WorldWideScience

Sample records for brain inflammatory response

  1. Strongly compromised inflammatory response to brain injury in interleukin-6-deficient mice

    DEFF Research Database (Denmark)

    Penkowa, M; Moos, T; Carrasco, J

    1999-01-01

    Injury to the central nervous system (CNS) elicits an inflammatory response involving activation of microglia, brain macrophages, and astrocytes, processes likely mediated by the release of proinflammatory cytokines. In order to determine the role of interleukin-6 (IL-6) during the inflammatory...... response in the brain following disruption of the blood-brain barrier (BBB), we examined the effects of a focal cryo injury to the fronto-parietal cortex in interleukin-6-deficient (IL-6-/-) and normal (IL-6+/+) mice. In IL-6+/+ mice, brain injury resulted in the appearance of brain macrophages...

  2. Titanium oxide (TiO2) nanoparticles in induction of apoptosis and inflammatory response in brain

    Science.gov (United States)

    Meena, Ramovatar; Kumar, Sumit; Paulraj, R.

    2015-01-01

    The ever increasing applications of engineered nanoparticles in 21st century cause serious concern about its potential health risks on living being. Regulatory health risk assessment of such particles has become mandatory for the safe use of nanomaterials in consumer products and medicines. In order to study the mechanism underlying the effects of nano-TiO2 (TiO2 nanoparticles) on the brain, wistar rats were administrated intravenously with various doses of nano-TiO2 (21 nm) through the caudal vein, once a week for 4 weeks and different parameters such as bioaccumulation of nano-TiO2, oxidative stress-mediated response, level of inflammatory markers such as NF-κB (p65), HSP 60, p38, nitric oxide, IFN-γ and TNF-α, and level of neurochemicals in brain as well as DNA damage and expression of apoptosis markers (p53, Bax, Bcl-2, and cyto c) were evaluated. Results show that the concentration of nano-TiO2 in the brain increased with increasing the doses of nano-TiO2. Oxidative stress and injury of the brain occurred as nano-TiO2 appeared to trigger a cascade of reactions such as inflammation, lipid peroxidation, decreases the activities of antioxidative enzymes and melatonin level, the reduction of glutamic acid, downregulated levels of acetylcholinesterase activities, and the increase in caspase-3 activity (a biomarker of apoptosis), DNA fragmentation, and apoptosis. It may be concluded that nano-TiO2 induces oxidative stress that leads to activation of inflammatory cytokines and an alteration in the level of neurotransmitters resulted in the induction of mitochondrial-mediated apoptosis.

  3. Post-treatment vascular leakage and inflammatory responses around brain cysts in porcine neurocysticercosis.

    Directory of Open Access Journals (Sweden)

    Siddhartha Mahanty

    2015-03-01

    Full Text Available Cysticidal treatment of neurocysticercosis, an infection of humans and pig brains with Taenia solium, results in an early inflammatory response directed to cysts causing seizures and focal neurological manifestations. Treatment-induced pericystic inflammation and its association with blood brain barrier (BBB dysfunction, as determined by Evans blue (EB extravasation, was studied in infected untreated and anthelmintic-treated pigs. We compared the magnitude and extent of the pericystic inflammation, presence of EB-stained capsules, the level of damage to the parasite, expression of genes for proinflammatory and regulatory cytokines, chemokines, and tissue remodeling by quantitative PCR assays between treated and untreated infected pigs and between EB-stained (blue and non stained (clear cysts. Inflammatory scores were higher in pericystic tissues from EB-stained cysts compared to clear cysts from untreated pigs and also from anthelmintic-treated pigs 48 hr and 120 hr after treatment. The degree of inflammation correlated with the severity of cyst wall damage and both increased significantly at 120 hours. Expression levels of the proinflammatory genes for IL-6, IFN-γ, TNF-α were higher in EB-stained cysts compared to clear cysts and unaffected brain tissues, and were generally highest at 120 hr. Additionally, expression of some markers of immunoregulatory activity (IL-10, IL-2Rα were decreased in EB-stained capsules. An increase in other markers for regulatory T cells (CTLA4, FoxP3 was found, as well as significant increases in expression of two metalloproteases, MMP1 and MMP2 at 48 hr and 120 hr post-treatment. We conclude that the increase in severity of the inflammation caused by treatment is accompanied by both a proinflammatory and a complex regulatory response, largely limited to pericystic tissues with compromised vascular integrity. Because treatment induced inflammation occurs in porcine NCC similar to that in human cases, this model

  4. Post-treatment vascular leakage and inflammatory responses around brain cysts in porcine neurocysticercosis.

    Science.gov (United States)

    Mahanty, Siddhartha; Orrego, Miguel Angel; Mayta, Holger; Marzal, Miguel; Cangalaya, Carla; Paredes, Adriana; Gonzales-Gustavson, Eloy; Arroyo, Gianfranco; Gonzalez, Armando E; Guerra-Giraldez, Cristina; García, Hector H; Nash, Theodore E

    2015-03-01

    Cysticidal treatment of neurocysticercosis, an infection of humans and pig brains with Taenia solium, results in an early inflammatory response directed to cysts causing seizures and focal neurological manifestations. Treatment-induced pericystic inflammation and its association with blood brain barrier (BBB) dysfunction, as determined by Evans blue (EB) extravasation, was studied in infected untreated and anthelmintic-treated pigs. We compared the magnitude and extent of the pericystic inflammation, presence of EB-stained capsules, the level of damage to the parasite, expression of genes for proinflammatory and regulatory cytokines, chemokines, and tissue remodeling by quantitative PCR assays between treated and untreated infected pigs and between EB-stained (blue) and non stained (clear) cysts. Inflammatory scores were higher in pericystic tissues from EB-stained cysts compared to clear cysts from untreated pigs and also from anthelmintic-treated pigs 48 hr and 120 hr after treatment. The degree of inflammation correlated with the severity of cyst wall damage and both increased significantly at 120 hours. Expression levels of the proinflammatory genes for IL-6, IFN-γ, TNF-α were higher in EB-stained cysts compared to clear cysts and unaffected brain tissues, and were generally highest at 120 hr. Additionally, expression of some markers of immunoregulatory activity (IL-10, IL-2Rα) were decreased in EB-stained capsules. An increase in other markers for regulatory T cells (CTLA4, FoxP3) was found, as well as significant increases in expression of two metalloproteases, MMP1 and MMP2 at 48 hr and 120 hr post-treatment. We conclude that the increase in severity of the inflammation caused by treatment is accompanied by both a proinflammatory and a complex regulatory response, largely limited to pericystic tissues with compromised vascular integrity. Because treatment induced inflammation occurs in porcine NCC similar to that in human cases, this model can be used to

  5. The Acute Inflammatory Response in Trauma/Hemorrhage and Traumatic Brain Injury : Current State and Emerging Prospects

    NARCIS (Netherlands)

    Namas, R.; Ghuma, A.; Hermus, L.; Zamora, R.; Okonkwo, D. O.; Billiar, T. R.; Vodovotz, Y.

    2009-01-01

    Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury

  6. Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury

    DEFF Research Database (Denmark)

    Quintana, Albert; Giralt, Mercedes; Rojas, Santiago

    2005-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via intracell...

  7. Zinc or copper deficiency-induced impaired inflammatory response to brain trauma may be caused by the concomitant metallothionein changes

    DEFF Research Database (Denmark)

    Penkowa, Milena; Giralt, M.; Thomsen, Pernille Sjølin

    2001-01-01

    The role of zinc- and copper-deficient diets on the inflammatory response to traumatic brain injury (TBI) has been evaluated in adult rats. As expected, zinc deficiency decreased food intake and body weight gain, and the latter effect was higher than that observed in pair-fed rats. In noninjured ...

  8. Inhibitory Effect on Cerebral Inflammatory Response following Traumatic Brain Injury in Rats: A Potential Neuroprotective Mechanism of N-Acetylcysteine

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2008-01-01

    Full Text Available Although N-acetylcysteine (NAC has been shown to be neuroprotective for traumatic brain injury (TBI, the mechanisms for this beneficial effect are still poorly understood. Cerebral inflammation plays an important role in the pathogenesis of secondary brain injury after TBI. However, it has not been investigated whether NAC modulates TBI-induced cerebral inflammatory response. In this work, we investigated the effect of NAC administration on cortical expressions of nuclear factor kappa B (NF-κB and inflammatory proteins such as interleukin-1β (IL-1β, tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, and intercellular adhesion molecule-1 (ICAM-1 after TBI. As a result, we found that NF-κB, proinflammatory cytokines, and ICAM-1 were increased in all injured animals. In animals given NAC post-TBI, NF-κB, IL-1β, TNF-α, and ICAM-1 were decreased in comparison to vehicle-treated animals. Measures of IL-6 showed no change after NAC treatment. NAC administration reduced brain edema, BBB permeability, and apoptotic index in the injured brain. The results suggest that post-TBI NAC administration may attenuate inflammatory response in the injured rat brain, and this may be one mechanism by which NAC ameliorates secondary brain damage following TBI.

  9. Simvastatin Combined with Antioxidant Attenuates the Cerebral Vascular Endothelial Inflammatory Response in a Rat Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Kuo-Wei Wang

    2014-01-01

    Full Text Available Traumatic brain injury (TBI leads to important and deleterious neuroinflammation, as evidenced by indicators such as edema, cytokine production, induction of nitric oxide synthase, and leukocyte infiltration. After TBI, cerebral vascular endothelial cells play a crucial role in the pathogenesis of inflammation. In our previous study, we proved that simvastatin could attenuate cerebral vascular endothelial inflammatory response in a rat traumatic brain injury. This purpose of this study was to determine whether simvastatin combined with an antioxidant could produce the same effect or greater and to examine affected surrogate biomarkers for the neuroinflammation after traumatic brain injury in rat. In our study, cortical contusions were induced, and the effect of acute and continuous treatment of simvastatin and vitamin C on behavior and inflammation in adult rats following experimental TBI was evaluated. The results demonstrated that simvastatin combined with an antioxidant could provide neuroprotection and it may be attributed to a dampening of cerebral vascular endothelial inflammatory response.

  10. Downregulation of an astrocyte-derived inflammatory protein, S100B, reduces vascular inflammatory responses in brains persistently infected with Borna disease virus.

    Science.gov (United States)

    Ohtaki, Naohiro; Kamitani, Wataru; Watanabe, Yohei; Hayashi, Yohei; Yanai, Hideyuki; Ikuta, Kazuyoshi; Tomonaga, Keizo

    2007-06-01

    Borna disease virus (BDV) is a neurotropic virus that causes a persistent infection in the central nervous system (CNS) of many vertebrate species. Although a severe reactive gliosis is observed in experimentally BDV-infected rat brains, little is known about the glial reactions contributing to the viral persistence and immune modulation in the CNS. In this regard, we examined the expression of an astrocyte-derived factor, S100B, in the brains of Lewis rats persistently infected with BDV. S100B is a Ca(2+)-binding protein produced mainly by astrocytes. A prominent role of this protein appears to be the promotion of vascular inflammatory responses through interaction with the receptor for advanced glycation end products (RAGE). Here we show that the expression of S100B is significantly reduced in BDV-infected brains despite severe astrocytosis with increased glial fibrillary acidic protein immunoreactivity. Interestingly, no upregulation of the expression of S100B, or RAGE, was observed in the persistently infected brains even when incited with several inflammatory stimuli, including lipopolysaccharide. In addition, expression of the vascular cell adhesion molecule 1 (VCAM-1), as well as the infiltration of encephalitogenic T cells, was significantly reduced in persistently infected brains in which an experimental autoimmune encephalomyelitis was induced by immunization with myelin-basic protein. Furthermore, we demonstrated that the continuous activation of S100B in the brain may be necessary for the progression of vascular immune responses in neonatally infected rat brains. Our results suggested that BDV infection may impair astrocyte functions via a downregulation of S100B expression, leading to the maintenance of a persistent infection.

  11. Inflammatory responses are not sufficient to cause delayed neuronal death in ATP-induced acute brain injury.

    Directory of Open Access Journals (Sweden)

    Hey-Kyeong Jeong

    Full Text Available BACKGROUND: Brain inflammation is accompanied by brain injury. However, it is controversial whether inflammatory responses are harmful or beneficial to neurons. Because many studies have been performed using cultured microglia and neurons, it has not been possible to assess the influence of multiple cell types and diverse factors that dynamically and continuously change in vivo. Furthermore, behavior of microglia and other inflammatory cells could have been overlooked since most studies have focused on neuronal death. Therefore, it is essential to analyze the precise roles of microglia and brain inflammation in the injured brain, and determine their contribution to neuronal damage in vivo from the onset of injury. METHODS AND FINDINGS: Acute neuronal damage was induced by stereotaxic injection of ATP into the substantia nigra pars compacta (SNpc and the cortex of the rat brain. Inflammatory responses and their effects on neuronal damage were investigated by immunohistochemistry, electron microscopy, quantitative RT-PCR, and stereological counting, etc. ATP acutely caused death of microglia as well as neurons in a similar area within 3 h. We defined as the core region the area where both TH(+ and Iba-1(+ cells acutely died, and as the penumbra the area surrounding the core where Iba-1(+ cells showed activated morphology. In the penumbra region, morphologically activated microglia arranged around the injury sites. Monocytes filled the damaged core after neurons and microglia died. Interestingly, neither activated microglia nor monocytes expressed iNOS, a major neurotoxic inflammatory mediator. Monocytes rather expressed CD68, a marker of phagocytic activity. Importantly, the total number of dopaminergic neurons in the SNpc at 3 h (∼80% of that in the contralateral side did not decrease further at 7 d. Similarly, in the cortex, ATP-induced neuron-damage area detected at 3 h did not increase for up to 7 d. CONCLUSIONS: Different cellular

  12. Circadian time-dependent antioxidant and inflammatory responses to acute cadmium exposure in the brain of zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jia-Lang, E-mail: zhengjialang@aliyun.com; Yuan, Shuang-Shuang; Wu, Chang-Wen; Lv, Zhen-Ming; Zhu, Ai-Yi

    2017-01-15

    Highlights: • Gene changed at mRNA, protein and activity levels between exposure time points. • ROS mediated antioxidant and inflammatory responses by Nrf2 and NF-κB. • The effect of time of day on Cd-induced toxicity should not be neglected in fish. - Abstract: Up to date, little information is available on effects of circadian rhythm on metal-induced toxicity in fish. In this study, zebrafish were acutely exposed to 0.97 mg L{sup −1} cadmium for 12 h either at ZT0 (the light intensity began to reached maximum) or at ZT12 (light intensity began to reached minimum) to evaluate the temporal sensitivity of oxidative stress and inflammatory responses in the brain of zebrafish. Profiles of responses of some genes at mRNA, protein and activity levels were different between ZT0 and ZT12 in the normal water. Exposure to Cd induced contrary antioxidant responses and similar inflammatory responses between ZT0 and ZT12. However, the number of inflammatory genes which were up-regulated was significantly greater at ZT12 than at ZT0. And, the up-regulated inflammatory genes were more responsive at ZT12 than at ZT0. At ZT12, antioxidant genes were down-regulated at mRNA, protein and activity levels. Contrarily, antioxidant genes were not affected at mRNA levels but activated at the protein and/or activity levels at ZT0. Reactive oxygen species (ROS) sharply increased and remained relatively stable when fish were exposed to Cd at ZT12 and ZT0, respectively. Positive correlations between ROS levels and mRNA levels of nuclear transcription factor κB (NF-κB) and between mRNA levels of NF-κB and its target genes were observed, suggesting that ROS may play an essential role in regulating the magnitude of inflammatory responses. Taken together, oxidative stress and immunotoxicity in the brain were more serious when fish were exposed to Cd in the evening than in the morning, highlighting the importance of circadian rhythm in Cd-induced neurotoxicity in fish.

  13. A review of the neuro- and systemic inflammatory responses in post concussion symptoms: Introduction of the "post-inflammatory brain syndrome" PIBS.

    Science.gov (United States)

    Rathbone, Alasdair Timothy Llewelyn; Tharmaradinam, Surejini; Jiang, Shucui; Rathbone, Michel P; Kumbhare, Dinesh A

    2015-05-01

    Post-concussion syndrome is an aggregate of symptoms that commonly present together after head injury. These symptoms, depending on definition, include headaches, dizziness, neuropsychiatric symptoms, and cognitive impairment. However, these symptoms are common, occurring frequently in non-head injured controls, leading some to question the existence of post-concussion syndrome as a unique syndrome. Therefore, some have attempted to explain post-concussion symptoms as post-traumatic stress disorder, as they share many similar symptoms and post-traumatic stress disorder does not require head injury. This explanation falls short as patients with post-concussion syndrome do not necessarily experience many key symptoms of post-traumatic stress disorder. Therefore, other explanations must be sought to explain the prevalence of post-concussion like symptoms in non-head injury patients. Many of the situations in which post-concussion syndrome like symptoms may be experienced such as infection and post-surgery are associated with systemic inflammatory responses, and even neuroinflammation. Post-concussion syndrome itself has a significant neuroinflammatory component. In this review we examine the evidence of neuroinflammation in post-concussion syndrome and the potential role systemic inflammation plays in post-concussion syndrome like symptoms. We conclude that given the overlap between these conditions and the role of inflammation in their etiologies, a new term, post-inflammatory brain syndromes (PIBS), is necessary to describe the common outcomes of many different inflammatory insults. The concept of post-concussion syndrome is in its evolution therefore, the new term post-inflammatory brain syndromes provides a better understanding of etiology of its wide-array of symptoms and the wide array of conditions they can be seen in. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Titanium oxide (TiO{sub 2}) nanoparticles in induction of apoptosis and inflammatory response in brain

    Energy Technology Data Exchange (ETDEWEB)

    Meena, Ramovatar, E-mail: rammeenarv@gmail.com; Kumar, Sumit; Paulraj, R., E-mail: paulrajr@hotmail.com [Jawaharlal Nehru University, School of Environmental Sciences (India)

    2015-01-15

    The ever increasing applications of engineered nanoparticles in 21st century cause serious concern about its potential health risks on living being. Regulatory health risk assessment of such particles has become mandatory for the safe use of nanomaterials in consumer products and medicines. In order to study the mechanism underlying the effects of nano-TiO{sub 2} (TiO{sub 2} nanoparticles) on the brain, wistar rats were administrated intravenously with various doses of nano-TiO{sub 2} (21 nm) through the caudal vein, once a week for 4 weeks and different parameters such as bioaccumulation of nano-TiO{sub 2}, oxidative stress-mediated response, level of inflammatory markers such as NF-κB (p65), HSP 60, p38, nitric oxide, IFN-γ and TNF-α, and level of neurochemicals in brain as well as DNA damage and expression of apoptosis markers (p53, Bax, Bcl-2, and cyto c) were evaluated. Results show that the concentration of nano-TiO{sub 2} in the brain increased with increasing the doses of nano-TiO{sub 2}. Oxidative stress and injury of the brain occurred as nano-TiO{sub 2} appeared to trigger a cascade of reactions such as inflammation, lipid peroxidation, decreases the activities of antioxidative enzymes and melatonin level, the reduction of glutamic acid, downregulated levels of acetylcholinesterase activities, and the increase in caspase-3 activity (a biomarker of apoptosis), DNA fragmentation, and apoptosis. It may be concluded that nano-TiO{sub 2} induces oxidative stress that leads to activation of inflammatory cytokines and an alteration in the level of neurotransmitters resulted in the induction of mitochondrial-mediated apoptosis.

  15. Inflammatory diseases of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Haehnel, Stefan (ed.) [University of Heidelberg Medical Center (Germany). Div. of Neuroradiology

    2009-07-01

    This book provides a comprehensive overview of inflammatory brain diseases from a neuroradiological point of view. Such diseases may be either infectious (e.g., viral encephalitis and pyogenic brain abscess) or non-infectious (e.g., multiple sclerosis), and many of these entities are becoming increasingly important for differential diagnosis, particularly in immunocompromised persons. Neuroimaging contributes greatly to the differentiation of infectious and noninfectious brain diseases and to the distinction between brain inflammation and other, for instance neoplastic, diseases. In order to ensure a standardized approach throughout the book, each chapter is subdivided into three principal sections: epidemiology, clinical presentation and therapy; imaging; and differential diagnosis. A separate chapter addresses technical and methodological issues and imaging protocols. All of the authors are recognized experts in their fields, and numerous high-quality and informative illustrations are included. This book will be of great value not only to neuroradiologists but also to neurologists, neuropediatricians, and general radiologists. (orig.)

  16. Venezuelan equine encephalitis virus infection causes modulation of inflammatory and immune response genes in mouse brain

    OpenAIRE

    Sharma, Anuj; Bhattacharya, Bhaskar; Puri, Raj K; Maheshwari, Radha K

    2008-01-01

    Abstract Background Neurovirulent Venezuelan equine encephalitis virus (VEEV) causes lethal encephalitis in equines and is transmitted to humans by mosquitoes. VEEV is highly infectious when transmitted by aerosol and has been developed as a bio-warfare agent, making it an important pathogen to study from a military and civilian standpoint. Molecular mechanisms of VEE pathogenesis are poorly understood. To study these, the gene expression profile of VEEV infected mouse brains was investigated...

  17. Curcumin attenuates collagen-induced inflammatory response through the "gut-brain axis".

    Science.gov (United States)

    Dou, Yannong; Luo, Jinque; Wu, Xin; Wei, Zhifeng; Tong, Bei; Yu, Juntao; Wang, Ting; Zhang, Xinyu; Yang, Yan; Yuan, Xusheng; Zhao, Peng; Xia, Yufeng; Hu, Huijuan; Dai, Yue

    2018-01-06

    Previous studies have demonstrated that oral administration of curcumin exhibited an anti-arthritic effect despite its poor bioavailability. The present study aimed to explore whether the gut-brain axis is involved in the therapeutic effect of curcumin. The collagen-induced arthritis (CIA) rat model was induced by immunization with an emulsion of collagen II and complete Freund's adjuvant. Sympathetic and parasympathetic tones were measured by electrocardiographic recordings. Unilateral cervical vagotomy (VGX) was performed before the induction of CIA. The ChAT, AChE activities, and serum cytokine levels were determined by ELISA. The expression of the high-affinity choline transporter 1 (CHT1), ChAT, and vesicular acetylcholine transporter (VAChT) were determined by real-time PCR and immunohistochemical staining. The neuronal excitability of the vagus nerve was determined by whole-cell patch clamp recording. Oral administration of curcumin restored the imbalance between the sympathetic and parasympathetic tones in CIA rats and increased ChAT activity and expression of ChAT and VAChT in the gut, brain, and synovium. Additionally, VGX eliminated the effects of curcumin on arthritis and ACh biosynthesis and transport. Electrophysiological data showed that curcumin markedly increased neuronal excitability of the vagus nerve. Furthermore, selective α7 nAChR antagonists abolished the effects of curcumin on CIA. Our results demonstrate that curcumin attenuates CIA through the "gut-brain axis" by modulating the function of the cholinergic system. These findings provide a novel approach for mechanistic studies of anti-arthritic compounds with low oral absorption and bioavailability.

  18. Inflammatory cytokines in the brain: does the CNS shape immune responses?

    DEFF Research Database (Denmark)

    Owens, T; Renno, T; Taupin, V

    1994-01-01

    Immune responses in the central nervous system (CNS) have traditionally been regarded as representing the intrusion of an unruly, ill-behaved mob of leukocytes into the well-ordered and organized domain of thought and reason. However, results accumulated over the past few years suggest that, far ...

  19. COX-2 regulation and TUNEL-positive cell death differ between genders in the secondary inflammatory response following experimental penetrating focal brain injury in rats.

    Science.gov (United States)

    Günther, Mattias; Plantman, Stefan; Davidsson, Johan; Angéria, Maria; Mathiesen, Tiit; Risling, Mårten

    2015-04-01

    Traumatic brain injury is followed by secondary neuronal degeneration, largely dependent on an inflammatory response. This response is probably gender specific, since females are better protected than males in experimental models. The reasons are not fully known. We examined aspects of the inflammatory response following experimental TBI in male and female rats to explore possible gender differences at 24 h and 72 h after trauma, times of peak histological inflammation and neuronal degeneration. A penetrating brain injury model was used to produce penetrating focal TBI in 20 Sprague-Dawley rats, 5 males and 5 females for each time point. After 24 and 72 h the brains were removed and subjected to in situ hybridization and immunohistochemical analyses for COX-2, iNOS, osteopontin, glial fibrillary acidic protein, 3-nitrotyrosine, TUNEL and Fluoro-Jade. COX-2 mRNA and protein levels were increased in the perilesional area compared to the uninjured contralateral side and significantly higher in males at 24 h and 72 h (p genders. COX-2 regulation differed between genders after TBI. The increased COX-2 expression in male rats correlated with increased apoptotic cell death detected by increased TUNEL staining at 24 h, but not with neuronal necrosis measured by Flouro-Jade. Astrogliosis and microgliosis did not differ, confirming a comparable level of trauma. The gender-specific trait of the secondary inflammatory response may be connected to prostaglandin regulation, which may partially explain gender variances in outcome after TBI.

  20. IL-10 deficiency exacerbates the brain inflammatory response to permanent ischemia without preventing resolution of the lesion

    Science.gov (United States)

    Pérez-de Puig, Isabel; Miró, Francesc; Salas-Perdomo, Angélica; Bonfill-Teixidor, Ester; Ferrer-Ferrer, Maura; Márquez-Kisinousky, Leonardo; Planas, Anna M

    2013-01-01

    Stroke induces inflammation that can aggravate brain damage. This work examines whether interleukin-10 (IL-10) deficiency exacerbates inflammation and worsens the outcome of permanent middle cerebral artery occlusion (pMCAO). Expression of IL-10 and IL-10 receptor (IL-10R) increased after ischemia. From day 4, reactive astrocytes showed strong IL-10R immunoreactivity. Interleukin-10 knockout (IL-10 KO) mice kept in conventional housing showed more mortality after pMCAO than the wild type (WT). This effect was associated with the presence of signs of colitis in the IL-10 KO mice, suggesting that ongoing systemic inflammation was a confounding factor. In a pathogen-free environment, IL-10 deficiency slightly increased infarct volume and neurologic deficits. Induction of proinflammatory molecules in the IL-10 KO brain was similar to that in the WT 6 hours after ischemia, but was higher at day 4, while differences decreased at day 7. Deficiency of IL-10 promoted the presence of more mature phagocytic cells in the ischemic tissue, and enhanced the expression of M2 markers and the T-cell inhibitory molecule CTLA-4. These findings agree with a role of IL-10 in attenuating local inflammatory reactions, but do not support an essential function of IL-10 in lesion resolution. Upregulation of alternative immunosuppressive molecules after brain ischemia can compensate, at least in part, the absence of IL-10. PMID:24022622

  1. Contribution of Histologic Chorioamnionitis and Fetal Inflammatory Response Syndrome to Increased Risk of Brain Injury in Infants With Preterm Premature Rupture of Membranes.

    Science.gov (United States)

    Lu, Hong-Yan; Zhang, Qiang; Wang, Qiu-Xia; Lu, Jun-Ying

    2016-08-01

    To determine the association of histologic chorioamnionitis (HCA) and fetal inflammatory response syndrome (FIRS) with brain injuries in infants born to mothers with preterm premature rupture of membranes. A total of 103 singleton infants born to mothers with preterm premature rupture of membranes were enrolled. The placental inflammation was confirmed by HCA, and FIRS was defined in fetuses with preterm labor and an elevation of the fetal plasma interleukin-6 concentration. Examination of brain images was conducted to confirm the existence of brain injuries. Based on placental HCA and umbilical cord blood interleukin-6 level, all patients were divided into three groups: HCA(-)FIRS(+), HCA(+)FIRS(-), and HCA(+)FIRS(+). Among all infants with preterm premature rupture of membranes, 53.40% were exposed to HCA, 20.38% experienced FIRS, and the overall incidence of brain injuries was 38.83%. The incidence of brain injury in HCA(-)FIRS(+), HCA(+)FIRS(-), and HCA(+)FIRS(+) groups were 20.83%, 41.18%, and 76.19%, respectively. HCA at the advanced grades and stages was associated with increased risk of brain injury. Umbilical cord blood levels of interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor alpha (TNF-α), and granulocyte-colony stimulating factor (G-CSF) in premature infants with brain injuries were significantly higher than in those without brain injuries. Infants diagnosed with both HCA and FIRS showed significantly higher levels of IL-8, TNF-α, and G-CSF than those with HCA alone. Preterm infants exposed to severe chorioamnionitis had an increased risk of brain injury. IL-6, IL-8, TNF-α, and G-CSF in cord blood were associated with brain injuries in preterm infants and may be used as extradiagnostic criteria. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Sulfatide, a major lipid component of myelin sheath, activates inflammatory responses as an endogenous stimulator in brain-resident immune cells.

    Science.gov (United States)

    Jeon, Sae-Bom; Yoon, Hee Jung; Park, Se-Ho; Kim, In-Hoo; Park, Eun Jung

    2008-12-01

    Sulfatide, a major lipid component of myelin sheath, participates in diverse cellular events of the CNS, and its cellular level has recently been implicated in many inflammation-associated neuronal diseases. Herein, we report that sulfatide alone can trigger pathological inflammatory responses in glia, brain-resident immune cells. We show that sulfatide changed the morphology of primary microglia to their activated form, and it significantly induced the production of various inflammatory mediators in primary microglia and astrocytes. Moreover, sulfatide rapidly triggered the phosphorylation of p38, ERK, and JNK within 30 min, and it markedly enhanced the NF binding activity to NF-kappaB and AP-1 binding elements. However, nonsulfated galactocerebroside, another major lipid component of myelin, had no effect on activation of glia. We further reveal that CD1d did not contribute to sulfatide-stimulated activation of MAPKs, although its expression was enhanced by sulfatide and sulfatide-treated microglial cells actually stimulated type II NKT cells. Sulfatide significantly stimulated the phosphorylation of MAPKs in glia from CD1d-deficient mice, and the phosphorylation levels were similar to those in wild-type littermates. Sulfatide-triggered inflammatory events appear to occur at least in part through an L-selectin-dependent mechanism. L-selectin was dramatically down-regulated upon exposure to sulfatide, and inhibition of L-selectin resulted in suppression of sulfatide-triggered responses. Collectively, these results show that abnormally released sulfatide at demyelinated regions may act as an endogenous stimulator in the brain immune system, thus causing and further exacerbating pathological conditions in the brain.

  3. NLRP3-inflammasome activating DAMPs stimulate an inflammatory response in glia in the absence of priming which contributes to brain inflammation after injury

    Directory of Open Access Journals (Sweden)

    Catherine Diane Savage

    2012-09-01

    Full Text Available Inflammation in the absence of infection (sterile inflammation contributes to acute injury and chronic disease. Cerebral ischaemia is a devastating condition in which the primary injury is caused by reduced blood supply and is therefore sterile. The cytokine interleukin-1β (IL-1β is a key contributor to ischaemic brain injury and central inflammatory responses. The release of IL-1β is regulated by the protease caspase-1, and its activating complex, the inflammasome. Of the known inflammasomes the best characterised, and one that is perceived to sense sterile injury is formed by a pattern recognition receptor called NLRP3. A key feature of NLRP3-inflammasome dependent responses in vitro in macrophages is the requirement of an initial priming stimulus by a pathogen (PAMP, or damage associated molecular pattern (DAMP respectively. We sought to determine the inflammatory responses of NLRP3-activating DAMPs on brain derived mixed glial cells in the absence of an initial priming stimulus in vitro. In cultured mouse mixed glia the DAMPs ATP, MSU and CPPD crystals had no effect on the expression of IL-1α or IL-1β and induced release only when the cells were primed with a PAMP. In the absence of priming, these DAMPs did however induce inflammation via the production of IL-6 and CXCL1, and the release of the lysosomal protease cathepsin B. Furthermore, the acute phase protein serum amyloid A (SAA acted as a priming stimulus on glial cells resulting in levels of IL-1 expression comparable to those induced by the PAMP LPS. In vivo, after cerebral ischaemia, IL-1 production contributed to increased IL-6 and CXCL1 since these cytokines were profoundly reduced in the ischaemic hemispheres from IL-1α/β double KO mice, although injury-induced cytokine responses were not abolished. Thus, DAMPs augment brain inflammation by directly stimulating production of glial derived inflammatory mediators. This is markedly enhanced by DAMP-induced IL-1-release

  4. Chemotactic and inflammatory responses in the liver and brain are associated with pathogenesis of Rift Valley fever virus infection in the mouse.

    Directory of Open Access Journals (Sweden)

    Kimberly K Gray

    Full Text Available Rift Valley fever virus (RVFV is a major human and animal pathogen associated with severe disease including hemorrhagic fever or encephalitis. RVFV is endemic to parts of Africa and the Arabian Peninsula, but there is significant concern regarding its introduction into non-endemic regions and the potentially devastating effect to livestock populations with concurrent infections of humans. To date, there is little detailed data directly comparing the host response to infection with wild-type or vaccine strains of RVFV and correlation with viral pathogenesis. Here we characterized clinical and systemic immune responses to infection with wild-type strain ZH501 or IND vaccine strain MP-12 in the C57BL/6 mouse. Animals infected with live-attenuated MP-12 survived productive viral infection with little evidence of clinical disease and minimal cytokine response in evaluated tissues. In contrast, ZH501 infection was lethal, caused depletion of lymphocytes and platelets and elicited a strong, systemic cytokine response which correlated with high virus titers and significant tissue pathology. Lymphopenia and platelet depletion were indicators of disease onset with indications of lymphocyte recovery correlating with increases in G-CSF production. RVFV is hepatotropic and in these studies significant clinical and histological data supported these findings; however, significant evidence of a pro-inflammatory response in the liver was not apparent. Rather, viral infection resulted in a chemokine response indicating infiltration of immunoreactive cells, such as neutrophils, which was supported by histological data. In brains of ZH501 infected mice, a significant chemokine and pro-inflammatory cytokine response was evident, but with little pathology indicating meningoencephalitis. These data suggest that RVFV pathogenesis in mice is associated with a loss of liver function due to liver necrosis and hepatitis yet the long-term course of disease for those that

  5. Gene expression profiling in brain of mice exposed to the marine neurotoxin ciguatoxin reveals an acute anti-inflammatory, neuroprotective response

    Directory of Open Access Journals (Sweden)

    Ryan James C

    2010-08-01

    Full Text Available Abstract Background Ciguatoxins (CTXs are polyether marine neurotoxins and potent activators of voltage-gated sodium channels. This toxin is carried by multiple reef-fish species and human consumption of ciguatoxins can result in an explosive gastrointestinal/neurologic illness. This study characterizes the global transcriptional response in mouse brain to a symptomatic dose of the highly toxic Pacific ciguatoxin P-CTX-1 and additionally compares this data to transcriptional profiles from liver and whole blood examined previously. Adult male C57/BL6 mice were injected with 0.26 ng/g P-CTX-1 while controls received only vehicle. Animals were sacrificed at 1, 4 and 24 hrs and transcriptional profiling was performed on brain RNA with Agilent whole genome microarrays. RT-PCR was used to independently validate gene expression and the web tool DAVID was used to analyze gene ontology (GO and molecular pathway enrichment of the gene expression data. Results A pronounced 4°C hypothermic response was recorded in these mice, reaching a minimum at 1 hr and lasting for 8 hrs post toxin exposure. Ratio expression data were filtered by intensity, fold change and p-value, with the resulting data used for time course analysis, K-means clustering, ontology classification and KEGG pathway enrichment. Top GO hits for this gene set included acute phase response and mono-oxygenase activity. Molecular pathway analysis showed enrichment for complement/coagulation cascades and metabolism of xenobiotics. Many immediate early genes such as Fos, Jun and Early Growth Response isoforms were down-regulated although others associated with stress such as glucocorticoid responsive genes were up-regulated. Real time PCR confirmation was performed on 22 differentially expressed genes with a correlation of 0.9 (Spearman's Rho, p Conclusions Many of the genes differentially expressed in this study, in parallel with the hypothermia, figure prominently in protection against

  6. Arsenic affects inflammatory cytokine expression in Gallus gallus brain tissues.

    Science.gov (United States)

    Sun, Xiao; He, Ying; Guo, Ying; Li, Siwen; Zhao, Hongjing; Wang, Yu; Zhang, Jingyu; Xing, Mingwei

    2017-06-05

    The heavy metal arsenic is widely distributed in nature and posses a serious threat to organism's health. However, little is known about the arsenic-induced inflammatory response in the brain tissues of birds and the relationship and mechanism of the inflammatory response. The purpose of this study was to explore the effects of dietary arsenic on the expression of inflammatory cytokines in the brains of Gallus gallus. Seventy-two 1-day-old male Hy-line chickens were divided into a control group, a low arsenic trioxide (As2O3)-treated (7.5 mg/kg) group, a middle As2O3-treated (15 mg/kg) group, and a high As2O3-treated (30 mg/kg) group. Arsenic exposure caused obvious ultrastructural changes. The mRNA levels of the transcription factor nuclear factor-κB (NF-κB) and of pro-inflammatory cytokines, including inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and prostaglandin E synthase (PTGEs), in chicken brain tissues (cerebrum, cerebellum, thalamus, brainstem and myelencephalon) on days 30, 60 and 90, respectively, were measured by real-time PCR. The protein expression of iNOS was detected by western blot. The results showed that after being treated with As2O3, the levels of inflammatory-related factor NF-κB and pro-inflammatory cytokines in chicken brain tissues increased (P Arsenic exposure in the chickens triggered host defence and induced an inflammatory response by regulating the expression of inflammatory-related genes in the cerebrum, cerebellum, thalamus, brainstem and myelencephalon. These data form a foundation for further research on arsenic-induced neurotoxicity in Gallus gallus.

  7. Inflammatory response in equine joints

    OpenAIRE

    Ley, Cecilia

    2010-01-01

    Proinflammatory cytokines mediate inflammatory responses as well as regulate tissue metabolism. Thus, they may provide a link between inflammation and other pathologic findings seen in equine joint disease. The aims of this thesis were to gain a deeper understanding of the development of chondral pathology in equine osteoarthritis (OA) by obtaining increased knowledge of inflammatory processes in the joint, and to investigate proinflammatory cytokines as markers of joint pathology. Measuremen...

  8. Transcompartmental Inflammatory Responses in Humans

    DEFF Research Database (Denmark)

    Plovsing, Ronni R; Berg, Ronan M G; Evans, Kevin A

    2014-01-01

    OBJECTIVES: Transcompartmental signaling during early inflammation may lead to propagation of disease to other organs. The time course and the mechanisms involved are still poorly understood. We aimed at comparing acute transcompartmental inflammatory responses in humans following lipopolysacchar......OBJECTIVES: Transcompartmental signaling during early inflammation may lead to propagation of disease to other organs. The time course and the mechanisms involved are still poorly understood. We aimed at comparing acute transcompartmental inflammatory responses in humans following......-α, interleukin-6, and albumin (all p humans is followed by a transcompartmental proinflammatory response, the degree and differential...

  9. Graphene Functionalized Scaffolds Reduce the Inflammatory Response and Supports Endogenous Neuroblast Migration when Implanted in the Adult Brain.

    Science.gov (United States)

    Zhou, Kun; Motamed, Sepideh; Thouas, George A; Bernard, Claude C; Li, Dan; Parkington, Helena C; Coleman, Harold A; Finkelstein, David I; Forsythe, John S

    2016-01-01

    Electroactive materials have been investigated as next-generation neuronal tissue engineering scaffolds to enhance neuronal regeneration and functional recovery after brain injury. Graphene, an emerging neuronal scaffold material with charge transfer properties, has shown promising results for neuronal cell survival and differentiation in vitro. In this in vivo work, electrospun microfiber scaffolds coated with self-assembled colloidal graphene, were implanted into the striatum or into the subventricular zone of adult rats. Microglia and astrocyte activation levels were suppressed with graphene functionalization. In addition, self-assembled graphene implants prevented glial scarring in the brain 7 weeks following implantation. Astrocyte guidance within the scaffold and redirection of neuroblasts from the subventricular zone along the implants was also demonstrated. These findings provide new functional evidence for the potential use of graphene scaffolds as a therapeutic platform to support central nervous system regeneration.

  10. Graphene Functionalized Scaffolds Reduce the Inflammatory Response and Supports Endogenous Neuroblast Migration when Implanted in the Adult Brain.

    Directory of Open Access Journals (Sweden)

    Kun Zhou

    Full Text Available Electroactive materials have been investigated as next-generation neuronal tissue engineering scaffolds to enhance neuronal regeneration and functional recovery after brain injury. Graphene, an emerging neuronal scaffold material with charge transfer properties, has shown promising results for neuronal cell survival and differentiation in vitro. In this in vivo work, electrospun microfiber scaffolds coated with self-assembled colloidal graphene, were implanted into the striatum or into the subventricular zone of adult rats. Microglia and astrocyte activation levels were suppressed with graphene functionalization. In addition, self-assembled graphene implants prevented glial scarring in the brain 7 weeks following implantation. Astrocyte guidance within the scaffold and redirection of neuroblasts from the subventricular zone along the implants was also demonstrated. These findings provide new functional evidence for the potential use of graphene scaffolds as a therapeutic platform to support central nervous system regeneration.

  11. Inflammatory Response in Islet Transplantation

    Directory of Open Access Journals (Sweden)

    Mazhar A. Kanak

    2014-01-01

    Full Text Available Islet cell transplantation is a promising beta cell replacement therapy for patients with brittle type 1 diabetes as well as refractory chronic pancreatitis. Despite the vast advancements made in this field, challenges still remain in achieving high frequency and long-term successful transplant outcomes. Here we review recent advances in understanding the role of inflammation in islet transplantation and development of strategies to prevent damage to islets from inflammation. The inflammatory response associated with islets has been recognized as the primary cause of early damage to islets and graft loss after transplantation. Details on cell signaling pathways in islets triggered by cytokines and harmful inflammatory events during pancreas procurement, pancreas preservation, islet isolation, and islet infusion are presented. Robust control of pre- and peritransplant islet inflammation could improve posttransplant islet survival and in turn enhance the benefits of islet cell transplantation for patients who are insulin dependent. We discuss several potent anti-inflammatory strategies that show promise for improving islet engraftment. Further understanding of molecular mechanisms involved in the inflammatory response will provide the basis for developing potent therapeutic strategies for enhancing the quality and success of islet transplantation.

  12. Cloning the Antibody Response in Humans with Chronic Inflammatory Disease: Immunopanning of Subacute Sclerosing Panencephalitis (SSPE) Brain Sections with Antibody Phage Libraries Prepared from SSPE Brain Enriches for Antibody Recognizing Measles Virus Antigens In Situ

    Science.gov (United States)

    Owens, Gregory P.; Williamson, R. Anthony; Burgoon, Mark P.; Ghausi, Omar; Burton, Dennis R.; Gilden, Donald H.

    2000-01-01

    In central nervous system (CNS) infectious and inflammatory diseases of known cause, oligoclonal bands represent antibody directed against the causative agent. To determine whether disease-relevant antibodies can be cloned from diseased brain, we prepared an antibody phage display library from the brain of a human with subacute sclerosing panencephalitis (SSPE), a chronic encephalitis caused by measles virus, and selected the library against SSPE brain sections. Antibodies that were retrieved reacted strongly with measles virus cell extracts by enzyme-linked immunosorbent assay and were specific for the measles virus nucleocapsid protein. These antibodies immunostained cells in different SSPE brains but not in control brain. Our data provide the first demonstration that diseased brain can be used to select in situ for antibodies directed against the causative agent of disease and point to the potential usefulness of this approach in identifying relevant antibodies in chronic CNS or systemic inflammatory diseases of unknown cause. PMID:10627565

  13. Low intracellular ATP levels exacerbate carcinogen-induced inflammatory stress response and inhibit in vitro tubulogenesis in human brain endothelial cells

    Directory of Open Access Journals (Sweden)

    Elizabeth Tahanian

    2011-01-01

    Full Text Available Elizabeth Tahanian, Sabrina Peiro, Borhane AnnabiLaboratoire d'Oncologie Moléculaire, Centre de Recherche BioMED, Département de Chimie, Université du Québec à Montréal, Montréal, Québec, CanadaAbstract: Solid tumor development requires angiogenesis and is correlated to the expression of inflammatory markers through cellular metabolic and energetic adaptation. While high glycolysis rates enable the cancer cell compartment to generate adenosine triphosphate (ATP, very little is known about the impact of low intracellular ATP concentrations within the vascular endothelial cell compartment, which is responsible for tumor angiogenesis. Here, we investigated the effect of 2-deoxy-D-glucose (2-DG, a glucose analog that inhibits glycolysis through intracellular ATP depletion, on human brain microvascular endothelial cell (HBMEC angiogenic properties. While preformed capillaries remained unaffected, we found that in vitro tubulogenesis was dose-dependently decreased by 2-DG and that this correlated with reduced intracellular ATP levels. Procarcinogenic signaling was induced with phorbol 12-myristate 13-acetate (PMA and found to trigger the proinflammatory marker cyclooxygenase-2 (COX-2 and endoplasmic reticulum (ER stress marker GRP78 expression, whose inductions were potentiated when PMA was combined with 2-DG treatment. Inversely, PMA-induced matrix-metalloproteinase-9 (MMP-9 gene expression and protein secretion were abrogated in the presence of 2-DG, and this can be partially explained by reduced nuclear factor-κB signaling. Collectively, we provide evidence for an intracellular ATP requirement in order for tubulogenesis to occur, and we link increases in ER stress to inflammation. A better understanding of the metabolic adaptations of the vascular endothelial cells that mediate tumor vascularization will help the development of new drugs and therapies.Keywords: endoplasmic reticulum stress, MMP-9, COX-2, 2-deoxy-D-glucose, endothelial

  14. The Acute Inflammatory Response in Trauma / Hemorrhage and ...

    African Journals Online (AJOL)

    Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury (TBI). Inflammation is a ...

  15. Noradrenaline increases pain facilitation from the brain during inflammatory pain.

    Science.gov (United States)

    Martins, I; de Vries, M G; Teixeira-Pinto, A; Fadel, J; Wilson, S P; Westerink, B H C; Tavares, I

    2013-08-01

    Antidepressants that inhibit the recapture of noradrenaline have variable effects in chronic pain which may be related to the complex role of noradrenaline in pain modulation. Whereas at the spinal cord noradrenaline blocks nociceptive transmission, both antinociception and pronociception were reported after noradrenaline release in the brain. To study the role of noradrenaline in pain modulatory areas of the brain, we elected the dorsal reticular nucleus (DRt), a key pain facilitatory area located at the medulla oblongata. Three studies were performed. First, we show that the infusion in the DRt of nomifensine, which increases local extracellular levels of noradrenaline as shown by in vivo microdialysis, also enhances pain behavioral responses during both phases of the formalin test, a classic inflammatory pain model. Then, we demonstrate that the formalin test triggers the release of noradrenaline in the DRt in a biphasic pattern that matches the two phases of the test. Finally, we show that reducing noradrenaline release into the DRt, using an HSV-1 vector which decreases the expression of tyrosine hydroxylase in noradrenergic DRt-projecting neurons, attenuates pain behavioral responses in both phases of the formalin test. The increased noradrenaline levels induced by the infusion of nomifensine at the DRt, along with the hyperalgesic effects of noradrenaline released at the DRt upon noxious stimulation, indicates that noradrenaline may enhance pain facilitation from the brain. It is important to evaluate if antidepressants that inhibit noradrenaline recapture enhance pain facilitation from the brain herein attenuating their analgesic effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Maternal lead exposure decreases the levels of brain development and cognition-related proteins with concomitant upsurges of oxidative stress, inflammatory response and apoptosis in the offspring rats.

    Science.gov (United States)

    Hossain, Shahdat; Bhowmick, Sujan; Jahan, Sabrin; Rozario, Liza; Sarkar, Marzan; Islam, Saiful; Basunia, Mafroz Ahmed; Rahman, Azizur; Choudhury, Bazlul Karim; Shahjalal, Hussain

    2016-09-01

    The presence of lead (Pb) in fetal brain may affect brain development-related proteins. We studied whether gestational/lactational Pb-exposure affects oxidative stress, proinflammatory response, apoptosis and levels of brain development/cognition-related proteins, including presynaptic synaptosome-associated protein-25 (SNAP-25), postsynaptic density protein-95 (PSD-95), brain-derived neurotropic factor (BDNF), tyrosine receptor-kinase protein B (TrkB) and vesicular acetylcholine transporter (VAChT) in the offspring. Female Wistar rats were randomly divided into control and Pb-exposed mother groups. The Pb-exposed rats received 0.1% (w/v) Pb acetate via drinking water during pregnancy and lactation. Milk and mammary glands were collected from lactating mothers to measure milk/mammary gland levels of lipid peroxide (LPO), as indicator of oxidative stress and proinflammatory TNF-α. Afterwards, the pups were sacrificed to determine brain levels of Pb, LPO, TNF-α, cytochrome C, SNAP-25, PSD-95, BDNF, TrkB and VAChT. The levels of LPO and TNF-α increased in the milk/mammary glands of the Pb-exposed mothers, concurrently with increases in the levels of Pb, LPO, TNF-α and cytochrome C and decreases in the levels of SNAP-25, PSD-95, BDNF, TrkB and VAChT in the brains of their offspring. Our results demonstrate that Pb-exposure during development reduces the brain levels of PSD-95 and SNAP-25 (synaptogenesis-markers), with concomitant upsurges of oxidative stress, TNF-α and apoptosis in the offspring. Furthermore, BDNF-TrkB proteins that comprehend memory-related brain cognitions and/or VAChT that comprises cholinergic-neuromotor activities might be impaired by Pb-exposure. These findings provide evidence of toxic effects of Pb on brain development, at least, partially by decreasing the levels of PSD-95, SNAP-25 and other cognition-related proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Sphingosine 1 Phosphate at the Blood Brain Barrier: Can the Modulation of S1P Receptor 1 Influence the Response of Endothelial Cells and Astrocytes to Inflammatory Stimuli?

    Directory of Open Access Journals (Sweden)

    Simona F Spampinato

    Full Text Available The ability of the Blood Brain Barrier (BBB to maintain proper barrier functions, keeping an optimal environment for central nervous system (CNS activity and regulating leukocytes' access, can be affected in CNS diseases. Endothelial cells and astrocytes are the principal BBB cellular constituents and their interaction is essential to maintain its function. Both endothelial cells and astrocytes express the receptors for the bioactive sphingolipid S1P. Fingolimod, an immune modulatory drug whose structure is similar to S1P, has been approved for treatment in multiple sclerosis (MS: fingolimod reduces the rate of MS relapses by preventing leukocyte egress from the lymph nodes. Here, we examined the ability of S1P and fingolimod to act on the BBB, using an in vitro co-culture model that allowed us to investigate the effects of S1P on endothelial cells, astrocytes, and interactions between the two. Acting selectively on endothelial cells, S1P receptor signaling reduced cell death induced by inflammatory cytokines. When acting on astrocytes, fingolimod treatment induced the release of a factor, granulocyte macrophage colony-stimulating factor (GM-CSF that reduced the effects of cytokines on endothelium. In an in vitro BBB model incorporating shear stress, S1P receptor modulation reduced leukocyte migration across the endothelial barrier, indicating a novel mechanism that might contribute to fingolimod efficacy in MS treatment.

  18. Systemic inflammatory response following acute myocardial infarction

    National Research Council Canada - National Science Library

    Lu FANG Xiao-Lei Moorea Anthony M Dart Le-Min WANG

    2015-01-01

    Acute cardiomyocyte necrosis in the infarcted heart generates damage-associated molecular patterns, activating complement and toll-like receptor/interleukin-1 signaling, and triggering an intense inflammatory response...

  19. Inflammatory Acute Response. Biochemical and Cellular Considerations

    National Research Council Canada - National Science Library

    Milagros Lisset León Regal; Ania Alvarado Borges; José Omar de Armas García; Luciano Miranda Alvarado; Javier Antonio Varens Cedeño; José Ángel Cuesta del Sol

    2015-01-01

    .... The present work aimed at argumenting on the mechanisms that explain the vascular changes, and the establishment of the signs of the acute inflammatory response with an in-depth molecular level...

  20. Neuroprotection by estrogenic compounds following inflammatory insult in the brain

    Directory of Open Access Journals (Sweden)

    Luis Miguel Garcia-Segura

    2015-02-01

    Full Text Available The steady-state microglia play an important role in monitoring and protecting the nerve tissue ensuring proper functioning of the Central Nervous System. Microglia respond to an immune stimulus with the subsequent activation of cascades that trigger the secretion of pro-inflammatory cytokines (IL-1, TNF-α, IL-12. Neurodegenerative diseases and disorders such as spinal cord injury, stroke, and head trauma are directly related to chronic activation of microglia. Depending on the injury severity, the microglial response and activity may range from acute (beneficial or chronic (detrimental, where this long-term activation are tightly associated to neurodegenerative processes. Several studies have reported that neuroactive steroids have protective effects and regulate the neuroinflammation associated to microglia. In cell therapy, microglia-induced inflammation may be modulated via the use of neurosteriods, due to their evidenced roles in the regulation of neuroinflammation. Estrogenic compounds, such as as SERM and STEARs, are currently under investigation. In this work, the regulatory mechanisms of inflammation of the microglia are discussed, including the reduction of inflammatory processes in the brain by treatment with neurosteroids.

  1. Systemic Inflammatory Response and Adhesion Molecules

    Directory of Open Access Journals (Sweden)

    L. V. Molchanova

    2005-01-01

    Full Text Available The lecture presents the materials of foreign studies on the mechanisms responsible for the formation of a systemic inflammatory response syndrome (SIRS. The hypotheses accounting for the occurrence of SIRS in emergencies are described. Adhesion molecules (AM and endothelial dysfunction are apparent to be involved in the inflammatory process, no matter what the causes of SIRS are. The current classification of AM and adhesion cascades with altered blood flow is presented. There are two lines in the studies of AM. One line is to measure the concentration of AM in the plasma of patients with emergencies of various etiology. The other is to study the impact of antiadhesion therapy on the alleviation of the severity of terminal state and its outcome. The studies provide evidence for that an adhesive process is a peculiar prelude to a systemic inflammatory response.

  2. Blockade of Glutamine Synthetase Enhances Inflammatory Response in Microglial Cells.

    Science.gov (United States)

    Palmieri, Erika M; Menga, Alessio; Lebrun, Aurore; Hooper, Douglas C; Butterfield, D Allan; Mazzone, Massimiliano; Castegna, Alessandra

    2017-03-10

    Microglial cells are brain-resident macrophages engaged in surveillance and maintained in a constant state of relative inactivity. However, their involvement in autoimmune diseases indicates that in pathological conditions microglia gain an inflammatory phenotype. The mechanisms underlying this change in the microglial phenotype are still unclear. Since metabolism is an important modulator of immune cell function, we focused our attention on glutamine synthetase (GS), a modulator of the response to lipopolysaccharide (LPS) activation in other cell types, which is expressed by microglia. GS inhibition enhances release of inflammatory mediators of LPS-activated microglia in vitro, leading to perturbation of the redox balance and decreased viability of cocultured neurons. GS inhibition also decreases insulin-mediated glucose uptake in microglia. In vivo, microglia-specific GS ablation enhances expression of inflammatory markers upon LPS treatment. In the spinal cords from experimental autoimmune encephalomyelitis (EAE), GS expression levels and glutamine/glutamate ratios are reduced. Recently, metabolism has been highlighted as mediator of immune cell function through the discovery of mechanisms that (behind these metabolic changes) modulate the inflammatory response. The present study shows for the first time a metabolic mechanism mediating microglial response to a proinflammatory stimulus, pointing to GS activity as a master modulator of immune cell function and thus unraveling a potential therapeutic target. Our study highlights a new role of GS in modulating immune response in microglia, providing insights into the pathogenic mechanisms associated with inflammation and new strategies of therapeutic intervention. Antioxid. Redox Signal. 26, 351-363.

  3. Pronounced inflammatory response to endotoxaemia during nighttime

    DEFF Research Database (Denmark)

    Alamili, Mahdi; Bendtzen, Klaus; Lykkesfeldt, Jens

    2014-01-01

    -night difference in the acute phase response to endotoxaemia exists in healthy volunteers with a more pronounced inflammatory response during the night time. This circadian difference in the response to endotoxaemia may play an important role in the clinical setting and should be investigated further.......BACKGROUND: Circadian variation in bodily functions has been shown to impact health in acute and chronic medical conditions. Little is known about the relationship between circadian rhythm and sepsis in humans. We aimed to investigate circadian variations in the host response in a human...... endotoxaemia model. DESIGN AND METHODS: A cross-over study, where 12 healthy young men received E. coli endotoxin (lipopolysaccharide, LPS) 0.3 ng/kg at 12 noon and, on another day, at 12 midnight. Blood samples were analysed for pro- and anti-inflammatory cytokines: tumour-necrosis factor (TNF)-alpha, soluble...

  4. Natural Products: Insights into Leishmaniasis Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Igor A. Rodrigues

    2015-01-01

    Full Text Available Leishmaniasis is a vector-borne disease that affects several populations worldwide, against which there are no vaccines available and the chemotherapy is highly toxic. Depending on the species causing the infection, the disease is characterized by commitment of tissues, including the skin, mucous membranes, and internal organs. Despite the relevance of host inflammatory mediators on parasite burden control, Leishmania and host immune cells interaction may generate an exacerbated proinflammatory response that plays an important role in the development of leishmaniasis clinical manifestations. Plant-derived natural products have been recognized as bioactive agents with several properties, including anti-protozoal and anti-inflammatory activities. The present review focuses on the antileishmanial activity of plant-derived natural products that are able to modulate the inflammatory response in vitro and in vivo. The capability of crude extracts and some isolated substances in promoting an anti-inflammatory response during Leishmania infection may be used as part of an effective strategy to fight the disease.

  5. Differential effects of exercise intensities in hippocampal BDNF, inflammatory cytokines and cell proliferation in rats during the postnatal brain development

    OpenAIRE

    Almeida, Alexandre Aparecido de [UNIFESP; Gomes da Silva, Sérgio; Fernandes, Jansen; Peixinho-Pena, Luiz Fernando; Scorza, Fulvio Alexandre; Cavalheiro, Esper Abrão; Arida, Ricardo Mario

    2013-01-01

    It has been established that low intensities of exercise produce beneficial effects for the brain, while high intensities can cause some neuronal damage (e.g. exacerbated inflammatory response and cell death). Although these effects are documented in the mature brain, the influence of exercise intensities in the developing brain has been poorly explored. To investigate the impact of exercise intensity in developing rats, we evaluated the hippocampal level of brain derived neurotrophic factor ...

  6. The immune response of the human brain to abdominal surgery

    DEFF Research Database (Denmark)

    Forsberg, Anton; Cervenka, Simon; Jonsson Fagerlund, Malin

    2017-01-01

    OBJECTIVE: Surgery launches a systemic inflammatory reaction that reaches the brain and associates with immune activation and cognitive decline. Although preclinical studies have in part described this systemic-to-brain signaling pathway, we lack information on how these changes appear in humans....... This study examines the short- and long-term impact of abdominal surgery on the human brain immune system by positron emission tomography (PET) in relation to blood immune reactivity, plasma inflammatory biomarkers, and cognitive function. METHODS: Eight males undergoing prostatectomy under general...... to change in [(11) C]PBR28 binding (p = 0.027). INTERPRETATION: This study translates preclinical data on changes in the brain immune system after surgery to humans, and suggests an interplay between the human brain and the inflammatory response of the peripheral innate immune system. These findings may...

  7. Interplay between Inflammatory Responses and Lymphatic Vessels.

    Science.gov (United States)

    Shin, Kihyuk; Lee, Seung-Hyo

    2014-08-01

    Lymphatic vessels are routes for leukocyte migration and fluid drainage. In addition to their passive roles in migration of leukocytes, increasing evidence indicates their active roles in immune regulation. Tissue inflammation rapidly induces lymphatic endothelial cell proliferation and chemokine production, thereby resulting in lymphangiogenesis. Furthermore, lymphatic endothelial cells induce T cell tolerance through various mechanisms. In this review, we focus on the current knowledge on how inflammatory cytokines affect lymphangiogenesis and the roles of lymphatic vessels in modulating immune responses.

  8. Inflammatory monocytes hinder antiviral B cell responses.

    Science.gov (United States)

    Sammicheli, Stefano; Kuka, Mirela; Di Lucia, Pietro; de Oya, Nereida Jimenez; De Giovanni, Marco; Fioravanti, Jessica; Cristofani, Claudia; Maganuco, Carmela G; Fallet, Benedict; Ganzer, Lucia; Sironi, Laura; Mainetti, Marta; Ostuni, Renato; Larimore, Kevin; Greenberg, Philip D; de la Torre, Juan Carlos; Guidotti, Luca G; Iannacone, Matteo

    2016-10-21

    Antibodies are critical for protection against viral infections. However, several viruses, such as lymphocytic choriomeningitis virus (LCMV), avoid the induction of early protective antibody responses by poorly understood mechanisms. Here we analyzed the spatiotemporal dynamics of B cell activation to show that, upon subcutaneous infection, LCMV-specific B cells readily relocate to the interfollicular and T cell areas of the draining lymph node where they extensively interact with CD11b(+)Ly6C(hi) inflammatory monocytes. These myeloid cells were recruited to lymph nodes draining LCMV infection sites in a type I interferon-, CCR2-dependent fashion and they suppressed antiviral B cell responses by virtue of their ability to produce nitric oxide. Depletion of inflammatory monocytes, inhibition of their lymph node recruitment or impairment of their nitric oxide-producing ability enhanced LCMV-specific B cell survival and led to robust neutralizing antibody production. In conclusion, our results identify inflammatory monocytes as critical gatekeepers that prevent antiviral B cell responses and suggest that certain viruses take advantage of these cells to prolong their persistence within the host.

  9. Neuroimmune regulation of inflammatory responses in inflammatory bowel disease

    NARCIS (Netherlands)

    Rijnierse, Anneke

    2006-01-01

    The term inflammatory bowel disease (IBD) is used to describe chronic inflammatory conditions of the gastro-intestinal tract. Patients suffer from abdominal pain, diarrhea, rectal bleeding and a substantial personal burden. The etiology of IBD is gradually being unraveled but remains a complex

  10. Dialogue between the brain and the immune system in inflammatory arthritis.

    Science.gov (United States)

    Vassilopoulos, Dimitrios; Mantzoukis, Dimosthenis

    2006-11-01

    The crosstalk between the brain and the immune system in inflammatory arthritis is exerted mainly through the activation or downregulation of the hypothalamic-pituitary-adrenal (HPA), the hypothalamic-pituitary-gonadal (HPG), and the hypothalamic-autonomic nervous system (HANS) axes. In this review, we will present an overview of the most recent data regarding the regulation of these complex pathways of neuroendocrine response during the different phases of inflammatory arthritides such as rheumatoid arthritis (RA). Furthermore, the effect of the most recently available biologic therapies like anti-tumor necrosis factor (TNF-a) on the neuroendocrine function in patients with RA will be reviewed.

  11. Scorpion Venom and the Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Vera L. Petricevich

    2010-01-01

    Full Text Available Scorpion venoms consist of a complex of several toxins that exhibit a wide range of biological properties and actions, as well as chemical compositions, toxicity, and pharmacokinetic and pharmacodynamic characteristics. These venoms are associated with high morbility and mortality, especially among children. Victims of envenoming by a scorpion suffer a variety of pathologies, involving mainly both sympathetic and parasympathetic stimulation as well as central manifestations such as irritability, hyperthermia, vomiting, profuse salivation, tremor, and convulsion. The clinical signs and symptoms observed in humans and experimental animals are related with an excessive systemic host inflammatory response to stings and stings, respectively. Although the pathophysiology of envenomation is complex and not yet fully understood, venom and immune responses are known to trigger the release of inflammatory mediators that are largely mediated by cytokines. In models of severe systemic inflammation produced by injection of high doses of venom or venoms products, the increase in production of proinflammatory cytokines significantly contributes to immunological imbalance, multiple organ dysfunction and death. The cytokines initiate a cascade of events that lead to illness behaviors such as fever, anorexia, and also physiological events in the host such as activation of vasodilatation, hypotension, and increased of vessel permeability.

  12. Sex differences in the myocardial inflammatory response to acute injury

    National Research Council Canada - National Science Library

    Kher, Ajay; Wang, Meijing; Tsai, Ben M; Pitcher, Jeffrey M; Greenbaum, Evan S; Nagy, Ryan D; Patel, Ketan M; Wairiuko, G Mathenge; Markel, Troy A; Meldrum, Daniel R

    2005-01-01

    .... These insults lead to an inflammatory cascade, which plays an important role in this process. Gender has been shown to influence the inflammatory response, as well as outcomes after acute injury...

  13. Gut-brain actions underlying comorbid anxiety and depression associated with inflammatory bowel disease.

    Science.gov (United States)

    Abautret-Daly, Áine; Dempsey, Elaine; Parra-Blanco, Adolfo; Medina, Carlos; Harkin, Andrew

    2017-03-08

    Introduction Inflammatory bowel disease (IBD) is a chronic relapsing and remitting disorder characterised by inflammation of the gastrointestinal tract. There is a growing consensus that IBD is associated with anxiety- and depression-related symptoms. Psychological symptoms appear to be more prevalent during active disease states with no difference in prevalence between Crohn's disease and ulcerative colitis. Behavioural disturbances including anxiety- and depression-like symptoms have also been observed in animal models of IBD. The likely mechanisms underlying the association are discussed with particular reference to communication between the gut and brain. The close bidirectional relationship known as the gut-brain axis includes neural, hormonal and immune communication links. Evidence is provided for a number of interacting factors including activation of the inflammatory response system in the brain, the hypothalamic-pituitary-adrenal axis, and brain areas implicated in altered behaviours, changes in blood brain barrier integrity, and an emerging role for gut microbiota and response to probiotics in IBD. Discussion The impact of psychological stress in models of IBD remains somewhat conflicted, however, it is weighted in favour of stress or early stressful life events as risk factors in the development of IBD, stress-induced exacerbation of inflammation and relapse. It is recommended that patients with IBD be screened for psychological disturbance and treated accordingly as intervention can improve quality of life and may reduce relapse rates.

  14. Altered inflammatory responsiveness in serotonin transporter mutant rats

    NARCIS (Netherlands)

    Macchi, F.; Homberg, J.R.; Calabrese, F.; Zecchillo, C.; Racagni, G.; Riva, M.A.; Molteni, R.

    2013-01-01

    BACKGROUND: Growing evidence suggests that alterations of the inflammatory/immune system contribute to the pathogenesis of depression. Indeed, depressed patients exhibit increased levels of inflammatory markers in both the periphery and the brain, and high comorbidity exists between major depression

  15. Papanicolaou smears and cervical inflammatory cytokine responses

    Directory of Open Access Journals (Sweden)

    Shapiro Samual

    2007-04-01

    Full Text Available Abstract In a case-control study among 2064 South African women to investigate the risk of clinically invasive cancer of the cervix, we found a marked reduction in the risk of cervical cancer among women who gave a history of ever having undergone even a single Pap smear, and a statistically significant decline in the HPV positivity rate correlated with the lifetime number of Pap smears received. HPV infections and their associated low-grade lesions commonly regress, indicating that most often there is an effective host immune response against HPV infection. We hypothesized that act of performing a Pap smear is associated with inflammatory responses at the site of trauma, the cervix, and that this inflammatory signalling may be an immunological factor initiating these productive anti-HPV responses. In the present study, a randomized controlled trial, we enrolled 80 healthy young women to investigate the impact of performing a Pap smear on cervical inflammation. Forty one women, in the intervention group, received a Pap smear at enrollment and cervicovaginal lavages (CVLs were collected at baseline and 2 weeks later. Thirty nine women received no intervention at enrollment (control group but CVLs were collected at enrolment and 2 weeks later. We assessed various markers of inflammation including IL-12 p70, TNF-α, IL-8, IL-6, IL-10, and IL-1β in CVL specimens. While CVL levels of IL-8, IL-1β and IL-6 remained unchanged following a Pap smear, markers of cell mediated immunity (IL-12 p70 and TNF-α and T cell regulation (IL-10 were significantly elevated.

  16. Sex differences in the effects of adolescent stress on adult brain inflammatory markers in rats.

    Science.gov (United States)

    Pyter, Leah M; Kelly, Sean D; Harrell, Constance S; Neigh, Gretchen N

    2013-05-01

    Both basic and clinical research indicates that females are more susceptible to stress-related affective disorders than males. One of the mechanisms by which stress induces depression is via inflammatory signaling in the brain. Stress during adolescence, in particular, can also disrupt the activation and continued development of both the hypothalamic-pituitary-adrenal (HPA) and -gonadal (HPG) axes, both of which modulate inflammatory pathways and brain regions involved in affective behavior. Therefore, we tested the hypothesis that adolescent stress differentially alters brain inflammatory mechanisms associated with affective-like behavior into adulthood based on sex. Male and female Wistar rats underwent mixed-modality stress during adolescence (PND 37-48) and were challenged with lipopolysaccharide (LPS; 250μg/kg, i.p.) or saline 4.5weeks later (in adulthood). Hippocampal inflammatory marker gene expression and circulating HPA and HPG axes hormone concentrations were then determined. Despite previous studies indicating that adolescent stress induces affective-like behaviors in female rats only, this study demonstrated that adolescent stress increased hippocampal inflammatory responses to LPS in males only, suggesting that differences in neuroinflammatory signaling do not drive the divergent affective-like behaviors. The sex differences in inflammatory markers were not associated with differences in corticosterone. In females that experienced adolescent stress, LPS increased circulating estradiol. Estradiol positively correlated with hippocampal microglial gene expression in control female rats, whereas adolescent stress negated this relationship. Thus, estradiol in females may potentially protect against stress-induced increases in neuroinflammation. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Ticagrelor induced systemic inflammatory response syndrome.

    Science.gov (United States)

    Krisai, Philipp; Haschke, Manuel; Buser, Peter T; Mueller, Christian

    2017-01-06

    Ticagrelor is a reversible and direct-acting oral antagonist of the adenosine diphosphate receptor P2Y12. Possible adenosine-mediated effects of ticagrelor on inflammation are complex and incompletely understood. To our knowledge, ticagrelor-induced systemic inflammatory response syndrome (SIRS) has not yet been described. We report the case of an 84 years old patient presenting with SIRS subsequent to initiation of ticagrelor after implantation of two drug eluting stents. A broad diagnostic work-up for alternative causes and therapeutic measures were unrevealing. Discontinuation of the agent was followed by rapid improvement in clinical and laboratory signs of SIRS. After exclusion of other causes, ticagrelor needs to be considered as a possible causative agent for SIRS. Due to the widespread use of ticagrelor, clinicians should be aware of this possible adverse drug reaction.

  18. Plasma inflammatory biomarkers response to aerobic versus ...

    African Journals Online (AJOL)

    kelsen etal. proved that life-long endurance exercise was associated with a lower level of the inflammatory mark- ers CRP and IL-6 in elderly subjects27. While, Sugawara etal. concluded that the levels of elevated inflammatory cytokines decreased significantly after intervention with an anti-inflammatory nutrition combined ...

  19. Increased inflammatory response in cytomegalovirus seropositive patients with Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Gabriel Westman

    Full Text Available Alzheimer's disease (AD has been associated with increased local inflammation in the affected brain regions, and in some studies also with elevated levels of proinflammatory cytokines in peripheral blood. Cytomegalovirus (CMV is known to promote a more effector-oriented phenotype in the T-cell compartment, increasing with age. The aim of this study was to investigate the inflammatory response of peripheral blood mononuclear cells (PBMCs from AD patients and non-demented (ND controls. Using a multiplex Luminex xMAP assay targeting GM-CSF, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IP-10 and TNF-α, cytokine profiles from PBMCs were analysed after stimulation with anti-CD3/CD28 beads, CMV pp65 peptide mix or amyloid β (Aβ protofibrils, respectively. CMV seropositive AD subjects presented with higher IFN-γ levels after anti-CD3/CD28 and CMV pp65 but not after Aβ stimulation, compared to CMV seropositive ND controls. When analysing IFN-γ response to anti-CD3/CD28 stimulation on a subgroup level, CMV seropositive AD subjects presented with higher levels compared to both CMV seronegative AD and CMV seropositive ND subjects. Taken together, our data from patients with clinically manifest AD suggest a possible role of CMV as an inflammatory promoter in AD immunology. Further studies of AD patients at earlier stages of disease, could provide better insight into the pathophysiology.

  20. Immune responses at brain barriers and implications for brain development and neurological function in later life

    Directory of Open Access Journals (Sweden)

    Helen B. Stolp

    2013-08-01

    Full Text Available For a long time the brain has been considered an immune-privileged site due to a muted inflammatory response and the presence of protective brain barriers. It is now recognised that neuroinflammation may play an important role in almost all neurological disorders and that the brain barriers may be contributing through either normal immune signalling, or disruption of their basic physiological mechanisms. The distinction between normal function and dysfunction at the barriers is difficult to dissect, partly due to a lack of understanding of normal barrier function and partly because of physiological changes that occur as part of normal development and ageing. Brain barriers consist of a number of interacting structural and physiological elements including tight junctions between adjacent barrier cells and an array of influx and efflux transporters. Despite these protective mechanisms, the capacity for immune-surveillance of the brain is maintained, and there is evidence of inflammatory signalling at the brain barriers that may be an important part of the body’s response to damage or infection. This signalling system appears to change both with normal ageing, and during disease. Changes may affect diapedesis of immune cells and active molecular transfer, or cause rearrangement of the tight junctions and an increase in passive permeability across barrier interfaces. Here we review the many elements that contribute to brain barrier functions and how they respond to inflammation, particularly during development and aging. The implications of inflammation–induced barrier dysfunction for brain development and subsequent neurological function are also discussed.

  1. Lipid droplets in Leukocytes: organelles linked to inflammatory responses

    OpenAIRE

    Melo, Rossana C. N.; Weller, Peter F.

    2015-01-01

    Studies on lipid droplets (LDs) in leukocytes have attracted attention due to their association with human diseases. In these cells, LDs are rapidly formed in response to inflammatory stimuli or allergic/inflammatory diseases including infections with parasites and bacteria. Leukocyte LDs are linked to the regulation of immune responses by compartmentalization of several proteins and lipids involved in the control and biosynthesis of inflammatory mediators (eicosanoids). In this mini review, ...

  2. TGF-beta1 regulates human brain pericyte inflammatory processes involved in neurovasculature function.

    Science.gov (United States)

    Rustenhoven, Justin; Aalderink, Miranda; Scotter, Emma L; Oldfield, Robyn L; Bergin, Peter S; Mee, Edward W; Graham, E Scott; Faull, Richard L M; Curtis, Maurice A; Park, Thomas I-H; Dragunow, Mike

    2016-02-11

    Transforming growth factor beta 1 (TGFβ1) is strongly induced following brain injury and polarises microglia to an anti-inflammatory phenotype. Augmentation of TGFβ1 responses may therefore be beneficial in preventing inflammation in neurological disorders including stroke and neurodegenerative diseases. However, several other cell types display immunogenic potential and identifying the effect of TGFβ1 on these cells is required to more fully understand its effects on brain inflammation. Pericytes are multifunctional cells which ensheath the brain vasculature and have garnered recent attention with respect to their immunomodulatory potential. Here, we sought to investigate the inflammatory phenotype adopted by TGFβ1-stimulated human brain pericytes. Microarray analysis was performed to examine transcriptome-wide changes in TGFβ1-stimulated pericytes, and results were validated by qRT-PCR and cytometric bead arrays. Flow cytometry, immunocytochemistry and LDH/Alamar Blue® viability assays were utilised to examine phagocytic capacity of human brain pericytes, transcription factor modulation and pericyte health. TGFβ1 treatment of primary human brain pericytes induced the expression of several inflammatory-related genes (NOX4, COX2, IL6 and MMP2) and attenuated others (IL8, CX3CL1, MCP1 and VCAM1). A synergistic induction of IL-6 was seen with IL-1β/TGFβ1 treatment whilst TGFβ1 attenuated the IL-1β-induced expression of CX3CL1, MCP-1 and sVCAM-1. TGFβ1 was found to signal through SMAD2/3 transcription factors but did not modify nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) translocation. Furthermore, TGFβ1 attenuated the phagocytic ability of pericytes, possibly through downregulation of the scavenger receptors CD36, CD47 and CD68. Whilst TGFβ did decrease pericyte number, this was due to a reduction in proliferation, not apoptotic death or compromised cell viability. TGFβ1 attenuated pericyte expression of key chemokines and

  3. Inflammatory Response to Cardiac Surgery and Strategies to Overcome it.

    Directory of Open Access Journals (Sweden)

    Kapoor Mukul

    2004-01-01

    Full Text Available A general activation of the immune system is observed during any operative procedure as a physiological response to the surgical trauma. Cardiopulmonary bypass may directly activate the inflammatory response by three distinct mechanisms: direct ′contact activation′ of the immune system following exposure of blood to the foreign surfaces, ischaemia-reperfusion injury to vital organs and systemic endotoxaemia resulting from gut translocation of endotoxin. The inflammatory response depends upon recruitment and activation of inflammatory cells. The cellular immune response, in particular polymorphonuclear cell-endothelial adhesion, leads to widespread endothelial damage and dysfunction. Increased oxygen derived free radical activity represents a risk for myocardial and pulmonary complications. The clinical consequences of the stress response vary from a mild generalised transient response, termed the ′systemic inflammatory response syndrome,′ to life threatening organ dysfunction. The introduction of the ′off-pump′ coronary artery bypass graft surgery has now made it possible to differentiate the influence of cardiopulmonary bypass and surgical access on different modalities of the immune response. ′Off-pump′ cardiac surgery has been found to trigger inflammatory response, lesser than ′on-pump′ cardiac surgery. Researches are directed towards understanding this complex interplay of humoral and cellular mediators and develop strategies to limit the resultant organ dysfunction. Current literature on the various mediators of this inflammatory response, the role of surgical stress, the pathogenesis of the organ damage and strategies to limit / overcome this response are reviewed.

  4. Brain network alterations in the inflammatory soup animal model of migraine.

    Science.gov (United States)

    Becerra, Lino; Bishop, James; Barmettler, Gabi; Kainz, Vanessa; Burstein, Rami; Borsook, David

    2017-04-01

    Advances in our understanding of the human pain experience have shifted much of the focus of pain research from the periphery to the brain. Current hypotheses suggest that the progression of migraine depends on abnormal functioning of neurons in multiple brain regions. Accordingly, we sought to capture functional brain changes induced by the application of an inflammatory cocktail known as inflammatory soup (IS), to the dura mater across multiple brain networks. Specifically, we aimed to determine whether IS alters additional neural networks indirectly related to the primary nociceptive pathways via the spinal cord to the thalamus and cortex. IS comprises an acidic combination of bradykinin, serotonin, histamine and prostaglandin PGE2 and was introduced to basic pain research as a tool to activate and sensitize peripheral nociceptors when studying pathological pain conditions associated with allodynia and hyperalgesia. Using this model of intracranial pain, we found that dural application of IS in awake, fully conscious, rats enhanced thalamic, hypothalamic, hippocampal and somatosensory cortex responses to mechanical stimulation of the face (compared to sham synthetic interstitial fluid administration). Furthermore, resting state MRI data revealed altered functional connectivity in a number of networks previously identified in clinical chronic pain populations. These included the default mode, sensorimotor, interoceptive (Salience) and autonomic networks. The findings suggest that activation and sensitization of meningeal nociceptors by IS can enhance the extent to which the brain processes nociceptive signaling, define new level of modulation of affective and cognitive responses to pain; set new tone for hypothalamic regulation of autonomic outflow to the cranium; and change cerebellar functions. Copyright © 2017. Published by Elsevier B.V.

  5. Effects of exercise on brain and peripheral inflammatory biomarkers induced by total sleep deprivation in rats.

    Science.gov (United States)

    Chennaoui, M; Gomez-Merino, D; Drogou, C; Geoffroy, H; Dispersyn, G; Langrume, C; Ciret, S; Gallopin, T; Sauvet, F

    2015-01-01

    Physical exercise induces neuroprotection through anti-inflammatory effects and total sleep deprivation is reported an inflammatory process. We examined whether 7 weeks of exercise training attenuates markers of inflammation during total sleep deprivation (24-h wakefulness) in the rat brain and periphery. Four groups of 10 rats were investigated: Sedentary control, Sedentary sleep-deprived, Exercised control, and Exercised sleep-deprived. Sleep deprivation and exercise training were induced using slowly rotating wheels and a motorized treadmill. We examined mRNA expression of pro-inflammatory (IL-1β, TNF-α, and IL-6) cytokine-related genes using real-time PCR, and protein levels in the hippocampus and frontal cortex, as well as circulating concentrations. Compared to Sedentary control rats, hippocampal and cortical IL-1β mRNA expressions in Sedentary sleep-deprived rats were up-regulated (p rats (p rats compared to Sedentary control (p Exercise training reduced the sleep deprivation-induced hippocampal IL-1β increases (mRNA expression and protein content) (p exercise reduced sleep deprivation-induced increase of IL-6 concentration (p effect on TNF-α and norepinephrine. We demonstrate that a 7-week exercise training program before acute total sleep deprivation prevents pro-inflammatory responses in the rat hippocampus, particularly the IL-1β cytokine at the gene expression level and protein content.

  6. Inflammatory injury to the neonatal brain – what can we do?

    Directory of Open Access Journals (Sweden)

    Noa eOfek-shlomai

    2014-04-01

    Full Text Available Abstract Perinatal brain damage is one of the leading causes of life long disability. This damage could be hypoxic-ischemic, inflammatory or both.This mini-review discusses different interventions aiming at minimizing inflammatory processes in the neonatal brain, both before and after insult. Current options of anti-inflammatory measures for neonates remain quite limited. We describe current anti-inflammatory intervention strategies such as avoiding perinatal infection and inflammation, and reducing exposure to inflammatory processes. We describe the known effects of anti-inflammatory drugs such as steroids, antibiotics, and indomethacin, and the possible anti-inflammatory role of other substances such as IL-1receptor antagonists, erythropoietin, caffeine, estradiol, insulin like growth factor and melatonin as well as endogenous protectors, and genetic regulation of inflammation. If successful, these may decrease mortality and long term morbidity among term and preterm infants.

  7. Systemic inflammatory responses following welding inhalation challenge test

    Directory of Open Access Journals (Sweden)

    Paula Kauppi

    2015-01-01

    Conclusions: Exposure to MS and SS welding fume resulted in a mild systemic inflammatory response. The particle concentration from the breathing zones correlated with the measurements inside the welding face shields.

  8. An NF-kappaB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells

    National Research Council Canada - National Science Library

    Lukiw, Walter J; Zhao, Yuhai; Cui, Jian Guo

    2008-01-01

    ...), an important repressor of the inflammatory response of the brain. Up-regulation of miRNA-146a coupled to down-regulation of CFH was observed in AD brain and in interleukin-1beta, Abeta42, and/or oxidatively stressed human neural (HN...

  9. Macrophage Expression of Inflammatory Genes in Response to EMCV Infection

    Directory of Open Access Journals (Sweden)

    Zachary R. Shaheen

    2015-08-01

    Full Text Available The expression and production of type 1 interferon is the classic cellular response to virus infection. In addition to this antiviral response, virus infection also stimulates the production of proinflammatory mediators. In this review, the pathways controlling the induction of inflammatory genes and the roles that these inflammatory mediators contribute to host defense against viral pathogens will be discussed. Specific focus will be on the role of the chemokine receptor CCR5, as a signaling receptor controlling the activation of pathways leading to virus-induced inflammatory gene expression.

  10. Lipid droplets in leukocytes: Organelles linked to inflammatory responses.

    Science.gov (United States)

    Melo, Rossana C N; Weller, Peter F

    2016-01-15

    Studies on lipid droplets (LDs) in leukocytes have attracted attention due to their association with human diseases. In these cells, LDs are rapidly formed in response to inflammatory stimuli or allergic/inflammatory diseases including infections with parasites and bacteria. Leukocyte LDs are linked to the regulation of immune responses by compartmentalization of several proteins and lipids involved in the control and biosynthesis of inflammatory mediators (eicosanoids). In this mini review, we summarize current knowledge on the composition, structure and function of leukocyte LDs, organelles now considered as structural markers of inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Senescence-associated inflammatory responses: aging and cancer perspectives.

    Science.gov (United States)

    Lasry, Audrey; Ben-Neriah, Yinon

    2015-04-01

    Senescent cells, albeit not proliferating, are metabolically and transcriptionally active, thereby capable of affecting their microenvironment, notably via the production of inflammatory mediators. These mediators maintain and propagate the senescence process to neighboring cells, and then recruit immune cells for clearing senescent cells. Among the inflammatory cues are molecules with pronounced tumor-controlling properties, both growth and invasion factors and inhibitory factors, working directly or via recruited immune cells. These senescence-inflammatory effects also prevail within tumors, mediated by the senescent tumor cells and the senescent tumor stroma. Here, we review the course and impact of senescence-associated inflammatory responses in aging and cancer. We propose that controlling senescence-associated inflammation by targeting specific inflammatory mediators may have a beneficial therapeutic effect in treatment of cancer and aging-related diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Previous physical exercise alters the hepatic profile of oxidative-inflammatory status and limits the secondary brain damage induced by severe traumatic brain injury in rats.

    Science.gov (United States)

    de Castro, Mauro Robson Torres; Ferreira, Ana Paula de Oliveira; Busanello, Guilherme Lago; da Silva, Luís Roberto Hart; da Silveira Junior, Mauro Eduardo Porto; Fiorin, Fernando da Silva; Arrifano, Gabriela; Crespo-López, Maria Elena; Barcelos, Rômulo Pillon; Cuevas, María J; Bresciani, Guilherme; González-Gallego, Javier; Fighera, Michele Rechia; Royes, Luiz Fernando Freire

    2017-09-01

    An early inflammatory response and oxidative stress are implicated in the signal transduction that alters both hepatic redox status and mitochondrial function after traumatic brain injury (TBI). Peripheral oxidative/inflammatory responses contribute to neuronal dysfunction after TBI Exercise training alters the profile of oxidative-inflammatory status in liver and protects against acute hyperglycaemia and a cerebral inflammatory response after TBI. Approaches such as exercise training, which attenuates neuronal damage after TBI, may have therapeutic potential through modulation of responses by metabolic organs. The vulnerability of the body to oxidative/inflammatory in TBI is significantly enhanced in sedentary compared to physically active counterparts. Although systemic responses have been described after traumatic brain injury (TBI), little is known regarding potential interactions between brain and peripheral organs after neuronal injury. Accordingly, we aimed to investigate whether a peripheral oxidative/inflammatory response contributes to neuronal dysfunction after TBI, as well as the prophylactic role of exercise training. Animals were submitted to fluid percussion injury after 6 weeks of swimming training. Previous exercise training increased mRNA expression of X receptor alpha and ATP-binding cassette transporter, and decreased inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-α and interleukin (IL)-6 expression per se in liver. Interestingly, exercise training protected against hepatic inflammation (COX-2, iNOS, TNF-α and IL-6), oxidative stress (decreases in non-protein sulfhydryl and glutathione, as well as increases in 2',7'-dichlorofluorescein diacetate oxidation and protein carbonyl), which altered hepatic redox status (increases in myeloperoxidase and superoxide dismutase activity, as well as inhibition of catalase activity) mitochondrial function (decreases in methyl-tetrazolium and Δψ, as well as

  13. Cerebral inflammatory response and predictors of admission clinical grade after aneurysmal subarachnoid hemorrhage

    OpenAIRE

    Hanafy, Khalid A.; Stuart, R. Morgan; Fernandez, Luis; Schmidt, J. Michael; Claassen, Jan; Lee, Kiwon; Connolly, E. Sander; Mayer, Stephan A.; Badjatia, Neeraj

    2009-01-01

    Poor admission clinical grade is the most important determinant of outcome after aneurysmal subarachnoid hemorrhage (aSAH); however, little attention has been focused on independent predictors of poor admission clinical grade. We hypothesized that the cerebral inflammatory response initiated at the time of aneurysm rupture contributes to ultra-early brain injury and poor admission clinical grade. We sought to identify factors known to contribute to cerebral inflammation as well as markers of ...

  14. Inflammatory response in periodontal tissue in children with Down syndrome

    OpenAIRE

    Tsilingaridis, Georgios

    2013-01-01

    Periodontal diseases are inflammatory diseases affecting the supporting tissues of the teeth. Subjects with Down syndrome have a higher prevalence of periodontal disease compared to healthy controls. Periodontal disease in Down syndrome is considered to be multifactorial, although the aetiology is uncertain. The aim of this thesis was to study the inflammatory response in periodontal tissue in terms of cytokines, prostaglandins, matrix metalloproteinases (MMPs) and tissue inhibitors of metall...

  15. Amniotic fluid protein profiles of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria.

    Directory of Open Access Journals (Sweden)

    Marian Kacerovsky

    Full Text Available OBJECTIVE: This study aimed to evaluate the amniotic fluid protein profiles and the intensity of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria, using the multiplex xMAP technology. METHODS: A retrospective cohort study was undertaken in the Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Czech Republic. A total of 145 pregnant women with preterm prelabor rupture of membranes between gestational age 24+0 and 36+6 weeks were included in the study. Amniocenteses were performed. The presence of Ureaplasma spp. and other bacteria was evaluated using 16S rRNA gene sequencing. The levels of specific proteins were determined using multiplex xMAP technology. RESULTS: The presence of Ureaplasma spp. and other bacteria in the amniotic fluid was associated with increased levels of interleukin (IL-6, IL-8, IL-10, brain-derived neurotropic factor, granulocyte macrophage colony stimulating factor, monocyte chemotactic protein-1, macrophage inflammatory protein-1, and matrix metalloproteinasis-9. Ureaplasma spp. were also associated with increased levels of neurotropin-3 and triggering receptor expressed on myeloid cells-1. CONCLUSIONS: The presence of Ureaplasma spp. in the amniotic fluid is associated with a slightly different protein profile of inflammatory response, but the intensity of inflammatory response to Ureaplasma spp. is comparable with the inflammatory response to other bacteria.

  16. Short and Long-Term Analysis and Comparison of Neurodegeneration and Inflammatory Cell Response in the Ipsilateral and Contralateral Hemisphere of the Neonatal Mouse Brain after Hypoxia/Ischemia

    Directory of Open Access Journals (Sweden)

    Kalpana Shrivastava

    2012-01-01

    Full Text Available Understanding the evolution of neonatal hypoxic/ischemic is essential for novel neuroprotective approaches. We describe the neuropathology and glial/inflammatory response, from 3 hours to 100 days, after carotid occlusion and hypoxia (8% O2, 55 minutes to the C57/BL6 P7 mouse. Massive tissue injury and atrophy in the ipsilateral (IL hippocampus, corpus callosum, and caudate-putamen are consistently shown. Astrogliosis peaks at 14 days, but glial scar is still evident at day 100. Microgliosis peaks at 3–7 days and decreases by day 14. Both glial responses start at 3 hours in the corpus callosum and hippocampal fissure, to progressively cover the degenerating CA field. Neutrophils increase in the ventricles and hippocampal vasculature, showing also parenchymal extravasation at 7 days. Remarkably, delayed milder atrophy is also seen in the contralateral (CL hippocampus and corpus callosum, areas showing astrogliosis and microgliosis during the first 72 hours. This detailed and long-term cellular response characterization of the ipsilateral and contralateral hemisphere after H/I may help in the design of better therapeutic strategies.

  17. Airways inflammatory and atopy-related responses in athletes ...

    African Journals Online (AJOL)

    Repeated hyperventilation of unconditioned air, as well as air containing irritants and/or allergens has been suggested to cause thermal, mechanical, or osmotic airway trauma resulting in damage to the airway epithelium. Subsequent airway inflammatory responses may be responsible for the development of atopy-related

  18. Inflammatory response to trauma: implications for coagulation and resuscitation.

    Science.gov (United States)

    Pierce, Albert; Pittet, Jean-François

    2014-04-01

    Recent studies have changed our understanding of the timing and interactions of the inflammatory processes and coagulation cascade following severe trauma. This review highlights this information and correlates its impact on the current clinical approach for fluid resuscitation and treatment of coagulopathy for trauma patients. Severe trauma is associated with a failure of multiple biologic emergency response systems that includes imbalanced inflammatory response, acute coagulopathy of trauma, and endovascular glycocalyx degradation with microcirculatory compromise. These abnormalities are all interlinked and related. Recent observations show that after severe trauma: proinflammatory and anti-inflammatory responses are concomitant, not sequential and resolution of the inflammatory response is an active process, not a passive one. Understanding these interrelated processes is considered extremely important for the development of future therapies for severe trauma in humans. Traumatic injuries continue to be a significant cause of mortality worldwide. Recent advances in understanding the mechanisms of end-organ failure, and modulation of the inflammatory response has important clinical implications regarding fluid resuscitation and treatment of coagulopathy.

  19. The synthetic NCAM-derived peptide, FGL, modulates the transcriptional response to traumatic brain injury

    DEFF Research Database (Denmark)

    Pedersen, Martin Volmer; Helweg-Larsen, Rehannah Borup; Nielsen, Finn Cilius

    2008-01-01

    Cerebral responses to traumatic brain injury (TBI) include up- and downregulation of a vast number of proteins involved in endogenous inflammatory responses and defense mechanisms developing postinjury. The present study analyzed the global gene expression profile in response to cryo-induced TBI...

  20. Inflammatory responses to influenza vaccination at the extremes of age.

    Science.gov (United States)

    McDonald, Jacqueline U; Zhong, Ziyun; Groves, Helen T; Tregoning, John S

    2017-08-01

    Age affects the immune response to vaccination, with individuals at the extremes of age responding poorly. The initial inflammatory response to antigenic materials shapes the subsequent adaptive response and so understanding is required about the effect of age on the profile of acute inflammatory mediators. In this study we measured the local and systemic inflammatory response after influenza vaccination or infection in neonatal, young adult and aged mice. Mice were immunized intramuscularly with inactivated influenza vaccine with and without the adjuvant MF59 and then challenged with H1N1 influenza. Age was the major factor affecting the inflammatory profile after vaccination: neonatal mice had more interleukin-1α (IL-1α), C-reactive protein (CRP) and granulocyte-macrophage colony-stimulating factor (GMCSF), young adults more tumour necrosis factor-α (TNF), and elderly mice more interleukin-1 receptor antagonist (IL-1RA), IL-2RA and interferon-γ-induced protein 10 (IP10). Notably the addition of MF59 induced IL-5, granulocyte colony-stimulating factor (G-CSF), Keratinocyte Chemotractant (KC) and monocyte chemoattractant protein 1 (MCP1) in all ages of animals and levels of these cytokines correlated with antibody responses. Age also had an impact on the efficacy of vaccination: neonatal and young adult mice were protected against challenge, but aged mice were not. There were striking differences in the localization of the cytokine response depending on the route of exposure: vaccination led to a high serum response whereas intranasal infection led to a low serum response but a high lung response. In conclusion, we demonstrate that age affects the inflammatory response to both influenza vaccination and infection. These age-induced differences need to be considered when developing vaccination strategies for different age groups. © 2017 John Wiley & Sons Ltd.

  1. Resuscitation with Valproic Acid Alters Inflammatory Genes in a Porcine Model of Combined Traumatic Brain Injury and Hemorrhagic Shock

    DEFF Research Database (Denmark)

    Bambakidis, Ted; Dekker, Simone E; Sillesen, Martin

    2016-01-01

    Traumatic brain injury and hemorrhagic shock (TBI+HS) elicit a complex inflammatory response that contributes to secondary brain injury. There is currently no proven pharmacologic treatment for TBI+HS, but modulation of the epigenome has been shown to be a promising strategy. The aim of this study......), and DAVID (Database for Annotation, Visualization, and Integrated Discovery) were used for pathway analysis. Key microarray findings were verified using real-time polymerase chain reaction (PCR). IPA analysis revealed that VPA significantly down-regulated the complement system (p 

  2. Pathophysiology of the systemic inflammatory response after major accidental trauma

    DEFF Research Database (Denmark)

    Brøchner, Anne Craveiro; Toft, Palle

    2009-01-01

    ABSTRACT: BACKGROUND: Purpose of the present study was to describe the pathophysiology of the systemic inflammatory response after major trauma and the timing of final reconstructive surgery. Methods: An unsystematic review of the medical literature was performed and articles pertaining to the in......ABSTRACT: BACKGROUND: Purpose of the present study was to describe the pathophysiology of the systemic inflammatory response after major trauma and the timing of final reconstructive surgery. Methods: An unsystematic review of the medical literature was performed and articles pertaining...... to the inflammatory response to trauma were obtained. The literature selected was based on the preference and clinical expertise of authors. Discussion: The inflammatory response consists of hormonal metabolic and immunological components and the extent correlates with the magnitude of the tissue injury. After trauma...... and uncomplicated surgery a delicate balance between pro- and anti-inflammatory mediators is observed.Trauma patients are, however, often exposed, not only to the trauma, but to several evens in the form of initial surgery and later final reconstructive surgery. In this case immune paralysis associated...

  3. Hydrodynamic regulation of monocyte inflammatory response to an intracellular pathogen.

    Directory of Open Access Journals (Sweden)

    Shankar J Evani

    2011-01-01

    Full Text Available Systemic bacterial infections elicit inflammatory response that promotes acute or chronic complications such as sepsis, arthritis or atherosclerosis. Of interest, cells in circulation experience hydrodynamic shear forces, which have been shown to be a potent regulator of cellular function in the vasculature and play an important role in maintaining tissue homeostasis. In this study, we have examined the effect of shear forces due to blood flow in modulating the inflammatory response of cells to infection. Using an in vitro model, we analyzed the effects of physiological levels of shear stress on the inflammatory response of monocytes infected with chlamydia, an intracellular pathogen which causes bronchitis and is implicated in the development of atherosclerosis. We found that chlamydial infection alters the morphology of monocytes and trigger the release of pro-inflammatory cytokines TNF-α, IL-8, IL-1β and IL-6. We also found that the exposure of chlamydia-infected monocytes to short durations of arterial shear stress significantly enhances the secretion of cytokines in a time-dependent manner and the expression of surface adhesion molecule ICAM-1. As a functional consequence, infection and shear stress increased monocyte adhesion to endothelial cells under flow and in the activation and aggregation of platelets. Overall, our study demonstrates that shear stress enhances the inflammatory response of monocytes to infection, suggesting that mechanical forces may contribute to disease pathophysiology. These results provide a novel perspective on our understanding of systemic infection and inflammation.

  4. Resveratrol modulates innate and inflammatory responses in fish leucocytes.

    Science.gov (United States)

    Castro, R; Lamas, J; Morais, P; Sanmartín, M L; Orallo, F; Leiro, J

    2008-11-15

    Resveratrol (RESV; trans-3,5,4'-trihydroxystilbene), a phytoalexin that is produced by some plants, among other effects has well-known antioxidant, anti-inflammatory and immunomodulatory activities in mammals. In the present study, the effects of RESV on several functions of turbot, Psetta maxima (L.), kidney leucocytes (KLs) related to the innate and inflammatory responses were investigated. RESV exerted a dose-dependent inhibitory effect on the migratory response and on the production of reactive oxygen species in KL, after stimulation of the respiratory burst activity with phorbol myristate acetate (PMA). RESV also significantly inhibited the generation of the pro-inflammatory mediator prostaglandin E(2) (PGE(2)) in the supernatant of KL cultures stimulated with acidic sulphated polysaccharides (ASPs) from the seaweed Ulva rigida. The effects of the polyphenol on enzymatic activity and on myeloperoxidase (MPO) gene expression in neutrophils were also tested. It was found that RESV strongly inhibited intracellular and extracellular MPO activity, behaving as a noncompetitive and reversible inhibitor, and also induced a decrease in MPO mRNA levels in turbot neutrophils. These findings indicate that RESV exerts important modulatory effects on inflammatory responses in fish, and considering the importance of innate immunity in these vertebrates and the similarities with mammals, it may be possible to use fish for analysis of the effects of different substances on inflammatory responses.

  5. Distinctive responses of brain tumor cells to TLR2 ligands.

    Science.gov (United States)

    Yoon, Hee Jung; Jeon, Sae-Bom; Koh, Han Seok; Song, Jae-Young; Kim, Sang Soo; Kim, In-Hoo; Park, Eun Jung

    2015-05-01

    Malignant brain tumor mass contains significant numbers of infiltrating glial cells that may intimately interact with tumor cells and influence cancer treatments. Understanding of characteristic discrepancies between normal GLIA and tumor cells would, therefore, be valuable for improving anticancer therapeutics. Here, we report distinct differences in toll-like receptors (TLR)-2-mediated responses between normal glia and primary brain tumor cell lines. We found that tyrosine phosphorylation of STAT1 by TLR2 ligands and its downstream events did not occur in mouse, rat, or human brain tumor cell lines, but were markedly induced in normal primary microglia and astrocytes. Using TLR2-deficient, interferon (IFN)-γ-deficient, and IFNγ-receptor-1-deficient mice, we revealed that the impaired phosphorylation of STAT1 might be linked with defective TLR2 system in tumor cells, and that a TLR2-dependent pathway, not IFNγ-receptor machinery, might be critical for tyrosine STAT1 phosphorylation by TLR2 ligands. We also found that TLR2 and its heterodimeric partners, TLR1 and 6, on brain tumor cells failed to properly respond to TLR2 ligands, and representative TLR2-dependent cellular events, such as inflammatory responses and cell death, were not detected in brain tumor cells. Similar results were obtained in in vitro and in vivo experiments using orthotopic mouse and rat brain tumor models. Collectively, these results suggest that primary brain tumor cells may exhibit a distinctive dysfunction of TLR2-associated responses, resulting in abnormal signaling and cellular events. Careful targeting of this distinctive property could serve as the basis for effective therapeutic approaches against primary brain tumors. © 2015 Wiley Periodicals, Inc.

  6. The immune response to Prevotella bacteria in chronic inflammatory disease

    DEFF Research Database (Denmark)

    Larsen, Jeppe Madura

    2017-01-01

    the hunt for disease-modulating bacteria. Emerging studies in humans have linked the increased abundance of Prevotella species at mucosal sites to localized and systemic disease, including periodontitis, bacterial vaginosis, rheumatoid arthritis, metabolic disorders and low-grade systemic inflammation......-8, IL-6 and CCL20, which can promote mucosal Th17 immune responses and neutrophil recruitment. Prevotella-mediated mucosal inflammation leads to systemic dissemination of inflammatory mediators, bacteria and bacterial products, which in turn may affect systemic disease outcomes. Studies in mice...... support a causal role of Prevotella as colonization experiments promote clinical and inflammatory features of human disease. When compared with strict commensal bacteria, Prevotella exhibit increased inflammatory properties, as demonstrated by augmented release of inflammatory mediators from immune cells...

  7. Sphingosine Kinases Are Not Required for Inflammatory Responses in Macrophages*

    Science.gov (United States)

    Xiong, Yuquan; Lee, Hyeuk Jong; Mariko, Boubacar; Lu, Yi-Chien; Dannenberg, Andrew J.; Haka, Abigail S.; Maxfield, Frederick R.; Camerer, Eric; Proia, Richard L.; Hla, Timothy

    2013-01-01

    Sphingosine kinases (Sphks), which catalyze the formation of sphingosine 1-phosphate (S1P) from sphingosine, have been implicated as essential intracellular messengers in inflammatory responses. Specifically, intracellular Sphk1-derived S1P was reported to be required for NFκB induction during inflammatory cytokine action. To examine the role of intracellular S1P in the inflammatory response of innate immune cells, we derived murine macrophages that lack both Sphk1 and Sphk2 (MΦ Sphk dKO). Compared with WT counterparts, MΦ Sphk dKO cells showed marked suppression of intracellular S1P levels whereas sphingosine and ceramide levels were strongly up-regulated. Cellular proliferation and apoptosis were similar in MΦ Sphk dKO cells compared with WT counterparts. Treatment of WT and MΦ Sphk dKO with inflammatory mediators TNFα or Escherichia coli LPS resulted in similar NFκB activation and cytokine expression. Furthermore, LPS-induced inflammatory responses, mortality, and thioglycolate-induced macrophage recruitment to the peritoneum were indistinguishable between MΦ Sphk dKO and littermate control mice. Interestingly, autophagic markers were constitutively induced in bone marrow-derived macrophages from Sphk dKO mice. Treatment with exogenous sphingosine further enhanced intracellular sphingolipid levels and autophagosomes. Inhibition of autophagy resulted in caspase-dependent cell death. Together, these data suggest that attenuation of Sphk activity, particularly Sphk2, leads to increased intracellular sphingolipids and autophagy in macrophages. PMID:24081141

  8. Genomic responses in mouse models poorly mimic human inflammatory diseases

    Science.gov (United States)

    Seok, Junhee; Warren, H. Shaw; Cuenca, Alex G.; Mindrinos, Michael N.; Baker, Henry V.; Xu, Weihong; Richards, Daniel R.; McDonald-Smith, Grace P.; Gao, Hong; Hennessy, Laura; Finnerty, Celeste C.; López, Cecilia M.; Honari, Shari; Moore, Ernest E.; Minei, Joseph P.; Cuschieri, Joseph; Bankey, Paul E.; Johnson, Jeffrey L.; Sperry, Jason; Nathens, Avery B.; Billiar, Timothy R.; West, Michael A.; Jeschke, Marc G.; Klein, Matthew B.; Gamelli, Richard L.; Gibran, Nicole S.; Brownstein, Bernard H.; Miller-Graziano, Carol; Calvano, Steve E.; Mason, Philip H.; Cobb, J. Perren; Rahme, Laurence G.; Lowry, Stephen F.; Maier, Ronald V.; Moldawer, Lyle L.; Herndon, David N.; Davis, Ronald W.; Xiao, Wenzhong; Tompkins, Ronald G.; Abouhamze, Amer; Balis, Ulysses G. J.; Camp, David G.; De, Asit K.; Harbrecht, Brian G.; Hayden, Douglas L.; Kaushal, Amit; O’Keefe, Grant E.; Kotz, Kenneth T.; Qian, Weijun; Schoenfeld, David A.; Shapiro, Michael B.; Silver, Geoffrey M.; Smith, Richard D.; Storey, John D.; Tibshirani, Robert; Toner, Mehmet; Wilhelmy, Julie; Wispelwey, Bram; Wong, Wing H

    2013-01-01

    A cornerstone of modern biomedical research is the use of mouse models to explore basic pathophysiological mechanisms, evaluate new therapeutic approaches, and make go or no-go decisions to carry new drug candidates forward into clinical trials. Systematic studies evaluating how well murine models mimic human inflammatory diseases are nonexistent. Here, we show that, although acute inflammatory stresses from different etiologies result in highly similar genomic responses in humans, the responses in corresponding mouse models correlate poorly with the human conditions and also, one another. Among genes changed significantly in humans, the murine orthologs are close to random in matching their human counterparts (e.g., R2 between 0.0 and 0.1). In addition to improvements in the current animal model systems, our study supports higher priority for translational medical research to focus on the more complex human conditions rather than relying on mouse models to study human inflammatory diseases. PMID:23401516

  9. Factors modulating the inflammatory response in acute gouty arthritis

    NARCIS (Netherlands)

    Cleophas, M.C.P.; Crisan, T.O.; Joosten, L.A.B.

    2017-01-01

    PURPOSE OF REVIEW: Gout is a common debilitating form of arthritis and despite our extensive knowledge on the pathogenesis its prevalence is still rising quickly. In the current review, we provide a concise overview of recent discoveries in factors tuning the inflammatory response to soluble uric

  10. Acute systemic inflammatory response after cardiac surgery in ...

    African Journals Online (AJOL)

    2017-09-03

    Sep 3, 2017 ... valve(s) replacement were enrolled, from a single center hospital, after informed consent was obtained. ... Cite as: Gojo MKE, Prakaschandra R. Acute systemic inflammatory response after cardiac surgery in patients infected with human im- ... on the HIV disease profile in correlation with alterations.

  11. Seasonality in human cognitive brain responses.

    Science.gov (United States)

    Meyer, Christelle; Muto, Vincenzo; Jaspar, Mathieu; Kussé, Caroline; Lambot, Erik; Chellappa, Sarah L; Degueldre, Christian; Balteau, Evelyne; Luxen, André; Middleton, Benita; Archer, Simon N; Collette, Fabienne; Dijk, Derk-Jan; Phillips, Christophe; Maquet, Pierre; Vandewalle, Gilles

    2016-03-15

    Daily variations in the environment have shaped life on Earth, with circadian cycles identified in most living organisms. Likewise, seasons correspond to annual environmental fluctuations to which organisms have adapted. However, little is known about seasonal variations in human brain physiology. We investigated annual rhythms of brain activity in a cross-sectional study of healthy young participants. They were maintained in an environment free of seasonal cues for 4.5 d, after which brain responses were assessed using functional magnetic resonance imaging (fMRI) while they performed two different cognitive tasks. Brain responses to both tasks varied significantly across seasons, but the phase of these annual rhythms was strikingly different, speaking for a complex impact of season on human brain function. For the sustained attention task, the maximum and minimum responses were located around summer and winter solstices, respectively, whereas for the working memory task, maximum and minimum responses were observed around autumn and spring equinoxes. These findings reveal previously unappreciated process-specific seasonality in human cognitive brain function that could contribute to intraindividual cognitive changes at specific times of year and changes in affective control in vulnerable populations.

  12. Obese mice exhibit an altered behavioural and inflammatory response to lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Catherine B. Lawrence

    2012-09-01

    Obesity is associated with an increase in the prevalence and severity of infections. Genetic animal models of obesity (ob/ob and db/db mice display altered centrally-mediated sickness behaviour in response to acute inflammatory stimuli such as lipopolysaccharide (LPS. However, the effect of diet-induced obesity (DIO on the anorectic and febrile response to LPS in mice is unknown. This study therefore determined how DIO and ob/ob mice respond to a systemic inflammatory challenge. C57BL/6 DIO and ob/ob mice, and their respective controls, were given an intraperitoneal (i.p. injection of LPS. Compared with controls, DIO and ob/ob mice exhibited an altered febrile response to LPS (100 μg/kg over 8 hours. LPS caused a greater and more prolonged anorexic effect in DIO compared with control mice and, in ob/ob mice, LPS induced a reduction in food intake and body weight earlier than it did in controls. These effects of LPS in obese mice were also seen after a fixed dose of LPS (5 μg. LPS (100 μg/kg induced Fos protein expression in several brain nuclei of control mice, with fewer Fos-positive cells observed in the brains of obese mice. An altered inflammatory response to LPS was also observed in obese mice compared with controls: changes in cytokine expression and release were detected in the plasma, spleen, liver and peritoneal macrophages in obese mice. In summary, DIO and ob/ob mice displayed an altered behavioural response and cytokine release to systemic inflammatory challenge. These findings could help explain why obese humans show increased sensitivity to infections.

  13. Auditory brain-stem responses in adrenomyeloneuropathy.

    Science.gov (United States)

    Grimes, A M; Elks, M L; Grunberger, G; Pikus, A M

    1983-09-01

    We studied three patients with adrenomyeloneuropathy. Complete audiologic assessment was obtained: two patients showed unimpaired peripheral hearing and one showed a mild high-frequency hearing loss. Auditory brain-stem responses were abnormal in both ears of all subjects, with one subject showing no response above wave I, and the other two having significant wave I to III and wave III to V interval prolongations. We concluded that auditory brain-stem response testing provides a simple, valid, reliable method for demonstrating neurologic abnormality in adrenomyeloneuropathy even prior to evidence of clinical signs.

  14. NGF and Its Receptors in the Regulation of Inflammatory Response

    Science.gov (United States)

    Minnone, Gaetana; De Benedetti, Fabrizio; Bracci-Laudiero, Luisa

    2017-01-01

    There is growing interest in the complex relationship between the nervous and immune systems and how its alteration can affect homeostasis and result in the development of inflammatory diseases. A key mediator in cross-talk between the two systems is nerve growth factor (NGF), which can influence both neuronal cell function and immune cell activity. The up-regulation of NGF described in inflamed tissues of many diseases can regulate innervation and neuronal activity of peripheral neurons, inducing the release of immune-active neuropeptides and neurotransmitters, but can also directly influence innate and adaptive immune responses. Expression of the NGF receptors tropomyosin receptor kinase A (TrkA) and p75 neurotrophin receptor (p75NTR) is dynamically regulated in immune cells, suggesting a varying requirement for NGF depending on their state of differentiation and functional activity. NGF has a variety of effects that can be either pro-inflammatory or anti-inflammatory. This apparent contradiction can be explained by considering NGF as part of an endogenous mechanism that, while activating immune responses, also activates pathways necessary to dampen the inflammatory response and limit tissue damage. Decreases in TrkA expression, such as that recently demonstrated in immune cells of arthritis patients, might prevent the activation by NGF of regulatory feed-back mechanisms, thus contributing to the development and maintenance of chronic inflammation. PMID:28492466

  15. Correlated Inflammatory Responses and Neurodegeneration in Peptide-Injected Animal Models of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    James G. McLarnon

    2014-01-01

    Full Text Available Animal models of Alzheimer’s disease (AD which emphasize activation of microglia may have particular utility in correlating proinflammatory activity with neurodegeneration. This paper reviews injection of amyloid-β (Aβ into rat brain as an alternative AD animal model to the use of transgenic animals. In particular, intrahippocampal injection of Aβ1-42 peptide demonstrates prominent microglial mobilization and activation accompanied by a significant loss of granule cell neurons. Furthermore, pharmacological inhibition of inflammatory reactivity is demonstrated by a broad spectrum of drugs with a common endpoint in conferring neuroprotection in peptide-injected animals. Peptide-injection models provide a focus on glial cell responses to direct peptide injection in rat brain and offer advantages in the study of the mechanisms underlying neuroinflammation in AD brain.

  16. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses

    Science.gov (United States)

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Dolores Ledesma, Maria; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2016-01-01

    Summary The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4+ T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration-deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward pro-inflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD+ levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify novel strategies for intervention in mitochondrial-related diseases. PMID:26299452

  17. Photic memory for executive brain responses

    OpenAIRE

    Chellappa,Sarah Laxhmi; Ly, Julien; Meyer, Christelle; Balteau, Evelyne; Degueldre, Christian; Luxen, André; Phillips, Christophe; Cooper, Howard,; Vandewalle, Gilles

    2014-01-01

    Light is a powerful stimulant for human alertness and cognition that can be easily administered to improve performance or counteract the negative impact of sleepiness, even during the day. Here, we show that prior exposure to longer wavelength light (orange), relative to shorter wavelength (blue), enhances the subsequent impact of light on executive brain responses. These findings emphasize the importance of light for human cognitive brain function and constitute compelling evidence in favor ...

  18. Modulation of Hemostatic and Inflammatory Responses by Leptospira Spp.

    Directory of Open Access Journals (Sweden)

    Mônica L Vieira

    2016-05-01

    Full Text Available Leptospirosis is a worldwide spread zoonotic and neglected infectious disease of human and veterinary concern that is caused by pathogenic Leptospira species. In severe infections, hemostatic impairments such as coagulation/fibrinolysis dysfunction are frequently observed. These complications often occur when the host response is controlled and/or modulated by the bacterial pathogen. In the present investigation, we aimed to analyze the modulation of the hemostatic and inflammatory host responses by the bacterial pathogen Leptospira. The effects of leptospires and their secreted products on stimulation of human intrinsic and extrinsic pathways of coagulation were investigated by means of altered clotting times, assembly and activation of contact system and induction of tissue factor. We show that both extrinsic and intrinsic coagulation cascades are modulated in response to Leptospira or leptospiral secreted proteins. We further find that the pro-inflammatory mediator bradykinin is released following contact activation at the bacterial surface and that pro-coagulant microvesicles are shed from monocytes in response to infection. Also, we show that human leptospirosis patients present higher levels of circulating pro-coagulant microvesicles than healthy individuals. Here we show that both pathways of the coagulation system are modulated by leptospires, possibly leading to altered hemostatic and inflammatory responses during the disease. Our results contribute to the understanding of the leptospirosis pathophysiological mechanisms and may open new routes for the discovery of novel treatments for the severe manifestations of the disease.

  19. Modulation of Hemostatic and Inflammatory Responses by Leptospira Spp.

    Science.gov (United States)

    Vieira, Mônica L; Naudin, Clément; Mörgelin, Matthias; Romero, Eliete C; Nascimento, Ana Lucia T O; Herwald, Heiko

    2016-05-01

    Leptospirosis is a worldwide spread zoonotic and neglected infectious disease of human and veterinary concern that is caused by pathogenic Leptospira species. In severe infections, hemostatic impairments such as coagulation/fibrinolysis dysfunction are frequently observed. These complications often occur when the host response is controlled and/or modulated by the bacterial pathogen. In the present investigation, we aimed to analyze the modulation of the hemostatic and inflammatory host responses by the bacterial pathogen Leptospira. The effects of leptospires and their secreted products on stimulation of human intrinsic and extrinsic pathways of coagulation were investigated by means of altered clotting times, assembly and activation of contact system and induction of tissue factor. We show that both extrinsic and intrinsic coagulation cascades are modulated in response to Leptospira or leptospiral secreted proteins. We further find that the pro-inflammatory mediator bradykinin is released following contact activation at the bacterial surface and that pro-coagulant microvesicles are shed from monocytes in response to infection. Also, we show that human leptospirosis patients present higher levels of circulating pro-coagulant microvesicles than healthy individuals. Here we show that both pathways of the coagulation system are modulated by leptospires, possibly leading to altered hemostatic and inflammatory responses during the disease. Our results contribute to the understanding of the leptospirosis pathophysiological mechanisms and may open new routes for the discovery of novel treatments for the severe manifestations of the disease.

  20. Effect of silica particle size on macrophage inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Toshimasa Kusaka

    Full Text Available Amorphous silica particles, such as nanoparticles (<100 nm diameter particles, are used in a wide variety of products, including pharmaceuticals, paints, cosmetics, and food. Nevertheless, the immunotoxicity of these particles and the relationship between silica particle size and pro-inflammatory activity are not fully understood. In this study, we addressed the relationship between the size of amorphous silica (particle dose, diameter, number, and surface area and the inflammatory activity (macrophage phagocytosis, inflammasome activation, IL-1β secretion, cell death and lung inflammation. Irrespective of diameter size, silica particles were efficiently internalized by mouse bone marrow-derived macrophages via an actin cytoskeleton-dependent pathway, and induced caspase-1, but not caspase-11, activation. Of note, 30 nm-1000 nm diameter silica particles induced lysosomal destabilization, cell death, and IL-1β secretion at markedly higher levels than did 3000 nm-10000 nm silica particles. Consistent with in vitro results, intra-tracheal administration of 30 nm silica particles into mice caused more severe lung inflammation than that of 3000 nm silica particles, as assessed by measurement of pro-inflammatory cytokines and neutrophil infiltration in bronchoalveolar lavage fluid of mice, and by the micro-computed tomography analysis. Taken together, these results suggest that silica particle size impacts immune responses, with submicron amorphous silica particles inducing higher inflammatory responses than silica particles over 1000 nm in size, which is ascribed not only to their ability to induce caspase-1 activation but also to their cytotoxicity.

  1. Brain microbiota disruption within inflammatory demyelinating lesions in multiple sclerosis

    NARCIS (Netherlands)

    Branton, W. G.; Lu, J. Q.; Surette, M. G.; Holt, R. A.; Lind, J.; Laman, J. D.; Power, C.

    2016-01-01

    Microbial communities reside in healthy tissues but are often disrupted during disease. Bacterial genomes and proteins are detected in brains from humans, nonhuman primates, rodents and other species in the absence of neurological disease. We investigated the composition and abundance of microbiota

  2. Immune and Inflammatory Responses in the Central Nervous System: Modulation by Astrocytes

    DEFF Research Database (Denmark)

    Penkowa, Milena; hidalgo, juan; aschner, michael

    2008-01-01

    Beyond their long-recognized support functions, astrocytes are active partners of neurons in processing information, synaptic integration, and production of trophic factors, just to name a few. Both microglia and astrocytes produce and secrete a number of cytokines, modulating and integrating...... the communication between hematogenous cells and resident cells of the central nervous system (CNS). This review will address (1) the functions of astrocytes in the normal brain and (2) their role in surveying noxious stimuli within the brain, with particular emphasis on astrocytic responses to damage or disease......, a process referred to as reactive astrogliosis/ astrocytosis. In addition, the review will discuss (3) the role of astrocytes as an abundant cellular source for immunoregulatory (cytokines) factors, and their fundamental roles in the type and extent of CNS immune and inflammatory responses. (4) Recent...

  3. Application of magnetic resonance spectroscopy in the differentiation of high-grade brain neoplasm and inflammatory brain lesions

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz-Filho, Jose Roberto Lopes; Santana-Netto, Pedro Vieira; Sgnolf, Aline [FAMERP Medical School, Sao Jose do Rio Preto SP (Brazil). Image Dept.], e-mail: jrl.ferraz@terra.com.br; Rocha-Filho, Jose Alves; Mauad, Fernando [FAMERP Medical School, Sao Jose do Rio Preto SP (Brazil). Radiology Dept.; Sanches, Rafael Angelo [FAMERP Medical School, Sao Jose do Rio Preto SP (Brazil). Imaging Dept.

    2009-06-15

    This study aims at evaluating the application of magnetic resonance spectroscopy (MRS) in the differential diagnosis of brain tumors and inflammatory brain lesions. The examinations of 81 individuals, who performed brain MRS and were retrospectively analyzed. The patients with ages between 10 and 80 years old, were divided into two groups. Group A consisted of 42 individuals with diagnoses of cerebral toxoplasmosis and Group B was formed of 39 individuals with diagnosis of glial neoplasms. On analyzing the ROC curve, the discriminatory boundary for the Cho/Cr ratio between inflammatory lesions and tumors was 1.97 and for the NAA/Cr ratio it was 1.12. RMS is an important method useful in the distinction of inflammatory brain lesions and high-degree tumors when the Cho/Cr ratio is greater than 1.97 and the NAA/Cr ratio is less than 1.12. And so this method is important in the planning of treatment and monitoring of the therapeutic efficiency. (author)

  4. Systemic inflammatory response syndrome: a case of septic shock

    Directory of Open Access Journals (Sweden)

    Nicolò Gentiloni Silveri

    2008-09-01

    Full Text Available An elderly, diabetic male, with severe sepsis, swiftly treated with antibiotics that were efficacious in vitro against the E. Coli isolated in his blood, rapidly slides into multiple organ dysfunction syndrome and dies of septic shock after a month in intensive care, despite receiving appropriate pain relief and aetiopathogenetic therapy. This event provides us with the opportunity to take a new look at systemic inflammatory response syndrome and a critical review of the relative therapy

  5. Immunomodulation of the allergic inflammatory response: new developments.

    Science.gov (United States)

    Araujo, Maria I; Campos, Regis A; Cardoso, Luciana S; Oliveira, Sergio C; Carvalho, Edgar M

    2010-06-01

    Studies of the molecular mechanisms associated with allergic diseases have lead to a better understanding of the complex processes that underlie their pathogenesis. These mechanisms involve Th2- and Th1-type cells and also some recently described cytokines, such as IL-25 and IL-33. Regulatory mechanisms of allergic inflammation have also been identified. For instance, IL-10, a cytokine produced by many cell types, promotes a decrease in IgE production, and inhibits the release of histamine and other inflammatory mediators by mast cells. Recently, a variety of regulatory cells have been discovered, which, either by direct contact or through the production of IL-10 and/or TGF-beta, can inhibit the allergic inflammatory response. IL-10 is produced in high levels by cells of helminth-infected individuals. There is some evidence that such infections protect against the development of allergic diseases. In asthmatic individuals living in endemic areas of schistosomiasis, it has been shown in in vitro studies that there is a modulation of the Th2 response, both by mechanisms involving IL-10, which is produced mainly by monocytes and CD4+CD25+ T regulatory cells, and also by the expression of cytotoxic T-lymphocyte antigen 4 (CTLA-4) in CD4+ T cells. Studies using parasite antigens to induce the modulation of allergic inflammatory response are being conducted by several groups of researchers and represent new perspectives for the treatment of allergic diseases.

  6. Stress Response, Brain Noradrenergic System and Cognition.

    Science.gov (United States)

    Winklewski, Pawel J; Radkowski, Marek; Wszedybyl-Winklewska, Magdalena; Demkow, Urszula

    2017-01-01

    Locus coeruleus is a critical component of the brain noradrenergic system. The brain noradrenergic system provides the neural substrate for the architecture supporting the interaction with, and navigation through, an external world complexity. Changes in locus coeruleus tonic and phasic activity and the interplay between norepinephrine and α1- and α2-adrenoceptors in the prefrontal cortex are the key elements of this sophisticated architecture. In this narrative review we discuss how the brain noradrenergic system is affected by increased exposure to corticotropin-releasing hormone triggered by stress response. In particular, we present the mechanisms responsible for thinking inflexibility often observed under highly stressful conditions. Finally, the main directions for future research are highlighted.

  7. The immune response to Prevotella bacteria in chronic inflammatory disease.

    Science.gov (United States)

    Larsen, Jeppe Madura

    2017-08-01

    The microbiota plays a central role in human health and disease by shaping immune development, immune responses and metabolism, and by protecting from invading pathogens. Technical advances that allow comprehensive characterization of microbial communities by genetic sequencing have sparked the hunt for disease-modulating bacteria. Emerging studies in humans have linked the increased abundance of Prevotella species at mucosal sites to localized and systemic disease, including periodontitis, bacterial vaginosis, rheumatoid arthritis, metabolic disorders and low-grade systemic inflammation. Intriguingly, Prevotella abundance is reduced within the lung microbiota of patients with asthma and chronic obstructive pulmonary disease. Increased Prevotella abundance is associated with augmented T helper type 17 (Th17) -mediated mucosal inflammation, which is in line with the marked capacity of Prevotella in driving Th17 immune responses in vitro. Studies indicate that Prevotella predominantly activate Toll-like receptor 2, leading to production of Th17-polarizing cytokines by antigen-presenting cells, including interleukin-23 (IL-23) and IL-1. Furthermore, Prevotella stimulate epithelial cells to produce IL-8, IL-6 and CCL20, which can promote mucosal Th17 immune responses and neutrophil recruitment. Prevotella-mediated mucosal inflammation leads to systemic dissemination of inflammatory mediators, bacteria and bacterial products, which in turn may affect systemic disease outcomes. Studies in mice support a causal role of Prevotella as colonization experiments promote clinical and inflammatory features of human disease. When compared with strict commensal bacteria, Prevotella exhibit increased inflammatory properties, as demonstrated by augmented release of inflammatory mediators from immune cells and various stromal cells. These findings indicate that some Prevotella strains may be clinically important pathobionts that can participate in human disease by promoting chronic

  8. Injury timing alters metabolic, inflammatory and functional outcomes following repeated mild traumatic brain injury.

    Science.gov (United States)

    Weil, Zachary M; Gaier, Kristopher R; Karelina, Kate

    2014-10-01

    Repeated head injuries are a major public health concern both for athletes, and members of the police and armed forces. There is ample experimental and clinical evidence that there is a period of enhanced vulnerability to subsequent injury following head trauma. Injuries that occur close together in time produce greater cognitive, histological, and behavioral impairments than do injuries separated by a longer period. Traumatic brain injuries alter cerebral glucose metabolism and the resolution of altered glucose metabolism may signal the end of the period of greater vulnerability. Here, we injured mice either once or twice separated by three or 20days. Repeated injuries that were separated by three days were associated with greater axonal degeneration, enhanced inflammatory responses, and poorer performance in a spatial learning and memory task. A single injury induced a transient but marked increase in local cerebral glucose utilization in the injured hippocampus and sensorimotor cortex, whereas a second injury, three days after the first, failed to induce an increase in glucose utilization at the same time point. In contrast, when the second injury occurred substantially later (20days after the first injury), an increase in glucose utilization occurred that paralleled the increase observed following a single injury. The increased glucose utilization observed after a single injury appears to be an adaptive component of recovery, while mice with 2 injuries separated by three days were not able to mount this response, thus this second injury may have produced a significant energetic crisis such that energetic demands outstripped the ability of the damaged cells to utilize energy. These data strongly reinforce the idea that too rapid return to activity after a traumatic brain injury can induce permanent damage and disability, and that monitoring cerebral energy utilization may be a tool to determine when it is safe to return to the activity that caused the initial

  9. Systemic inflammatory responses during laparoscopic and open inguinal hernia repair: a randomised prospective study

    DEFF Research Database (Denmark)

    Jess, P; Schultz, Karen; Bendtzen, K

    2000-01-01

    To see if the inflammatory responses during and after laparoscopic and open inguinal hernia repairs differed.......To see if the inflammatory responses during and after laparoscopic and open inguinal hernia repairs differed....

  10. Intermittent fasting could ameliorate cognitive function against distress by regulation of inflammatory response pathway

    Directory of Open Access Journals (Sweden)

    Marjan Shojaie

    2017-11-01

    Full Text Available Undesirable and desirable effects of stressors on the body are assigned to distress and eustress, respectively. Immune system and brain are the most susceptible parts to stressful conditions, whereas long-lasting alterations in putative immune proteins involved in tension such as corticosterone (CORT, interleukin 6 (IL-6, and tumor necrosis factor-alpha (TNF-α can impact learning and memory. Intermittent fasting (IF is a repeated regular cycle of dietary restriction with well-known beneficial properties on the body. The aim of this study was to identify the eustress effects of IF on cognitive function by assessing the critical inflammatory factors in chronic distress. Forty male mice were divided into four groups (n = 10/group. Distress and control normally received food and water, whereas IF and IF with distress groups were daily deprived of food and water for two hours. In the second week, the electrical foot shock was induced to distress and IF with distress groups. Finally, the cognitive functions of all mice were evaluated by Barnes maze, their blood samples were taken to determine the plasma level of CORT, IL-6 and TNF-α, and the removed brain and adrenal glands were weighed in the third week. A significant gain in plasma level of CORT, IL-6 and TNF-α with a considerable brain hypotrophy and adrenal hypertrophy was found in distress group, whereas IF caused a remarkable reduction of the plasma inflammatory factors, especially in IF with distress mice (P ≤ 0.05. In conclusion, IF could improve cognitive function and preserve the brain against distress by regulation of inflammatory response pathway.

  11. Intermittent fasting could ameliorate cognitive function against distress by regulation of inflammatory response pathway.

    Science.gov (United States)

    Shojaie, Marjan; Ghanbari, Farzane; Shojaie, Nasrin

    2017-11-01

    Undesirable and desirable effects of stressors on the body are assigned to distress and eustress, respectively. Immune system and brain are the most susceptible parts to stressful conditions, whereas long-lasting alterations in putative immune proteins involved in tension such as corticosterone (CORT), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α) can impact learning and memory. Intermittent fasting (IF) is a repeated regular cycle of dietary restriction with well-known beneficial properties on the body. The aim of this study was to identify the eustress effects of IF on cognitive function by assessing the critical inflammatory factors in chronic distress. Forty male mice were divided into four groups (n = 10/group). Distress and control normally received food and water, whereas IF and IF with distress groups were daily deprived of food and water for two hours. In the second week, the electrical foot shock was induced to distress and IF with distress groups. Finally, the cognitive functions of all mice were evaluated by Barnes maze, their blood samples were taken to determine the plasma level of CORT, IL-6 and TNF-α, and the removed brain and adrenal glands were weighed in the third week. A significant gain in plasma level of CORT, IL-6 and TNF-α with a considerable brain hypotrophy and adrenal hypertrophy was found in distress group, whereas IF caused a remarkable reduction of the plasma inflammatory factors, especially in IF with distress mice (P ≤ 0.05). In conclusion, IF could improve cognitive function and preserve the brain against distress by regulation of inflammatory response pathway.

  12. Fetal cholinergic anti-inflammatory pathway and necrotizing enterocolitis: the brain-gut connection begins in utero

    Directory of Open Access Journals (Sweden)

    Luca eGarzoni

    2013-08-01

    Full Text Available Necrotizing enterocolitis (NEC is an acute neonatal inflammatory disease that affects the intestine and may result in necrosis, systemic sepsis and multisystem organ failure. NEC affects 5-10% of all infants with birth weight ≤ 1500 g or gestational age less than 30 weeks. Chorioamnionitis (CA is the main manifestation of pathological inflammation in the fetus and is strongly associated with NEC. CA affects 20% of full-term pregnancies and up to 60% of preterm pregnancies and, notably, is often an occult finding. Intrauterine exposure to inflammatory stimuli may switch innate immunity cells such as macrophages to a reactive phenotype (‘priming’. Confronted with renewed inflammatory stimuli during labour or postnatally, such sensitized cells can sustain a chronic or exaggerated production of proinflammatory cytokines associated with NEC (two-hit hypothesis. Via the cholinergic anti-inflammatory pathway, a neurally mediated innate anti-inflammatory mechanism, higher levels of vagal activity are associated with lower systemic levels of proinflammatory cytokines. This effect is mediated by the α7 subunit nicotinic acetylcholine receptor (α7nAChR on macrophages. The gut is the most extensive organ innervated by the vagus nerve; it is also the primary site of innate immunity in the newborn. Here we review the mechanisms of possible neuroimmunological brain-gut interactions involved in the induction and control of antenatal intestinal inflammatory response and priming. We propose a neuroimmunological framework to 1 study the long-term effects of perinatal intestinal response to infection and 2 to uncover new targets for preventive and therapeutic intervention.

  13. The relationship between inflammatory activity and brain atrophy in natalizumab treated patients

    Energy Technology Data Exchange (ETDEWEB)

    Magraner, M., E-mail: majomagbe@ono.com [Multiple Sclerosis Unit, Neurology Service, Hospital Universitari i Politecnic La Fe, Bulevar Sur s/n, 46026 Valencia (Spain); Coret, F., E-mail: coret_fra@gva.es [Multiple Sclerosis Unit, Neurology Service, Hospital Clinic de Valencia, Avda Blasco Ibanez 17, 46010 Valencia (Spain); Casanova, B., E-mail: Casanova_bon@gva.es [Multiple Sclerosis Unit, Neurology Service, Hospital Universitari i Politecnic La Fe, Bulevar Sur s/n, 46026 Valencia (Spain)

    2012-11-15

    Objective: To assess the evolution of brain atrophy and its relationship with inflammatory activity in RRMS patients treated with natalizumab. Methods: Eighteen RRMS patients were prospectively followed up for 18 months after starting natalizumab therapy. Patients were monitored monthly and assessed for signs of relapses, adverse events or disability increase. MRI scans were performed before starting natalizumab and every six months. Cross-sectional T2 lesion volume (T2LV) and the normalized brain volume (NBV) at baseline and 18 months MRI scans were calculated using the Steronauta{sup Registered-Sign} and SIENAx softwares, respectively. Longitudinal Percentage of Brain Volume Change (PBVC) was estimated with SIENA. Linkage between inflammatory activity and brain atrophy was studied. Results: Natalizumab reduced ARR by 67% and cumulative CEL by 87.5%. T2 lesion volume decreased from 1000 mm{sup 3}, to 960 mm{sup 3} (p = 0.006) and NBV decreased from 1.55 Multiplication-Sign 10{sup 5} mm{sup 3} to 1.42 Multiplication-Sign 10{sup 5} mm{sup 3} (p = 0.025). Global PBVC from baseline to 18 months was -2.5%, predominantly during the first six months (0-6 months PBVC -1.7%; 6-12 months PBVC -0.74%; 12-18 months PBVC -0.50%). The number of relapses before treatment was correlated to the PBVC during the first semester (Pearson's coefficient -0.520, p = 0.003), while the number of basal CEL or baseline T2LV did not correlate with brain atrophy rate. During follow-up, nine patients had clinical or radiological inflammatory activity. Their PBVC was significantly higher in the first semester (-2.3% to -1.1%, p = 0.002). Conclusions: Natalizumab reduced relapse rate and CEL in MRI. Brain atrophy predominated in the first semester and was related to previous inflammatory activity.

  14. Choline and Choline alphoscerate Do Not Modulate Inflammatory Processes in the Rat Brain

    Directory of Open Access Journals (Sweden)

    Seyed Khosrow Tayebati

    2017-09-01

    Full Text Available Choline is involved in relevant neurochemical processes. In particular, it is the precursor and metabolite of acetylcholine (ACh. Choline is an essential component of different membrane phospholipids that are involved in intraneuronal signal transduction. On the other hand, cholinergic precursors are involved in ACh release and carry out a neuroprotective effect based on an anti-inflammatory action. Based on these findings, the present study was designed to evaluate the effects of choline and choline precursor (Choline alphoscerate, GPC in the modulation of inflammatory processes in the rat brain. Male Wistar rats were intraperitoneally treated with 87 mg of choline chloride/kg/day (65 mg/kg/day of choline, and at choline-equivalent doses of GPC (150 mg/kg/day and vehicle for two weeks. The brains were dissected and used for immunochemical and immunohistochemical analysis. Inflammatory cytokines (Interleukin-1β, IL-1β; Interleukin-6 , IL-6 and Tumor Necrosis Factor-α, TNF-α and endothelial adhesion molecules (Intercellular Adhesion Molecule, ICAM-1 and Vascular cell Adhesion Molecule, VCAM-1 were studied in the frontal cortex, hippocampus, and cerebellum. The results clearly demonstrated that treatment with choline or GPC did not affect the expression of the inflammatory markers in the different cerebral areas evaluated. Therefore, choline and GPC did not stimulate the inflammatory processes that we assessed in this study.

  15. Inflammatory response after session of resistance exercises in untrained volunteers

    Directory of Open Access Journals (Sweden)

    Andre de Oliveira Teixeira

    2015-06-01

    Full Text Available The present study aimed to investigate the interaction between the blood cells, inflammatory markers, oxidative stress parameters and delayed onset muscle soreness (DOMS after a session of resistance exercise (SRE. The sample consisted of sixteen untrained men (26.4±5 years; 25.9±3 kg m-2. The SRE was composed of 4 sets of 10 repetitions maximum (extensor bench, squat and leg press for each exercise. Complete blood cell count, C-reactive protein (CRP, creatine kinase (CK, lipid peroxidation and antioxidant capacity against peroxyl radicals were previously evaluated (baseline, and at 0, 30 and 120 min. after the SRE. DOMS was assessed 24 hours after the exercises. Immediately after the SRE, an increase of blood cell number was observed; returning to baseline after 30 min. However, after 120 min., neutrophils showed higher values than the baseline and 30 min. assessments. CK and CRP increased progressively throughout the experiment. LPO increased immediately and 120 min. after the SRE. Untrained volunteers presented an apparent biphasic inflammatory response after an acute SRE and the changes in oxidative stress, inflammatory markers and leukocytosis were best evidenced two hours after exercise.

  16. Non inflammatory boronate based glucose-responsive insulin delivery systems.

    Directory of Open Access Journals (Sweden)

    Indrani Dasgupta

    Full Text Available Boronic acids, known to bind diols, were screened to identify non-inflammatory cross-linkers for the preparation of glucose sensitive and insulin releasing agglomerates of liposomes (Agglomerated Vesicle Technology-AVT. This was done in order to select a suitable replacement for the previously used cross-linker, ConcanavalinA (ConA, a lectin known to have both toxic and inflammatory effects in vivo. Lead-compounds were selected from screens that involved testing for inflammatory potential, cytotoxicity and glucose-binding. These were then conjugated to insulin-encapsulating nanoparticles and agglomerated via sugar-boronate ester linkages to form AVTs. In vitro, the particles demonstrated triggered release of insulin upon exposure to physiologically relevant concentrations of glucose (10 mmoles/L-40 mmoles/L. The agglomerates were also shown to be responsive to multiple spikes in glucose levels over several hours, releasing insulin at a rate defined by the concentration of the glucose trigger.

  17. Metabolic factors affecting the inflammatory response of periparturient dairy cows.

    Science.gov (United States)

    Sordillo, Lorraine M; Contreras, G A; Aitken, Stacey L

    2009-06-01

    Dairy cattle are susceptible to increased incidence and severity of disease during the periparturient period. Increased health disorders have been associated with alterations in bovine immune mechanisms. Many different aspects of the bovine immune system change during the periparturient period, but uncontrolled inflammation is a dominant factor in several economically important disorders such as metritis and mastitis. In human medicine, the metabolic syndrome is known to trigger several key events that can initiate and promote uncontrolled systemic inflammation. Altered lipid metabolism, increased circulating concentrations of non-esterified fatty acids and oxidative stress are significant contributing factors to systemic inflammation and the development of inflammatory-based diseases in humans. Dairy cows undergo similar metabolic adaptations during the onset of lactation, and it was postulated that some of these physiological events may negatively impact the magnitude and duration of inflammation. This review will discuss how certain types of fatty acids may promote uncontrolled inflammation either directly or through metabolism into potent lipid mediators. The relationship of increased lipid metabolism and oxidative stress to inflammatory dysfunction will be reviewed as well. Understanding more about the underlying cause of periparturient health disorders may facilitate the design of nutritional regimens that will meet the energy requirements of cows during early lactation and reduce the susceptibility to disease as a function of compromised inflammatory responses.

  18. Role of peripheral immune response in microglia activation and regulation of brain chemokine and proinflammatory cytokine responses induced during VSV encephalitis.

    Science.gov (United States)

    Steel, Christina D; Breving, Kimberly; Tavakoli, Susan; Kim, Woong-Ki; Sanford, Larry D; Ciavarra, Richard P

    2014-02-15

    We report herein that neuroinvasion by vesicular stomatitis virus (VSV) activates microglia and induces a peripheral dendritic cell (DC)-dependent inflammatory response in the central nervous system (CNS). VSV neuroinvasion rapidly induces multiple brain chemokine and proinflammatory cytokine mRNAs that display bimodal kinetics. Peripheral DC ablation or T cell depletion suppresses the second wave of this response demonstrating that infiltrating T cells are primarily responsible for the bimodal characteristics of this response. The robust infiltrate associated with VSV encephalitis likely depends on sustained production of brain CCL19 and CCR7 expression on infiltrating inflammatory cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Differential effects of exercise intensities in hippocampal BDNF, inflammatory cytokines and cell proliferation in rats during the postnatal brain development.

    Science.gov (United States)

    de Almeida, Alexandre Aparecido; Gomes da Silva, Sérgio; Fernandes, Jansen; Peixinho-Pena, Luiz Fernando; Scorza, Fulvio Alexandre; Cavalheiro, Esper Abrão; Arida, Ricardo Mario

    2013-10-11

    It has been established that low intensities of exercise produce beneficial effects for the brain, while high intensities can cause some neuronal damage (e.g. exacerbated inflammatory response and cell death). Although these effects are documented in the mature brain, the influence of exercise intensities in the developing brain has been poorly explored. To investigate the impact of exercise intensity in developing rats, we evaluated the hippocampal level of brain derived neurotrophic factor (BDNF), inflammatory cytokines (TNFα, IL6 and IL10) and the occurrence of hippocampal cell degeneration and proliferation at different stages of postnatal brain development of rats submitted to two physical exercise intensities. To this point, male rats were divided into different age groups: P21, P31, P41 and P51. Each age group was submitted to two exercise intensities (low and high) on a treadmill over 10 consecutive days, except the control rats. We verified that the density of proliferating cells was significantly higher in the dentate gyrus of rats submitted to low-intensity exercise from P21 to P30 compared with high-intensity exercise and control rats. A significant increase of proliferative cell density was found in rats submitted to high-intensity exercise from P31 to P40 when compared to low-intensity exercise and control rats. Elevated hippocampal levels of IL6 were detected in rats submitted to high-intensity exercise from P21 to P30 compared to control rats. From P41 to P50 period, higher levels of BDNF, TNFα and IL10 were found in the hippocampal formation of rats submitted to high-intensity exercise in relation to their control rats. Our data show that exercise-induced neuroplastic effects on BDNF levels and cellular proliferation in the hippocampal region are dependent on exercise intensity and developmental period. Thus, exercise intensity is an inflammation-inducing factor and exercise-induced inflammatory response during the postnatal brain development is

  20. Incidence of systemic inflammatory response syndrome after endovascular aortic repair

    DEFF Research Database (Denmark)

    De La Motte, L; Vogt, K; Jensen, Leif Panduro

    2011-01-01

    AIM: The aim of this study was to estimate the incidence of the post-implantation syndrome/systemic inflammatory response syndrome (SIRS) after endovascular aortic repair. METHODS: All patients, undergoing elective primary endovascular repair of an asymptomatic infrarenal abdominal aortic aneurysm...... of the contrast media used, type of groin access, adjunctive procedures and duration of surgery. In total, 11 (28%) patients in the SIRS group and 4 (15%) patients in the non-SIRS group underwent re-interventions. Median follow-up period was 26 (range 20-32) months. Thirty-day mortality did not differ...... in the groups (3% in the SIRS group vs. none in the non-SIRS group). CONCLUSION: The high incidence of SIRS after EVAR is unexpected considering the minimally invasive procedure. Further studies on the cause of this response and measures to attenuate the response seem appropriate....

  1. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru [College of Veterinary Medicine, Northwest A& F University, Yangling 712100, Shaanxi (China); Zhang, Yong, E-mail: zhangyong1956@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A& F University, Yangling 712100, Shaanxi (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A& F University, Yangling 712100, Shaanxi (China); Gao, Ming-Qing, E-mail: gaomingqing@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A& F University, Yangling 712100, Shaanxi (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A& F University, Yangling 712100, Shaanxi (China)

    2016-11-15

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. - Highlights: • Inflammatory BMEs affect the properties of BMFs during mastitis. • BMEs inhibited the proliferation and promoted the migration of BMFs. • BMEs enhanced secretion of inflammatory mediators and deposition of ECM in BMFs. • Changes of the properties of BMFs were mediated by specific signal molecules.

  2. Scutellarein Reduces Inflammatory Responses by Inhibiting Src Kinase Activity.

    Science.gov (United States)

    Sung, Nak Yoon; Kim, Mi-Yeon; Cho, Jae Youl

    2015-09-01

    Flavonoids are plant pigments that have been demonstrated to exert various pharmacological effects including anti-cancer, anti-diabetic, anti-atherosclerotic, anti-bacterial, and anti-inflammatory activities. However, the molecular mechanisms in terms of exact target proteins of flavonoids are not fully elucidated yet. In this study, we aimed to evaluate the anti-inflammatory mechanism of scutellarein (SCT), a flavonoid isolated from Erigeron breviscapus, Clerodendrum phlomidis and Oroxylum indicum Vent that have been traditionally used to treat various inflammatory diseases in China and Brazil. For this purpose, a nitric oxide (NO) assay, polymerase chain reaction (PCR), nuclear fractionation, immunoblot analysis, a kinase assay, and an overexpression strategy were employed. Scutellarein significantly inhibited NO production in a dose-dependent manner and reduced the mRNA expression levels of inducible NO synthase (iNOS) and tumor necrosis factor (TNF)-α in lipopolysaccharide (LPS)-activated RAW264.7 cells. In addition, SCT also dampened nuclear factor (NF)-κB-driven expression of a luciferase reporter gene upon transfection of a TIR-domain-containing adapter-inducing interferon-β (TRIF) construct into Human embryonic kidney 293 (HEK 293) cells; similarly, NF-κ B nuclear translocation was inhibited by SCT. Moreover, the phosphorylation levels of various upstream signaling enzymes involved in NF-κB activation were decreased by SCT treatment in LPS-treated RAW264.7 cells. Finally, SCT strongly inhibited Src kinase activity and also inhibited the autophosphorylation of overexpressed Src. Therefore, our data suggest that SCT can block the inflammatory response by directly inhibiting Src kinase activity linked to NF-κB activation.

  3. Brain uptake of nonsteroidal anti-inflammatory drugs: ibuprofen, flurbiprofen, and indomethacin.

    Science.gov (United States)

    Parepally, Jagan Mohan R; Mandula, Haritha; Smith, Quentin R

    2006-05-01

    To determine the roles of blood-brain barrier (BBB) transport and plasma protein binding in brain uptake of nonsteroidal anti-inflammatory drugs (NSAIDs)-ibuprofen, flurbiprofen, and indomethacin. Brain uptake was measured using in situ rat brain perfusion technique. [14C]Ibuprofen, [3H]flurbiprofen, and [14C]indomethacin were rapidly taken up into the brain in the absence of plasma protein with BBB permeability-surface area products (PS(u)) to free drug of (2.63 +/- 0.11) x 10(-2), (1.60 +/- 0.08) x 10(-2), and (0.64 +/- 0.05) x 10(-2) mL s(-1) g(-1) (n = 9-11), respectively. BBB [14C]ibuprofen uptake was inhibited by unlabeled ibuprofen (Km = 0.85 +/- 0.02 mM, Vmax = 13.5 +/- 0.4 nmol s(-1) g(-1)) and indomethacin, but not by pyruvate, probenecid, digoxin, or valproate. No evidence was found for saturable BBB uptake of [3H]flurbiprofen or [14C]indomethacin. Initial brain uptake for all three NSAIDs was reduced by the addition of albumin to the perfusion buffer. The magnitude of the brain uptake reduction correlated with the NSAID free fraction in the perfusate. Free ibuprofen, flurbiprofen, and indomethacin rapidly cross the BBB, with ibuprofen exhibiting a saturable component of transport. Plasma protein binding limits brain NSAID uptake by reducing the free fraction of NSAID in the circulation.

  4. Mind Over Matter: The Brain's Response to Marijuana

    Science.gov (United States)

    ... Brain's Response to Marijuana The Brain's Response to Marijuana Print Hi, my name is Sara Bellum. Welcome ... issue, we'll investigate the fascinating facts about marijuana. You may have heard it called pot, weed, ...

  5. Influenza Virus Induces Inflammatory Response in Mouse Primary Cortical Neurons with Limited Viral Replication

    Directory of Open Access Journals (Sweden)

    Gefei Wang

    2016-01-01

    Full Text Available Unlike stereotypical neurotropic viruses, influenza A viruses have been detected in the brain tissues of human and animal models. To investigate the interaction between neurons and influenza A viruses, mouse cortical neurons were isolated, infected with human H1N1 influenza virus, and then examined for the production of various inflammatory molecules involved in immune response. We found that replication of the influenza virus in neurons was limited, although early viral transcription was not affected. Virus-induced neuron viability decreased at 6 h postinfection (p.i. but increased at 24 h p.i. depending upon the viral strain. Virus-induced apoptosis and cytopathy in primary cortical neurons were not apparent at 24 h p.i. The mRNA levels of inflammatory cytokines, chemokines, and type I interferons were upregulated at 6 h and 24 h p.i. These results indicate that the influenza virus induces inflammatory response in mouse primary cortical neurons with limited viral replication. The cytokines released in viral infection-induced neuroinflammation might play critical roles in influenza encephalopathy, rather than in viral replication-induced cytopathy.

  6. Sex differences in the inflammatory response of primary astrocytes to lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Santos-Galindo María

    2011-07-01

    Full Text Available Abstract Background Numerous neurological and psychiatric disorders show sex differences in incidence, age of onset, symptomatology or outcome. Astrocytes, one of the glial cell types of the brain, show sex differences in number, differentiation and function. Since astrocytes are involved in the response of neural tissue to injury and inflammation, these cells may participate in the generation of sex differences in the response of the brain to pathological insults. To explore this hypothesis, we have examined whether male and female astrocytes show a different response to an inflammatory challenge and whether perinatal testosterone influences this response. Methods Cortical astrocyte cultures were prepared from postnatal day 1 (one day after birth male or female CD1 mice pups. In addition, cortical astrocyte cultures were also prepared from female pups that were injected at birth with 100 μg of testosterone propionate or vehicle. Cultures were treated for 5 hours with medium containing lipopolysaccharide (LPS or with control medium. The mRNA levels of IL6, interferon-inducible protein 10 (IP10, TNFα, IL1β, Toll-like receptor 4 (TLR4, steroidogenic acute regulatory protein and translocator protein were assessed by quantitative real-time polymerase chain reaction. Statistical significance was assessed by unpaired t-test or by one-way analysis of variance followed by the Tukey post hoc test. Results The mRNA levels of IL6, TNFα and IL1β after LPS treatment were significantly higher in astrocytes derived from male or androgenized females compared to astrocytes derived from control or vehicle-injected females. In contrast, IP10 mRNA levels after LPS treatment were higher in astrocytes derived from control or vehicle-injected females than in those obtained from males or androgenized females. The different response of male and female astrocytes to LPS was due neither to differences in the basal expression of the inflammatory molecules nor to

  7. Inflammatory signaling compromises cell responses to interferon alpha

    Science.gov (United States)

    HuangFu, Wei-Chun; Qian, Juan; Liu, Chengbao; Liu, Jianghuai; Lokshin, Anna E.; Baker, Darren P.; Rui, Hallgeir; Fuchs, Serge Y

    2011-01-01

    Interferon alpha (IFNα) is widely used for treatment of melanoma and certain other malignancies. This cytokine as well as the related IFNβ exerts potent anti-tumorigenic effects; however, their efficacy in patients is often suboptimal. Here we report that inflammatory signaling impedes the effects of IFNα/β. Melanoma cells can secrete pro-inflammatory cytokines that inhibit cellular responses to IFNα/β via activating the ligand-independent pathway for the phosphorylation and subsequent ubiquitination and accelerated degradation of the IFNAR1 chain of Type I IFN receptor. Catalytic activity of the p38 protein kinase was required for IFNAR1 downregulation and inhibition of IFNα/β signaling induced by proinflammatory cytokines such as Interleukin 1 (IL-1). Activation of p38 kinase inversely correlated with protein levels of IFNAR1 in clinical melanoma specimens. Inhibition of p38 kinase augmented the inhibitory effects of IFNα/β on cell viability and growth in vitro and in vivo. The role of inflammation and p38 protein kinase in regulating cellular responses to IFNα/β in normal and tumor cells are discussed. PMID:21666722

  8. Effect of ghrelin on inflammatory response in lung contusion

    Directory of Open Access Journals (Sweden)

    Berrak Guven

    2013-02-01

    Full Text Available The purpose of this study was to investigate the effects of ghrelin on inflammatory response and tissue damage following trauma-induced acute lung injury. Thirty male wistar albino rats (300–400 g were randomly assigned into three groups: control group (n = 6, lung contusion plus saline (saline-treated, n = 12, and lung contusion plus ghrelin (ghrelin-treated, n = 12. Saline- or ghrelin-treated traumatic rats were sacrificed at two time points (24 and 72 hours after lung contusion. Blood was collected for the analysis of serum adenosine deaminase (ADA. Tissue transforming growth factor-beta 1 (TGF-β1 and matrix metalloproteinase-2 (MMP-2 levels were measured by enzyme-linked immunosorbent assay and histopathological examination was performed on the lung tissue samples. Our results indicated that ghrelin significantly reduced morphologic damages. Serum ADA activities were significantly decreased after lung contusion and this decline started early with ghrelin treatment. TGF-β1 and MMP-2 levels in lung tissue were elevated at 72 hours after lung contusion and treatment with ghrelin significantly increased TGF-β1 level and reduced MMP-2 level. In conclusion, our study demonstrates that acute lung injury initiated proinflammatory responses and ghrelin administration showed an anti-inflammatory effect in lung contusion.

  9. Inflammatory and Bone Remodeling Responses to the Cytolethal Distending Toxins

    Directory of Open Access Journals (Sweden)

    Georgios N. Belibasakis

    2014-04-01

    Full Text Available The cytolethal distending toxins (CDTs are a family of exotoxins produced by a wide range of Gram-negative bacteria. They are known for causing genotoxic stress to the cell, resulting in growth arrest and eventually apoptotic cell death. Nevertheless, there is evidence that CDTs can also perturb the innate immune responses, by regulating inflammatory cytokine production and molecular mediators of bone remodeling in various cell types. These cellular and molecular events may in turn have an effect in enhancing local inflammation in diseases where CDT-producing bacteria are involved, such as Aggregatibacter actinomycetemcomitans, Haemophilus ducreyi, Campylobacter jejuni and Helicobacter hepaticus. One special example is the induction of pathological bone destruction in periodontitis. The opportunistic oral pathogen Aggregatibatcer actinoycemetemcomitans, which is involved in the aggressive form of the disease, can regulate the molecular mechanisms of bone remodeling in a manner that favors bone resorption, with the potential involvement of its CDT. The present review provides an overview of all known to-date inflammatory or bone remodeling responses of CDTs produced by various bacterial species, and discusses their potential contribution to the pathogenesis of the associated diseases.

  10. Toxoplasma gondii effectors are master regulators of the inflammatory response

    Science.gov (United States)

    Melo, Mariane B.; Jensen, Kirk D.C.; Saeij, Jeroen P.J.

    2011-01-01

    Toxoplasma is a highly successful parasite that establishes a life-long chronic infection. To do this it must carefully regulate immune activation and host cell effector mechanisms. Here we review the latest developments in our understanding of how Toxoplasma counteracts the host’s immune response, and in some cases provokes it, through the use of specific parasite effector proteins. An emerging theme from these discoveries is that Toxoplasma effectors are master regulators of the pro-inflammatory response, which elicits many of the host’s toxoplasmacidal mechanisms. We speculate that combinations of these effectors present in certain Toxoplasma strains work to maintain an optimal parasite burden in different hosts to ensure parasite transmission. PMID:21893432

  11. Inflammatory response in laparoscopic vs. open surgery for gastric cancer

    DEFF Research Database (Denmark)

    Okholm, Cecilie; Goetze, Jens Peter; Svendsen, Lars Bo

    2014-01-01

    lead to an increased susceptibility to complications and morbidity. The aim of this review was to investigate if laparoscopic surgery reduces the immunological response compared to open surgery in gastric cancer. METHODS: We conducted a literature search identifying relevant studies comparing...... laparoscopy or laparoscopic-assisted surgery with open gastric surgery. The main outcome was postoperative immunological status defined as surgical stress parameters, including inflammatory cytokines and blood parameters. RESULTS: We identified seven studies that addressed the immunological status in patients...... laparotomy. Finally, most studies reported lower levels of white blood cell count in laparoscopic patients, although this result did not reach statistical significance in a small number of studies. CONCLUSIONS: Laparoscopy-assisted gastric surgery seems to attenuate the immune response compared to open...

  12. Asymptomatic Brain Lesions on Cranial Magnetic Resonance Imaging in Inflammatory Bowel Disease

    OpenAIRE

    Dolapcioglu, Can; Guleryuzlu, Yuksel; Uygur-Bayramicli, Oya; Ahishali, Emel; Dabak, Resat

    2013-01-01

    Background/Aims This study aimed to examine the frequency and type of asymptomatic neurological involvement in inflammatory bowel disease (IBD) using cranial magnetic resonance imaging (MRI). Methods Fifty-one IBD patients with no known neurological diseases or symptoms and 30 controls with unspecified headaches without neurological origins were included. Patients and controls underwent cranial MRI assessments for white matter lesions, sinusitis, otitis-mastoiditis, and other brain parenchyma...

  13. Iodinated contrast media alter immune responses in pro-inflammatory states.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2010-07-01

    Hypertonic saline causes a transient elevation of blood osmolality and has been shown to alter cellular inflammatory responses in pro-inflammatory states. Intravascular administration of iodine contrast media also causes a transient elevation of blood osmolarity.

  14. The impact of intermittent umbilical cord occlusions on the inflammatory response in pre-term fetal sheep.

    Directory of Open Access Journals (Sweden)

    Andrew P Prout

    Full Text Available Fetal hypoxic episodes may occur antepartum with the potential to induce systemic and cerebral inflammatory responses thereby contributing to brain injury. We hypothesized that intermittent umbilical cord occlusions (UCOs of sufficient severity but without cumulative acidosis will lead to a fetal inflammatory response. Thirty-one chronically instrumented fetal sheep at ∼0.85 of gestation underwent four consecutive days of hourly UCOs from one to three minutes duration for six hours each day. Maternal and fetal blood samples were taken for blood gases/pH and plasma interleukin (IL-1β and IL-6 levels. Animals were euthanized at the end of experimental study with brain tissue processed for subsequent counting of microglia and mast cells. Intermittent UCOs resulted in transitory fetal hypoxemia with associated acidemia which progressively worsened the longer umbilical blood flow was occluded, but with no cumulative blood gas or pH changes over the four days of study. Fetal arterial IL-1β and IL-6 values showed no significant change regardless of the severity of the UCOs, nor was there any evident impact on the microglia and mast cell counts for any of the brain regions studied. Accordingly, intermittent UCOs of up to three minutes duration with severe, but limited fetal hypoxemia and no cumulative acidemia, do not result in either a systemic or brain inflammatory response in the pre-term ovine fetus. However, fetal IL-1B and IL-6 values were found to be well correlated with corresponding maternal values supporting the placenta as a primary source for these cytokines with related secretion into both circulations. Female fetuses were also found to have higher IL-1β levels than males, indicating that gender may impact on the fetal inflammatory response to various stimuli.

  15. [Intestinal-brain axis. Neuronal and immune-inflammatory mechanisms of brain and intestine pathology].

    Science.gov (United States)

    Bondarenko, V M; Riabichenko, E V

    2013-01-01

    Mutually directed connections between intestine and brain are implemented by endocrine, neural and immune systems and nonspecific natural immunity. Intestine micro flora as an active participant of intestine-brain axis not only influences intestine functions but also stimulates the development of CNS in perinatal period and interacts with higher nervous centers causing depression and cognitive disorders in pathology. A special role belongs to intestine microglia. Apart from mechanic (protective) and trophic functions for intestine neurons, glia implements neurotransmitter, immunologic, barrier and motoric functions in the intestine. An interconnection between intestine barrier function and hematoencephalic barrier regulation exists. Chronic endotoxinemia as a result of intestine barrier dysfunction forms sustained inflammation state in periventricular zone of the brain with consequent destabilization of hematoencephalic barriers and spread oF inflammation to other parts of the brain resulting in neurodegradation development.

  16. Biotin deficiency enhances the inflammatory response of human dendritic cells.

    Science.gov (United States)

    Agrawal, Sudhanshu; Agrawal, Anshu; Said, Hamid M

    2016-09-01

    The water-soluble biotin (vitamin B7) is indispensable for normal human health. The vitamin acts as a cofactor for five carboxylases that are critical for fatty acid, glucose, and amino acid metabolism. Biotin deficiency is associated with various diseases, and mice deficient in this vitamin display enhanced inflammation. Previous studies have shown that biotin affects the functions of adaptive immune T and NK cells, but its effect(s) on innate immune cells is not known. Because of that and because vitamins such as vitamins A and D have a profound effect on dendritic cell (DC) function, we investigated the effect of biotin levels on the functions of human monocyte-derived DCs. Culture of DCs in a biotin-deficient medium (BDM) and subsequent activation with LPS resulted in enhanced secretion of the proinflammatory cytokines TNF-α, IL-12p40, IL-23, and IL-1β compared with LPS-activated DCs cultured in biotin-sufficient (control) and biotin-oversupplemented media. Furthermore, LPS-activated DCs cultured in BDM displayed a significantly higher induction of IFN-γ and IL-17 indicating Th1/Th17 bias in T cells compared with cells maintained in biotin control or biotin-oversupplemented media. Investigations into the mechanisms suggested that impaired activation of AMP kinase in DCs cultured in BDM may be responsible for the observed increase in inflammatory responses. In summary, these results demonstrate for the first time that biotin deficiency enhances the inflammatory responses of DCs. This may therefore be one of the mechanism(s) that mediates the observed inflammation that occurs in biotin deficiency.

  17. Shiga Toxin 1-Induced Inflammatory Response in Lipopolysaccharide-Sensitized Astrocytes Is Mediated by Endogenous Tumor Necrosis Factor Alpha▿

    Science.gov (United States)

    Landoni, Verónica I.; de Campos-Nebel, Marcelo; Schierloh, Pablo; Calatayud, Cecilia; Fernandez, Gabriela C.; Ramos, M. Victoria; Rearte, Bárbara; Palermo, Marina S.; Isturiz, Martín A.

    2010-01-01

    Hemolytic-uremic syndrome (HUS) is generally caused by Shiga toxin (Stx)-producing Escherichia coli. Endothelial dysfunction mediated by Stx is a central aspect in HUS development. However, inflammatory mediators such as bacterial lipopolysaccharide (LPS) and polymorphonuclear neutrophils (PMN) contribute to HUS pathophysiology by potentiating Stx effects. Acute renal failure is the main feature of HUS, but in severe cases, patients can develop neurological complications, which are usually associated with death. Although the mechanisms of neurological damage remain uncertain, alterations of the blood-brain barrier associated with brain endothelial injury is clear. Astrocytes (ASTs) are the most abundant inflammatory cells of the brain that modulate the normal function of brain endothelium and neurons. The aim of this study was to evaluate the effects of Stx type 1 (Stx1) alone or in combination with LPS in ASTs. Although Stx1 induced a weak inflammatory response, pretreatment with LPS sensitized ASTs to Stx1-mediated effects. Moreover, LPS increased the level of expression of the Stx receptor and its internalization. An early inflammatory response, characterized by the release of tumor necrosis factor alpha (TNF-α) and nitric oxide and PMN-chemoattractant activity, was induced by Stx1 in LPS-sensitized ASTs, whereas activation, evidenced by higher levels of glial fibrillary acid protein and cell death, was induced later. Furthermore, increased adhesion and PMN-mediated cytotoxicity were observed after Stx1 treatment in LPS-sensitized ASTs. These effects were dependent on NF-κB activation or AST-derived TNF-α. Our results suggest that TNF-α is a pivotal effector molecule that amplifies Stx1 effects on LPS-sensitized ASTs, contributing to brain inflammation and leading to endothelial and neuronal injury. PMID:20008539

  18. Normothermic Ex Vivo Lung Perfusion in Brain-dead Donors Reduces Inflammatory Cytokines and Toll-like Receptor Expression.

    Science.gov (United States)

    Shafaghi, Shadi; Mortaz, Esmaeil; Abbasi Dezfuli, Azizollah; Godarzi, Hoda; Sheikhy, Kambiz; Ansari Aval, Zahra; Farzanegan, Behrooz; Emami, Habib; Hosseini-Baharanchi, Fatemeh Sadat; Najafizadeh, Katayoun

    2016-10-01

    Inflammatory responses and innate immunologic reactions play an important role in the respiratory system. Ex vivo lung perfusion (EVLP) is considered a novel method in the evaluation and reconditioning of donor lungs prior to transplantation. However, EVLP's effect on inflammatory and metabolic markers of human lung tissue is unknown.  This study investigated how the performance of EVLP on brain-dead (BD) donor lungs affects the production and release of inflammatory cytokines (IL-6, IL-8, and TNF-a), inflammatory cells and toll-like receptors (TLR) -2, 4. This study was conducted with an animal subject for qualification of EVLP team and then EVLP was performed on 4 human cases referred to Masih Daneshvari Hospital (Tehran,Iran), from May 2013 to July 2015. Two of these cases, who had acceptable lung function parameters, were enrolled in this study for immunologic investigations. Bronchoalveolar lavages (BAL) were taken before and after EVLP. Cytokines were quantitatively measured before lung retrieval, at the end of the lung removal, at the start of EVLP, and at the end of the each hour of EVLP. TLR expression was measured on the cells obtained by flow cytometry. TNF-a, IL-6 and IL-8 decreased in each stage of washing perfusate in both cases, and the level of cytokines in serum was in the normal range. Flow cytometry analysis revealed a decreasing expression of CD3, CD4/8, CD19, and CD16+56, as well as TLR-2 and TLR-4 in both cases. Intra-capillary pools of pro-inflammatory cytokines (IL-6, IL-8, and TNF-a) were determined to contribute to the lung injury during prolonged lung perfusion. This raises the possibility that EVLP donor lungs could be less immunogenic than standard lungs. However, to assess EVLP's effects on lung grafts and optimize recipient outcomes, further studies with a sufficient number of lungs are required.

  19. Monitoring the Neuroinflammatory Response Following Acute Brain Injury

    Science.gov (United States)

    Thelin, Eric Peter; Tajsic, Tamara; Zeiler, Frederick Adam; Menon, David K.; Hutchinson, Peter J. A.; Carpenter, Keri L. H.; Morganti-Kossmann, Maria Cristina; Helmy, Adel

    2017-01-01

    Traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) are major contributors to morbidity and mortality. Following the initial insult, patients may deteriorate due to secondary brain damage. The underlying molecular and cellular cascades incorporate components of the innate immune system. There are different approaches to assess and monitor cerebral inflammation in the neuro intensive care unit. The aim of this narrative review is to describe techniques to monitor inflammatory activity in patients with TBI and SAH in the acute setting. The analysis of pro- and anti-inflammatory cytokines in compartments of the central nervous system (CNS), including the cerebrospinal fluid and the extracellular fluid, represent the most common approaches to monitor surrogate markers of cerebral inflammatory activity. Each of these compartments has a distinct biology that reflects local processes and the cross-talk between systemic and CNS inflammation. Cytokines have been correlated to outcomes as well as ongoing, secondary injury progression. Alongside the dynamic, focal assay of humoral mediators, imaging, through positron emission tomography, can provide a global in vivo measurement of inflammatory cell activity, which reveals long-lasting processes following the initial injury. Compared to the innate immune system activated acutely after brain injury, the adaptive immune system is likely to play a greater role in the chronic phase as evidenced by T-cell-mediated autoreactivity toward brain-specific proteins. The most difficult aspect of assessing neuroinflammation is to determine whether the processes monitored are harmful or beneficial to the brain as accumulating data indicate a dual role for these inflammatory cascades following injury. In summary, the inflammatory component of the complex injury cascade following brain injury may be monitored using different modalities. Using a multimodal monitoring approach can potentially aid in the development of therapeutics

  20. Local and Systemic Inflammatory Responses to Experimentally Induced Gingivitis

    Science.gov (United States)

    Leishman, Shaneen J.; Seymour, Gregory J.; Ford, Pauline J.

    2013-01-01

    This study profiled the local and systemic inflammatory responses to experimentally induced gingivitis. Eight females participated in a 21-day experimental gingivitis model followed by a 14-day resolution phase. Bleeding on probing and plaque index scores were assessed before, during, and after resolution of gingival inflammation, and samples of saliva, GCF, and plasma were collected. Samples were assessed for biomarkers of inflammation using the BioPlex platform and ELISA. There were no significant changes in GCF levels of cytokines during the experimental phase; however, individual variability in cytokine profiles was noted. During resolution, mean GCF levels of IL-2, IL-6, and TNF-α decreased and were significantly lower than baseline levels (P = 0.003, P = 0.025, and P = 0.007, resp.). Furthermore, changes in GCF levels of IL-2, IL-6, and TNF-α during resolution correlated with changes in plaque index scores (r = 0.88, P = 0.004; r = 0.72, P = 0.042; r = 0.79, P = 0.019, resp.). Plasma levels of sICAM-1 increased significantly during the experimental phase (P = 0.002) and remained elevated and significantly higher than baseline levels during resolution (P gingivitis adds to the systemic inflammatory burden of an individual. PMID:24227893

  1. ALCOHOL ABUSE ENHANCES SYSTEMIC INFLAMMATORY RESPONSE IN PATIENTS AFTER SPONTANEOUS INTRACEREBRAL HAEMORRHAGE

    Directory of Open Access Journals (Sweden)

    Maya Danovska

    2010-11-01

    Full Text Available OBJECTIVE: The role of inflammation in the complex pathophysiology of spontaneous intracerebral hemorrhage (sICH was studied by assessing the relationship between serum C-reactive protein (CRP levels and some clinical and neuroradiological parameters. We also aimed to identify the effects of modifiable vascular risk factors on serum CRP levels.PATIENTS: Forty six patients with sICH admitted to the Department of Neurology and Neurosurgery of the Pleven University Hospital, Bulgaria were examined. Serum CRP levels were measured within the first 48 hours of disease onset and analyzed in relation to neurological deficit severity and clinical outcome after sICH. The impact of some vascular risk factors on the inflammatory marker levels was also studied.RESULTS: We found enhanced CRP levels in patients with severe neurological deficit as assessed by the National Institutes of Health Stroke Scale (NIHSS score. Significantly higher CRP levels were measured in patients with progressive clinical deterioration and worse outcome. Serum CRP levels were also higher in patients with a history of alcohol abuse.CONCLUSIONS: Our results suggest that inflammation plays a crucial role in the development of brain injury after sICH. They show that CRP, a nonspecific inflammatory marker, can serve as an additional diagnostic and prognostic test indicator in the acute stage of sICH thus providing an excellent opportunity for therapeutic interventions while the patient is still in clinic. Patients with a history of systemic alcohol abuse demonstrate stronger inflammatory response indicative for worse prognosis.

  2. Androgen deprivation modulates the inflammatory response induced by irradiation

    Directory of Open Access Journals (Sweden)

    Lin Paul-Yang

    2009-03-01

    Full Text Available Abstract Background The aim of this study was to determine whether radiation (RT-induced inflammatory responses and organ damage might be modulated by androgen deprivation therapies. Methods The mRNA and tissue sections obtained from the lungs, intestines and livers of irradiated mice with or without androgen deprivation were analyzed by real-time PCR and histological analysis. Activation of NF-kappa B was examined by measuring nuclear protein levels in the intestine and lung 24 h after irradiation. We also examined the levels of cyclooxygenase-2 (COX-2, TGF-β1 and p-AKT to elucidate the related pathway responsible to irradiation (RT -induced fibrosis. Results We found androgen deprivation by castration significantly augmented RT-induced inflammation, associated with the increase NF-κB activation and COX-2 expression. However, administration of flutamide had no obvious effect on the radiation-induced inflammation response in the lung and intestine. These different responses were probably due to the increase of RT-induced NF-κB activation and COX-2 expression by castration or lupron treatment. In addition, our data suggest that TGF-β1 and the induced epithelial-mesenchymal transition (EMT via the PI3K/Akt signaling pathway may contribute to RT-induced fibrosis. Conclusion When irradiation was given to patients with total androgen deprivation, the augmenting effects on the RT-induced inflammation and fibrosis should take into consideration for complications associated with radiotherapy.

  3. Childhood Abuse and Inflammatory Responses to Daily Stressors

    Science.gov (United States)

    Gouin, Jean-Philippe; Glaser, Ronald; Malarkey, William B.; Beversdorf, David; Kiecolt-Glaser, Janice

    2013-01-01

    Background Childhood abuse leads to greater morbidity and mortality in adulthood. Dysregulated physiological stress responses may underlie the greater health risk among abused individuals. Purpose This study evaluated the impact of childhood abuse on inflammatory responses to naturalistically occurring daily stressors. Methods In this cross-sectional study of 130 older adults, recent daily stressors and childhood abuse history were evaluated using the Daily Inventory of Stressful Events and the Childhood Trauma Questionnaire. Blood samples provided data on circulating interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and C-reactive protein (CRP). Results Childhood abuse history moderated IL-6 levels, but not TNF-α and CRP responses to daily stressors. Individuals with a childhood abuse history who experienced multiple stressors in the past 24 hours had IL-6 levels 2.35 times greater than those of participants who reported multiple daily stressors but no early abuse history. Conclusion Childhood abuse substantially enhances IL-6 responses to daily stressors in adulthood. PMID:22714139

  4. Regulation of inflammatory responses by IL-17F

    Science.gov (United States)

    Yang, Xuexian O.; Chang, Seon Hee; Park, Heon; Nurieva, Roza; Shah, Bhavin; Acero, Luis; Wang, Yi-Hong; Schluns, Kimberly S.; Broaddus, Russell R.; Zhu, Zhou; Dong, Chen

    2008-01-01

    Although interleukin (IL) 17 has been extensively characterized, the function of IL-17F, which has an expression pattern regulated similarly to IL-17, is poorly understood. We show that like IL-17, IL-17F regulates proinflammatory gene expression in vitro, and this requires IL-17 receptor A, tumor necrosis factor receptor–associated factor 6, and Act1. In vivo, overexpression of IL-17F in lung epithelium led to infiltration of lymphocytes and macrophages and mucus hyperplasia, similar to observations made in IL-17 transgenic mice. To further understand the function of IL-17F, we generated and analyzed mice deficient in IL-17F or IL-17. IL-17, but not IL-17F, was required for the initiation of experimental autoimmune encephalomyelitis. Mice deficient in IL-17F, but not IL-17, had defective airway neutrophilia in response to allergen challenge. Moreover, in an asthma model, although IL-17 deficiency reduced T helper type 2 responses, IL-17F–deficient mice displayed enhanced type 2 cytokine production and eosinophil function. In addition, IL-17F deficiency resulted in reduced colitis caused by dextran sulfate sodium, whereas IL-17 knockout mice developed more severe disease. Our results thus demonstrate that IL-17F is an important regulator of inflammatory responses that seems to function differently than IL-17 in immune responses and diseases. PMID:18411338

  5. The Role of Protein Arginine Methyltransferases in Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    Ji Hye Kim

    2016-01-01

    Full Text Available Protein arginine methyltransferases (PRMTs mediate the methylation of a number of protein substrates of arginine residues and serve critical functions in many cellular responses, including cancer development, progression, and aggressiveness, T-lymphocyte activation, and hepatic gluconeogenesis. There are nine members of the PRMT family, which are divided into 4 types (types I–IV. Although most PRMTs do not require posttranslational modification (PTM to be activated, fine-tuning modifications, such as interactions between cofactor proteins, subcellular compartmentalization, and regulation of RNA, via micro-RNAs, seem to be required. Inflammation is an essential defense reaction of the body to eliminate harmful stimuli, including damaged cells, irritants, or pathogens. However, chronic inflammation can eventually cause several types of diseases, including some cancers, atherosclerosis, rheumatoid arthritis, and periodontitis. Therefore, inflammation responses should be well modulated. In this review, we briefly discuss the role of PRMTs in the control of inflammation. More specifically, we review the roles of four PRMTs (CARM1, PRMT1, PRMT5, and PRMT6 in modulating inflammation responses, particularly in terms of modulating the transcriptional factors or cofactors related to inflammation. Based on the regulatory roles known so far, we propose that PRMTs should be considered one of the target molecule groups that modulate inflammatory responses.

  6. Role of Apoptosis in Amplifying Inflammatory Responses in Lung Diseases

    Directory of Open Access Journals (Sweden)

    E.P. Schmidt

    2010-07-01

    Full Text Available Apoptosis is an important contributor to the pathophysiology of lung diseases such as acute lung injury (ALI and chronic obstructive pulmonary disease (COPD. Furthermore, the cellular environment of these acute and chronic lung diseases favors the delayed clearance of apoptotic cells. This dysfunctional efferocytosis predisposes to the release of endogenous ligands from dying cells. These so-called damage-associated molecular patterns (DAMPs play an important role in the stimulation of innate immunity as well as in the induction of adaptive immunity, potentially against autoantigens. In this review, we explore the role of apoptosis in ALI and COPD, with particular attention to the contribution of DAMP release in augmenting the inflammatory response in these disease states.

  7. Role of Apoptosis in Amplifying Inflammatory Responses in Lung Diseases

    Directory of Open Access Journals (Sweden)

    E.P. Schmidt

    2010-01-01

    Full Text Available Apoptosis is an important contributor to the pathophysiology of lung diseases such as acute lung injury (ALI and chronic obstructive pulmonary disease (COPD. Furthermore, the cellular environment of these acute and chronic lung diseases favors the delayed clearance of apoptotic cells. This dysfunctional efferocytosis predisposes to the release of endogenous ligands from dying cells. These so-called damage-associated molecular patterns (DAMPs play an important role in the stimulation of innate immunity as well as in the induction of adaptive immunity, potentially against autoantigens. In this review, we explore the role of apoptosis in ALI and COPD, with particular attention to the contribution of DAMP release in augmenting the inflammatory response in these disease states.

  8. Systemic inflammatory responses following welding inhalation challenge test.

    Science.gov (United States)

    Kauppi, Paula; Järvelä, Merja; Tuomi, Timo; Luukkonen, Ritva; Lindholm, Tuula; Nieminen, Riina; Moilanen, Eeva; Hannu, Timo

    2015-01-01

    The aim of this study was to investigate inflammatory and respiratory responses to welding fume exposure in patients with suspected occupational asthma. Sixteen patients referred to the Finnish Institute of Occupational Health underwent mild steel (MS) and stainless steel (SS) welding challenge tests, due to suspicion of OA. Platelet count, leucocytes and their differential count, hemoglobin, sensitive CRP, lipids, glucose and fibrinogen were analyzed in addition to interleukin (IL)-1β, IL-6, IL-8, TNF-α, endothelin-1, and E-selectin in plasma samples. Peak expiratory flow (PEF), forced expiratory volume in 1 min (FEV 1 ) and exhaled nitric oxide (NO) measurements were performed before and after the challenge test. Personal particle exposure was assessed using IOM and a mini sampler. Particle size distribution was measured by an Electric Low Pressure Impactor (ELPI). The number of leukocytes, neutrophils, and platelets increased significantly, and the hemoglobin level and number of erythrocytes decreased significantly after both the MS and SS exposure tests. Five of the patients were diagnosed with OA, and their maximum fall in FEV 1 values was 0.70 l (±0.32) 4 h after SS exposure. MS welding generated an average inhalable particle mass concentration of 31.6, and SS welding of 40.2 mg/m 3 . The mean particle concentration measured inside the welding face shields by the mini sampler was 30.2 mg/m 3 and 41.7 mg/m 3 , respectively. Exposure to MS and SS welding fume resulted in a mild systemic inflammatory response. The particle concentration from the breathing zones correlated with the measurements inside the welding face shields.

  9. Cryptosporidiosis stimulates an inflammatory intestinal response in malnourished Haitian children.

    Science.gov (United States)

    Kirkpatrick, Beth D; Daniels, Michelle M; Jean, Simone Sonia; Pape, Jean W; Karp, Christopher; Littenberg, Benjamin; Fitzgerald, Daniel W; Lederman, Howard M; Nataro, James P; Sears, Cynthia L

    2002-07-01

    The mechanisms by which Cryptosporidium parvum cause persistent diarrhea and increased morbidity and mortality are poorly understood. Three groups of Haitian children <18 months old were studied: case patients, children with diarrhea not due to Cryptosporidium, and healthy control subjects. Compared with both control groups, children with acute cryptosporidiosis were more malnourished (including measures of stunting [P=.03] and general malnutrition [P=.01]), vitamin A deficient (P=.04), and less often breast-fed (P=.04). Markers of a proinflammatory immune response, interleukin (IL)-8 and tumor necrosis factor-alpha receptor I, were significantly elevated in the case population (P=.02 and P<.01, respectively), as was fecal lactoferrin (P=.01) and the T helper (Th)-2 cytokine IL-13 (P=.03). The counterregulatory cytokine IL-10 was exclusively elevated in the case population (P<.01). A Th1 cytokine response to infection was not detected. This triple cohort study demonstrates that malnourished children with acute cryptosporidiosis mount inflammatory, Th-2, and counterregulatory intestinal immune responses.

  10. Trajectory of inflammatory and microglial activation markers in the postnatal rabbit brain following intrauterine endotoxin exposure.

    Science.gov (United States)

    Zhang, Zhi; Jyoti, Amar; Balakrishnan, Bindu; Williams, Monica; Singh, Sarabdeep; Chugani, Diane C; Kannan, Sujatha

    2018-03-01

    Maternal infection is a risk factor for periventricular leukomalacia and cerebral palsy (CP) in neonates. We have previously demonstrated hypomyelination and motor deficits in newborn rabbits, as seen in patients with cerebral palsy, following maternal intrauterine endotoxin administration. This was associated with increased microglial activation, primarily involving the periventricular region (PVR). In this study we hypothesized that maternal intrauterine inflammation leads to a pro-inflammatory environment in the PVR that is associated with microglial activation in the first 2 postnatal weeks. Timed pregnant New Zealand white rabbits underwent laparotomy on gestational day 28 (G28). They were randomly divided to receive lipopolysaccharide (LPS; 20μg/kg in 1mL saline) (Endotoxin group) or saline (1mL) (control saline, CS group), administrated along the wall of the uterus. The PVR from the CS and Endotoxin kits were harvested at G29 (1day post-injury), postnatal day1 (PND1, 3day post-injury) and PND5 (7days post-injury) for real-time PCR, ELISA and immunohistochemistry. Kits from CS and Endotoxin groups underwent longitudinal MicroPET imaging, with [ 11 C]PK11195, a tracer for microglial activation. We found that intrauterine endotoxin exposure resulted in pro-inflammatory microglial activation in the PVR of rabbits in the first postnatal week. This was evidenced by increased TSPO (translocator protein) expression co-localized with microglia/macrophages in the PVR, and changes in the microglial morphology (ameboid soma and retracted processes). In addition, CD11b level significantly increased with a concomitant decline in the CD45 level in the PVR at G29 and PND1. There was a significant elevation of pro-inflammatory cytokines and iNOS, and decreased anti-inflammatory markers in the Endotoxin kits at G29, PND1 and PND5. Increased [ 11 C]PK11195 binding to the TSPO measured in vivo by PET imaging in the brain of Endotoxin kits was present up to PND14-17. Our

  11. The Ayurvedic plant Bacopa monnieri inhibits inflammatory pathways in the brain.

    Science.gov (United States)

    Nemetchek, Michelle D; Stierle, Andrea A; Stierle, Donald B; Lurie, Diana I

    2017-02-02

    Bacopa monnieri (L) Wettst (common name, bacopa) is a medicinal plant used in Ayurveda, the traditional system of medicine of India, as a nootropic. It is considered to be a "medhya rasayana", an herb that sharpens the mind and the intellect. Bacopa is an important ingredient in many Ayurvedic herbal formulations designed to treat conditions such as memory loss, anxiety, poor cognition and loss of concentration. It has also been used in Ayurveda to treat inflammatory conditions such as arthritis. In modern biomedical studies, bacopa has been shown in animal models to inhibit the release of the pro-inflammatory cytokines TNF-α and IL-6. However, less is known regarding the anti-inflammatory activity of Bacopa in the brain. The current study examines the ability of Bacopa to inhibit the release of pro-inflammatory cytokines from microglial cells, the immune cells of the brain that participate in inflammation in the CNS. The effect of Bacopa on signaling enzymes associated with CNS inflammatory pathways was also studied. Various extracts of Bacopa were prepared and examined in the N9 microglial cell line in order to determine if they inhibited the release of the proinflammatory cytokines TNF-α and IL-6. Extracts were also tested in cell free assays as inhibitors of caspase-1 and matrix metalloproteinase-3 (enzymes associated with inflammation) and caspase-3, which has been shown to cleave protein Tau, an early event in the development of Alzheimer's disease. The tea, infusion, and alkaloid extracts of bacopa, as well as Bacoside A significantly inhibited the release of TNF-α and IL-6 from activated N9 microglial cells in vitro. In addition, the tea, infusion, and alkaloid extracts of Bacopa effectively inhibited caspase 1 and 3, and matrix metalloproteinase-3 in the cell free assay. Bacopa inhibits the release of inflammatory cytokines from microglial cells and inhibits enzymes associated with inflammation in the brain. Thus, Bacopa can limit inflammation in the

  12. Neuronal apoptosis and inflammatory responses in the central nervous system of a rabbit treated with Shiga toxin-2

    Directory of Open Access Journals (Sweden)

    Ikuta Fusahiro

    2008-03-01

    Full Text Available Abstract Background Shiga toxins (Stxs are the major agents responsible for hemorrhagic colitis and hemolytic-uremic syndrome (HUS during infections caused by Stx-producing Escherichia coli (STEC such as serotype O157:H7. Central nervous system (CNS involvement is an important determinant of mortality in diarrhea associated-HUS. It has been suggested that vascular endothelial injuries caused by Stxs play a crucial role in the development of the disease. The current study investigates the relationship between the cytotoxic effects of Stxs and inflammatory responses in a rabbit brain treated with Stx2. Methods In a rabbit model treated with purified Stx2 or PBS(-, we examined the expression of the Stx receptor globotriaosylceramide (Gb3/CD77 in the CNS and microglial activation using immunohistochemistry. The relationship between inflammatory responses and neuronal cell death was analyzed by the following methods: real time quantitative reverse transcriptase (RT-polymerase chain reaction (PCR to determine the expression levels of pro-inflammatory cytokines, and the terminal deoxynucleotidyl transferase (TdT-mediated dUTP nick-end labeling (TUNEL method to detect apoptotic changes. Results Gb3/CD77 expression was detected in endothelial cells but not in neurons or glial cells. In the spinal cord gray matter, significant levels of Gb3/CD77 expression were observed. Severe endothelial injury and microvascular thrombosis resulted in extensive necrotic infarction, which led to acute neuronal damage. Conversely, in the brain, Stx receptor expression was much lower. The observed neuropathology was less severe. However, neuronal apoptosis was observed at the onset of neurological symptoms, and the number of apoptotic cells significantly increased in the brain at a later stage, several days after onset. Microglial activation was observed, and tumor necrosis factor (TNF-α and interleukin (IL-1β mRNA in the CNS parenchyma was significantly up

  13. Cerebral inflammatory response and predictors of admission clinical grade after aneurysmal subarachnoid hemorrhage.

    Science.gov (United States)

    Hanafy, Khalid A; Morgan Stuart, R; Fernandez, Luis; Schmidt, J Michael; Claassen, Jan; Lee, Kiwon; Sander Connolly, E; Mayer, Stephan A; Badjatia, Neeraj

    2010-01-01

    Poor admission clinical grade is the most important determinant of outcome after aneurysmal subarachnoid hemorrhage (aSAH); however, little attention has been focused on independent predictors of poor admission clinical grade. We hypothesized that the cerebral inflammatory response initiated at the time of aneurysm rupture contributes to ultra-early brain injury and poor admission clinical grade. We sought to identify factors known to contribute to cerebral inflammation as well as markers of cerebral dysfunction that were associated with poor admission clinical grade. Between 1997 and 2008, 850 consecutive SAH patients were enrolled in our prospective database. Demographic data, physiological parameters, and location and volume of blood were recorded. After univariate analysis, significant variables were entered into a logistic regression model to identify significant associations with poor admission clinical grade (Hunt-Hess grade 4-5). Independent predictors of poor admission grade included a SAH sum score >15/30 (odds ratio [OR] 2.3, 95% confidence interval [CI] 1.5-3.6), an intraventricular hemorrhage sum score >1/12 (OR 3.1, 95% CI 2.1-4.8), aneurysm size >10mm (OR 1.7, 95% CI 1.1-2.6), body temperature 38.3 degrees C (OR 2.5, 95% CI 1.1-5.4), and hyperglycemia >200mg/dL (OR 2.7, 95% CI 1.6-4.5). In a large, consecutive series of prospectively enrolled patients with SAH, the inflammatory response at the time of aneurysm rupture, as reflected by the volume and location of the hemoglobin burden, hyperthermia, and perturbed glucose metabolism, independently predicts poor admission Hunt-Hess grade. Strategies for mitigating the inflammatory response to aneurysmal rupture in the hyper-acute setting may improve the admission clinical grade, which may in turn improve outcomes. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  14. Regional brain shrinkage over two years: individual differences and effects of pro-inflammatory genetic polymorphisms.

    Science.gov (United States)

    Persson, N; Ghisletta, P; Dahle, C L; Bender, A R; Yang, Y; Yuan, P; Daugherty, A M; Raz, N

    2014-12-01

    We examined regional changes in brain volume in healthy adults (N=167, age 19-79years at baseline; N=90 at follow-up) over approximately two years. With latent change score models, we evaluated mean change and individual differences in rates of change in 10 anatomically-defined and manually-traced regions of interest (ROIs): lateral prefrontal cortex (LPFC), orbital frontal cortex (OF), prefrontal white matter (PFw), hippocampus (Hc), parahippocampal gyrus (PhG), caudate nucleus (Cd), putamen (Pt), insula (In), cerebellar hemispheres (CbH), and primary visual cortex (VC). Significant mean shrinkage was observed in the Hc, CbH, In, OF, and PhG, and individual differences in change were noted in all regions, except the OF. Pro-inflammatory genetic variants modified shrinkage in PhG and CbH. Carriers of two T alleles of interleukin-1β (IL-1β C-511T, rs16944) and a T allele of methylenetetrahydrofolate reductase (MTHFR C677T, rs1801133) polymorphisms showed increased PhG shrinkage. No effects of a pro-inflammatory polymorphism for C-reactive protein (CRP-286C>A>T, rs3091244) or apolipoprotein (APOE) ε4 allele were noted. These results replicate the pattern of brain shrinkage observed in previous studies, with a notable exception of the LPFC, thus casting doubt on the unique importance of prefrontal cortex in aging. Larger baseline volumes of CbH and In were associated with increased shrinkage, in conflict with the brain reserve hypothesis. Contrary to previous reports, we observed no significant linear effects of age and hypertension on regional brain shrinkage. Our findings warrant further investigation of the effects of neuroinflammation on structural brain change throughout the lifespan. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies.

    Directory of Open Access Journals (Sweden)

    Gaia Codolo

    Full Text Available Parkinson's disease (PD is one of the most common neurodegenerative diseases. It is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta of the brain. Another feature is represented by the formation in these cells of inclusions called Lewy bodies (LB, principally constituted by fibrillar α-synuclein (αSyn. This protein is considered a key element in the aetiology of a group of neurodegenerative disorders termed synucleinopathies, which include PD, but the cellular and molecular mechanisms involved are not completely clear. It is established that the inflammatory process plays a crucial role in the pathogenesis and/or progression of PD; moreover, it is known that aggregated αSyn, released by neurons, activates microglia cells to produce pro-inflammatory mediators, such as IL-1β. IL-1β is one of the strongest pro-inflammatory cytokines; it is produced as an inactive mediator, and its maturation and activation requires inflammasome activation. In particular, the NLRP3 inflammasome is activated by a wide variety of stimuli, among which are crystallized and particulate material. In this work, we investigated the possibility that IL-1β production, induced by fibrillar αSyn, is involved the inflammasome activation. We demonstrated the competence of monomeric and fibrillar αSyn to induce synthesis of IL-1β, through TLR2 interaction; we found that the secretion of the mature cytokine was a peculiarity of the fibrillated protein. Moreover, we observed that the secretion of IL-1β involves NLRP3 inflammasome activation. The latter relies on the phagocytosis of fibrillar αSyn, followed by increased ROS production and cathepsin B release into the cytosol. Taken together, our data support the notion that fibrillar αSyn, likely released by neuronal degeneration, acts as an endogenous trigger inducing a strong inflammatory response in PD.

  16. Long-term ethanol intoxication reduces inflammatory responses in rats

    Directory of Open Access Journals (Sweden)

    E.M. Carvalho

    2005-01-01

    Full Text Available The anti-inflammatory effects of long-term ethanol intoxication were determined during ethanol treatment and withdrawal on the basis of neutrophil and eosinophil migration, hind paw edema and mast cell degranulation. Male Wistar rats (180-200 g, around 2 months of age were exposed to increasing concentrations of ethanol vapor over a 10-day period. One group was evaluated immediately after exposure (treated group - intoxicated, and another was studied 7 h later (withdrawal group. Ethanol inhalation treatment significantly inhibited carrageenan- (62% for the intoxicated group, N = 5, and 35% for the withdrawal group, N = 6 and dextran-induced paw edema (32% for intoxicated rats and 26% for withdrawal rats, N = 5 per group. Ethanol inhalation significantly reduced carrageenan-induced neutrophil migration (95% for intoxicated rats and 41% for withdrawn rats, N = 6 per group into a subcutaneous 6-day-old air pouch, and Sephadex-induced eosinophil migration to the rat peritoneal cavity (100% for intoxicated rats and 64% for withdrawn rats, N = 6 per group. A significant decrease of mast cell degranulation was also demonstrated (control, 82%; intoxicated, 49%; withdrawn, 51%, N = 6, 6 and 8, respectively. Total leukocyte and neutrophil counts in venous blood increased significantly during the 10 days of ethanol inhalation (leukocytes, 13, 27 and 40%; neutrophils, 42, 238 and 252%, respectively, on days 5, 9 and 10, N = 7, 6 and 6. The cell counts decreased during withdrawal, but were still significantly elevated (leukocytes, 10%; neutrophils, 246%, N = 6. These findings indicate that both the cellular and vascular components of the inflammatory response are compromised by long-term ethanol intoxication and remain reduced during the withdrawal period.

  17. Increased Inflammatory Response in Cytomegalovirus Seropositive Patients with Alzheimer’s Disease

    Science.gov (United States)

    Westman, Gabriel; Ingelsson, Martin; Korsgren, Olle; Lannfelt, Lars; Sehlin, Dag; Lidehall, Anna-Karin; Eriksson, Britt-Marie

    2014-01-01

    Alzheimer’s disease (AD) has been associated with increased local inflammation in the affected brain regions, and in some studies also with elevated levels of proinflammatory cytokines in peripheral blood. Cytomegalovirus (CMV) is known to promote a more effector-oriented phenotype in the T-cell compartment, increasing with age. The aim of this study was to investigate the inflammatory response of peripheral blood mononuclear cells (PBMCs) from AD patients and non-demented (ND) controls. Using a multiplex Luminex xMAP assay targeting GM-CSF, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IP-10 and TNF-α, cytokine profiles from PBMCs were analysed after stimulation with anti-CD3/CD28 beads, CMV pp65 peptide mix or amyloid β (Aβ) protofibrils, respectively. CMV seropositive AD subjects presented with higher IFN-γ levels after anti-CD3/CD28 and CMV pp65 but not after Aβ stimulation, compared to CMV seropositive ND controls. When analysing IFN-γ response to anti-CD3/CD28 stimulation on a subgroup level, CMV seropositive AD subjects presented with higher levels compared to both CMV seronegative AD and CMV seropositive ND subjects. Taken together, our data from patients with clinically manifest AD suggest a possible role of CMV as an inflammatory promoter in AD immunology. Further studies of AD patients at earlier stages of disease, could provide better insight into the pathophysiology. PMID:24804776

  18. Maresin 1 Mitigates Inflammatory Response and Protects Mice from Sepsis

    Directory of Open Access Journals (Sweden)

    Ruidong Li

    2016-01-01

    Full Text Available Sepsis, frequently caused by infection of bacteria, is considered as an uncontrollable systematic inflammation response syndrome (SIRS. Maresin 1 (Mar1 is a new proresolving mediator with potent anti-inflammatory effect in several animal models. However, its effect in sepsis is still not investigated. To address this question, we developed sepsis model in BALB/c mice by cecal ligation and puncture (CLP with or without Mar1 treatment. Our data showed that Mar1 markedly improved survival rate and decreased the levels of proinflammatory cytokines in CLP mice such as interleukin-6 (IL-6, tumor necrosis factor-α (TNF-α, and interleukin-1β (IL-1β. Furthermore, Mar1 reduced serum level of lipopolysaccharide (LPS and enhanced the bacteria clearance in mice sepsis model. Moreover, Mar1 attenuated lung injury and decreased level of alanine transaminase (ALT, aspartate transaminase (AST, creatinine (Cre, and blood urea nitrogen (BUN in serum in mice after CLP surgery. Treatment with Mar1 inhibited activation of nuclear factor kappa B (NF-κb pathway. In conclusion, Mar1 exhibited protective effect in sepsis by reducing LPS, bacteria burden in serum, inhibiting inflammation response, and improving vital organ function. The possible mechanism is partly involved in inhibition of NF-κb activation.

  19. A novel antagonist of p75NTR reduces peripheral expansion and CNS trafficking of pro-inflammatory monocytes and spares function after traumatic brain injury.

    Science.gov (United States)

    Lee, Sangmi; Mattingly, Aaron; Lin, Amity; Sacramento, Jeffrey; Mannent, Leda; Castel, Marie-Noelle; Canolle, Benoit; Delbary-Gossart, Sandrine; Ferzaz, Badia; Morganti, Josh M; Rosi, Susanna; Ferguson, Adam R; Manley, Geoffrey T; Bresnahan, Jacqueline C; Beattie, Michael S

    2016-04-22

    Traumatic brain injury (TBI) results in long-term neurological deficits, which may be mediated in part by pro-inflammatory responses in both the injured brain and the circulation. Inflammation may be involved in the subsequent development of neurodegenerative diseases and post-injury seizures. The p75 neurotrophin receptor (p75NTR) has multiple biological functions, affecting cell survival, apoptotic cell death, axonal growth, and degeneration in pathological conditions. We recently found that EVT901, a novel piperazine derivative that inhibits p75NTR oligomerization, is neuroprotective, reduces microglial activation, and improves outcomes in two models of TBI in rats. Since TBI elicits both CNS and peripheral inflammation, we used a mouse model of TBI to examine whether EVT901 would affect peripheral immune responses and trafficking to the injured brain. Cortical contusion injury (CCI)-TBI of the sensory/motor cortex was induced in C57Bl/6 wild-type mice and CCR2(+/RFP) heterozygote transgenic mice, followed by treatment with EVT901, a selective antagonist of p75NTR, or vehicle by i.p. injection at 4 h after injury and then daily for 7 days. Brain and blood were collected at 1 and 6 weeks after injury. Flow cytometry and histological analysis were used to determine peripheral immune responses and trafficking of peripheral immune cells into the lesion site at 1 and 6 weeks after TBI. A battery of behavioral tests administered over 6 weeks was used to evaluate neurological outcome, and stereological estimation of brain tissue volume at 6 weeks was used to assess tissue damage. Finally, multivariate principal components analysis (PCA) was used to evaluate the relationships between inflammatory events, EVT901 treatment, and neurological outcomes. EVT901 is neuroprotective in mouse CCI-TBI and dramatically reduced the early trafficking of CCR2+ and pro-inflammatory monocytes into the lesion site. EVT901 reduced the number of CD45(high)CD11b+ and CD45(high)F4/80+ cells

  20. Tourniquet-induced systemic inflammatory response in extremity surgery.

    LENUS (Irish Health Repository)

    Wakai, A

    2012-02-03

    BACKGROUND: Tourniquet-induced reperfusion injury in animals produces significant systemic inflammatory effects. This study investigated whether a biologic response occurs in a clinically relevant model of tourniquet-induced reperfusion injury. METHODS: Patients undergoing elective knee arthroscopy were prospectively randomized into controls (no tourniquet) and subjects (tourniquet-controlled). The effects of tourniquet-induced reperfusion on monocyte activation state, neutrophil activation state, and transendothelial migration (TEM) were studied. Changes in the cytokines implicated in reperfusion injury, tumor necrosis factor-alpha, interleukin (IL)-1beta, and IL-10 were also determined. RESULTS: After 15 minutes of reperfusion, neutrophil and monocyte activation were significantly increased. Pretreatment of neutrophils with pooled subject (ischemia-primed) plasma significantly increased TEM. In contrast, TEM was not significantly altered by ischemia-primed plasma pretreatment of the endothelial monolayer. Significant elevation of tumor necrosis factor-alpha and IL-1beta were observed in subjects compared with controls after 15 minutes of reperfusion. There was no significant difference in serum IL-10 levels between the groups at all the time points studied. CONCLUSION: These results indicate a transient neutrophil and monocyte activation after tourniquet-ischemia that translates into enhanced neutrophil transendothelial migration with potential for tissue injury.

  1. Anti-RAGE antibody selectively blocks acute systemic inflammatory responses to LPS in serum, liver, CSF and striatum.

    Science.gov (United States)

    Gasparotto, Juciano; Ribeiro, Camila Tiefensee; Bortolin, Rafael Calixto; Somensi, Nauana; Fernandes, Henrique Schaan; Teixeira, Alexsander Alves; Guasselli, Marcelo Otavio Rodrigues; Agani, Crepin Aziz Jose O; Souza, Natália Cabral; Grings, Mateus; Leipnitz, Guilhian; Gomes, Henrique Mautone; de Bittencourt Pasquali, Matheus Augusto; Dunkley, Peter R; Dickson, Phillip W; Moreira, José Claudio Fonseca; Gelain, Daniel Pens

    2017-05-01

    Systemic inflammation induces transient or permanent dysfunction in the brain by exposing it to soluble inflammatory mediators. The receptor for advanced glycation endproducts (RAGE) binds to distinct ligands mediating and increasing inflammatory processes. In this study we used an LPS-induced systemic inflammation model in rats to investigate the effect of blocking RAGE in serum, liver, cerebrospinal fluid (CSF) and brain (striatum, prefrontal cortex, ventral tegmental area and substantia nigra). Intraperitoneal injection of RAGE antibody (50μg/kg) was followed after 1h by a single LPS (5mg/kg) intraperitoneal injection. Twenty-four hours later, tissues were isolated for analysis. RAGE antibody reduced LPS-induced inflammatory effects in both serum and liver; the levels of proinflammatory cytokines (TNF-α, IL-1β) were decreased and the phosphorylation/activation of RAGE downstream targets (ERK1/2, IκB and p65) in liver were significantly attenuated. RAGE antibody prevented LPS-induced effects on TNF-α and IL-1β in CSF. In striatum, RAGE antibody inhibited increases in IL-1β, Iba-1, GFAP, phospho-ERK1/2 and phospho-tau (ser202), as well as the decrease in synaptophysin levels. These effects were caused by systemic RAGE inhibition, as RAGE antibody did not cross the blood-brain barrier. RAGE antibody also prevented striatal lipoperoxidation and activation of mitochondrial complex II. In conclusion, blockade of RAGE is able to inhibit inflammatory responses induced by LPS in serum, liver, CSF and brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Interleukin 37 expression in mice alters sleep responses to inflammatory agents and influenza virus infection

    Directory of Open Access Journals (Sweden)

    Christopher J. Davis

    2017-06-01

    Full Text Available Multiple interactions between the immune system and sleep are known, including the effects of microbial challenge on sleep or the effects of sleep loss on facets of the immune response. Cytokines regulate, in part, sleep and immune responses. Here we examine the role of an anti-inflammatory cytokine, interleukin-37 (IL-37 on sleep in a mouse strain that expresses human IL-37b (IL37tg mice. Constitutive expression of the IL-37 gene in the brains of these mice under resting conditions is low; however, upon an inflammatory stimulus, expression increases dramatically. We measured sleep in three conditions; (a under baseline conditions and after 6 h of sleep loss, (b after bolus intraperitoneal administration of lipopolysaccharide (LPS or IL-1β and (c after intranasal influenza virus challenge. Under baseline conditions, the IL37tg mice had 7% more spontaneous non-rapid eye movement sleep (NREMS during the light period than wild-type (WT mice. After sleep deprivation both WT mice and IL37tg mice slept an extra 21% and 12%, respectively, during the first 6 h of recovery. NREMS responses after sleep deprivation did not significantly differ between WT mice and IL37tg mice. However, in response to either IL-1β or LPS, the increases in time spent in NREMS were about four-fold greater in the WT mice than in the IL37tg mice. In contrast, in response to a low dose of mouse-adapted H1N1 influenza virus, sleep responses developed slowly over the 6 day recording period. By day 6, NREMS increased by 10% and REMS increased by 18% in the IL37tg mice compared to the WT mice. Further, by day 4 IL37tg mice lost less weight, remained more active, and retained their body temperatures closer to baseline values than WT mice. We conclude that conditions that promote IL-37 expression attenuate morbidity to severe inflammatory challenge.

  3. Two opposite extremes of adiposity similarly reduce inflammatory response of antigen-induced acute joint inflammation

    NARCIS (Netherlands)

    Oliveira, M.C.; Silveira, A.L.; Tavares, L.P.; Rodrigues, D.F.; Loo, F.A.J. van de; Sousa, L.P.; Teixeira, M.M.; Amaral, F.A.; Ferreira, A.V.

    2017-01-01

    OBJECTIVE: Acute inflammation is a normal response of tissue to an injury. During this process, inflammatory mediators are produced and metabolic alterations occur. Adipose tissue is metabolically activated, and upon food consumption, it disrupts the inflammatory response. However, little is known

  4. The effect of dietary fatty acids on post-operative inflammatory response in a porcine model

    DEFF Research Database (Denmark)

    Langerhuus, Sine Nygaard; Jensen, Karin Hjelholt; Tønnesen, Else Kirstine

    2012-01-01

    ), sunflower oil (SO, n 28), or animal fat (AF, n 28) was evaluated with respect to post-operative responses in inflammatory markers in a porcine model on aortic vascular prosthetic graft infection. In the early post-operative period (0 ...-operative response in a number of inflammatory markers was affected by FO, and this was most apparent compared with SO....

  5. Neuroinflammation in traumatic brain injury: A chronic response to an acute injury

    Directory of Open Access Journals (Sweden)

    Samantha J Schimmel

    2017-01-01

    Full Text Available Every year, approximately 1.4 million US citizens visit emergency rooms for traumatic brain injuries. Formerly known as an acute injury, chronic neurodegenerative symptoms such as compromised motor skills, decreased cognitive abilities, and emotional and behavioral changes have caused the scientific community to consider chronic aspects of the disorder. The injury causing impact prompts multiple cell death processes, starting with neuronal necrosis, and progressing to various secondary cell death mechanisms. Secondary cell death mechanisms, including excitotoxicity, oxidative stress, mitochondrial dysfunction, blood–brain barrier disruption, and inflammation accompany chronic traumatic brain injury (TBI and often contribute to long-term disabilities. One hallmark of both acute and chronic TBI is neuroinflammation. In acute stages, neuroinflammation is beneficial and stimulates an anti-inflammatory response to the damage. Conversely, in chronic TBI, excessive inflammation stimulates the aforementioned secondary cell death. Converting inflammatory cells from pro-inflammatory to anti-inflammatory may expand the therapeutic window for treating TBI, as inflammation plays a role in all stages of the injury. By expanding current research on the role of inflammation in TBI, treatment options and clinical outcomes for afflicted individuals may improve. This paper is a review article. Referred literature in this paper has been listed in the references section. The data sets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors' experiences.

  6. Monitoring the Response of Hyperbilirubinemia in the Mouse Brain by In Vivo Bioluminescence Imaging

    Directory of Open Access Journals (Sweden)

    Isabella Manni

    2016-12-01

    Full Text Available Increased levels of unconjugated bilirubin are neurotoxic, but the mechanism leading to neurological damage has not been completely elucidated. Innovative strategies of investigation are needed to more precisely define this pathological process. By longitudinal in vivo bioluminescence imaging, we noninvasively visualized the brain response to hyperbilirubinemia in the MITO-Luc mouse, in which light emission is restricted to the regions of active cell proliferation. We assessed that acute hyperbilirubinemia promotes bioluminescence in the brain region, indicating an increment in the cell proliferation rate. Immunohistochemical detection in brain sections of cells positive for both luciferase and the microglial marker allograft inflammatory factor 1 suggests proliferation of microglial cells. In addition, we demonstrated that brain induction of bioluminescence was altered by pharmacological displacement of bilirubin from its albumin binding sites and by modulation of the blood–brain barrier permeability, all pivotal factors in the development of bilirubin-induced neurologic dysfunction. We also determined that treatment with minocycline, an antibiotic with anti-inflammatory and neuroprotective properties, or administration of bevacizumab, an anti-vascular endothelial growth factor antibody, blunts bilirubin-induced bioluminescence. Overall the study supports the use of the MITO-Luc mouse as a valuable tool for the rapid response monitoring of drugs aiming at preventing acute bilirubin-induced neurological dysfunction.

  7. Myeloperoxidase modulates lung epithelial responses to pro-inflammatory agents

    NARCIS (Netherlands)

    Haegens, A.; Vernooy, J. H. J.; Heeringa, P.; Mossman, B. T.; Wouters, E. F. M.

    During extensive inflammation, neutrophils undergo secondary necrosis causing myeloperoxidase (MPO) release that may damage resident lung cells. Recent observations suggest that MPO has pro-inflammatory properties, independent of its enzymatic activity. The aims of the present study were to

  8. Systemic inflammatory response in acute cholangitis and after subsequent treatment

    NARCIS (Netherlands)

    Kimmings, A. N.; van Deventer, S. J.; Rauws, E. A. J.; Huibregtse, K.; Gouma, D. J.

    2000-01-01

    To measure the concentrations of endotoxin and inflammatory mediators during an attack of acute cholangitis and see what effect endoscopic treatment had on these mediators. Prospective study. University teaching hospital The Netherlands. Ten patients with acute cholangitis. Measurements were made

  9. Dimethyl Fumarate Reduces Inflammatory Responses in Experimental Colitis

    Science.gov (United States)

    Casili, Giovanna; Cordaro, Marika; Impellizzeri, Daniela; Bruschetta, Giuseppe; Paterniti, Irene; Cuzzocrea, Salvatore

    2016-01-01

    Background and Aims: Fumaric acid esters have been proven to be effective for the systemic treatment of psoriasis and multiple sclerosis. We aimed to develop a new treatment for colitis. Methods: We investigated the effect of dimethylfumarate [DMF, 10-30-100mg/kg] on an experimental model of colitis induced by dinitrobenzene sulphuric acid [DNBS]. We also evaluated the therapeutic activity of 7 weeks’ treatment with DMF [30mg/kg] on 9-week-old IL-10KO mice that spontaneously develop a T helper-1 [Th1]-dependent chronic enterocolitis after birth, that is fully established at 8–10 weeks of age. The mechanism of this pharmacological potential of DMF [10 μM] was investigated in colonic epithelial cell monolayers [Caco-2] exposed to H2O2. The barrier function was evaluated by the tight junction proteins. Results: The treatment with DMF significantly reduced the degree of haemorrhagic diarrhoea and weight loss caused by administration of DNBS. DMF [30 and 100mg/kg] also caused a substantial reduction in the degree of colon injury, in the rise in myeloperoxidase [MPO] activity, and in the increase in tumour necrosis factor [TNF]-α expression, as well as in the up-regulation of ICAM-1 caused by DNBS in the colon. Molecular studies demonstrated that DMF impaired NF-κB signalling via reduced p65 nuclear translocalisation. DMF induced a stronger antioxidant response as evidenced by a higher expression of Mn-superoxide dismutase. Moreover, DMF protected human intestinal epithelial cells against H2O2-induced barrier dysfunction, restoring ZO-1 occludin expression, via the HO-1 pathway. Conclusions: DMF treatment reduces the degree of colitis caused by DNBS. We propose that DMF treatment may be useful in the treatment of inflammatory bowel disease. PMID:26690241

  10. Lactic acid delays the inflammatory response of human monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Katrin, E-mail: katrin.peter@ukr.de [Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); Rehli, Michael, E-mail: michael.rehli@ukr.de [Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); RCI Regensburg Center for Interventional Immunology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); Singer, Katrin, E-mail: katrin.singer@ukr.de [Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); Renner-Sattler, Kathrin, E-mail: kathrin.renner-sattler@ukr.de [Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); Kreutz, Marina, E-mail: marina.kreutz@ukr.de [Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); RCI Regensburg Center for Interventional Immunology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany)

    2015-02-13

    Lactic acid (LA) accumulates under inflammatory conditions, e.g. in wounds or tumors, and influences local immune cell functions. We previously noted inhibitory effects of LA on glycolysis and TNF secretion of human LPS-stimulated monocytes. Here, we globally analyze the influence of LA on gene expression during monocyte activation. To separate LA-specific from lactate- or pH-effects, monocytes were treated for one or four hours with LPS in the presence of physiological concentrations of LA, sodium lactate (NaL) or acidic pH. Analyses of global gene expression profiles revealed striking effects of LA during the early stimulation phase. Up-regulation of most LPS-induced genes was significantly delayed in the presence of LA, while this inhibitory effect was attenuated in acidified samples and not detected after incubation with NaL. LA targets included genes encoding for important monocyte effector proteins like cytokines (e.g. TNF and IL-23) or chemokines (e.g. CCL2 and CCL7). LA effects were validated for several targets by quantitative RT-PCR and/or ELISA. Further analysis of LPS-signaling pathways revealed that LA delayed the phosphorylation of protein kinase B (AKT) as well as the degradation of IκBα. Consistently, the LPS-induced nuclear accumulation of NFκB was also diminished in response to LA. These results indicate that the broad effect of LA on gene expression and function of human monocytes is at least partially caused by its interference with immediate signal transduction events after activation. This mechanism might contribute to monocyte suppression in the tumor environment. - Highlights: • Lactic acid broadly delays LPS-induced gene expression in human monocytes. • Expression of important monocyte effector molecules is affected by lactic acid. • Interference of lactic acid with TLR signaling causes the delayed gene expression. • The profound effect of lactic acid might contribute to immune suppression in tumors.

  11. Dexamethasone Enhances ATP-Induced Inflammatory Responses in Endothelial Cells

    Science.gov (United States)

    Ding, Yi; Gao, Zhan-Guo; Jacobson, Kenneth A.

    2010-01-01

    The purinergic nucleotide ATP is released from stressed cells and is implicated in vascular inflammation. Glucocorticoids are essential to stress responses and are used therapeutically, yet little information is available that describes the effects of glucocorticoids on ATP-induced inflammation. In a human microvascular endothelial cell line, extracellular ATP-induced interleukin (IL)-6 secretion in a dose- and time-dependent manner. When cells were pretreated with dexamethasone, a prototypic glucocorticoid, ATP-induced IL-6 production was enhanced in a time- and dose-dependent manner. Mifepristone, a glucocorticoid receptor antagonist, blocked these effects. ATP-induced IL-6 release was significantly inhibited by a phospholipase C inhibitor [1-[6-[((17β)-3-methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dione (U73122)] (63.2 ± 3%, p dexamethasone induced mRNA expression of the purinergic P2Y2 receptor (P2Y2R) 1.8- ± 0.1-fold and, when stimulated with ATP, enhanced Ca2+ release and augmented IL-6 mRNA expression. Silencing of the P2Y2R by its small interfering RNA decreased ATP-induced IL-6 production by 81 ± 1% (p Dexamethasone enhanced the transcription rate of P2Y2R mRNA and induced a dose-related increase in the activity of the P2Y2R promoter. Furthermore, dexamethasone-enhanced ATP induction of adhesion molecule transcription and augmented the release of IL-8. Dexamethasone leads to an unanticipated enhancement of endothelial inflammatory mediator production by extracellular ATP via a P2Y2R-dependent mechanism. These data define a novel positive feedback loop of glucocorticoids and ATP-induced endothelial inflammation. PMID:20826566

  12. Lactic acid delays the inflammatory response of human monocytes.

    Science.gov (United States)

    Peter, Katrin; Rehli, Michael; Singer, Katrin; Renner-Sattler, Kathrin; Kreutz, Marina

    2015-02-13

    Lactic acid (LA) accumulates under inflammatory conditions, e.g. in wounds or tumors, and influences local immune cell functions. We previously noted inhibitory effects of LA on glycolysis and TNF secretion of human LPS-stimulated monocytes. Here, we globally analyze the influence of LA on gene expression during monocyte activation. To separate LA-specific from lactate- or pH-effects, monocytes were treated for one or four hours with LPS in the presence of physiological concentrations of LA, sodium lactate (NaL) or acidic pH. Analyses of global gene expression profiles revealed striking effects of LA during the early stimulation phase. Up-regulation of most LPS-induced genes was significantly delayed in the presence of LA, while this inhibitory effect was attenuated in acidified samples and not detected after incubation with NaL. LA targets included genes encoding for important monocyte effector proteins like cytokines (e.g. TNF and IL-23) or chemokines (e.g. CCL2 and CCL7). LA effects were validated for several targets by quantitative RT-PCR and/or ELISA. Further analysis of LPS-signaling pathways revealed that LA delayed the phosphorylation of protein kinase B (AKT) as well as the degradation of IκBα. Consistently, the LPS-induced nuclear accumulation of NFκB was also diminished in response to LA. These results indicate that the broad effect of LA on gene expression and function of human monocytes is at least partially caused by its interference with immediate signal transduction events after activation. This mechanism might contribute to monocyte suppression in the tumor environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Modulation of inflammatory and immune responses by vitamin D.

    Science.gov (United States)

    Colotta, Francesco; Jansson, Birger; Bonelli, Fabrizio

    2017-12-01

    Vitamin D (VitD) is a prohormone most noted for the regulation of calcium and phosphate levels in circulation, and thus of bone metabolism. Inflammatory and immune cells not only convert inactive VitD metabolites into calcitriol, the active form of VitD, but also express the nuclear receptor of VitD that modulates differentiation, activation and proliferation of these cells. In vitro, calcitriol upregulates different anti-inflammatory pathways and downregulates molecules that activate immune and inflammatory cells. Administration of VitD has beneficial effects in a number of experimental models of autoimmune disease. Epidemiologic studies have indicated that VitD insufficiency is frequently associated with immune disorders and infectious diseases, exacerbated by increasing evidence of suboptimal VitD status in populations worldwide. To date, however, most interventional studies in human inflammatory and immune diseases with VitD supplementation have proven to be inconclusive. One of the reasons could be that the main VitD metabolite measured in these studies was the 25-hydroxyVitD (25OHD) rather than its active form calcitriol. Although our knowledge of calcitriol as modulator of immune and inflammatory reactions has dramatically increased in the past decades, further in vivo and clinical studies are needed to confirm the potential benefits of VitD in the control of immune and inflammatory conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Polymorphisms in inflammatory and immune response genes associated with cerebral cavernous malformation type 1 severity

    Science.gov (United States)

    Choquet, Hélène; Pawlikowska, Ludmila; Nelson, Jeffrey; McCulloch, Charles E.; Akers, Amy; Baca, Beth; Khan, Yasir; Hart, Blaine; Morrison, Leslie; Kim, Helen

    2014-01-01

    Background Familial cerebral cavernous malformation type 1 (CCM1) is an autosomal dominant disease caused by mutations in the Krev Interaction Trapped 1 (KRIT1/CCM1) gene, and characterized by multiple brain lesions that often result in intracerebral hemorrhage (ICH), seizures, and neurological deficits. Carriers of the same genetic mutation can present with variable symptoms and severity of disease, suggesting the influence of modifier factors. Evidence is emerging that inflammation and immune response play a role in the pathogenesis of CCM. The purpose of this study was to investigate whether common variants in inflammatory and immune response genes influence the severity of familial CCM1 disease, as manifested by ICH and greater brain lesion count. Methods Hispanic CCM1 patients (n=188) harboring the founder Q455X ‘common Hispanic mutation’ (CHM) in the KRIT1 gene were analyzed at baseline. Participants were enrolled between June 2010 and March 2014 either through the Brain Vascular Malformation Consortium (BVMC) study or through the Angioma Alliance organization. Clinical assessment and cerebral susceptibility-weighted magnetic resonance imaging were performed to determine ICH as well as total and large (≥5 mm in diameter) lesion counts. Samples were genotyped on the Affymetrix Axiom Genome-Wide LAT1 Human Array. We analyzed 830 variants in 56 inflammatory and immune response genes for association with ICH and residuals of log-transformed total or large lesion count adjusted for age at enrollment and gender. Variants were analyzed individually, grouped by sub-pathways or whole pathway. Results At baseline, 30.3% of CCM1-CHM subjects had ICH, with a mean ± standard deviation (SD) of 60.1 ± 115.0 (range 0 to 713) for total lesions and 4.9 ± 8.7 (range 0 to 104) for large lesions. The heritability estimates explained by all autosomal variants were 0.20 (SE=0.31), 0.81 (SE=0.17) and 0.48 (SE=0.19), for ICH, total lesion count and large lesion count

  15. Leukocyte recruitment in the brain in sepsis: involvement of the annexin 1-FPR2/ALX anti-inflammatory system.

    Science.gov (United States)

    Gavins, Felicity N E; Hughes, Ellen L; Buss, Nicholas A P S; Holloway, Paul M; Getting, Stephen J; Buckingham, Julia C

    2012-12-01

    Unregulated inflammation underlies many diseases, including sepsis. Much interest lies in targeting anti-inflammatory mechanisms to develop new treatments. One such target is the anti-inflammatory protein annexin A1 (AnxA1) and its receptor, FPR2/ALX. Using intravital videomicroscopy, we investigated the role of AnxA1 and FPR2/ALX in a murine model of endotoxin-induced cerebral inflammation [intraperitoneal injection of lipopolysaccharide (LPS)]. An inflammatory response was confirmed by elevations in proinflammatory serum cytokines, increased cerebrovascular permeability, elevation in brain myeloperoxidase, and increased leukocyte rolling and adhesion in cerebral venules of wild-type (WT) mice, which were further exacerbated in AnxA1-null mice. mRNA expression of TLR2, TLR4, MyD-88, and Ly96 was also assessed. The AnxA1-mimetic peptide, AnxA1(Ac2-26) (100 μg/mouse, ∼33 μmol) mitigated LPS-induced leukocyte adhesion in WT and AnxA1-null animals without affecting leukocyte rolling, in comparison to saline control. AnxA1(Ac2-26) effects were attenuated by Boc2 (pan-FPR antagonist, 10 μg/mouse, ∼12 nmol), and by minocycline (2.25 mg/mouse, ∼6.3 nmol). The nonselective Fpr agonists, fMLP (6 μg/mouse, ∼17 nmol) and AnxA1(Ac2-26), and the Fpr2-selective agonist ATLa (5 μg/mouse, ∼11 nmol) were without effect in Fpr2/3(-/-) mice. In summary, our novel results demonstrate that the AnxA1/FPR2 system has an important role in effecting the resolution of cerebral inflammation in sepsis and may, therefore, provide a novel therapeutic target.

  16. Association between brain natriuretic peptide, markers of inflammation and the objective and subjective response to cardiac resynchronization therapy

    DEFF Research Database (Denmark)

    Brouwers, Corline; Versteeg, Henneke; Meine, Mathias

    2014-01-01

    Introduction: Studies suggest that cardiac resynchronization therapy (CRT) can induce a decrease in brain natriuretic peptide (BNP) and systemic inflammation, which may be associated with CRT-response. However, the evidence is inconclusive. We examined levels of BNP and inflammatory markers from...

  17. Toll-like receptor 4 in glial inflammatory responses to air pollution in vitro and in vivo.

    Science.gov (United States)

    Woodward, Nicholas C; Levine, Morgan C; Haghani, Amin; Shirmohammadi, Farimah; Saffari, Arian; Sioutas, Constantinos; Morgan, Todd E; Finch, Caleb E

    2017-04-14

    Exposure to traffic-related air pollution (TRAP) is associated with accelerated cognitive aging and higher dementia risk in human populations. Rodent brains respond to TRAP with activation of astrocytes and microglia, increased inflammatory cytokines, and neurite atrophy. A role for Toll-like receptor 4 (TLR4) was suggested in mouse TLR4-knockouts, which had attenuated lung macrophage responses to air pollution. To further analyze these mechanisms, we examined mixed glial cultures (astrocytes and microglia) for RNA responses to nanoscale particulate matter (nPM; diameter rats. Expression patterns were analyzed by significance analysis of microarrays (SAM) for fold change and by weighted gene co-expression network analysis (WGCNA) to identify modules of shared responses between nPM and LPS. Finally, we examined TLR4 activation in hippocampal tissue from mice chronically exposed to nPM. SAM and WGCNA analyses showed strong activation of TLR4 and NF-κB by both nPM and LPS. TLR4 siRNA attenuated TNFα and other inflammatory responses to nPM in vitro, via the MyD88-dependent pathway. In vivo, mice chronically exposed to nPM showed increased TLR4, MyD88, TNFα, and TNFR2 RNA, and decreased NF-κB and TRAF6 RNA TLR4 and NF-κB responses in the hippocampus. These results show TLR4 activation is integral in brain inflammatory responses to air pollution, and warrant further study of TLR4 in accelerated cognitive aging by air pollution.

  18. Neochlorogenic Acid Inhibits Lipopolysaccharide-Induced Activation and Pro-inflammatory Responses in BV2 Microglial Cells.

    Science.gov (United States)

    Kim, Mina; Choi, Sang-Yoon; Lee, Pyeongjae; Hur, Jinyoung

    2015-09-01

    Microglia is the resident innate immune cells that sense pathogens and tissue injury in the central nervous system. Microglia becomes activated in response to injury, infection, and other stimuli that threaten neuronal survival. Microglia activation plays an important role in neurodegenerative diseases. Neochlorogenic acid (NCA) is a natural polyphenolic compound found in dried fruits and other plants. Although previous studies have shown that phenolic acids including NCA have outstanding antioxidant, antibacterial, antiviral, and antipyretic activities, there has not yet been investigated for anti-inflammatory effects. Therefore, for the first time we have examined the potential of NCA to inhibit microglial activation and pro-inflammatory responses in the brain. We found that lipopolysaccharide-induced inducible nitric oxide synthase, and cyclooxygenase-2 expression, and nitric oxide formation was suppressed by NCA in a dose-dependent manner in BV2 microglia. NCA also inhibited the production of pro-inflammatory mediators, tumor necrosis factor-α and interleukin-1 beta. Furthermore, phosphorylated nuclear factor-kappa B p65 and p38 mitogen-activated protein kinase activation were blocked by NCA. Taken together, these results suggest that NCA exerts neuroprotective effects through the inhibition of pro-inflammatory pathways in activated microglia.

  19. Tumor Necrosis Factor Alpha-Induced Recruitment of Inflammatory Mononuclear Cells Leads to Inflammation and Altered Brain Development in Murine Cytomegalovirus-Infected Newborn Mice.

    Science.gov (United States)

    Seleme, Maria C; Kosmac, Kate; Jonjic, Stipan; Britt, William J

    2017-04-15

    Congenital human cytomegalovirus (HCMV) infection is a significant cause of abnormal neurodevelopment and long-term neurological sequelae in infants and children. Resident cell populations of the developing brain have been suggested to be more susceptible to virus-induced cytopathology, a pathway thought to contribute to the clinical outcomes following intrauterine HCMV infection. However, recent findings in a newborn mouse model of the infection in the developing brain have indicated that elevated levels of proinflammatory mediators leading to mononuclear cell activation and recruitment could underlie the abnormal neurodevelopment. In this study, we demonstrate that treatment with tumor necrosis factor alpha (TNF-α)-neutralizing antibodies decreased the frequency of CD45+ Ly6Chi CD11b+ CCR2+ activated myeloid mononuclear cells (MMCs) and the levels of proinflammatory cytokines in the blood and the brains of murine CMV-infected mice. This treatment also normalized neurodevelopment in infected mice without significantly impacting the level of virus replication. These results indicate that TNF-α is a major component of the inflammatory response associated with altered neurodevelopment that follows murine CMV infection of the developing brain and that a subset of peripheral blood myeloid mononuclear cells represent a key effector cell population in this model of virus-induced inflammatory disease of the developing brain.IMPORTANCE Congenital human cytomegalovirus (HCMV) infection is the most common viral infection of the developing human fetus and can result in neurodevelopmental sequelae. Mechanisms of disease leading to neurodevelopmental deficits in infected infants remain undefined, but postulated pathways include loss of neuronal progenitor cells, damage to the developing vascular system of the brain, and altered cellular positioning. Direct virus-mediated cytopathic effects cannot explain the phenotypes of brain damage in most infected infants. Using a mouse

  20. Excretory and Secretory Proteins of Naegleria fowleri Induce Inflammatory Responses in BV-2 Microglial Cells.

    Science.gov (United States)

    Lee, Jinyoung; Kang, Jung-Mi; Kim, Tae Im; Kim, Jong-Hyun; Sohn, Hae-Jin; Na, Byoung-Kuk; Shin, Ho-Joon

    2017-03-01

    Naegleria fowleri, a free-living amoeba that is found in diverse environmental habitats, can cause a type of fulminating hemorrhagic meningoencephalitis, primary amoebic meningoencephalitis (PAM), in humans. The pathogenesis of PAM is not fully understood, but it is likely to be primarily caused by disruption of the host's nervous system via a direct phagocytic mechanism by the amoeba. Naegleria fowleri trophozoites are known to secrete diverse proteins that may indirectly contribute to the pathogenic function of the amoeba, but this factor is not clearly understood. In this study, we analyzed the inflammatory responses in BV-2 microglial cells induced by excretory and secretory proteins of N. fowleri (NfESP). Treatment of BV-2 cells with NfESP induced the expression of various cytokines and chemokines, including the proinflammatory cytokines IL-1α and TNF-α. NfESP-induced IL-1α and TNF-α expression in BV-2 cells were regulated by p38, JNK, and ERK MAPKs. NfESP-induced IL-1α and TNF-α production in BV-2 cells were effectively downregulated by inhibition of NF-kB and AP-1. These results collectively suggest that NfESP stimulates BV-2 cells to release IL-1α and TNF-α via NF-kB- and AP-1-dependent MAPK signaling pathways. The released cytokines may contribute to inflammatory responses in microglia and other cell types in the brain during N. fowleri infection. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  1. Vibrio vulnificus induces mTOR activation and inflammatory responses in macrophages.

    Directory of Open Access Journals (Sweden)

    Dan-Li Xie

    Full Text Available Vibrio vulnificus (V. vulnificus, a Gram-negative marine bacterium, can cause life-threatening primary septicemia, especially in patients with liver diseases. How V. vulnificus affects the liver and how it acts on macrophages are not well understood. In this report, we demonstrated that V. vulnificus infection causes a strong inflammatory response, marked expansion of liver-resident macrophages, and liver damage in mice. We demonstrated further that V. vulnificus activates mTOR in macrophages and inhibition of mTOR differentially regulates V. vulnificus induced inflammatory responses, suggesting the possibility of targeting mTOR as a strategy to modulate V. vulnificus induced inflammatory responses.

  2. Utility of immune response-derived biomarkers in the differential diagnosis of inflammatory disorders

    NARCIS (Netherlands)

    Oever, J. ten; Netea, M.G.; Kullberg, B.J.

    2016-01-01

    Differentiating between inflammatory disorders is difficult, but important for a rational use of antimicrobial agents. Biomarkers reflecting the host immune response may offer an attractive strategy to predict the etiology of an inflammatory process and can thus be of help in decision making. We

  3. Neuroendocrine modulation of the inflammatory response in common carp: adrenaline regulates leukocyte profile and activity

    NARCIS (Netherlands)

    Kepka, M.; Verburg-van Kemenade, B.M.L.; Chadzinska, M.K.

    2013-01-01

    Inflammatory responses have to be carefully controlled, as high concentrations and/or prolonged action of inflammation-related molecules (e.g. reactive oxygen species, nitric oxide and pro-inflammatory cytokines) can be detrimental to host tissue and organs. One of the potential regulators of the

  4. Maggot secretions suppress pro-inflammatory responses of human monocytes through elevation of cyclic AMP

    NARCIS (Netherlands)

    Plas, M.P.E.; Baldry, M.; Dissel, van J.T.; Jukema, G.N.; Nibbering, P.H.

    2009-01-01

    AIMS/HYPOTHESIS: Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. As monocytes may contribute to the excessive inflammatory responses in such wounds, this study focussed on the effects of maggot secretions on the pro-inflammatory activities of these cells.

  5. Principal component analysis of the cytokine and chemokine response to human traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Adel Helmy

    Full Text Available There is a growing realisation that neuro-inflammation plays a fundamental role in the pathology of Traumatic Brain Injury (TBI. This has led to the search for biomarkers that reflect these underlying inflammatory processes using techniques such as cerebral microdialysis. The interpretation of such biomarker data has been limited by the statistical methods used. When analysing data of this sort the multiple putative interactions between mediators need to be considered as well as the timing of production and high degree of statistical co-variance in levels of these mediators. Here we present a cytokine and chemokine dataset from human brain following human traumatic brain injury and use principal component analysis and partial least squares discriminant analysis to demonstrate the pattern of production following TBI, distinct phases of the humoral inflammatory response and the differing patterns of response in brain and in peripheral blood. This technique has the added advantage of making no assumptions about the Relative Recovery (RR of microdialysis derived parameters. Taken together these techniques can be used in complex microdialysis datasets to summarise the data succinctly and generate hypotheses for future study.

  6. The response of pre-inflammatory cytokines factors to different ...

    African Journals Online (AJOL)

    Within group comparisons (depended t student test) also showed a significant difference in IL-1b and IL-6 of endurance and concurrent groups compared to baseline. Generally, it can be concluded that endurance and concurrent exercise training in part has a positive effect on pre-inflammatory cytokines.

  7. Salicornia bigelovii Torr Attenuates Neuro-Inflammatory Responses ...

    African Journals Online (AJOL)

    BV- microglial cells were stimulated with LPS to study the protein expression and production of inflammatory mediators, determined by Western blot analysis. Results: SBE significantly inhibited the DPPH-generated free radicals showing maximum inhibition at 40 μg/mL (p < 0.001). SBE alone did not exhibit any signs of ...

  8. p120-catenin mediates inflammatory responses in the skin

    DEFF Research Database (Denmark)

    Perez-Moreno, Mirna; Davis, Michael A; Wong, Ellen

    2006-01-01

    but no overt disruption in barrier function or intercellular adhesion. As the mice age, however, they display epidermal hyperplasia and chronic inflammation, typified by hair degeneration and loss of body fat. Using skin engraftments and anti-inflammatory drugs, we show that these features are not attributable...

  9. Personality predicts brain responses to cognitive demands.

    Science.gov (United States)

    Kumari, Veena; ffytche, Dominic H; Williams, Steven C R; Gray, Jeffrey A

    2004-11-24

    Eysenck (1981) proposed that the personality dimension of introversion- extraversion (E) reflects individual differences in a cortical arousal system modulated by reticulothalamic- cortical pathways: it is chronically more active in introverts relative to extraverts and influences cognitive performance in interaction with task parameters. A circuit with connections to this system, including the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate (AC) cortex, has been identified in studies applying functional magnetic resonance imaging (fMRI) to a broad range of cognitive tasks. We examined the influence of E, assessed with the Eysenck Personality Questionnaire-Revised (Eysenck and Eysenck, 1991), in fMRI activity during an "n-back" task involving four memory loads (0-, 1-, 2-, and 3-back) and a rest condition in healthy men. To confirm the specificity of E effects, we also examined the effects of neuroticism and psychoticism (P) scores. We observed that, as predicted by Eysenck's model, the higher the E score, the greater the change in fMRI signal from rest to the 3-back condition in the DLPFC and AC. In addition, E scores were negatively associated with resting fMRI signals in the thalamus and Broca's area extending to Wernicke's area, supporting the hypothesized (negative) relationship between E and resting arousal. P scores negatively correlated with resting fMRI signal in the globus pallidus-putamen, extending previous findings of a negative relationship of schizotypy to striatal activity seen with older neuroimaging modalities to fMRI. These observations suggest that individual differences affect brain responses during cognitive activity and at rest and provide evidence for the hypothesized neurobiological basis of personality.

  10. Mechanisms by which Stress Affects the Experimental and Clinical Inflammatory Bowel Disease (IBD): Role of Brain-Gut Axis.

    Science.gov (United States)

    Brzozowski, Bartosz; Mazur-Bialy, Agnieszka; Pajdo, Robert; Kwiecien, Slawomir; Bilski, Jan; Zwolinska-Wcislo, Malgorzata; Mach, Tomasz; Brzozowski, Tomasz

    2016-01-01

    Stress of different origin is known to alter so called "braingut axis" and contributes to a broad array of gastrointestinal disorders including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and other functional gastrointestinal diseases. The stressful situations and various stressors including psychosocial events, heat, hypo- and hyperthermia may worsen the course of IBD via unknown mechanism. The aims of this paper were to provide an overview of experimental and clinical evidences that stress activates the brain-gut axis which results in a mucosal mast cells activation and an increase in the production of proinflammatory cytokines and other endocrine and humoral mediators. Research and online content related to effects of stress on lower bowel disorders are reviewed and most important mechanisms are delineated. Brain conveys the neural, endocrine and circulatory messages to the gut via brain-gut axis reflecting changes in corticotrophin releasing hormone, mast cells activity, neurotransmission at the autonomic nerves system and intestinal barrier function all affecting the pathogenesis of animal colitis and human IBD. Stress triggers the hypothalamus-pituitary axis and the activation of the autonomic nervous system, an increase in cortisol levels and proinflammatory cytokines such as tumor necrosis factor-alpha, interleukin-8, interleukin-1beta and interleukin-6. The acute or chronic stress enhances the intestinal permeability weakening of the tight junctions and increasing bacterial translocation into the intestinal wall. An increased microbial load in the colonic tissue, excessive cytokine release and a partially blunted immune reactivity in response to stress result in its negative impact on IBD.

  11. Hesperidin supplementation modulates inflammatory responses following myocardial infarction.

    Science.gov (United States)

    Haidari, F; Heybar, H; Jalali, M T; Ahmadi Engali, K; Helli, B; Shirbeigi, E

    2015-01-01

    A growing number of studies have suggested a crucial role for a variety of inflammatory mediators in myocardial infarction. Recently, several flavonoids have been shown to have cardioprotective and anti-inflammatory properties. Therefore, the aim of this study was to investigate the effect of hesperidin-a common constituent of citrus fruits-on the serum levels of inflammatory markers and adipocytocines in patients with myocardial infarction. Seventy-five patients with myocardial infarction were participated in this randomized, double-blind controlled clinical trial and were assigned to 2 intervention and control groups. Subjects consumed 600 mg/d pure hesperidin supplement and placebo in the intervention and control groups, respectively, for 4 weeks. Serum concentrations of inflammatory markers and adipocytocines were measured at baseline and at the end of the intervention. Consumption of 600 mg/day hesperidin significantly decreased the serum levels of E-selectin and increased adiponectin and high-density lipoprotein cholesterol (HDL-C) concentrations in patients with myocardial infarction. The improvement in other inflammatory markers, such as interleukin (IL)-6, high-sensitivity C-reactive protein (hs-CRP), leptin, and other lipid profile was also observed at the end of the intervention, compared to the baseline values, but the difference between the hesperidin and placebo groups was not statistically significant (p > 0.05). Hesperidin supplementation could compensate for decreased levels of adiponectin and HDL-C and increased levels of E-selectin in patients with myocardial infarction. These results support the concept that certain flavonoids in the diet can be associated with significant health benefits, including heart health.

  12. Dissemination of Orientia tsutsugamushi and inflammatory responses in a murine model of scrub typhus.

    Directory of Open Access Journals (Sweden)

    Christian A Keller

    2014-08-01

    Full Text Available Central aspects in the pathogenesis of scrub typhus, an infection caused by Orientia (O. tsutsugamushi, have remained obscure. Its organ and cellular tropism are poorly understood. The purpose of this study was to analyze the kinetics of bacterial dissemination and associated inflammatory responses in infected tissues in an experimental scrub typhus mouse model, following infection with the human pathogenic strain Karp. We provide a thorough analysis of O. tsutsugamushi infection in inbred Balb/c mice using footpad inoculation, which is close to the natural way of infection. By a novel, highly sensitive qPCR targeting the multi copy traD genes, we quantitatively monitored the spread of O. tsutsugamushi Karp from the skin inoculation site via the regional lymph node to the internal target organs. The highest bacterial loads were measured in the lung. Using confocal imaging, we also detected O. tsutsugamushi at the single cell level in the lung and found a predominant macrophage rather than endothelial localization. Immunohistochemical analysis of infiltrates in lung and brain revealed differently composed lesions with specific localizations: iNOS-expressing macrophages were frequent in infiltrative parenchymal noduli, but uncommon in perivascular lesions within these organs. Quantitative analysis of the macrophage response by immunohistochemistry in liver, heart, lung and brain demonstrated an early onset of macrophage activation in the liver. Serum levels of interferon (IFN-γ were increased during the acute infection, and we showed that IFN-γ contributed to iNOS-dependent bacterial growth control. Our data show that upon inoculation to the skin, O. tsutsugamushi spreads systemically to a large number of organs and gives rise to organ-specific inflammation patterns. The findings suggest an essential role for the lung in the pathogenesis of scrub typhus. The model will allow detailed studies on host-pathogen interaction and provide further

  13. Imaging of an inflammatory injury in the newborn rat brain with photoacoustic tomography.

    Directory of Open Access Journals (Sweden)

    Edgar Guevara

    Full Text Available BACKGROUND: The precise assessment of cerebral saturation changes during an inflammatory injury in the developing brain, such as seen in periventricular leukomalacia, is not well defined. This study investigated the impact of inflammation on locoregional cerebral oxygen saturation in a newborn rodent model using photoacoustic imaging. METHODS: 1 mg/kg of lipopolysaccharide(LPS diluted in saline or saline alone was injected under ultrasound guidance directly in the corpus callosum of P3 rat pups. Coronal photoacoustic images were carried out 24 h after LPS exposure. Locoregional oxygen saturation (SO2 and resting state connectivity were assessed in the cortex and the corpus callosum. Microvasculature was then evaluated on cryosection slices by lectin histochemistry. RESULTS: Significant reduction of SO2 was found in the corpus callosum; reduced SO2 was also found in the cortex ipsilateral to the injection site. Seed-based functional connectivity analysis showed that bilateral connectivity was not affected by LPS exposure. Changes in locoregional oxygen saturation were accompanied by a significant reduction in the average length of microvessels in the left cortex but no differences were observed in the corpus callosum. CONCLUSION: Inflammation in the developing brain induces marked reduction of locoregional oxygen saturation, predominantly in the white matter not explained by microvascular degeneration. The ability to examine regional saturation offers a new way to monitor injury and understand physiological disturbance non-invasively.

  14. The AMPAR Antagonist Perampanel Attenuates Traumatic Brain Injury Through Anti-Oxidative and Anti-Inflammatory Activity.

    Science.gov (United States)

    Chen, Tao; Dai, Shu-Hui; Jiang, Zhi-Quan; Luo, Peng; Jiang, Xiao-Fan; Fei, Zhou; Gui, Song-Bai; Qi, Yi-Long

    2017-01-01

    Perampanel is a novel α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) antagonist, approved in over 35 countries as an adjunctive therapy for the treatment of seizures. Recently, it was found to exert protective effects against ischemic neuronal injury in vitro. In the present study, we investigated the potential protective effects of perampanel in a traumatic brain injury (TBI) model in rats. Oral administration with perampanel at a dose of 5 mg/kg exerted no major organ-related toxicities. We found that perampanel significantly attenuated TBI-induced brain edema, brain contusion volume, and gross motor dysfunction. The results of Morris water maze test demonstrated that perampanel treatment also improved cognitive function after TBI. These neuroprotective effects were accompanied by reduced neuronal apoptosis, as evidenced by decreased TUNEL-positive cells in brain sections. Moreover, perampanel markedly inhibited lipid peroxidation and obviously preserved the endogenous antioxidant system after TBI. In addition, enzyme-linked immunosorbent assay (ELISA) was performed at 4 and 24 h after TBI to evaluate the expression of inflammatory cytokines. The results showed that perampanel suppressed the expression of pro-inflammatory cytokines TNF-α and IL-1β, whereas increased the levels of anti-inflammatory cytokines IL-10 and TGF-β1. These data show that the orally active AMPAR antagonist perampanel affords protection against TBI-induced neuronal damage and neurological dysfunction through anti-oxidative and anti-inflammatory activity.

  15. Bmal1 regulates inflammatory responses in macrophages by modulating enhancer RNA transcription

    National Research Council Canada - National Science Library

    Yumiko Oishi; Shinichiro Hayashi; Takayuki Isagawa; Motohiko Oshima; Atsushi Iwama; Shigeki Shimba; Hitoshi Okamura; Ichiro Manabe

    2017-01-01

    ...) activation by modulating enhancer activity. Global transcriptome analysis indicated that deletion of Arntl perturbed the time-dependent inflammatory responses elicited by TLR4 activation by Kdo2-lipid A (KLA...

  16. Functional MRI of food-induced brain responses

    NARCIS (Netherlands)

    Smeets, P.A.M.

    2006-01-01

    The ultimate goal of this research was to find central biomarkers of satiety, i.e., physiological measures in the brain that relate to subjectively rated appetite, actual food intake, or both. This thesis describes the changes in brain activity in response to food stimuli as measured by functional

  17. Citral reduces nociceptive and inflammatory response in rodents

    Directory of Open Access Journals (Sweden)

    Lucindo J. Quintans-Júnior

    2011-06-01

    Full Text Available Citral (CIT, which contains the chiral enantiomers, neral (cis and geranial (trans, is the majority monoterpene from Lippia alba and Cymbopogon citratus. The present study aimed to evaluate CIT for antinociceptive and anti-inflammatory activities in rodents. Antinociceptive and anti-inflammatory effects were studied by measuring nociception through acetic acid and formalin tests, while inflammation was verified by inducing peritonitis and paw edema with carrageenan. All tested doses of CIT had significant protection (p<0.001 against acetic acid (0.8% induced nociceptive behavior and the effects were also similar to morphine while formalin induced nociception was significantly protected (p<0.05 only at higher dose (200 mg/kg of CIT in the first phase of the test. CIT significantly reduce (p<0.001 nociceptive behavior emanating from inflammation in second phase at all the doses.The pretreatment with CIT (100 and 200 mg/kg significantly reduced the paw edema induced by carrageenan. Moreover, systemic treatment with CIT (100 and 200 mg/kg significantly reduced (p<0.001 the leukocyte migration in the carrageenan-induced migration to the peritoneal cavity. Our investigation shows that CIT possess significant central and peripheral antinociceptive effects. It was also verified an anti-inflammatory activity. All together these results suggest that CIT might represent important tool for treatment of painful conditions.

  18. Citral reduces nociceptive and inflammatory response in rodents

    Directory of Open Access Journals (Sweden)

    Lucindo J. Quintans-Júnior

    2011-04-01

    Full Text Available Citral (CIT, which contains the chiral enantiomers, neral (cis and geranial (trans, is the majority monoterpene from Lippia alba and Cymbopogon citratus. The present study aimed to evaluate CIT for antinociceptive and anti-inflammatory activities in rodents. Antinociceptive and anti-inflammatory effects were studied by measuring nociception through acetic acid and formalin tests, while inflammation was verified by inducing peritonitis and paw edema with carrageenan. All tested doses of CIT had significant protection (p<0.001 against acetic acid (0.8% induced nociceptive behavior and the effects were also similar to morphine while formalin induced nociception was significantly protected (p<0.05 only at higher dose (200 mg/kg of CIT in the first phase of the test. CIT significantly reduce (p<0.001 nociceptive behavior emanating from inflammation in second phase at all the doses.The pretreatment with CIT (100 and 200 mg/kg significantly reduced the paw edema induced by carrageenan. Moreover, systemic treatment with CIT (100 and 200 mg/kg significantly reduced (p<0.001 the leukocyte migration in the carrageenan-induced migration to the peritoneal cavity. Our investigation shows that CIT possess significant central and peripheral antinociceptive effects. It was also verified an anti-inflammatory activity. All together these results suggest that CIT might represent important tool for treatment of painful conditions.

  19. Ginger Extract Suppresses Inflammatory Response and Maintains Barrier Function in Human Colonic Epithelial Caco-2 Cells Exposed to Inflammatory Mediators.

    Science.gov (United States)

    Kim, Yunyoung; Kim, Dong-Min; Kim, Ji Yeon

    2017-05-01

    The beneficial effects of ginger in the management of gastrointestinal disturbances have been reported. In this study, the anti-inflammatory potential of ginger extract was assessed in a cellular model of gut inflammation. In addition, the effects of ginger extract and its major active compounds on intestinal barrier function were evaluated. The response of Caco-2 cells following exposure to a mixture of inflammatory mediators [interleukin [IL]-1β, 25 ng/mL; lipopolysaccharides [LPS], 10 ng/mL; tumor necrosis factor [TNF]-α, 50 ng/mL; and interferon [INF]-γ, 50 ng/mL] were assessed by measuring the levels of secreted IL-6 and IL-8. In addition, the mRNA levels of cyclooxygenase-2 and inducible nitric oxide synthase were measured. Moreover, the degree of nuclear factor (NF)-κB inhibition was examined, and the intestinal barrier function was determined by measuring the transepithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran transfer. It was observed that ginger extract and its constituents improved inflammatory responses by decreasing the levels of nitrite, PGE2, IL-6, and IL-8 via NF-κB inhibition. The ginger extract also increased the TEER and decreased the transfer of FITC-dextran from the apical side of the epithelium to the basolateral side. Taken together, these results show that ginger extract may be developed as a functional food for the maintenance of gastrointestinal health. © 2017 Institute of Food Technologists®.

  20. [Persistence of chronic inflammatory responses, role in the development of chronic pancreatitis, obesity and pancreatic cancer].

    Science.gov (United States)

    Khristich, T N

    2014-11-01

    The purpose of the review--to analyze the basic data of the role of chronic low-intensity inflammatory response as general biological process in the development and progression of chronic pancreatitis, obesity, and pancreatic cancer. Highlighted evidence from epidemiological studies showing that chronic pancreatitis and obesity are independent risk factors for pancreatic cancer, regardless of diabetes. Studied role of adipokines as Cytokines regulating of immune inflammatory response. Draws attention to the staging of pancreatic cancer in obesity.

  1. Enhanced expression and activation of pro-inflammatory transcription factors distinguish aneurysmal from atherosclerotic aorta: IL-6- and IL-8-dominated inflammatory responses prevail in the human aneurysm

    NARCIS (Netherlands)

    Lindeman, J.H.N.; Abdul-Hussien, H.; Schaapherder, A.F.M.; Bockel, J.H. van; Thüsen, J.H. vonder; Roelen, D.L.; Kleemann, R.

    2008-01-01

    Inflammation plays a key role in the pathogenesis of an AAA (abdominal aortic aneurysm); however, the nature of the inflammatory factors and cellular response(s) involved in AAA growth is controversial. In the present study, we set out to determine the aortic levels of inflammatory cytokines in

  2. Dural administration of inflammatory soup or Complete Freund's Adjuvant induces activation and inflammatory response in the rat trigeminal ganglion

    DEFF Research Database (Denmark)

    Lukács, M; Haanes, K A; Majláth, Zs

    2015-01-01

    induces inflammatory activation in the trigeminal ganglion. METHODS: We performed topical administration of inflammatory soup (IS) or Complete Freund's Adjuvant (CFA) onto an exposed area of the rat dura mater in vivo for 20 min. The window was closed and the rats were sacrificed after 4 h and up to 7...... days. Myography was performed on middle meningeal arteries. The trigeminal ganglia were removed and processed for immunohistochemistry or Western blot. RESULTS: Both CFA and IS induced enhanced expression of pERK1/2, IL-1β and CGRP in the trigeminal ganglia. The pERK1/2 immunoreactivity was mainly seen...... vasoconstrictor response to IS, but not to CFA. CONCLUSIONS: These results suggest that the application of IS or CFA onto the dura mater causes long-term activation of the TG and demonstrate the importance of the neuro-glial interaction in the activation of the trigeminovascular system....

  3. Benevolent sexism alters executive brain responses.

    Science.gov (United States)

    Dardenne, Benoit; Dumont, Muriel; Sarlet, Marie; Phillips, Christophe; Balteau, Evelyne; Degueldre, Christian; Luxen, André; Salmon, Eric; Maquet, Pierre; Collette, Fabienne

    2013-07-10

    Benevolence is widespread in our societies. It is defined as considering a subordinate group nicely but condescendingly, that is, with charity. Deleterious consequences for the target have been reported in the literature. In this experiment, we used functional MRI (fMRI) to identify whether being the target of (sexist) benevolence induces changes in brain activity associated with a working memory task. Participants were confronted by benevolent, hostile, or neutral comments before and while performing a reading span test in an fMRI environment. fMRI data showed that brain regions associated previously with intrusive thought suppression (bilateral, dorsolateral, prefrontal, and anterior cingulate cortex) reacted specifically to benevolent sexism compared with hostile sexism and neutral conditions during the performance of the task. These findings indicate that, despite being subjectively positive, benevolence modifies task-related brain networks by recruiting supplementary areas likely to impede optimal cognitive performance.

  4. Common mechanism in endothelin-3 and PAF receptor function for anti-inflammatory responses.

    Science.gov (United States)

    Sato, Akira; Ebina, Keiichi

    2013-10-15

    Platelet-activating factor (PAF) is a potent lipid mediator that is implicated in numerous inflammatory diseases. Under inflammatory conditions, PAF is biosynthesized through the remodelling pathway and elicits many inflammatory responses through binding to its specific PAF receptor. Endogenous bioactive endothelins (ETs: ET-1, -2, and -3) are also considered potent inflammatory mediators that play a critical role in many inflammatory diseases. In this perspective, we provide a brief overview of possible common mechanisms in ETs and PAF receptor function for inflammatory responses. Accumulating evidence strongly suggests that ET-3, but not ET-1 and ET-2, can attenuate PAF-induced inflammation through direct binding of the Tyr-Lys-Asp (YKD) region in the peptide to PAF and its metabolite/precursor lyso-PAF, followed by inhibition of binding between PAF and its receptor. Additionally, YKD sequence-containing peptides may be useful as a novel type of anti-inflammatory drugs targeting this mechanism. These findings should lead to new treatment strategies for numerous inflammatory diseases by targeting the common mechanism in ET and PAF receptor function. © 2013 Elsevier B.V. All rights reserved.

  5. Attenuating the Systemic Inflammatory Response to Adult Cardiopulmonary Bypass: A Critical Review of the Evidence Base

    Science.gov (United States)

    Landis, R. Clive; Brown, Jeremiah R.; Fitzgerald, David; Likosky, Donald S.; Shore-Lesserson, Linda; Baker, Robert A.; Hammon, John W.

    2014-01-01

    Abstract: A wide range of pharmacological, surgical, and mechanical pump approaches have been studied to attenuate the systemic inflammatory response to cardiopulmonary bypass, yet no systematically based review exists to cover the scope of anti-inflammatory interventions deployed. We therefore conducted an evidence-based review to capture “self-identified” anti-inflammatory interventions among adult cardiopulmonary bypass procedures. To be included, trials had to measure at least one inflammatory mediator and one clinical outcome, specified in the “Outcomes 2010” consensus statement. Ninety-eight papers satisfied inclusion criteria and formed the basis of the review. The review identified 33 different interventions and approaches to attenuate the systemic inflammatory response. However, only a minority of papers (35 of 98 [35.7%]) demonstrated any clinical improvement to one or more of the predefined outcome measures (most frequently myocardial protection or length of intensive care unit stay). No single intervention was supported by strong level A evidence (multiple randomized controlled trials [RCTs] or meta-analysis) for clinical benefit. Interventions at level A evidence included off-pump surgery, minimized circuits, biocompatible circuit coatings, leukocyte filtration, complement C5 inhibition, preoperative aspirin, and corticosteroid prophylaxis. Interventions at level B evidence (single RCT) for minimizing inflammation included nitric oxide donors, C1 esterase inhibition, neutrophil elastase inhibition, propofol, propionyl-L-carnitine, and intensive insulin therapy. A secondary analysis revealed that suppression of at least one inflammatory marker was necessary but not sufficient to confer clinical benefit. The most effective interventions were those that targeted multiple inflammatory pathways. These observations are consistent with a “multiple hit” hypothesis, whereby clinically effective suppression of the systemic inflammatory response

  6. Inflammatory and Innate Immune Markers of Neuroprogression in Depressed and Teenage Suicide Brain.

    Science.gov (United States)

    Pandey, Ghanshyam N

    2017-01-01

    Several studies suggest that major depressive disorder (MDD) and bipolar disorder (BPD) are neuroprogressive illnesses. Besides clinical features, neurobiological mechanisms have been suggested to contribute to the neuroprogression of mood disorders. Biological factors that have been shown to contribute significantly toward the neuroprogressive course of these disorders are inflammatory markers, such as cytokines. Cytokines have been extensively investigated, primarily in the serum of MDD and BPD patients, and these studies show cytokine abnormalities in both adolescent and adult patients with mood disorders. However, cytokine abnormalities in the brain may also contribute toward neuroprogression, but brain cytokines have not been adequately investigated. To examine the role of cytokines in neuroprogression, we have studied the markers of adaptive and innate immunity in postmortem brain obtained from teenage and adult suicide victims and gene expression of cytokines and their membrane-bound receptors in lymphocytes of MDD and BPD patients. Cytokines and Toll-like receptors (TLRs) were studied in 24 teenage suicide victims and 24 normal control (NC) subjects, and also in 22 adult depressed suicide victims and 20 adult NC subjects. We found that the protein and mRNA expression of the proinflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were significantly higher in the prefrontal cortex (PFC). We also found that the protein and mRNA expression of TLRs, which are major mediators of innate immunity, is increased in the PFC of adult depressed suicide victims and NC subjects. In patients, mRNA and protein expression of TNF-α, IL-1β, and IL-6 was significantly increased in both MDD and BPD patients. Similarly, mRNA expression of some specific membrane-bound receptors, such as IL1R1, TNFR1, IL1RA, were significantly increased in lymphocytes of MDD and BPD patients. These studies indicate the existence of abnormal cytokines and TLRs in

  7. No inflammatory gene-expression response to acute exercise in human Achilles tendinopathy

    DEFF Research Database (Denmark)

    Pingel, Jessica; Fredberg, Ulrich; Mikkelsen, Lone Ramer

    2013-01-01

    Although histology data favour the view of a degenerative nature of tendinopathy, indirect support for inflammatory reactions to loading in affected tendons exists. The purpose of the present study was to elucidate whether inflammatory signalling responses after acute mechanical loading were more....... All ultrasonographic outcomes were unchanged in response to acute exercise and not influenced by NSAID. The signalling for collagen and TGF-beta was upregulated after acute loading in tendinopathic tendon. In contrast to the hypothesis, inflammatory signalling was not exaggerated in tendinopathic...... pronounced in tendinopathic versus healthy regions of human tendon and if treatment with non-steroidal anti-inflammatory medications (NSAID's) reduces this response. Twenty-seven tendinopathy patients (>6 months) were randomly assigned to a placebo (n = 14) or NSAID (Ibumetin NYCOMED GmbH Plant Oranienburg...

  8. Functional Food Targeting the Regulation of Obesity-Induced Inflammatory Responses and Pathologies

    Directory of Open Access Journals (Sweden)

    Shizuka Hirai

    2010-01-01

    Full Text Available Obesity is associated with a low-grade systemic chronic inflammatory state, characterized by the abnormal production of pro- and anti-inflammatory adipocytokines. It has been found that immune cells such as macrophages can infiltrate adipose tissue and are responsible for the majority of inflammatory cytokine production. Obesity-induced inflammation is considered a potential mechanism linking obesity to its related pathologies, such as insulin resistance, cardiovascular diseases, type-2 diabetes, and some immune disorders. Therefore, targeting obesity-related inflammatory components may be a useful strategy to prevent or ameliorate the development of such obesity-related diseases. It has been shown that several food components can modulate inflammatory responses in adipose tissue via various mechanisms, some of which are dependent on peroxisome proliferator-activated receptor γ (PPARγ, whereas others are independent on PPARγ, by attenuating signals of nuclear factor-κB (NF-κB and/or c-Jun amino-terminal kinase (JNK. In this review, we introduce the beneficial effects of anti-inflammatory phytochemicals that can help prevent obesity-induced inflammatory responses and pathologies.

  9. Response of the brain to enrichment

    Directory of Open Access Journals (Sweden)

    MARIAN C. DIAMOND

    2001-06-01

    Full Text Available Before 1960, the brain was considered by scientists to be immutable, subject only to genetic control. In the early sixties, however, investigators were seriously speculating that environmental influences might be capable of altering brain structure. By 1964, two research laboratories proved that the morphology and chemistry or physiology of the brain could be experientially altered (Bennett et al. 1964, Hubel and Wiesel 1965. Since then, the capacity of the brain to respond to environmental input, specifically "enrichment,'' has become an accepted fact among neuroscientists, educators and others. In fact, the demonstration that environmental enrichment can modify structural components of the rat brain at any age altered prevailing presumptions about the brain's plasticity (Diamond et al. 1964, Diamond 1988. The cerebral cortex, the area associated with higher cognitive processing, is more receptive than other parts of the brain to environmental enrichment. The message is clear: Although the brain possesses a relatively constant macrostructural organization, the ever-changing cerebral cortex, with its complex microarchitecture of unknown potential, is powerfully shaped by experiences before birth, during youth and, in fact, throughout life. It is essential to note that enrichment effects on the brain have consequences on behavior. Parents, educators, policy makers, and individuals can all benefit from such knowledge.Antes de 1960, os cientistas consideravam o encéfalo como imutável, sujeito apenas ao controle genético. Entretanto, no início dos anos 60, alguns pesquisadores especulavam seriamente que influências ambientais podiam ser capazes de alterar a estrutura cerebral. Por volta de 1964, dois laboratórios de pesquisa demonstraram que a morfologia e a química ou a fisiologia do cérebro poderia ser modificada pela experiência (Bennett et al. 1964, Hubel e Wiesel 1965. Desde então, a capacidade do cérebro a responder para responder a

  10. Altruistic behavior: mapping responses in the brain

    Science.gov (United States)

    Filkowski, Megan M; Cochran, R Nick; Haas, Brian W

    2016-01-01

    Altruism is an important social construct related to human relationships and the way many interpersonal and economic decisions are made. Recent progress in social neuroscience research shows that altruism is associated with a specific pattern of brain activity. The tendency to engage in altruistic behaviors is associated with greater activity within limbic regions such as the nucleus accumbens and anterior cingulate cortex in addition to cortical regions such as the medial prefrontal cortex and temporoparietal junction. Here, we review existing theoretical models of altruism as well as recent empirical neuroimaging research demonstrating how altruism is processed within the brain. This review not only highlights the progress in neuroscience research on altruism but also shows that there exist several open questions that remain unexplored. PMID:28580317

  11. Brain Responses during the Anticipation of Dyspnea

    OpenAIRE

    M Cornelia Stoeckel; Esser, Roland W; Matthias Gamer; Christian Büchel; Andreas von Leupoldt

    2016-01-01

    Dyspnea is common in many cardiorespiratory diseases. Already the anticipation of this aversive symptom elicits fear in many patients resulting in unfavorable health behaviors such as activity avoidance and sedentary lifestyle. This study investigated brain mechanisms underlying these anticipatory processes. We induced dyspnea using resistive-load breathing in healthy subjects during functional magnetic resonance imaging. Blocks of severe and mild dyspnea alternated, each preceded by anticipa...

  12. Weight cycling enhances adipose tissue inflammatory responses in male mice.

    Directory of Open Access Journals (Sweden)

    Sandra Barbosa-da-Silva

    Full Text Available BACKGROUND: Obesity is associated with low-grade chronic inflammation attributed to dysregulated production, release of cytokines and adipokines and to dysregulated glucose-insulin homeostasis and dyslipidemia. Nutritional interventions such as dieting are often accompanied by repeated bouts of weight loss and regain, a phenomenon known as weight cycling (WC. METHODS: In this work we studied the effects of WC on the feed efficiency, blood lipids, carbohydrate metabolism, adiposity and inflammatory markers in C57BL/6 male mice that WC two or three consecutive times by alternation of a high-fat (HF diet with standard chow (SC. RESULTS: The body mass (BM grew up in each cycle of HF feeding, and decreased after each cycle of SC feeding. The alterations observed in the animals feeding HF diet in the oral glucose tolerance test, in blood lipids, and in serum and adipose tissue expression of adipokines were not recuperated after WC. Moreover, the longer the HF feeding was (two, four and six months, more severe the adiposity was. After three consecutive WC, less marked was the BM reduction during SC feeding, while more severe was the BM increase during HF feeding. CONCLUSION: In conclusion, the results of the present study showed that both the HF diet and WC are relevant to BM evolution and fat pad remodeling in mice, with repercussion in blood lipids, homeostasis of glucose-insulin and adipokine levels. The simple reduction of the BM during a WC is not able to recover the high levels of adipokines in the serum and adipose tissue as well as the pro-inflammatory cytokines enhanced during a cycle of HF diet. These findings are significant because a milieu with altered adipokines in association with WC potentially aggravates the chronic inflammation attributed to dysregulated production and release of adipokines in mice.

  13. Sirt2 suppresses inflammatory responses in collagen-induced arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiangtao [Department of Orthopaedics, Qilu Hospital, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012 (China); Department of Orthopaedics, Yantaishan Hospital, 91 Jiefang Road, Yantai, Shandong 264001 (China); Sun, Bing; Jiang, Chuanqiang; Hong, Huanyu [Department of Orthopaedics, Yantaishan Hospital, 91 Jiefang Road, Yantai, Shandong 264001 (China); Zheng, Yanping, E-mail: yanpingzheng@yahoo.com [Department of Orthopaedics, Qilu Hospital, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012 (China)

    2013-11-29

    Highlights: •Sirt2 expression decreases in collagen-induced arthritis (CIA). •Sirt2 knockout aggravates severity of arthritis in mice with CIA. •Sirt2 knockout increases levels of pro-inflammatory factors in the serum. •Sirt2 deacetylates p65 and inhibits pro-inflammatory factors expression. •Sirt2 rescue abates severity of arthritis in mice with CIA. -- Abstract: Arthritis is a common autoimmune disease that is associated with progressive disability, systemic complications and early death. However, the underling mechanisms of arthritis are still unclear. Sirtuins are a NAD{sup +}-dependent class III deacetylase family, and regulate cellular stress, inflammation, genomic stability, carcinogenesis, and energy metabolism. Among the sirtuin family members, Sirt1 and Sirt6 are critically involved in the development of arthritis. It remains unknown whether other sirtuin family members participate in arthritis. Here in this study, we demonstrate that Sirt2 inhibits collagen-induced arthritis (CIA) using in vivo and in vitro evidence. The protein and mRNA levels of Sirt2 significantly decreased in joint tissues of mice with CIA. When immunized with collagen, Sirt2-KO mice showed aggravated severity of arthritis based on clinical scores, hind paw thickness, and radiological and molecular findings. Mechanically, Sirt2 deacetylated p65 subunit of nuclear factor-kappa B (NF-κB) at lysine 310, resulting in reduced expression of NF-κB-dependent genes, including interleukin 1β (IL-1β), IL-6, monocyte chemoattractant protein 1(MCP-1), RANTES, matrix metalloproteinase 9 (MMP-9) and MMP-13. Importantly, our rescue experiment showed that Sirt2 re-expression abated the severity of arthritis in Sirt2-KO mice. Those findings strongly indicate Sirt2 as a considerably inhibitor of the development of arthritis.

  14. The laminin response in inflammatory bowel disease: protection or malignancy?

    Directory of Open Access Journals (Sweden)

    Caroline Spenlé

    Full Text Available Laminins (LM, basement membrane molecules and mediators of epithelial-stromal communication, are crucial in tissue homeostasis. Inflammatory Bowel Diseases (IBD are multifactorial pathologies where the microenvironment and in particular LM play an important yet poorly understood role in tissue maintenance, and in cancer progression which represents an inherent risk of IBD. Here we showed first that in human IBD colonic samples and in murine colitis the LMα1 and LMα5 chains are specifically and ectopically overexpressed with a concomitant nuclear p53 accumulation. Linked to this observation, we provided a mechanism showing that p53 induces LMα1 expression at the promoter level by ChIP analysis and this was confirmed by knockdown in cell transfection experiments. To mimic the human disease, we induced colitis and colitis-associated cancer by chemical treatment (DSS combined or not with a carcinogen (AOM in transgenic mice overexpressing LMα1 or LMα5 specifically in the intestine. We demonstrated that high LMα1 or LMα5 expression decreased susceptibility towards experimentally DSS-induced colon inflammation as assessed by histological scoring and decrease of pro-inflammatory cytokines. Yet in a pro-oncogenic context, we showed that LM would favor tumorigenesis as revealed by enhanced tumor lesion formation in both LM transgenic mice. Altogether, our results showed that nuclear p53 and associated overexpression of LMα1 and LMα5 protect tissue from inflammation. But in a mutation setting, the same LM molecules favor progression of IBD into colitis-associated cancer. Our transgenic mice represent attractive new models to acquire knowledge about the paradoxical effect of LM that mediate either tissue reparation or cancer according to the microenvironment. In the early phases of IBD, reinforcing basement membrane stability/organization could be a promising therapeutic approach.

  15. Intranasal pyrrolidine dithiocarbamate decreases brain inflammatory mediators and provides neuroprotection after brain hypoxia-ischemia in neonatal rats

    OpenAIRE

    Wang, Zhi; Zhao, Huijuan; Peng, Shuling; Zuo, Zhiyi

    2013-01-01

    Brain injury due to birth asphyxia is the major cause of death and long-term disabilities in newborns. We determined whether intranasal pyrrolidine dithiocarbamate (PDTC) could provide neuroprotection in neonatal rats after brain hypoxia-ischemia (HI). Seven-day old male and female Sprague-Dawley rats were subjected to brain HI. They were then treated by intranasal PDTC. Neurological outcome were evaluated 7 or 30 days after the brain HI. Brain tissues were harvested 6 or 24 h after the brain...

  16. Bee Venom Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells.

    Science.gov (United States)

    Jeong, Chang Hee; Cheng, Wei Nee; Bae, Hyojin; Lee, Kyung Woo; Han, Sang Mi; Petriello, Michael C; Lee, Hong Gu; Seo, Han Geuk; Han, Sung Gu

    2017-10-28

    The world dairy industry has long been challenged by bovine mastitis, an inflammatory disease, which causes economic loss due to decreased milk production and quality. Attempts have been made to prevent or treat this disease with multiple approaches, primarily through increased abuse of antibiotics, but effective natural solutions remain elusive. Bee venom (BV) contains a variety of peptides (e.g., melittin) and shows multiple bioactivities, including prevention of inflammation. Thus, in the current study, it was hypothesized that BV can reduce inflammation in bovine mammary epithelial cells (MAC-T). To examine the hypothesis, cells were treated with LPS (1 μg/ml) to induce an inflammatory response and the anti-inflammatory effects of BV (2.5 and 5 μg/ml) were investigated. The cellular mechanisms of BV against LPS-induced inflammation were also investigated. Results showed that BV can attenuate expression of an inflammatory protein, COX2, and pro-inflammatory cytokines such as IL-6 and TNF-α. Activation of NF-κB, an inflammatory transcription factor, was significantly downregulated by BV in cells treated with LPS, through dephosphorylation of ERK1/2. Moreover, pretreatment of cells with BV attenuated LPS-induced production of intracellular reactive oxygen species (e.g., superoxide anion). These results support our hypothesis that BV can decrease LPS-induced inflammatory responses in bovine mammary epithelial cells through inhibition of oxidative stress, NF-κB, ERK1/2, and COX-2 signaling.

  17. Asymptomatic Brain Lesions on Cranial Magnetic Resonance Imaging in Inflammatory Bowel Disease

    Science.gov (United States)

    Guleryuzlu, Yuksel; Uygur-Bayramicli, Oya; Ahishali, Emel; Dabak, Resat

    2013-01-01

    Background/Aims This study aimed to examine the frequency and type of asymptomatic neurological involvement in inflammatory bowel disease (IBD) using cranial magnetic resonance imaging (MRI). Methods Fifty-one IBD patients with no known neurological diseases or symptoms and 30 controls with unspecified headaches without neurological origins were included. Patients and controls underwent cranial MRI assessments for white matter lesions, sinusitis, otitis-mastoiditis, and other brain parenchymal findings. Results The frequencies of white matter lesions, other brainstem parenchymal lesions, and otitis-mastoiditis were similar in IBD patients and controls (p>0.05), whereas sinusitis was significantly more frequent in IBD patients (56.9% vs 33.3%, p=0.041). However, among those subjects with white matter lesions, the number of such lesions was significantly higher in IBD patients compared to controls (12.75±9.78 vs 3.20±2.90, p0.05 for all). Conclusions The incidence of white matter lesions seemed to be similar in IBD patients and normal healthy individuals, and the lesions detected did not pose any clinical significance. However, long-term clinical follow-up of the lesions is warranted. PMID:23560152

  18. African Trypanosomes Undermine Humoral Responses and Vaccine Development: Link with Inflammatory Responses?

    Directory of Open Access Journals (Sweden)

    Benoit Stijlemans

    2017-05-01

    Full Text Available African trypanosomosis is a debilitating disease of great medical and socioeconomical importance. It is caused by strictly extracellular protozoan parasites capable of infecting all vertebrate classes including human, livestock, and game animals. To survive within their mammalian host, trypanosomes have evolved efficient immune escape mechanisms and manipulate the entire host immune response, including the humoral response. This report provides an overview of how trypanosomes initially trigger and subsequently undermine the development of an effective host antibody response. Indeed, results available to date obtained in both natural and experimental infection models show that trypanosomes impair homeostatic B-cell lymphopoiesis, B-cell maturation and survival and B-cell memory development. Data on B-cell dysfunctioning in correlation with parasite virulence and trypanosome-mediated inflammation will be discussed, as well as the impact of trypanosomosis on heterologous vaccine efficacy and diagnosis. Therefore, new strategies aiming at enhancing vaccination efficacy could benefit from a combination of (i early parasite diagnosis, (ii anti-trypanosome (drugs treatment, and (iii anti-inflammatory treatment that collectively might allow B-cell recovery and improve vaccination.

  19. Allelic Variation on Murine Chromosome 11 Modifies Host Inflammatory Responses and Resistance to Bacillus anthracis

    Science.gov (United States)

    2011-12-01

    stimuli [53–56]. Indeed, Arrb2 regulates LPS- induced inflammatory response and endotoxemia [54,55], while Ntn1 can minimize inflammatory damage ...MyD88-dependent signaling protects against anthrax lethal toxin-induced impairment of intestinal barrier function. Infect Immun 79: 118–124. 39. Henry T...Olien L, Gauthier S, Skamene E, Morgan K, et al. (1998) Mapping of genetic modulators of natural resistance to infection with Salmonella typhimurium

  20. Isoliquiritigenin protects against sepsis-induced lung and liver injury by reducing inflammatory responses.

    Science.gov (United States)

    Chen, Xiong; Cai, Xueding; Le, Rongrong; Zhang, Man; Gu, Xuemei; Shen, Feixia; Hong, Guangliang; Chen, Zimiao

    2018-02-05

    Sepsis, one of the most fatal diseases worldwide, often leads to multiple organ failure, mainly due to uncontrolled inflammatory responses. Despite accumulating knowledge obtained in recent years, effective drugs to treat sepsis in the clinic are still urgently needed. Isoliquiritigenin (ISL), a chalcone compound, has been reported to exert anti-inflammatory properties. However, little is known about the effects of ISL on sepsis and its related complications. In this study, we investigated the potential protective effects of ISL on lipopolysaccharide (LPS)-induced injuries and identified the mechanisms underlying these effects. ISL inhibited inflammatory cytokine expression in mouse primary peritoneal macrophages (MPMs) exposed to LPS. In an acute lung injury (ALI) mouse model, ISL prevented LPS-induced structural damage and inflammatory cell infiltration. Additionally, pretreatment with ISL attenuated sepsis-induced lung and liver injury, accompanied by a reduction in inflammatory responses. Moreover, these protective effects were mediated by the nuclear factor kappa B (NF-κB) pathway-mediated inhibition of inflammatory responses in vitro and in vivo. Our study suggests that ISL may be a potential therapeutic agent for sepsis-induced injuries. Copyright © 2017. Published by Elsevier Inc.

  1. Proteomics profiling reveals inflammatory biomarkers of antidepressant treatment response: Findings from the CO-MED trial.

    Science.gov (United States)

    Gadad, Bharathi S; Jha, Manish K; Grannemann, Bruce D; Mayes, Taryn L; Trivedi, Madhukar H

    2017-11-01

    Animal and human studies suggest an association between depression and aberrant immune response. Further, common inflammatory markers may change during the course of antidepressant treatment in patients. The objective of this study was to evaluate changes in inflammatory markers and clinical outcomes from subjects enrolled in the Combining Medications to Enhance Depression Outcome (CO-MED) trial. At baseline and week 12 (treatment completion), plasma samples of 102 participants were analyzed via a multiplex assay comprised of inflammatory markers using a 27-plex standard assay panel plus a 4-plex human acute phase xMAP technology based platform. We carried out analyses in two steps. First, t-tests were used to identify inflammatory marker levels that changed between baseline and week 12. For markers that were altered, logistic regression models were then conducted to look for associated changes in remission at week 12. Among the 31 inflammatory markers analyzed, several cytokines (IL-5, IFN-γ, IL-13), two chemokines (Eotaxin-1/CCL11, RANTES) and an acute-phase reactant (serum amyloid P component) showed change from baseline to week 12. However, only two indicated differential remission responses. Interestingly, increased levels of Eotaxin-1/CCL11 correlated with remission at week 12, whereas decreased levels of IFN-γ correlated with non-remission at week 12. Results suggest that these inflammatory proteins may serve as predictors of treatment response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Myeloid Heme Oxygenase-1 Regulates the Acute Inflammatory Response to Zymosan in the Mouse Air Pouch

    Directory of Open Access Journals (Sweden)

    Rita Brines

    2018-01-01

    Full Text Available Heme oxygenase-1 (HO-1 is induced by many stimuli to modulate the activation and function of different cell types during innate immune responses. Although HO-1 has shown anti-inflammatory effects in different systems, there are few data on the contribution of myeloid HO-1 and its role in inflammatory processes is not well understood. To address this point, we have used HO-1M-KO mice with myeloid-restricted deletion of HO-1 to specifically investigate its influence on the acute inflammatory response to zymosan in vivo. In the mouse air pouch model, we have shown an exacerbated inflammation in HO-1M-KO mice with increased neutrophil infiltration accompanied by high levels of inflammatory mediators such as interleukin-1β, tumor necrosis factor-α, and prostaglandin E2. The expression of the degradative enzyme matrix metalloproteinase-3 (MMP-3 was also enhanced. In addition, we observed higher levels of serum MMP-3 in HO-1M-KO mice compared with control mice, suggesting the presence of systemic inflammation. Altogether, these findings demonstrate that myeloid HO-1 plays an anti-inflammatory role in the acute response to zymosan in vivo and suggest the interest of this target to regulate inflammatory processes.

  3. Interleukin 37 expression in mice alters sleep responses to inflammatory agents and influenza virus infection

    NARCIS (Netherlands)

    Davis, C.J.; Zielinski, M.R.; Dunbrasky, D.; Taishi, P.; Dinarello, C.A.; Krueger, J.M.

    2017-01-01

    Multiple interactions between the immune system and sleep are known, including the effects of microbial challenge on sleep or the effects of sleep loss on facets of the immune response. Cytokines regulate, in part, sleep and immune responses. Here we examine the role of an anti-inflammatory

  4. Rosmarinus officinalis Extract Suppresses Propionibacterium acnes–Induced Inflammatory Responses

    Science.gov (United States)

    Tsai, Tsung-Hsien; Chuang, Lu-Te; Lien, Tsung-Jung; Liing, Yau-Rong; Chen, Wei-Yu

    2013-01-01

    Abstract Propionibacterium acnes is a key pathogen involved in the progression of acne inflammation. The development of a new agent possessing antimicrobial and anti-inflammatory activity against P. acnes is therefore of interest. In this study, we investigated the inhibitory effect of rosemary (Rosmarinus officinalis) extract on P. acnes–induced inflammation in vitro and in vivo. The results showed that ethanolic rosemary extract (ERE) significantly suppressed the secretion and mRNA expression of proinflammatory cytokines, including interleukin (IL)-8, IL-1β, and tumor necrosis factor-α in P. acnes–stimulated monocytic THP-1 cells. In an in vivo mouse model, concomitant intradermal injection of ERE attenuated the P. acnes–induced ear swelling and granulomatous inflammation. Since ERE suppressed the P. acnes–induced nuclear factor kappa-B (NF-κB) activation and mRNA expression of Toll-like receptor (TLR) 2, the suppressive effect of ERE might be due, at least partially, to diminished NF-κB activation and TLR2-mediated signaling pathways. Furthermore, three major constituents of ERE, carnosol, carnosic acid, and rosmarinic acid, exerted different immumodulatory activities in vitro. In brief, rosmarinic acid significantly suppressed IL-8 production, while the other two compounds inhibited IL-1β production. Further study is needed to explore the role of bioactive compounds of rosemary in mitigation of P. acnes–induced inflammation. PMID:23514231

  5. Mouse brain responses to charged particle radiation

    Science.gov (United States)

    Nelson, Gregory; Nelson, Gregory; Chang, Polly; Favre, Cecile; Fike, John; Mao, Xiao-Wen; Obenaus, Andre; Pecaut, Michael; Vlkolinsky, Roman; Song, Sheng-Kwei; Spigelman, Igor; Stampanoni, Marco

    CHANGES IN DISEASE LATENCY AND HOMEOSTASIS: 1) APP23 transgenic mice exhibit many of the pathological features of Alzheimer's Disease, and the disease progression is continuous over several months. Electrophysiological measurements have shown that disease-related decreases in synaptic efficacy occur earlier in irradiated APP23 animals. 2) Using vascular polymer cast technology combined with micro-tomographic imaging, microvasculature changes following irradiation have been detected and are consistent with loss of vessels and an increased spacing between them. The time course of vessel changes to control and irradiated animals is being constructed. 3) In order to assess the ability of the brain to respond to external environmental shocks and restore orderly normal function (homeostasis), we apply a controlled septic shock by treating animals with lipopolysaccharide (LPS). We find that in irradiated animals, the patterns of electrophysiological changes associated with reactions to lipopolysaccharide (LPS) are complex and unlike those of either LPS or irradiation alone. They further suggest that the brain continues to remodel for up to 6 months following radiation. This is consistent with the idea that irradiation may potentiate the risks from late secondary insults.

  6. Brain Responses during the Anticipation of Dyspnea

    Directory of Open Access Journals (Sweden)

    M. Cornelia Stoeckel

    2016-01-01

    Full Text Available Dyspnea is common in many cardiorespiratory diseases. Already the anticipation of this aversive symptom elicits fear in many patients resulting in unfavorable health behaviors such as activity avoidance and sedentary lifestyle. This study investigated brain mechanisms underlying these anticipatory processes. We induced dyspnea using resistive-load breathing in healthy subjects during functional magnetic resonance imaging. Blocks of severe and mild dyspnea alternated, each preceded by anticipation periods. Severe dyspnea activated a network of sensorimotor, cerebellar, and limbic areas. The left insular, parietal opercular, and cerebellar cortices showed increased activation already during dyspnea anticipation. Left insular and parietal opercular cortex showed increased connectivity with right insular and anterior cingulate cortex when severe dyspnea was anticipated, while the cerebellum showed increased connectivity with the amygdala. Notably, insular activation during dyspnea perception was positively correlated with midbrain activation during anticipation. Moreover, anticipatory fear was positively correlated with anticipatory activation in right insular and anterior cingulate cortex. The results demonstrate that dyspnea anticipation activates brain areas involved in dyspnea perception. The involvement of emotion-related areas such as insula, anterior cingulate cortex, and amygdala during dyspnea anticipation most likely reflects anticipatory fear and might underlie the development of unfavorable health behaviors in patients suffering from dyspnea.

  7. Brain Responses during the Anticipation of Dyspnea.

    Science.gov (United States)

    Stoeckel, M Cornelia; Esser, Roland W; Gamer, Matthias; Büchel, Christian; von Leupoldt, Andreas

    2016-01-01

    Dyspnea is common in many cardiorespiratory diseases. Already the anticipation of this aversive symptom elicits fear in many patients resulting in unfavorable health behaviors such as activity avoidance and sedentary lifestyle. This study investigated brain mechanisms underlying these anticipatory processes. We induced dyspnea using resistive-load breathing in healthy subjects during functional magnetic resonance imaging. Blocks of severe and mild dyspnea alternated, each preceded by anticipation periods. Severe dyspnea activated a network of sensorimotor, cerebellar, and limbic areas. The left insular, parietal opercular, and cerebellar cortices showed increased activation already during dyspnea anticipation. Left insular and parietal opercular cortex showed increased connectivity with right insular and anterior cingulate cortex when severe dyspnea was anticipated, while the cerebellum showed increased connectivity with the amygdala. Notably, insular activation during dyspnea perception was positively correlated with midbrain activation during anticipation. Moreover, anticipatory fear was positively correlated with anticipatory activation in right insular and anterior cingulate cortex. The results demonstrate that dyspnea anticipation activates brain areas involved in dyspnea perception. The involvement of emotion-related areas such as insula, anterior cingulate cortex, and amygdala during dyspnea anticipation most likely reflects anticipatory fear and might underlie the development of unfavorable health behaviors in patients suffering from dyspnea.

  8. Soluble Mediators in Platelet Concentrates Modulate Dendritic Cell Inflammatory Responses in an Experimental Model of Transfusion.

    Science.gov (United States)

    Perros, Alexis J; Christensen, Anne-Marie; Flower, Robert L; Dean, Melinda M

    2015-10-01

    The transfusion of platelet concentrates (PCs) is widely used to treat thrombocytopenia and severe trauma. Ex vivo storage of PCs is associated with a storage lesion characterized by partial platelet activation and the release of soluble mediators, such as soluble CD40 ligand (sCD40L), RANTES, and interleukin (IL)-8. An in vitro whole blood culture transfusion model was employed to assess whether mediators present in PC supernatants (PC-SNs) modulated dendritic cell (DC)-specific inflammatory responses (intracellular staining) and the overall inflammatory response (cytometric bead array). Lipopolysaccharide (LPS) was included in parallel cultures to model the impact of PC-SNs on cell responses following toll-like receptor-mediated pathogen recognition. The impact of both the PC dose (10%, 25%) and ex vivo storage period was investigated [day 2 (D2), day 5 (D5), day 7 (D7)]. PC-SNs alone had minimal impact on DC-specific inflammatory responses and the overall inflammatory response. However, in the presence of LPS, exposure to PC-SNs resulted in a significant dose-associated suppression of the production of DC IL-12, IL-6, IL-1α, tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein (MIP)-1β and storage-associated suppression of the production of DC IL-10, TNF-α, and IL-8. For the overall inflammatory response, IL-6, TNF-α, MIP-1α, MIP-1β, and inflammatory protein (IP)-10 were significantly suppressed and IL-8, IL-10, and IL-1β significantly increased following exposure to PC-SNs in the presence of LPS. These data suggest that soluble mediators present in PCs significantly suppress DC function and modulate the overall inflammatory response, particularly in the presence of an infectious stimulus. Given the central role of DCs in the initiation and regulation of the immune response, these results suggest that modulation of the DC inflammatory profile is a probable mechanism contributing to transfusion-related complications.

  9. Wound trauma mediated inflammatory signaling attenuates a tissue regenerative response in MRL/MpJ mice

    Directory of Open Access Journals (Sweden)

    Elster Eric A

    2010-05-01

    Full Text Available Abstract Background Severe trauma can induce pathophysiological responses that have marked inflammatory components. The development of systemic inflammation following severe thermal injury has been implicated in immune dysfunction, delayed wound healing, multi-system organ failure and increased mortality. Methods In this study, we examined the impact of thermal injury-induced systemic inflammation on the healing response of a secondary wound in the MRL/MpJ mouse model, which was anatomically remote from the primary site of trauma, a wound that typically undergoes scarless healing in this specific strain. Ear-hole wounds in MRL/MpJ mice have previously displayed accelerated healing and tissue regeneration in the absence of a secondary insult. Results Severe thermal injury in addition to distal ear-hole wounds induced marked local and systemic inflammatory responses in the lungs and significantly augmented the expression of inflammatory mediators in the ear tissue. By day 14, 61% of the ear-hole wounds from thermally injured mice demonstrated extensive inflammation with marked inflammatory cell infiltration, extensive ulceration, and various level of necrosis to the point where a large percentage (38% had to be euthanized early during the study due to extensive necrosis, inflammation and ear deformation. By day 35, ear-hole wounds in mice not subjected to thermal injury were completely closed, while the ear-hole wounds in thermally injured mice exhibited less inflammation and necrosis and only closed partially (62%. Thermal injury resulted in marked increases in serum levels of IL-6, TNFα, KC (CXCL1, and MIP-2α (CXCL2. Interestingly, attenuated early ear wound healing in the thermally injured mouse resulted in incomplete tissue regeneration in addition to a marked inflammatory response, as evidenced by the histological appearance of the wound and increased transcription of potent inflammatory mediators. Conclusion These findings suggest that the

  10. Arctigenin Treatment Protects against Brain Damage through an Anti-Inflammatory and Anti-Apoptotic Mechanism after Needle Insertion

    OpenAIRE

    Song, Jie; Li, Na; Xia, Yang; Gao, Zhong; Zou, Sa-feng; Kong, Liang; Yao, Ying-Jia; Jiao, Ya-Nan; Yan, Yu-Hui; Li, Shao-Heng; Tao, Zhen-Yu; Lian, Guan; Yang, Jing-Xian; Kang, Ting-guo

    2016-01-01

    Convection enhanced delivery (CED) infuses drugs directly into brain tissue. Needle insertion is required and results in a stab wound injury (SWI). Subsequent secondary injury involves the release of inflammatory and apoptotic cytokines, which have dramatic consequences on the integrity of damaged tissue, leading to the evolution of a pericontusional-damaged area minutes to days after in the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary ...

  11. An Unbalanced Inflammatory Cytokine Response Is Not Associated With Mortality Following Sepsis: A Prospective Cohort Study.

    Science.gov (United States)

    Frencken, Jos F; van Vught, Lonneke A; Peelen, Linda M; Ong, David S Y; Klein Klouwenberg, Peter M C; Horn, Janneke; Bonten, Marc J M; van der Poll, Tom; Cremer, Olaf L

    2017-05-01

    The prevailing theory of host response during sepsis states that an excessive production of pro-inflammatory mediators causes early deaths, whereas a predominantly anti-inflammatory response may lead to immunosuppression, secondary infection, and late deaths. We assessed inflammatory (im)balance by measuring pro-inflammatory interleukin-6 and anti-inflammatory interleukin-10 during three distinct time periods after sepsis, and assessed its association with mortality. Prospective observational cohort. Two tertiary mixed ICUs in The Netherlands. Consecutive patients presenting with severe sepsis or septic shock from 2011 to 2013. None. We repeatedly measured plasma interleukin-6 and interleukin-10 concentrations using cytometric bead array. Poisson regression was used to analyze the relation between inflammatory markers measured on 1) ICU admission and day 4 mortality, 2) day 4 and day 28 mortality, and 3) ICU discharge and 1-year mortality. Secondary outcome was development of ICU-acquired infections. Among 708 patients, 86 (12%) died within 4 days, 140 (20%) died between days 4 and 28, and an additional 155 (22%) died before 1 year. Interleukin-6 and interleukin-10 levels were both independently associated with mortality, but the balance of this response as modelled by an interleukin-6 and interleukin-10 interaction term was not (relative risk, 0.99; 95% CI, 0.95-1.04 on admission; relative risk, 1.02; 95% CI, 0.98-1.06 on day 4; and relative risk, 1.12; 95% CI, 0.98-1.29 at ICU discharge). However, inflammatory imbalance on day 4 was associated with development of ICU-acquired infections (subdistribution hazard ratio, 0.87; 95% CI, 0.77-0.98). Although both interleukin-6 and interleukin-10 productions are associated with death, the balance of these inflammatory mediators does not seem to impact either early, intermediate, or late mortality in patients presenting to the ICU with sepsis.

  12. Host Transcription Factors in the Immediate Pro-Inflammatory Response to the Parasitic Mite Psoroptes ovis

    Science.gov (United States)

    Burgess, Stewart T. G.; McNeilly, Tom N.; Watkins, Craig A.; Nisbet, Alasdair J.; Huntley, John F.

    2011-01-01

    Background Sheep scab, caused by infestation with the ectoparasitic mite Psoroptes ovis, results in the rapid development of cutaneous inflammation and leads to the crusted skin lesions characteristic of the disease. We described previously the global host transcriptional response to infestation with P. ovis, elucidating elements of the inflammatory processes which lead to the development of a rapid and profound immune response. However, the mechanisms by which this response is instigated remain unclear. To identify novel methods of intervention a better understanding of the early events involved in triggering the immune response is essential. The objective of this study was to gain a clearer understanding of the mechanisms and signaling pathways involved in the instigation of the immediate pro-inflammatory response. Results Through a combination of transcription factor binding site enrichment and pathway analysis we identified key roles for a number of transcription factors in the instigation of cutaneous inflammation. In particular, defined roles were elucidated for the transcription factors NF-kB and AP-1 in the orchestration of the early pro-inflammatory response, with these factors being implicated in the activation of a suite of inflammatory mediators. Conclusions Interrogation of the host temporal response to P. ovis infestation has enabled the further identification of the mechanisms underlying the development of the immediate host pro-inflammatory response. This response involves key regulatory roles for the transcription factors NF-kB and AP-1. Pathway analysis demonstrated that the activation of these transcription factors may be triggered following a host LPS-type response, potentially involving TLR4-signalling and also lead to the intriguing possibility that this could be triggered by a P. ovis allergen. PMID:21915322

  13. Host transcription factors in the immediate pro-inflammatory response to the parasitic mite Psoroptes ovis.

    Directory of Open Access Journals (Sweden)

    Stewart T G Burgess

    Full Text Available BACKGROUND: Sheep scab, caused by infestation with the ectoparasitic mite Psoroptes ovis, results in the rapid development of cutaneous inflammation and leads to the crusted skin lesions characteristic of the disease. We described previously the global host transcriptional response to infestation with P. ovis, elucidating elements of the inflammatory processes which lead to the development of a rapid and profound immune response. However, the mechanisms by which this response is instigated remain unclear. To identify novel methods of intervention a better understanding of the early events involved in triggering the immune response is essential. The objective of this study was to gain a clearer understanding of the mechanisms and signaling pathways involved in the instigation of the immediate pro-inflammatory response. RESULTS: Through a combination of transcription factor binding site enrichment and pathway analysis we identified key roles for a number of transcription factors in the instigation of cutaneous inflammation. In particular, defined roles were elucidated for the transcription factors NF-kB and AP-1 in the orchestration of the early pro-inflammatory response, with these factors being implicated in the activation of a suite of inflammatory mediators. CONCLUSIONS: Interrogation of the host temporal response to P. ovis infestation has enabled the further identification of the mechanisms underlying the development of the immediate host pro-inflammatory response. This response involves key regulatory roles for the transcription factors NF-kB and AP-1. Pathway analysis demonstrated that the activation of these transcription factors may be triggered following a host LPS-type response, potentially involving TLR4-signalling and also lead to the intriguing possibility that this could be triggered by a P. ovis allergen.

  14. Systemic inflammatory response syndrome increases immobility-induced neuromuscular weakness.

    Science.gov (United States)

    Fink, Heidrun; Helming, Marc; Unterbuchner, Christoph; Lenz, Andrea; Neff, Frauke; Martyn, J A Jeevendra; Blobner, Manfred

    2008-03-01

    Inflammation and immobility are comorbid etiological factors inducing muscle weakness in critically ill patients. This study establishes a rat model to examine the effect of inflammation and immobilization alone and in combination on muscle contraction, histology, and acetylcholine receptor regulation. Prospective, randomized, experimental study. Animal laboratory of a university hospital. Sprague-Dawley rats. To produce systemic inflammation, rats (n = 34) received three consecutive intravenous injections of Corynebacterium parvum on days 0, 4, and 8. Control rats (n = 21) received saline. Both groups were further divided to have one hind limb either immobilized by pinning of knee and ankle joints or sham-immobilized (surgical leg). The contralateral nonsurgical leg of each animal served as control (nonsurgical leg). After 12 days, body weight and muscle mass were significantly reduced in all C. parvum animals compared with saline-injected rats. Immobilization led to local muscle atrophy. Normalized to muscle mass, tetanic contraction was reduced in the surgical leg after immobilization (7.64 +/- 1.91 N/g) and after inflammation (8.71 +/- 2.0 N/g; both p immobilization and saline injection, 11.03 +/- 2.26 N/g). Histology showed an increase in inflammatory cells in all C. parvum-injected animals. Immobilization in combination with C. parvum injection had an additive effect on inflammation. Acetylcholine receptors were increased in immobilized muscles and in all muscles of C. parvum-injected animals. The muscle weakness in critically ill patients can be replicated in our novel rat model. Inflammation and immobilization independently lead to muscle weakness.

  15. The acute inflammatory response to intranigral α-synuclein differs significantly from intranigral lipopolysaccharide and is exacerbated by peripheral inflammation

    Directory of Open Access Journals (Sweden)

    Couch Yvonne

    2011-11-01

    Full Text Available Abstract Background Activated microglia are a feature of the host response to neurodegeneration in Parkinson's disease (PD and are thought to contribute to disease progression. Recent evidence suggests that extracellular α-synuclein (eSNCA may play an important role in the pathogenesis of PD and that this may be mediated by a microglial response. Methods We wished to discover whether the host response to eSNCA would be sufficient to induce significant cytokine production. In vitro cultured BV-2 microglia were used to determine the basic inflammatory response to eSNCA. In vivo, 8-week old Biozzi mice were subjected to a single intranigral injection of either 3 μg SNCA, lipopolysaccharide (LPS or serum protein (BSA and allowed to recover for 24 hours. A second cohort of animals were peripherally challenged with LPS (0.5 mg/kg 6 hours prior to tissue collection. Inflammation was studied by quantitative real-time PCR for a number of pro-inflammatory genes and immunohistochemistry for microglial activation, endothelial activation and cell death. Results In vitro data showed a robust microglial response to SNCA, including a positive NFĸB response and the production of pro-inflammatory cytokines. Direct injection of SNCA into the substantia nigra resulted in the upregulation of mRNA expression of proinflammatory cytokines, the expression of endothelial markers of inflammation and microglial activation. However, these results were significantly different to those obtained after direct injection of LPS. By contrast, when the animals were injected intracerebrally with SNCA and subsequently challenged with systemic LPS, the level of production of IL-1β in the substantia nigra became comparable to that induced by the direct injection of LPS into the brain. The injection of albumin into the nigra with a peripheral LPS challenge did not provoke the production of a significant inflammatory response. Direct injection of LPS into the substantia nigra also

  16. Early adversity and brain response to faces in young adulthood.

    Science.gov (United States)

    Lieslehto, Johannes; Kiviniemi, Vesa; Mäki, Pirjo; Koivukangas, Jenni; Nordström, Tanja; Miettunen, Jouko; Barnett, Jennifer H; Jones, Peter B; Murray, Graham K; Moilanen, Irma; Paus, Tomáš; Veijola, Juha

    2017-09-01

    Early stressors play a key role in shaping interindividual differences in vulnerability to various psychopathologies, which according to the diathesis-stress model might relate to the elevated glucocorticoid secretion and impaired responsiveness to stress. Furthermore, previous studies have shown that individuals exposed to early adversity have deficits in emotion processing from faces. This study aims to explore whether early adversities associate with brain response to faces and whether this association might associate with the regional variations in mRNA expression of the glucocorticoid receptor gene (NR3C1). A total of 104 individuals drawn from the Northern Finland Brith Cohort 1986 participated in a face-task functional magnetic resonance imaging (fMRI) study. A large independent dataset (IMAGEN, N = 1739) was utilized for reducing fMRI data-analytical space in the NFBC 1986 dataset. Early adversities were associated with deviant brain response to fearful faces (MANCOVA, P = 0.006) and with weaker performance in fearful facial expression recognition (P = 0.01). Glucocorticoid receptor gene expression (data from the Allen Human Brain Atlas) correlated with the degree of associations between early adversities and brain response to fearful faces (R2  = 0.25, P = 0.01) across different brain regions. Our results suggest that early adversities contribute to brain response to faces and that this association is mediated in part by the glucocorticoid system. Hum Brain Mapp 38:4470-4478, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. The inflammatory response triggered by Influenza virus: a two edged sword.

    Science.gov (United States)

    Tavares, Luciana P; Teixeira, Mauro M; Garcia, Cristiana C

    2017-04-01

    Influenza A virus (IAV) is a relevant respiratory tract pathogen leading to a great number of deaths and hospitalizations worldwide. Secondary bacterial infections are a very common cause of IAV associated morbidity and mortality. The robust inflammatory response that follows infection is important for the control of virus proliferation but is also associated with lung damage, morbidity and death. The role of the different components of immune response underlying protection or disease during IAV infection is not completely elucidated. Overall, in the context of IAV infection, inflammation is a 'double edge sword' necessary to control infection but causing disease. Therefore, a growing number of studies suggest that immunomodulatory strategies may improve disease outcome without affecting the ability of the host to deal with infection. This review summarizes recent aspects of the inflammatory responses triggered by IAV that are preferentially involved in causing severe pulmonary disease and the anti-inflammatory strategies that have been suggested to treat influenza induced immunopathology.

  18. Functional brain network modularity predicts response to cognitive training after brain injury.

    Science.gov (United States)

    Arnemann, Katelyn L; Chen, Anthony J-W; Novakovic-Agopian, Tatjana; Gratton, Caterina; Nomura, Emi M; D'Esposito, Mark

    2015-04-14

    We tested the value of measuring modularity, a graph theory metric indexing the relative extent of integration and segregation of distributed functional brain networks, for predicting individual differences in response to cognitive training in patients with brain injury. Patients with acquired brain injury (n = 11) participated in 5 weeks of cognitive training and a comparison condition (brief education) in a crossover intervention study design. We quantified the measure of functional brain network organization, modularity, from functional connectivity networks during a state of tonic attention regulation measured during fMRI scanning before the intervention conditions. We examined the relationship of baseline modularity with pre- to posttraining changes in neuropsychological measures of attention and executive control. The modularity of brain network organization at baseline predicted improvement in attention and executive function after cognitive training, but not after the comparison intervention. Individuals with higher baseline modularity exhibited greater improvements with cognitive training, suggesting that a more modular baseline network state may contribute to greater adaptation in response to cognitive training. Brain network properties such as modularity provide valuable information for understanding mechanisms that influence rehabilitation of cognitive function after brain injury, and may contribute to the discovery of clinically relevant biomarkers that could guide rehabilitation efforts. © 2015 American Academy of Neurology.

  19. Cannabinoid Signaling and Neuroinflammatory Diseases: A Melting pot for the Regulation of Brain Immune Responses.

    Science.gov (United States)

    Chiurchiù, Valerio; Leuti, Alessandro; Maccarrone, Mauro

    2015-06-01

    The concept of the central nervous system (CNS) as an immune-privileged site, essentially due to the presence of the blood brain barrier, appears to be overly simplistic. Indeed, within healthy CNS immune activities are permitted and are required for neuronal function and host defense, not only due to the presence of the resident innate immune cells of the brain, but also by virtue of a complex cross-talk of the CNS with peripheral immune cells. Nonetheless, long-standing and persisting neuroinflammatory responses are most often detrimental and characterize several neuroinflammatory diseases, including multiple sclerosis, Alzheimer's disease and amyotrophic lateral sclerosis. A growing body of evidence suggests that Cannabis sativa-derived phytocannabinoids, as well as synthetic cannabinoids, are endowed with significant immunoregulatory and anti-inflammatory properties, both in peripheral tissues and in the CNS, through the activation of cannabinoid receptors. In this review, the immunomodulatory effects of cannabinoid signaling on the most relevant brain immune cells will be discussed. In addition, the impact of cannabinoid regulation on the overall integration of the manifold brain immune responses will also be highlighted, along with the implication of these compounds as potential agents for the management of neuroinflammatory disorders.

  20. LXW7 ameliorates focal cerebral ischemia injury and attenuates inflammatory responses in activated microglia in rats

    Energy Technology Data Exchange (ETDEWEB)

    Fang, T.; Zhou, D.; Lu, L.; Tong, X.; Wu, J.; Yi, L. [Department of Neurology, Shenzhen Hospital, Peking University, Shenzhen (China)

    2016-08-01

    Inflammation plays a pivotal role in ischemic stroke, when activated microglia release excessive pro-inflammatory mediators. The inhibition of integrin αvβ3 improves outcomes in rat focal cerebral ischemia models. However, the mechanisms by which microglia are neuroprotective remain unclear. This study evaluated whether post-ischemic treatment with another integrin αvβ3 inhibitor, the cyclic arginine-glycine-aspartic acid (RGD) peptide-cGRGDdvc (LXW7), alleviates cerebral ischemic injury. The anti-inflammatory effect of LXW7 in activated microglia within rat focal cerebral ischemia models was examined. A total of 108 Sprague-Dawley rats (250–280 g) were subjected to middle cerebral artery occlusion (MCAO). After 2 h, the rats were given an intravenous injection of LXW7 (100 μg/kg) or phosphate-buffered saline (PBS). Neurological scores, infarct volumes, brain water content (BWC) and histology alterations were determined. The expressions of pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β)], and Iba1-positive activated microglia, within peri-ischemic brain tissue, were assessed with ELISA, western blot and immunofluorescence staining. Infarct volumes and BWC were significantly lower in LXW7-treated rats compared to those in the MCAO + PBS (control) group. The LXW7 treatment lowered the expression of pro-inflammatory cytokines. There was a reduction of Iba1-positive activated microglia, and the TNF-α and IL-1β expressions were attenuated. However, there was no difference in the Zea Longa scores between the ischemia and LXW7 groups. The results suggest that LXW7 protected against focal cerebral ischemia and attenuated inflammation in activated microglia. LXW7 may be neuroprotective during acute MCAO-induced brain damage and microglia-related neurodegenerative diseases.

  1. Gut response induced by weaning in piglet features marked changes in immune and inflammatory response.

    Science.gov (United States)

    Bomba, Lorenzo; Minuti, Andrea; Moisá, Sonia J; Trevisi, Erminio; Eufemi, Elisa; Lizier, Michela; Chegdani, Fatima; Lucchini, Franco; Rzepus, Marcin; Prandini, Aldo; Rossi, Filippo; Mazza, Raffaele; Bertoni, Giuseppe; Loor, Juan J; Ajmone-Marsan, Paolo

    2014-12-01

    At weaning, piglets are exposed to many stressors, such as separation from the sow, mixing with other litters, end of lactational immunity, and a change in their environment and gut microbiota. The sudden change of feeding regime after weaning causes morphological and histological changes in the small intestine which are critical for the immature digestive system. Sixteen female piglets were studied to assess the effect of sorbic acid supplementation on the small intestine tissue transcriptome. At weaning day (T0, piglet age 28 days), four piglets were sacrificed and ileal tissue samples collected. The remaining 12 piglets were weighed and randomly assigned to different postweaning (T5, piglet age 33 days) diets. Diet A (n = 6) contained 5 g/kg of sorbic acid. In diet B (n = 6), the organic acids were replaced by barley flour. Total RNA was isolated and then hybridized to CombiMatrix CustomArray™ 90-K platform microarrays, screening about 30 K genes. Even though diet had no detectable effect on the transcriptome during the first 5 days after weaning, results highlighted some of the response mechanisms to the stress of weaning occurring in the piglet gut. A total of 205 differentially expressed genes were used for functional analysis using the bioinformatics tools BLAST2GO, Ingenuity Pathway Analysis 8.0, and Dynamic Impact Approach (DIA). Bioinformatic analysis revealed that apoptosis, RIG-I-like, and NOD-like receptor signaling were altered as a result of weaning. Interferons and caspases gene families were the most activated after weaning in response to piglets to multiple stressors. Results suggest that immune and inflammatory responses were activated and likely are a cause of small intestine atrophy as revealed by a decrease in villus height and villus/crypt ratio.

  2. The Systemic Inflammatory Response Syndrome (SIRS) in acutely hospitalised medical patients: a cohort study

    DEFF Research Database (Denmark)

    Comstedt, Pal; Storgaard, Merete; Lassen, Annmarie T

    2009-01-01

    ABSTRACT: BACKGROUND: Sepsis is an infection which has evoked a systemic inflammatory response. Clinically, the Systemic Inflammatory Response Syndrome (SIRS) is identified by two or more symptoms including fever or hypothermia, tachycardia, tachypnoea and change in blood leucocyte count....... The relationship between SIRS symptoms and morbidity and mortality in medical emergency ward patients is unknown. METHODS: We conducted a prospective cohort study of the frequency of SIRS and its relationship to sepsis and death among acutely hospitalised medical patients. In 437 consecutive patients, SIRS status...

  3. ASSESSMENT OF INFLAMMATORY RESPONSE INDICATORS AND PERIPHERAL HEMOPOIESIS AT NON-SPECIFIC ULCERATIVE COLITIS IN CHILDREN

    Directory of Open Access Journals (Sweden)

    V. V. Botvinyeva

    2013-01-01

    Full Text Available The article presents the analysis of laboratory tests, which indicate the response of the body to systemic inflammation. The revealed interconnection of these parameters with peripheral hematosis alterations at chronic inflammatory diseases will allow objectively approaching the diagnostics of functional disorders at non-specific ulcerative colitis in children. The authors attempted to develop new approaches to the analysis of laboratory indicators, which will help to evaluate individual dynamics of processes at the systemic inflammatory response of the body and select adequate therapy of the primary disease.

  4. Brain stem auditory evoked responses in human infants and adults

    Science.gov (United States)

    Hecox, K.; Galambos, R.

    1974-01-01

    Brain stem evoked potentials were recorded by conventional scalp electrodes in infants (3 weeks to 3 years of age) and adults. The latency of one of the major response components (wave V) is shown to be a function both of click intensity and the age of the subject; this latency at a given signal strength shortens postnatally to reach the adult value (about 6 msec) by 12 to 18 months of age. The demonstrated reliability and limited variability of these brain stem electrophysiological responses provide the basis for an optimistic estimate of their usefulness as an objective method for assessing hearing in infants and adults.

  5. Behavioural and brain responses related to Internet search and memory.

    Science.gov (United States)

    Dong, Guangheng; Potenza, Marc N

    2015-10-01

    The ready availability of data via searches on the Internet has changed how many people seek and perhaps store and recall information, although the brain mechanisms underlying these processes are not well understood. This study investigated brain mechanisms underlying Internet-based vs. non-Internet-based searching. The results showed that Internet searching was associated with lower accuracy in recalling information as compared with traditional book searching. During functional magnetic resonance imaging, Internet searching was associated with less regional brain activation in the left ventral stream, the association area of the temporal-parietal-occipital cortices, and the middle frontal cortex. When comparing novel items with remembered trials, Internet-based searching was associated with higher brain activation in the right orbitofrontal cortex and lower brain activation in the right middle temporal gyrus when facing those novel trials. Brain activations in the middle temporal gyrus were inversely correlated with response times, and brain activations in the orbitofrontal cortex were positively correlated with self-reported search impulses. Taken together, the results suggest that, although Internet-based searching may have facilitated the information-acquisition process, this process may have been performed more hastily and be more prone to difficulties in recollection. In addition, people appear less confident in recalling information learned through Internet searching and that recent Internet searching may promote motivation to use the Internet. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Effect of Human Amnion Epithelial Cells on the Acute Inflammatory Response in Fetal Sheep

    Directory of Open Access Journals (Sweden)

    Alana Westover

    2017-11-01

    Full Text Available Intra-amniotic (IA lipopolysaccharide (LPS injection in sheep induces inflammation in the fetus. Human amnion epithelial cells (hAECs moderate the effect of IA LPS on fetal development, but their influence on the acute inflammatory response to IA LPS is unknown. We aimed to determine the effects of hAECs on the acute fetal inflammatory response to IA LPS. After surgical instrumentation at 116 days' gestation (d ewes were randomized to 1 of 4 groups at 123 d: IA LPS (10 mg and intravenous (IV saline (n = 8, IA LPS and IV hAECs (n = 6, IA saline and IV saline (n = 5 or IA saline and IV hAECs (n = 5. IV injections were administered immediately after IA injections. Serial fetal blood samples were collected. At 125 d, placental, fetal lung and liver samples were collected. IA LPS increased inflammatory cell recruitment in the placenta and lungs, increased IL-1β and IL-8 mRNA levels in the lungs and increased serum amyloid A3 (SAA3 and C-reactive protein (CRP mRNA levels in the liver. IV hAECs reduced fetal lung inflammatory cell recruitment but did not otherwise alter indices of placental, fetal lung or liver inflammation. The acute fetal inflammatory response to IA LPS is not substantially altered by IV hAEC treatment.

  7. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43

    Science.gov (United States)

    Maslowski, Kendle M.; Vieira, Angelica T.; Ng, Aylwin; Kranich, Jan; Sierro, Frederic; Yu, Di; Schilter, Heidi C.; Rolph, Michael S.; Mackay, Fabienne; Artis, David; Xavier, Ramnik J.; Teixeira, Mauro M.; Mackay, Charles R.

    2011-01-01

    The immune system responds to pathogens by a variety of pattern recognition molecules such as the Toll-like receptors (TLRs), which promote recognition of dangerous foreign pathogens. However, recent evidence indicates that normal intestinal microbiota might also positively influence immune responses, and protect against the development of inflammatory diseases1,2. One of these elements may be short-chain fatty acids (SCFAs), which are produced by fermentation of dietary fibre by intestinal microbiota. A feature of human ulcerative colitis and other colitic diseases is a change in ‘healthy’ microbiota such as Bifidobacterium and Bacteriodes3, and a concurrent reduction in SCFAs4. Moreover, increased intake of fermentable dietary fibre, or SCFAs, seems to be clinically beneficial in the treatment of colitis5-9. SCFAs bind the G-protein-coupled receptor 43 (GPR43, also known as FFAR2)10,11, and here we show that SCFA–GPR43 interactions profoundly affect inflammatory responses. Stimulation of GPR43 by SCFAs was necessary for the normal resolution of certain inflammatory responses, because GPR43-deficient (Gpr43−/−) mice showed exacerbated or unresolving inflammation in models of colitis, arthritis and asthma. This seemed to relate to increased production of inflammatory mediators by Gpr43−/− immune cells, and increased immune cell recruitment. Germ-free mice, which are devoid of bacteria and express little or no SCFAs, showed a similar dysregulation of certain inflammatory responses. GPR43 binding of SCFAs potentially provides a molecular link between diet, gastrointestinal bacterial metabolism, and immune and inflammatory responses. PMID:19865172

  8. Exaggerated inflammatory response of primary human myeloid dendritic cells to lipopolysaccharide in patients with inflammatory bowel disease.

    Science.gov (United States)

    Baumgart, D C; Thomas, S; Przesdzing, I; Metzke, D; Bielecki, C; Lehmann, S M; Lehnardt, S; Dörffel, Y; Sturm, A; Scheffold, A; Schmitz, J; Radbruch, A

    2009-09-01

    Inflammatory bowel disease (IBD) results from a breakdown of tolerance towards the indigenous flora in genetically susceptible hosts. Failure of dendritic cells (DC) to interpret molecular microbial patterns appropriately when directing innate and adaptive immune responses is conceivable. Primary (conventional, non-monocyte generated) CD1c(+)CD11c(+)CD14(-)CD16(-)CD19(-) myeloid blood or mucosal dendritic cells (mDC) from 76 patients with Crohn's disease (CD) or ulcerative colitis (UC) in remission, during flare-ups (FU) and 76 healthy or non-IBD controls were analysed by fluorescence activated cell sorter (FACS) flow cytometry and real-time polymerase chain reaction. Cytokine secretion of freshly isolated, cultured and lipopolysaccharide (LPS)-stimulated highly purified mDC (purity >95%) was assessed using cytometric bead arrays (CBA). More cultured and stimulated circulating mDC express CD40 in IBD patients. Stimulated circulating mDC from IBD patients secrete significantly more tumour necrosis factor (TNF)-alpha and interleukin (IL)-8. Toll-like receptor (TLR)-4 expression by mDC was higher in remission and increased significantly in flaring UC and CD patients compared with remission (P up more LPS and the uptake begins earlier compared with controls (P expressing mucosal mDC is significantly greater in UC and CD compared with non-IBD controls (P < 0.001 versus P < 0.01, respectively). Our data suggest an aberrant LPS response of mDC in IBD patients, resulting in an inflammatory phenotype and possibly intestinal homing in acute flares.

  9. Yoga, Meditation and Mind-Body Health: Increased BDNF, Cortisol Awakening Response, and Altered Inflammatory Marker Expression after a 3-Month Yoga and Meditation Retreat.

    Science.gov (United States)

    Cahn, B Rael; Goodman, Matthew S; Peterson, Christine T; Maturi, Raj; Mills, Paul J

    2017-01-01

    Thirty-eight individuals (mean age: 34.8 years old) participating in a 3-month yoga and meditation retreat were assessed before and after the intervention for psychometric measures, brain derived neurotrophic factor (BDNF), circadian salivary cortisol levels, and pro- and anti-inflammatory cytokines. Participation in the retreat was found to be associated with decreases in self-reported anxiety and depression as well as increases in mindfulness. As hypothesized, increases in the plasma levels of BDNF and increases in the magnitude of the cortisol awakening response (CAR) were also observed. The normalized change in BDNF levels was inversely correlated with BSI-18 anxiety scores at both the pre-retreat (r = 0.40, p decrease in inflammatory processes resulting from the yoga and meditation practices, we found that the plasma level of the anti-inflammatory cytokine Interleukin-10 was increased and the pro-inflammatory cytokine Interleukin-12 was reduced after the retreat. Contrary to our initial hypotheses, plasma levels of other pro-inflammatory cytokines, including Interferon Gamma (IFN-γ), Tumor Necrosis Factor (TNF-α), Interleukin-1β (IL-1β), Interleukin-6 (IL-6), and Interleukin-8 (IL-8) were increased after the retreat. Given evidence from previous studies of the positive effects of meditative practices on mental fitness, autonomic homeostasis and inflammatory status, we hypothesize that these findings are related to the meditative practices throughout the retreat; however, some of the observed changes may also be related to other aspects of the retreat such as physical exercise-related components of the yoga practice and diet. We hypothesize that the patterns of change observed here reflect mind-body integration and well-being. The increased BDNF levels observed is a potential mediator between meditative practices and brain health, the increased CAR is likely a reflection of increased dynamic physiological arousal, and the relationship of the dual

  10. Interaction of inflammatory and anti-inflammatory responses in microglia by Staphylococcus aureus-derived lipoteichoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bor-Ren [Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Taichung Branch, Taichung, Taiwan (China); Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan (China); Tsai, Cheng-Fang [Department of Biotechnology, Asia University, Taichung, Taiwan (China); Lin, Hsiao-Yun [Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan (China); Tseng, Wen-Pei [Graduate Institute of Sports and Health, National Changhua University of Education, Changhua County, Taiwan (China); Huang, Shiang-Suo [Department of Pharmacology and Institute of Medicine, College of Medicine, Chung Shan Medical University, Taiwan (China); Wu, Chi-Rei [Graduate Institute of Chinese Pharmaceutical Sciences, College of Pharmacy, China Medical University, Taiwan (China); Lin, Chingju [Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan (China); Yeh, Wei-Lan [Cancer Research Center, Department of Medical Research, Changhua Christian Hospital, Changhua, Taiwan (China); Lu, Dah-Yuu, E-mail: dahyuu@mail.cmu.edu.tw [Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung, Taiwan (China)

    2013-05-15

    We investigated the interaction between proinflammatory and inflammatory responses caused by Staphylococcus aureus-derived lipoteichoic acid (LTA) in primary cultured microglial cells and BV-2 microglia. LTA induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein levels increase in a concentration- and time-dependent manner. Meanwhile, LTA also increased nitric oxide (NO) and PGE{sub 2} production in microglia. Administration of TLR2 antagonist effectively inhibited LTA-induced NO, iNOS, and COX-2 expression. Moreover, treatment of cells with LTA caused a time-dependent activation of ERK, p38, JNK, as well as AKT. We also found that LTA-induced iNOS and COX-2 up-regulation were attenuated by p38, JNK, and PI3-kinase inhibitors. On the other hand, LTA-enhanced HO-1 expression was attenuated by p38 and PI3-kinase inhibitors. Treatment of cells with NF-κB and AP-1 inhibitors antagonized LTA-induced iNOS and COX-2 expression. However, only NF-κB inhibitors reduced LTA-induced HO-1 expression in microglia. Furthermore, stimulation of cells with LTA also activated IκBα phosphorylation, p65 phosphorylation at Ser{sup 536}, and c-Jun phosphorylation. Moreover, LTA-induced increases of κB-DNA and AP-1-DNA binding activity were inhibited by p38, JNK, and PI3-kinase inhibitors. HO-1 activator CoPP IX dramatically reversed LTA-induced iNOS expression. Our results provided mechanisms linking LTA and inflammation/anti-inflammation, and indicated that LTA plays a regulatory role in microglia activation. - Highlights: • LTA causes an increase in iNOS, COX-2, and HO-1 expression in microglia. • LTA induces iNOS and COX-2 expression through TLR-2/NF-κB and AP-1 pathways. • HO-1 expression is regulated through p38, JNK, PI3K/AKT and AP-1 pathways. • Induced HO-1 reduces LTA-induced iNOS expression. • LTA plays a regulatory role on inflammatory/anti-inflammatory responses.

  11. An Algorithm for Systemic Inflammatory Response Syndrome Criteria-Based Prediction of Sepsis in a Polytrauma Cohort.

    Science.gov (United States)

    Lindner, Holger A; Balaban, Ümniye; Sturm, Timo; Weiß, Christel; Thiel, Manfred; Schneider-Lindner, Verena

    2016-12-01

    Lifesaving early distinction of infectious systemic inflammatory response syndrome, known as "sepsis," from noninfectious systemic inflammatory response syndrome is challenging in the ICU because of high systemic inflammatory response syndrome prevalence and lack of specific biomarkers. The purpose of this study was to use an automatic algorithm to detect systemic inflammatory response syndrome criteria (tachycardia, tachypnea, leukocytosis, and fever) in surgical ICU patients for ICU-wide systemic inflammatory response syndrome prevalence determination and evaluation of algorithm-derived systemic inflammatory response syndrome descriptors for sepsis prediction and diagnosis in a polytrauma cohort. Cross-sectional descriptive study and retrospective cohort study. Electronic medical records of a tertiary care center's surgical ICU, 2006-2011. All ICU admissions and consecutive polytrauma admissions. None. Average prevalence of conventional systemic inflammatory response syndrome (≥ 2 criteria met concomitantly) from cross-sectional application of the algorithm to all ICU patients and each minute of the study period was 43.3%. Of 256 validated polytrauma patients, 85 developed sepsis (33.2%). Three systemic inflammatory response syndrome descriptors summarized the 24 hours after admission and before therapy initiation: 1) systemic inflammatory response syndrome criteria average for systemic inflammatory response syndrome quantification over time, 2) first-to-last minute difference for trend detection, and 3) change count reflecting systemic inflammatory response syndrome criteria fluctuation. Conventional systemic inflammatory response syndrome for greater than or equal to 1 minute had 91% sensitivity and 19% specificity, whereas a systemic inflammatory response syndrome criteria average cutoff value of 1.72 had 51% sensitivity and 77% specificity for sepsis prediction. For sepsis diagnosis, systemic inflammatory response syndrome criteria average and first

  12. Biological response modifiers and their potential use in the treatment of inflammatory skin diseases

    DEFF Research Database (Denmark)

    Villadsen, Louise S; Skov, Lone; Baadsgaard, Ole

    2003-01-01

    and fewer side-effects than the current systemic therapies now used for severe psoriasis, contact dermatitis and atopic dermatitis. In the pathogenesis of inflammatory skin diseases, the immune system plays a pivotal role, and this is where biological response modifiers such as monoclonal antibodies......In recent years, a more detailed understanding of the pathogenesis of several inflammatory skin diseases, combined with the developments within biotechnology, has made it possible to design more selective response modifiers. Biological response modifiers hold the potential for greater effectiveness......, recombinant cytokines, or fusion proteins may be effective. Several biological response modifiers have already shown positive results in phase II/III clinical trials in skin diseases, and many new biological response modifiers are in progress....

  13. The Inflammatory Response to Miniaturised Extracorporeal Circulation: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    Hunaid A. Vohra

    2009-01-01

    Full Text Available Conventional cardiopulmonary bypass can trigger a systemic inflammatory response syndrome similar to sepsis. Aetiological factors include surgical trauma, reperfusion injury, and, most importantly, contact of the blood with the synthetic surfaces of the heart-lung machine. Recently, a new cardiopulmonary bypass system, mini-extracorporeal circulation (MECC, has been developed and has shown promising early results in terms of reducing this inflammatory response. It has no venous reservoir, a reduced priming volume, and less blood-synthetic interface. This review focuses on the inflammatory and clinical outcomes of using MECC and compares these to conventional cardio-pulmonary bypass (CCPB. MECC has been shown to reduce postoperative cytokines levels and other markers of inflammation. In addition, MECC reduces organ damage, postoperative complications and the need for blood transfusion. MECC is a safe and viable perfusion option and in certain circumstances it is superior to CCPB.

  14. Managing the inflammatory response after cardiopulmonary bypass: review of the studies in animal models

    Science.gov (United States)

    Liguori, Gabriel Romero; Kanas, Alexandre Fligelman; Moreira, Luiz Felipe Pinho

    2014-01-01

    Objective To review studies performed in animal models that evaluated therapeutic interventions to inflammatory response and microcirculatory changes after cardiopulmonary bypass. Methods It was used the search strategy ("Cardiopulmonary Bypass" (MeSH)) and ("Microcirculation" (MeSH) or "Inflammation" (MeSH) or "Inflammation Mediators" (MeSH)). Repeated results, human studies, non-English language articles, reviews and studies without control were excluded. Results Blood filters, system miniaturization, specific primers regional perfusion, adequate flow and temperature and pharmacological therapies with anticoagulants, vasoactive drugs and anti-inflammatories reduced changes in microcirculation and inflammatory response. Conclusion Demonstrated efficacy in animal models establishes a perspective for evaluating these interventions in clinical practice. PMID:24896169

  15. Cardiovascular biomaterials: when the inflammatory response helps to efficiently restore tissue functionality?

    Science.gov (United States)

    Boccafoschi, F; Mosca, C; Cannas, M

    2014-04-01

    The evaluation of biological host response to implanted materials permits the determination of the safety and biocompatibility of biomedical devices, prostheses and biomaterials. Once a biomaterial is introduced into the body to a corresponding implant site, a sequence of events occurs promoting the activation of inflammatory mediators such as leukocytes and the release of signaling molecules such as cytokines and growth factors, evoking an inflammatory and wound healing process. This review examines the cellular and molecular mechanisms involved in the foreign body reaction, especially how cytokines impact the overall inflammatory response to devices. It also reviews how these events can be modulated by the physical and chemical properties of the biomaterials such as wettability, chemistry and geometry of surface. Particular attention is dedicated to the cardiovascular field, where the use of synthetic polymers has several limitations such as thrombogenicity and risk of infection. New materials and strategies to improve biomaterial characteristics are discussed. Copyright © 2012 John Wiley & Sons, Ltd.

  16. The effect of resuscitation strategy on the longitudinal immuno-inflammatory response to blunt trauma

    DEFF Research Database (Denmark)

    Bonde, Alexander; Nordestgaard, Ask Tybjærg; Kirial, Rasmus

    2017-01-01

    INTRODUCTION: Resuscitation strategies following blunt trauma have been linked to immuno-inflammatory complications leading to systemic inflammatory syndrome (SIRS), sepsis and multiple organ failure (MOF). The effect of resuscitation strategy on longitudinal inflammation marker trajectories is......, however, unknown. We hypothesized that the effect of resuscitation strategy extends beyond the trauma-related coagulopathy, perhaps affecting the longitudinal immuno-inflammatory response to injury. METHODS: We analyzed data prospectively collected for the Inflammation and Host Response to Injury (Glue...... Grant) study. Blood sampling for inflammation marker analyses from blunt trauma patients was done on admission days 0, 1, 4, 7, 14, 21 and 28 where applicable. Total volume transfused of packed red blood cells (PRBC), fresh frozen plasma (FFP), platelets (PLT), and crystalloids during the initial 48h...

  17. Orbitofrontal cortex volume and brain reward response in obesity.

    Science.gov (United States)

    Shott, M E; Cornier, M-A; Mittal, V A; Pryor, T L; Orr, J M; Brown, M S; Frank, G K W

    2015-02-01

    What drives overconsumption of food is poorly understood. Alterations in brain structure and function could contribute to increased food seeking. Recently, brain orbitofrontal cortex (OFC) volume has been implicated in dysregulated eating but little is known how brain structure relates to function. We examined obese (n=18, age=28.7±8.3 years) and healthy control women (n=24, age=27.4±6.3 years) using a multimodal brain imaging approach. We applied magnetic resonance and diffusion tensor imaging to study brain gray and white matter volume as well as white matter (WM) integrity, and tested whether orbitofrontal cortex volume predicts brain reward circuitry activation in a taste reinforcement-learning paradigm that has been associated with dopamine function. Obese individuals displayed lower gray and associated white matter volumes (Pobese individuals in fiber tracts including the external capsule, corona radiata, sagittal stratum, and the uncinate, inferior fronto-occipital, and inferior longitudinal fasciculi. Gray matter volume of the gyrus rectus at the medial edge of the orbitofrontal cortex predicted functional taste reward-learning response in frontal cortex, insula, basal ganglia, amygdala, hypothalamus and anterior cingulate cortex in control but not obese individuals. This study indicates a strong association between medial orbitofrontal cortex volume and taste reinforcement-learning activation in the brain in control but not in obese women. Lower brain volumes in the orbitofrontal cortex and other brain regions associated with taste reward function as well as lower integrity of connecting pathways in obesity (OB) may support a more widespread disruption of reward pathways. The medial orbitofrontal cortex is an important structure in the termination of food intake and disturbances in this and related structures could contribute to overconsumption of food in obesity.

  18. Suppressive effects of pelargonidin on PolyPhosphate-mediated vascular inflammatory responses.

    Science.gov (United States)

    Lee, In-Chul; Bae, Jong-Sup

    2017-02-01

    Previous reports suggest that human endothelial cells-derived PolyPhosphate (PolyP) is one of the pro-inflammatory mediators. As a well-known red pigment and found in plants, Pelargonidin (PEL) has been known to have several biological activates which are beneficial for human health. This study was undertaken to investigate whether PEL can modulate PolyP-mediated inflammatory responses in human umbilical vein endothelial cells (HUVECs) and in mice. The anti-inflammatory activities of PEL were determined by measuring permeability, leukocytes adhesion and migration, and activation of pro-inflammatory proteins in PolyP-activated HUVECs and mice. In addition, the beneficial effects of PEL on survival rate in PolyP-injected mice. We found that PEL inhibits PolyP-mediated barrier disruption, the expressions of cell adhesion molecules, and leukocyte to HUVEC adhesion/migration. Interestingly, PolyP-induced NF-κB activation and the productions of TNF-α and IL-6 were inhibited by PEL in HUVECs. These anti-inflammatory functions of PEL were confirmed in PolyP injected mice. These results suggest that PEL have therapeutic potential for various systemic inflammatory diseases.

  19. Activation of the c-Met pathway mobilizes an inflammatory network in the brain microenvironment to promote brain metastasis of breast cancer

    Science.gov (United States)

    Xing, Fei; Liu, Yin; Sharma, Sambad; Wu, Kerui; Chan, Michael D.; Lo, Hui-Wen; Carpenter, Richard L.; Metheny-Barlow, Linda J.; Zhou, Xiaobo; Qasem, Shadi A.; Pasche, Boris; Watabe, Kounosuke

    2016-01-01

    Brain metastasis is one of the chief causes of mortality in breast cancer patients, but the mechanisms that drive this process remains poorly understood. Here we report that brain metastatic cells expressing high levels of c-Met promote the metastatic process via inflammatory cytokine upregulation and vascular reprogramming. Activated c-Met signaling promoted adhesion of tumor cells to brain endothelial cells and enhanced neovascularization by inducing the secretion of IL-8 and CXCL1. Additionally, stimulation of IL1β secretion by activation of c-Met induced tumor-associated astrocytes to secrete the c-Met ligand HGF. Thus, a feed-forward mechanism of cytokine release initiated and sustained by c-Met fed a vicious cycle which generated a favorable microenvironment for metastatic cells. Reinforcing our results, we found that pterostilbene, a compound that penetrates the blood-brain barrier, could suppress brain metastasis by targeting c-Met signaling. These findings suggest a potential utility of this natural compound for chemoprevention. PMID:27364556

  20. Interplay between pro-inflammatory cytokines and brain oxidative stress biomarkers: evidence of parallels between butyl paraben intoxication and the valproic acid brain physiopathology in autism rat model.

    Science.gov (United States)

    Hegazy, Hoda G; Ali, Elham H A; Elgoly, Amany H Mahmoud

    2015-02-01

    Butyl paraben is a preservative used in food, drugs and cosmetics. Neurotoxic effect was reported recently beside the potential estrogenic activity of parabens. There is controversy as to the potential harmful effects of butyl parabens, which are suspected to contribute to autism and learning disabilities. The purpose of this study was to examine the similarities between paraben intoxication signs in the rat brain and brain markers in an autistic like rat model. This study provides evidence of many parallels between the two, including (1) oxidative stress, (2) decreased reduced glutathione levels and elevated oxidised glutathione, (3) mitochondrial dysfunction, and (4) neuroinflammation and increased pro-inflammatory cytokine levels in the brain (tumour necrosis factor-alpha, interleukin-1-beta, and interleukin-6). (5) Increased protein oxidation reported by a significant increase in 3-nitrotyrosine (3-NT)/tyrosine ratio. (6) A marked disturbance was found in the production of energy carriers (AMP, ATP and AMP/ATP ratio) in comparison with the control. The evidence suggests that paraben may, to some extent, either cause or contribute to the brain physiopathology in ASDs or pathogens that produce the brain pathology observed in the diagnosed rat model of ASD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Expression of Drosophila adenosine deaminase in immune cells during inflammatory response.

    Directory of Open Access Journals (Sweden)

    Milena Novakova

    Full Text Available Extra-cellular adenosine is an important regulator of inflammatory responses. It is generated from released ATP by a cascade of ectoenzymes and degraded by adenosine deaminase (ADA. There are two types of enzymes with ADA activity: ADA1 and ADGF/ADA2. ADA2 activity originates from macrophages and dendritic cells and is associated with inflammatory responses in humans and rats. Drosophila possesses a family of six ADGF proteins with ADGF-A being the main regulator of extra-cellular adenosine during larval stages. Herein we present the generation of a GFP reporter for ADGF-A expression by a precise replacement of the ADGF-A coding sequence with GFP using homologous recombination. We show that the reporter is specifically expressed in aggregating hemocytes (Drosophila immune cells forming melanotic capsules; a characteristic of inflammatory response. Our vital reporter thus confirms ADA expression in sites of inflammation in vivo and demonstrates that the requirement for ADA activity during inflammatory response is evolutionary conserved from insects to vertebrates. Our results also suggest that ADA activity is achieved specifically within sites of inflammation by an uncharacterized post-transcriptional regulation based mechanism. Utilizing various mutants that induce melanotic capsule formation and also a real immune challenge provided by parasitic wasps, we show that the acute expression of the ADGF-A protein is not driven by one specific signaling cascade but is rather associated with the behavior of immune cells during the general inflammatory response. Connecting the exclusive expression of ADGF-A within sites of inflammation, as presented here, with the release of energy stores when the ADGF-A activity is absent, suggests that extra-cellular adenosine may function as a signal for energy allocation during immune response and that ADGF-A/ADA2 expression in such sites of inflammation may regulate this role.

  2. Transcription factors early growth response gene (Egr) 2 and 3 control inflammatory responses of tolerant T cells.

    Science.gov (United States)

    Omodho, Becky; Miao, Tizong; Symonds, Alistair L J; Singh, Randeep; Li, Suling; Wang, Ping

    2018-01-03

    Impaired proliferation and production of IL2 are the hallmarks of experimental T cell tolerance. However, in most autoimmune diseases, auto-reactive T cells do not display hyper proliferation, but inflammatory phenotypes. We have now demonstrated that the transcription factors Egr2 and 3 are important for the control of inflammatory cytokine production by tolerant T cells, but not for tolerance induction. In the absence of Egr2 and 3, T cell tolerance, as measured by impaired proliferation and production of IL2, can still be induced, but tolerant T cells produced high levels of inflammatory cytokines. Egr2 and 3 regulate expression of differentiation repressors and directly inhibit T-bet function in T cells. Indeed, decreased expression of differentiation repressors, such as Id3 and Tcf1, and increased expression of inflammatory transcription factors, such as RORγt and Bhlhe40 were found in Egr2/3 deficient T cells under tolerogenic conditions. In addition, T-bet was co-expressed with Egr2 in tolerant T cells and Egr2/3 defects leads to production of high levels of IFNγ in tolerant T cells. Our findings demonstrated that despite impaired proliferation and IL2 production, tolerant T cells can display inflammatory responses in response to antigen stimulation and this is controlled at least partly by Egr2 and 3. © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.

  3. Cyclic AMP response element binding protein and brain-derived ...

    Indian Academy of Sciences (India)

    Madhu

    The transcription factor cyclic AMP response element binding protein (CREB) and the neurotrophin brain-derived neurotrophic factor (BDNF) are targets of diverse classes of antidepressants and are known to be regulated in animal models and in patients suffering from depression. Given their role in neuronal plasticity, ...

  4. Inflammatory response and cardioprotection during open-heart surgery: the importance of anaesthetics.

    Science.gov (United States)

    Suleiman, M-S; Zacharowski, K; Angelini, G D

    2008-01-01

    Open-heart surgery triggers an inflammatory response that is largely the result of surgical trauma, cardiopulmonary bypass, and organ reperfusion injury (e.g. heart). The heart sustains injury triggered by ischaemia and reperfusion and also as a result of the effects of systemic inflammatory mediators. In addition, the heart itself is a source of inflammatory mediators and reactive oxygen species that are likely to contribute to the impairment of cardiac pump function. Formulating strategies to protect the heart during open heart surgery by attenuating reperfusion injury and systemic inflammatory response is essential to reduce morbidity. Although many anaesthetic drugs have cardioprotective actions, the diversity of the proposed mechanisms for protection (e.g. attenuating Ca(2+) overload, anti-inflammatory and antioxidant effects, pre- and post-conditioning-like protection) may have contributed to the slow adoption of anaesthetics as cardioprotective agents during open heart surgery. Clinical trials have suggested at least some cardioprotective effects of volatile anaesthetics. Whether these benefits are relevant in terms of morbidity and mortality is unclear and needs further investigation. This review describes the main mediators of myocardial injury during open heart surgery, explores available evidence of anaesthetics induced cardioprotection and addresses the efforts made to translate bench work into clinical practice.

  5. Elevation in inflammatory serum biomarkers predicts response to trastuzumab-containing therapy.

    Directory of Open Access Journals (Sweden)

    Ahmed A Alkhateeb

    Full Text Available Approximately half of all HER2/neu-overexpressing breast cancer patients do not respond to trastuzumab-containing therapy. Therefore, there remains an urgent and unmet clinical need for the development of predictive biomarkers for trastuzumab response. Recently, several lines of evidence have demonstrated that the inflammatory tumor microenvironment is a major contributor to therapy resistance in breast cancer. In order to explore the predictive value of inflammation in breast cancer patients, we measured the inflammatory biomarkers serum ferritin and C-reactive protein (CRP in 66 patients immediately before undergoing trastuzumab-containing therapy and evaluated their progression-free and overall survival. The elevation in pre-treatment serum ferritin (>250 ng/ml or CRP (>7.25 mg/l was a significant predictor of reduced progression-free survival and shorter overall survival. When patients were stratified based on their serum ferritin and CRP levels, patients with elevation in both inflammatory biomarkers had a markedly poorer response to trastuzumab-containing therapy. Therefore, the elevation in inflammatory serum biomarkers may reflect a pathological state that decreases the clinical efficacy of this therapy. Anti-inflammatory drugs and life-style changes to decrease inflammation in cancer patients should be explored as possible strategies to sensitize patients to anti-cancer therapeutics.

  6. The inflammatory response to extracorporeal membrane oxygenation (ECMO): a review of the pathophysiology.

    Science.gov (United States)

    Millar, Jonathan E; Fanning, Jonathon P; McDonald, Charles I; McAuley, Daniel F; Fraser, John F

    2016-11-28

    Extracorporeal membrane oxygenation (ECMO) is a technology capable of providing short-term mechanical support to the heart, lungs or both. Over the last decade, the number of centres offering ECMO has grown rapidly. At the same time, the indications for its use have also been broadened. In part, this trend has been supported by advances in circuit design and in cannulation techniques. Despite the widespread adoption of extracorporeal life support techniques, the use of ECMO remains associated with significant morbidity and mortality. A complication witnessed during ECMO is the inflammatory response to extracorporeal circulation. This reaction shares similarities with the systemic inflammatory response syndrome (SIRS) and has been well-documented in relation to cardiopulmonary bypass. The exposure of a patient's blood to the non-endothelialised surface of the ECMO circuit results in the widespread activation of the innate immune system; if unchecked this may result in inflammation and organ injury. Here, we review the pathophysiology of the inflammatory response to ECMO, highlighting the complex interactions between arms of the innate immune response, the endothelium and coagulation. An understanding of the processes involved may guide the design of therapies and strategies aimed at ameliorating inflammation during ECMO. Likewise, an appreciation of the potentially deleterious inflammatory effects of ECMO may assist those weighing the risks and benefits of therapy.

  7. Reduction of the inflammatory response in patients undergoing minimally invasive coronary artery bypass grafting

    NARCIS (Netherlands)

    Gu, YJ; Mariani, MA; van Oeveren, W; Grandjean, JG; Boonstra, PW

    Background. The aim of this prospective study was to determine whether the inflammation-associated clinical morbidity as well as the subclinical markers of the inflammatory response are reduced in patients who undergo minimally invasive coronary artery bypass grafting without cardiopulmonary bypass.

  8. Exploring the Risk Factors for Sudden Infant Deaths and Their Role in Inflammatory Responses to Infection

    Science.gov (United States)

    Blackwell, Caroline; Moscovis, Sophia; Hall, Sharron; Burns, Christine; Scott, Rodney J.

    2015-01-01

    The risk factors for sudden infant death syndrome (SIDS) parallel those associated with susceptibility to or severity of infectious diseases. There is no evidence that a single infectious agent is associated with SIDS; the common thread appears to be induction of inflammatory responses to infections. In this review, interactions between genetic and environmental risk factors for SIDS are assessed in relation to the hypothesis that many infant deaths result from dysregulation of inflammatory responses to “minor” infections. Risk factors are assessed in relation to three important stages of infection: (1) bacterial colonization (frequency or density); (2) induction of temperature-dependent toxins; (3) induction or control of inflammatory responses. In this article, we review the interactions among risk factors for SIDS for their effects on induction or control of inflammatory responses. The risk factors studied are genetic factors (sex, cytokine gene polymorphisms among ethnic groups at high or low risk of SIDS); developmental stage (changes in cortisol and testosterone levels associated with 2- to 4-month age range); environmental factors (virus infection, exposure to cigarette smoke). These interactions help to explain differences in the incidences of SIDS observed between ethnic groups prior to public health campaigns to reduce these infant deaths. PMID:25798137

  9. The levels of RAC3 expression are up regulated by TNF in the inflammatory response

    Directory of Open Access Journals (Sweden)

    Cecilia Viviana Alvarado

    2014-01-01

    Full Text Available RAC3 is a coactivator of glucocorticoid receptor and nuclear factor-κB (NF-κB that is usually over-expressed in tumors and which also has important functions in the immune system. We investigated the role of the inflammatory response in the control of RAC3 expression levels in vivo and in vitro. We found that inflammation regulates RAC3 levels. In mice, sub-lethal doses of lipopolysaccharide induce the increase of RAC3 in spleen and the administration of the synthetic anti-inflammatory glucocorticoid dexamethasone has a similar effect. However, the simultaneous treatment with both stimuli is mutually antagonistic. In vitro stimulation of the HEK293 cell line with tumor necrosis factor (TNF, one of the cytokines induced by lipopolysaccharide, also increases the levels of RAC3 mRNA and protein, which correlates with an enhanced transcription dependent on the RAC3 gene promoter. We found that binding of the transcription factor NF-κB to the RAC3 gene promoter could be responsible for these effects. Our results suggest that increase of RAC3 during the inflammatory response could be a molecular mechanism involved in the control of sensitivity to both pro- and anti-inflammatory stimuli in order to maintain the normal healthy course of the immune response.

  10. High-intensity interval training induces a modest systemic inflammatory response in active, young men

    Science.gov (United States)

    Zwetsloot, Kevin A; John, Casey S; Lawrence, Marcus M; Battista, Rebecca A; Shanely, R Andrew

    2014-01-01

    The purpose of this study was to determine: 1) the extent to which an acute session of high-intensity interval training (HIIT) increases systemic inflammatory cytokines and chemokines, and 2) whether 2 weeks of HIIT training alters the inflammatory response. Eight recreationally active males (aged 22±2 years) performed 2 weeks of HIIT on a cycle ergometer (six HIIT sessions at 8–12 intervals; 60-second intervals, 75-second active rest) at a power output equivalent to 100% of their predetermined peak oxygen uptake (VO2max). Serum samples were collected during the first and sixth HIIT sessions at rest and immediately, 15, 30, and 45 minutes post-exercise. An acute session of HIIT induced significant increases in interleukin (IL)-6, IL-8, IL-10, tumor necrosis factor-α, and monocyte chemotactic protein-1 compared with rest. The concentrations of interferon-γ, granulocyte macrophage-colony-stimulating factor, and IL-1β were unaltered with an acute session of HIIT Two weeks of training did not alter the inflammatory response to an acute bout of HIIT exercise. Maximal power achieved during a VO2max test significantly increased 4.6%, despite no improvements in VO2max after 2 weeks of HIIT. These data suggest that HIIT exercise induces a small inflammatory response in young, recreationally active men; however, 2 weeks of HIIT does not alter this response. PMID:24520199

  11. Inflammatory responses to induced infectious endometritis in mares resistant or susceptible to persistent endometritis

    DEFF Research Database (Denmark)

    Christoffersen, Mette; Woodward, Elizabeth; Bojesen, Anders Miki

    2012-01-01

    The objective of the study was to evaluate the gene expression of inflammatory cytokines (interleukin [IL]-1ß, IL-6, IL-8, IL-10, tumor necrosis factor [TNF]-a, IL-1 receptor antagonist [ra] and serum amyloid A (SAA) in endometrial tissue and circulating leukocytes in response to uterine inoculat...

  12. Treatment response in childhood asthma. An interplay of genes and inflammatory signals

    NARCIS (Netherlands)

    Vijverberg, S.J.H.|info:eu-repo/dai/nl/325847460

    2014-01-01

    Treatment response in asthmatic children Asthma is a chronic disease of the airways and the most common chronic disease among children. Inhaled corticosteroids (ICS) are the cornerstone of persistent asthma treatment and are thought to function due to their anti-inflammatory properties.

  13. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome

    NARCIS (Netherlands)

    Iyer, Shankar S.; Pulskens, Wilco P.; Sadler, Jeffrey J.; Butter, Loes M.; Teske, Gwendoline J.; Ulland, Tyler K.; Eisenbarth, Stephanie C.; Florquin, Sandrine; Flavell, Richard A.; Leemans, Jaklien C.; Sutterwala, Fayyaz S.

    2009-01-01

    Dying cells are capable of activating the innate immune system and inducing a sterile inflammatory response. Here, we show that necrotic cells are sensed by the Nlrp3 inflammasome resulting in the subsequent release of the proinflammatory cytokine IL-1 beta. Necrotic cells produced by pressure

  14. Sarcopenia is associated with an increased inflammatory response to surgery in colorectal cancer

    NARCIS (Netherlands)

    Reisinger, Kostan W.; Derikx, Joep P. M.; van Vugt, Jeroen L. A.; Von Meyenfeldt, Maarten F.; Hulsewé, Karel W.; Olde Damink, Steven W. M.; Stoot, Jan H. M. B.; Poeze, Martijn

    2016-01-01

    Background & aims: Sarcopenia in gastrointestinal cancer has been associated with poor clinical outcome after surgery. The effect of low muscle mass on the inflammatory response to surgery has not been investigated, however skeletal muscle wasting in the context of cachexia is associated with a

  15. Topical Modulation of the Burn Wound Inflammatory Response to Improve Short and Long Term Outcomes

    Science.gov (United States)

    2015-10-15

    hypertrophic scar, p38, combat casualty, treatment, organ failure, systemic inflammatory response syndrome , thermal injury, wound model, intervention 3...follicle apoptosis.  We will complete our wound closure data for Pg004, Pg005, and Pg008. We will also examine the H&E slides and complete the data for

  16. Effects of IL-10 on systemic inflammatory responses during sublethal primate endotoxemia

    NARCIS (Netherlands)

    van der Poll, T.; Jansen, P. M.; Montegut, W. J.; Braxton, C. C.; Calvano, S. E.; Stackpole, S. A.; Smith, S. R.; Swanson, S. W.; Hack, C. E.; Lowry, S. F.; Moldawer, L. L.

    1997-01-01

    IL-10 protects mice from LPS-induced lethality. To determine the effects of IL-10 on LPS-induced inflammatory responses, six Papio anubis baboons were i.v. injected with a sublethal dose of LPS (Salmonella typhimurium; 500 microg/kg) directly preceded by either human rIL-10 (n = 3, 500 microg/kg) or

  17. Distinct inflammatory responses differentiate cerebral infarct from transient ischaemic attack.

    Science.gov (United States)

    Armstrong, Christopher W L; Bosio, Erika; Neil, Claire; Brown, Simon G A; Hankey, Graeme J; Fatovich, Daniel M

    2017-01-01

    We previously reported on a 26-year-old patient who presented early during a large and eventually fatal cerebral infarct. Microarray analysis of blood samples from this patient demonstrated initially up-regulated and subsequently down-regulated Granzyme B (GzmB) expression, along with progressive up-regulation of genes for S100 calcium binding protein A12 (S100A12) and matrix metalloproteinase 9 (MMP-9). To confirm these findings, we investigated these parameters in patients with suspected stroke presenting within 6h of symptom onset to a single centre. Blood samples were taken at enrolment, then 1h, 3h and 24h post-enrolment for the examination of cellular, protein and genetic changes. Patients with subsequently confirmed ischaemic (n=18) or haemorrhagic stroke (n=11) showed increased intracellular concentrations of GzmB in all cell populations investigated (CD8+, CD8- and Natural Killer [NK] cells). Infarct patients, however, demonstrated significantly reduced GzmB gene expression and increased circulating MMP-9 and S100A12 levels in contrast to transient ischaemic attack (TIA) patients or healthy controls. Furthermore, a pronounced neutrophilia was noted in the infarct and haemorrhage groups, while TIA patients (n=9) reflected healthy controls (n=10). These findings suggest a spectrum of immune response during stroke. TIA showed few immunological changes in comparison to infarct and haemorrhage, which demonstrated inhibition of GzmB production and a rise in neutrophil numbers and neutrophil-associated mediators. This implies a greater role of the innate immune system. These markers may provide novel targets for inhibition and reduction of secondary injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Sugars, Sweet Taste Receptors, and Brain Responses

    Science.gov (United States)

    Lee, Allen A.; Owyang, Chung

    2017-01-01

    Sweet taste receptors are composed of a heterodimer of taste 1 receptor member 2 (T1R2) and taste 1 receptor member 3 (T1R3). Accumulating evidence shows that sweet taste receptors are ubiquitous throughout the body, including in the gastrointestinal tract as well as the hypothalamus. These sweet taste receptors are heavily involved in nutrient sensing, monitoring changes in energy stores, and triggering metabolic and behavioral responses to maintain energy balance. Not surprisingly, these pathways are heavily regulated by external and internal factors. Dysfunction in one or more of these pathways may be important in the pathogenesis of common diseases, such as obesity and type 2 diabetes mellitus. PMID:28672790

  19. Arctigenin Treatment Protects against Brain Damage through an Anti-Inflammatory and Anti-Apoptotic Mechanism after Needle Insertion

    Science.gov (United States)

    Song, Jie; Li, Na; Xia, Yang; Gao, Zhong; Zou, Sa-feng; Kong, Liang; Yao, Ying-Jia; Jiao, Ya-Nan; Yan, Yu-Hui; Li, Shao-Heng; Tao, Zhen-Yu; Lian, Guan; Yang, Jing-Xian; Kang, Ting-Guo

    2016-01-01

    Convection enhanced delivery (CED) infuses drugs directly into brain tissue. Needle insertion is required and results in a stab wound injury (SWI). Subsequent secondary injury involves the release of inflammatory and apoptotic cytokines, which have dramatic consequences on the integrity of damaged tissue, leading to the evolution of a pericontusional-damaged area minutes to days after in the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary brain injury and the determination of the underlying mechanism of action in a mouse model of SWI that mimics the process of CED. After CED, mice received a gavage of ARC from 30 min to 14 days. Neurological severity scores (NSS) and wound closure degree were assessed after the injury. Histological analysis and immunocytochemistry were used to evaluated the extent of brain damage and neuroinflammation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to detect universal apoptosis. Enzyme-linked immunosorbent assays (ELISA) was used to test the inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10) and lactate dehydrogenase (LDH) content. Gene levels of inflammation (TNF-α, IL-6, and IL-10) and apoptosis (Caspase-3, Bax and Bcl-2) were detected by reverse transcription-polymerase chain reaction (RT-PCR). Using these, we analyzed ARC’s efficacy and mechanism of action. Results: ARC treatment improved neurological function by reducing brain water content and hematoma and accelerating wound closure relative to untreated mice. ARC treatment reduced the levels of TNF-α and IL-6 and the number of allograft inflammatory factor (IBA)- and myeloperoxidase (MPO)-positive cells and increased the levels of IL-10. ARC-treated mice had fewer TUNEL+ apoptotic neurons and activated caspase-3-positive neurons surrounding the lesion than controls, indicating increased neuronal survival. Conclusions: ARC treatment confers

  20. Arctigenin Treatment Protects against Brain Damage through an Anti-Inflammatory and Anti-Apoptotic Mechanism after Needle Insertion.

    Science.gov (United States)

    Song, Jie; Li, Na; Xia, Yang; Gao, Zhong; Zou, Sa-Feng; Kong, Liang; Yao, Ying-Jia; Jiao, Ya-Nan; Yan, Yu-Hui; Li, Shao-Heng; Tao, Zhen-Yu; Lian, Guan; Yang, Jing-Xian; Kang, Ting-Guo

    2016-01-01

    Convection enhanced delivery (CED) infuses drugs directly into brain tissue. Needle insertion is required and results in a stab wound injury (SWI). Subsequent secondary injury involves the release of inflammatory and apoptotic cytokines, which have dramatic consequences on the integrity of damaged tissue, leading to the evolution of a pericontusional-damaged area minutes to days after in the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary brain injury and the determination of the underlying mechanism of action in a mouse model of SWI that mimics the process of CED. After CED, mice received a gavage of ARC from 30 min to 14 days. Neurological severity scores (NSS) and wound closure degree were assessed after the injury. Histological analysis and immunocytochemistry were used to evaluated the extent of brain damage and neuroinflammation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to detect universal apoptosis. Enzyme-linked immunosorbent assays (ELISA) was used to test the inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10) and lactate dehydrogenase (LDH) content. Gene levels of inflammation (TNF-α, IL-6, and IL-10) and apoptosis (Caspase-3, Bax and Bcl-2) were detected by reverse transcription-polymerase chain reaction (RT-PCR). Using these, we analyzed ARC's efficacy and mechanism of action. ARC treatment improved neurological function by reducing brain water content and hematoma and accelerating wound closure relative to untreated mice. ARC treatment reduced the levels of TNF-α and IL-6 and the number of allograft inflammatory factor (IBA)- and myeloperoxidase (MPO)-positive cells and increased the levels of IL-10. ARC-treated mice had fewer TUNEL+ apoptotic neurons and activated caspase-3-positive neurons surrounding the lesion than controls, indicating increased neuronal survival. ARC treatment confers neuroprotection of brain tissue

  1. Allelic variation on murine chromosome 11 modifies host inflammatory responses and resistance to Bacillus anthracis.

    Directory of Open Access Journals (Sweden)

    Jill K Terra

    2011-12-01

    Full Text Available Anthrax is a potentially fatal disease resulting from infection with Bacillus anthracis. The outcome of infection is influenced by pathogen-encoded virulence factors such as lethal toxin (LT, as well as by genetic variation within the host. To identify host genes controlling susceptibility to anthrax, a library of congenic mice consisting of strains with homozygous chromosomal segments from the LT-responsive CAST/Ei strain introgressed on a LT-resistant C57BL/6 (B6 background was screened for response to LT. Three congenic strains containing CAST/Ei regions of chromosome 11 were identified that displayed a rapid inflammatory response to LT similar to, but more severe than that driven by a LT-responsive allele of the inflammasome constituent NRLP1B. Importantly, increased response to LT in congenic mice correlated with greater resistance to infection by the Sterne strain of B. anthracis. The genomic region controlling the inflammatory response to LT was mapped to 66.36-74.67 Mb on chromosome 11, a region that encodes the LT-responsive CAST/Ei allele of Nlrp1b. However, known downstream effects of NLRP1B activation, including macrophage pyroptosis, cytokine release, and leukocyte infiltration could not fully explain the response to LT or the resistance to B. anthracis Sterne in congenic mice. Further, the exacerbated response in congenic mice is inherited in a recessive manner while the Nlrp1b-mediated response to LT is dominant. Finally, congenic mice displayed increased responsiveness in a model of sepsis compared with B6 mice. In total, these data suggest that allelic variation of one or more chromosome 11 genes in addition to Nlrp1b controls the severity of host response to multiple inflammatory stimuli and contributes to resistance to B. anthracis Sterne. Expression quantitative trait locus analysis revealed 25 genes within this region as high priority candidates for contributing to the host response to LT.

  2. The role of multiple negative social relationships in inflammatory cytokine responses to a laboratory stressor

    Directory of Open Access Journals (Sweden)

    Sunmi Song

    2015-06-01

    Full Text Available The present study examined the unique impact of perceived negativity in multiple social relationships on endocrine and inflammatory responses to a laboratory stressor. Via hierarchical cluster analysis, those who reported negative social exchanges across relationships with a romantic partner, family, and their closest friend had higher mean IL-6 across time and a greater increase in TNF-α from 15 min to 75 min post stress. Those who reported negative social exchanges across relationships with roommates, family, and their closest friend showed greater IL-6 responses to stress. Differences in mean IL-6 were accounted for by either depressed mood or hostility, whereas differences in the cytokine stress responses remained significant after controlling for those factors. Overall, this research provides preliminary evidence to suggest that having multiple negative relationships may exacerbate acute inflammatory responses to a laboratory stressor independent of hostility and depressed mood.

  3. Energy Drink Administration in Combination with Alcohol Causes an Inflammatory Response and Oxidative Stress in the Hippocampus and Temporal Cortex of Rats

    Science.gov (United States)

    Díaz, Alfonso; Treviño, Samuel; Guevara, Jorge; Muñoz-Arenas, Guadalupe; Brambila, Eduardo; Espinosa, Blanca; Moreno-Rodríguez, Albino; Lopez-Lopez, Gustavo; Peña-Rosas, Ulises; Venegas, Berenice; Handal-Silva, Anabella; Morán-Perales, José Luis; Flores, Gonzalo; Aguilar-Alonso, Patricia

    2016-01-01

    Energy drinks (EDs) are often consumed in combination with alcohol because they reduce the depressant effects of alcohol. However, different researches suggest that chronic use of these psychoactive substances in combination with alcohol can trigger an oxidative and inflammatory response. These processes are regulated by both a reactive astrogliosis and an increase of proinflammatory cytokines such as IL-1β, TNF-α, and iNOS, causing cell death (apoptosis) at the central and peripheral nervous systems. Currently, mechanisms of toxicity caused by mixing alcohol and ED in the brain are not well known. In this study, we evaluated the effect of chronic alcohol consumption in combination with ED on inflammatory response and oxidative stress in the temporal cortex (TCx) and hippocampus (Hp) of adult rats (90 days old). Our results demonstrated that consuming a mixture of alcohol and ED for 60 days induced an increase in reactive gliosis, IL-1β, TNF-α, iNOS, reactive oxygen species, lipid peroxidation, and nitric oxide, in the TCx and Hp. We also found immunoreactivity to caspase-3 and a decrease of synaptophysin in the same brain regions. The results suggested that chronic consumption of alcohol in combination with ED causes an inflammatory response and oxidative stress, which induced cell death via apoptosis in the TCx and Hp of the adult rats. PMID:27069534

  4. Energy Drink Administration in Combination with Alcohol Causes an Inflammatory Response and Oxidative Stress in the Hippocampus and Temporal Cortex of Rats

    Directory of Open Access Journals (Sweden)

    Alfonso Díaz

    2016-01-01

    Full Text Available Energy drinks (EDs are often consumed in combination with alcohol because they reduce the depressant effects of alcohol. However, different researches suggest that chronic use of these psychoactive substances in combination with alcohol can trigger an oxidative and inflammatory response. These processes are regulated by both a reactive astrogliosis and an increase of proinflammatory cytokines such as IL-1β, TNF-α, and iNOS, causing cell death (apoptosis at the central and peripheral nervous systems. Currently, mechanisms of toxicity caused by mixing alcohol and ED in the brain are not well known. In this study, we evaluated the effect of chronic alcohol consumption in combination with ED on inflammatory response and oxidative stress in the temporal cortex (TCx and hippocampus (Hp of adult rats (90 days old. Our results demonstrated that consuming a mixture of alcohol and ED for 60 days induced an increase in reactive gliosis, IL-1β, TNF-α, iNOS, reactive oxygen species, lipid peroxidation, and nitric oxide, in the TCx and Hp. We also found immunoreactivity to caspase-3 and a decrease of synaptophysin in the same brain regions. The results suggested that chronic consumption of alcohol in combination with ED causes an inflammatory response and oxidative stress, which induced cell death via apoptosis in the TCx and Hp of the adult rats.

  5. Induction of intestinal pro-inflammatory immune responses by lipoteichoic acid

    Directory of Open Access Journals (Sweden)

    Zadeh Mojgan

    2012-03-01

    Full Text Available Abstract Background The cellular and molecular mechanisms of inflammatory bowel disease are not fully understood; however, data indicate that uncontrolled chronic inflammation induced by bacterial gene products, including lipoteichoic acid (LTA, may trigger colonic inflammation resulting in disease pathogenesis. LTA is a constituent glycolipid of Gram-positive bacteria that shares many inflammatory properties with lipopolysaccharide and plays a critical role in the pathogenesis of severe inflammatory responses via Toll-like receptor 2. Accordingly, we elucidate the role of LTA in immune stimulation and induced colitis in vivo. Methods To better understand the molecular mechanisms utilized by the intestinal microbiota and their gene products to induce or subvert inflammation, specifically the effect(s of altered surface layer protein expression on the LTA-mediated pro-inflammatory response, the Lactobacillus acidophilus surface layer protein (Slp genes encoding SlpB and SlpX were deleted resulting in a SlpB- and SlpX- mutant that continued to express SlpA (assigned as NCK2031. Results Our data show profound activation of dendritic cells by NCK2031, wild-type L. acidophilus (NCK56, and purified Staphylococcus aureus-LTA. In contrary to the LTA-deficient strain NCK2025, the LTA-expressing strains NCK2031 and NCK56, as well as S. aureus-LTA, induce pro-inflammatory innate and T cell immune responses in vivo. Additionally, neither NCK2031 nor S. aureus-LTA supplemented in drinking water protected mice from DSS-colitis, but instead, induced significant intestinal inflammation resulting in severe colitis and tissue destruction. Conclusions These findings suggest that directed alteration of two of the L. acidophilus NCFM-Slps did not ameliorate LTA-induced pro-inflammatory signals and subsequent colitis.

  6. HMGB1/TLR4 signaling induces an inflammatory response following high-pressure renal pelvic perfusion in a porcine model.

    Science.gov (United States)

    Shao, Yi; Sha, Minglei; Chen, Lei; Li, Deng; Lu, Jun; Xia, Shujie

    2016-11-01

    Percutaneous nephrolithotomy (PCNL) causes a rapid increase in renal pelvic pressure in the kidney, which induces an inflammatory response. High-mobility group box-1 (HMGB1) is known to trigger the recruitment of inflammatory cells and the release of proinflammatory cytokines following ischemia reperfusion injury in the kidney, but the contribution of HMGB1 to the inflammatory response following high-pressure renal pelvic perfusion has not been investigated. In this study, high-pressure renal pelvic perfusion was induced in anesthetized pigs to examine the effect of HMGB1 on the inflammatory response. HMGB1 levels in the kidney increased following high-pressure renal pelvic perfusion, together with elevated levels of inflammatory cytokines in the plasma and kidney and an accumulation of neutrophils and macrophages. Inhibition of HMGB1 alleviated this inflammatory response while perfusion with recombinant HMGB1 had an augmentative effect, confirming the involvement of HMGB1 in the inflammatory response to high-pressure renal pelvic perfusion. HMGB1 regulated the inflammatory response by activating Toll-like receptor 4 (TLR4) signaling. In conclusion, this study has demonstrated that HMGB1/TLR4 signaling contributes to the inflammatory response following high-pressure renal pelvic perfusion in a porcine model and has implications for the management of inflammation after PCNL. Copyright © 2016 the American Physiological Society.

  7. Effects of Immunosuppressants on Immune Response to Vaccine in Inflammatory Bowel Disease

    OpenAIRE

    Yuan Cao; Di Zhao; An-Tao Xu; Jun Shen; Zhi-Hua Ran

    2015-01-01

    Objective: To evaluate the response rate to vaccination in different treatment groups (nonimmunosuppressants and immunosuppressants). Data Sources: We completed an online systematic search using PubMed to identify all articles published in English between January 1990 and December 2013 assessing the effect of the response rate to vaccination in different treatment groups (with and without immunomodulators). The following terms were used: "inflammatory bowel disease (IBD)" OR "Crohn′s dise...

  8. Brain injury forces of moderate magnitude elicit the fencing response.

    Science.gov (United States)

    Hosseini, Ario H; Lifshitz, Jonathan

    2009-09-01

    Traumatic brain injury is heterogeneous, both in its induction and ensuing neurological sequelae. In this way, medical care depends on accurately identifying the severity of injury-related forces. Clinically, injury severity is determined by a combination of the Glasgow Coma Scale, length of unconsciousness, posttraumatic amnesia, and persistence of neurological sequelae. In the laboratory, injury severity is gauged by the biomechanical forces and the acute suppression of neurological reflexes. The present communication describes and validates the "fencing response" as an overt indicator of injury force magnitude and midbrain localization to aid in injury identification and classification. Using YouTube, the Internet video database, videos were screened for head injury resulting in unconsciousness and documented for the fencing response. Adult male rats were subjected to midline fluid percussion brain injury at two severities, observed for acute neurological reflexes and the midbrain evaluated histopathologically. Tonic posturing (fencing response) has been observed to precede convulsions in sports injuries at the moment of impact, where extension and flexion of opposite arms occurs despite body position or gravity. Of the 35 videos identified by an impact to the head and period of unconsciousness, 66% showed a fencing response at the moment of impact, regardless of the side of impact, without ensuing convulsion. Similarly, diffuse brain-injured rats demonstrate a fencing response upon injury at moderate (1.9 atm, 39/44 animals) but not mild severity (1.1 atm, 0/19 animals). The proximity of the lateral vestibular nucleus to the cerebellar peduncles makes it vulnerable to mechanical forces that initiate a neurochemical storm to elicit the neuromotor response, disrupt the blood-brain barrier, and alter the nuclear volume. Therefore, the fencing response likely indicates neurological disturbance unique from convulsion associated with mechanical forces of moderate

  9. Contribution of pharmaceuticals, fecal bacteria and endotoxin to the inflammatory responses to inland waters.

    Science.gov (United States)

    El Marghani, Ahmed; Pradhan, Ajay; Seyoum, Asmerom; Khalaf, Hazem; Ros, Torbjön; Forsberg, Lars-Håkan; Nermark, Tomas; Osterman, Lisa; Wiklund, Ulf; Ivarsson, Per; Jass, Jana; Olsson, Per-Erik

    2014-08-01

    The increasing contamination of freshwater with pharmaceuticals, surfactants, pesticides and other organic compounds are of major concern. As these contaminants are detected at trace levels in the environment it is important to determine if they elicit biological responses at the observed levels. In addition to chemical pollutants, there is also a concern for increasing levels of bacteria and other microorganisms in freshwater systems. In an earlier study, we observed the activation of inflammatory systems downstream of a wastewater treatment plant (WWTP) in southern Sweden. We also observed that the water contained unidentified components that were pro-inflammatory and potentiated the immune response in human urinary bladder epithelial cells. In order to determine if these effects were unique for the studied site or represent a common response in Swedish water, we have now performed a study on three WWTPs and their recipient waters in central Sweden. Analysis of immune responses in urinary bladder epithelial cells, monocyte-like cells and blood mononuclear cells confirm that these waters activate the immune system as well as induce pro-inflammatory responses. The results indicate that the cytokine profiles correlate to the endotoxin load of the waters rather than to the levels of pharmaceuticals or culturable bacteria load, suggesting that measurements of endotoxin levels and immune responses would be a valuable addition to the analysis of inland waters. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Training increases anabolic response and reduces inflammatory response to a single practice in elite male adolescent volleyball players.

    Science.gov (United States)

    Nemet, Dan; Portal, Shawn; Zadik, Zvi; Pilz-Burstein, Rutie; Adler-Portal, Dana; Meckel, Yoav; Eliakim, Alon

    2012-01-01

    We examined the effect of training on hormonal and inflammatory response to a single volleyball practice in elite adolescent players. Fourteen male, elite, national team-level, Israeli volleyball players (age, 16.3±1.1 years, Tanner stage 4-5) participated in the study. Blood samples were collected before and immediately after a typical 60-min volleyball practice, before and after 7 weeks of training during the initial phases of the volleyball season. Hormonal measurements included the anabolic hormones growth hormone (GH), insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, and testosterone; the catabolic hormone cortisol; the pro-inflammatory markers interleukin (IL) 6, and the anti-inflammatory marker IL-1 receptor antagonist. Training led to a significant improvement of both anaerobic and aerobic properties. Before the training intervention, the typical volleyball practice was associated with a significant increase of GH and testosterone and also with a significant increase of IL-6. Training resulted in a significantly greater GH response (ΔGH, 2.5±2.4 vs. 4.7±3.0 ng/mL, before and after training, respectively; pvolleyball practice. The results suggest that, along with the improvement of anaerobic and aerobic characteristics, training leads to a greater anabolic and reduced inflammatory response to exercise.

  11. Hypoxic treatment of human dual placental perfusion induces a preeclampsia-like inflammatory response.

    Science.gov (United States)

    Jain, Arjun; Schneider, Henning; Aliyev, Eldar; Soydemir, Fatimah; Baumann, Marc; Surbek, Daniel; Hediger, Matthias; Brownbill, Paul; Albrecht, Christiane

    2014-08-01

    Preeclampsia is a human pregnancy-specific disorder characterized by a placental pro-inflammatory response in combination with an imbalance of angiogenic factors and clinical symptoms, including hypertension and proteinuria. Insufficient uteroplacental oxygenation in preeclampsia due to impaired trophoblast invasion during placentation is believed to be responsible for many of the molecular events leading to the clinical manifestations of this disease. We investigated the use of hypoxic treatment of the dual placental perfusion system as a model for preeclampsia. A modified perfusion technique allowed us to achieve a mean soluble oxygen tension within the intervillous space (IVS) of 5-7% for normoxia and preeclampsia). We assayed for the levels of different inflammatory cytokines, oxidative stress markers, as well as other factors, such as endothelin (ET)-1 that are known to be implicated as part of the inflammatory response in preeclampsia. Our results show a significant increase under hypoxia in the levels of different inflammatory cytokines, including IL-6 (P=0.002), IL-8 (Ppreeclampsia. This would therefore provide a powerful tool for studying and further delineating the molecular mechanisms involved in the underlying pathophysiology of preeclampsia.

  12. The Acute Inflammatory Response to Absorbed Collagen Sponge Is Not Enhanced by BMP-2

    Directory of Open Access Journals (Sweden)

    Hairong Huang

    2017-02-01

    Full Text Available Absorbed collagen sponge (ACS/bone morphogenetic protein-2 (BMP-2 are widely used in clinical practise for bone regeneration. However, the application of this product was found to be associated with a significant pro-inflammatory response, particularly in the early phase after implantation. This study aimed to clarify if the pro-inflammatory activities, associated with BMP-2 added to ACS, were related to the physical state of the carrier itself, i.e., a wet or a highly dehydrated state of the ACS, to the local degree of vascularisation and/or to local biomechanical factors. ACS (0.8 cm diameter/BMP-2 were implanted subcutaneously in the back of 12 eight-week-old Sprague Dawley rats. Two days after surgery, the implanted materials were retrieved and analysed histologically and histomorphometrically. The acute inflammatory response following implantation of ACS was dependent of neither the presence or absence of BMP-2 nor the degree of vascularization in the surrounding tissue nor the hydration state (wet versus dry of the ACS material at the time of implantation. Differential micro biomechanical factors operating at the implantation site appeared to have an influence on the thickness of inflammation. We conclude that the degree of the early inflammatory response of the ACS/BMP-2 may be associated with the physical and chemical properties of the carrier material itself.

  13. Decoy Receptor 3 Improves Survival in Experimental Sepsis by Suppressing the Inflammatory Response and Lymphocyte Apoptosis.

    Directory of Open Access Journals (Sweden)

    DongYu Liang

    Full Text Available Unbalanced inflammatory response and lymphocyte apoptosis is associated with high mortality in septic patients. Decoy receptor 3 (DcR3, a member of the tumor necrosis factor receptor superfamily, is an anti-inflammatory and anti-apoptotic factor. Recently, DcR3 expression was found to be increased in septic patients. This study evaluated the therapeutic effect and mechanisms of DcR3 on cecal ligation and puncture (CLP-induced sepsis in mice.C57BL/6 mice were subjected to CLP-induced polymicrobial sepsis. DcR3 Fc was intravenously injected 30 min before and 6 h after CLP. Bacterial clearance, cytokine production, histology, lymphocyte apoptosis and survival were evaluated. Furthermore, we investigated the systemic effects of DcR3 in in vitro lymphocyte apoptosis regulation.Our results demonstrated that DcR3 protein treatments significantly improved survival in septic mice (p <0.05. Treatment with DcR3 protein significantly reduced the inflammatory response and decreased lymphocyte apoptosis in the thymus and spleen. Histopathological findings of the lung and liver showed milder impairment after DcR3 administration. In vitro experiments showed that DcR3 Fc inhibited Fas-FasL mediated lymphocyte apoptosis.Treatment with the DcR3 protein protects mice from sepsis by suppressing the inflammatory response and lymphocyte apoptosis. DcR3 protein may be useful in treatment of sepsis.

  14. Inflammatory response of a prostate stromal cell line induced by Trichomonas vaginalis.

    Science.gov (United States)

    Im, S J; Han, I H; Kim, J H; Gu, N Y; Seo, M Y; Chung, Y H; Ryu, J S

    2016-04-01

    While Trichomonas vaginalis, a cause of sexually transmitted infection, is known as a surface-dwelling protozoa, trichomonads have been detected in prostatic tissue from benign prostatic hyperplasia and prostatitis by immunoperoxidase assay or PCR. However, the immune response of prostate stromal cells infected with T. vaginalis has not been investigated. Our objective was to investigate whether T. vaginalis could induce an inflammatory response in prostate stromal cells. Incubation of a human prostate stromal myofibroblast cells (WPMY-1) with live T. vaginalis T016 increased expression of the inflammatory chemokines CXCL8 and CCL2. In addition, TLR4, ROS, MAPK and NF-κB expression increased, while inhibitors of TLR4, ROS, MAPKs and NF-κB reduced CXCL8 and CCL2 production. Medium conditioned by incubation of WPMY-1 cells with T. vaginalis stimulated the migration of human neutrophils and monocytes (THP-1 cells). We conclude that T. vaginalis increases CXCL8 and CCL2 production by human prostate stromal cells by activating TLR4, ROS, MAPKs and NF-κB, and this in turn attracts neutrophils and monocytes and leads to an inflammatory response. This study is the first attempt to demonstrate an inflammatory reaction in prostate stromal cells caused by T. vaginalis. © 2016 John Wiley & Sons Ltd.

  15. Influence of inflammatory response, infection, and pulmonary function in cystic fibrosis.

    Science.gov (United States)

    Pereira, Leticia Cristina Radin; Moreira, Emilia Addison Machado; Bennemann, Gabriela Datsch; Moreno, Yara Maria Franco; Buss, Ziliani da Silva; Barbosa, Eliana; Ludwig-Neto, Norberto; Wilhelm Filho, Danilo; Fröde, Tânia Silvia

    2014-07-25

    Recurrent infections and activation of the inflammatory response affect the prognosis of cystic fibrosis (CF). We investigated the relationship between inflammatory response, infection, and pulmonary function in CF. A clinical-cross-sectional study was conducted with 86 subjects: control group (CG, n=31, the same age and sex of the CF group), and CF group (CFG, n=55, age: 1-16 years), further distributed into CFG negative or positive bacteriology (CFGB(-)/CFGB(+)), and CFG negative or positive Pseudomonas aeruginosa (CFGPa(-)/CFGPa(+)). Using the Wald test, multiple linear regression (95% confidence interval) was performed between CG and CFG, and between CG and each of the CF subgroups (CFGB(-)/CFGB(+) and CFGPa(-)/CFGPa(+)). The inflammatory markers evaluated were myeloperoxidase (MPO), adenosine deaminase (ADA) activities, interleukin-1beta (IL-1β), tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP), nitric oxide metabolites (NOx) levels, and total and differential leukocyte counts. After adjusting for sex and age, CFG compared to CG revealed an increase of MPO, IL-1β (PCFG (P=0.002), CFGB(-) (P=0.007), CFGB(+) (P=0.009), CFGPa(-) (P=0.004) and CFGPa(+) (P=0.020). NOx (P=0.001, PCFG. The inflammatory response characterized by the increase of MPO, IL-1β, and CRP is determinant for CF. Also leukocytosis due to neutrophilia determines the pulmonary function deficiency in this disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Unraveling inflammatory responses using systems genetics and gene-environment interactions in macrophages

    Science.gov (United States)

    Orozco, Luz D.; Bennett, Brian J.; Farber, Charles R.; Ghazalpour, Anatole; Pan, Calvin; Che, Nam; Wen, Pingzi; Qi, Hong Xiu; Mutukulu, Adonisa; Siemers, Nathan; Neuhaus, Isaac; Yordanova, Roumyana; Gargalovic, Peter; Pellegrini, Matteo; Kirchgessner, Todd; Lusis, Aldons J.

    2012-01-01

    SUMMARY Many common diseases have an important inflammatory component mediated in part by macrophages. Here we used a systems genetics strategy to examine the role of common genetic variation in macrophage responses to inflammatory stimuli. We examined genome-wide transcript levels in macrophages from 92 strains of the Hybrid Mouse Diversity Panel. We exposed macrophages to control media, bacterial lipopolysaccharide, or oxidized phospholipids. We performed association mapping under each condition and identified several thousand expression quantitative trait loci (eQTL), gene-by-environment interactions and several eQTL “hotspots” that specifically control LPS responses. We validated an eQTL hotspot in chromosome 8 using siRNA knock-down of candidate genes and identified the gene 2310061C15Rik, as a novel regulator of inflammatory responses in macrophages. We have created a public database where the data presented here can be used as a resource for understanding many common inflammatory traits which are modeled in the mouse, and for the dissection of regulatory relationships between genes. PMID:23101632

  17. Microbiota signalling through MyD88 is necessary for a systemic neutrophilic inflammatory response

    Science.gov (United States)

    Karmarkar, Dipti; Rock, Kenneth L

    2013-01-01

    In the present study, we have found that intestinal flora strongly influence peritoneal neutrophilic inflammatory responses to diverse stimuli, including pathogen-derived particles like zymosan and sterile irritant particles like crystals. When germ-free and flora-deficient (antibiotic-treated) mice are challenged with zymosan intraperitoneally, neutrophils are markedly impaired in their ability to extravasate from blood into the peritoneum. In contrast, in these animals, neutrophils can extravasate in response to an intraperitoneal injection of the chemokine, macrophage inflammatory protein 2. Neutrophil recruitment upon inflammatory challenge requires stimulation by microbiota through a myeloid differentiation primary response gene (88) (MyD88) -dependent pathway. MyD88 signalling is crucial during the development of the immune system but depending upon the ligand it may be dispensable at the time of the actual inflammatory challenge. Furthermore, pre-treatment of flora-deficient mice with a purified MyD88-pathway agonist is sufficient to restore neutrophil migration. In summary, this study provides insight into the role of gut microbiota in influencing acute inflammation at sites outside the gastrointestinal tract. PMID:23909393

  18. Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Ae [Department of Pharmacology, Aging-Associated Vascular Disease Research Center, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Choi, Hyoung Chul, E-mail: hcchoi@med.yu.ac.kr [Department of Pharmacology, Aging-Associated Vascular Disease Research Center, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer PTEN was induced by metformin and inhibited by compound C and AMPK siRNA. Black-Right-Pointing-Pointer Metformin suppressed TNF-{alpha}-induced COX-2 and iNOS mRNA expression. Black-Right-Pointing-Pointer Compound C and bpv (pic) increased iNOS and COX-2 protein expression. Black-Right-Pointing-Pointer NF-{kappa}B activation was restored by inhibiting AMPK and PTEN. Black-Right-Pointing-Pointer AMPK and PTEN regulated TNF-{alpha}-induced ROS production in VSMCs. -- Abstract: Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), a key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK-PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2 mM) and inhibited by compound C (10 {mu}M) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-{alpha}) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-{kappa}B. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-{kappa}B activation decreased in response to metformin and was restored by inhibiting AMPK

  19. Bioinformatics analysis of the early inflammatory response in a rat thermal injury model

    Directory of Open Access Journals (Sweden)

    Berthiaume Francois

    2007-01-01

    Full Text Available Abstract Background Thermal injury is among the most severe forms of trauma and its effects are both local and systemic. Response to thermal injury includes cellular protection mechanisms, inflammation, hypermetabolism, prolonged catabolism, organ dysfunction and immuno-suppression. It has been hypothesized that gene expression patterns in the liver will change with severe burns, thus reflecting the role the liver plays in the response to burn injury. Characterizing the molecular fingerprint (i.e., expression profile of the inflammatory response resulting from burns may help elucidate the activated mechanisms and suggest new therapeutic intervention. In this paper we propose a novel integrated framework for analyzing time-series transcriptional data, with emphasis on the burn-induced response within the context of the rat animal model. Our analysis robustly identifies critical expression motifs, indicative of the dynamic evolution of the inflammatory response and we further propose a putative reconstruction of the associated transcription factor activities. Results Implementation of our algorithm on data obtained from an animal (rat burn injury study identified 281 genes corresponding to 4 unique profiles. Enrichment evaluation upon both gene ontologies and transcription factors, verifies the inflammation-specific character of the selections and the rationalization of the burn-induced inflammatory response. Conducting the transcription network reconstruction and analysis, we have identified transcription factors, including AHR, Octamer Binding Proteins, Kruppel-like Factors, and cell cycle regulators as being highly important to an organism's response to burn response. These transcription factors are notable due to their roles in pathways that play a part in the gross physiological response to burn such as changes in the immune response and inflammation. Conclusion Our results indicate that our novel selection/classification algorithm has been

  20. Effects of Thymol and Carvacrol, Constituents of Thymus vulgaris L. Essential Oil, on the Inflammatory Response

    Science.gov (United States)

    Fachini-Queiroz, Fernanda Carolina; Kummer, Raquel; Estevão-Silva, Camila Fernanda; Carvalho, Maria Dalva de Barros; Cunha, Joice Maria; Grespan, Renata; Bersani-Amado, Ciomar Aparecida; Cuman, Roberto Kenji Nakamura

    2012-01-01

    Thyme (Thymus vulgaris L., Lamiaceae) is an aromatic and medicinal plant that has been used in folk medicine, phytopharmaceutical preparations, food preservatives, and as an aromatic ingredient. The effect of Thymus vulgaris essential oil (TEO) and its isolated constituents thymol and cavacrol (CVL) were studied in the following experimental models: ear edema, carrageenan-induced pleurisy, and chemotaxis in vitro. In the pleurisy model, TEO, CVL, and thymol significantly inhibited inflammatory edema. However, only TEO and CVL inhibited leukocyte migration. In the in vitro chemotaxis experiment, CVL inhibited leukocyte migration, whereas thymol exerted a potent chemoattractant effect. In the ear edema model, CVL (10 mg/ear), applied topically, reduced edema formation, exerting a topical anti-inflammatory effect. Thymol did not reduce edema formation but rather presented an irritative response, probably dependent on histamine and prostanoid release. Our data suggest that the antiinflammatory effects of TEO and CVL are attributable to the inhibition of inflammatory edema and leukocyte migration. PMID:22919415

  1. Role of glycogen synthase kinase-3 beta in the inflammatory response caused by bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Cortés-Vieyra Ricarda

    2012-06-01

    Full Text Available Abstract Glycogen synthase kinase 3β (GSK3β plays a fundamental role during the inflammatory response induced by bacteria. Depending on the pathogen and its virulence factors, the type of cell and probably the context in which the interaction between host cells and bacteria takes place, GSK3β may promote or inhibit inflammation. The goal of this review is to discuss recent findings on the role of the inhibition or activation of GSK3β and its modulation of the inflammatory signaling in monocytes/macrophages and epithelial cells at the transcriptional level, mainly through the regulation of nuclear factor-kappaB (NF-κB activity. Also included is a brief overview on the importance of GSK3 in non-inflammatory processes during bacterial infection.

  2. 5'-methylthioadenosine modulates the inflammatory response to endotoxin in mice and in rat hepatocytes.

    Science.gov (United States)

    Hevia, Henar; Varela-Rey, Marta; Corrales, Fernando J; Berasain, Carmen; Martínez-Chantar, María L; Latasa, M Ujue; Lu, Shelly C; Mato, José M; García-Trevijano, Elena R; Avila, Matías A

    2004-04-01

    5'-methylthioadenosine (MTA) is a nucleoside generated from S-adenosylmethionine (AdoMet) during polyamine synthesis. Recent evidence indicates that AdoMet modulates in vivo the production of inflammatory mediators. We have evaluated the anti-inflammatory properties of MTA in bacterial lipopolysaccharide (LPS) challenged mice, murine macrophage RAW 264.7 cells, and isolated rat hepatocytes treated with pro-inflammatory cytokines. MTA administration completely prevented LPS-induced lethality. The life-sparing effect of MTA was accompanied by the suppression of circulating tumor necrosis factor-alpha (TNF-alpha), inducible NO synthase (iNOS) expression, and by the stimulation of IL-10 synthesis. These responses to MTA were also observed in LPS-treated RAW 264.7 cells. MTA prevented the transcriptional activation of iNOS by pro-inflammatory cytokines in isolated hepatocytes, and the induction of cyclooxygenase 2 (COX2) in RAW 264.7 cells. MTA inhibited the activation of p38 mitogen-activated protein kinase (MAPK), c-jun phosphorylation, inhibitor kappa B alpha (IkappaBalpha) degradation, and nuclear factor kappaB (NFkappaB) activation, all of which are signaling pathways related to the generation of inflammatory mediators. These effects were independent of the metabolic conversion of MTA into AdoMet and the potential interaction of MTA with the cAMP signaling pathway, central to the anti-inflammatory actions of its structural analog adenosine. In conclusion, these observations demonstrate novel immunomodulatory properties for MTA that may be of value in the management of inflammatory diseases.

  3. Activation of Alveolar Macrophages after Plutonium Oxide Inhalation in Rats: Involvement in the Early Inflammatory Response

    Energy Technology Data Exchange (ETDEWEB)

    Van der Meeren, A.; Tourdes, F.; Gremy, O.; Grillon, G.; Abram, M.C.; Poncy, J.L.; Griffiths, N. [CEA, DSV, DRR, SRCA, Centre DAM Ile de France, F-91297 Bruyeres Le Chatel, Arpajon (France)

    2008-07-01

    Alveolar macrophages play an important role in the distribution, clearance and inflammatory reactions after particle inhalation, which may influence long-term events such as fibrosis and tumorigenesis. The objectives of the present study were to investigate the early inflammatory events after plutonium oxide inhalation in rats and involvement of alveolar macrophages. Lung changes were studied from 3 days to 3 months after inhalation of PuO{sub 2} or different isotopic compositions (70% or 97% {sup 239}Pu) and initial lung deposits (range 2.1 to 43.4 kBq/rat). Analyses of bronchoalveolar lavages showed early increases in the numbers of granulocytes, lymphocytes and multi-nucleated macrophages. The activation of macrophages was evaluated ex vivo by measurement of inflammatory mediator levels in culture supernatants. TNF-alpha and chemokine MCP-1, MIP-2 and CINC-1 production was elevated from 7 days after inhalation and remained so up to 3 months. In contrast, IL-1 beta, IL-6 and IL-10 production was unchanged. At 6 weeks, pulmonary macrophage numbers and activation state were increased as observed from an immunohistochemistry study of lung sections with anti-ED1. Similarly, histological analyses of lung sections also showed evidence of inflammatory responses. In conclusion, our results indicate early inflammatory changes in the lungs of PuO{sub 2}-contaminated animals and the involvement of macrophages in this process. A dose-effect relationship was observed between the amount of radionuclide inhaled or retained at the time of analysis and inflammatory mediator production by alveolar macrophages 14 days after exposure. For similar initial lung deposits, the inflammatory manifestation appears higher for 97% {sup 239}Pu than for 70% {sup 239}Pu. (authors)

  4. Effect of anti-inflammatory agents on transforming growth factor beta over-expressing mouse brains: a model revised

    Directory of Open Access Journals (Sweden)

    Landreth Gary E

    2004-07-01

    Full Text Available Abstract Background The over-expression of transforming growth factor β-1(TGF-β1 has been reported to cause hydrocephalus, glia activation, and vascular amyloidβ (Aβ deposition in mouse brains. Since these phenomena partially mimic the cerebral amyloid angiopathy (CAA concomitant to Alzheimer's disease, the findings in TGF-β1 over-expressing mice prompted the hypothesis that CAA could be caused or enhanced by the abnormal production of TGF-β1. This idea was in accordance with the view that chronic inflammation contributes to Alzheimer's disease, and drew attention to the therapeutic potential of anti-inflammatory drugs for the treatment of Aβ-elicited CAA. We thus studied the effect of anti-inflammatory drug administration in TGF-β1-induced pathology. Methods Two-month-old TGF-β1 mice and littermate controls were orally administered pioglitazone, a peroxisome proliferator-activated receptor-γ agonist, or ibuprofen, a non steroidal anti-inflammatory agent, for two months. Glia activation was assessed by immunohistochemistry and western blot analysis; Aβ precursor protein (APP by western blot analysis; Aβ deposition by immunohistochemistry, thioflavin-S staining and ELISA; and hydrocephalus by measurements of ventricle size on autoradiographies of brain sections. Results are expressed as means ± SD. Data comparisons were carried with the Student's T test when two groups were compared, or ANOVA analysis when more than three groups were analyzed. Results Animals displayed glia activation, hydrocephalus and a robust thioflavin-S-positive vascular deposition. Unexpectedly, these deposits contained no Aβ or serum amyloid P component, a common constituent of amyloid deposits. The thioflavin-S-positive material thus remains to be identified. Pioglitazone decreased glia activation and basal levels of Aβ42- with no change in APP contents – while it increased hydrocephalus, and had no effect on the thioflavin-S deposits. Ibuprofen mimicked

  5. Technical Approach Determines Inflammatory Response after Surgical and Transcatheter Aortic Valve Replacement.

    Directory of Open Access Journals (Sweden)

    Gabor Erdoes

    Full Text Available To investigate the periprocedural inflammatory response in patients with isolated aortic valve stenosis undergoing surgical aortic valve replacement (SAVR or transcatheter aortic valve implantation (TAVI with different technical approaches.Patients were prospectively allocated to one of the following treatments: SAVR using conventional extracorporeal circulation (CECC, n = 47 or minimized extracorporeal circulation (MECC, n = 15, or TAVI using either transapical (TA, n = 15 or transfemoral (TF, n = 24 access. Exclusion criteria included infection, pre-procedural immunosuppressive or antibiotic drug therapy and emergency indications. We investigated interleukin (IL-6, IL-8, IL-10, human leukocyte antigen (HLA-DR, white blood cell count, high-sensitivity C-reactive protein (hs-CRP and soluble L-selectin (sCD62L levels before the procedure and at 4, 24, and 48 h after aortic valve replacement. Data are presented for group interaction (p-values for inter-group comparison as determined by the Greenhouse-Geisser correction.SAVR on CECC was associated with the highest levels of IL-8 and hs-CRP (p<0.017, and 0.007, respectively. SAVR on MECC showed the highest descent in levels of HLA-DR and sCD62L (both p<0.001 in the perioperative period. TA-TAVI showed increased intraprocedural concentration and the highest peak of IL-6 (p = 0.017. Significantly smaller changes in the inflammatory markers were observed in TF-TAVI.Surgical and interventional approaches to aortic valve replacement result in inflammatory modulation which differs according to the invasiveness of the procedure. As expected, extracorporeal circulation is associated with the most marked pro-inflammatory activation, whereas TF-TAVI emerges as the approach with the most attenuated inflammatory response. Factors such as the pre-treatment patient condition and the extent of myocardial injury also significantly affect inflammatory biomarker patterns. Accordingly, TA-TAVI is to be classified not

  6. Primary cilia modulate TLR4-mediated inflammatory responses in hippocampal neurons.

    Science.gov (United States)

    Baek, Hyunjung; Shin, Hyo Jung; Kim, Jwa-Jin; Shin, Nara; Kim, Sena; Yi, Min-Hee; Zhang, Enji; Hong, Jinpyo; Kang, Joon Won; Kim, Yonghyun; Kim, Cuk-Seong; Kim, Dong Woon

    2017-09-19

    The primary cilium is an organelle that can act as a master regulator of cellular signaling. Despite the presence of primary cilia in hippocampal neurons, their function is not fully understood. Recent studies have demonstrated that the primary cilium influences interleukin (IL)-1β-induced NF-κB signaling, ultimately mediating the inflammatory response. We, therefore, investigated ciliary function and NF-κB signaling in lipopolysaccharide (LPS)-induced neuroinflammation in conjunction with ciliary length analysis. Since TLR4/NF-κB signaling is a well-known inflammatory pathway, we measured ciliary length and inflammatory mediators in wild type (WT) and TLR4-/- mice injected with LPS. Next, to exclude the effects of microglial TLR4, we examined the ciliary length, ciliary components, inflammatory cytokine, and mediators in HT22 hippocampal neuronal cells. Primary ciliary length decreased in hippocampal pyramidal neurons after intracerebroventricular injection of LPS in WT mice, whereas it increased in TLR4-/- mice. LPS treatment decreased primary ciliary length, activated NF-κB signaling, and increased Cox2 and iNOS levels in HT22 hippocampal neurons. In contrast, silencing Kif3a, a key protein component of cilia, increased ARL13B ciliary protein levels and suppressed NF-κB signaling and expression of inflammatory mediators. These data suggest that LPS-induced NF-κB signaling and inflammatory mediator expression are modulated by cilia and that the blockade of primary cilium formation by Kif3a siRNA regulates TLR4-induced NF-κB signaling. We propose that primary cilia are critical for regulating NF-κB signaling events in neuroinflammation and in the innate immune response.

  7. Experimental inflammation following dural application of complete Freund's adjuvant or inflammatory soup does not alter brain and trigeminal microvascular passage

    DEFF Research Database (Denmark)

    Lundblad, Cornelia; Haanes, Kristian A; Grände, Gustaf

    2015-01-01

    , following dural application of complete Freund's adjuvant (CFA) or inflammatory soup (IS) on brain and trigeminal microvascular passage. METHODS: In order to address this issue, we induced local inflammation in male Sprague-Dawley-rats dura mater by the addition of CFA or IS directly on the dural surface......) in a major way. However, [(51)Cr]-EDTA readily passed the TG by >30 times compared to the CNS. Application of CFA or IS did not show altered transfer constants. CONCLUSIONS: With these experiments we show that dural IS/CFA triggered TG inflammation, did not increase the BBB passage, and that the TG...

  8. Tumour-Derived Interleukin-1 Beta Induces Pro-inflammatory Response in Human Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Alajez, Nehad M; Al-toub, Mashael; Almusa, Abdulaziz

    ’ secreted factors as represented by a panel of human cancer cell lines (breast (MCF7 and MDA-MB-231); prostate (PC-3); lung (NCI-H522); colon (HT-29) and head & neck (FaDu)) on the biological characteristics of MSCs. Background Over the past several years, significant amount of research has emerged......, the goal of this study was to assess the cellular and molecular changes in MSCs in response to secreted factors present in conditioned media (CM) from a panel of human tumor cell lines covering a spectrum of human cancers (Breast, Prostate, Lung, colon, and head and neck). Research Morphological changes...... with bipolar processes. In association with phenotypic changes, genome-wide gene expression and bioinformatics analysis revealed an enhanced pro-inflammatory response of those MSCs. Pharmacological inhibitions of FAK and MAPKK severely impaired the pro-inflammatory response of MSCs to tumor CM (~80-99%, and 55...

  9. ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh.

    Science.gov (United States)

    Faulk, Denver M; Londono, Ricardo; Wolf, Matthew T; Ranallo, Christian A; Carruthers, Christopher A; Wildemann, Justin D; Dearth, Christopher L; Badylak, Stephen F

    2014-10-01

    Polypropylene has been used as a surgical mesh material for several decades. This non-degradable synthetic polymer provides mechanical strength, a predictable host response, and its use has resulted in reduced recurrence rates for ventral hernia and pelvic organ prolapse. However, polypropylene and similar synthetic materials are associated with a chronic local tissue inflammatory response and dense fibrous tissue deposition. These outcomes have prompted variations in mesh design to minimize the surface area interface and increase integration with host tissue. In contrast, biologic scaffold materials composed of extracellular matrix (ECM) are rapidly degraded in-vivo and are associated with constructive tissue remodeling and minimal fibrosis. The objective of the present study was to assess the effects of an ECM hydrogel coating on the long-term host tissue response to polypropylene mesh in a rodent model of abdominal muscle injury. At 14 days post implantation, the ECM coated polypropylene mesh devices showed a decreased inflammatory response as characterized by the number and distribution of M1 macrophages (CD86+/CD68+) around mesh fibers when compared to the uncoated mesh devices. At 180 days the ECM coated polypropylene showed decreased density of collagen and amount of mature type I collagen deposited between mesh fibers when compared to the uncoated mesh devices. This study confirms and extends previous findings that an ECM coating mitigates the chronic inflammatory response and associated scar tissue deposition characteristic of polypropylene. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Apoptotic neutrophils augment the inflammatory response to Mycobacterium tuberculosis infection in human macrophages.

    Directory of Open Access Journals (Sweden)

    Henrik Andersson

    Full Text Available Macrophages in the lung are the primary cells being infected by Mycobacterium tuberculosis (Mtb during the initial manifestation of tuberculosis. Since the adaptive immune response to Mtb is delayed, innate immune cells such as macrophages and neutrophils mount the early immune protection against this intracellular pathogen. Neutrophils are short-lived cells and removal of apoptotic cells by resident macrophages is a key event in the resolution of inflammation and tissue repair. Since anti-inflammatory activity is not compatible with effective immunity to intracellular pathogens, we therefore investigated how uptake of apoptotic neutrophils modulates the function of Mtb-activated human macrophages. We show that Mtb infection exerts a potent proinflammatory activation of human macrophages with enhanced gene activation and release of proinflammatory cytokines and that this response was augmented by apoptotic neutrophils. The enhanced macrophage response is linked to apoptotic neutrophil-driven activation of the NLRP3 inflammasome and subsequent IL-1β signalling. We also demonstrate that apoptotic neutrophils not only modulate the inflammatory response, but also enhance the capacity of infected macrophages to control intracellular growth of virulent Mtb. Taken together, these results suggest a novel role for apoptotic neutrophils in the modulation of the macrophage-dependent inflammatory response contributing to the early control of Mtb infection.

  11. Potential Use of Salivary Markers for Longitudinal Monitoring of Inflammatory Immune Responses to Vaccination

    Directory of Open Access Journals (Sweden)

    Pei Wen Lim

    2016-01-01

    Full Text Available Vaccination, designed to trigger a protective immune response against infection, is a trigger for mild inflammatory responses. Vaccination studies can address the question of inflammation initiation, levels, and resolution as well as its regulation for respective studied pathogens. Such studies largely based on analyzing the blood components including specific antibodies and cytokines were usually constrained by number of participants and volume of collected blood sample. Hence, blood-based studies may not be able to cover the full dynamic range of inflammation responses induced by vaccination. In this review, the potential of using saliva in addition to blood for studying the kinetics of inflammatory response studies was assessed. Saliva sampling is noninvasive and has a great potential to be used for studies aimed at analysing the magnitude, time course, and variance in immune responses, including inflammation after vaccination. Based on a literature survey of inflammatory biomarkers that can be determined in saliva and an analysis of how these biomarkers could help to understand the mechanisms and dynamics of immune reactivity and inflammation, we propose that the saliva-based approach might have potential to add substantial value to clinical studies, particularly in vulnerable populations such as infants, toddlers, and ill individuals.

  12. An LPS based method to stimulate the inflammatory response in growing rabbits

    Directory of Open Access Journals (Sweden)

    C. Knudsen

    2016-03-01

    Full Text Available Reliable indicators are needed to study the relationship between the inflammatory response of the growing rabbit and breeding factors such as feeding practices. A lipopolysaccharide (LPS stimulation of the inflammatory response is a valid model of bacterial infection in laboratory animals, but no data on the growing rabbit has yet been obtained. The aim of our study was to determine an adequate dose of LPS to inject in growing rabbits in order to elicit a measurable inflammatory response in terms of plasmatic TNF-α and rise in rectal temperature. Three trials were carried out in this study: 2 development trials, the first (n=18 testing 3 doses of LPS (2, 10, 50 μg/kg on the plasmatic TNF-α concentration at 90 and 180 min post injection, and the second trial (n=36 testing 4 doses of LPS (50, 75, 100 and 150 μg/kg on the TNF-α concentration 90 min post injection and the rectal temperature. The third trial was designed as an application of the method in a large number of animals (n=32 to study the effect of feed restriction and dietary increase in digestible fibre to starch ratio on the LPS inflammatory challenge response of growing rabbits. In development trials 1 and 2, animals had measurable TNF-α responses for doses higher than 10 μg/kg at 90 min post injection, with an increase in the number of responsive animals along with the dose. High variability was observed in TNF-α concentrations in responsive animals (coefficient of variation from 44 to 94%. Animals demonstrated an increase in rectal temperature for all doses injected in the range of 50-150 μg/kg from 90 min post injection with a peak at 180 min (ΔTr =1.9±0.7°C. Our observations led us to choose a dose of 100 μg/kg of LPS for our following studies, as the responses in terms of temperature and TNF-α were the most satisfactory. The application of our LPS injection protocol to our nutritional study enabled us to validate our protocol (ΔTr =1.1±0.7°C at 180 min and 15

  13. Wild skylarks seasonally modulate energy budgets but maintain energetically costly inflammatory immune responses throughout the annual cycle

    NARCIS (Netherlands)

    Hegemann, A.; Matson, K.D.; Versteegh, M.A.; Tieleman, B.I.

    2012-01-01

    A central hypothesis of ecological immunology is that immune defences are traded off against competing physiological and behavioural processes. During energetically demanding periods, birds are predicted to switch from expensive inflammatory responses to less costly immune responses. Acute phase

  14. Wild Skylarks Seasonally Modulate Energy Budgets but Maintain Energetically Costly Inflammatory Immune Responses throughout the Annual Cycle

    NARCIS (Netherlands)

    Hegemann, Arne; Matson, Kevin D.; Versteegh, Maaike A.; Tieleman, B. Irene

    2012-01-01

    A central hypothesis of ecological immunology is that immune defences are traded off against competing physiological and behavioural processes. During energetically demanding periods, birds are predicted to switch from expensive inflammatory responses to less costly immune responses. Acute phase

  15. Overweight adolescents’ brain response to sweetened beverages mirrors addiction pathways

    Science.gov (United States)

    Claus, Eric D.; Hudson, Karen A.; Filbey, Francesca M.; Jimenez, Elizabeth Yakes; Lisdahl, Krista M.; Kong, Alberta S.

    2017-01-01

    Many adolescents struggle with overweight/obesity, which exponentially increases in the transition to adulthood. Overweight/obesity places youth at risk for serious health conditions, including type 2 diabetes. In adults, neural substrates implicated in addiction (e.g., orbitofrontal cortex (OFC), striatum, amygdala, and ventral tegmental area) have been found to be relevant to risk for overweight/obesity. In this study, we examined three hypotheses to disentangle the potential overlap between addiction and overweight/obesity processing by examining (1) brain response to high vs. low calorie beverages, (2) the strength of correspondence between biometrics, including body mass index (BMI) and insulin resistance, and brain response and (3) the relationship between a measure of food addiction and brain response using an established fMRI gustatory cue exposure task with a sample of overweight/obese youth (M age = 16.46; M BMI = 33.1). Greater BOLD response was observed across the OFC, inferior frontal gyrus (IFG), nucleus accumbens, right amygdala, and additional frontoparietal and temporal regions in neural processing of high vs. low calorie beverages. Further, BMI scores positively correlated with BOLD activation in the high calorie > low calorie contrast in the right postcentral gyrus and central operculum. Insulin resistance positively correlated with BOLD activation across the bilateral middle/superior temporal gyrus, left OFC, and superior parietal lobe. No relationships were observed between measures of food addiction and brain response. These findings support the activation of parallel addiction-related neural pathways in adolescents’ high calorie processing, while also suggesting the importance of refining conceptual and neurocognitive models to fit this developmental period. PMID:27392791

  16. Overweight adolescents' brain response to sweetened beverages mirrors addiction pathways.

    Science.gov (United States)

    Feldstein Ewing, Sarah W; Claus, Eric D; Hudson, Karen A; Filbey, Francesca M; Yakes Jimenez, Elizabeth; Lisdahl, Krista M; Kong, Alberta S

    2017-08-01

    Many adolescents struggle with overweight/obesity, which exponentially increases in the transition to adulthood. Overweight/obesity places youth at risk for serious health conditions, including type 2 diabetes. In adults, neural substrates implicated in addiction (e.g., orbitofrontal cortex (OFC), striatum, amygdala, and ventral tegmental area) have been found to be relevant to risk for overweight/obesity. In this study, we examined three hypotheses to disentangle the potential overlap between addiction and overweight/obesity processing by examining (1) brain response to high vs. low calorie beverages, (2) the strength of correspondence between biometrics, including body mass index (BMI) and insulin resistance, and brain response and (3) the relationship between a measure of food addiction and brain response using an established fMRI gustatory cue exposure task with a sample of overweight/obese youth (M age = 16.46; M BMI = 33.1). Greater BOLD response was observed across the OFC, inferior frontal gyrus (IFG), nucleus accumbens, right amygdala, and additional frontoparietal and temporal regions in neural processing of high vs. low calorie beverages. Further, BMI scores positively correlated with BOLD activation in the high calorie > low calorie contrast in the right postcentral gyrus and central operculum. Insulin resistance positively correlated with BOLD activation across the bilateral middle/superior temporal gyrus, left OFC, and superior parietal lobe. No relationships were observed between measures of food addiction and brain response. These findings support the activation of parallel addiction-related neural pathways in adolescents' high calorie processing, while also suggesting the importance of refining conceptual and neurocognitive models to fit this developmental period.

  17. Response-locked brain dynamics of word production.

    Directory of Open Access Journals (Sweden)

    Stéphanie Riès

    Full Text Available The cortical regions involved in the different stages of speech production are relatively well-established, but their spatio-temporal dynamics remain poorly understood. In particular, the available studies have characterized neural events with respect to the onset of the stimulus triggering a verbal response. The core aspect of language production, however, is not perception but action. In this context, the most relevant question may not be how long after a stimulus brain events happen, but rather how long before the production act do they occur. We investigated speech production-related brain activity time-locked to vocal onset, in addition to the common stimulus-locked approach. We report the detailed temporal interplay between medial and left frontal activities occurring shortly before vocal onset. We interpret those as reflections of, respectively, word selection and word production processes. This medial-lateral organization is in line with that described in non-linguistic action control, suggesting that similar processes are at play in word production and non-linguistic action production. This novel view of the brain dynamics underlying word production provides a useful background for future investigations of the spatio-temporal brain dynamics that lead to the production of verbal responses.

  18. Response-locked brain dynamics of word production.

    Science.gov (United States)

    Riès, Stéphanie; Janssen, Niels; Burle, Borís; Alario, F-Xavier

    2013-01-01

    The cortical regions involved in the different stages of speech production are relatively well-established, but their spatio-temporal dynamics remain poorly understood. In particular, the available studies have characterized neural events with respect to the onset of the stimulus triggering a verbal response. The core aspect of language production, however, is not perception but action. In this context, the most relevant question may not be how long after a stimulus brain events happen, but rather how long before the production act do they occur. We investigated speech production-related brain activity time-locked to vocal onset, in addition to the common stimulus-locked approach. We report the detailed temporal interplay between medial and left frontal activities occurring shortly before vocal onset. We interpret those as reflections of, respectively, word selection and word production processes. This medial-lateral organization is in line with that described in non-linguistic action control, suggesting that similar processes are at play in word production and non-linguistic action production. This novel view of the brain dynamics underlying word production provides a useful background for future investigations of the spatio-temporal brain dynamics that lead to the production of verbal responses.

  19. Suppressive effects of methylthiouracil on polyphosphate-mediated vascular inflammatory responses.

    Science.gov (United States)

    Min, Gahee; Ku, Sae-Kwang; Jeong, Seongdo; Baek, Moon-Chang; Bae, Jong-Sup

    2016-12-01

    Drug repositioning is used to discover drug candidates to treat human diseases, through the application of drugs or compounds that are approved for the treatment of other diseases. This method can significantly reduce the time required and cost of discovering new drug candidates for human diseases. Previous studies have reported pro-inflammatory responses of endothelial cells to the release of polyphosphate (PolyP). In this study, we examined the anti-inflammatory responses and mechanisms of methylthiouracil (MTU), which is an antithyroid drug, and its effects on PolyP-induced septic activities in human umbilical vein endothelial cells (HUVECs) and mice. The survival rates, septic biomarker levels, behaviour of human neutrophils and vascular permeability were determined in PolyP-activated HUVECs and mice. MTU suppressed the PolyP-mediated vascular barrier permeability, up-regulation of inflammatory biomarkers, adhesion/migration of leucocytes, and activation and/or production of nuclear factor-κB, tumour necrosis factor-α and interleukin-6. Furthermore, MTU demonstrated protective effects on PolyP-mediated lethal death and the levels of the related septic biomarkers. Therefore, these results indicated the therapeutic potential of MTU on various systemic inflammatory diseases, such as sepsis or septic shock. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  20. Mitochondrial fragmentation in human macrophages attenuates palmitate-induced inflammatory responses.

    Science.gov (United States)

    Zezina, Ekaterina; Snodgrass, Ryan G; Schreiber, Yannick; Zukunft, Sven; Schürmann, Christoph; Heringdorf, Dagmar Meyer Zu; Geisslinger, Gerd; Fleming, Ingrid; Brandes, Ralf P; Brüne, Bernhard; Namgaladze, Dmitry

    2018-02-02

    Macrophages in adipose tissue contribute to inflammation and the development of insulin resistance in obesity. Exposure of macrophages to saturated fatty acids alters cell metabolism and activates pro-inflammatory signaling. How fatty acids influence macrophage mitochondrial dynamics is unclear. We investigated the mechanism of palmitate-induced mitochondrial fragmentation and its impact on inflammatory responses in primary human macrophages. Fatty acids, such as palmitate, caused mitochondrial fragmentation in human macrophages. Increased mitochondrial fragmentation was also observed in peritoneal macrophages from hyperlipidemic apolipoprotein E knockout mice. Fatty acid-induced mitochondrial fragmentation was independent of the fatty acid chain saturation and required dynamin-related protein 1 (DRP1). Mechanistically, mitochondrial fragmentation was regulated by incorporation of palmitate into mitochondrial phospholipids and their precursors. Palmitate-induced endoplasmic reticulum stress and loss of mitochondrial membrane potential did not contribute to mitochondrial fragmentation. Macrophages treated with palmitate maintained intact mitochondrial respiration and ATP levels. Pharmacological or genetic inhibition of DRP1 enhanced palmitate-induced mitochondrial ROS production, c-Jun phosphorylation, and inflammatory cytokine expression. Our results indicate that mitochondrial fragmentation is a protective mechanism attenuating inflammatory responses induced by palmitate in human macrophages. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Patterns of inflammatory responses and parasite tolerance vary with malaria transmission intensity.

    Science.gov (United States)

    Ademolue, Temitope W; Aniweh, Yaw; Kusi, Kwadwo A; Awandare, Gordon A

    2017-04-11

    In individuals living in malaria-endemic regions, parasitaemia thresholds for the onset of clinical symptoms vary with transmission intensity. The mechanisms that mediate this relationship are however, unclear. Since inflammatory responses to parasite infection contribute to the clinical manifestation of malaria, this study investigated inflammatory cytokine responses in children with malaria from areas of different transmission intensities (ranging from low to high). Blood samples were obtained from children confirmed with malaria at community hospitals in three areas with differing transmission intensities. Cytokine levels were assessed using the Luminex®-based magnetic bead array system, and levels were compared across sites using appropriate statistical tests. The relative contributions of age, gender, parasitaemia and transmission intensity on cytokine levels were investigated using multivariate regression analysis. Parasite density increased with increasing transmission intensity in children presenting to hospital with symptomatic malaria, indicating that the parasitaemia threshold for clinical malaria increases with increasing transmission intensity. Furthermore, levels of pro-inflammatory cytokines, including tumour necrosis factor alpha (TNF-α), interferon-gamma (IFN-γ), interleukin (IL)-1β, IL-2, IL-6, IL-8, and IL-12, decreased with increasing transmission intensity, and correlated significantly with parasitaemia levels in the low transmission area but not in high transmission areas. Similarly, levels of anti-inflammatory cytokines, including IL-4, IL-7, IL-10 and IL-13, decreased with increasing transmission intensity, with IL-10 showing strong correlation with parasitaemia levels in the low transmission area. Multiple linear regression analyses revealed that transmission intensity was a stronger predictor of cytokine levels than age, gender and parasitaemia. Taken together, the data demonstrate a strong relationship between the prevailing

  2. Comparison of inflammatory responses following robotic and open colorectal surgery: a prospective study.

    Science.gov (United States)

    Zawadzki, Marek; Krzystek-Korpacka, Malgorzata; Gamian, Andrzej; Witkiewicz, Wojciech

    2017-03-01

    Robotic colorectal surgery continues to rise in popularity, but there remains little evidence on the stress response following the procedure. The aim of this study was to evaluate the inflammatory response to robotic colorectal surgery and compare it with the response generated by open colorectal surgery. This was a prospective nonrandomized comparative study involving 61 patients with colorectal cancer. The evaluation of inflammatory response to either robotic or open colorectal surgery was expressed as changes in interleukin-1β, interleukin-1 receptor antagonist, interleukin-6, tumor necrosis factor-α, C-reactive protein, and procalcitonin during the first three postoperative days. Of the 61 patients, 33 underwent robotic colorectal surgery while 28 had open colorectal surgery. Groups were comparable with respect to age, sex, BMI, cancer stage, and type of resection. The relative increase of interleukin-1 receptor antagonist at 8 h postoperative, compared to baseline, was higher in the open group (P = 0.006). The decrease of interleukin-1 receptor antagonist on postoperative days 1 and 3, compared to the maximum at 8 h, was more pronounced in the open group than in the robotic group (P = 0.008, P = 0.006, respectively), and the relative increase of interleukin-6 at 8 h after incision was higher in the open group (P = 0.007). The relative increase of procalcitonin on postoperative days 1 and 3 was higher in the open group than the robotic group (P robotic colorectal surgery results in a less pronounced inflammatory response and more pronounced anti-inflammatory action.

  3. Pro- and anti-inflammatory responses are regulated simultaneously from the first moments of septic shock.

    Science.gov (United States)

    Tamayo, Eduardo; Fernández, Ana; Almansa, Raquel; Carrasco, Elena; Heredia, María; Lajo, Carmen; Goncalves, Lisbeth; Gómez-Herreras, Jose I; de Lejarazu, Raúl Ortiz; Bermejo-Martin, Jesus F

    2011-06-01

    The relationships between cytokine responses in septic shock are currently poorly understood. Some studies have pointed to a biphasic model, with an initial proinflammatory phase, followed by a reactive, anti-inflammatory response to explain the pathogenesis of the most severe form of sepsis. However, evidence for the coexistence of both responses has been found. In this study, the plasma levels of 17 cytokines and chemokines, in 20 patients with septic shock, 11 patients with systemic inflammatory response syndrome (SIRS), during the first 24 hours following diagnosis, and 10 healthy controls, were analyzed and compared. Patients with septic shock showed increased levels of IL-6, IL-8, MCP-1, MIP-1β, IFN-γ, GM-CSF and IL-10 compared to healthy controls. Patients with SIRS showed higher levels of IL-6, IL-8, MCP-1, MIP-1β, G-CSF and IL-10 than controls. Patients with septic shock showed higher levels of IL-8, GM-CSF, MIP-1β than those with SIRS. The Spearman test demonstrated a positive association between the pro-inflammatory mediators IL-6, IL-8, MCP-1, MIP-1β, IFN-γ, GM-CSF and the immunomodulatory cytokine IL-10 in septic shock. Consequently, correlation studies supported the notion that secretion of pro- and anti-inflammatory mediators in septic shock occurs as a simultaneous immune response program initiated early in the course of the disease, revealing that both types of cytokine play a role from the very beginning of this life-threatening condition.

  4. Eukaryotic-like Kinase Expression in Enterohemorrhagic Escherichia coli: Potential for Enhancing Host Aggressive Inflammatory Response.

    Science.gov (United States)

    Li, Tao; Li, Zhan; Chen, Fanghong; Liu, Xiong; Ning, Nianzhi; Huang, Jie; Wang, Hui

    2017-11-27

    Enterohemorrhagic Escherichia coli (EHEC) or other attaching/effacing pathogen infections often cause host intestinal inflammation and pathology, which is thought to result in part from a host aggressive innate immune response. However, few effectors that play an important role in this pathology change have been reported. In this study, we discovered a previously unknown EHEC effector, Stk (putative serine/threonine kinase), which induces host aggressive inflammatory response during EHEC infection. Interestingly, homologous proteins of Stk are widely distributed in many pathogens. After translocating into the infected host cells, Stk efficiently phosphorylates IκBα and activates the NF-κB pathway. In EHEC-infected mice, Stk increases serum keratinocyte-derived cytokine (KC) levels and hyperactivates the inflammatory response of the colon, intensifying pathological injury of the colon. The virulence of Stk is based on its eukaryotic-like kinase activity. In conclusion, our data suggest that Stk is a new effector that induces the host aggressive inflammatory response during EHEC infection. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  5. Stenotrophomonas maltophilia outer membrane vesicles elicit a potent inflammatory response in vitro and in vivo.

    Science.gov (United States)

    Kim, Yoo Jeong; Jeon, Hyejin; Na, Seok Hyeon; Kwon, Hyo Il; Selasi, Gati Noble; Nicholas, Asiimwe; Park, Tae In; Lee, Sang Hwa; Lee, Je Chul

    2016-11-01

    Stenotrophomonas maltophilia has become one of the most prevalent opportunistic pathogens in hospitalized patients. This microorganism secretes outer membrane vesicles (OMVs), but the pathogenesis of S. maltophilia as it relates to OMVs has not been characterized. This study investigated the cytotoxic activity of S. maltophilia OMVs and their ability to induce inflammatory responses both in vitro and in vivo Stenotrophomonas maltophilia ATCC 13637 and two clinical isolates were found to secrete spherical OMVs during in vitro culture. OMVs from S. maltophilia ATCC 13637 were cytotoxic to human lung epithelial A549 cells. Stenotrophomonas maltophilia OMVs stimulated the expression of proinflammatory cytokine and chemokine genes, including interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor-α and monocyte chemoattractant protein-1, in A549 cells. Early inflammatory responses such as congestion and neutrophilic infiltrations and profound expression of proinflammatory cytokine and chemokine genes were observed in the lungs of mice injected with S. maltophilia OMVs, and were similar to responses elicited by the bacteria. Our data demonstrate that S. maltophilia OMVs are important secretory nanocomplexes that elicit a potent inflammatory response that might contribute to S. maltophilia pathogenesis during infection. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Global Analysis of Neutrophil Responses to Neisseria gonorrhoeae Reveals a Self-Propagating Inflammatory Program

    Science.gov (United States)

    Sintsova, Anna; Sarantis, Helen; Islam, Epshita A.; Sun, Chun Xiang; Amin, Mohsen; Chan, Carlos H. F.; Stanners, Clifford P.; Glogauer, Michael; Gray-Owen, Scott D.

    2014-01-01

    An overwhelming neutrophil-driven response causes both acute symptoms and the lasting sequelae that result from infection with Neisseria gonorrhoeae. Neutrophils undergo an aggressive opsonin-independent response to N. gonorrhoeae, driven by the innate decoy receptor CEACAM3. CEACAM3 is exclusively expressed by human neutrophils, and drives a potent binding, phagocytic engulfment and oxidative killing of Opa-expressing bacteria. In this study, we sought to explore the contribution of neutrophils to the pathogenic inflammatory process that typifies gonorrhea. Genome-wide microarray and biochemical profiling of gonococcal-infected neutrophils revealed that CEACAM3 engagement triggers a Syk-, PKCδ- and Tak1-dependent signaling cascade that results in the activation of an NF-κB-dependent transcriptional response, with consequent production of pro-inflammatory cytokines. Using an in vivo model of N. gonorrhoeae infection, we show that human CEACAM-expressing neutrophils have heightened migration toward the site of the infection where they may be further activated upon Opa-dependent binding. Together, this study establishes that the role of CEACAM3 is not restricted to the direct opsonin-independent killing by neutrophils, since it also drives the vigorous inflammatory response that typifies gonorrhea. By carrying the potential to mobilize increasing numbers of neutrophils, CEACAM3 thereby represents the tipping point between protective and pathogenic outcomes of N. gonorrhoeae infection. PMID:25188454

  7. Kinetics of the inflammatory response following intramuscular injection of aluminum adjuvant.

    Science.gov (United States)

    Lu, Fangjia; Hogenesch, Harm

    2013-08-20

    Aluminum-containing adjuvants are widely used in human and veterinary vaccines, but their mechanism of action is not well understood. Recent evidence suggests an important role for inflammation in the immune response to aluminum-adjuvanted vaccines. To better understand this process, vaccines with aluminum adjuvant were injected into naïve or previously immunized mice and the injection sites were characterized for the corresponding primary and secondary inflammatory response at different time points after immunization. Inflammatory cells appeared at the injection site between 2h and 6h after vaccination, dominated by neutrophils at first, followed by macrophages, and later eosinophils and MHCII(+) cells. The number of cells at the injection site increased over time, except neutrophils, which decreased in number after day 2. There was extensive phagocytosis of aluminum adjuvant particles by macrophages. In secondary immunized mice, a faster and more robust recruitment of eosinophils, macrophages, and antigen presenting cells was observed at the injection site. The enhanced recruitment of inflammatory cells in previously immunized mice coincided with increased expression of relevant chemokines at the injection site. Since neutrophils accumulated first in response to aluminum-adjuvanted vaccines, their role was evaluated by depleting them prior to vaccination. Neutrophil depletion transiently reduced the recruitment of macrophages but it did not change the recruitment of eosinophils and MHCII(+) cells or the quality and magnitude of the antibody response. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Inflammatory response to Porphyromonas gingivalis partially requires interferon regulatory factor (IRF) 3.

    Science.gov (United States)

    Shaik-Dasthagirisaheb, Yazdani B; Huang, Nasi; Gibson, Frank C

    2014-04-01

    Innate immune activation with expression of pro-inflammatory molecules such as TNF-α is a hallmark of the chronic inflammation associated with periodontal disease (PD). Porphyromonas gingivalis, a bacterium associated with PD, engages TLRs and activates MyD88-dependent and TIR-domain-containing adapter-inducing IFN-β (TRIF)-dependent signaling pathways. IFN regulatory factor (IRF) 3 is activated in a TRIF-dependent manner and participates in production of cytokines such as TNF-α; however, little is known regarding IRF3 and the host response to PD pathogens. We speculated that IRF3 participates in the host inflammatory response to P. gingivalis. Our results show that bone marrow macrophages (MØ) from WT mice respond to P. gingivalis with activation and nuclear translocation of IRF3. Compared with WT, MØ from IRF3(-/-), TRIF(-/-), and TLR4(-/-) mice responded with reduced levels of TNF-α on P. gingivalis challenge. In addition, full expression of IL-6 and RANTES by MØ to P. gingivalis was dependent on IRF3. Lastly, employing MØ from IRF3(-/-) and IRF7(-/-) mice we observed a significant role for IRF3 and a modest role for IRF7 in the P. gingivalis-elicited TNF-α response. These studies identify a role for IRF3 in the inflammatory response by MØ to the periodontal pathogen P. gingivalis.

  9. Differential inflammatory response to acrylonitrile in rat primary astrocytes and microglia.

    Science.gov (United States)

    Caito, Samuel W; Yu, Yingchun; Aschner, Michael

    2014-05-01

    Acrylonitrile (ACN) is extensively used in the production of plastics, resins, nitriles and other commercial products. Chronic low dose exposures to ACN cause glial cell tumors in rats, primarily microglial in origin. Recently it has been determined that astrocytes and microglia respond to ACN-induced oxidative stress differently, which may influence cell-specific activation of inflammatory and carcinogenic pathways. This study was conducted to compare the inflammatory responses of astrocytes and microglia following ACN treatment in vitro to further characterize differential sensitivities and adaptive responses in these cell types. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and p53 levels were measured along with levels of 12 different cytokines and chemokines in primary rat microglia and astrocytes. Additionally levels of cytochrome P450 2E1 (CYP2E1) were measured to evaluate the cells' ability to metabolize ACN. Results indicate that while both cells upregulate p53 and NF-κB, the cytokines and chemokines produced differ between the cell types. Astrocytes, but not microglia, upregulated CYP2E1 in response to ACN, which may be due to the astrocytes accumulating more ACN than the microglia. Altogether our data implicate the inflammatory response as an important event in ACN-induced neurotoxicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Aspergillus fumigatus Triggers Inflammatory Responses by Stage-Specific beta-Glucan Display.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available Inhalation of fungal spores (conidia occurs commonly and, in specific circumstances, can result in invasive disease. We investigated the murine inflammatory response to conidia of Aspergillus fumigatus, the most common invasive mold in immunocompromised hosts. In contrast to dormant spores, germinating conidia induce neutrophil recruitment to the airways and TNF-alpha/MIP-2 secretion by alveolar macrophages. Fungal beta-glucans act as a trigger for the induction of these inflammatory responses through their time-dependent exposure on the surface of germinating conidia. Dectin-1, an innate immune receptor that recognizes fungal beta-glucans, is recruited in vivo to alveolar macrophage phagosomes that have internalized conidia with exposed beta-glucans. Antibody-mediated blockade of Dectin-1 partially inhibits TNF-alpha/MIP-2 induction by metabolically active conidia. TLR-2- and MyD88-mediated signals provide an additive contribution to macrophage activation by germinating conidia. Selective responsiveness to germinating conidia provides the innate immune system with a mechanism to restrict inflammatory responses to metabolically active, potentially invasive fungal spores.

  11. Aspergillus fumigatus triggers inflammatory responses by stage-specific beta-glucan display.

    Directory of Open Access Journals (Sweden)

    Tobias M Hohl

    2005-11-01

    Full Text Available Inhalation of fungal spores (conidia occurs commonly and, in specific circumstances, can result in invasive disease. We investigated the murine inflammatory response to conidia of Aspergillus fumigatus, the most common invasive mold in immunocompromised hosts. In contrast to dormant spores, germinating conidia induce neutrophil recruitment to the airways and TNF-alpha/MIP-2 secretion by alveolar macrophages. Fungal beta-glucans act as a trigger for the induction of these inflammatory responses through their time-dependent exposure on the surface of germinating conidia. Dectin-1, an innate immune receptor that recognizes fungal beta-glucans, is recruited in vivo to alveolar macrophage phagosomes that have internalized conidia with exposed beta-glucans. Antibody-mediated blockade of Dectin-1 partially inhibits TNF-alpha/MIP-2 induction by metabolically active conidia. TLR-2- and MyD88-mediated signals provide an additive contribution to macrophage activation by germinating conidia. Selective responsiveness to germinating conidia provides the innate immune system with a mechanism to restrict inflammatory responses to metabolically active, potentially invasive fungal spores.

  12. Alginate micro-encapsulation of mesenchymal stromal cells enhances modulation of the neuro-inflammatory response.

    Science.gov (United States)

    Stucky, Elizabeth C; Schloss, Rene S; Yarmush, Martin L; Shreiber, David I

    2015-10-01

    Modulation of inflammation after brain trauma is a key therapeutic goal aimed at limiting the consequences of the subsequent injury cascade. Mesenchymal stromal cells (MSCs) have been demonstrated to dynamically regulate the inflammatory environment in several tissue systems, including the central nervous system. There has been limited success, however, with the use of direct implantation of cells in the brain caused by low viability and engraftment at the injury site. To circumvent this, we encapsulated MSCs in alginate microspheres and evaluated the ability of these encapsulated MSCs to attenuate inflammation in rat organotypic hippocampal slice cultures (OHSC). OHSC were administered lipopolysaccharide to induce inflammation and immediately co-cultured with encapsulated or monolayer human MSCs. After 24 h, culture media was assayed for the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) produced by OHSC, as well as MSC-produced trophic mediators. Encapsulated MSCs reduced TNF-α more effectively than did monolayer MSCs. Additionally, there was a strong correlation between increased prostaglandin E2 (PGE2) and reduction of TNF-α. In contrast to monolayer MSCs, inflammatory signals were not required to stimulate PGE2 production by encapsulated MSCs. Further encapsulation-stimulated changes were revealed in a multiplex panel analyzing 27 MSC-produced cytokines and growth factors, from which additional mediators with strong correlations to TNF-α levels were identified. These results suggest that alginate encapsulation of MSCs may not only provide an improved delivery vehicle for transplantation but may also enhance MSC therapeutic benefit for treating neuro-inflammation. Copyright © 2015. Published by Elsevier Inc.

  13. Tobacco and e-cigarette products initiate Kupffer cell inflammatory responses.

    Science.gov (United States)

    Rubenstein, David A; Hom, Sarah; Ghebrehiwet, Berhane; Yin, Wei

    2015-10-01

    Kupffer cells are liver resident macrophages that are responsible for screening and clearing blood of pathogens and foreign particles. It has recently been shown that Kupffer cells interact with platelets, through an adhesion based mechanism, to aid in pathogen clearance and then these platelets re-enter the general systemic circulation. Thus, a mechanism has been identified that relates liver inflammation to possible changes in the systemic circulation. However, the role that Kupffer cells play in cardiovascular disease initiation/progression has not been elucidated. Thus, our objective was to determine whether or not Kupffer cells are responsive to a classical cardiovascular risk factor and if these changes can be transmitted into the general systemic circulation. If Kupffer cells initiate inflammatory responses after exposure to classical cardiovascular risk factors, then this provides a potential alternative/synergistic pathway for cardiovascular disease initiation. We aimed to elucidate the prevalence of this potential pathway. We hypothesized that Kupffer cells would initiate a robust inflammatory response after exposure to tobacco cigarette or e-cigarette products and that the inflammatory response would have the potential to antagonize other salient cells for cardiovascular disease progression. To test this, Kupffer cells were incubated with tobacco smoke extracts, e-cigarette vapor extracts or pure nicotine. Complement deposition onto Kupffer cells, Kupffer cell complement receptor expression, oxidative stress production, cytokine release and viability and density were assessed after the exposure. We observed a robust inflammatory response, oxidative stress production and cytokine release after Kupffer cells were exposed to tobacco or e-cigarette extracts. We also observed a marginal decrease in cell viability coupled with a significant decrease in cell density. In general, this was not a function of the extract formulation (e.g. tobacco vs. e

  14. Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes.

    Directory of Open Access Journals (Sweden)

    Xu Dong

    2010-02-01

    Full Text Available Inflammation is a highly complex biological response evoked by many stimuli. A persistent challenge in modeling this dynamic process has been the (nonlinear nature of the response that precludes the single-variable assumption. Systems-based approaches offer a promising possibility for understanding inflammation in its homeostatic context. In order to study the underlying complexity of the acute inflammatory response, an agent-based framework is developed that models the emerging host response as the outcome of orchestrated interactions associated with intricate signaling cascades and intercellular immune system interactions.An agent-based modeling (ABM framework is proposed to study the nonlinear dynamics of acute human inflammation. The model is implemented using NetLogo software. Interacting agents involve either inflammation-specific molecules or cells essential for the propagation of the inflammatory reaction across the system. Spatial orientation of molecule interactions involved in signaling cascades coupled with the cellular heterogeneity are further taken into account. The proposed in silico model is evaluated through its ability to successfully reproduce a self-limited inflammatory response as well as a series of scenarios indicative of the nonlinear dynamics of the response. Such scenarios involve either a persistent (noninfectious response or innate immune tolerance and potentiation effects followed by perturbations in intracellular signaling molecules and cascades.The ABM framework developed in this study provides insight on the stochastic interactions of the mediators involved in the propagation of endotoxin signaling at the cellular response level. The simulation results are in accordance with our prior research effort associated with the development of deterministic human inflammation models that include transcriptional dynamics, signaling, and physiological components. The hypothetical scenarios explored in this study would

  15. Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes.

    Science.gov (United States)

    Dong, Xu; Foteinou, Panagiota T; Calvano, Steven E; Lowry, Stephen F; Androulakis, Ioannis P

    2010-02-18

    Inflammation is a highly complex biological response evoked by many stimuli. A persistent challenge in modeling this dynamic process has been the (nonlinear) nature of the response that precludes the single-variable assumption. Systems-based approaches offer a promising possibility for understanding inflammation in its homeostatic context. In order to study the underlying complexity of the acute inflammatory response, an agent-based framework is developed that models the emerging host response as the outcome of orchestrated interactions associated with intricate signaling cascades and intercellular immune system interactions. An agent-based modeling (ABM) framework is proposed to study the nonlinear dynamics of acute human inflammation. The model is implemented using NetLogo software. Interacting agents involve either inflammation-specific molecules or cells essential for the propagation of the inflammatory reaction across the system. Spatial orientation of molecule interactions involved in signaling cascades coupled with the cellular heterogeneity are further taken into account. The proposed in silico model is evaluated through its ability to successfully reproduce a self-limited inflammatory response as well as a series of scenarios indicative of the nonlinear dynamics of the response. Such scenarios involve either a persistent (non)infectious response or innate immune tolerance and potentiation effects followed by perturbations in intracellular signaling molecules and cascades. The ABM framework developed in this study provides insight on the stochastic interactions of the mediators involved in the propagation of endotoxin signaling at the cellular response level. The simulation results are in accordance with our prior research effort associated with the development of deterministic human inflammation models that include transcriptional dynamics, signaling, and physiological components. The hypothetical scenarios explored in this study would potentially improve

  16. Functional Roles of p38 Mitogen-Activated Protein Kinase in Macrophage-Mediated Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    Yanyan Yang

    2014-01-01

    Full Text Available Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α and cyclooxygenase-2 (COX-2. p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases.

  17. Interactions between Intestinal Microbiota and Host Immune Response in Inflammatory Bowel Disease

    Science.gov (United States)

    Zhang, Ming; Sun, Kaiji; Wu, Yujun; Yang, Ying; Tso, Patrick; Wu, Zhenlong

    2017-01-01

    Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract. Although the etiology and pathogenesis of IBD remain unclear, both genetic susceptibility and environmental factors are implicated in the initiation and progression of IBD. Recent studies with experimental animal models and clinical patients indicated that the intestinal microbiota is one of the critical environmental factors that influence nutrient metabolism, immune responses, and the health of the host in various intestinal diseases, including ulcerative colitis and Crohn’s disease. The objective of this review is to highlight the crosstalk between gut microbiota and host immune response and the contribution of this interaction to the pathogenesis of IBD. In addition, potential therapeutic strategies targeting the intestinal micro-ecosystem in IBD are discussed. PMID:28855901

  18. Strategies for modulating the inflammatory response after decompression from abdominal compartment syndrome

    Science.gov (United States)

    2012-01-01

    Background Management of the open abdomen is an increasingly common part of surgical practice. The purpose of this review is to examine the scientific background for the use of temporary abdominal closure (TAC) in the open abdomen as a way to modulate the local and systemic inflammatory response, with an emphasis on decompression after abdominal compartment syndrome (ACS). Methods A review of the relevant English language literature was conducted. Priority was placed on articles published within the last 5 years. Results/Conclusion Recent data from our group and others have begun to lay the foundation for the concept of TAC as a method to modulate the local and/or systemic inflammatory response in patients with an open abdomen resulting from ACS. PMID:22472164

  19. Isoflavones inhibit poly(I:C)-induced serum, brain, and skin inflammatory mediators - relevance to chronic fatigue syndrome.

    Science.gov (United States)

    Vasiadi, Magdalini; Newman, Jennifer; Theoharides, Theoharis C

    2014-10-31

    Chronic Fatigue Syndrome (CFS) is a neuroimmunoendocrine disease affecting about 1% of the US population, mostly women. It is characterized by debilitating fatigue for six or more months in the absence of cancer or other systemic diseases. Many CFS patients also have fibromyalgia and skin hypersensitivity that worsen with stress. Corticotropin-releasing hormone (CRH) and neurotensin (NT), secreted under stress, activate mast cells (MC) necessary for allergic reactions to release inflammatory mediators that could contribute to CFS symptoms. To investigate the effect of isoflavones on the action of polyinosinic:polycytidylic acid (poly(I:C)), with or without swim stress, on mouse locomotor activity and inflammatory mediator expression, as well as on human MC activation. Female C57BL/6 mice were randomly divided into four groups: (a) control/no-swim, (b) control/swim, (c) polyinosinic:polycytidylic acid (poly(I:C))/no swim, and (d) polyinosinic:polycytidylic acid (poly(I:C))/swim. Mice were provided with chow low or high in isoflavones for 2 weeks prior to ip injection with 20 mg/kg poly(I:C) followed or not by swim stress for 15 minutes. Locomotor activity was monitored overnight and animals were sacrificed the following day. Brain and skin gene expression, as well as serum levels, of inflammatory mediators were measured. Data were analyzed using the non-parametric Mann-Whitney U-test. Poly(I:C)-treated mice had decreased locomotor activity over 24 hours, and increased serum levels of TNF-α, IL-6, KC (IL-8/CXCL8 murine homolog), CCL2,3,4,5, CXCL10, as well as brain and skin gene expression of TNF, IL-6, KC (Cxcl1, IL8 murine homolog), CCL2, CCL4, CCL5 and CXCL10. Histidine decarboxylase (HDC) and NT expression were also increased, but only in the skin, over the same period. High isoflavone diet reversed these effects. Poly(I:C) treatment decreased mouse locomotor activity and increased serum levels and brain and skin gene expression of inflammatory mediators

  20. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana [School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC (Canada); Klegeris, Andis [Department of Biology, University of British Columbia Okanagan, Kelowna, BC (Canada); Little, Jonathan P., E-mail: jonathan.little@ubc.ca [School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC (Canada)

    2014-03-28

    Highlights: • Adiponectin receptors are expressed in human astrocytes. • Globular adiponectin induces secretion of IL-6 and MCP-1 from cultured astrocytes. • Adiponectin may play a pro-inflammatory role in astrocytes. - Abstract: Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer’s disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observed link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3 K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes.

  1. Effect of acupuncture intervention on the intestinal mucosal inflammatory response and immune response balance in animals with ulcerative colitis

    Directory of Open Access Journals (Sweden)

    Meng-Fan Yang

    2017-07-01

    Full Text Available Objective: To study the effect of acupuncture intervention on the intestinal mucosal inflammatory response and immune response balance in animals with ulcerative colitis (UC. Methods: Adult, male SPF SD rats were selected and randomly divided into the control group, UC group and acupuncture group, and then the acupuncture intervention was established after the UC animal model was established. 14 d after intervention, the expression of inflammatory mediators and Th1/Th2/Th17/Treg cytokines in intestinal mucosa, and the levels of inflammatory mediators and Th1/Th2/Th17/Treg cytokines in serum were detected. Results: NF-kB, HMGB-1, TNF-α, IL-1β, IFN-γ and IL-17 mRNA expression in intestinal mucosa as well as HMGB-1, TNF-α, IL-1β, IFN-γ and IL-17 levels in serum of UC group were significantly higher than those of control group while IL-4, IL-5 and TGF-β1 mRNA expression in intestinal mucosa as well as IL-4, IL-5 and TGF-β1 levels in serum were significantly lower than those of control group; NF-kB, HMGB-1, TNF-α, IL-1β, IFN-γ and IL-17 mRNA expression in intestinal mucosa as well as HMGB-1, TNF-α, IL-1β, IFN-γ and IL-17 levels in serum of acupuncture group were significantly lower than those of UC group while IL-4, IL-5 and TGF-β1 mRNA expression in intestinal mucosa as well as IL-4, IL-5 and TGF-β1 levels in serum were significantly higher than those of UC group. Conclusions: Acupuncture intervention can regulate the intestinal mucosal inflammatory response and immune response of animals with ulcerative colitis.

  2. Anti-Inflammatory properties of antipsychotics via microglia modulations: are antipsychotics a 'fire extinguisher' in the brain of schizophrenia?

    Science.gov (United States)

    Kato, T A; Monji, A; Mizoguchi, Y; Hashioka, S; Horikawa, H; Seki, Y; Kasai, M; Utsumi, H; Kanba, S

    2011-06-01

    Schizophrenia is one of the most severe psychiatric diseases noted for its chronic and often debilitating processes; affecting approximately 1% of the world's population, while its etiology and therapeutic strategies still remain elusive. In the 1950s, the discovery of antipsychotic effects of haloperidol and chlorpromazine shifted the paradigm of schizophrenia. These drugs proved to be antagonists of dopamine D2 receptor (D2R), thus dopamine system dysfunction came to be hypothesized in the pathophysiology of schizophrenia, and D2R antagonism against dopamine neurons has been considered as the primary therapeutic target for schizophrenia. In addition, abnormalities of glutamatergic neurons have been indicated in the pathophysiology of schizophrenia. On the other hand, recent neuroimaging studies have shown that not only dementia but also schizophrenic patients have a significant volume reduction of some specific regions in the brain, which indicates that schizophrenia may involve some neurodegenerative process. Microglia, major sources of various inflammatory cytokines and free radicals such as superoxide and nitric oxide (NO) in the CNS, play a crucial role in a variety of neurodegenerative diseases such as dementia. Recent postmortem and positron emission computed tomography (PET) studies have indicated that activated microglia may be present in schizophrenic patients. Recent in vitro studies have suggested the anti-inflammatory effects of antipsychotics on microglial activation. In this article, we review the anti-inflammatory effects of antipsychotics on microglia, and propose a novel therapeutic hypothesis of schizophrenia from the perspective of microglial modulation.

  3. Proteins of the Hageman Factor System in an Inflammatory Reaction in the Acute Period of Severe Brain Injury

    Directory of Open Access Journals (Sweden)

    T. I. Borshchikova

    2010-01-01

    Full Text Available Objective: to study the time course of changes and an association of contact factors and their inhibitors with the global values of hemocoagulation, fibrinolysis, and inflammatory reactants in acute severe brain injury (SBI in order to deepen notions of Hageman factor system functioning. Subjects and methods. One hundred and thirteen patients with SBI were examined on 1 to 21 days of injury. The level of unconsciousness averaged a Glasgow coma score of 6.8±0.25. A control group included 23 healthy individuals. The investigators determined the activity of contact factors (prekallikrein, high-molecular-weight kininogen, factors XII, XI and their inhibitors (total activity of the protein C system, the activity and quantity of antithrombin III, C1 esterase inhibitor, a^antitrypsin, fl^-antiplasmin, fl^-macroglobulin, hemostatic parameters (blood fibrinolytic activity by an euglobulin test; factor XII-kallikrein-dependent fibrinolysis, treptokinase induced fibrinolysis by calculating the plasminogen reserve index, activated partial thromboplastin time, fibrinogen, D-dimer, and soluble fibrin monomer complexes, and inflammatory reactants (C-reactive protein, IL10, IL2, IL4, IL5, IL6, IL8, IL10, IL12p70, TNF-a, and IFN-y. Results. The acute period of SBI was marked by significant deficiency and imbalance of contact factors and their physiological inhibitors. In SBI, prekallikrein rather than factor XII plays a central role in the function of the contact factor system due to inflammatory inhibition of Hageman factor synthesis, which disturbs its key role in the reactions of contact activation of homeostatic proteolytic systems. Out of the considered systems, the activation of which is associated with contact factors, the function of the internal mechanism of fibrinolysis is largely changed; at the same time the internal hemocoagulation activation pathway remains virtually intact. When an inflammatory reaction develops after SBI, normal Hageman factor

  4. Substance P ameliorates collagen II-induced arthritis in mice via suppression of the inflammatory response

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Hyun Sook [College of Medicine, East-West Medical Research Institute, Kyung Hee University, 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-702 (Korea, Republic of); Son, Youngsook, E-mail: ysson@khu.ac.kr [Graduate School of Biotechnology and Department of Genetic Engineering, College of Life Science, Kyung Hee University Global Campus, Seochun-dong, Kiheung-ku, Yong In 441-706 (Korea, Republic of)

    2014-10-10

    Highlights: • SP can increase IL-10 levels and reduce TNF-α and IL-17 levels in RA. • SP causes the increase in T{sub reg}, M2 macrophage, and MSCs in RA. • SP-induced immune suppression leads to the blockade of RA progression. • SP can be used as the therapeutics for autoimmune-related inflammatory diseases. - Abstract: Current rheumatoid arthritis (RA) therapies such as biologics inhibiting pathogenic cytokines substantially delay RA progression. However, patient responses to these agents are not always complete and long lasting. This study explored whether substance P (SP), an 11 amino acids long endogenous neuropeptide with the novel ability to mobilize mesenchymal stem cells (MSC) and modulate injury-mediated inflammation, can inhibit RA progression. SP efficacy was evaluated by paw swelling, clinical arthritis scoring, radiological analysis, histological analysis of cartilage destruction, and blood levels of tumor necrosis factor-alpha (TNF-α) interleukin (IL)-10, and IL-17 in vivo. SP treatment significantly reduced local inflammatory signs, mean arthritis scores, degradation of joint cartilage, and invasion of inflammatory cells into the synovial tissues. Moreover, the SP treatment markedly reduced the size of spleens enlarged by excessive inflammation in CIA, increased IL-10 levels, and decreased TNF-α and IL-17 levels. Mobilization of stem cells and induction of T{sub reg} and M2 type macrophages in the circulation were also increased by the SP treatment. These effect of SP might be associated with the suppression of inflammatory responses in RA and, furthermore, blockade of RA progression. Our results propose SP as a potential therapeutic for autoimmune-related inflammatory diseases.

  5. Intratracheal synthetic CpG oligodeoxynucleotide causes acute lung injury with systemic inflammatory response

    Directory of Open Access Journals (Sweden)

    Hasegawa Naoki

    2009-09-01

    Full Text Available Abstract Bacterial genome is characterized by frequent unmethylated cytosine-phosphate-guanine (CpG motifs. Deleterious effects can occur when synthetic oligodeoxynucleotides (ODN with unmethylated CpG dinucleotides (CpG-ODN are administered in a systemic fashion. We aimed to evaluate the effect of intratracheal CpG-ODN on lung inflammation and systemic inflammatory response. C57BL/6J mice received intratracheal administration of CpG-ODN (0.01, 0.1, 1.0, 10, or 100 μM or control ODN without CpG motif. Bronchoalveolar lavage (BAL fluid was obtained 3 or 6 h or 1, 2, 7, or 14 days after the instillation and subjected to a differential cell count and cytokine measurement. Lung permeability was evaluated as the BAL fluid-to-plasma ratio of the concentration of human serum albumin that was injected 1 h before euthanasia. Nuclear factor (NF-κB DNA binding activity was also evaluated in lung homogenates. Intratracheal administration of 10 μM or higher concentration of CpG-ODN induced significant inflammatory cell accumulation into the airspace. The peak accumulation of neutrophils and lymphocytes occurred 1 and 2 days after the CpG-ODN administration, respectively. Lung permeability was increased 1 day after the 10 μM CpG-ODN challenge. CpG-ODN also induced nuclear translocation of NF-κB and upregulation of various inflammatory cytokines in BAL fluid and plasma. Histopathology of the lungs and liver revealed acute lung injury and liver damage with necrosis, respectively. Control ODN without CpG motif did not induce any inflammatory change. Since intratracheal CpG-ODN induced acute lung injury as well as systemic inflammatory response, therapeutic strategies to neutralize bacterial DNA that is released after administration of bactericidal agents should be considered.

  6. Histamine Induces Bovine Rumen Epithelial Cell Inflammatory Response via NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Xudong Sun

    2017-06-01

    Full Text Available Background/Aims: Subacute ruminal acidosis (SARA is a common disease in high-producing lactating cows. Rumenitis is the initial insult of SARA and is associated with the high concentrations of histamine produced in the rumen of dairy cows during SARA. However, the exact mechanism remains unclear. The objective of the current study is to investigate whether histamine induces inflammation of rumen epithelial cells and the underlying mechanism of this process. Methods: Bovine rumen epithelial cells were cultured and treated with different concentrations of histamine and pyrrolidine dithiocarbamate (PDTC, an NF-κB inhibitor cultured in different pH medium (pH 7.2 or 5.5. qRT-PCR, Western-blotting, ELISA and immunocytofluorescence were used to evaluate whether histamine activated the NF-κB pathway and inflammatory cytokines. Results: The results showed that histamine significantly increased the activity of IKK β and the phosphorylation levels of IκB α, as well as upregulated the mRNA and protein expression levels of NF-κB p65 in the rumen epithelial cells cultured in neutral (pH=7.2 and acidic (pH=5.5 medium. Furthermore, histamine treatment also significantly increased the transcriptional activity of NF-κB p65. High expression and transcriptional activity of NF-κB p65 significantly increased the mRNA expressions and concentrations of inflammatory cytokines, tumor necrosis factor alpha (TNF-α, interleukin 6 (IL-6 and interleukin 1 beta (IL-1β, thereby inducing the inflammatory response in bovine rumen epithelial cells. However, inhibition of NF-κB p65 by PDTC significantly decreased the expressions and concentrations of the inflammatory cytokines induced by histamine in the rumen epithelial cells cultured in the neutral and acidic medium. Conclusion: The present data indicate that histamine induces the inflammatory response of bovine rumen epithelial cells through the NF-κB pathway.

  7. The mast cell integrates the splanchnic and systemic inflammatory response in portal hypertension

    Directory of Open Access Journals (Sweden)

    Arias Jorge-Luis

    2007-09-01

    Full Text Available Abstract Portal hypertension is a clinical syndrome that is difficult to study in an isolated manner since it is always associated with a greater or lesser degree of liver functional impairment. The aim of this review is to integrate the complications related to chronic liver disease by using both, the array of mast cell functions and mediators, since they possibly are involved in the pathophysiological mechanisms of these complications. The portal vein ligated rat is the experimental model most widely used to study this syndrome and it has been considered that a systemic inflammatory response is produced. This response is mediated among other inflammatory cells by mast cells and it evolves in three linked pathological functional systems. The nervous functional system presents ischemia-reperfusion and edema (oxidative stress and would be responsible for hyperdynamic circulation; the immune functional system causes tissue infiltration by inflammatory cells, particularly mast cells and bacteria (enzymatic stress and the endocrine functional system presents endothelial proliferation (antioxidative and antienzymatic stress and angiogenesis. Mast cells could develop a key role in the expression of these three phenotypes because their mediators have the ability to produce all the aforementioned alterations, both at the splanchnic level (portal hypertensive enteropathy, mesenteric adenitis, liver steatosis and the systemic level (portal hypertensive encephalopathy. This hypothetical splanchnic and systemic inflammatory response would be aggravated during the progression of the chronic liver disease, since the antioxidant ability of the body decreases. Thus, a critical state is produced, in which the appearance of noxious factors would favor the development of a dedifferentiation process protagonized by the nervous functional system. This system rapidly induces an ischemia-reperfusion phenotype with hydration and salinization of the body (hepatorenal

  8. Dietary supplementation of glycine modulates inflammatory response indicators in broiler chickens.

    Science.gov (United States)

    Takahashi, Kazuaki; Aoki, Akira; Takimoto, Testuya; Akiba, Yukio

    2008-11-01

    Three experiments were conducted to investigate the effect of dietary glycine (Gly) supplementation on inflammatory responses in broiler chicks fed a basal diet using maize and soybean meal as the primary ingredients. Inflammation-related processes following lipopolysaccharide (LPS) injection were examined by analysing plasma concentrations of nitrate plus nitrite (NOx) and ceruloplasmin (Cer) in experiments 1 and 2, or expression of several genes in the spleen and liver including IL-1 beta and -6, TNF-like ligand (TL)1A, inducible NO synthase, interferon (IFN)-gamma and toll-like receptor (TLR) 4 were examined in experiment 3. Growth performance was also determined following immunological stimulation by both LPS and Sephadex injection in experiment 2. In experiment 1, birds fed a diet supplemented with Gly at 10 or 20 g/kg showed lower responses in plasma NOx and Cer than birds fed the diet supplemented with Gly at 0 or 40 g/kg. In experiment 2, a similar effect of Gly supplementation at 10 g/kg on plasma NOx and Cer was observed when chicks were fed either an isonitrogenous diet with Gly or glutamic acid (Glu). Gly-supplemented diet-fed birds showed better growth performance than Glu-supplemented diet-fed birds. The splenic expression of inflammatory response-related genes in birds fed a diet supplemented with Gly at 10 g/kg diet was lower than that of birds fed the basal diet in experiment 3. These results suggest that dietary Gly supplementation modulates the inflammatory response partly through changes in the expression of pro-inflammatory cytokines such as IL-1, IL-6, IFN-gamma and TL1A.

  9. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C., E-mail: susan.tilton@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Lee, K. Monica [Battelle Toxicology Northwest, Richland, WA 99352 (United States); Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2013-03-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures. - Highlights: ► Obesity modulates inflammatory markers in BAL fluid after LPS exposure. ► Obese animals have a unique transcriptional signature in lung after LPS exposure. ► Obesity elevates inflammatory stress and reduces antioxidant capacity in the lung

  10. Inflammatory response in chronic degenerative endometritis mares treated with platelet-rich plasma.

    Science.gov (United States)

    Reghini, Maria Fernanda S; Ramires Neto, Carlos; Segabinazzi, Lorenzo G; Castro Chaves, Maria Manoela B; Dell'Aqua, Camila de Paula F; Bussiere, Maria Clara C; Dell'Aqua, José Antonio; Papa, Frederico O; Alvarenga, Marco Antonio

    2016-07-15

    Degenerative changes of the endometrium are directly related to age and fertility in mares. Chronic degenerative endometritis (CDE) is correlated with uterine fluid retention and reduced ability to clear uterine inflammation. Recent research in the areas of equine surgery and sports medicine has shown that platelet-rich plasma (PRP) treatment acts as an immunomodulator of the inflammatory response. Therefore, the aim of this study was to determine if the uterine infusion of PRP could modulate the local inflammatory response and modify the intrauterine NO concentrations after artificial insemination (AI) in both normal mares and those with CDE. Thirteen mares with endometrium classified as grade III on the histology (mares with CDE) and eight mares with endometrial histological classification I or II-a normal mares were selected to investigate the effect of PRP therapy. The mares were inseminated with fresh semen in two consecutive cycles in a crossover study design. Thereby, each mare served as its own control and the treatment was performed with intrauterine PRP infusion four hours after AI. The percentage of neutrophils in uterine cytology (CIT, %), uterine fluid accumulation observed on ultrasonography (FLU, mm) and nitric oxide concentration of uterine fluid (NO, μM) were analyzed before and 24 hours after AI. The results reported that mares with CDE (CIT, 68.3 ± 3.27, FLU, 10.7 ± 1.61) have a higher (P  0.05) between categories of mares. In treated cycles with PRP, the intrauterine inflammatory response decrease (P PRP was effective in modulating the exacerbated uterine inflammatory response to semen in mares with CDE but did not reduce NO concentrations in intrauterine fluid. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Sex-Steroid Hormone Manipulation Reduces Brain Response to Reward

    DEFF Research Database (Denmark)

    Macoveanu, Julian; Henningsson, Susanne; Pinborg, Anja

    2016-01-01

    regional brain activity related to the magnitude of risk during choice and to monetary reward. The GnRHa intervention caused a net reduction in ovarian sex steroids (estradiol and testosterone) and increased depression symptoms. Compared with placebo, GnRHa reduced amygdala's reactivity to high monetary...... rewards. There was a positive association between the individual changes in testosterone and changes in bilateral insula response to monetary rewards. Our data provide evidence for the involvement of sex-steroid hormones in reward processing. A blunted amygdala response to rewarding stimuli following...

  12. 5-HTTLPR differentially predicts brain network responses to emotional faces

    DEFF Research Database (Denmark)

    Fisher, Patrick M; Grady, Cheryl L; Madsen, Martin K

    2015-01-01

    The effects of the 5-HTTLPR polymorphism on neural responses to emotionally salient faces have been studied extensively, focusing on amygdala reactivity and amygdala-prefrontal interactions. Despite compelling evidence that emotional face paradigms engage a distributed network of brain regions...... resonance imaging in 76 healthy adults. We observed robust increased response to emotional faces in the amygdala, hippocampus, caudate, fusiform gyrus, superior temporal sulcus and lateral prefrontal and occipito-parietal cortices. We observed dissociation between 5-HTTLPR groups such that LA LA individuals...

  13. Inflammatory responses to induced infectious endometritis in mares resistant or susceptible to persistent endometritis

    Directory of Open Access Journals (Sweden)

    Christoffersen Mette

    2012-03-01

    Full Text Available Abstract Background The objective of the study was to evaluate the gene expression of inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-8, IL-10, tumor necrosis factor [TNF]-α, IL-1 receptor antagonist [ra] and serum amyloid A (SAA in endometrial tissue and circulating leukocytes in response to uterine inoculation of 105 colony forming units (CFU Escherichia coli in mares. Before inoculation, mares were classified as resistant or susceptible to persistent endometritis based on their uterine inflammatory response to infusion of 109 killed spermatozoa and histological assessment of the endometrial quality. Endometrial biopsies were obtained 3, 12, 24 and 72 hours (h after bacterial inoculation and blood samples were obtained during the 7 day period post bacterial inoculation. Expression levels of cytokines and SAA were determined by quantitative real-time reverse transcriptase PCR (qRT-PCR. Results Compared to levels in a control biopsy (obtained in the subsequent estrous, resistant mares showed an up-regulation of IL-1β, IL-6, IL-8 and TNF-α at 3 h after E. coli inoculation, while susceptible mares showed increased gene expression of IL-6 and IL-1ra. Susceptible mares had a significant lower gene expression of TNF-α,IL-6 and increased expression of IL-1ra 3 h after E. coli inoculation compared to resistant mares. Susceptible mares showed a sustained and prolonged inflammatory response with increased gene expression levels of IL-1β, IL-8, IL-1ra and IL-1β:IL-1ra ratio throughout the entire study period (72 h, whereas levels in resistant mares returned to estrous control levels by 12 hours. Endometrial mRNA transcripts of IL-1β and IL-1ra were significantly higher in mares with heavy uterine bacterial growth compared to mares with no/mild growth. All blood parameters were unaffected by intrauterine E. coli infusion, except for a lower gene expression of IL-10 at 168 h and an increased expression of IL-1ra at 48 h observed in susceptible

  14. The representation of inflammatory signals in the brain – a model for subjective fatigue in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Katrin eHanken

    2014-12-01

    Full Text Available In multiple sclerosis (MS patients, fatigue is rated as one of the most common and disabling symptoms. However, the pathophysiology underlying this fatigue is not yet clear. Several lines of evidence suggest that immunological factors, such as elevated levels of proinflammatory cytokines, may contribute to subjective fatigue in MS patients. Proinflammatory cytokines represent primary mediators of immune-to-brain-communication, modulating changes in the neurophysiology of the central nervous system. Recently, we proposed a model arguing that fatigue in MS patients is a subjective feeling which is related to inflammation. Moreover, it implies that fatigue can be measured behaviorally only by applying specific cognitive tasks related to alertness and vigilance. In the present review we focus on the subjective feeling of MS-related fatigue. We examine the hypothesis that the subjective feeling of MS-related fatigue may be a variant of inflammation-induced sickness behavior, resulting from cytokine-mediated activity changes within brain areas involved in interoception and homeostasis including the insula, the anterior cingulate and the hypothalamus. We first present studies demonstrating a relationship between proinflammatory cytokines and subjective fatigue in healthy individuals, in people with inflammatory disorders, and particularly in MS patients. Subsequently, we discuss studies analyzing the impact of anti-inflammatory treatment on fatigue. In the next part of this review we present studies on the transmission and neural representation of inflammatory signals, with a special focus on possible neural concomitants of inflammation-induced fatigue. We also present two of our studies on the relationship between local gray and white matter atrophy and fatigue in MS patients. Finally, we discuss some implications of our findings and future perspectives.

  15. HIF-1α expression in keloid and its correlation with angiogenesis, inflammatory response and apoptosis

    Directory of Open Access Journals (Sweden)

    Fei-Lun Ye

    2017-09-01

    Full Text Available Objective: To study the expression of hypoxia-inducible factor-1α (HIF-1α in keloid and its correlation with angiogenesis, inflammatory response and apoptosis. Methods: Keloid samples removed in the Third People’s Hospital of Chengdu between June 2014 and March 2017 were selected as the pathology group of the research, and normal skin tissues removed in the Third People’s Hospital of Chengdu due to injury were selected as the control group of the research. The expression of HIF-1α, angiogenesis molecules, inflammatory response cytokines and apoptosis molecules in keloid samples normal skin tissues were detected. Results: HIF- 1α, VEGF165, Flt-1, Flk-1, Ang-1, Tie-2, PGE2, PGF2α, MIF, Livin and Survivin mRNA expression in keloid of pathology group were significantly higher than those in normal skin tissue of control group while TSG-6, Caspase-3, Caspase-7 and Caspase-9 mRNA expression were significantly lower than those in normal skin tissue of control group; HIF-1α mRNA expression was positively correlated with VEGF165, Flt-1, Flk-1, Ang-1, Tie-2, PGE2, PGF2α, MIF, Livin and Survivin mRNA expression, and negatively correlated with TSG-6, Caspase-3, Caspase-7 and Caspase-9 mRNA expression. Conclusion: HIF-1α is highly expressed in keloid and can promote angiogenesis and inflammatory response and inhibit apoptosis.

  16. Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways

    Directory of Open Access Journals (Sweden)

    Maes Michael

    2012-06-01

    Full Text Available Abstract It is of considerable translational importance whether depression is a form or a consequence of sickness behavior. Sickness behavior is a behavioral complex induced by infections and immune trauma and mediated by pro-inflammatory cytokines. It is an adaptive response that enhances recovery by conserving energy to combat acute inflammation. There are considerable phenomenological similarities between sickness behavior and depression, for example, behavioral inhibition, anorexia and weight loss, and melancholic (anhedonia, physio-somatic (fatigue, hyperalgesia, malaise, anxiety and neurocognitive symptoms. In clinical depression, however, a transition occurs to sensitization of immuno-inflammatory pathways, progressive damage by oxidative and nitrosative stress to lipids, proteins, and DNA, and autoimmune responses directed against self-epitopes. The latter mechanisms are the substrate of a neuroprogressive process, whereby multiple depressive episodes cause neural tissue damage and consequent functional and cognitive sequelae. Thus, shared immuno-inflammatory pathways underpin the physiology of sickness behavior and the pathophysiology of clinical depression explaining their partially overlapping phenomenology. Inflammation may provoke a Janus-faced response with a good, acute side, generating protective inflammation through sickness behavior and a bad, chronic side, for example, clinical depression, a lifelong disorder with positive feedback loops between (neuroinflammation and (neurodegenerative processes following less well defined triggers.

  17. Time-course evaluation and treatment of skin inflammatory immune response after ultraviolet B irradiation.

    Science.gov (United States)

    Paz, Mariela L; Ferrari, Alejandro; Weill, Federico S; Leoni, Juliana; Maglio, Daniel H Gonzalez

    2008-10-01

    Skin exposure to high doses of ultraviolet B (UVB) radiation generates a severe inflammatory skin response. In the present study we aim to investigate, using in vitro and in vivo models, the time-course of the inflammatory skin immune response after an acute exposure to UVB irradiation, as well as its modulation by a topical non-steroidal anti-inflammatory drug (NSAID) treatment, naproxen. PGE2 production and TNF-alpha levels increase in a post-irradiation time-dependent manner both in vivo and in vitro. This production pattern is also reflected in the iNOS expression levels in vivo and in the IL-6 levels in vitro. Changes observed in these mediators are correlated with histological alterations and dermal infiltration after the acute UVB irradiation. Naproxen treatment notably reduces PGE2 production and iNOS expression, reflecting the COX-NOS crosstalk already reported, although it causes an important increment in TNF-alpha synthesis in the epidermis of irradiated mice. Taken together, our data indicates that the epidermis is severely damaged by UVB radiation but then it is able to fully recover, and that the immune response is modulated by the NSAID treatment, since it is able to reduce the levels of some mediators as well as it can increase others.

  18. Equine colostral carbohydrates reduce lipopolysaccharide-induced inflammatory responses in equine peripheral blood mononuclear cells.

    Science.gov (United States)

    Vendrig, J C; Coffeng, L E; Fink-Gremmels, J

    2012-12-01

    Increasing evidence suggests that reactions to lipopolysaccharide (LPS), particularly in the gut, can be partly or completely mitigated by colostrum- and milk-derived oligosaccharides. Confirmation of this hypothesis could lead to the development of new therapeutic concepts. To demonstrate the influence of equine colostral carbohydrates on the inflammatory response in an in vitro model with equine peripheral blood mononuclear cells (PBMCs). Carbohydrates were extracted from mare colostrum, and then evaluated for their influence on LPS-induced inflammatory responses in PBMCs isolated from the same mares, mRNA expression of tumour necrosis factor-alpha, interleukin-6 and interleukin-10 was measured as well as the protein levels of tumour necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10). Equine colostral carbohydrates significantly reduced LPS-induced TNF-alpha protein at both times measured and significantly reduced LPS-induced TNF-alpha, IL-6 and IL-10 mRNA expression by PBMCs. Moreover, cell viability significantly increased in the presence of high concentrations of colostral carbohydrates. Carbohydrates derived from equine colostrum reduce LPS-induced inflammatory responses of equine PBMCs. Colostrum and milk-derived carbohydrates are promising candidates for new concepts in preventive and regenerative medicine.

  19. PKC activation induces inflammatory response and cell death in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hyunhee Kim

    Full Text Available A variety of airborne pathogens can induce inflammatory responses in airway epithelial cells, which is a crucial component of host defence. However, excessive inflammatory responses and chronic inflammation also contribute to different diseases of the respiratory system. We hypothesized that the activation of protein kinase C (PKC is one of the essential mechanisms of inflammatory response in airway epithelial cells. In the present study, we stimulated human bronchial lung epithelial (BEAS-2B cells with the phorbol ester Phorbol 12, 13-dibutyrate (PDBu, and examined gene expression profile using microarrays. Microarray analysis suggests that PKC activation induced dramatic changes in gene expression related to multiple cellular functions. The top two interaction networks generated from these changes were centered on NFκB and TNF-α, which are two commonly known pathways for cell death and inflammation. Subsequent tests confirmed the decrease in cell viability and an increase in the production of various cytokines. Interestingly, each of the increased cytokines was differentially regulated at mRNA and/or protein levels by different sub-classes of PKC isozymes. We conclude that pathological cell death and cytokine production in airway epithelial cells in various situations may be mediated through PKC related signaling pathways. These findings suggest that PKCs can be new targets for treatment of lung diseases.

  20. Suppressive effects of lysozyme on polyphosphate-mediated vascular inflammatory responses

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jiwoo [College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566 (Korea, Republic of); Ku, Sae-Kwang [Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610 (Korea, Republic of); Lee, Suyeon [College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566 (Korea, Republic of); Bae, Jong-Sup, E-mail: baejs@knu.ac.kr [College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566 (Korea, Republic of)

    2016-06-10

    Lysozyme, found in relatively high concentration in blood, saliva, tears, and milk, protects us from the ever-present danger of bacterial infection. Previous studies have reported proinflammatory responses of endothelial cells to the release of polyphosphate(PolyP). In this study, we examined the anti-inflammatory responses and mechanisms of lysozyme and its effects on PolyP-induced septic activities in human umbilical vein endothelial cells (HUVECs) and mice. The survival rates, septic biomarker levels, behavior of human neutrophils, and vascular permeability were determined in PolyP-activated HUVECs and mice. Lysozyme suppressed the PolyP-mediated vascular barrier permeability, upregulation of inflammatory biomarkers, adhesion/migration of leukocytes, and activation and/or production of nuclear factor-κB, tumor necrosis factor-α, and interleukin-6. Furthermore, lysozyme demonstrated protective effects on PolyP-mediated lethal death and the levels of the related septic biomarkers. Therefore, these results indicated the therapeutic potential of lysozyme on various systemic inflammatory diseases, such as sepsis or septic shock. -- Highlights: •PolyP is shown to be an important mediator of vascular inflammation. •Lysozyme inhibited PolyP-mediated hyperpermeability. •Lysozyme inhibited PolyP-mediated septic response. •Lysozyme reduced PolyP-induced septic mortality.

  1. A prospective randomized study of the inflammatory responses to multiport and singleport laparoscopic hysterectomies.

    Science.gov (United States)

    Tormena, Renata Assef; Ribeiro, Sérgio Conti; Soares, José Maria; Maciel, Gustavo Arantes Rosa; Baracat, Edmund Chada

    2017-07-01

    To evaluate the inflammatory responses induced by laparoscopic hysterectomies with multiport and singleport approaches. This was a pilot prospective randomized study that included 42 women candidates for hysterectomy at School of Medicine, Hospital das Clínicas, USP. The patients were randomized to two groups: MP-TLH (total laparoscopic hysterectomy with 3 abdominal incisions), and SP-TLH (total laparoscopic hysterectomy with a single umbilical incision).We evaluated the inflammatory response (via CRP, IL-6, IL-10, TNFα, VEGF and leukogram assessments), surgical time, postoperative pain, blood loss and surgical complications in both groups. Both techniques were similar regarding C-reactive protein (p=.666), IL-6 (p=.833), IL-10 (p=.420), TNF-α(p=.098), VEGF (p=.092) and the leukogram (p=.712) measures. The operative time was significantly longer in the SP-TLH group than in the MP-TLH group (p=.001). The pain evaluation was similar in both groups (p=.170). Hemoglobin variation and the aspirated blood volume were similar in both groups (p=.493 and p=.347). There were no major complications. Multiport and singleport laparoscopic approaches are both safe methods for hysterectomy. Although SP-TLH resulted in a significantly longer operative time than MP-TLH, no differences were observed between the groups in inflammatory responses, blood loss and postoperative pain.

  2. Modulation of untruthful responses with noninvasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Shirley eFecteau

    2013-02-01

    Full Text Available Deceptive abilities have long been studied in relation to personality traits. More recently, studies explored the neural substrates associated with deceptive skills suggesting a critical role of the prefrontal cortex. Here we investigated whether noninvasive brain stimulation over the dorsolateral prefrontal cortex (DLPFC could modulate generation of untruthful responses about subject’s personal life across contexts (i.e., deceiving on guilt-free questions on daily activities; generating previously memorized lies about past experience; and producing spontaneous lies about past experience, as well as across modality responses (verbal and motor responses. Results reveal that real, but not sham, transcranial direct current stimulation (tDCS over the DLPFC can reduce response latency for untruthful over truthful answers across contexts and modality responses. Also, contexts of lies seem to incur a different hemispheric laterality. These findings add up to previous studies demonstrating that it is possible to modulate some processes involved in generation of untruthful answers by applying noninvasive brain stimulation over the DLPFC and extend these findings by showing a differential hemispheric contribution of DLPFCs according to contexts.

  3. Nonsteroidal anti-inflammatory drugs may affect cytokine response and benefit healing of combat-related extremity wounds.

    Science.gov (United States)

    Lisboa, Felipe A; Bradley, Matthew J; Hueman, Matthew T; Schobel, Seth A; Gaucher, Beverly J; Styrmisdottir, Edda L; Potter, Benjamin K; Forsberg, Jonathan A; Elster, Eric A

    2017-04-01

    After adequate operative debridement and antimicrobial therapies, combat-related extremity wounds that either heal or fail are both associated with a distinct inflammatory response. Short-term use of nonsteroidal anti-inflammatory drugs in postoperative pain management may affect this response and, by consequence, the healing potential of these wounds. We investigated whether patients treated with nonsteroidal anti-inflammatory drugs had a distinct inflammatory response; different rates of critical colonization, defined as >105 colony forming units on quantitative bacteriology; and healing potential. We retrospectively reviewed the records of 73 patients with combat-related extremity wounds. Patients were separated into 2 groups: those who received nonsteroidal anti-inflammatory drugs during the debridement period (nonsteroidal anti-inflammatory drugs group, N = 17) and those who did not (control group; N = 56). Serum and wound tissue samples collected during each operative debridement were measured for 32 known cytokines and tested for quantitative bacteriology, respectively. We compared cytokine concentrations between groups and then designed a logistic regression model to identify variables associated with successful wound healing, while controlling for known confounders. Despite similar demographics and wound characteristics, the nonsteroidal anti-inflammatory drugs group had significant lesser concentrations of inflammatory cytokines, interleukin-2, interleukin-6, interleukin-8, and monocyte chemoattractant protein-1. On multivariate analysis, nonsteroidal anti-inflammatory drug treatment emerged as a predictor of successful wound healing after controlling for known confounders such as wound size, tobacco use, Acute Physiology and Chronic Health Evaluation II score, and critical colonization. Treatment with nonsteroidal anti-inflammatory drugs for postoperative pain management after major combat-related extremity trauma is associated with lesser

  4. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia

    Directory of Open Access Journals (Sweden)

    Yao Linli

    2013-02-01

    NO in BV-2 cells. TLR4 downregulation-mediated inhibition of inflammatory cytokines in primary microglia and BV-2 cells was accompanied by the suppression of NF-κB activation. Furthermore, HIF-1α antibody neutralization attenuated the increase of TLR4 expression in hypoxic BV-2 cells. TLR4 inhibition in vivo attenuated the immunoexpression of TNF-α, IL-1β and iNOS on microglia post-hypoxia. Conclusion Activated microglia TLR4 expression mediated neuroinflammation via a NF-κB signaling pathway in response to hypoxia. Hence, microglia TLR4 presents as a potential therapeutic target for neonatal hypoxia brain injuries.

  5. The role of oxidative stress and inflammatory response in the pathogenesis of mastitis in dairy cows

    Directory of Open Access Journals (Sweden)

    Nino Maćešić

    2017-01-01

    Full Text Available Mastitis is one of the most frequent diseases of dairy cows throughout the world, therefore it causes the greatest economic losses in dairy cattle industry. These losses are reflected through: reduced milk production, increased costs of medication and the other animal health services, reduced fertility, early culling of animals and the value of discarded milk. Mastitis is also important from the aspects of public health, milk processing and animal welfare. In the pathogenesis of mastitis the key role plays the innate immune response which is the first line of defence against the pathogen invasion of the udder. The innate immune response generates an inflammatory reaction which is the elementary response of an organism to the tissue trauma induced by any physical, chemical or biological causative agent, but primarily it is the protective mechanism of a vital significance which includes increased phagocytic activity, secretion of antimicrobial substances, fibrosis as well as the alterations in tissue structure of affected organ or body cavity. The release of a number of inflammatory mediators as well as reactive oxygen species (ROS is an important part of inflammatory response. In dairy cows, the metabolic challenge that occurred during the transition from dry period to early lactation may additionally increase the release of ROS which may contribute to development of oxidative stress and inflammatory response. Oxidative stress is defined as a shift in the balance from cellular oxidation-reduction reactions towards oxidation, i.e. to the state of excessive release of oxidants when their removal by antioxidants is impaired and even insufficient. During peripartum period antioxidantive status of dairy cows is seriously impaired and consequently both the oxidative stress and inflammatory response may present the predisposing factors to their higher susceptibility to intramammary infections (IMI and mastitis. This association between oxidative stress

  6. The role of oxidative stress and inflammatory response in the pathogenesis of mastitis in dairy cows

    Directory of Open Access Journals (Sweden)

    Romana Turk

    2017-04-01

    Full Text Available Mastitis is one of the most frequent diseases of dairy cows throughout the world, therefore it causes the greatest economic losses in dairy cattle industry. These losses are reflected through: reduced milk production, increased costs of medication and the other animal health services, reduced fertility, early culling of animals and the value of discarded milk. Mastitis is also important from the aspects of public health, milk processing and animal welfare. In the pathogenesis of mastitis the key role plays the innate immune response which is the first line of defence against the pathogen invasion of the udder. The innate immune response generates an inflammatory reaction which is the elementary response of an organism to the tissue trauma induced by any physical, chemical or biological causative agent, but primarily it is the protective mechanism of a vital significance which includes increased phagocytic activity, secretion of antimicrobial substances, fibrosis as well as the alterations in tissue structure of affected organ or body cavity. The release of a number of inflammatory mediators as well as reactive oxygen species (ROS is an important part of inflammatory response. In dairy cows, the metabolic challenge that occurred during the transition from dry period to early lactation may additionally increase the release of ROS which may contribute to development of oxidative stress and inflammatory response. Oxidative stress is defined as a shift in the balance from cellular oxidation-reduction reactions towards oxidation, i.e. to the state of excessive release of oxidants when their removal by antioxidants is impaired and even insufficient. During peripartum period antioxidantive status of dairy cows is seriously impaired and consequently both the oxidative stress and inflammatory response may present the predisposing factors to their higher susceptibility to intramammary infections (IMI and mastitis. This association between oxidative stress

  7. Food-induced brain responses and eating behaviour.

    Science.gov (United States)

    Smeets, Paul A M; Charbonnier, Lisette; van Meer, Floor; van der Laan, Laura N; Spetter, Maartje S

    2012-11-01

    The brain governs food intake behaviour by integrating many different internal and external state and trait-related signals. Understanding how the decisions to start and to stop eating are made is crucial to our understanding of (maladaptive patterns of) eating behaviour. Here, we aim to (1) review the current state of the field of 'nutritional neuroscience' with a focus on the interplay between food-induced brain responses and eating behaviour and (2) highlight research needs and techniques that could be used to address these. The brain responses associated with sensory stimulation (sight, olfaction and taste), gastric distension, gut hormone administration and food consumption are the subject of increasing investigation. Nevertheless, only few studies have examined relations between brain responses and eating behaviour. However, the neural circuits underlying eating behaviour are to a large extent generic, including reward, self-control, learning and decision-making circuitry. These limbic and prefrontal circuits interact with the hypothalamus, a key homeostatic area. Target areas for further elucidating the regulation of food intake are: (eating) habit and food preference formation and modification, the neural correlates of self-control, nutrient sensing and dietary learning, and the regulation of body adiposity. Moreover, to foster significant progress, data from multiple studies need to be integrated. This requires standardisation of (neuroimaging) measures, data sharing and the application and development of existing advanced analysis and modelling techniques to nutritional neuroscience data. In the next 20 years, nutritional neuroscience will have to prove its potential for providing insights that can be used to tackle detrimental eating behaviour.

  8. Peroxisome Proliferator-Activated Receptors in the Modulation of the Immune/Inflammatory Response in Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Ana Z. Fernandez

    2008-01-01

    Full Text Available Inflammation has been recognized as an important hallmark of atherosclerosis. The pharmacological activation of PPAR- by the thiazolidinediones in diabetes, and of PPAR- by the fibrates in hyperlipidemia has been shown to help to reduce inflammatory markers in preclinical and clinical studies. PPARs are known to modulate immune pathways through at least three different mechanisms: by direct binding to PPRE of anti-inflammatory cytokines genes; by transrepression of transcription factors like NF-B and AP-1; or by corepression. The regulation of the inflammatory pathways by PPARs can be achieved on each one of the cells involved in the atherosclerotic process, that is, monocytes, macrophages, T cells, endothelial cells, and smooth muscle cells. Moreover, as each of these cellular components is interconnected with each other, PPAR activation in one cell type could affect the other ones. As activation of PPARs has clear ant-inflammatory benefits, PPARs ligands should be considered as a new therapeutical approach to ameliorate the exacerbated immune response in atherosclerotic diseases.

  9. Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish.

    Science.gov (United States)

    Hwang, Ji-Hyun; Kim, Kui-Jin; Ryu, Su-Jung; Lee, Boo-Yong

    2016-03-25

    Caffeine is a white crystalline xanthine alkaloid found in the seeds of coffee plants and leaves of the tea bush. In this study, we evaluated whether caffeine exerts anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation both in vitro and in vivo. RAW264.7 cells were treated with various concentrations of caffeine in the presence or absence of LPS. Caffeine decreased the LPS-induced inflammatory mediator, nitric oxide (NO). Caffeine treatment also reduced the expression of pro-inflammatory genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-3, IL-6 and IL-12, and decreased both IL-6 secretion and phosphorylated p38MAPK expression in LPS-treated RAW264.7 cells. Caffeine inhibited nuclear translocation of nuclear factor κB (NF-κB) via IκBα phosphorylation. In addition, caffeine inhibited LPS-induced NO production in zebrafish. These results suggest that caffeine may suppress LPS-induced inflammatory responses in RAW264.7 cells by regulating NF-κB activation and MAPK phosphorylation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. The protective effects of extra virgin olive oil on immune-mediated inflammatory responses.

    Science.gov (United States)

    Casas, Rosa; Estruch, Ramon; Sacanella, Emilio

    2017-11-13

    The increasing interest in the Mediterranean diet (MeDiet) hinges on the relevant role it plays in inflammatory diseases. Several clinical, epidemiological and experimental evidences suggest that consumption of the MeDiet reduces the incidence of certain pathologies related to oxidative stress, chronic inflammation and immune system diseases such as cancer, atherosclerosis and cardiovascular disease (CVD). These reductions can be partially attributed to extra virgin olive oil (EVOO) consumption which has been described as a key bioactive food because of its high nutritional quality and its particular composition of fatty acids, vitamins and polyphenols. Indeed, the beneficial effects of EVOO have been linked to its fatty acid composition, which is very rich in monounsaturated fatty acids (MUFA), and has moderate saturated and polyunsaturated fatty acids (PUFA). The current knowledge available on the beneficial effects of EVOO and its phenolic compounds, specifically its biological properties and antioxidant capacity against immune-mediated inflammatory responses (atherosclerosis, rheumatoid arthritis, diabetes, obesity, cancer, inflammatory bowel disease or neurodegenerative disease, among others) in addition to its potential clinical applications. The increasing body of studies carried out provides compelling evidence that olive polyphenols are potential candidates to combat chronic inflammatory states. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Fibrinogen modulates leukocyte recruitment in vivo during the acute inflammatory response.

    Science.gov (United States)

    Vitorino de Almeida, V; Silva-Herdade, A; Calado, A; Rosário, H S; Saldanha, C

    2015-01-01

    Besides playing an important role in blood hemostases, fibrinogen also regulates leukocyte function in inflammation. Our previous in vitro studies showed that the adhesive behaviour of the neutrophil is modulated by soluble fibrinogen when present at a physiological concentration. This led us to propose that this plasma glycoprotein might further influence leukocyte recruitment in vivo and thus contribute to the inflammatory response. To address this in vivo, leukocyte recruitment was here investigated under acute inflammatory conditions in the absence of soluble fibrinogen in the blood circulation. For such, intravital microscopy on mesentery post-capillary venules was performed on homozygous fibrinogen α chain-deficient mice ((α-/-) mice). Acute inflammatory states were induced by perfusing platelet activating factor (PAF) over the exposed tissue. As control animals, two groups of mice expressing soluble fibrinogen in circulation were used, namely, C57BL/6 wild type animals and heterozygous fibrinogen α chain-deficient mice ((α+/-) mice). Under acute inflammatory conditions, an abnormal pattern of recruitment was observed for leukocytes in homozygous (α-/-) mice in comparison to both control groups. In fact, the former exhibited a significantly decreased number of rolling leukocytes that nevertheless, migrated with increased rolling velocities when compared to leukocytes from control animals. Consistently, homozygous mice further displayed a diminished number of adherent leukocytes than the other groups. Altogether our observations led us to conclude that leukocyte recruitment in homozygous (α-/-) mice is compromised what strongly suggests a role for soluble fibrinogen in leukocyte recruitment in inflammation.

  12. Royal Jelly Inhibits Pseudomonas aeruginosa Adherence and Reduces Excessive Inflammatory Responses in Human Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Heni Susilowati

    2017-01-01

    Full Text Available Pseudomonas aeruginosa is a Gram-negative bacterium and causes respiratory infection especially in elderly patients. Royal jelly has been used worldwide as a traditional remedy and as a nutrient; however, the effect against P. aeruginosa is unclear. The aim of this study was to analyze antibacterial, antiadherent, and anti-inflammatory effects of royal jelly against P. aeruginosa. Wild-type strain PAO1 and clinical isolates of P. aeruginosa were used for antibacterial assay and antiadherent assay to abiotic surface and epithelial cells, which are pharynx (Detroit 562 and lung (NCI-H292 epithelial cells. In anti-inflammatory assay, epithelial cells were pretreated with royal jelly before bacterial exposure to investigate its inhibitory effect on interleukin (IL-8 and macrophage inflammatory protein-3α/CCL20 overproduction. Although royal jelly did not have antibacterial activity at concentration of 50% w/v, antiadherent activity was confirmed on the abiotic surface and epithelial cells under concentration of 25%. Pretreatment with royal jelly significantly inhibited overproduction of IL-8 and CCL20 from both cells. These results demonstrated that royal jelly inhibits P. aeruginosa adherence and protects epithelial cells from excessive inflammatory responses against P. aeruginosa infection. Our findings suggested that royal jelly may be a useful supplement as complementary and alternative medicine for preventing respiratory infection caused by P. aeruginosa.

  13. Non-canonical Glucocorticoid Receptor Transactivation of gilz by Alcohol Suppresses Cell Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Hang Pong Ng

    2017-06-01

    Full Text Available Acute alcohol exposure suppresses cell inflammatory response. The underlying mechanism has not been fully defined. Here we report that alcohol was able to activate glucocorticoid receptor (GR signaling in the absence of glucocorticoids (GCs and upregulated glucocorticoid-induced leucine zipper (gilz, a prominent GC-responsive gene. Such a non-canonical activation of GR was not blocked by mifepristone, a potent GC competitor. The proximal promoter of gilz, encompassing five GC-responsive elements (GREs, was incorporated and tested in a luciferase reporter system. Deletion and/or mutation of the GREs abrogated the promoter responsiveness to alcohol. Thus, the GR–GRE interaction transduced the alcohol action on gilz. Alcohol induced GR nuclear translocation, which was enhanced by the alcohol dehydrogenase inhibitor fomepizole, suggesting that it was alcohol, not its metabolites, that engendered the effect. Gel mobility shift assay showed that unliganded GR was able to bind GREs and such interaction withstood clinically relevant levels of alcohol. GR knockout via CRISPR/Cas9 gene targeting or GILZ depletion via small RNA interference diminished alcohol suppression of cell inflammatory response to LPS. Thus, a previously unrecognized, non-canonical GR activation of gilz is involved in alcohol modulation of cell immune response.

  14. A novel Zika virus mouse model reveals strain specific differences in virus pathogenesis and host inflammatory immune responses.

    Directory of Open Access Journals (Sweden)

    Shashank Tripathi

    2017-03-01

    Full Text Available Zika virus (ZIKV is a mosquito borne flavivirus, which was a neglected tropical pathogen until it emerged and spread across the Pacific Area and the Americas, causing large human outbreaks associated with fetal abnormalities and neurological disease in adults. The factors that contributed to the emergence, spread and change in pathogenesis of ZIKV are not understood. We previously reported that ZIKV evades cellular antiviral responses by targeting STAT2 for degradation in human cells. In this study, we demonstrate that Stat2-/- mice are highly susceptible to ZIKV infection, recapitulate virus spread to the central nervous system (CNS, gonads and other visceral organs, and display neurological symptoms. Further, we exploit this model to compare ZIKV pathogenesis caused by a panel of ZIKV strains of a range of spatiotemporal history of isolation and representing African and Asian lineages. We observed that African ZIKV strains induce short episodes of severe neurological symptoms followed by lethality. In comparison, Asian strains manifest prolonged signs of neuronal malfunctions, occasionally causing death of the Stat2-/- mice. African ZIKV strains induced higher levels of inflammatory cytokines and markers associated with cellular infiltration in the infected brain in mice, which may explain exacerbated pathogenesis in comparison to those of the Asian lineage. Interestingly, viral RNA levels in different organs did not correlate with the pathogenicity of the different strains. Taken together, we have established a new murine model that supports ZIKV infection and demonstrate its utility in highlighting intrinsic differences in the inflammatory response induced by different ZIKV strains leading to severity of disease. This study paves the way for the future interrogation of strain-specific changes in the ZIKV genome and their contribution to viral pathogenesis.

  15. Brain Metal Distribution and Neuro-Inflammatory Profiles after Chronic Vanadium Administration and Withdrawal in Mice

    Directory of Open Access Journals (Sweden)

    Oluwabusayo R. Folarin

    2017-07-01

    Full Text Available Vanadium is a potentially toxic environmental pollutant and induces oxidative damage in biological systems including the central nervous system (CNS. Its deposition in brain tissue may be involved in the pathogenesis of certain neurological disorders which after prolonged exposure can culminate into more severe pathology. Most studies on vanadium neurotoxicity have been done after acute exposure but in reality some populations are exposed for a lifetime. This work was designed to ascertain neurodegenerative consequences of chronic vanadium administration and to investigate the progressive changes in the brain after withdrawal from vanadium treatment. A total of 85 male BALB/c mice were used for the experiment and divided into three major groups of vanadium treated (intraperitoneally (i.p. injected with 3 mg/kg body weight of sodium metavanadate and sacrificed every 3 months till 18 months; matched controls; and animals that were exposed to vanadium for 3 months and thereafter the metal was withdrawn. Brain tissues were obtained after animal sacrifice. Sagittal cut sections of paraffin embedded tissue (5 μm were analyzed by the Laser ablation-inductively coupled plasma-mass spectrometry (LA–ICP–MS to show the absorption and distribution of vanadium metal. Also, Haematoxylin and Eosin (H&E staining of brain sections, and immunohistochemistry for Microglia (Iba-1, Astrocytes (GFAP, Neurons (Neu-N and Neu-N + 4′,6-diamidine-2′-pheynylindole dihydrochloride (Dapi Immunofluorescent labeling were observed for morphological and morphometric parameters. The LA–ICP–MS results showed progressive increase in vanadium uptake with time in different brain regions with prediction for regions like the olfactory bulb, brain stem and cerebellum. The withdrawal brains still show presence of vanadium metal in the brain slightly more than the controls. There were morphological alterations (of the layering profile, nuclear shrinkage in the prefrontal

  16. Cytokine balance in human malaria: does Plasmodium vivax elicit more inflammatory responses than Plasmodium falciparum?

    Directory of Open Access Journals (Sweden)

    Raquel M Gonçalves

    Full Text Available BACKGROUND: The mechanisms by which humans regulate pro- and anti-inflammatory responses on exposure to different malaria parasites remains unclear. Although Plasmodium vivax usually causes a relatively benign disease, this parasite has been suggested to elicit more host inflammation per parasitized red blood cell than P. falciparum. METHODOLOGY/PRINCIPAL FINDINGS: We measured plasma concentrations of seven cytokines and two soluble tumor necrosis factor (TNF-α receptors, and evaluated clinical and laboratory outcomes, in Brazilians with acute uncomplicated infections with P. vivax (n = 85, P. falciparum (n = 30, or both species (n = 12, and in 45 asymptomatic carriers of low-density P. vivax infection. Symptomatic vivax malaria patients, compared to those infected with P. falciparum or both species, had more intense paroxysms, but they had no clear association with a pro-inflammatory imbalance. To the contrary, these patients had higher levels of the regulatory cytokine interleukin (IL-10, which correlated positively with parasite density, and elevated IL-10/TNF-α, IL-10/interferon (IFN-γ, IL-10/IL-6 and sTNFRII/TNF-α ratios, compared to falciparum or mixed-species malaria patient groups. Vivax malaria patients had the highest levels of circulating soluble TNF-α receptor sTNFRII. Levels of regulatory cytokines returned to normal values 28 days after P. vivax clearance following chemotherapy. Finally, asymptomatic carriers of low P. vivax parasitemias had substantially lower levels of both inflammatory and regulatory cytokines than did patients with clinical malaria due to either species. CONCLUSIONS: Controlling fast-multiplying P. falciparum blood stages requires a strong inflammatory response to prevent fulminant infections, while reducing inflammation-related tissue damage with early regulatory cytokine responses may be a more cost-effective strategy in infections with the less virulent P. vivax parasite. The early induction

  17. Histamine release and fibrinogen adsorption mediate acute inflammatory responses to biomaterial implants in humans

    Directory of Open Access Journals (Sweden)

    Eaton John W

    2007-07-01

    Full Text Available Abstract Background Medical implants often fail as a result of so-called foreign body reactions during which inflammatory cells are recruited to implant surfaces. Despite the clinical importance of this phenomenon, the mechanisms involved in these reactions to biomedical implants in humans are not well understood. The results from animal studies suggest that both fibrinogen adsorption to the implant surface and histamine release by local mast cells are involved in biomaterial-mediated acute inflammatory responses. The purpose of this study was to test this hypothesis in humans. Methods Thirteen male medical student volunteers (Caucasian, 21–30 years of age were employed for this study. To assess the importance of fibrinogen adsorption, six volunteers were implanted with polyethylene teraphthalate disks pre-coated with their own (fibrinogen-containing plasma or (fibrinogen-free serum. To evaluate the importance of histamine, seven volunteers were implanted with uncoated disks with or without prior oral administration of histamine receptor antagonists. The acute inflammatory response was estimated 24 hours later by measuring the activities of implant-associated phagocyte-specific enzymes. Results Plasma coated implants accumulated significantly more phagocytes than did serum coated implants and the recruited cells were predominantly macrophage/monocytes. Administration of both H1 and H2 histamine receptor antagonists greatly reduced the recruitment of macrophages/monocytes and neutrophils on implant surfaces. Conclusion In humans – as in rodents – biomaterial-mediated inflammatory responses involve at least two crucial events: histamine-mediated phagocyte recruitment and phagocyte accumulation on implant surfaces engendered by spontaneously adsorbed host fibrinogen. Based on these results, we conclude that reducing fibrinogen:surface interactions should enhance biocompatibility and that administration of histamine receptor antagonists prior

  18. Allicin enhances host pro-inflammatory immune responses and protects against acute murine malaria infection.

    Science.gov (United States)

    Feng, Yonghui; Zhu, Xiaotong; Wang, Qinghui; Jiang, Yongjun; Shang, Hong; Cui, Liwang; Cao, Yaming

    2012-08-08

    During malaria infection, multiple pro-inflammatory mediators including IFN-γ, TNF and nitric oxide (NO) play a crucial role in the protection against the parasites. Modulation of host immunity is an important strategy to improve the outcome of malaria infection. Allicin is the major biologically active component of garlic and shows anti-microbial activity. Allicin is also active against protozoan parasites including Plasmodium, which is thought to be mediated by inhibiting cysteine proteases. In this study, the immunomodulatory activities of allicin were assessed during acute malaria infection using a rodent malaria model Plasmodium yoelii 17XL. To determine whether allicin modulates host immune responses against malaria infection, mice were treated with allicin after infection with P. yoelii 17XL. Mortality was checked daily and parasitaemia was determined every other day. Pro-inflammatory mediators and IL-4 were quantified by ELISA, while NO level was determined by the Griess method. The populations of dendritic cells (DCs), macrophages, CD4+ T and regulatory T cells (Treg) were assessed by FACS. Allicin reduced parasitaemia and prolonged survival of the host in a dose-dependent manner. This effect is at least partially due to improved host immune responses. Results showed that allicin treatment enhanced the production of pro-inflammatory mediators such as IFN-γ, TNF, IL-12p70 and NO. The absolute numbers of CD4+ T cells, DCs and macrophages were significantly higher in allicin-treated mice. In addition, allicin promoted the maturation of CD11c+ DCs, whereas it did not cause major changes in IL-4 and the level of anti-inflammatory cytokine IL-10. Allicin could partially protect host against P. yoelii 17XL through enhancement of the host innate and adaptive immune responses.

  19. Allicin enhances host pro-inflammatory immune responses and protects against acute murine malaria infection

    Directory of Open Access Journals (Sweden)

    Feng Yonghui

    2012-08-01

    Full Text Available Abstract Background During malaria infection, multiple pro-inflammatory mediators including IFN-γ, TNF and nitric oxide (NO play a crucial role in the protection against the parasites. Modulation of host immunity is an important strategy to improve the outcome of malaria infection. Allicin is the major biologically active component of garlic and shows anti-microbial activity. Allicin is also active against protozoan parasites including Plasmodium, which is thought to be mediated by inhibiting cysteine proteases. In this study, the immunomodulatory activities of allicin were assessed during acute malaria infection using a rodent malaria model Plasmodium yoelii 17XL. Methods To determine whether allicin modulates host immune responses against malaria infection, mice were treated with allicin after infection with P. yoelii 17XL. Mortality was checked daily and parasitaemia was determined every other day. Pro-inflammatory mediators and IL-4 were quantified by ELISA, while NO level was determined by the Griess method. The populations of dendritic cells (DCs, macrophages, CD4+ T and regulatory T cells (Treg were assessed by FACS. Results Allicin reduced parasitaemia and prolonged survival of the host in a dose-dependent manner. This effect is at least partially due to improved host immune responses. Results showed that allicin treatment enhanced the production of pro-inflammatory mediators such as IFN-γ, TNF, IL-12p70 and NO. The absolute numbers of CD4+ T cells, DCs and macrophages were significantly higher in allicin-treated mice. In addition, allicin promoted the maturation of CD11c+ DCs, whereas it did not cause major changes in IL-4 and the level of anti-inflammatory cytokine IL-10. Conclusions Allicin could partially protect host against P. yoelii 17XL through enhancement of the host innate and adaptive immune responses.

  20. Histamine release and fibrinogen adsorption mediate acute inflammatory responses to biomaterial implants in humans

    Science.gov (United States)

    Zdolsek, Johann; Eaton, John W; Tang, Liping

    2007-01-01

    Background Medical implants often fail as a result of so-called foreign body reactions during which inflammatory cells are recruited to implant surfaces. Despite the clinical importance of this phenomenon, the mechanisms involved in these reactions to biomedical implants in humans are not well understood. The results from animal studies suggest that both fibrinogen adsorption to the implant surface and histamine release by local mast cells are involved in biomaterial-mediated acute inflammatory responses. The purpose of this study was to test this hypothesis in humans. Methods Thirteen male medical student volunteers (Caucasian, 21–30 years of age) were employed for this study. To assess the importance of fibrinogen adsorption, six volunteers were implanted with polyethylene teraphthalate disks pre-coated with their own (fibrinogen-containing) plasma or (fibrinogen-free) serum. To evaluate the importance of histamine, seven volunteers were implanted with uncoated disks with or without prior oral administration of histamine receptor antagonists. The acute inflammatory response was estimated 24 hours later by measuring the activities of implant-associated phagocyte-specific enzymes. Results Plasma coated implants accumulated significantly more phagocytes than did serum coated implants and the recruited cells were predominantly macrophage/monocytes. Administration of both H1 and H2 histamine receptor antagonists greatly reduced the recruitment of macrophages/monocytes and neutrophils on implant surfaces. Conclusion In humans – as in rodents – biomaterial-mediated inflammatory responses involve at least two crucial events: histamine-mediated phagocyte recruitment and phagocyte accumulation on implant surfaces engendered by spontaneously adsorbed host fibrinogen. Based on these results, we conclude that reducing fibrinogen:surface interactions should enhance biocompatibility and that administration of histamine receptor antagonists prior to, and shortly after

  1. Epidermal keratinocytes initiate wound healing and pro-inflammatory immune responses following percutaneous schistosome infection.

    Science.gov (United States)

    Bourke, Claire D; Prendergast, Catriona T; Sanin, David E; Oulton, Tate E; Hall, Rebecca J; Mountford, Adrian P

    2015-03-01

    Keratinocytes constitute the majority of cells in the skin's epidermis, the first line of defence against percutaneous pathogens. Schistosome larvae (cercariae) actively penetrate the epidermis to establish infection, however the response of keratinocytes to invading cercariae has not been investigated. Here we address the hypothesis that cercariae activate epidermal keratinocytes to promote the development of a pro-inflammatory immune response in the skin. C57BL/6 mice were exposed to Schistosoma mansoni cercariae via each pinna and non-haematopoietic cells isolated from epidermal tissue were characterised for the presence of different keratinocyte sub-sets at 6, 24 and 96 h p.i. We identified an expansion of epidermal keratinocyte precursors (CD45(-), CD326(-), CD34(+)) within 24 h of infection relative to naïve animals. Following infection, cells within the precursor population displayed a more differentiated phenotype (α6integrin(-)) than in uninfected skin. Parallel immunohistochemical analysis of pinnae cryosections showed that this expansion corresponded to an increase in the intensity of CD34 staining, specifically in the basal bulge region of hair follicles of infected mice, and a higher frequency of keratinocyte Ki67(+) nuclei in both the hair follicle and interfollicular epidermis. Expression of pro-inflammatory cytokine and stress-associated keratin 6b genes was also transiently upregulated in the epidermal tissue of infected mice. In vitro exposure of keratinocyte precursors isolated from neonatal mouse skin to excretory/secretory antigens released by penetrating cercariae elicited IL-1α and IL-1β production, supporting a role for keratinocyte precursors in initiating cutaneous inflammatory immune responses. Together, these observations indicate that S.mansoni cercariae and their excretory/secretory products act directly upon epidermal keratinocytes, which respond by initiating barrier repair and pro-inflammatory mechanisms similar to those

  2. Biaryl amide compounds reduce the inflammatory response in macrophages by regulating Dectin-1.

    Science.gov (United States)

    Hyung, Kyeong Eun; Lee, Mi Ji; Lee, Yun-Jung; Lee, Do Ik; Min, Hye Young; Park, So-Young; Min, Kyung Hoon; Hwang, Kwang Woo

    2016-03-01

    Macrophages are archetypal innate immune cells that play crucial roles in the recognition and phagocytosis of invading pathogens, which they identify using pattern recognition receptors (PRRs). Dectin-1 is essential for antifungal immune responses, recognizing the fungal cellular component β-glucan, and its role as a PRR has been of increasing interest. Previously, we discovered and characterized a novel biaryl amide compound, MPS 03, capable of inhibiting macrophage phagocytosis of zymosan. Therefore, in this study we aimed to identify other biaryl amide compounds with greater effectiveness than MPS 03, and elucidate their cellular mechanisms. Several MPS 03 derivatives were screened, four of which reduced zymosan phagocytosis in a similar manner to MPS 03. To establish whether such phagocytosis inhibition influenced the production of inflammatory mediators, pro-inflammatory cytokine and nitric oxide (NO) levels were measured. The production of TNF-α, IL-6, IL-12, and NO was significantly reduced in a dose-dependent manner. Moreover, the inflammation-associated MAPK signaling pathway was also affected by biaryl amide compounds. To investigate the underlying cellular mechanism, PRR expression was measured. MPS 03 and its derivatives were found to inhibit zymosan phagocytosis by decreasing Dectin-1 expression. Furthermore, when macrophages were stimulated by zymosan after pretreatment with biaryl amide compounds, downstream transcription factors such as NFAT, AP-1, and NF-κB were downregulated. In conclusion, biaryl amide compounds reduce zymosan-induced inflammatory responses by downregulating Dectin-1 expression. Therefore, such compounds could be used to inhibit Dectin-1 in immunological experiments and possibly regulate excessive inflammatory responses. Copyright © 2016. Published by Elsevier B.V.

  3. The hemic response of white-spotted bamboo sharks (Chiloscyllium plagiosum) with inflammatory disease.

    Science.gov (United States)

    Alexander, Amy B; Parkinson, Lily A; Grant, Krystan R; Carlson, Eric; Campbell, Terry W

    2016-05-01

    As elasmobranch medicine becomes more commonplace, there continues to be confusion with techniques and evaluation of the shark hemogram and it remains unknown if they are able to mount an inflammatory hemic response. The aims of this study were to compare two total white blood cell (WBC) count techniques, establish a reference interval for captive white-spotted bamboo sharks (Chiloscyllium plagiosum), and determine if elasmobranchs are capable of mounting an inflammatory hemic response. Correlation statistics were performed on hematologic results for healthy female bamboo sharks to assess the use of Natt-Herrick's and phloxine methods. Total WBC counts and differentials were obtained from males with severe traumatic clasper wounds and compared to the healthy females. We elected clasper amputation as the preferred treatment intervention and post-operative hematology was performed one month later. There was poor correlation of leukocyte counts between the two WBC count methods. Hematologic values were established for the females and males pre- and post-operatively. Males with wounds had a marked leukocytosis and heterophilia. Post-operative blood work showed a resolution of total WBC count and a trend toward resolution of the heterophilia. This study provides hematologic values for white-spotted bamboo sharks and confirms that the Natt-Herrick's method is preferred for lymphocytic species. Hematologic differences present in males with clasper wounds suggests that elasmobranchs do mount an inflammatory hemic response. Treatment via clasper amputation proved to be a safe and efficient means for clinical treatment that led to a trend toward resolution of the inflammatory leukogram. Zoo Biol. 35:251-259, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Case study: auditory brain responses in a minimally verbal child with autism and cerebral palsy

    National Research Council Canada - National Science Library

    Yau, Shu H; McArthur, Genevieve; Badcock, Nicholas A; Brock, Jon

    2015-01-01

    .... Where typically developing children and verbal autistic children all demonstrated similar brain responses to speech and nonspeech sounds, GM produced much stronger responses to nonspeech than speech...

  5. The effects of age on inflammatory and coagulation-fibrinolysis response in patients hospitalized for pneumonia.

    Directory of Open Access Journals (Sweden)

    Sachin Kale

    2010-11-01

    Full Text Available To determine whether inflammatory and hemostasis response in patients hospitalized for pneumonia varies by age and whether these differences explain higher mortality in the elderly.In an observational cohort of subjects with community-acquired pneumonia (CAP recruited from emergency departments (ED in 28 hospitals, we divided subjects into 5 age groups (85% subjects, older subjects had modestly increased hemostasis markers and IL-6 levels (p<0.01.Modest age-related increases in coagulation response occur during hospitalization for CAP; however these differences do not explain the large differences in mortality. Despite clinical recovery, immune resolution may be delayed in older adults at discharge.

  6. Injury-Induced Type I IFN Signaling Regulates Inflammatory Responses in the Central Nervous System

    DEFF Research Database (Denmark)

    Khorooshi, Reza; Owens, Trevor

    2010-01-01

    Innate glial response is critical for the induction of inflammatory mediators and recruitment of leukocytes to sites of the injury in the CNS. We have examined the involvement of type I IFN signaling in the mouse hippocampus following sterile injury (transection of entorhinal afferents). Type I...... in increased leukocyte infiltration into the lesion-reactive hippocampus. Axonal lesion-induced CXCL10 gene expression was abrogated, whereas matrix metalloproteinase 9 mRNA was elevated in IFNAR-deficient mice. Our findings point to a role for type I IFN signaling in regulation of CNS response to sterile...

  7. Brain involvement in patients with inflammatory bowel disease: a voxel-based morphometry and diffusion tensor imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Zikou, Anastasia K.; Astrakas, Loukas G.; Tzarouchi, Loukia C.; Argyropoulou, Maria I. [University of Ioannina, Department of Radiology, Medical School, Ioannina (Greece); Kosmidou, Maria; Tsianos, Epameinondas [University of Ioannina, 1st Department of Internal Medicine (Hepato-Gastroenterology Unit), Medical School, Ioannina (Greece)

    2014-10-15

    To investigate structural brain changes in inflammatory bowel disease (IBD). Brain magnetic resonance imaging (MRI) was performed on 18 IBD patients (aged 45.16 ± 14.71 years) and 20 aged-matched control subjects. The imaging protocol consisted of a sagittal-FLAIR, a T1-weighted high-resolution three-dimensional spoiled gradient-echo sequence, and a multisession spin-echo echo-planar diffusion-weighted sequence. Differences between patients and controls in brain volume and diffusion indices were evaluated using the voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) methods, respectively. The presence of white-matter hyperintensities (WMHIs) was evaluated on FLAIR images. VBM revealed decreased grey matter (GM) volume in patients in the fusiform and the inferior temporal gyrus bilaterally, the right precentral gyrus, the right supplementary motor area, the right middle frontal gyrus and the left superior parietal gyrus (p < 0.05). TBSS showed decreased axial diffusivity (AD) in the right corticospinal tract and the right superior longitudinal fasciculus in patients compared with controls. A larger number of WMHIs was observed in patients (p < 0.05). Patients with IBD show an increase in WMHIs and GM atrophy, probably related to cerebral vasculitis and ischaemia. Decreased AD in major white matter tracts could be a secondary phenomenon, representing Wallerian degeneration. (orig.)

  8. The local inflammatory responses to infection of the peritoneal cavity in humans: Their regulation by cytokines, macrophages, and other leukocytes

    NARCIS (Netherlands)

    M.W.J.A. Fieren (Marien)

    2012-01-01

    textabstractStudies on infection-induced inflammatory reactions in humans rely largely on findings in the blood compartment. Peritoneal leukocytes from patients treated with peritoneal dialysis offer a unique opportunity to study in humans the inflammatory responses taking place at the site of

  9. Individual brain-frequency responses to self-selected music.

    Science.gov (United States)

    Höller, Yvonne; Thomschewski, Aljoscha; Schmid, Elisabeth Verena; Höller, Peter; Crone, Julia Sophia; Trinka, Eugen

    2012-12-01

    Music is a stimulus which may give rise to a wide range of emotional and cognitive responses. Therefore, brain reactivity to music has become a focus of interest in cognitive neuroscience. It is possible that individual preference moderates the effectof music on the brain. In the present study we examined whether there are common effects of listening to music even if each subject in a sample chooses their own piece of music. We invited 18 subjects to bring along their favorite relaxing music, and their favourite stimulating music. Additionally, a condition with tactile stimulation on the foot and a baseline condition (rest) without stimulation were used. The tactile stimulation was chosen to provide a simple, non-auditory condition which would be identical for all subjects. The electroencephalogram was recorded for each of the 3 conditions and during rest. We found responses in the alpha range mainly on parietal and occipital sites that were significant compared to baseline in 13 subjects during relaxing music, 15 subjects during activating music, and 16 subjects during tactile stimulation. Most subjects showed an alpha desynchronization in a lower alpha range followed by a synchronization in an upper frequency range. However, some subjects showed an increase in this area, whereas others showed a decrease only. In addition, many subjects showed reactivity in the beta range. Beta activity was especially increased while listening to activating music and during tactile stimulation in most subjects. We found interindividual differences in the response patterns even though the stimuli provoked comparable subjective emotions (relaxation, activation), and even if the stimulus was the same for all subjects (somatosensory stimulation). We suggest that brain responsivity to music should be examined individually by considering individual characteristics. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. SOCS2 and SOCS3 expression in ulcerative colitis and their correlation with inflammatory response and immune response

    Directory of Open Access Journals (Sweden)

    Le Huang1

    2017-05-01

    Full Text Available Objective: To study the correlation of SOCS2 and SOCS3 expression in ulcerative colitis tissue with inflammatory response and immune response. Methods: Ulcerative colitis lesions and normal mucosa from colonoscopic biopsy in Central Hospital of Zibo Mining Refco Group Ltd between May 2014 and July 2016 were selected and enrolled in UC group and control group respectively. RNA was extracted to determine mRNA expression of SOCS2 and SOCS3 as well as inflammatory response JAKs/STATs pathway molecules; protein was extracted to determine the contents of immune response cytokines. Results: SOCS2 mRNA expression in intestinal mucosa of UC group was not significantly different from that of control group, and SOCS3 mRNA expression was significantly lower than that of control group; JAK1, JAK2, JAK3, STAT1, STAT3 and STAT5 mRNA expression as well as IFN-γ and IL-17 protein contents in intestinal mucosa of UC group were significantly higher than those of control group while IL-4 and IL-10 protein contents were significantly lower than those of control group; JAK1, JAK2, JAK3, STAT1, STAT3 and STAT5 mRNA expression as well as IFN-γ and IL-17 protein contents in UC group of intestinal mucosa with low SOCS3 expression were significantly higher than those of intestinal mucosa with high SOCS3 expression while IL-4 and IL-10 protein contents were significantly lower than those of intestinal mucosa with high SOCS3 expression. Conclusion: Low expression of SOCS3 in ulcerative colitis can aggravate the inflammatory reaction and cause the imbalance of Th1/Th2 and Th17/Treg immune response.

  11. Inflammatory cytokines and plasma redox status responses in hypertensive subjects after heat exposure

    Directory of Open Access Journals (Sweden)

    S.F. Fonseca

    2016-03-01

    Full Text Available Hypertension is characterized by a pro-inflammatory status, including redox imbalance and increased levels of pro-inflammatory cytokines, which may be exacerbated after heat exposure. However, the effects of heat exposure, specifically in individuals with inflammatory chronic diseases such as hypertension, are complex and not well understood. This study compared the effects of heat exposure on plasma cytokine levels and redox status parameters in 8 hypertensive (H and 8 normotensive (N subjects (age: 46.5±1.3 and 45.6±1.4 years old, body mass index: 25.8±0.8 and 25.6±0.6 kg/m2, mean arterial pressure: 98.0±2.8 and 86.0±2.3 mmHg, respectively. They remained at rest in a sitting position for 10 min in a thermoneutral environment (22°C followed by 30 min in a heated environmental chamber (38°C and 60% relative humidity. Blood samples were collected before and after heat exposure. Plasma cytokine levels were measured using sandwich ELISA kits. Plasma redox status was determined by thiobarbituric acid reactive substances (TBARS levels and ferric reducing ability of plasma (FRAP. Hypertensive subjects showed higher plasma levels of IL-10 at baseline (P<0.05, although levels of this cytokine were similar between groups after heat exposure. Moreover, after heat exposure, hypertensive individuals showed higher plasma levels of soluble TNF receptor (sTNFR1 and lower TBARS (P<0.01 and FRAP (P<0.05 levels. Controlled hypertensive subjects, who use angiotensin-converting-enzyme inhibitor (ACE inhibitors, present an anti-inflammatory status and balanced redox status. Nevertheless, exposure to a heat stress condition seems to cause an imbalance in the redox status and an unregulated inflammatory response.

  12. Muscle cells challenged with saturated fatty acids mount an autonomous inflammatory response that activates macrophages

    Directory of Open Access Journals (Sweden)

    Pillon Nicolas J

    2012-10-01

    Full Text Available Abstract Obesity is associated with chronic low-grade inflammation. Within adipose tissue of mice fed a high fat diet, resident and infiltrating macrophages assume a pro-inflammatory phenotype characterized by the production of cytokines which in turn impact on the surrounding tissue. However, inflammation is not restricted to adipose tissue and high fat-feeding is responsible for a significant increase in pro-inflammatory cytokine expression in muscle. Although skeletal muscle is the major disposer of dietary glucose and a major determinant of glycemia, the origin and consequence of muscle inflammation in the development of insulin resistance are poorly understood. We used a cell culture approach to investigate the vectorial crosstalk between muscle cells and macrophages upon exposure to physiological, low levels of saturated and unsaturated fatty acids. Inflammatory pathway activation and cytokine expression were analyzed in L6 muscle cells expressing myc-tagged GLUT4 (L6GLUT4myc exposed to 0.2 mM palmitate or palmitoleate. Conditioned media thereof, free of fatty acids, were then tested for their ability to activate RAW264.7 macrophages. Palmitate -but not palmitoleate- induced IL-6, TNFα and CCL2 expression in muscle cells, through activation of the NF-κB pathway. Palmitate (0.2 mM alone did not induce insulin resistance in muscle cells, yet conditioned media from palmitate-challenged muscle cells selectively activated macrophages towards a pro-inflammatory phenotype. These results demonstrate that low concentrations of palmitate activate autonomous inflammation in muscle cells to release factors that turn macrophages pro-inflammatory. We hypothesize that saturated fat-induced, low-grade muscle cell inflammation may trigger resident skeletal muscle macrophage polarization, possibly contributing to insulin resistance in vivo.

  13. Extracellular Adenosine Generation in the Regulation of Pro-Inflammatory Responses and Pathogen Colonization

    Directory of Open Access Journals (Sweden)

    M. Samiul Alam

    2015-05-01

    Full Text Available Adenosine, an immunomodulatory biomolecule, is produced by the ecto-enzymes CD39 (nucleoside triphosphate dephosphorylase and CD73 (ecto-5'-nucleotidase by dephosphorylation of extracellular ATP. CD73 is expressed by many cell types during injury, infection and during steady-state conditions. Besides host cells, many bacteria also have CD39-CD73-like machinery, which helps the pathogen subvert the host inflammatory response. The major function for adenosine is anti-inflammatory, and most recent research has focused on adenosine’s control of inflammatory mechanisms underlying various autoimmune diseases (e.g., colitis, arthritis. Although adenosine generated through CD73 provides a feedback to control tissue damage mediated by a host immune response, it can also contribute to immunosuppression. Thus, inflammation can be a double-edged sword: it may harm the host but eventually helps by killing the invading pathogen. The role of adenosine in dampening inflammation has been an area of active research, but the relevance of the CD39/CD73-axis and adenosine receptor signaling in host defense against infection has received less attention. Here, we review our recent knowledge regarding CD73 expression during murine Salmonellosis and Helicobacter-induced gastric infection and its role in disease pathogenesis and bacterial persistence. We also explored a possible role for the CD73/adenosine pathway in regulating innate host defense function during infection.

  14. Different inflammatory responses induced by three LDL-lowering apheresis columns.

    Science.gov (United States)

    Hovland, Anders; Hardersen, Randolf; Sexton, Joe; Mollnes, Tom Eirik; Lappegård, Knut Tore

    2009-01-01

    Low-density lipoprotein (LDL) apheresis is well-established in selected patients with uncontrolled LDL levels. As such treatment affects biomarkers important in atherosclerosis and acute coronary syndromes, we systematically compared the inflammatory response induced by three LDL apheresis columns. Three patients with heterozygous familial hypercholesterolemia participated in a cross-over study with six consecutive treatments with three different LDL apheresis columns: DL-75 (whole blood adsorption), LA-15 (plasma adsorption), and EC-50W (plasma filtration). Biochemical parameters and inflammatory biomarkers, including complement activation products and 27 cytokines, chemokines, and growth factors were measured before and after treatment. Complement was activated through the alternative pathway. The final end product sC5b-9 increased significantly (P < 0.01) and equally with all devices, whereas the anaphylatoxins C3a and C5a were lower by use of the adsorption columns. Hs-CRP was reduced by 77% (DL-75), 72% (LA-15), and 43% (EC-50W). The cytokines were consistently either increased (IL-1ra, IP-10, MCP-1), decreased (IFN-gamma, TNF-alpha, RANTES, PDGF, VEGF), or hardly changed (including IL-6, IL8, MIP-1alphabeta) during treatment. The changes were in general less pronounced with the adsorption columns. All columns reduced LDL significantly and to the same extent. In conclusion, three LDL-apheresis devices with equal cholesterol-lowering effect differed significantly with respect to the inflammatory response.

  15. Integrin-substrate interactions underlying shear-induced inhibition of the inflammatory response of endothelial cells.

    Science.gov (United States)

    Luu, N Thin; Glen, Katie E; Egginton, Stuart; Rainger, G Ed; Nash, Gerard B

    2013-02-01

    Conditioning of endothelial cells by shear stress suppresses their response to inflammatory cytokines. We questioned whether signalling through different integrin-matrix interactions, previously associated with the pathogenic effects of disturbed flow, supported the anti-inflammatory action of steady shear. Primary human endothelial cells were cultured on different substrates and exposed to shear stress (2.0Pa) for varying periods before stimulation with tumour necrosis factor-α (TNF). Shear-conditioning inhibited cytokine-induced recruitment of flowing neutrophils. However, the effect was similar for culture on collagen, laminin or fibronectin, even when seeding was reduced to 2 hours, and shear to 3 hours before TNF treatment (to minimise deposition of endothelial matrix). Nevertheless, in short- or longer-term cultures, reduction in expression of β(1)-integrin (but not β(3)-integrin) using siRNA essentially ablated the effect of shear-conditioning on neutrophil recruitment. Studies of focal adhesion kinase (FAK) phosphorylation, siRNA against FAK and a FAK-inhibitor (PF573228) indicated that FAK activity was an essential component downstream of β(1)-integrin. In addition, MAP-kinase p38 was phosphorylated downstream of FAK and also required for functional modification. Mechanotransduction through β(1)-integrins, FAK and p38 is required for anti-inflammatory effects of steady shear stress. Separation of the pathways which underlie pathological versus protective responses of different patterns of flow is required to enable therapeutic modification or mimicry, respectively.

  16. Protective effect of taraxasterol against rheumatoid arthritis by the modulation of inflammatory responses in mice

    Science.gov (United States)

    Jiang, Shu-Hua; Ping, Li-Feng; Sun, Feng-Yan; Wang, Xiao-Lei; Sun, Zhi-Juan

    2016-01-01

    Taraxasterol is an effective component of dandelion that has anti-inflammatory effects in vivo and in vitro. The present study was performed to explore whether taraxasterol exhibits a protective effect against rheumatoid arthritis through the modulation of inflammatory responses in mice. Eight-week-old CCR9-deficient mice were injected with a collagen II monoclonal antibody cocktail to create a rheumatoid arthritis model. In the experimental group, arthritic model mice were treated with 10 mg/kg taraxasterol once per day for 5 days. Treatment with taraxasterol significantly increased the pain thresholds and reduced the clinical arthritic scores of the mice in the experimental group compared with those of the model group. Furthermore, treatment with taraxasterol significantly suppressed tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and nuclear factor-κB protein expression levels compared with those in the rheumatoid arthritis model mice. Taraxasterol treatment also significantly reduced nitric oxide, prostaglandin E2 and cyclooxygenase-2 levels compared with those in the rheumatoid arthritis model group. These observations indicate that the protective effect of taraxasterol against rheumatoid arthritis is mediated via the modulation of inflammatory responses in mice. PMID:28101182

  17. Lipid Bodies: Inflammatory Organelles Implicated in Host-Trypanosoma cruzi Interplay during Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Heloisa D'Avila

    2012-01-01

    Full Text Available The flagellated protozoa Trypanosoma cruzi is the causal agent of Chagas' disease, a significant public health issue and still a major cause of morbidity and mortality in Latin America. Acute Chagas' disease elicits a strong inflammatory response. In order to control the parasite multiplication, cells of the monocytic lineage are highly mobilized. Monocyte differentiation leads to the formation of phagocytosing macrophages, which are strongly activated and direct host defense. A distinguishing feature of Chagas' disease-triggered macrophages is the presence of increased numbers of distinct cytoplasmic organelles termed lipid bodies or lipid droplets. These organelles are actively formed in response to the parasite and are sites for synthesis and storage of inflammatory mediators. This review covers current knowledge on lipid bodies elicited by the acute Chagas' disease within inflammatory macrophages and discusses the role of these organelles in inflammation. The increased knowledge of lipid bodies in pathogenic mechanisms of infections may not only contribute to the understanding of pathogen-host interactions but may also identify new targets for intervention.

  18. Acute-Phase Inflammatory Response to Single-Bout HIIT and Endurance Training: A Comparative Study.

    Science.gov (United States)

    Kaspar, Felix; Jelinek, Herbert F; Perkins, Steven; Al-Aubaidy, Hayder A; deJong, Bev; Butkowski, Eugene

    2016-01-01

    This study compared acute and late effect of single-bout endurance training (ET) and high-intensity interval training (HIIT) on the plasma levels of four inflammatory cytokines and C-reactive protein and insulin-like growth factor 1. Cohort study with repeated-measures design. Seven healthy untrained volunteers completed a single bout of ET and HIIT on a cycle ergometer. ET and HIIT sessions were held in random order and at least 7 days apart. Blood was drawn before the interventions and 30 min and 2 days after the training sessions. Plasma samples were analyzed with ELISA for the interleukins (IL), IL-1β, IL-6, and IL-10, monocyte chemoattractant protein-1 (MCP-1), insulin growth factor 1 (IGF-1), and C-reactive protein (CRP). Statistical analysis was with Wilcoxon signed-rank tests. ET led to both a significant acute and long-term inflammatory response with a significant decrease at 30 minutes after exercise in the IL-6/IL-10 ratio (-20%; p = 0.047) and a decrease of MCP-1 (-17.9%; p = 0.03). This study demonstrates that ET affects the inflammatory response more adversely at 30 minutes after exercise compared to HIIT. However, this is compensated by a significant decrease in MCP-1 at two days associated with a reduced risk of atherosclerosis.

  19. Hypoxia modulates phenotype, inflammatory response, and leishmanial infection of human dendritic cells.

    Science.gov (United States)

    Bosseto, Maira Cegatti; Palma, Patricia Vianna Bonini; Covas, Dimas Tadeu; Giorgio, Selma

    2010-02-01

    Development of hypoxic areas occurs during infectious and inflammatory processes and dendritic cells (DCs) are involved in both innate and adaptive immunity in diseased tissues. Our group previously reported that macrophages exposed to hypoxia were infected with the intracellular parasite Leishmania amazonensis, but showed reduced susceptibility to the parasite. This study shows that although hypoxia did not alter human DC viability, it significantly altered phenotypic and functional characteristics. The expression of CD1a, CD80, and CD86 was significantly reduced in DCs exposed to hypoxia, whereas CD11c, CD14, CD123, CD49 and HLA-DR expression remained unaltered in DCs cultured in hypoxia or normoxia. DC secretion of IL-12p70, the bioactive interleukin-12 (IL-12), a cytokine produced in response to inflammatory mediators, was enhanced under hypoxia. In addition, phagocytic activity (Leishmania uptake) was not impaired under hypoxia, although this microenviroment induced infected DCs to reduce parasite survival, consequently controlling the infection rate. All these data support the notion that a hypoxic microenvironment promotes selective pressure on DCs to assume a phenotype characterized by pro-inflammatory and microbial activities in injured or inflamed tissues and contribute to the innate immune response.

  20. The Inhibitory Effect of Tartary Buckwheat Extracts on Adipogenesis and Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Mak-Soon Lee

    2017-07-01

    Full Text Available Tartary buckwheat (Fagopyrum tataricum has been established globally as a nutritionally important food item, particularly owing to high levels of bioactive compounds such as rutin. This study investigated the effect of tartary buckwheat extracts (TBEs on adipogenesis and inflammatory response in 3T3-L1 cells. TBEs inhibited lipid accumulation, triglyceride content, and glycerol-3-phosphate dehydrogenase (GPDH activity during adipocyte differentiation of 3T3 L1 cells. The mRNA levels of genes involved in fatty acid synthesis, such as peroxisome proliferator-activated receptor-γ (PPAR-γ, CCAAT/enhancer binding protein-α (CEBP-α, adipocyte protein 2 (aP2, acetyl-CoA carboxylase (ACC, fatty acid synthase (FAS, and stearoylcoenzyme A desaturase-1 (SCD-1, were suppressed by TBEs. They also reduced the mRNA levels of inflammatory mediators such as tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, monocyte chemoattractant protein 1 (MCP-1, and inducible nitric oxide synthase (iNOS. In addition, TBEs were decreased nitric oxide (NO production. These results suggest that TBEs may inhibit adipogenesis and inflammatory response; therefore, they seem to be beneficial as a food ingredient to prevent obesity-associated inflammation.

  1. Gastrodin relieved complete Freund's adjuvant-induced spontaneous pain by inhibiting inflammatory response.

    Science.gov (United States)

    Sun, Ting; Wang, Jian; Li, Xiang; Li, Yu-Jiao; Feng, Dan; Shi, Wen-Long; Zhao, Ming-Gao; Wang, Jian-Bo; Wu, Yu-Mei

    2016-12-01

    The analgesic effects of gastrodin (GAS), an active component derived from the Chinese herb Tian ma (Gastrodia elata Blume), on chronic inflammatory pain of mice and the involved molecular mechanisms were investigated. GAS significantly attenuated mice chronic inflammatory pain induced by hindpaw injection of complete Freund's adjuvant (CFA) and the accompanying anxiety-like behaviors. GAS administration reduced CFA-induced up-regulation of GluR1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, GluN2A- and GluN2B-containing N-methyl-d-aspartate (NMDA) receptors, and Ca(2+)/calmodulin-dependent protein kinase II-alpha (CaMKII-α) in the anterior cingulate cortex (ACC). The GluN2A and GluN2B subunits of NMDA receptors, the GluR1 type of AMPA receptor, and CaMKII-α are key molecules responsible for neuroplasticity involved in chronic pain and the accompanying anxiety. Moreover, GAS administration reduced the activation of astrocyte and microglia and the induction of TNF-α and IL-6 in the ACC of the CFA-injected mice. Therefore, GAS administration relieved chronic pain, exerted anxiolytic effects by regulating neuroplasticity molecules, and attenuated the inflammatory response by reducing the induction of TNF-α and IL-6 in the ACC of the CFA-injected mice. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Role of histamine in the inhibitory effects of phycocyanin in experimental models of allergic inflammatory response.

    Science.gov (United States)

    Remirez, D; Ledón, N; González, R

    2002-01-01

    It has recently been reported that phycocyanin, a biliprotein found in the blue-green microalgae Spirulina, exerts anti-inflammatory effects in some animal models of inflammation. Taking into account these findings, we decided to elucidate whether phycocyanin might exert also inhibitory effects in the induced allergic inflammatory response and on histamine release from isolated rat mast cells. In in vivo experiments, phycocyanin (100, 200 and 300mg/kg post-orally (p.o.)) was administered 1 h before the challenge with 1 microg of ovalbumin (OA) in the ear of mice previously sensitized with OA. One hour later, myeloperoxidase activity and ear edema were assessed. Phycocyanin significantly reduced both parameters. In separate experiments, phycocyanin (100 and 200 mg/kg p.o.) also reduced the blue spot area induced by intradermal injections of histamine, and the histamine releaser compound 48/80 in rat skin. In concordance with the former results, phycocyanin also significantly reduced histamine release induced by compound 48/80 from isolated peritoneal rat mast cells. The inhibitory effects of phycocyanin were dose dependent. Taken together, our results suggest that inhibition of allergic inflammatory response by phycocyanin is mediated, at least in part, by inhibition of histamine release from mast cells. PMID:12061428

  3. Nuclear Control of the Inflammatory Response in Mammals by Peroxisome Proliferator-Activated Receptors

    Directory of Open Access Journals (Sweden)

    Stéphane Mandard

    2013-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are ligand-activated transcription factors that play pivotal roles in the regulation of a very large number of biological processes including inflammation. Using specific examples, this paper focuses on the interplay between PPARs and innate immunity/inflammation and, when possible, compares it among species. We focus on recent discoveries establishing how inflammation and PPARs interact in the context of obesity-induced inflammation and type 2 diabetes, mostly in mouse and humans. We illustrate that PPARγ ability to alleviate obesity-associated inflammation raises an interesting pharmacologic potential. In the light of recent findings, the protective role of PPARα and PPARβ/δ against the hepatic inflammatory response is also addressed. While PPARs agonists are well-established agents that can treat numerous inflammatory issues in rodents and humans, surprisingly very little has been described in other species. We therefore also review the implication of PPARs in inflammatory bowel disease; acute-phase response; and central, cardiac, and endothelial inflammation and compare it along different species (mainly mouse, rat, human, and pig. In the light of the data available in the literature, there is no doubt that more studies concerning the impact of PPAR ligands in livestock should be undertaken because it may finally raise unconsidered health and sanitary benefits.

  4. HMGB1 Promotes Systemic Lupus Erythematosus by Enhancing Macrophage Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Mudan Lu

    2015-01-01

    Full Text Available Background/Purpose. HMGB1, which may act as a proinflammatory mediator, has been proposed to contribute to the pathogenesis of multiple chronic inflammatory and autoimmune diseases including systemic lupus erythematosus (SLE; however, the precise mechanism of HMGB1 in the pathogenic process of SLE remains obscure. Method. The expression of HMGB1 was measured by ELISA and western blot. The ELISA was also applied to detect proinflammatory cytokines levels. Furthermore, nephritic pathology was evaluated by H&E staining of renal tissues. Results. In this study, we found that HMGB1 levels were significantly increased and correlated with SLE disease activity in both clinical patients and murine model. Furthermore, gain- and loss-of-function analysis showed that HMGB1 exacerbated the severity of SLE. Of note, the HMGB1 levels were found to be associated with the levels of proinflammatory cytokines such as TNF-α and IL-6 in SLE patients. Further study demonstrated that increased HMGB1 expression deteriorated the severity of SLE via enhancing macrophage inflammatory response. Moreover, we found that receptor of advanced glycation end products played a critical role in HMGB1-mediated macrophage inflammatory response. Conclusion. These findings suggested that HMGB1 might be a risk factor for SLE, and manipulation of HMGB1 signaling might provide a therapeutic strategy for SLE.

  5. Suppressive effects of lysozyme on polyphosphate-mediated vascular inflammatory responses.

    Science.gov (United States)

    Chung, Jiwoo; Ku, Sae-Kwang; Lee, Suyeon; Bae, Jong-Sup

    2016-06-10

    Lysozyme, found in relatively high concentration in blood, saliva, tears, and milk, protects us from the ever-present danger of bacterial infection. Previous studies have reported proinflammatory responses of endothelial cells to the release of polyphosphate(PolyP). In this study, we examined the anti-inflammatory responses and mechanisms of lysozyme and its effects on PolyP-induced septic activities in human umbilical vein endothelial cells (HUVECs) and mice. The survival rates, septic biomarker levels, behavior of human neutrophils, and vascular permeability were determined in PolyP-activated HUVECs and mice. Lysozyme suppressed the PolyP-mediated vascular barrier permeability, upregulation of inflammatory biomarkers, adhesion/migration of leukocytes, and activation and/or production of nuclear factor-κB, tumor necrosis factor-α, and interleukin-6. Furthermore, lysozyme demonstrated protective effects on PolyP-mediated lethal death and the levels of the related septic biomarkers. Therefore, these results indicated the therapeutic potential of lysozyme on various systemic inflammatory diseases, such as sepsis or septic shock. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Role of histamine in the inhibitory effects of phycocyanin in experimental models of allergic inflammatory response

    Directory of Open Access Journals (Sweden)

    D. Remirez

    2002-01-01

    Full Text Available It has recently been reported that phycocyanin, a biliprotein found in the blue-green microalgae Spirulina, exerts anti-inflammatory effects in some animal models of inflammation. Taking into account these findings, we decided to elucidate whether phycocyanin might exert also inhibitory effects in the induced allergic inflammatory response and on histamine release from isolated rat mast cells. In in vivo experiments, phycocyanin (100, 200 and 300 mg/kg post-orally (p.o. was administered 1 h before the challenge with 1 μg of ovalbumin (OA in the ear of mice previously sensitized with OA. One hour later, myeloperoxidase activity and ear edema were assessed. Phycocyanin significantly reduced both parameters. In separate experiments, phycocyanin (100 and 200 mg/kg p.o. also reduced the blue spot area induced by intradermal injections of histamine, and the histamine releaser compound 48/80 in rat skin. In concordance with the former results, phyco-cyanin also significantly reduced histamine release induced by compound 48/80 from isolated peritoneal rat mast cells. The inhibitory effects of phycocyanin were dose dependent. Taken together, our results suggest that inhibition of allergic inflammatory response by phycocyanin is mediated, at least in part, by inhibition of histamine release from mast cells.

  7. Differences in postprandial inflammatory responses to a 'modern' v. traditional meat meal: a preliminary study.

    Science.gov (United States)

    Arya, Fatemeh; Egger, Sam; Colquhoun, David; Sullivan, David; Pal, Sebely; Egger, Garry

    2010-09-01

    A low-grade inflammatory response ('metaflammation') has been found to be associated with certain chronic diseases. Proposed inducers of this have been aspects of the modern lifestyle, including newly introduced foods. Plasma TAG, and the inflammatory cytokines C-reactive protein (CRP), TNF-alpha and IL-6 were compared in a randomised, cross-over trial using ten healthy subjects before and after eating 100 g of kangaroo, or a 'new' form of hybridised beef (wagyu) separated by about 1 week. Postprandial levels for 1 and 2 h of TAG, IL-6 and TNF-alpha were significantly higher after eating wagyu compared with kangaroo (P = 0.002 for TAG at 1 h, P meat (kangaroo). Further studies using isoenergetic intake and isolating fatty acid components of meats are proposed.

  8. Equol suppresses inflammatory response and bone erosion due to rheumatoid arthritis in mice.

    Science.gov (United States)

    Lin, I-Chian; Yamashita, Shuya; Murata, Motoki; Kumazoe, Motofumi; Tachibana, Hirofumi

    2016-06-01

    Rheumatoid arthritis (RA) is a chronic and systemic autoimmune inflammatory disease. Typical pathological findings of RA include persistent synovitis and bone degradation in the peripheral joints. Equol, a metabolite of the major soybean isoflavone daidzein, shows superior bioactivity than other isoflavones. We investigated the effects of equol administration on inflammatory response and bone erosion in mice with collagen-induced arthritis (CIA). The severity of arthritis symptoms was significantly low in the equol-administered CIA mice. In addition, equol administration improved the CIA-induced bone mineral density decline. In the inflamed area of CIA mice, equol administration suppressed the expression of interleukin-6 and its receptor. Furthermore, equol reduced the expression of genes associated with bone formation inhibition, osteoclast and immature osteoblast specificity and cartilage destruction. These results suggest that equol suppresses RA development and RA-induced bone erosion by regulating inflammation and bone metabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Prolonged sleep restriction induces changes in pathways involved in cholesterol metabolism and inflammatory responses

    Science.gov (United States)

    Aho, Vilma; Ollila, Hanna M.; Kronholm, Erkki; Bondia-Pons, Isabel; Soininen, Pasi; Kangas, Antti J.; Hilvo, Mika; Seppälä, Ilkka; Kettunen, Johannes; Oikonen, Mervi; Raitoharju, Emma; Hyötyläinen, Tuulia; Kähönen, Mika; Viikari, Jorma S.A.; Härmä, Mikko; Sallinen, Mikael; Olkkonen, Vesa M.; Alenius, Harri; Jauhiainen, Matti; Paunio, Tiina; Lehtimäki, Terho; Salomaa, Veikko; Orešič, Matej; Raitakari, Olli T.; Ala-Korpela, Mika; Porkka-Heiskanen, Tarja

    2016-01-01

    Sleep loss and insufficient sleep are risk factors for cardiometabolic diseases, but data on how insufficient sleep contributes to these diseases are scarce. These questions were addressed using two approaches: an experimental, partial sleep restriction study (14 cases and 7 control subjects) with objective verification of sleep amount, and two independent epidemiological cohorts (altogether 2739 individuals) with questions of sleep insufficiency. In both approaches, blood transcriptome and serum metabolome were analysed. Sleep loss decreased the expression of genes encoding cholesterol transporters and increased expression in pathways involved in inflammatory responses in both paradigms. Metabolomic analyses revealed lower circulating large HDL in the population cohorts among subjects reporting insufficient sleep, while circulating LDL decreased in the experimental sleep restriction study. These findings suggest that prolonged sleep deprivation modifies inflammatory and cholesterol pathways at the level of gene expression and serum lipoproteins, inducing changes toward potentially higher risk for cardiometabolic diseases. PMID:27102866

  10. Dihydro-CDDO-trifluoroethyl amide suppresses inflammatory responses in macrophages via activation of Nrf2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Abdalrahman, Akram; Lai, Yimu; Janicki, Joseph S. [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Ward, Keith W.; Meyer, Colin J. [Department of Pharmacology, Reata Pharmaceuticals, Inc., Irving, TX 75063 (United States); Wang, Xing Li [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Tang, Dongqi, E-mail: Dongqi.Tang@uscmed.sc.edu [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Cui, Taixing, E-mail: taixing.cui@uscmed.sc.edu [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States)

    2014-02-21

    Highlights: • Dh404 suppresses the expression of a selected set of pro-inflammatory cytokines in inflamed macrophages via activating Nrf2. • Dh404 activates Nrf2 while keeping Keap1 function intact in macrophages. • Dh404 minimally regulates NF-κB pathway in macrophages. - Abstract: Nuclear factor erythroid 2-related factor (Nrf2) is the major regulator of cellular defenses against various pathological stresses in a variety of organ systems, thus Nrf2 has evolved to be an attractive drug target for the treatment and/or prevention of human disease. Several synthetic oleanolic triterpenoids including dihydro-CDDO-trifluoroethyl amide (dh404) appear to be potent activators of Nrf2 and exhibit chemopreventive promises in multiple disease models. While the pharmacological efficacy of Nrf2 activators may be dependent on the nature of Nrf2 activation in specific cell types of target organs, the precise role of Nrf2 in mediating biological effects of Nrf2 activating compounds in various cell types remains to be further explored. Herein we report a unique and Nrf2-dependent anti-inflammatory profile of dh404 in inflamed macrophages. In lipopolysaccharide (LPS)-inflamed RAW264.7 macrophages, dh404 dramatically suppressed the expression of pro-inflammatory cytokines including inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β), while minimally regulating the expression of interleulin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα). Dh404 potently activated Nrf2 signaling; however, it did not affect LPS-induced NF-κB activity. Dh404 did not interrupt the interaction of Nrf2 with its endogenous inhibitor Kelch-like ECH associating protein 1 (Keap1) in macrophages. Moreover, knockout of Nrf2 blocked the dh404-induced anti-inflammatory responses in LPS-inflamed macrophages. These results demonstrated that dh404 suppresses pro-inflammatory responses in macrophages via an activation

  11. Effects of propofol and desflurane anaesthesia on the alveolar inflammatory response to one-lung ventilation.

    Science.gov (United States)

    Schilling, T; Kozian, A; Kretzschmar, M; Huth, C; Welte, T; Bühling, F; Hedenstierna, G; Hachenberg, T

    2007-09-01

    One-lung ventilation (OLV) induces a pro-inflammatory response including cytokine release and leucocyte recruitment in the ventilated lung. Whether volatile or i.v. anaesthetics differentially modulate the alveolar inflammatory response to OLV is unclear. Thirty patients, ASA II or III, undergoing open thoracic surgery were randomized to receive either propofol 4 mg kg(-1) h(-1) (n = 15) or 1 MAC desflurane in air (n = 15) during thoracic surgery. Analgesia was provided by i.v. infusion of remifentanil (0.25 microg kg(-1) min(-1)) in both groups. The patients were mechanically ventilated according to a standard protocol during two-lung ventilation and OLV. Fibre optic bronchoalveolar lavage (BAL) of the ventilated lung was performed before and after OLV and 2 h postoperatively. Alveolar cells, protein, tumour necrosis factor alpha (TNFalpha), interleukin (IL)-8, soluble intercellular adhesion molecule-1 (sICAM), IL10, and polymorphonuclear (PMN) elastase were determined in the BAL fluid. Data were analysed by parametric or non-parametric tests, as indicated. In both groups, an increase in pro-inflammatory markers was found after OLV and 2 h postoperatively; however, the fraction of alveolar granulocytes (median 63.7 vs 31.1%, P < 0.05) was significantly higher in the propofol group compared with the desflurane group. The time courses of alveolar elastase, IL-8, and IL-10 differed between groups, and alveolar TNFalpha (7.4 vs 3.1 pg ml(-1), P < 0.05) and sICAM-1 (52.3 vs 26.3 ng ml(-1), P < 0.05) were significantly higher in the propofol group. These data indicate that pro-inflammatory reactions during OLV were influenced by the type of general anaesthesia. Different patterns of alveolar cytokines may be a result of increased granulocyte recruitment during propofol anaesthesia.

  12. Absent in melanoma 2 (AIM2) in rat dental pulp mediates the inflammatory response during pulpitis.

    Science.gov (United States)

    Wang, Yafei; Zhai, Shafei; Wang, Haijing; Jia, Qian; Jiang, Wenkai; Zhang, Xiao; Zhang, Ansheng; Liu, Jun; Ni, Longxing

    2013-11-01

    In recent years, the inflammasome has been determined to play an important role in inflammatory diseases. However, the role of the inflammasome in pulpitis remains unclear. Absent in melanoma 2 (AIM2) is a type of inflammasome that recognizes cytosolic double stranded DNA and forms a caspase-1-activating inflammasome with apoptosis-associated speck-like protein containing a caspase activating recruiting domain. In this study, we determined whether AIM2 was expressed in pulp cells and defined the role of AIM2 in the initiation of inflammation within the dental pulp. In the in vivo study, the right maxillary molars from male adult Sprague-Dawley rats (250-350 g) were exposed to the pulp. In the in vitro study, the pulp cells isolated from the mandibular incisors of the Sprague-Dawley rats (2 weeks) were conventionally cultured. Immunofluorescence staining was used to determine the expression and distribution of AIM2 in the rat dental pulp tissues and cells in the presence or absence of inflammatory stimulation. Western blotting and real-time polymerase chain reaction were performed to determine whether there was a correlation between AIM2 expression levels and inflammation both in vivo and in vitro. In healthy dental pulp tissues and cells, AIM2 was only detected in the odontoblast layer. Stimulation significantly increased AIM2 expression in both the dental pulp tissues and cultured cells. The mRNA and protein levels of AIM2 were significantly up-regulated in response to inflammatory stimulation in a dose-dependent manner. Moreover, we also found that AIM2 expression correlated with interleukin-1 levels. These results reveal a direct relationship between the AIM2 inflammasome and pulpitis. Our study demonstrates that AIM2 is expressed in dental pulp tissues and mediates the inflammatory response during pulpitis. Therapeutic interventions aimed at reducing AIM2 expression may be beneficial in the treatment of pulpitis. Copyright © 2013 American Association of

  13. 11β-Hydroxysteroid dehydrogenase 1 contributes to the pro-inflammatory response of keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Itoi, Saori; Terao, Mika, E-mail: mterao@derma.med.osaka-u.ac.jp; Murota, Hiroyuki; Katayama, Ichiro

    2013-10-18

    Highlights: •We investigate the role of 11β-HSD1 in skin inflammation. •Various stimuli increase expression of 11β-HSD1 in keratinocytes. •11β-HSD1 knockdown by siRNA decreases cortisol levels in media. •11β-HSD1 knockdown abrogates the response to pro-inflammatory cytokines. •Low-dose versus high-dose cortisol has opposing effects on keratinocyte inflammation. -- Abstract: The endogenous glucocorticoid, cortisol, is released from the adrenal gland in response to various stress stimuli. Extra-adrenal cortisol production has recently been reported to occur in various tissues. Skin is known to synthesize cortisol through a de novo pathway and through an activating enzyme. The enzyme that catalyzes the intracellular conversion of hormonally-inactive cortisone into active cortisol is 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). We recently reported that 11β-HSD1 is expressed in normal human epidermal keratinocytes (NHEKs) and negatively regulates proliferation of NHEKs. In this study, we investigated the role of 11β-HSD1 in skin inflammation. Expression of 11β-HSD1 was induced by UV-B irradiation and in response to the pro-inflammatory cytokines, IL-1β and TNFα. Increased cortisol concentrations in culture media also increased in response to these stimuli. To investigate the function of increased 11β-HSD1 in response to pro-inflammatory cytokines, we knocked down 11β-HSD1 by transfecting siRNA. Production of IL-6 and IL-8 in response to IL-1β or TNFα stimulation was attenuated in NHEKs transfected with si11β-HSD1 compared with control cells. In addition, IL-1β-induced IL-6 production was enhanced in cultures containing 1 × 10{sup −13} M cortisol, whereas 1 × 10{sup −5} M cortisol attenuated production of IL-6. Thus, cortisol showed immunostimulatory and immunosuppressive activities depending on its concentration. Our results indicate that 11β-HSD1 expression is increased by various stimuli. Thus, regulation of cytosolic cortisol

  14. Addressing the Inflammatory Response to Clinically Relevant Polymers by Manipulating the Host Response Using ITIM Domain-Containing Receptors

    Directory of Open Access Journals (Sweden)

    Joshua B. Slee

    2014-09-01

    Full Text Available Tissue contacting surfaces of medical devices initiate a host inflammatory response, characterized by adsorption of blood proteins and inflammatory cells triggering the release of cytokines, reactive oxygen species (ROS and reactive nitrogen species (RNS, in an attempt to clear or isolate the foreign object from the body. This normal host response contributes to device-associated pathophysiology and addressing device biocompatibility remains an unmet need. Although widespread attempts have been made to render the device surfaces unreactive, the establishment of a completely bioinert coating has been untenable and demonstrates the need to develop strategies based upon the molecular mechanisms that define the interaction between host cells and synthetic surfaces. In this review, we discuss a family of transmembrane receptors, known as immunoreceptor tyrosine-based inhibitory motif (ITIM-containing receptors, which show promise as potential targets to address aberrant biocompatibility. These receptors repress the immune response and ensure that the intensity of an immune response is appropriate for the stimuli. Particular emphasis will be placed on the known ITIM-containing receptor, Signal Regulatory Protein Alpha (SIRPα, and its cognate ligand CD47. In addition, this review will discuss the potential of other ITIM-containing proteins as targets for addressing the aberrant biocompatibility of polymeric biomaterials.

  15. How task demands shape brain responses to visual food cues.

    Science.gov (United States)

    Pohl, Tanja Maria; Tempelmann, Claus; Noesselt, Toemme

    2017-06-01

    Several previous imaging studies have aimed at identifying the neural basis of visual food cue processing in humans. However, there is little consistency of the functional magnetic resonance imaging (fMRI) results across studies. Here, we tested the hypothesis that this variability across studies might - at least in part - be caused by the different tasks employed. In particular, we assessed directly the influence of task set on brain responses to food stimuli with fMRI using two tasks (colour vs. edibility judgement, between-subjects design). When participants judged colour, the left insula, the left inferior parietal lobule, occipital areas, the left orbitofrontal cortex and other frontal areas expressed enhanced fMRI responses to food relative to non-food pictures. However, when judging edibility, enhanced fMRI responses to food pictures were observed in the superior and middle frontal gyrus and in medial frontal areas including the pregenual anterior cingulate cortex and ventromedial prefrontal cortex. This pattern of results indicates that task sets can significantly alter the neural underpinnings of food cue processing. We propose that judging low-level visual stimulus characteristics - such as colour - triggers stimulus-related representations in the visual and even in gustatory cortex (insula), whereas discriminating abstract stimulus categories activates higher order representations in both the anterior cingulate and prefrontal cortex. Hum Brain Mapp 38:2897-2912, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Cross-sex transplantation alters gene expression and enhances inflammatory response in the transplanted kidneys.

    Science.gov (United States)

    Wang, Lei; Song, Jiangping; Wang, Shaohui; Buggs, Jacentha; Chen, Rongjun; Zhang, Jie; Wang, Liqing; Rong, Song; Li, Wenbin; Wei, Jin; Liu, Ruisheng

    2017-08-01

    Kidney transplantation (KTX) is a life-saving procedure for patients with end-stage renal disease. Expression levels of many genes in the kidney vary between males and females, which may play an essential role in the sex differences in graft function. However, whether these differences are affected after cross-sex-KTX is unknown. In the present study, we assessed postoperative changes in genotype, function, and inflammatory responses of the grafts in same-sex- and cross-sex-KTX. Single kidney transplants were performed between same and different sex C57BL/6 mice paired into four combination groups: female donor/female recipient (F/F); male donor/male recipient (M/M); female donor/male recipient (F/M); and male donor/female recipient (M/F). The remnant native kidney was removed 4 days posttransplant. Expression levels of genes related to the contractility of the afferent arteriole and tubular sodium reabsorption were assessed. Same-sex-KTX did not significantly alter the magnitude or sex difference pattern of gene expression in male or female grafts. Cross-sex-KTX showed an attenuated sex difference in gene expressions. The measurements of endothelin 1, endothelin ETA receptor, Na+-K--2Cl cotransporter 2 (NKCC2), and epithelial Na+ channels (ENaC) subunits exhibited decreases in M/F compared with M/M and increases in F/M compared with F/F. There were no significant differences in hemodynamics or sodium excretion in response to acute volume expansion for any sex combinations. Cross-sex-KTX stimulated more robust inflammatory responses than same-sex-KTX. IL-6 and KC mRNA levels elevated 5- to 20-fold in cross-sex-KTX compared with same-sex-KTX. In conclusion, cross-sex-KTX alters gene expression levels and induces inflammatory responses, which might play an important role in long-term graft function. Copyright © 2017 the American Physiological Society.

  17. Food deprivation alters thermoregulatory responses to lipopolysaccharide by enhancing cryogenic inflammatory signaling via prostaglandin D2.

    Science.gov (United States)

    Krall, Catherine M; Yao, Xiujuan; Hass, Martha A; Feleder, Carlos; Steiner, Alexandre A

    2010-06-01

    We tested the hypothesis that food deprivation alters body temperature (T(b)) responses to bacterial LPS by enhancing inflammatory signaling that decreases T(b) (cryogenic signaling) rather than by suppressing inflammatory signaling that increases T(b) (febrigenic signaling). Free-feeding or food-deprived (24 h) rats received LPS at doses (500 and 2,500 microg/kg iv) that are high enough to activate both febrigenic and cryogenic signaling. At these doses, LPS caused fever in rats at an ambient temperature of 30 degrees C, but produced hypothermia at an ambient temperature of 22 degrees C. Whereas food deprivation had little effect on LPS fever, it enhanced LPS hypothermia, an effect that was particularly pronounced in rats injected with the higher LPS dose. Enhancement of hypothermia was not due to thermogenic incapacity, since food-deprived rats were fully capable of raising T(b) in response to the thermogenic drug CL316,243 (1 mg/kg iv). Neither was enhancement of hypothermia associated with altered plasma levels of cytokines (TNF-alpha, IL-1beta, and IL-6) or with reduced levels of an anti-inflammatory hormone (corticosterone). The levels of PGD(2) and PGE(2) during LPS hypothermia were augmented by food deprivation, although the ratio between them remained unchanged. Food deprivation, however, selectively enhanced the responsiveness of rats to the cryogenic action of PGD(2) (100 ng icv) without altering the responsiveness to febrigenic PGE(2) (100 ng icv). These findings support our hypothesis and indicate that cryogenic signaling via PGD(2) underlies enhancement of LPS hypothermia by food deprivation.

  18. Training reduces catabolic and inflammatory response to a single practice in female volleyball players.

    Science.gov (United States)

    Eliakim, Alon; Portal, Shawn; Zadik, Zvi; Meckel, Yoav; Nemet, Dan

    2013-11-01

    We examined the effect of training on hormonal and inflammatory response to a single volleyball practice in elite adolescent players. Thirteen female, national team level, Israeli volleyball players (age 16.0 ± 1.4 years, Tanner stage 4-5) participated in the study. Blood samples were collected before and immediately after a typical 60 minutes of volleyball practice, before and after 7 weeks of training during the initial phase of the season. Training involved tactic and technical drills (20% of time), power and speed drills (25% of time), interval sessions (25% of time), endurance-type training (15% of time), and resistance training (15% of time). To achieve greater training responses, the study was performed during the early phase (first 7 weeks) of the volleyball season. Hormonal measurements included the anabolic hormones growth hormone (GH), insulin-like growth factor-I (IGF-I) and IGF-binding protein-3, the catabolic hormone cortisol, the proinflammatory marker interleukin-6 (IL-6), and the anti-inflammatory marker IL-1 receptor antagonist. Training led to a significant improvement of vertical jump, anaerobic properties (peak and mean power by the Wingate Anaerobic Test), and predicted VO2max (by the 20-m shuttle run). Volleyball practice, both before and after the training intervention, was associated with a significant increase of serum lactate, GH, and IL-6. Training resulted in a significantly reduced cortisol response ([INCREMENT]cortisol: 4.2 ± 13.7 vs. -4.4 ± 12.3 ng · ml, before and after training, respectively; p volleyball practice. The results suggest that along with the improvement of power and anaerobic and aerobic characteristics, training reduces the catabolic and inflammatory response to exercise.

  19. AMP-activated protein kinase reduces inflammatory responses and cellular senescence in pulmonary emphysema.

    Science.gov (United States)

    Cheng, Xiao-Yu; Li, Yang-Yang; Huang, Cheng; Li, Jun; Yao, Hong-Wei

    2017-04-04

    Current drug therapy fails to reduce lung destruction of chronic obstructive pulmonary disease (COPD). AMP-activated protein kinase (AMPK) has emerged as an important integrator of signals that control energy balance and lipid metabolism. However, there are no studies regarding the role of AMPK in reducing inflammatory responses and cellular senescence during the development of emphysema. Therefore, we hypothesize that AMPK reduces inflammatroy responses, senescence, and lung injury. To test this hypothesis, human bronchial epithelial cells (BEAS-2B) and small airway epithelial cells (SAECs) were treated with cigarette smoke extract (CSE) in the presence of a specific AMPK activator (AICAR, 1 mM) and inhibitor (Compound C, 5 μM). Elastase injection was performed to induce mouse emphysema, and these mice were treated with a specific AMPK activator metformin as well as Compound C. AICAR reduced, whereas Compound C increased CSE-induced increase in IL-8 and IL-6 release and expression of genes involved in cellular senescence. Knockdown of AMPKα1/α2 increased expression of pro-senescent genes (e.g., p16, p21, and p66shc) in BEAS-2B cells. Prophylactic administration of an AMPK activator metformin (50 and 250 mg/kg) reduced while Compound C (4 and 20 mg/kg) aggravated elastase-induced airspace enlargement, inflammatory responses and cellular senescence in mice. This is in agreement with therapeutic effect of metformin (50 mg/kg) on airspace enlargement. Furthermore, metformin prophylactically protected against but Compound C further reduced mitochondrial proteins SOD2 and SIRT3 in emphysematous lungs. In conclusion, AMPK reduces abnormal inflammatory responses and cellular senescence, which implicates as a potential therapeutic target for COPD/emphysema.

  20. Neural mechanisms linking social status and inflammatory responses to social stress

    Science.gov (United States)

    Dedovic, Katarina; Slavich, George M.; Jarcho, Michael R.; Breen, Elizabeth C.; Bower, Julienne E.; Irwin, Michael R.; Eisenberger, Naomi I.

    2016-01-01

    Social stratification has important implications for health and well-being, with individuals lower in standing in a hierarchy experiencing worse outcomes than those higher up the social ladder. Separate lines of past research suggest that alterations in inflammatory processes and neural responses to threat may link lower social status with poorer outcomes. This study was designed to bridge these literatures to investigate the neurocognitive mechanisms linking subjective social status and inflammation. Thirty-one participants reported their subjective social status, and underwent a functional magnetic resonance imaging scan while they were socially evaluated. Participants also provided blood samples before and after the stressor, which were analysed for changes in inflammation. Results showed that lower subjective social status was associated with greater increases in inflammation. Neuroimaging data revealed lower subjective social status was associated with greater neural activity in the dorsomedial prefrontal cortex (DMPFC) in response to negative feedback. Finally, results indicated that activation in the DMPFC in response to negative feedback mediated the relation between social status and increases in inflammatory activity. This study provides the first evidence of a neurocognitive pathway linking subjective social status and inflammation, thus furthering our understanding of how social hierarchies shape neural and physiological responses to social interactions. PMID:26979965

  1. Neural mechanisms linking social status and inflammatory responses to social stress.

    Science.gov (United States)

    Muscatell, Keely A; Dedovic, Katarina; Slavich, George M; Jarcho, Michael R; Breen, Elizabeth C; Bower, Julienne E; Irwin, Michael R; Eisenberger, Naomi I

    2016-06-01

    Social stratification has important implications for health and well-being, with individuals lower in standing in a hierarchy experiencing worse outcomes than those higher up the social ladder. Separate lines of past research suggest that alterations in inflammatory processes and neural responses to threat may link lower social status with poorer outcomes. This study was designed to bridge these literatures to investigate the neurocognitive mechanisms linking subjective social status and inflammation. Thirty-one participants reported their subjective social status, and underwent a functional magnetic resonance imaging scan while they were socially evaluated. Participants also provided blood samples before and after the stressor, which were analysed for changes in inflammation. Results showed that lower subjective social status was associated with greater increases in inflammation. Neuroimaging data revealed lower subjective social status was associated with greater neural activity in the dorsomedial prefrontal cortex (DMPFC) in response to negative feedback. Finally, results indicated that activation in the DMPFC in response to negative feedback mediated the relation between social status and increases in inflammatory activity. This study provides the first evidence of a neurocognitive pathway linking subjective social status and inflammation, thus furthering our understanding of how social hierarchies shape neural and physiological responses to social interactions. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. Characterisation of the cytokine inflammatory response in LPS stimulated full-term cord blood.

    Science.gov (United States)

    Powell, Corrina; Orsi, Nicolas; Simpson, Nigel; Levene, Malcolm

    2004-01-01

    Abnormal inflammatory responses are implicated in the pathogenesis of neonatal disease. This study aimed to describe the neonatal cytokine response using an in vitro model of stimulated cord blood. Cord blood samples (n = 12) were incubated in RPMI 1640 medium with and without lipopolysaccharide. Concentrations of tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, IL-8, interferon (IFN)-gamma and IL-10 were determined by multiplex immunoassay at 0, 1, 3, 6 and 24 hours of incubation. The difference between stimulated and control response was defined as the potential secretory capacity (mean +/- S.E.M.; pg/million white cells). Analysis included a Kruskal-Wallis test and post-hoc Mann-Whitney U test. All cytokine capacities increased rapidly by 1 hour (p<0.001), except IL-10 (p=0.04). TNF-alpha peaked between 3-6 hours (1581 +/- 377 pg/million WC), declining by 24 hours. Similarly, IFN-gamma peaked at 3 hours. Capacity ascended throughout the incubation period for IL-6, IL-8 (631 +/- 75 pg/million WC) and IL-10 (311 +/- 37 pg/million WC). Overall, IFN-gamma capacity was lowest (72 +/- 10 pg/million WC) and IL-6 capacity was greatest (61489 +/- 7059 pg/million WC). The neonatal inflammatory response is chronologically similar to that determined in adults. Immature neonatal T-cell function may account for the lower IFN-gamma production. These results may expand our knowledge of neonatal disease, etiology and management.

  3. Correlation of neonatal pulmonary surfactant protein A gene polymorphism with pneumonia susceptibility and inflammatory response

    Directory of Open Access Journals (Sweden)

    Yi He

    2017-06-01

    Full Text Available Objective: To study the correlation of neonatal pulmonary surfactant protein A gene polymorphism with pneumonia susceptibility and inflammatory response. Methods: Neonates who were born and diagnosed with pneumonia in Zigong Maternity and Child Healthcare Hospital between September 2015 and February 2017 were selected as pneumonia group, and neonates without infection were selected as control group. SP-A gene rs1059054 and rs1136454 loci polymorphism, the contents of inflammatory cytokines in serum as well as the expression of inflammatory transcription factors in peripheral blood were determined. Results: The constituent ratio of rs1059054 loci CC genotype of pneumonia group was significantly higher than that of control group while the constituent ratio of CT and TT genotypes were significantly lower than those of control group; the constituent ratio of rs1136454 loci AA genotype was significantly lower than that of control group while the constituent ratio of AG and GG genotypes were significantly higher than those of control group. PCT, sTREM1, TNF-α and IL-6 levels in serum as well as RORγt mRNA expression in peripheral blood of pneumonia children with SP-A gene rs1059054 loci CC genotype were significantly higher than those of pneumonia children with CT genotype and TT genotype while SOCS1 and Foxp3 mRNA expression in peripheral blood were significantly lower than those of pneumonia children with CT genotype and TT genotype; PCT, sTREM1, TNF-α and IL-6 levels in serum as well as RORγt mRNA expression in peripheral blood of pneumonia children with SP-A gene rs1136454 loci AA genotype were significantly lower than those of pneumonia children with AG genotype and GG genotype while SOCS1 and Foxp3 mRNA expression in peripheral blood were significantly higher than those of pneumonia children with AG genotype and GG genotype. Conclusion: Neonatal SP-A gene rs1059054 loci CC genotype can increase the pneumonia susceptibility and aggravate

  4. Shift Work in Rats Results in Increased Inflammatory Response after Lipopolysaccharide Administration: A Role for Food Consumption.

    Science.gov (United States)

    Guerrero-Vargas, Natalí N; Guzmán-Ruiz, Mara; Fuentes, Rebeca; García, Joselyn; Salgado-Delgado, Roberto; Basualdo, María del Carmen; Escobar, Carolina; Markus, Regina P; Buijs, Ruud M

    2015-08-01

    The suprachiasmatic nucleus (SCN) drives circadian rhythms in behavioral and physiological variables, including the inflammatory response. Shift work is known to disturb circadian rhythms and is associated with increased susceptibility to develop disease. In rodents, circadian disruption due to shifted light schedules (jet lag) induced increased innate immune responses. To gain more insight into the influence of circadian disruption on the immune response, we characterized the inflammatory response in a model of rodent shift work and demonstrated that circadian disruption affected the inflammatory response to lipopolysaccharide (LPS) both in vivo and in vitro. Since food consumption is a main disturbing element in the shift work schedule, we also evaluated the inflammatory response to LPS in a group of rats that had no access to food during their working hours. Our results demonstrated that the shift work schedule decreased basal TNF-α levels in the liver but not in the circulation. Despite this, we observed that shift work induced increased cytokine response after LPS stimulation in comparison to control rats. Also, Kupffer cells (liver macrophages) isolated from shift work rats produced more TNF-α in response to in vitro LPS stimulation, suggesting important effects of circadian desynchronization on the functionality of this cell type. Importantly, the effects of shift work on the inflammatory response to LPS were prevented when food was not available during the working schedule. Together, these results show that dissociating behavior and food intake from the synchronizing drive of the SCN severely disturbs the immune response. © 2015 The Author(s).

  5. The Multifaceted Responses of Primary Human Astrocytes and Brain Microvascular Endothelial Cells to the Lyme Disease Spirochete, Borrelia Burgdorferi

    Directory of Open Access Journals (Sweden)

    Catherine A. Brissette

    2013-07-01

    Full Text Available The vector-borne pathogen, Borrelia burgdorferi, causes a multi-system disorder including neurological complications. These neurological disorders, collectively termed neuroborreliosis, can occur in up to 15% of untreated patients. The neurological symptoms are probably a result of a glial-driven, host inflammatory response to the bacterium. However, the specific contributions of individual glial and other support cell types to the pathogenesis of neuroborreliosis are relatively unexplored. The goal of this project was to characterize specific astrocyte and endothelial cell responses to B. burgdorferi. Primary human astrocytes and primary HBMEC (human brain microvascular endothelial cells were incubated with B. burgdorferi over a 72-h period and the transcriptional responses to the bacterium were analyzed by real-time PCR arrays. There was a robust increase in several surveyed chemokine and related genes, including IL (interleukin-8, for both primary astrocytes and HBMEC. Array results were confirmed with individual sets of PCR primers. The production of specific chemokines by both astrocytes and HBMEC in response to B. burgdorferi, including IL-8, CXCL-1, and CXCL-10, were confirmed by ELISA. These results demonstrate that primary astrocytes and HBMEC respond to virulent B. burgdorferi by producing a number of chemokines. These data suggest that infiltrating phagocytic cells, particularly neutrophils, attracted by chemokines expressed at the BBB (blood–brain barrier may be important contributors to the early inflammatory events associated with neuroborreliosis.

  6. Reduction of the foreign body response and neuroprotection by apyrase and minocycline in chronic cannula implantation in the rat brain.

    Science.gov (United States)

    Hayn, Linda; Deppermann, Linda; Koch, Michael

    2017-02-01

    Implantation of electrodes or cannulae into the brain is accompanied by a tissue response referred to as foreign body response. Adenosine triphosphate (ATP) is one of the signalling molecules released by injured cells which mediate the chemoattraction of microglial cells. The constitutive release of pro-inflammatory and cytotoxic substances by microglial cells in chronic implants exacerbates neuronal cell death and the immune response. This study aimed to interfere with the initial events of the foreign body response in order to mitigate neurotoxicity and inflammation. For this purpose, the ATP-hydrolysing enzyme apyrase and the antibiotic minocycline with a broad range of anti-inflammatory, anti-apoptotic and glutamate-antagonist properties were locally infused during cannula implantation in the caudal forelimb area of the motor cortex in Lister Hooded rats. The rats' motor performance was assessed in a skilled reaching task and the distribution of neurons and glial cells in the vicinity of the implant was examined 2 and 6 weeks post-implantation. Apyrase as well as minocycline increased the number of surviving neurons and reduced microglial activation. Moreover, minocycline improved the motor performance and, additionally, caused a temporary reduction in astrogliosis, suggesting it as a possible therapeutic candidate to improve the biocompatibility of chronic brain implants. © 2016 John Wiley & Sons Australia, Ltd.

  7. Apelin protect against multiple organ injury following hemorrhagic shock and decrease the inflammatory response

    National Research Council Canada - National Science Library

    Soliman, Mona; Arafah, Maha

    2015-01-01

    .... Apelin has anti-inflammatory effects on the release of inflammatory mediators. To examine the protective effects of apelin against multiple organ injury and the possible involvement of inflammatory pathways...

  8. Clinical aspects of acute inflammatory diseases of the brain; Klinisch-neurologische Aspekte akut-entzuendlicher Hirnerkrankungen

    Energy Technology Data Exchange (ETDEWEB)

    Block, F.; Nolden-Koch, M. [RWTH Aachen (Germany). Neurologische Klinik

    2000-11-01

    Despite the progress, which has been made in diagnosis and therapy of encephalitis and bacterial meningitis, these acute inflammatory diseases of the brain still display a certain amount of morbidity and mortality. History, physical examination, analysis of serum and cerebrospinal fluid and radiological examination are the mainstay for the diagnosis of these diseases. With respect to the acute inflammatory diseases of the brain computed tomography and magnetic resonance imaging fulfil three purposes: 1. They can be used to clarify the diagnosis and to rule out other diseases. 2. They can identify the focus from which a bacterial meningitis can evolve. 3. Complications like edema, cerebral vasculitis, septic sinus thrombosis, hydrocephalus or abscess can be visualized. If the diagnosis is made early, the possible complications are recognized in good time and the appropriate therapy is started immediately, then morbidity and mortality can be kept at a minimum. (orig.) [German] Die bakterielle Meningitis und die Enzephalitis sind akut-entzuendliche Hirnerkrankungen, die trotz aller Fortschritte in der Diagnostik und Therapie mit einer nicht unerheblichen Morbiditaet und Mortalitaet behaftet sind. Die Anamnese, die koerperliche Untersuchung, die laborchemische Diagnostik von Blut und Liquor und die Bildgebung sind die wesentlichen Saeulen in der Diagnostik akut-entzuendlicher Hirnerkrankungen. Die Bildgebung, die mittels Computertomographie bzw. Kernspintomographie erfolgt, hat in diesem Zusammenhang 3 Aufgaben: 1. Sie kann dazu beitragen, die Diagnose zu sichern bzw. differentialdiagnostisch in Erwaegung zu ziehende Erkrankungen auszuschliessen oder nachzuweisen. 2. Sie kann bei der bakteriellen Meningitis entzuendliche Foci im Bereich der Nasennebenhoehlen, des Mastoids oder des Mittelohrs erkennen, die sofort operativ saniert werden muessen. 3. Komplikationen akut-entzuendlicher Hirnerkrankungen koennen bei entsprechendem klinischem Verdacht mittels Bildgebung

  9. Enhanced regional brain metabolic responses to benzodiazepines in cocaine abusers

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Wang, G.J.; Fowler, J.S. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1997-05-01

    While dopamine (DA) appears to be crucial for cocaine reinforcement, its involvement in cocaine addiction is much less clear. Using PET we have shown persistent reductions in striatal DA D2 receptors (which arc predominantly located on GABA cells) in cocaine abusers. This finding coupled to GABA`s role as an effector for DA led us to investigate if there were GABAergic abnormalities in cocaine abusers. In this study we measured regional brain metabolic responses to lorazepam, to indirectly assess GABA function (benzodiazepines facilitate GABAergic neurotransmission). Methods: The experimental subjects consisted of 12 active cocaine abusers and 32 age matched controls. Each subject underwent two PET FDG scans obtained within 1 week of each other. The first FDG scan was obtained after administration of placebo (3 cc of saline solution) given 40-50 minutes prior to FDG; and the second after administration of lorazepam (30 {mu}g/kg) given 40-50 minutes prior to FDG. The subjects were blind to the drugs received. Results: Lorazepam-induced sleepiness was significantly greater in abusers than in controls (p<0.001). Lorazepam-induced decreases in brain glucose metabolism were significantly larger in cocaine abusers than in controls. Whereas in controls whole brain metabolism decreased 13{+-}7 %, in cocaine abusers it decreased 21{+-}13 % (p < 0.05). Lorazepam-induced decrements in regional metabolism were significantly larger in striatum (p < 0.0 1), thalamus (p < 0.01) and cerebellum (p < 0.005) of cocaine abusers than of controls (ANOVA diagnosis by condition (placebo versus lorazepam) interaction effect). The only brain region for which the absolute metabolic changes-induced by lorazepam in cocaine abusers were equivalent to those in controls was the orbitofrontal cortex. These results document an accentuated sensitivity to benzodiazepines in cocaine abusers which is compatible with disrupted GABAergic function in these patients.

  10. Dietary supplementation with fish oil modifies the ability of human monocytes to induce an inflammatory response.

    Science.gov (United States)

    Luu, Nguyet-Thin; Madden, Jackie; Calder, Philip C; Grimble, Robert F; Shearman, Cliff P; Chan, Tim; Dastur, Neville; Howell, William M; Rainger, G Ed; Nash, Gerard B

    2007-12-01

    Monocytes/macrophages are key orchestrators of inflammation and are involved in the pathogenesis of chronic inflammatory disorders, including atherosclerosis. (n-3) Fatty acids, found in fish oil, have been shown to have protective effects in such disorders. To investigate possible modes of action, we used a monocyte:endothelial cell (EC) coculture model to investigate the pro-inflammatory potential of monocytes. Monocytes were isolated from the blood of donors with peripheral arterial disease (PAD) or control donors, before and after a 12-wk supplementation of their diet with fish oil. The monocytes were cultured with human umbilical vein EC (HUVEC) for 24 h, after which the ability of the HUVEC to recruit flowing neutrophils was tested. Monocytes from either group of donors stimulated the EC to support the adhesion and migration of neutrophils. Fish oil supplementation reduced the potency of monocytes from normal subjects, but not those from patients with PAD, to induce recruitment. Concurrent medication may have acted as a complicating factor. On subgroup analysis, only those free of medication showed a significant effect of fish oil. Responses before or after supplementation were not closely linked to patterns of secretion of cytokines by cultured monocytes, tested in parallel monocultures. These results suggest that fish oil can modulate the ability of monocytes to stimulate EC and that this might contribute to their protective effects against chronic inflammatory disorders. Benefits, however, may depend on existing medical status and on other treatments being received.

  11. Effects of Thymol and Carvacrol, Constituents of Thymus vulgaris L. Essential Oil, on the Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Fernanda Carolina Fachini-Queiroz

    2012-01-01

    Full Text Available Thyme (Thymus vulgaris L., Lamiaceae is an aromatic and medicinal plant that has been used in folk medicine, phytopharmaceutical preparations, food preservatives, and as an aromatic ingredient. The effect of Thymus vulgaris essential oil (TEO and its isolated constituents thymol and cavacrol (CVL were studied in the following experimental models: ear edema, carrageenan-induced pleurisy, and chemotaxis in vitro. In the pleurisy model, TEO, CVL, and thymol significantly inhibited inflammatory edema. However, only TEO and CVL inhibited leukocyte migration. In the in vitro chemotaxis experiment, CVL inhibited leukocyte migration, whereas thymol exerted a potent chemoattractant effect. In the ear edema model, CVL (10 mg/ear, applied topically, reduced edema formation, exerting a topical anti-inflammatory effect. Thymol did not reduce edema formation but rather presented an irritative response, probably dependent on histamine and prostanoid release. Our data suggest that the antiinflammatory effects of TEO and CVL are attributable to the inhibition of inflammatory edema and leukocyte migration.

  12. Cytokine Reduction in the Setting of an ARDS-Associated Inflammatory Response with Multiple Organ Failure

    Directory of Open Access Journals (Sweden)

    Karl Träger

    2016-01-01

    Full Text Available A 45-year-old male was admitted to our hospital with a small bowel obstruction due to torsion and was immediately scheduled for surgical intervention. At anesthesia induction, the patient aspirated and subsequently developed a severe SIRS with ARDS and multiple organ failure requiring the use of ECMO, CRRT, antibiotics, and low dose steroids. Due to a rapid deterioration in clinical status and a concurrent surge in inflammatory biomarkers, an extracorporeal cytokine adsorber (CytoSorb was added to the CRRT blood circuit. The combined treatment resulted in a rapid and significant reduction in the levels of circulating inflammatory mediators. This decrease was paralleled by marked clinical stabilization of the patient including a significant improvement in hemodynamic stability and a reduced need for norepinephrine and improved respiratory function as measured by PaO2/FIO2, ventilator parameters, lung mechanics, and indirect measures of capillary leak syndrome. The patient could be discharged to a respiratory weaning unit where successful respiratory weaning could be achieved later on. We attribute the clinical improvement to the rapid control of the hyperinflammatory response and the reduction of inflammatory mediators using a combination of CytoSorb and these other therapies. CytoSorb treatment was safe and well tolerated, with no device-related adverse effects observed.

  13. Obesity and coronary microvascular disease - implications for adipose tissue-mediated remote inflammatory response.

    Science.gov (United States)

    Bagi, Zsolt; Broskova, Zuzana; Feher, Attila

    2014-05-01

    It is believed that obesity has detrimental effects on the coronary circulation. These include immediate changes in coronary arterial vasomotor responsiveness and the development of occlusive large coronary artery disease. Despite its critical role in regulating myocardial perfusion, the altered behavior of coronary resistance arteries, which gives rise to coronary microvascular disease (CMD) is poorly understood in obesity. A chronic, low-grade vascular inflammation has been long considered as one of the main underlying pathology behind CMD. The expanded adipose tissue and the infiltrating macrophages are the major sources of pro-inflammatory mediators that have been implicated in causing inadequate myocardial perfusion and, in a long term, development of heart failure in obese patients. Much less is known the mechanisms regulating the release of these cytokines into the circulation that enable them to exert their remote effects in the coronary microcirculation. This mini review aims to examine recent studies describing alterations in the vasomotor function of coronary resistance arteries and the role of adipose tissue-derived pro-inflammatory cytokines and adipokines in contributing to CMD in obesity. We provide examples of regulatory mechanisms by which adipokines are released from adipose tissue to exert their remote inflammatory effects on coronary microvessels. We identify some of the important challenges and opportunities going forward.

  14. Annatto carotenoids attenuate oxidative stress and inflammatory response after high-calorie meal in healthy subjects.

    Science.gov (United States)

    Roehrs, Miguel; Conte, Lisiane; da Silva, Dariane Trivisiol; Duarte, Thiago; Maurer, Luana Haselein; de Carvalho, José Antonio Mainardi; Moresco, Rafael Noal; Somacal, Sabrina; Emanuelli, Tatiana

    2017-10-01

    The aim of this study was to evaluate the effect of annatto carotenoids intake associated to a single high-calorie meal (high fat and high carbohydrate) in postprandial biochemical, inflammatory and oxidative stress markers. Twelve healthy subjects (6 men, 6 women) were included in this randomised, controlled crossover study. Baseline blood samples were collected from fasting subjects that immediately received high-calorie meal without carotenoid (placebo) or containing 1.2mg/kg bixin (BIX) or 0.06mg/kg norbixin (NBIX). Blood samples were taken 60, 120 and 240min after meal intake. NBIX intake did not affect biochemical blood markers but reduced the postprandial levels of inflammatory cytokines (IL-1, IL-6 and TNF-α) and lipid oxidation 60-120min after meal. BIX only partially prevented postprandial-induced lipid oxidation. Results indicate that the intake of NBIX may be an alternative to reduce the postprandial inflammatory and oxidative stress responses to high-calorie meals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effects Of Different PUFA Supplementation On Inflammatory Response Markers In Young Soccer Players

    Directory of Open Access Journals (Sweden)

    Radoman Kristina

    2015-12-01

    Full Text Available Considering the limited knowledge regarding the effects of n-3 and n-6 PUFAs on the inflammatory response during physical activity, we aimed to evaluate the level of pro- and anti-inflammatory cytokines in young soccer players before and after a maximal physical load test at the beginning and end of a two-month training process. The study included 75 young footballers from Football School “Kragujevac,” who were followed during the two-month training programme. The subjects were divided into the following groups: 1 control group (consumed a standard diet; 2 group that consumed fish oil (2500 mg of n-3 PUFAs per day; 3 group that consumed nutritional sunflower oil (2500 mg of n-6 PUFAs daily. The maximal progressive exercise test was performed using a treadmill belt. Venous blood samples were drawn 4 times for the determination of cytokine levels (IL-6 and TNF-α: before and after the exercise load test before the two-month training programme (initial measurement and immediately before and after the exercise load test after the two-month training programme (control measurement. Supplementation with fish oil (n-3 has been associated with reduced levels of IL-6 compared with the initial values. After an acute bout of exercise, n-3 PUFAs did not show a significant effect on inflammatory marker dynamics, whereas n-6 PUFAs slightly stimulated the production of TNF-α.

  16. Mycobacterial PIMs inhibit host inflammatory responses through CD14-dependent and CD14-independent mechanisms.

    Directory of Open Access Journals (Sweden)

    Nathalie Court

    Full Text Available Mycobacteria develop strategies to evade the host immune system. Among them, mycobacterial LAM or PIMs inhibit the expression of pro-inflammatory cytokines by activated macrophages. Here, using synthetic PIM analogues, we analyzed the mode of action of PIM anti-inflammatory effects. Synthetic PIM(1 isomer and PIM(2 mimetic potently inhibit TNF and IL-12 p40 expression induced by TLR2 or TLR4 pathways, but not by TLR9, in murine macrophages. We show inhibition of LPS binding to TLR4/MD2/CD14 expressing HEK cells by PIM(1 and PIM(2 analogues. More specifically, the binding of LPS to CD14 was inhibited by PIM(1 and PIM(2 analogues. CD14 was dispensable for PIM(1 and PIM(2 analogues functional inhibition of TLR2 agonists induced TNF, as shown in CD14-deficient macrophages. The use of rough-LPS, that stimulates TLR4 pathway independently of CD14, allowed to discriminate between CD14-dependent and CD14-independent anti-inflammatory effects of PIMs on LPS-induced macrophage responses. PIM(1 and PIM(2 analogues inhibited LPS-induced TNF release by a CD14-dependent pathway, while IL-12 p40 inhibition was CD14-independent, suggesting that PIMs have multifold inhibitory effects on the TLR4 signalling pathway.

  17. Mycobacterial PIMs inhibit host inflammatory responses through CD14-dependent and CD14-independent mechanisms.

    Science.gov (United States)

    Court, Nathalie; Rose, Stéphanie; Bourigault, Marie-Laure; Front, Sophie; Martin, Olivier R; Dowling, Jennifer K; Kenny, Elaine F; O'Neill, Luke; Erard, François; Quesniaux, Valerie F J

    2011-01-01

    Mycobacteria develop strategies to evade the host immune system. Among them, mycobacterial LAM or PIMs inhibit the expression of pro-inflammatory cytokines by activated macrophages. Here, using synthetic PIM analogues, we analyzed the mode of action of PIM anti-inflammatory effects. Synthetic PIM(1) isomer and PIM(2) mimetic potently inhibit TNF and IL-12 p40 expression induced by TLR2 or TLR4 pathways, but not by TLR9, in murine macrophages. We show inhibition of LPS binding to TLR4/MD2/CD14 expressing HEK cells by PIM(1) and PIM(2) analogues. More specifically, the binding of LPS to CD14 was inhibited by PIM(1) and PIM(2) analogues. CD14 was dispensable for PIM(1) and PIM(2) analogues functional inhibition of TLR2 agonists induced TNF, as shown in CD14-deficient macrophages. The use of rough-LPS, that stimulates TLR4 pathway independently of CD14, allowed to discriminate between CD14-dependent and CD14-independent anti-inflammatory effects of PIMs on LPS-induced macrophage responses. PIM(1) and PIM(2) analogues inhibited LPS-induced TNF release by a CD14-dependent pathway, while IL-12 p40 inhibition was CD14-independent, suggesting that PIMs have multifold inhibitory effects on the TLR4 signalling pathway.

  18. Trail (TNF-related apoptosis-inducing ligand) induces an inflammatory response in human adipocytes.

    Science.gov (United States)

    Zoller, Verena; Funcke, Jan-Bernd; Roos, Julian; Dahlhaus, Meike; Abd El Hay, Muad; Holzmann, Karlheinz; Marienfeld, Ralf; Kietzmann, Thomas; Debatin, Klaus-Michael; Wabitsch, Martin; Fischer-Posovszky, Pamela

    2017-07-18

    High serum concentrations of TNF-related apoptosis-inducing ligand (TRAIL), a member of the tumor necrosis factor protein family, are found in patients with increased BMI and serum lipid levels. In a model of murine obesity, both the expression of TRAIL and its receptor (TRAIL-R) is elevated in adipose tissue. Accordingly, TRAIL has been proposed as an important mediator of adipose tissue inflammation and obesity-associated diseases. The aim of this study was to investigate if TRAIL regulates inflammatory processes at the level of the adipocyte. Using human Simpson-Golabi-Behmel syndrome (SGBS) cells as a model system, we found that TRAIL induces an inflammatory response in both preadipocytes and adipocytes. It stimulates the expression of interleukin 6 (IL-6), interleukin 8 (IL-8) as well as the chemokines monocyte chemoattractant protein-1 (MCP-1) and chemokine C-C motif ligand 20 (CCL-20) in a time- and dose-dependent manner. By using small molecule inhibitors, we found that both the NFκB and the ERK1/2 pathway are crucial for mediating the effect of TRAIL. Taken together, we identified a novel pro-inflammatory function of TRAIL in human adipocytes. Our findings suggest that targeting the TRAIL/TRAIL-R system might be a useful strategy to tackle obesity-associated adipose tissue inflammation.

  19. Piperine attenuates lipopolysaccharide (LPS)-induced inflammatory responses in BV2 microglia.

    Science.gov (United States)

    Wang-Sheng, Chen; Jie, An; Jian-Jun, Li; Lan, Hong; Zeng-Bao, Xing; Chang-Qing, Li

    2017-01-01

    Piperine, the chief alkaloid isolated from Piper nigrum, has been known to have anti-inflammatory effect. However, the effects of piperine on neuroinflammation have not been reported. In the present study, we evaluated the effects of piperine on neuroinflammation in BV2 microglia and investigated the molecular mechanism. The results showed that piperine significantly inhibited LPS-induced TNF-α, IL-6, IL-1β, and PGE2 production in BV2 cells. Western blot analysis showed that piperine dose-dependently inhibited LPS-induced NF-κB activation. Furthermore, piperine was found to amplify the expression of Nrf2 and HO-1 up-regulated by LPS. In addition, the inhibition of inflammatory mediators by piperine can be reversed by transfection with Nrf2 siRNA. In conclusion, piperine inhibited LPS-induced inflammatory response by activating Nrf2 signaling pathway. These results indicated that piperine may be a promising agent for the treatment of neurodegenerative diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Crocetin Inhibits Lipopolysaccharide-Induced Inflammatory Response in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Lei Song

    2016-11-01

    Full Text Available Background/Aim: Crocetin is a readily bioavailable and bioactive compound extracted from Saffron. Previous studies indicated its various biomedical properties including antioxidant and anti-coagulation potencies. However, its effect on inflammation, notably within the cardiovascular system, has not been investigated yet. In the present study, we utilized human umbilical vein endothelial cell (HUVEC to elucidate the effect of Crocetin on vascular inflammation. Methods: Cell viability and toxicity were evaluated by MTT and Lactate dehydrogenase (LDH assay, respectively. Pro-inflammatory chemokine Monocyte Chemoattractant Protein-1 (MCP-1 and Interleukin-8 (IL-8 expressions were determined by RT-PCR and ELISA. With fluorescence labeled U937 cells, we examined immune cell adhesion to the inflamed HUVEC in vitro, which was further confirmed by the H&E staining in the murine subcutaneous endothelium in vivo. Results: Upon Lipopolysaccharide (LPS-induced inflammatory response in HUVECs, Crocetin ameliorated cell cytotoxicity, suppressed MCP-1 and IL-8 expressions through blocking NF-κB p65 signaling transduction. Moreover, Crocetin inhibited immune cells adhesion and infiltration to inflamed endothelium, which is a key step in inflammatory vascular injury. Conclusions: These findings suggest that Crocetin, a natural herb extract, is a potent suppressor of vascular endothelial inflammation.

  1. The cytochrome P450 epoxygenase pathway regulates the hepatic inflammatory response in fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Robert N Schuck

    Full Text Available Fatty liver disease is an emerging public health problem without effective therapies, and chronic hepatic inflammation is a key pathologic mediator in its progression. Cytochrome P450 (CYP epoxygenases metabolize arachidonic acid to biologically active epoxyeicosatrienoic acids (EETs, which have potent anti-inflammatory effects. Although promoting the effects of EETs elicits anti-inflammatory and protective effects in the cardiovascular system, the contribution of CYP-derived EETs to the regulation of fatty liver disease-associated inflammation and injury is unknown. Using the atherogenic diet model of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH, our studies demonstrated that induction of fatty liver disease significantly and preferentially suppresses hepatic CYP epoxygenase expression and activity, and both hepatic and circulating levels of EETs in mice. Furthermore, mice with targeted disruption of Ephx2 (the gene encoding soluble epoxide hydrolase exhibited restored hepatic and circulating EET levels and a significantly attenuated induction of hepatic inflammation and injury. Collectively, these data suggest that suppression of hepatic CYP-mediated EET biosynthesis is an important pathological consequence of fatty liver disease-associated inflammation, and that the CYP epoxygenase pathway is a central regulator of the hepatic inflammatory response in NAFLD/NASH. Future studies investigating the utility of therapeutic strategies that promote the effects of CYP-derived EETs in NAFLD/NASH are warranted.

  2. Melatonin modulates inflammatory response and suppresses burn-induced apoptotic injury

    Directory of Open Access Journals (Sweden)

    Ganka Bekyarova

    2017-04-01

    Full Text Available Introduction: Melatonin, the principal secretory product of the pineal gland, has antioxidant functions as a potent antioxidant and free radical scavenger. Objectives of the present study were to investigate the effect of melatonin against inflammatory response, burn-induced oxidative damage and apoptotic changes of rat liver. Methods: Melatonin (10 mg /kg, i.p. was applied immediately after 30% of total body surface area (TBSA burns on male Wistar rats. The level of malondialdehyde (MDA as a marker of an oxidative stress was quantified by thiobarbituric method. Hepatic TNFα and IL-10 as inflammatory markers were assayed by ELISA. Using light immunоchistochemistry the expression Ki67 proliferative marker was investigated. Results: Hepatic MDA and TNF-α levels increased significantly following burns without any change in IL-10 level. Intracellular vacuolization, hepatic cell degeneration and apoptosis occurred in rats after burns. The number of apoptotic cells was increased whereas no significant increase in Ki67 proliferative marker. Melatonin decreased the MDA and TNF-α content and increased the IL-10 level. It also limited the degenerative changes and formation of apoptotic cells in rat liver but did not increase expression of the marker of proliferation. In conclusion, our data show that melatonin relieves burn-induced hepatic damage associated with modulation of the proinflammatory/anti-inflammatory balance, mitigation of lipid peroxidation and hepatic apoptosis.

  3. Bile acids initiate cholestatic liver injury by triggering a hepatocyte-specific inflammatory response.

    Science.gov (United States)

    Cai, Shi-Ying; Ouyang, Xinshou; Chen, Yonglin; Soroka, Carol J; Wang, Juxian; Mennone, Albert; Wang, Yucheng; Mehal, Wajahat Z; Jain, Dhanpat; Boyer, James L

    2017-03-09

    Mechanisms of bile acid-induced (BA-induced) liver injury in cholestasis are controversial, limiting development of new therapies. We examined how BAs initiate liver injury using isolated liver cells from humans and mice and in-vivo mouse models. At pathophysiologic concentrations, BAs induced proinflammatory cytokine expression in mouse and human hepatocytes, but not in nonparenchymal cells or cholangiocytes. These hepatocyte-specific cytokines stimulated neutrophil chemotaxis. Inflammatory injury was mitigated in Ccl2(-/-) mice treated with BA or after bile duct ligation, where less hepatic infiltration of neutrophils was detected. Neutrophils in periportal areas of livers from cholestatic patients also correlated with elevations in their serum aminotransferases. This liver-specific inflammatory response required BA entry into hepatocytes via basolateral transporter Ntcp. Pathophysiologic levels of BAs induced markers of ER stress and mitochondrial damage in mouse hepatocytes. Chemokine induction by BAs was reduced in hepatocytes from Tlr9(-/-) mice, while liver injury was diminished both in conventional and hepatocyte-specific Tlr9(-/-) mice, confirming a role for Tlr9 in BA-induced liver injury. These findings reveal potentially novel mechanisms whereby BAs elicit a hepatocyte-specific cytokine-induced inflammatory liver injury that involves innate immunity and point to likely novel pathways for treating cholestatic liver disease.

  4. Magnesium supplement promotes sciatic nerve regeneration and down-regulates inflammatory response.

    Science.gov (United States)

    Pan, Hung-Chuan; Sheu, Meei-Ling; Su, Hong-Lin; Chen, Ying-Ju; Chen, Chun-Jung; Yang, Dar-Yu; Chiu, Wen-Ta; Cheng, Fu-Chou

    2011-06-01

    Magnesium (Mg) supplements have been shown to significantly improve functional recovery in various neurological disorders. The essential benefits of Mg supplementation in peripheral nerve disorders have not been elucidated yet. The effect and mechanism of Mg supplementation on a sciatic nerve crush injury model was investigated. Sciatic nerve injury was induced in mice by crushing the left sciatic nerve. Mice were randomly divided into three groups with low-, basal- or high-Mg diets (corresponding to 10, 100 or 200% Mg of the basal diet). Neurobehavioral, electrophysiological and regeneration marker studies were conducted to explore nerve regeneration. First, a high Mg diet significantly increased plasma and nerve tissue Mg concentrations. In addition, Mg supplementation improved neurobehavioral, electrophysiological functions, enhanced regeneration marker, and reduced deposits of inflammatory cells as well as expression of inflammatory cytokines. Furthermore, reduced Schwann cell apoptosis