

  20. Sleep disruption and the sequelae associated with traumatic brain injury.

    Science.gov (United States)

    Lucke-Wold, Brandon P; Smith, Kelly E; Nguyen, Linda; Turner, Ryan C; Logsdon, Aric F; Jackson, Garrett J; Huber, Jason D; Rosen, Charles L; Miller, Diane B

    2015-08-01

    Sleep disruption, which includes a loss of sleep as well as poor quality fragmented sleep, frequently follows traumatic brain injury (TBI) impacting a large number of patients each year in the United States. Fragmented and/or disrupted sleep can worsen neuropsychiatric, behavioral, and physical symptoms of TBI. Additionally, sleep disruption impairs recovery and can lead to cognitive decline. The most common sleep disruption following TBI is insomnia, which is difficulty staying asleep. The consequences of disrupted sleep following injury range from deranged metabolomics and blood brain barrier compromise to altered neuroplasticity and degeneration. There are several theories for why sleep is necessary (e.g., glymphatic clearance and metabolic regulation) and these may help explain how sleep disruption contributes to degeneration within the brain. Experimental data indicate disrupted sleep allows hyperphosphorylated tau and amyloid β plaques to accumulate. As sleep disruption may act as a cellular stressor, target areas warranting further scientific investigation include the increase in endoplasmic reticulum and oxidative stress following acute periods of sleep deprivation. Potential treatment options for restoring the normal sleep cycle include melatonin derivatives and cognitive behavioral therapy. Published by Elsevier Ltd.

  1. Platelet activation and dysfunction in a large-animal model of traumatic brain injury and hemorrhage

    DEFF Research Database (Denmark)

    Sillesen, Martin; Johansson, Pär I; Rasmussen, Lars S

    2013-01-01

    Traumatic brain injury (TBI) and hemorrhage are the leading causes of trauma-related mortality. Both TBI and hemorrhage are associated with coagulation disturbances, including platelet dysfunction. We hypothesized that platelet dysfunction could be detected early after injury...

  2. Mild Traumatic Brain Injury in U.S. Soldiers Returning from Iraq

    National Research Council Canada - National Science Library

    Hoge, Charles W; McGurk, Dennis; Thomas, Jeffrey L; Cox, Anthony L; Engel, Charles C; Castro, Carl A

    2008-01-01

    .... Validated clinical instruments were used to compare soldiers reporting mild traumatic brain injury, defined as an injury with loss of consciousness or altered mental status (e.g., dazed or confused...

  3. Alteration and reorganization of functional networks: a new perspective in brain injury study

    Directory of Open Access Journals (Sweden)

    Nazareth P. Castellanos

    2011-09-01

    Full Text Available Plasticity is the mechanism underlying brain’s potential capability to compensate injury. Recently several studies have shown that functional connections among brain areas are severely altered by brain injury and plasticity leading to a reorganization of the networks. This new approach studies the impact of brain injury by means of alteration of functional interactions. The concept of functional connectivity refers to the statistical interdependencies between physiological time series simultaneously recorded in various brain areas and it could be an essential tool for brain function studies, being its deviation from healthy reference an indicator for damage. In this article, we review studies investigating functional connectivity changes after brain injury and subsequent recovery, providing an accessible introduction to common mathematical methods to infer functional connectivity, exploring their capabilities, future perspectives and clinical uses in brain injury studies.

  4. Role of Non-neuronal Cells in Tauopathies After Brain Injury

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0422 TITLE: Role of Nonneuronal Cells in Tauopathies After Brain Injury PRINCIPAL INVESTIGATOR: Sally A. Frautschy...AND SUBTITLE 5a. CONTRACT NUMBER Role of Non-neuronal Cells in Tauopathies After Brain Injury 5b. GRANT NUMBER W81XWH-15-1-0422 5c. PROGRAM...traumatic brain injury (TBI), specific inflammatory factors (complement proteins) elevated during long asymptomatic prodromal period are responsible

  5. Role of bromocriptine in multi-spectral manifestations of traumatic brain injury

    OpenAIRE

    Munakomi, Sunil; Bhattarai, Binod; Mohan Kumar, Bijoy

    2017-01-01

    Purpose: Despite the prevalence and cost of traumatic brain injury related disabilities, there is paucity in the literature on modern approaches to pharmacotherapy. Medications may promote recovery by enhancing some neurological functions without impacting others. Herein we discussed the role of bromocriptine in neurorehabilitation for patients with traumatic brain injury. Methods: A cohort comprising of 36 selective nonsurgical cases of traumatic brain injury in minimally conscious state ...

  6. Development of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    Science.gov (United States)

    2016-02-01

    excised after severe brain injury . Experimental neurology 2004;190:192-203. 24. Frost B, Diamond MI. Prion-like mechanisms in neurodegenerative...Brain Injury PRINCIPAL INVESTIGATORs: Marc Diamond, MD CONTRACTING ORGANIZATION: Washington University, St Louis MO 63110 UT Southwestern, Dallas...of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury 5b. GRANT NUMBER W81XWH-13-2-0016 5c. PROGRAM ELEMENT NUMBER 6

  7. The Neuropsychology of Traumatic Brain Injury: Looking Back, Peering Ahead.

    Science.gov (United States)

    Yeates, Keith Owen; Levin, Harvey S; Ponsford, Jennie

    2017-10-01

    The past 50 years have been a period of exciting progress in neuropsychological research on traumatic brain injury (TBI). Neuropsychologists and neuropsychological testing have played a critical role in these advances. This study looks back at three major scientific advances in research on TBI that have been critical in pushing the field forward over the past several decades: The advent of modern neuroimaging; the recognition of the importance of non-injury factors in determining recovery from TBI; and the growth of cognitive rehabilitation. Thanks to these advances, we now have a better understanding of the pathophysiology of TBI and how recovery from the injury is also shaped by pre-injury, comorbid, and contextual factors, and we also have increasing evidence that active interventions, including cognitive rehabilitation, can help to promote better outcomes. The study also peers ahead to discern two important directions that seem destined to influence research on TBI over the next 50 years: the development of large, multi-site observational studies and randomized controlled trials, bolstered by international research consortia and the adoption of common data elements; and attempts to translate research into health care and health policy by the application of rigorous methods drawn from implementation science. Future research shaped by these trends should provide critical evidence regarding the outcomes of TBI and its treatment, and should help to disseminate and implement the knowledge gained from research to the betterment of the quality of life of persons with TBI. (JINS, 2017, 23, 806-817).

  8. Molecular mechanisms of cognitive dysfunction following traumatic brain injury

    Science.gov (United States)

    Walker, Kendall R.; Tesco, Giuseppina

    2013-01-01

    Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration. PMID:23847533

  9. Molecular mechanisms of cognitive dysfunction following traumatic brain injury.

    Science.gov (United States)

    Walker, Kendall R; Tesco, Giuseppina

    2013-01-01

    Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration.

  10. Neuropsychology of traumatic brain injury: An expert overview.

    Science.gov (United States)

    Azouvi, P; Arnould, A; Dromer, E; Vallat-Azouvi, C

    Traumatic brain injury (TBI) is a serious healthcare problem, and this report is a selective review of recent findings on the epidemiology, pathophysiology and neuropsychological impairments following TBI. Patients who survive moderate-to-severe TBI frequently suffer from a wide range of cognitive deficits and behavioral changes due to diffuse axonal injury. These deficits include slowed information-processing and impaired long-term memory, attention, working memory, executive function, social cognition and self-awareness. Mental fatigue is frequently also associated and can exacerbate the consequences of neuropsychological deficits. Personality and behavioral changes can include combinations of impulsivity and apathy. Even mild TBI raises specific problems: while most patients recover within a few weeks or months, a minority of patients may suffer from long-lasting symptoms (post-concussion syndrome). The pathophysiology of such persistent problems remains a subject of debate, but seems to be due to both injury-related and non-injury-related factors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Cerebral sinus venous thrombosis in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Christina Mueller-Hoecker

    2016-04-01

    Full Text Available A 36-year-old, healthy man was admitted to the emergency department with a traumatic brain injury with an injury severity score of 25 points. The head computed tomography revealed a subarachnoidal, epidural hemorrhage as well as a fracture of the occipital calotte. Intracranial pressure (ICP management was installed according to the LUND concept. In the following scan an angiography revealed a thrombosis of the sinus sigmoideus and transversus. Located next to the fractured skull, the thrombosis was highly likely traumatic, caused by the head trauma. As there was only a little congestion of the blood flow, no lysis or thrombectomy was performed. To lower ICP, a craniectomy was performed. After seven days, mechanical ventilation was terminated. Four days later the patient was already stable enough to be discharged from the surgical itensive care unit.

  12. Viewing the functional consequences of traumatic brain injury by using brain SPECT.

    Science.gov (United States)

    Pavel, D; Jobe, T; Devore-Best, S; Davis, G; Epstein, P; Sinha, S; Kohn, R; Craita, I; Liu, P; Chang, Y

    2006-03-01

    High-resolution brain SPECT is increasingly benefiting from improved image processing software and multiple complementary display capabilities. This enables detailed functional mapping of the disturbances in relative perfusion occurring after TBI. The patient population consisted of 26 cases (ages 8-61 years)between 3 months and 6 years after traumatic brain injury.A very strong case can be made for the routine use of Brain SPECT in TBI. Indeed it can provide a detailed evaluation of multiple functional consequences after TBI and is thus capable of supplementing the clinical evaluation and tailoring the therapeutic strategies needed. In so doing it also provides significant additional information beyond that available from MRI/CT. The critical factor for Brain SPECT's clinical relevance is a carefully designed technical protocol, including displays which should enable a comprehensive description of the patterns found, in a user friendly mode.

  13. Multi-modal MRI of mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Ponnada A. Narayana

    2015-01-01

    Full Text Available Multi-modal magnetic resonance imaging (MRI that included high resolution structural imaging, diffusion tensor imaging (DTI, magnetization transfer ratio (MTR imaging, and magnetic resonance spectroscopic imaging (MRSI were performed in mild traumatic brain injury (mTBI patients with negative computed tomographic scans and in an orthopedic-injured (OI group without concomitant injury to the brain. The OI group served as a comparison group for mTBI. MRI scans were performed both in the acute phase of injury (~24 h and at follow-up (~90 days. DTI data was analyzed using tract based spatial statistics (TBSS. Global and regional atrophies were calculated using tensor-based morphometry (TBM. MTR values were calculated using the standard method. MRSI was analyzed using LC Model. At the initial scan, the mean diffusivity (MD was significantly higher in the mTBI cohort relative to the comparison group in several white matter (WM regions that included internal capsule, external capsule, superior corona radiata, anterior corona radiata, posterior corona radiata, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, forceps major and forceps minor of the corpus callosum, superior longitudinal fasciculus, and corticospinal tract in the right hemisphere. TBSS analysis failed to detect significant differences in any DTI measures between the initial and follow-up scans either in the mTBI or OI group. No significant differences were found in MRSI, MTR or morphometry between the mTBI and OI cohorts either at the initial or follow-up scans with or without family wise error (FWE correction. Our study suggests that a number of WM tracts are affected in mTBI in the acute phase of injury and that these changes disappear by 90 days. This study also suggests that none of the MRI-modalities used in this study, with the exception of DTI, is sensitive in detecting changes in the acute phase of mTBI.

  14. Impaired cognitive functions in mild traumatic brain injury patients with normal and pathologic magnetic resonance imaging

    International Nuclear Information System (INIS)

    Kurca, E.; Sivak, S.; Kucera, P.

    2006-01-01

    Mild traumatic brain injury (MTBI) is a common neurological (neurotraumatological) diagnosis. As well as different subjective symptoms, many patients develop neuropsychological dysfunction with objective impairment of attention, memory and certain executive functions. Magnetic resonance imaging (MRI) is not routinely used in MTBI patients despite its proven greater sensitivity and specificity in comparison with computed tomography (CT). The patient group consisted of 30 persons with MTBI and the control group consisted of 30 sex- and age-matched healthy volunteers. Both groups underwent neurological examination, neuropsychological testing (including the Postconcussion Symptoms Scale questionnaire, PCSS) and brain MRI (the patient group within 96 h after injury). The analyzed groups did not differ significantly in terms of sex, age, or level or duration of education. MRI pathological findings (traumatic and nonspecific) were present in nine patients. Traumatic lesions were found in seven patients. Nonspecific white matter lesions were found in five healthy controls. There were significant differences between MTBI patients and controls in terms of subjective symptoms (PCSS) and selected neuropsychological tests. Statistically significant neuropsychological differences were found between MTBI patients with true traumatic lesions and MTBI patients with nonspecific lesions. There is evidence that MTBI patients with true traumatic MRI lesions are neuropsychologically different from MTBI patients with nonspecific MRI lesions or normal brain MRI. These results support the hypothesis that some acute MTBI signs and symptoms have a real organic basis which can be detected by selected new MRI modalities. (orig.)

  15. Impaired cognitive functions in mild traumatic brain injury patients with normal and pathologic magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kurca, E.; Sivak, S. [Comenius University, Clinic of Neurology, Jessenius Faculty of Medicine, Martin (Slovakia); Kucera, P. [Comenius University, 1st Clinic of Neurology, Faculty of Medicine, Bratislava (Slovakia)

    2006-09-15

    Mild traumatic brain injury (MTBI) is a common neurological (neurotraumatological) diagnosis. As well as different subjective symptoms, many patients develop neuropsychological dysfunction with objective impairment of attention, memory and certain executive functions. Magnetic resonance imaging (MRI) is not routinely used in MTBI patients despite its proven greater sensitivity and specificity in comparison with computed tomography (CT). The patient group consisted of 30 persons with MTBI and the control group consisted of 30 sex- and age-matched healthy volunteers. Both groups underwent neurological examination, neuropsychological testing (including the Postconcussion Symptoms Scale questionnaire, PCSS) and brain MRI (the patient group within 96 h after injury). The analyzed groups did not differ significantly in terms of sex, age, or level or duration of education. MRI pathological findings (traumatic and nonspecific) were present in nine patients. Traumatic lesions were found in seven patients. Nonspecific white matter lesions were found in five healthy controls. There were significant differences between MTBI patients and controls in terms of subjective symptoms (PCSS) and selected neuropsychological tests. Statistically significant neuropsychological differences were found between MTBI patients with true traumatic lesions and MTBI patients with nonspecific lesions. There is evidence that MTBI patients with true traumatic MRI lesions are neuropsychologically different from MTBI patients with nonspecific MRI lesions or normal brain MRI. These results support the hypothesis that some acute MTBI signs and symptoms have a real organic basis which can be detected by selected new MRI modalities. (orig.)

  16. Patient Effort in Traumatic Brain Injury Inpatient Rehabilitation: Course and Associations With Age, Brain Injury Severity, and Time Postinjury.

    Science.gov (United States)

    Seel, Ronald T; Corrigan, John D; Dijkers, Marcel P; Barrett, Ryan S; Bogner, Jennifer; Smout, Randall J; Garmoe, William; Horn, Susan D

    2015-08-01

    To describe patients' level of effort in occupational, physical, and speech therapy sessions during traumatic brain injury (TBI) inpatient rehabilitation and to evaluate how age, injury severity, cognitive impairment, and time are associated with effort. Prospective, multicenter, longitudinal cohort study. Acute TBI rehabilitation programs. Patients (N=1946) receiving 138,555 therapy sessions. Not applicable. Effort in rehabilitation sessions rated on the Rehabilitation Intensity of Therapy Scale, FIM, Comprehensive Severity Index brain injury severity score, posttraumatic amnesia (PTA), and Agitated Behavior Scale (ABS). The Rehabilitation Intensity of Therapy Scale effort ratings in individual therapy sessions closely conformed to a normative distribution for all 3 disciplines. Mean Rehabilitation Intensity of Therapy Scale ratings for patients' therapy sessions were higher in the discharge week than in the admission week (Prehabilitation, differences in effort ratings (Prehabilitation admission, days from admission, and daily ratings of PTA and ABS score were predictors of level of effort (Prehabilitation setting using the Rehabilitation Intensity of Therapy Scale. Patients who sustain TBI show varying levels of effort in rehabilitation therapy sessions, with effort tending to increase over the stay. PTA and agitated behavior are primary risk factors that substantially reduce patient effort in therapies. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury

    Directory of Open Access Journals (Sweden)

    Quan Jiang

    2016-01-01

    Full Text Available Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance imaging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic.

  18. Optical coherence tomography imaging of cranial meninges post brain injury in vivo

    Institute of Scientific and Technical Information of China (English)

    Woo June Choi; Ruikang K.Wang

    2017-01-01

    We report a new application of optical coherence tomography (OCT) to investigate the cranial meninges in an animal model of brain injury in vivo.The injury is induced in a mouse due to skull thinning,in which the repeated and excessive drilling exerts mechanical stress on the mouse brain through the skull,resulting in acute and mild brain injury.Transcranial OCT imaging reveals an interesting virtual space between the cranial meningeal layers post skull thinning,which is gradually closed within hours.The finding suggests a promise of OCT as an effective tool to monitor the mechanical trauma in the small animal model of brain injury.

  19. A Danish national strategy for treatment and rehabilitation after acquired brain injury

    DEFF Research Database (Denmark)

    Engberg, Aase W

    2007-01-01

    This study describes the establishment of a Danish national strategy for treatment and rehabilitation of acquired brain injury, particularly traumatic brain injury, in 1997. The vision was to create a system of tax-financed continuous treatment, restoration of function, and outpatient rehabilitat......This study describes the establishment of a Danish national strategy for treatment and rehabilitation of acquired brain injury, particularly traumatic brain injury, in 1997. The vision was to create a system of tax-financed continuous treatment, restoration of function, and outpatient...

  20. Performance Monitoring in Children Following Traumatic Brain Injury Compared to Typically Developing Children

    Directory of Open Access Journals (Sweden)

    Amy A. Wilkinson PhD

    2017-10-01

    Full Text Available Children with traumatic brain injury are reported to have deficits in performance monitoring, but the mechanisms underlying these deficits are not well understood. Four performance monitoring hypotheses were explored by comparing how 28 children with traumatic brain injury and 28 typically developing controls (matched by age and sex performed on the stop-signal task. Control children slowed significantly more following incorrect than correct stop-signal trials, fitting the error monitoring hypothesis. In contrast, the traumatic brain injury group showed no performance monitoring difference with trial types, but significant group differences did not emerge, suggesting that children with traumatic brain injury may not perform the same way as controls.

  1. Severe blood-brain barrier disruption and surrounding tissue injury.

    Science.gov (United States)

    Chen, Bo; Friedman, Beth; Cheng, Qun; Tsai, Phil; Schim, Erica; Kleinfeld, David; Lyden, Patrick D

    2009-12-01

    Blood-brain barrier opening during ischemia follows a biphasic time course, may be partially reversible, and allows plasma constituents to enter brain and possibly damage cells. In contrast, severe vascular disruption after ischemia is unlikely to be reversible and allows even further extravasation of potentially harmful plasma constituents. We sought to use simple fluorescent tracers to allow wide-scale visualization of severely damaged vessels and determine whether such vascular disruption colocalized with regions of severe parenchymal injury. Severe vascular disruption and ischemic injury was produced in adult Sprague Dawley rats by transient occlusion of the middle cerebral artery for 1, 2, 4, or 8 hours, followed by 30 minutes of reperfusion. Fluorescein isothiocyanate-dextran (2 MDa) was injected intravenously before occlusion. After perfusion-fixation, brain sections were processed for ultrastructure or fluorescence imaging. We identified early evidence of tissue damage with Fluoro-Jade staining of dying cells. With increasing ischemia duration, greater quantities of high molecular weight dextran-fluorescein isothiocyanate invaded and marked ischemic regions in a characteristic pattern, appearing first in the medial striatum, spreading to the lateral striatum, and finally involving cortex; maximal injury was seen in the mid-parietal areas, consistent with the known ischemic zone in this model. The regional distribution of the severe vascular disruption correlated with the distribution of 24-hour 2,3,5-triphenyltetrazolium chloride pallor (r=0.75; P<0.05) and the cell death marker Fluoro-Jade (r=0.86; P<0.05). Ultrastructural examination showed significantly increased areas of swollen astrocytic foot process and swollen mitochondria in regions of high compared to low leakage, and compared to contralateral homologous regions (ANOVA P<0.01). Dextran extravasation into the basement membrane and surrounding tissue increased significantly from 2 to 8 hours of

  2. Home and family in cognitive rehabilitation after brain injury

    DEFF Research Database (Denmark)

    Mogensen, Jesper; Wulf-Andersen, Camilla

    2017-01-01

    The focus of the present article is the home and family environment of patients suffering acquired brain injury. In order to obtain the optimal outcome of posttraumatic cognitive rehabilitation it is important (a) to obtain a sufficient intensity of rehabilitative training, (b) to achieve...... the maximum degree of generalization from formalized training to the daily environment of the patient, and (c) to obtain the best possible utilization of “cognitive reserves” in the form of cognitive abilities and “strategies” acquired pretraumatically. Supplementing the institution-based cognitive training...

  3. Pituitary dysfunction following traumatic brain injury: clinical perspectives

    Science.gov (United States)

    Tanriverdi, Fatih; Kelestimur, Fahrettin

    2015-01-01

    Traumatic brain injury (TBI) is a well recognized public health problem worldwide. TBI has previously been considered as a rare cause of hypopituitarism, but an increased prevalence of neuroendocrine dysfunction in patients with TBI has been reported during the last 15 years in most of the retrospective and prospective studies. Based on data in the current literature, approximately 15%–20% of TBI patients develop chronic hypopituitarism, which clearly suggests that TBI-induced hypopituitarism is frequent in contrast with previous assumptions. This review summarizes the current data on TBI-induced hypopituitarism and briefly discusses some clinical perspectives on post-traumatic anterior pituitary hormone deficiency. PMID:26251600

  4. Imaging of Brain Connectivity in Dementia: Clinical Implications for Diagnosis of its Underlying Diseases

    NARCIS (Netherlands)

    R. Meijboom (Rozanna)

    2017-01-01

    markdownabstractIn this thesis we investigated the use of advanced magnetic resonance imaging (MRI) techniques in identifying subtle brain abnormalities, associating brain abnormalities with disease symptomatology, and improving early (differential) diagnosis in several diseases underlying dementia.

  5. Recent neuroimaging techniques in mild traumatic brain injury.

    Science.gov (United States)

    Belanger, Heather G; Vanderploeg, Rodney D; Curtiss, Glenn; Warden, Deborah L

    2007-01-01

    Mild traumatic brain injury (TBI) is characterized by acute physiological changes that result in at least some acute cognitive difficulties and typically resolve by 3 months postinjury. Because the majority of mild TBI patients have normal structural magnetic resonance imaging (MRI)/computed tomography (CT) scans, there is increasing attention directed at finding objective physiological correlates of persistent cognitive and neuropsychiatric symptoms through experimental neuroimaging techniques. The authors review studies utilizing these techniques in patients with mild TBI; these techniques may provide more sensitive assessment of structural and functional abnormalities following mild TBI. Particular promise is evident with fMRI, PET, and SPECT scanning, as demonstrated by associations between brain activation and clinical outcomes.

  6. Family and home in cognitive rehabilitation after brain injury

    DEFF Research Database (Denmark)

    Wulf-Andersen, Camilla; Mogensen, Jesper

    2017-01-01

    Acquired brain injury (ABI) severely affects both the injured patient and her/his family. This fact alone calls for a therapeutic approach addressing not only the individual victim of ABI but also her/his family. Additionally, the optimal outcome of posttraumatic cognitive rehabilitation may...... be best obtained by supplementing the institution-based cognitive training with home-based training. Moving cognitive training and other therapeutic interventions into the home environment does, however, constitute an additional challenge to the family structure and psychological wellbeing of all family...... members. We presently argue in favour of an increased utilization of family-based intervention programs for the families of brain injured patients – in general and especially in case of utilization of home-based rehabilitative training....

  7. Brain activity patterns uniquely supporting visual feature integration after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anjali eRaja Beharelle

    2011-12-01

    Full Text Available Traumatic brain injury (TBI patients typically respond more slowly and with more variability than controls during tasks of attention requiring speeded reaction time. These behavioral changes are attributable, at least in part, to diffuse axonal injury (DAI, which affects integrated processing in distributed systems. Here we use a multivariate method sensitive to distributed neural activity to compare brain activity patterns of patients with chronic phase moderate-to-severe TBI to those of controls during performance on a visual feature-integration task assessing complex attentional processes that has previously shown sensitivity to TBI. The TBI patients were carefully screened to be free of large focal lesions that can affect performance and brain activation independently of DAI. The task required subjects to hold either one or three features of a target in mind while suppressing responses to distracting information. In controls, the multi-feature condition activated a distributed network including limbic, prefrontal, and medial temporal structures. TBI patients engaged this same network in the single-feature and baseline conditions. In multi-feature presentations, TBI patients alone activated additional frontal, parietal, and occipital regions. These results are consistent with neuroimaging studies using tasks assessing different cognitive domains, where increased spread of brain activity changes was associated with TBI. Our results also extend previous findings that brain activity for relatively moderate task demands in TBI patients is similar to that associated with of high task demands in controls.

  8. Human Recombinant Factor VIIa is Neuroprotective in a Model of Traumatic Brain Injury and Secondary Hypoxemia

    National Research Council Canada - National Science Library

    Bauman, R. A; Long, J. B; Ketchum, L. H; Macdonald, V. W

    2004-01-01

    .... In the untraumatized brain, TF is physically isolated from FVII. However, traumatic brain injury (TBI) frequently results in the disruption of the vascular endothelium and resultant exposure of FVII to subendothelial TF...

  9. Early amplitude‐integrated electroencephalography for monitoring neonates at high risk for brain injury

    Directory of Open Access Journals (Sweden)

    Gabriel Fernando Todeschi Variane

    2017-09-01

    Conclusion: This study supports previous results and demonstrates the utility of amplitude‐integrated electroencephalography for monitoring brain function and predicting early outcome in the studied groups of infants at high risk for brain injury.

  10. SPECT brain perfusion findings in mild or moderate traumatic brain injury.

    Science.gov (United States)

    Abu-Judeh, H H; Parker, R; Aleksic, S; Singh, M L; Naddaf, S; Atay, S; Kumar, M; Omar, W; El-Zeftawy, H; Luo, J Q; Abdel-Dayem, H M

    2000-01-01

    The purpose of this manuscript is to present the findings in the largest series of SPECT brain perfusion imaging reported to date for mild or moderate traumatic brain injury. This is a retrospective evaluation of 228 SPECT brain perfusion-imaging studies of patients who suffered mild or moderate traumatic brain injury with or without loss of consciousness (LOC). All patients had no past medical history of previous brain trauma, neurological, or psychiatric diseases, HIV, alcohol or drug abuse. The patient population included 135 males and 93 females. The ages ranged from 11-88 years (mean 40.8). The most common complaints were characteristic of the postconcussion syndrome: headaches 139/228 (61%); dizziness 61/228 (27%); and memory problems 63/228 (28%). LOC status was reported to be positive in 121/228 (53%), negative in 41/228 (18%), and unknown for 63/228 (28%). Normal studies accounted for 52/228 (23%). For abnormal studies (176/228 or 77%) the findings were as follows: basal ganglia hypoperfusion 338 lesions (55.2%); frontal lobe hypoperfusion 146 (23.8%); temporal lobes hypoperfusion 80 (13%); parietal lobes hypoperfusion 20 (3.7%); insular and or occipital lobes hypoperfusion 28 (4.6%). Patients' symptoms correlated with the SPECT brain perfusion findings. The SPECT BPI studies in 122/228 (54%) were done early within 3 months of the date of the accident, and for the remainder, 106/228 (46%) over 3 months and less than 3 years from the date of the injury. In early imaging, 382 lesions were detected; in 92 patients (average 4.2 lesions per study) imaging after 3 months detected 230 lesions: in 84 patients (average 2.7 lesions per study). Basal ganglia hypoperfusion is the most common abnormality following mild or moderate traumatic brain injury (p = 0.006), and is more common in patients complaining of memory problem (p = 0.0005) and dizziness (p = 0.003). Early imaging can detect more lesions than delayed imaging (p = 0.0011). SPECT brain perfusion

  11. SPECT brain perfusion findings in mild or moderate traumatic brain injury

    International Nuclear Information System (INIS)

    Abu-Judeh, H.H.; Parker, R.; Aleksic, S.

    2000-01-01

    Background: The purpose of this manuscript is to present the findings in the largest series of SPECT brain perfusion imaging reported to date for mild or moderate traumatic brain injury. PATIENTS AND METHODS: This is a retrospective evaluation of 228 SPECT brain perfusion-imaging studies of patients who suffered mild or moderate traumatic brain injury with or without loss of consciousness (LOC). All patients had no past medical history of previous brain trauma, neurological, or psychiatric diseases, HIV, alcohol or drug abuse. The patient population included 135 males and 93 females. The ages ranged from 11-88 years (mean 40.8). The most common complaints were characteristic of the postconcussion syndrome: headaches 139/228 (61%); dizziness 61/228 (27%); and memory problems 63/228 (28%). LOC status was reported to be positive in 121/228 (53%), negative in 41/228 (18%), and unknown for 63/228 (28%). RESULTS: Normal studies accounted for 52/228 (23%). For abnormal studies (176/228 or 77%) the findings were as follows: basal ganglia hypoperfusion 338 lesions (55.2%); frontal lobe hypoperfusion 146 (23.8%); temporal lobes hypoperfusion 80 (13%); parietal lobes hypoperfusion 20 (3.7%); insular and or occipital lobes hypoperfusion 28 (4.6%). Patients' symptoms correlated with the SPECT brain perfusion findings. The SPECT BPI studies in 122/228 (54%) were done early within 3 months of the date of the accident, and for the remainder, 106/228 (46%) over 3 months and less than 3 years from the date of the injury. In early imaging, 382 lesions were detected; in 92 patients (average 4.2 lesions per study) imaging after 3 months detected 230 lesions: in 84 patients (average 2.7 lesions per study). CONCLUSIONS: Basal ganglia hypoperfusion is the most common abnormality following mild or moderate traumatic brain injury (p = 0.006), and is more common in patients complaining of memory problem (p = 0.0005) and dizziness (p = 0.003). Early imaging can detect more lesions than

  12. Advances in Diagnosis and Treatment of Brain Metastases from the Primary Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yi LIU

    2013-07-01

    Full Text Available Lung cancer with brain metastasis was 23% to 65%, and is the most common type in brain metastasis tumors with the poor prognosis. At present, diagnosis and treatment of brain metastases from lung carcinoma and its molecular mechanism have become one hot spot of amount researches. Here, we made a systematic review of the progress of the clinical features, diagnosis and treatment of brain metastases from lung and its molecular mechanism.

  13. CT findings of traumatic primary brain-stem injury

    International Nuclear Information System (INIS)

    Hosaka, Yasuaki; Hatashita, Shizuo; Bandou, Kuniaki; Ueki, Yasuyuki; Abe, Kouzou; Koga, Nobunori; Sugimura, Jun; Sakakibara, Tokiwa; Takagi, Suguru

    1984-01-01

    A series of 27 consecutive patients with traumatic primary brain stem injuries was studied. They were diagnosed by means of clinical signs, neurological examination, and computerized tomography (CT). The CT findings of the brain-stem lesions were classified into 4 types: Type H, spotty, high-density; Type H and L, high- and low-densities; Type L, low-density; Type I, isodensity. The Glasgow coma scale (GCS), neurological findings on admission, CT findings (findings in the brain stem, obliteration of perimesencephalic cistern (PMC), and other findings), and the Glasgow outcome scale (GOS) were examined. In the 9 cases of Type H, there was a correlation between the GCS and the GOS, and the spotty, high-density lesions were localized mainly in the dorsal and/or ventral midbrain parenchyma, but these lesions did not show focal signs and symptoms. Without an obliteration of the PMC, Type-H patients did not always have a bad outcome. In the 4 cases of Type H and L, the 2 cases of Type L, and the 12 cases of Type I, there was an obliteration of the PMC. All of the these cases had a bad outcome (1 case of moderate disability, 3 cases of severe disability, and 14 cases of death). The mechanism producing a spotty, high-density area was discussed. The weaker impact (than the other types) and individual anatomical differences weresupposed to make for a spotty, high-density are in the brain stem. (author)

  14. Investigations of primary blast-induced traumatic brain injury

    Science.gov (United States)

    Sawyer, T. W.; Josey, T.; Wang, Y.; Villanueva, M.; Ritzel, D. V.; Nelson, P.; Lee, J. J.

    2018-01-01

    The development of an advanced blast simulator (ABS) has enabled the reproducible generation of single-pulse shock waves that simulate free-field blast with high fidelity. Studies with rodents in the ABS demonstrated the necessity of head restraint during head-only exposures. When the head was not restrained, violent global head motion was induced by pressures that would not produce similar movement of a target the size and mass of a human head. This scaling artefact produced changes in brain function that were reminiscent of traumatic brain injury (TBI) due to impact-acceleration effects. Restraint of the rodent head eliminated these, but still produced subtle changes in brain biochemistry, showing that blast-induced pressure waves do cause brain deficits. Further experiments were carried out with rat brain cell aggregate cultures that enabled the conduct of studies without the gross movement encountered when using rodents. The suspension nature of this model was also exploited to minimize the boundary effects that complicate the interpretation of primary blast studies using surface cultures. Using this system, brain tissue was found not only to be sensitive to pressure changes, but also able to discriminate between the highly defined single-pulse shock waves produced by underwater blast and the complex pressure history exposures experienced by aggregates encased within a sphere and subjected to simulated air blast. The nature of blast-induced primary TBI requires a multidisciplinary research approach that addresses the fidelity of the blast insult, its accurate measurement and characterization, as well as the limitations of the biological models used.

  15. Magnetic resonance imaging research progress on brain functional reorganization after peripheral nerve injury

    International Nuclear Information System (INIS)

    Wang Weiwei; Liu Hanqiu

    2013-01-01

    In the recent years, with the development of functional magnetic resonance imaging technology the brain plasticity and functional reorganization are hot topics in the central nervous system imaging studies. Brain functional reorganization and rehabilitation after peripheral nerve injury may have certain regularity. In this paper, the progress of brain functional magnetic resonance imaging technology and its applications in the world wide clinical and experimental researches of the brain functional reorganization after peripheral nerve injury is are reviewed. (authors)

  16. Correlation Between Subacute Sensorimotor Deficits and Brain Edema in Rats after Surgical Brain Injury.

    Science.gov (United States)

    McBride, Devin W; Wang, Yuechun; Adam, Loic; Oudin, Guillaume; Louis, Jean-Sébastien; Tang, Jiping; Zhang, John H

    2016-01-01

    No matter how carefully a neurosurgical procedure is performed, it is intrinsically linked to postoperative deficits resulting in delayed healing caused by direct trauma, hemorrhage, and brain edema, termed surgical brain injury (SBI). Cerebral edema occurs several hours after SBI and is a major contributor to patient morbidity, resulting in increased postoperative care. Currently, the correlation between functional recovery and brain edema after SBI remains unknown. Here we examine the correlation between neurological function and brain water content in rats 42 h after SBI. SBI was induced in male Sprague-Dawley rats via frontal lobectomy. Twenty-four hours post-ictus animals were subjected to four neurobehavior tests: composite Garcia neuroscore, beam walking test, corner turn test, and beam balance test. Animals were then sacrificed for right-frontal brain water content measurement via the wet-dry method. Right-frontal lobe brain water content was found to significantly correlate with neurobehavioral deficits in the corner turn and beam balance tests: the number of left turns (percentage of total turns) for the corner turn test and distance traveled for the beam balance test were both inversely proportional with brain water content. No correlation was observed for the composite Garcia neuroscore or the beam walking test.

  17. Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology.

    Science.gov (United States)

    Kulbe, Jacqueline R; Hall, Edward D

    2017-11-01

    In recent years, a new neurodegenerative tauopathy labeled Chronic Traumatic Encephalopathy (CTE), has been identified that is believed to be primarily a sequela of repeated mild traumatic brain injury (TBI), often referred to as concussion, that occurs in athletes participating in contact sports (e.g. boxing, American football, Australian football, rugby, soccer, ice hockey) or in military combatants, especially after blast-induced injuries. Since the identification of CTE, and its neuropathological finding of deposits of hyperphosphorylated tau protein, mechanistic attention has been on lumping the disorder together with various other non-traumatic neurodegenerative tauopathies. Indeed, brains from suspected CTE cases that have come to autopsy have been confirmed to have deposits of hyperphosphorylated tau in locations that make its anatomical distribution distinct for other tauopathies. The fact that these individuals experienced repetitive TBI episodes during their athletic or military careers suggests that the secondary injury mechanisms that have been extensively characterized in acute TBI preclinical models, and in TBI patients, including glutamate excitotoxicity, intracellular calcium overload, mitochondrial dysfunction, free radical-induced oxidative damage and neuroinflammation, may contribute to the brain damage associated with CTE. Thus, the current review begins with an in depth analysis of what is known about the tau protein and its functions and dysfunctions followed by a discussion of the major TBI secondary injury mechanisms, and how the latter have been shown to contribute to tau pathology. The value of this review is that it might lead to improved neuroprotective strategies for either prophylactically attenuating the development of CTE or slowing its progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Position of probe determines prognostic information of brain tissue PO2 in severe traumatic brain injury.

    Science.gov (United States)

    Ponce, Lucido L; Pillai, Shibu; Cruz, Jovany; Li, Xiaoqi; Julia, H; Gopinath, Shankar; Robertson, Claudia S

    2012-06-01

    Monitoring brain tissue PO2 (PbtO2) is part of multimodality monitoring of patients with traumatic brain injury (TBI). However, PbtO2 measurement is a sampling of only a small area of tissue surrounding the sensor tip. To examine the effect of catheter location on the relationship between PbtO2 and neurological outcome. A total of 405 patients who had PbtO2 monitoring as part of standard management of severe traumatic brain injury were studied. The relationships between probe location and resulting PbtO2 and outcome were examined. When the probe was located in normal brain, PbtO2 averaged 30.8 ± 18.2 compared with 25.6 ± 14.8 mm Hg when placed in abnormal brain (P < .001). Factors related to neurological outcome in the best-fit logistic regression model were age, PbtO2 probe position, postresuscitation motor Glasgow Coma Scale score, and PbtO2 trend pattern. Although average PbtO2 was significantly related to outcome in univariate analyses, it was not significant in the final logistic model. However, the interaction between PbtO2 and probe position was statistically significant. When the PbtO2 probe was placed in abnormal brain, the average PbtO2 was higher in those with a favorable outcome, 28.8 ± 12.0 mm Hg, compared with those with an unfavorable outcome, 19.5 ± 13.7 mm Hg (P = .01). PbtO2 and outcome were not related when the probe was placed in normal-appearing brain. These results suggest that the location of the PbtO2 probe determines the PbtO2 values and the relationship of PbtO2 to neurological outcome.

  19. Brain lesion correlates of fatigue in individuals with traumatic brain injury.

    Science.gov (United States)

    Schönberger, Michael; Reutens, David; Beare, Richard; O'Sullivan, Richard; Rajaratnam, Shantha M W; Ponsford, Jennie

    2017-10-01

    The purpose of this study was to investigate the neurological correlates of both subjective fatigue as well as objective fatigability in individuals with traumatic brain injury (TBI). The study has a cross-sectional design. Participants (N = 53) with TBI (77% male, mean age at injury 38 years, mean time since injury 1.8 years) underwent a structural magnetic resonance imaging (MRI) scan and completed the Fatigue Severity Scale (FSS), while a subsample (N = 36) was also tested with a vigilance task. While subjective fatigue (FSS) was not related to measures of brain lesions, multilevel analyses showed that a change in the participants' decision time was significantly predicted by grey matter (GM) lesions in the right frontal lobe. The time-dependent development of the participants' error rate was predicted by total brain white matter (WM) lesion volumes, as well as right temporal GM and WM lesion volumes. These findings could be explained by decreased functional connectivity of attentional networks, which results in accelerated exhaustion during cognitive task performance. The disparate nature of objectively measurable fatigability on the one hand and the subjective experience of fatigue on the other needs further investigation.

  20. Immunochemical method for quantitative evaluation of vasogenic brain edema following cold injury of rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Bodsch, W; Huerter, T; Hossmann, K A [Max-Planck-Institut fuer Hirnforschung, Koeln (Germany, F.R.). Forschungsstelle fuer Hirnkreislauf-Forschung

    1982-10-07

    An immunochemical method is described for quantitative assessment of serum proteins and hemoglobin content in brain tissue homogenates. Using a combination of affinity chromatography and radioimmunoassay, the sensitivity of the method is 50 ng hemoglobin and 100 ng serum protein per assay, respectively. The method was used to measure cerebral hematocrit, blood volume and serum protein extravasation in rat brain at various times following cold injury. In control rats cerebral blood volume was 6.88 +- 0.15 ml/100 g and cerebral hematocrit 26.4 +- 0.86% (means +- S.E.). Following cold injury blood volume did not significantly change, but there was a gradual increase of extravasated serum proteins, reaching a maximum of 21.54 +- 2.76 mg/g d.w. after 8 hours. Thereafter protein content gradually declined, but even after 64 h it was distinctly increased. Protein extravasation was partly dissociated from the increase of brain water and sodium which reached a maximum already after 2 h and which normalized within 32 and 64 h, respectively. It is concluded that edema fluid associated with cold injury is not simply an ultrafiltrate of blood serum but consists of cytotoxic and vasogenic components which follow a different time course both during formation and resolution of edema.

  1. Immunochemical method for quantitative evaluation of vasogenic brain edema following cold injury of rat brain

    International Nuclear Information System (INIS)

    Bodsch, W.; Huerter, T.; Hossmann, K.-A.

    1982-01-01

    An immunochemical method is described for quantitative assessment of serum proteins and hemoglobin content in brain tissue homogenates. Using a combination of affinity chromatography and radioimmunoassay, the sensitivity of the method is 50 ng hemoglobin and 100 ng serum protein per assay, respectively. The method was used to measure cerebral hematocrit, blood volume and serum protein extravasation in rat brain at various times following cold injury. In control rats cerebral blood volume was 6.88 +- 0.15 ml/100 g and cerebral hematocrit 26.4 +- 0.86% (means +- S.E.). Following cold injury blood volume did not significantly change, but there was a gradual increase of extravasated serum proteins, reaching a maximum of 21.54 +- 2.76 mg/g d.w. after 8 hours. Thereafter protein content gradually declined, but even after 64 h it was distinctly increased. Protein extravasation was partly dissociated from the increase of brain water and sodium which reached a maximum already after 2 h and which normalized within 32 and 64 h, respectively. It is concluded that edema fluid associated with cold injury is not simply an ultrafiltrate of blood serum but consists of cytotoxic and vasogenic components which follow a different time course both during formation and resolution of edema. (Auth.)

  2. Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury

    DEFF Research Database (Denmark)

    Quintana, Albert; Giralt, Mercedes; Rojas, Santiago

    2005-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via intracell......Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via...... intracellular signaling. This cytokine exerts its functions via interaction with two receptors: type-1 receptor (TNFR1) and type-2 receptor (TNFR2). In this work, the inflammatory response after a freeze injury (cryolesion) in the cortex was studied in wild-type (WT) animals and in mice lacking TNFR1 (TNFR1 KO...... signaling also affected the expression of apoptosis/cell death-related genes (Fas, Rip, p53), matrix metalloproteinases (MMP3, MMP9, MMP12), and their inhibitors (TIMP1), suggesting a role of TNFR1 in extracellular matrix remodeling after injury. However, GDNF, NGF, and BDNF expression were not affected...

  3. Social communication features in children following moderate to severe acquired brain injury: a cross-sectional pilot study.

    Science.gov (United States)

    Breau, Lynn M; Clark, Brenda; Scott, Ori; Wilkes, Courtney; Reynolds, Shawn; Ricci, Florencia; Sonnenberg, Lyn; Zwaigenbaum, Lonnie; Rashid, Marghalara; Goez, Helly R

    2015-04-01

    We compared the social communication deficits of children with moderate to severe acquired brain injury or autism spectrum disorder, while accounting for the role of attention-deficit hyperactivity disorder (ADHD) symptoms. Parents of 20 children aged 6 to 10 years (10 acquired brain injury; 10 autism spectrum disorder) completed the Social Communication Questionnaire, and Conners 3 Parent Short. A multivariate analysis of covariance revealed significant differences between groups in Social Communication Questionnaire restricted repetitive behavior scores, but not reciprocal social interaction or social communication. Multiple linear regressions indicated diagnosis did not predict reciprocal social interaction or social communication scores and that Conners 3 Parent Short Form hyperactivity scores were the strongest predictor of Social Communication Questionnaire reciprocal social interaction scores after accounting for age and Intelligence Quotient. The lack of difference in social communication deficits between groups may help in understanding the pathophysiology underlying the behavioral consequences of acquired brain injury. The link between hyperactivity and reciprocal interaction suggests that targeting hyperactivity may improve social outcomes in children following acquired brain injury. © The Author(s) 2014.

  4. Mentoring programme for adolescent survivors of acquired brain injury.

    Science.gov (United States)

    Fraas, Michael; Bellerose, Amanda

    2010-01-01

    To report the findings of a mentor-adolescent relationship between two survivors of acquired brain injury (ABI). Case study report. The adolescent, a survivor of Eastern Equine Encephalitis, was paired with an adult mentor, a survivor of a TBI. Baseline scores on the Youth Quality of Life (YQOL), Wisconsin Quality of Life Index (WQLI) and the Mayo-Portland Adaptability Index-4 (MPAI-4) were recorded. The mentor provided support to the adolescent during the 10-week relationship conducted as a community-based programme for adults with acquired brain injury. In addition, both participants attended group activities that address the long-term needs of survivors of ABI. Post-programme scores were recorded on the YQOL, WQLI, MPAI-4 and a retrospective questionnaire. The adolescent demonstrated improved quality of life on the YQOL and improved ability, adjustment and participation on the MPAI-4. The mentor demonstrated improved quality of life on the WQLI and improved adjustment and participation on the MPAI-4. Both participants indicated satisfaction with the programme on the retrospective questionnaire. The mentor programme provided enhanced quality of life and psycho-social support to both participants. The authors do caution, however, that these findings are preliminary and examination of the efficacy of such programming is ongoing.

  5. A qualitative investigation of masculine identity after traumatic brain injury.

    Science.gov (United States)

    MacQueen, Ruth; Fisher, Paul; Williams, Deirdre

    2018-04-30

    Men are twice as likely as women to experience a traumatic brain injury (TBI), suggesting that aspects of masculine identity contribute to how people acquire their brain injuries. Research also suggests that masculine identity impacts on how people manage their health experiences. The current study aimed to explore the experience of masculine identity following TBI. Individual interviews were conducted with 10 men aged 21-67 years who had experienced a TBI. All were living in the community. Interpretative phenomenological analysis was used to consider lived experiences and to explore the meaning of the TBI experience in relation to masculine identity. Three superordinate themes emerged from the analysis: doing life and relationships differently, self-perceptions and the perceived view of others, and managing the impact of TBI as a man. These themes are considered in relation to how participants' experiences interacted with dominant social ideals of masculine identity. The findings highlighted how masculine identity may be a valuable aspect of self in considering threats to and reconstruction of self-identity after TBI. Aspects of gender identity should be considered in order to promote engagement, support adjustment and achieve meaningful outcomes in rehabilitation.

  6. Traumatic brain injury: future assessment tools and treatment prospects

    Directory of Open Access Journals (Sweden)

    Steven R Flanagan

    2008-10-01

    Full Text Available Steven R Flanagan1, Joshua B Cantor2, Teresa A Ashman21New York University School of Medicine, The Rusk Institute of Rehabilitation, New York, NY, USA; 2Department of Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY, USAAbstract: Traumatic brain injury (TBI is widespread and leads to death and disability in millions of individuals around the world each year. Overall incidence and prevalence of TBI are likely to increase in absolute terms in the future. Tackling the problem of treating TBI successfully will require improvements in the understanding of normal cerebral anatomy, physiology, and function throughout the lifespan, as well as the pathological and recuperative responses that result from trauma. New treatment approaches and combinations will need to be targeted to the heterogeneous needs of TBI populations. This article explores and evaluates the research evidence in areas that will likely lead to a reduction in TBI-related morbidity and improved outcomes. These include emerging assessment instruments and techniques in areas of structural/chemical and functional neuroimaging and neuropsychology, advances in the realms of cell-based therapies and genetics, promising cognitive rehabilitation techniques including cognitive remediation and the use of electronic technologies including assistive devices and virtual reality, and the emerging field of complementary and alternative medicine.Keywords: traumatic brain injury, assessments, treatments

  7. Late-onset social anxiety disorder following traumatic brain injury.

    Science.gov (United States)

    Chaves, Cristiano; Trzesniak, Clarissa; Derenusson, Guilherme Nogueira; Araújo, David; Wichert-Ana, Lauro; Machado-de-Sousa, João Paulo; Carlotti, Carlos Gilberto; Nardi, Antonio E; Zuardi, Antônio W; de S Crippa, José Alexandre; Hallak, Jaime E C

    2012-01-01

    Neuropsychiatric sequelae are the predominant long-term disability after traumatic brain injury (TBI). This study reports a case of late-onset social anxiety disorder (SAD) following TBI. A patient that was spontaneous and extroverted up to 18-years-old started to exhibit significant social anxiety symptoms. These symptoms became progressively worse and he sought treatment at age 21. He had a previous history of traumatic brain injury (TBI) at age 17. Neuroimaging investigations (CT, SPECT and MRI) showed a bony protuberance on the left frontal bone, with mass effect on the left frontal lobe. He had no neurological signs or symptoms. The patient underwent neurosurgery with gross total resection of the lesion and the pathological examination was compatible with intradiploic haematoma. Psychiatric symptoms may be the only findings in the initial manifestation of slowly growing extra-axial space-occupying lesions that compress the frontal lobe from the outside. Focal neurological symptoms may occur only when the lesion becomes large. This case report underscores the need for careful exclusion of general medical conditions and TBI history in cases of late-onset SAD and may also contribute to the elucidation of the neurobiology of this disorder.

  8. Electrophysiological biomarkers of epileptogenicity after traumatic brain injury.

    Science.gov (United States)

    Perucca, Piero; Smith, Gregory; Santana-Gomez, Cesar; Bragin, Anatol; Staba, Richard

    2018-06-05

    Post-traumatic epilepsy is the architype of acquired epilepsies, wherein a brain insult initiates an epileptogenic process culminating in an unprovoked seizure after weeks, months or years. Identifying biomarkers of such process is a prerequisite for developing and implementing targeted therapies aimed at preventing the development of epilepsy. Currently, there are no validated electrophysiological biomarkers of post-traumatic epileptogenesis. Experimental EEG studies using the lateral fluid percussion injury model have identified three candidate biomarkers of post-traumatic epileptogenesis: pathological high-frequency oscillations (HFOs, 80-300 Hz); repetitive HFOs and spikes (rHFOSs); and reduction in sleep spindle duration and dominant frequency at the transition from stage III to rapid eye movement sleep. EEG studies in humans have yielded conflicting data; recent evidence suggests that epileptiform abnormalities detected acutely after traumatic brain injury carry a significantly increased risk of subsequent epilepsy. Well-designed studies are required to validate these promising findings, and ultimately establish whether there are post-traumatic electrophysiological features which can guide the development of 'antiepileptogenic' therapies. Copyright © 2017. Published by Elsevier Inc.

  9. Caregivers' support needs and factors promoting resiliency after brain injury.

    Science.gov (United States)

    Kitter, Bryony; Sharman, Rachael

    2015-01-01

    This article explores the challenges, support needs and coping strategies of caregivers of people with an acquired brain injury (ABI). Semi-structured interviews were conducted with caregivers (n = 20) to explore their support services received, access barriers, utility of services, needed supports, coping strategies and factors promoting life satisfaction. The team recorded, transcribed verbatim and inductively analysed all interviews. Through thematic data analysis, three central themes were revealed: (a) barriers impeding quality-of-life, (b) support needed to improve quality-of-life and (c) factors enabling quality-of-life. All perspectives from the participants involved are synthesized to provide a rich depiction of caregivers' support needs and coping strategies. Two specific findings of interest include a negative association between severity of brain injury and caregiver's desire to direct treatment, as well as a distinct service gap in assistance for caregivers who are caring for someone with violent/offending behaviours. This study recommends short- and long-term changes, given Australia's upcoming National Disability Insurance Scheme, to increase caregiver quality-of-life, which will ultimately affect the rehabilitation outcomes of persons with ABI.

  10. Diagnosis and management of colonic injuries following blunt trauma.

    Science.gov (United States)

    Zheng, Yi-Xiong; Chen, Li; Tao, Si-Feng; Song, Ping; Xu, Shao-Ming

    2007-01-28

    To retrospectively evaluate the preoperative diagnostic approaches and management of colonic injuries following blunt abdominal trauma. A total of 82 patients with colonic injuries caused by blunt trauma between January 1992 and December 2005 were enrolled. Data were collected on clinical presentation, investigations, diagnostic methods, associated injuries, and operative management. Colonic injury-related mortality and abdominal complications were analyzed. Colonic injuries were caused mainly by motor vehicle accidents. Of the 82 patients, 58 (70.3%) had other associated injuries. Laparotomy was performed within 6 h after injury in 69 cases (84.1%), laparoscopy in 3 because of haemodynamic instability. The most commonly injured site was located in the transverse colon. The mean colon injury scale score was 2.8. The degree of faecal contamination was classified as mild in 18 (22.0%), moderate in 42 (51.2%), severe in 14 (17.1%), and unknown in 8 (9.8%) cases. Sixty-seven patients (81.7%) were treated with primary repair or resection and anastomosis. Faecal stream diversion was performed in 15 cases (18.3%). The overall mortality rate was 6.1%. The incidence of colonic injury-related abdominal complications was 20.7%. The only independent predictor of complications was the degree of peritoneal faecal contamination (P = 0.02). Colonic injuries following blunt trauma are especially important because of the severity and complexity of associated injuries. A thorough physical examination and a combination of tests can be used to evaluate the indications for laparotomy. One stage management at the time of initial exploration is most often used for colonic injuries.

  11. A review of the International Brain Research Foundation novel approach to mild traumatic brain injury presented at the International Conference on Behavioral Health and Traumatic Brain Injury.

    Science.gov (United States)

    Polito, Mary Zemyan; Thompson, James W G; DeFina, Philip A

    2010-09-01

    "The International Conference on Behavioral Health and Traumatic Brain Injury" held at St. Joseph's Regional Medical Center in Paterson, NJ., from October 12 to 15, 2008, included a presentation on the novel assessment and treatment approach to mild traumatic brain injury (mTBI) by Philip A. DeFina, PhD, of the International Brain Research Foundation (IBRF). Because of the urgent need to treat a large number of our troops who are diagnosed with mTBI and post-traumatic stress disorder (PTSD), the conference was held to create a report for Congress titled "Recommendations to Improve the Care of Wounded Warriors NOW. March 12, 2009." This article summarizes and adds greater detail to Dr. DeFina's presentation on the current standard and novel ways to approach assessment and treatment of mTBI and PTSD. Pilot data derived from collaborative studies through the IBRF have led to the development of clinical and research protocols utilizing currently accepted, valid, and reliable neuroimaging technologies combined in novel ways to develop "neuromarkers." These neuromarkers are being evaluated in the context of an "Integrity-Deficit Matrix" model to demonstrate their ability to improve diagnostic accuracy, guide treatment programs, and possibly predict outcomes for patients suffering from traumatic brain injury.

  12. Traumatic brain injury, dry eye and comorbid pain diagnoses in US veterans.

    Science.gov (United States)

    Lee, Charity J; Felix, Elizabeth R; Levitt, Roy C; Eddy, Christopher; Vanner, Elizabeth A; Feuer, William J; Sarantopoulos, Constantine D; Galor, Anat

    2018-05-01

    The purpose of the study is to evaluate the relationship between dry eye (DE) and pain diagnoses in US veterans with and without traumatic brain injury (TBI). Retrospective cohort study of veterans who were seen in the Veterans Administration Hospital (VA) between 1 January 2010 and 31 December 2014. Veterans were separated into two groups by the presence or absence of an International Classification of Diseases, Ninth Revision diagnosis of TBI and assessed for DE and other comorbidities. A dendrogram was used to investigate the linkage between TBI, DE, chronic pain and other comorbid conditions. Of the 3 265 894 veterans seen during the 5-year period, 3.97% carried a diagnosis of TBI. Veterans with TBI were more likely to have a diagnosis of DE compared with their counterparts without TBI (37.2% vs 29.1%, p<0.0005). The association was stronger between TBI and ocular pain (OR 3.08; 95% CI 3.03 to 3.13) compared with tear film dysfunction (OR 1.09; 95% CI 1.07 to 1.10). Those with TBI were also about twice as likely to have a diagnosis of chronic pain, headache, depression or post-traumatic stress disorder compared with their counterparts without TBI. Cluster analysis of TBI, DE and pain diagnoses of interest revealed that central pain syndrome, cluster headache, sicca syndrome, keratoconjunctivitis sicca and late effect of injury to the nervous system (as can be seen after TBI) were all closely clustered together. DE and pain disorders occur at higher frequencies in patients with a diagnosis of TBI, suggesting a common underlying pathophysiology. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. mTHPC-mediated photodynamic diagnosis of malignant brain tumors

    International Nuclear Information System (INIS)

    Zimmermann, A.

    2001-03-01

    Radical tumor resection is the basis for prolonged survival of patients suffering from malignant brain tumors such as glioblastoma multiform. We have carried out a phase II study involving 22 patients with malignant brain tumors to assess the feasibility and the effectiveness of the combination of intraoperative photodynamic diagnosis (PDD) and fluorescence-guided resection (FGR) mediated by the second generation photosensitizer meta-tetrahydroxyphenylchlorin (mTHPC). In addition, intraoperative photodynamic therapy (PDT) was performed. Several commercially available fluorescence diagnostic systems were investigated for their applicability for clinical practice. We have adapted and optimized a diagnostic system which includes a surgical microscope, an excitation light source (filtered to 370-440 nm), a video camera detection system, and a spectrometer for clear identification of the mTHPC fluorescence emission at 652 nm. Especially in regions of faint fluorescence it turned out to be essential to maximize the spectral information by optimizing and matching the spectral properties of all components, such as excitation source, camera and color filters. In summary, based on 138 tissue samples derived from 22 tumor specimens we have been able to achieve a sensitivity of 87.9 % and a specificity of 95.7 %. This study demonstrates that mTHPC-mediated intraoperative fluorescence-guided resection followed by photodynamic therapy is a feasible concept. (author)

  14. Family environment influences emotion recognition following paediatric traumatic brain injury.

    Science.gov (United States)

    Schmidt, Adam T; Orsten, Kimberley D; Hanten, Gerri R; Li, Xiaoqi; Levin, Harvey S

    2010-01-01

    This study investigated the relationship between family functioning and performance on two tasks of emotion recognition (emotional prosody and face emotion recognition) and a cognitive control procedure (the Flanker task) following paediatric traumatic brain injury (TBI) or orthopaedic injury (OI). A total of 142 children (75 TBI, 67 OI) were assessed on three occasions: baseline, 3 months and 1 year post-injury on the two emotion recognition tasks and the Flanker task. Caregivers also completed the Life Stressors and Resources Scale (LISRES) on each occasion. Growth curve analysis was used to analyse the data. Results indicated that family functioning influenced performance on the emotional prosody and Flanker tasks but not on the face emotion recognition task. Findings on both the emotional prosody and Flanker tasks were generally similar across groups. However, financial resources emerged as significantly related to emotional prosody performance in the TBI group only (p = 0.0123). Findings suggest family functioning variables--especially financial resources--can influence performance on an emotional processing task following TBI in children.

  15. Social support moderates caregiver life satisfaction following traumatic brain injury.

    Science.gov (United States)

    Ergh, Tanya C; Hanks, Robin A; Rapport, Lisa J; Coleman, Renee D

    2003-12-01

    Social support is an important determinant of adjustment following traumatic brain injury (TBI) sustained by a family member. The present study examined the extent to which social support moderates the influence of characteristics of the person with injury on caregiver subjective well-being. Sixty pairs of individuals who had sustained a moderate to severe TBI and their caregivers (N=120) participated. Years postinjury ranged from 0.3 to 9.9 ( M=4.8, SD=2.6). Cognitive, functional, and neurobehavioral functioning of participants with TBI were assessed using neuropsychological tests and rating scales. Caregiver life satisfaction and perceived social support were assessed using self-report questionnaires. Results indicated that time since injury was unrelated to life satisfaction. Neurobehavioral disturbances showed an inverse relation with life satisfaction. Social support emerged as an important moderator of life satisfaction. Only among caregivers with low social support was cognitive dysfunction adversely related to life satisfaction. Similarly, a trend suggested that patient unawareness of deficit was associated with caregiver life dissatisfaction only among caregivers with low social support. In contrast, these characteristics were unrelated to life satisfaction among caregivers with adequate social support.

  16. Sensory cortex underpinnings of traumatic brain injury deficits.

    Directory of Open Access Journals (Sweden)

    Dasuni S Alwis

    Full Text Available Traumatic brain injury (TBI can result in persistent sensorimotor and cognitive deficits including long-term altered sensory processing. The few animal models of sensory cortical processing effects of TBI have been limited to examination of effects immediately after TBI and only in some layers of cortex. We have now used the rat whisker tactile system and the cortex processing whisker-derived input to provide a highly detailed description of TBI-induced long-term changes in neuronal responses across the entire columnar network in primary sensory cortex. Brain injury (n=19 was induced using an impact acceleration method and sham controls received surgery only (n=15. Animals were tested in a range of sensorimotor behaviour tasks prior to and up to 6 weeks post-injury when there were still significant sensorimotor behaviour deficits. At 8-10 weeks post-trauma, in terminal experiments, extracellular recordings were obtained from barrel cortex neurons in response to whisker motion, including motion that mimicked whisker motion observed in awake animals undertaking different tasks. In cortex, there were lamina-specific neuronal response alterations that appeared to reflect local circuit changes. Hyper-excitation was found only in supragranular layers involved in intra-areal processing and long-range integration, and only for stimulation with complex, naturalistic whisker motion patterns and not for stimulation with simple trapezoidal whisker motion. Thus TBI induces long-term directional changes in integrative sensory cortical layers that depend on the complexity of the incoming sensory information. The nature of these changes allow predictions as to what types of sensory processes may be affected in TBI and contribute to post-trauma sensorimotor deficits.

  17. Efficacy of legal judgments for defendants with traumatic brain injury.

    Science.gov (United States)

    St Pierre, Maria E; Parente, Rick

    2016-06-23

    Literature has compared the frequency of aggressive behaviors of the TBI population and the non-TBI population, suggesting that the TBI population is predisposed to aggressive tendencies because the injury enables impulsivity, loss of self-control, and the inability to modify behaviors. These behavior changes have consequently, been found to lead to criminal involvement. In fact, the majority of the prison population has sustained at least one TBI in their lifetime compared to the prevalence of brain injuries in the general population. However, there is little research investigating the perceptions of criminality and guilt of these individuals. Two experiments were conducted that investigated the perceptions of morality, level of guilt, and appropriate sentencing of crimes committed by defendants with different severities of TBI (i.e., mild, severe, and no TBI). Participants were asked to read scenarios about crimes being committed by the defendant. Experiment 1 used a 1-between (crime), 1-within (TBI) mixed design ANOVA testing three dependent variables (morality, guilt, and sentencing). Using a more in vivo jury approach, Experiment 2 used a 3 (TBI)×2 (crime) independent groups factorial design testing the three dependent measures. Overall, defendants with TBI were found less guilty of their crime, perceived as behaving morally to the crime, and receiving a milder punishment relative to the no-TBI defendants. In the courtroom, the defense attorney should educate the judge and/or the jury on the effects brain injuries have on the cognition, behavior, and emotions of an individual. Thus, this education will ensure the best verdict is being reached.

  18. A preliminary model for posttraumatic brain injury depression.

    Science.gov (United States)

    Malec, James F; Brown, Allen W; Moessner, Anne M; Stump, Timothy E; Monahan, Patrick

    2010-07-01

    To develop, based on previous research, and evaluate a model for depression after traumatic brain injury (TBI). Cross-sectional structural equation modeling (SEM) of data from consecutively recruited patients. Acute hospital and inpatient rehabilitation units. Adult patients (N=158) after hospital admission for moderate to severe TBI. Not applicable. External appraisal of ability in participants was measured by the Mayo-Portland Adaptability Inventory (MPAI-4) Ability Index completed by a TBI clinical nurse specialist. Patient self-appraisal of post-TBI ability and depression were measured by the Awareness Questionnaire and Beck Depression Inventory-II. Functional outcome 1 year after injury was assessed with the MPAI-4 Participation Index. Successive SEM resulted in a parsimonious model with excellent fit. Consistent with prior research, a moderately strong association between self-appraisal of post-TBI ability and depression was found. Injury severity, as measured by the duration of posttraumatic amnesia (PTA), was not significantly associated with post-TBI depression. The 1-year functional outcome was associated with depression and TBI severity. The strong association between self-appraisal of post-TBI ability and depression is consistent with the cognitive-behavioral model of depression and recommends consideration and further study of cognitive-behavioral therapy for post-TBI depression. The lack of association between TBI severity and depression may represent the indirect and proxy nature of current measures of TBI severity such as PTA. Emerging neuroimaging techniques (eg, diffusion tensor imaging, magnetic resonance imaging spectroscopy) may provide the more direct measures of disruption of brain function after TBI that are needed to advance this line of research. Copyright 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. Extracorporeal Membrane Oxygenation for the Support of a Potential Organ Donor with a Fatal Brain Injury before Brain Death Determination

    Directory of Open Access Journals (Sweden)

    Sung Wook Chang

    2016-05-01

    Full Text Available The shortage of available organ donors is a significant problem and various efforts have been made to avoid the loss of organ donors. Among these, extracorporeal membrane oxygenation (ECMO has been introduced to help support and manage potential donors. Many traumatic brain injury patients have healthy organs that might be eligible for donation for transplantation. However, the condition of a donor with a fatal brain injury may rapidly deteriorate prior to brain death determination; this frequently results in the loss of eligible donors. Here, we report the use of venoarterial ECMO to support a potential donor with a fatal brain injury before brain death determination, and thereby preserve donor organs. The patient successfully donated his liver and kidneys after brain death determination.

  20. Continuous EEG-SEP monitoring in severe brain injury.

    Science.gov (United States)

    Amantini, A; Fossi, S; Grippo, A; Innocenti, P; Amadori, A; Bucciardini, L; Cossu, C; Nardini, C; Scarpelli, S; Roma, V; Pinto, F

    2009-04-01

    To monitor acute brain injury in the neurological intensive care unit (NICU), we used EEG and somatosensory evoked potentials (SEP) in combination to achieve more accuracy in detecting brain function deterioration. Sixty-eight patients (head trauma and intracranial hemorrhage; GCSSEP and intracranial pressure monitoring (ICP). Fifty-five patients were considered "stable" or improving, considering the GCS and CT scan: in this group, SEP didn't show significant changes. Thirteen patients showed neurological deteriorations and, in all patients, cortical SEP showed significant alterations (amplitude decrease>50% often till complete disappearance). SEP deterioration anticipated ICP increase in 30%, was contemporary in 38%, and followed ICP increase in 23%. Considering SEP and ICP in relation to clinical course, all patients but one with ICP less than 20 mmHg were stable, while the three patients with ICP greater than 40 mmHg all died. Among the 26 patients with ICP of 20-40 mmHg, 17 were stable, while nine showed clinical and neurophysiological deterioration. Thus, there is a range of ICP values (20-40 mmHg) were ICP is scarcely indicative of clinical deterioration, rather it is the SEP changes that identify brain function deterioration. Therefore, SEP have a twofold interest with respect to ICP: their changes can precede an ICP increase and they can constitute a complementary tool to interpret ICP trends. It has been very important to associate SEP and EEG: about 60% of our patients were deeply sedated and, because of their relative insensitivity to anesthetics, only SEP allowed us to monitor brain damage evolution when EEG was scarcely valuable. We observed 3% of nonconvulsive status epilepticus compared to 18% of neurological deterioration. If the aim of neurophysiological monitoring is to "detect and protect", it may not be limited to detecting seizures, rather it should be able to identify brain deterioration, so we propose the combined monitoring of EEG with SEP.

  1. Glycolysis and the significance of lactate in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Keri Linda Carpenter

    2015-04-01

    Full Text Available In traumatic brain injury (TBI patients, elevation of the brain extracellular lactate concentration and the lactate/pyruvate ratio are well recognised, and are associated statistically with unfavourable clinical outcome. Brain extracellular lactate was conventionally regarded as a waste product of glucose, when glucose is metabolised via glycolysis (Embden-Meyerhof-Parnas pathway to pyruvate, followed by conversion to lactate by the action of lactate dehydrogenase, and export of lactate into the extracellular fluid. In TBI, glycolytic lactate is ascribed to hypoxia or mitochondrial dysfunction, although the precise nature of the latter is incompletely understood. Seemingly in contrast to lactate’s association with unfavourable outcome is a growing body of evidence that lactate can be beneficial. The idea that the brain can utilise lactate by feeding into the tricarboxylic acid (TCA cycle of neurons, first published two decades ago, has become known as the astrocyte-neuron lactate shuttle hypothesis. Direct evidence of brain utilisation of lactate was first obtained 5 years ago in a cerebral microdialysis study in TBI patients, where administration of 13C-labelled lactate via the microdialysis catheter and simultaneous collection of the emerging microdialysates, with 13C NMR analysis, revealed 13C labelling in glutamine consistent with lactate utilisation via the TCA cycle. This suggests that where neurons are too damaged to utilise the lactate produced from glucose by astrocytes, i.e. uncoupling of neuronal and glial metabolism, high extracellular levels of lactate would accumulate, explaining association between high lactate and poor outcome. An intravenous exogenous lactate supplementation study in TBI patients showed evidence for a beneficial effect judged by surrogate endpoints. Here we review current knowledge about glycolysis and lactate in TBI, how it can be measured in patients, and whether it can be modulated to achieve better

  2. The minimal energetic requirement of sustained awareness after brain injury

    DEFF Research Database (Denmark)

    Stender, Johan; Mortensen, Kristian Nygaard; Thibaut, Aurore

    2016-01-01

    of glucose has been proposed as an indicator of consciousness [2 and 3]. Likewise, FDG-PET may contribute to the clinical diagnosis of disorders of consciousness (DOCs) [4 and 5]. However, current methods are non-quantitative and have important drawbacks deriving from visually guided assessment of relative...... changes in brain metabolism [4]. We here used FDG-PET to measure resting state brain glucose metabolism in 131 DOC patients to identify objective quantitative metabolic indicators and predictors of awareness. Quantitation of images was performed by normalizing to extracerebral tissue. We show that 42......% of normal cortical activity represents the minimal energetic requirement for the presence of conscious awareness. Overall, the cerebral metabolic rate accounted for the current level, or imminent return, of awareness in 94% of the patient population, suggesting a global energetic threshold effect...

  3. Further Controversies About Brain Tissue Oxygenation Pressure-Reactivity After Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Andresen, Morten; Donnelly, Joseph; Aries, Marcel

    2018-01-01

    arterial pressure and intracranial pressure. A new ORx index based on brain tissue oxygenation and cerebral perfusion pressure (CPP) has been proposed that similarly allows for evaluation of cerebrovascular reactivity. Conflicting results exist concerning its clinical utility. METHODS: Retrospective......BACKGROUND: Continuous monitoring of cerebral autoregulation is considered clinically useful due to its ability to warn against brain ischemic insults, which may translate to a relationship with adverse outcome. It is typically performed using the pressure reactivity index (PRx) based on mean...... analysis was performed in 85 patients with traumatic brain injury (TBI). ORx was calculated using three time windows of 5, 20, and 60 min. Correlation coefficients and individual "optimal CPP" (CPPopt) were calculated using both PRx and ORx, and relation to patient outcome investigated. RESULTS...

  4. Problems in accurately diagnosing and follow-up for a higher brain dysfunction after traumatic brain injury

    International Nuclear Information System (INIS)

    Hayakawa, Mineji; Ikoma, Katsunori; Oshiro, Akiko; Hoshino, Hirokatsu; Gando, Satoshi

    2007-01-01

    Recently, the occurrence of a higher brain dysfunction after brain injury has been socially noticed and epidemiological investigations have thus been performed. However, most of these previous investigations tended to be based on populations in a chronic stage after brain trauma. We hypothesized that some patients with a higher brain dysfunction were socially in extreme distress after being discharged from our hospital due to a lack of any follow-up treatment. We investigated this problem to identify possible problems in diagnosing and follow-up for a higher brain dysfunction after blunt traumatic brain injury at a tertiary emergency center. A questionnaire survey was performed for 204 blunt trauma patients who had been admitted during the period from January 2000 thorough December 2003. Clinical examinations were performed for patients suspected of having a higher brain dysfunction based on this questionnaire survey. Three patients had been already diagnosed to have a higher brain dysfunction while other 3 patients were newly diagnosed in this investigation. The newly diagnosed patients discharged from departments other than the neurosurgery department. Computed tomography (CT) was performed in 82% patients (65 patients) to diagnose major brain injury or bone fracture. No magnetic resonance image was performed to detect any minor brain injury in alert patients. Overlooking the occurrence of a higher brain dysfunction may result from an insufficient recognition of higher brain dysfunction and an insufficient sensitivity of the present diagnostic methods available for minor brain injury. An increased awareness regarding the potential of a higher brain dysfunction existing in such patients is therefore needed by the entire medical staff and the general public. (author)

  5. Blood brain barrier and brain tissue injury by Gd-DTPA in uremia-induced rabbits

    International Nuclear Information System (INIS)

    Choi, Sun Seob; Huh, Ki Yeong; Han, Jin Yeong; Lee, Yong Chul; Eun, Choong Gi; Yang, Yeong Il

    1996-01-01

    An experimental study was carried out to evaluate the morphological changes in the blood brain barrier and neighbouring brain tissue caused by Gd-DTPA in uremia-induced rabbits. Bilateral renal arteries and veins of ten rabbits were ligated. Gd-DTPA(0.2mmol/kg) was intravenously injected into seven rabbits immediately after ligation. After MRI, they were sacrificed 2 or 3 days after ligation in order to observe light and electron microscopic changes in the blood brain barrier and brain tissue. MRI findings were normal, except for enhancement of the superior and inferior sagittal sinuses on T1 weighted images in uremia-induced rabbits injected with Gd-DTPA. On light microscopic examination, these rabbits showed perivascular edema and glial fibrillary acidic protein expression: electron microscopic examination showed separation of tight junctions of endothelial cells, duplication/rarefaction of basal lamina, increased lysosomes of neurons with neuronal death, demyelination of myelin, and extravasation of red blood cells. Uremia-induced rabbits injected with Gd-DTPA showed more severe changes than those without Gd-DTPA injection. Injuries to the blood brain barrier and neighbouring brain tissue were aggravated by Gd-DTPA administration in uremia-induced rabbits. These findings appear to be associated with the neurotoxicity of Gd-DTPA

  6. Early Brain Injury Associated with Systemic Inflammation After Subarachnoid Hemorrhage.

    Science.gov (United States)

    Savarraj, Jude; Parsha, Kaushik; Hergenroeder, Georgene; Ahn, Sungho; Chang, Tiffany R; Kim, Dong H; Choi, H Alex

    2018-04-01

    Early brain injury (EBI) after aneurysmal subarachnoid hemorrhage (aSAH) is defined as brain injury occurring within 72 h of aneurysmal rupture. Although EBI is the most significant predictor of outcomes after aSAH, its underlying pathophysiology is not well understood. We hypothesize that EBI after aSAH is associated with an increase in peripheral inflammation measured by cytokine expression levels and changes in associations between cytokines. aSAH patients were enrolled into a prospective observational study and were assessed for markers of EBI: global cerebral edema (GCE), subarachnoid hemorrhage early brain edema score (SEBES), and Hunt-Hess grade. Serum samples collected at ≤ 48 h of admission were analyzed using multiplex bead-based assays to determine levels of 13 pro- and anti-inflammatory cytokines. Pairwise correlation coefficients between cytokines were represented as networks. Cytokine levels and differences in correlation networks were compared between EBI groups. Of the 71 patients enrolled in the study, 17 (24%) subjects had GCE, 31 (44%) subjects had SEBES ≥ 3, and 21 (29%) had HH ≥ 4. IL-6 was elevated in groups with GCE, SEBES ≥ 3, and HH ≥ 4. MIP1β was independently associated with high-grade SEBES. Correlation network analysis suggests higher systematic inflammation in subjects with SEBES ≥ 3. EBI after SAH is associated with increased levels of specific cytokines. Peripheral levels of IL-10, IL-6, and MIP1β may be important markers of EBI. Investigating systematic correlations in addition to expression levels of individual cytokines may offer deeper insight into the underlying mechanisms related to EBI.

  7. Tibial Stress Injuries: Decisive Diagnosis and Treatment of "Shin Splints."

    Science.gov (United States)

    Couture, Christopher J.; Karlson, Kristine A.

    2002-01-01

    Tibial stress injuries, commonly called shin splints, often result when bone remodeling processes adopt inadequately to repetitive stress. Physicians who are caring for athletic patients must have a thorough understanding of this continuum of injuries, including medial tibial stress syndrome and tibial stress fractures, because there are…

  8. Curcumin pretreatment attenuates brain lesion size and improves neurological function following traumatic brain injury in the rat.

    Science.gov (United States)

    Samini, Fariborz; Samarghandian, Saeed; Borji, Abasalt; Mohammadi, Gholamreza; bakaian, Mahdi

    2013-09-01

    Turmeric has been in use since ancient times as a condiment and due to its medicinal properties. Curcumin, the yellow coloring principle in turmeric, is a polyphenolic and a major active constituent. Besides anti-inflammatory, thrombolytic and anti-carcinogenic activities, curcumin also possesses strong antioxidant property. The neuroprotective effects of curcumin were evaluated in a weight drop model of cortical contusion trauma in rat. Male Wistar rats (350-400 g, n=9) were anesthetized with sodium pentobarbital (60 mg/kg i.p.) and subjected to head injury. Five days before injury, animals randomly received an i.p. bolus of either curcumin (50 and 100 mg/kg/day, n=9) or vehicle (n=9). Two weeks after the injury and drug treatment, animals were sacrificed and a series of brain sections, stained with hematoxylin and eosin (H&E) were evaluated for quantitative brain lesion volume. Two weeks after the injury, oxidative stress parameter (malondialdehyde) was also measured in the brain. Curcumin (100 mg/kg) significantly reduced the size of brain injury-induced lesions (Pcurcumin (100 mg/kg). Curcumin treatment significantly improved the neurological status evaluated during 2 weeks after brain injury. The study demonstrates the protective efficacy of curcumin in rat traumatic brain injury model. © 2013 Elsevier Inc. All rights reserved.

  9. Functional MRI in the Investigation of Blast-Related Traumatic Brain Injury

    Science.gov (United States)

    Graner, John; Oakes, Terrence R.; French, Louis M.; Riedy, Gerard

    2012-01-01

    This review focuses on the application of functional magnetic resonance imaging (fMRI) to the investigation of blast-related traumatic brain injury (bTBI). Relatively little is known about the exact mechanisms of neurophysiological injury and pathological and functional sequelae of bTBI. Furthermore, in mild bTBI, standard anatomical imaging techniques (MRI and computed tomography) generally fail to show focal lesions and most of the symptoms present as subjective clinical functional deficits. Therefore, an objective test of brain functionality has great potential to aid in patient diagnosis and provide a sensitive measurement to monitor disease progression and treatment. The goal of this review is to highlight the relevant body of blast-related TBI literature and present suggestions and considerations in the development of fMRI studies for the investigation of bTBI. The review begins with a summary of recent bTBI publications followed by discussions of various elements of blast-related injury. Brief reviews of some fMRI techniques that focus on mental processes commonly disrupted by bTBI, including working memory, selective attention, and emotional processing, are presented in addition to a short review of resting state fMRI. Potential strengths and weaknesses of these approaches as regards bTBI are discussed. Finally, this review presents considerations that must be made when designing fMRI studies for bTBI populations, given the heterogeneous nature of bTBI and its high rate of comorbidity with other physical and psychological injuries. PMID:23460082

  10. Role of Sertraline in insomnia associated with post traumatic brain injury (TBI depression

    Directory of Open Access Journals (Sweden)

    Ansari Ahmed

    2016-09-01

    Full Text Available Traumatic brain injury (TBI is a major cause of disability (1, 2. Sleep disturbances, such as insomnia, are very common following traumatic brain injury and have been reported in frequencies from 40% (3 to as high as 84% (4. Sleep disruption can be related to the TBI itself but may also be secondary to neuropsychiatric (e.g., depression or neuromuscular (e.g., pain conditions associated with TBI or to the pharmacological management of the injury and its consequences. Post-TBI insomnia has been associated with numerous negative outcomes including daytime fatigue, tiredness, difficulty functioning: impaired performance at work, memory problems, mood problems, greater functional disability, reduced participation in activities of daily living, less social and recreational activity, less employment potential, increased caregiver burden, greater sexual dysfunction, and also lower ratings of health, poor subjective wellbeing. These negative consequences can hamper the person’s reintegration into the community, adjustment after injury, and overall QOL. (5 The connection between depression and insomnia has not been investigated within the post TBI population to a great extent. For the general population, clinically significant insomnia is often associated with the presence of an emotional disorder (6. Fichtenberg et al. (2002 (7, in his study established that the strongest relationship with the diagnosis of insomnia belonged to depression. Given the high prevalence of depression during the first 2 years following TBI (8, a link between depression and insomnia among TBI patients makes innate sense. The present study aims at assessing role of sertralline in post TBI insomnia associated with depression.

  11. An update on substance use and treatment following traumatic brain injury.

    Science.gov (United States)

    Graham, David P; Cardon, Aaron L

    2008-10-01

    Traumatic brain injury (TBI) is a leading cause of mortality and morbidity among young adults. Substance abusers constitute a disproportionate percentage of these patients. A history of substance abuse predicts increased disability, poorer prognosis, and delayed recovery. While consensus in the literature indicates that substance-abuse rates decline following injury, conflicting literature shows a significant history of brain injury in addicts. We reviewed the literature on substance abuse after TBI to explore the state of knowledge on TBI as a risk factor for substance abuse. While recent reviews regarding substance abuse in TBI patients concur that substance-abuse rates decline even after mild TBI, an emerging literature suggests mild TBI may cause subtle impairments in cognitive, executive, and decision-making functions that are often poorly recognized in early diagnosis and treatment. When combined with difficulties in psychosocial adjustment and coping skills, these impairments may increase the risk for chronic substance abuse in a subset of TBI patients. Preliminary results from veterans indicate these patterns hold in a combat-related post-traumatic stress disorder population with TBI. This increasingly prevalent combination presents a specific challenge in rehabilitation. While this comorbidity presents a challenge for the successful treatment and rehabilitation of both disorders, there is sparse evidence to recommend any specific treatment strategy for these individuals. Mild TBI and substance abuse are bidirectionally related both for risks and treatment. Further understanding the neuropsychiatric pathology and different effects of different types of injuries will likely improve the implementation of effective treatments for each of these two conditions.

  12. The association between adverse childhood experiences and adult traumatic brain injury/concussion: a scoping review.

    Science.gov (United States)

    Ma, Zechen; Bayley, Mark T; Perrier, Laure; Dhir, Priya; Dépatie, Lana; Comper, Paul; Ruttan, Lesley; Lay, Christine; Munce, Sarah E P

    2018-01-12

    Adverse childhood experiences are significant risk factors for physical and mental illnesses in adulthood. Traumatic brain injury/concussion is a challenging condition where pre-injury factors may affect recovery. The association between childhood adversity and traumatic brain injury/concussion has not been previously reviewed. The research question addressed is: What is known from the existing literature about the association between adverse childhood experiences and traumatic brain injury/concussion in adults? All original studies of any type published in English since 2007 on adverse childhood experiences and traumatic brain injury/concussion outcomes were included. The literature search was conducted in multiple electronic databases. Arksey and O'Malley and Levac et al.'s scoping review frameworks were used. Two reviewers independently completed screening and data abstraction. The review yielded six observational studies. Included studies were limited to incarcerated or homeless samples, and individuals at high-risk of or with mental illnesses. Across studies, methods for childhood adversity and traumatic brain injury/concussion assessment were heterogeneous. A positive association between adverse childhood experiences and traumatic brain injury occurrence was identified. The review highlights the importance of screening and treatment of adverse childhood experiences. Future research should extend to the general population and implications on injury recovery. Implications for rehabilitation Exposure to adverse childhood experiences is associated with increased risk of traumatic brain injury. Specific types of adverse childhood experiences associated with risk of traumatic brain injury include childhood physical abuse, psychological abuse, household member incarceration, and household member drug abuse. Clinicians and researchers should inquire about adverse childhood experiences in all people with traumatic brain injury as pre-injury health conditions can

  13. Mental status in pregnant women with brain injury sequels

    Directory of Open Access Journals (Sweden)

    A. A. Volynkin

    2017-01-01

    Full Text Available Objective: to investigate emotional disturbances in pregnant women with sequels of brain injury (BI.Patients and methods. A total of 47 pregnant women with a history of BI, who had been admitted to the Department of Obstetric Physiology, Moscow Regional Research Institute of Obstetrics and Gynecology, in 2013-2015, were examined. All the patients underwent a comprehensive neurological and neuropsychological examination using the Miltidimensional Fatigue Inventory-20 (MFI-20, the Hospital Anxiety and Depression Scale (HADS, and the Spielberg-Hanin Situational and Personal Anxiety Scale.Results. The pregnant women with BI sequels were found to have emotional changes involving asthenic, anxiety, and depressive components. In these women, anxiety symptoms were most common (53.3%; psychoemotional disturbance and asthenic and depressive manifestations were identified in 23.4 and 14.9% of cases. This investigation first verified the structural (situational and personal components of post-traumatic anxiety syndrome in the pregnant women. It revealed that an increased level of situational anxiety and physical symptoms of fatigue was observed in brain concussion sequels; and after brain contusion (BC, alarm acquired personality traits, asthenia was of a mental nature. In the pregnant women with BI sequels, depression was diagnosed only at the subclinical level and more often noted after BC (p=0.0473. 

  14. Psychometric properties of the college survey for students with brain injury: individuals with and without traumatic brain injury.

    Science.gov (United States)

    Kennedy, Mary R T; Krause, Miriam O; O'Brien, Katy H

    2014-01-01

    The psychometric properties of the college challenges sub-set from The College Survey for Students with Brain Injury (CSS-BI) were investigated with adults with and without traumatic brain injury (TBI). Adults with and without TBI completed the CSS-BI. A sub-set of participants with TBI were interviewed, intentional and convergent validity were investigated, and the internal structure of the college challenges was analysed with exploratory factor analysis/principle component analysis. Respondents with TBI understood the items describing college challenges with evidence of intentional validity. More individuals with TBI than controls endorsed eight of the 13 college challenges. Those who reported more health issues endorsed more college challenges, demonstrating preliminary convergent validity. Cronbach's alphas of >0.85 demonstrated acceptable internal reliability. Factor analysis revealed a four-factor model for those with TBI: studying and learning (Factor 1), time management and organization (Factor 2), social (Factor 3) and nervousness/anxiety (Factor 4). This model explained 72% and 69% of the variance for those with and without TBI, respectively. The college challenges sub-set from the CSS-BI identifies challenges that individuals with TBI face when going to college. Some challenges were related to two factors in the model, demonstrating the inter-connections of these experiences.

  15. Further validation of the Motivation for Traumatic Brain Injury Rehabilitation Questionnaire (MOT-Q) in patients with acquired brain injury.

    Science.gov (United States)

    Boosman, Hileen; van Heugten, Caroline M; Winkens, Ieke; Smeets, Sanne M J; Visser-Meily, Johanna M A

    2016-01-01

    The Motivation for Traumatic Brain Injury Rehabilitation Questionnaire (MOT-Q) evaluates motivation for rehabilitation in four subscales: Interest in rehabilitation, Lack of anger, Lack of denial, and Reliance on professional help. The objective of this study was to further validate the MOT-Q in 122 inpatients and 92 outpatients with acquired brain injury (ABI). The main measures were motivation for rehabilitation (MOT-Q), self-awareness (Patient Competency Rating Scale), and treatment motivation (Visual Analogue Scale). The MOT-Q showed adequate feasibility in terms of few items with missing responses and few undecided responses. We found no floor or ceiling effects, and significant item-total MOT-Q correlations for 29 of 31 items. Internal consistency was good for the MOT-Q total and acceptable to good for the subscales. The MOT-Q scores were significantly intercorrelated except for the subscales Lack of denial and Reliance on professional help in the inpatient group. The MOT-Q total and subscales were significantly associated with treatment motivation. The Lack of denial subscale showed no significant association with treatment motivation and no to moderate significant associations with self-awareness. In conclusion, the overall MOT-Q is a valid instrument to assess motivation for rehabilitation in patients with ABI. Further research is needed to examine the validity of the subscales.

  16. PET Imaging of Mild Traumatic Brain Injury and Whiplash Associated Disorder

    NARCIS (Netherlands)

    Vállez García, David

    2015-01-01

    Traumatic brain injury is the leading cause of brain injury in our society with 235 per 100,000 inhabitants per year in the European Union and about 500 per 100,000 inhabitants per year in the United States. About 80% of all these events are accounted for as mild cases. At the same time,

  17. Placebo-controlled trial of amantadine for severe traumatic brain injury

    DEFF Research Database (Denmark)

    Giacino, Joseph T; Whyte, John; Bagiella, Emilia

    2012-01-01

    Amantadine hydrochloride is one of the most commonly prescribed medications for patients with prolonged disorders of consciousness after traumatic brain injury. Preliminary studies have suggested that amantadine may promote functional recovery.......Amantadine hydrochloride is one of the most commonly prescribed medications for patients with prolonged disorders of consciousness after traumatic brain injury. Preliminary studies have suggested that amantadine may promote functional recovery....

  18. Hydrocephalus following severe traumatic brain injury in adults. Incidence, timing, and clinical predictors during rehabilitation

    DEFF Research Database (Denmark)

    Kammersgaard, Lars Peter; Linnemann, Mia; Tibæk, Maiken

    2013-01-01

    To investigate timing and clinical predictors that might predict hydrocephalus emerging during rehabilitation until 1 year following severe traumatic brain injury (TBI).......To investigate timing and clinical predictors that might predict hydrocephalus emerging during rehabilitation until 1 year following severe traumatic brain injury (TBI)....

  19. Getting My Bearings, Returning to School: Issues Facing Adolescents with Traumatic Brain Injury

    Science.gov (United States)

    Schilling, Ethan J.; Getch, Yvette Q.

    2012-01-01

    Traumatic brain injury (TBI) is characterized by a blow to the head or other penetrating head injury resulting in impairment of the brain's functioning. Despite the high incidence of TBI in adolescents, many educators still consider TBI to be a low-incidence disability. In addition, school personnel often report receiving little to no pre-service…

  20. Cobalt-55 positron emission tomography in traumatic brain injury : A pilot study

    NARCIS (Netherlands)

    Jansen, HML; vanderNaalt, J; vanZomeren, AH; Paans, AMJ; VeenmavanderDuin, L; Hew, JM; Pruim, J; Minderhoud, JM; Korf, J

    Traumatic brain injury is usually assessed with the Glasgow coma scale (GCS), CT, or MRI. After such injury, the injured brain tissue is characterised by calcium mediated neuronal damage and inflammation. Positron emission tomography with the isotope cobalt-55 (Go-PET) as a calcium tracer enables