WorldWideScience

Sample records for brain improves targeting

  1. Non-target adjacent stimuli classification improves performance of classical ERP-based brain computer interface

    Science.gov (United States)

    Ceballos, G. A.; Hernández, L. F.

    2015-04-01

    Objective. The classical ERP-based speller, or P300 Speller, is one of the most commonly used paradigms in the field of Brain Computer Interfaces (BCI). Several alterations to the visual stimuli presentation system have been developed to avoid unfavorable effects elicited by adjacent stimuli. However, there has been little, if any, regard to useful information contained in responses to adjacent stimuli about spatial location of target symbols. This paper aims to demonstrate that combining the classification of non-target adjacent stimuli with standard classification (target versus non-target) significantly improves classical ERP-based speller efficiency. Approach. Four SWLDA classifiers were trained and combined with the standard classifier: the lower row, upper row, right column and left column classifiers. This new feature extraction procedure and the classification method were carried out on three open databases: the UAM P300 database (Universidad Autonoma Metropolitana, Mexico), BCI competition II (dataset IIb) and BCI competition III (dataset II). Main results. The inclusion of the classification of non-target adjacent stimuli improves target classification in the classical row/column paradigm. A gain in mean single trial classification of 9.6% and an overall improvement of 25% in simulated spelling speed was achieved. Significance. We have provided further evidence that the ERPs produced by adjacent stimuli present discriminable features, which could provide additional information about the spatial location of intended symbols. This work promotes the searching of information on the peripheral stimulation responses to improve the performance of emerging visual ERP-based spellers.

  2. Improved Targeting Through Collaborative Decision-Making and Brain Computer Interfaces

    Science.gov (United States)

    Stoica, Adrian; Barrero, David F.; McDonald-Maier, Klaus

    2013-01-01

    This paper reports a first step toward a brain-computer interface (BCI) for collaborative targeting. Specifically, we explore, from a broad perspective, how the collaboration of a group of people can increase the performance on a simple target identification task. To this end, we requested a group of people to identify the location and color of a sequence of targets appearing on the screen and measured the time and accuracy of the response. The individual results are compared to a collective identification result determined by simple majority voting, with random choice in case of drawn. The results are promising, as the identification becomes significantly more reliable even with this simple voting and a small number of people (either odd or even number) involved in the decision. In addition, the paper briefly analyzes the role of brain-computer interfaces in collaborative targeting, extending the targeting task by using a BCI instead of a mechanical response.

  3. Delivery of a peptide-drug conjugate targeting the blood brain barrier improved the efficacy of paclitaxel against glioma.

    Science.gov (United States)

    Li, Ying; Zheng, Xuemin; Gong, Min; Zhang, Jianning

    2016-11-29

    The challenge of effectively delivering therapeutic agents to the brain has created an entire field of active research devoted to overcoming the blood brain barrier (BBB) and efficiently delivering drugs to the brain. Angiopep-2 can trigger transcytosis and traverse the BBB by recognizing low-density lipoprotein related protein-1 (LRP-1) expressed on the brain capillary endothelial cells. Here, we designed a novel strategy for the delivery of drugs to the brain. The novel drug delivery system was a combination of a receptor-targeting ligand, such as low-density lipoprotein related protein 1, and a cell-penetrating peptide (CPP). It was hypothesized that this conjugate will enhance the delivery of associated therapeutic cargo across the BBB and increase the permeability of a solid tumor. Our findings indicate that the combination of these two agents in a delivery vehicle significantly improved translocation of small molecules (paclitaxel) into the brain compared to the vehicle treatment, which contained only receptor-targeting ligand. The application of this strategy could potentially expand the horizons for the treatment of central nervous system disorders.

  4. Targeted rehabilitation reduces visual dependency and improves balance in severe traumatic brain injury: a case study.

    Science.gov (United States)

    Kaski, Diego; Buttell, Joseph; Greenwood, Richard

    2018-04-01

    To further understand the mechanisms underlying gait impairment following traumatic brain injury. A 58-year-old man presented with marked unsteadiness and motion sensitivity following a severe traumatic brain injury. He underwent a 6-week inpatient rehabilitation program focused on re-weighting and subsequently re-integrating ascending interoceptive information, by gradual reduction of maladaptive visual fixation techniques. We report clinical neurological outcomes and measures of functional outcome, as well as an objective assessment of visual dependency (the rod and disk test) at baseline and after the rehabilitation. Clinically, the patient had gait unsteadiness exacerbated by visual motion. A significant reduction in visual dependency occurred with tailored multi-disciplinary rehabilitation via gradual removal of visual fixation strategies that the patient had developed to maintain balance (t-test; p visual dependency in the generation of maladaptive gait strategies following brain injury. Our data suggest assessing and treating visual dependency to be an important component of gait rehabilitation after traumatic brain injury. Implications for rehabilitation Whilst gait disturbance in TBI is multifactorial, abnormal visual dependency may be important but under-recognised component of the disorder. Visual dependency can be easily and objectively assessed by the bedside in patients using a dynamic rod and disc test. Tailored rehabilitation with gradual reduction of maladaptive visual fixation can reduce visual dependency and contribute to improved gait and balance following TBI.

  5. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma

    DEFF Research Database (Denmark)

    Johnsen, Kasper B.; Burkhart, Annette; Melander, Fredrik

    2017-01-01

    Drug delivery to the brain is hampered by the presence of the blood-brain barrier, which excludes most molecules from freely diffusing into the brain, and tightly regulates the active transport mechanisms that ensure sufficient delivery of nutrients to the brain parenchyma. Harnessing...... the possibility of delivering neuroactive drugs by way of receptors already present on the brain endothelium has been of interest for many years. The transferrin receptor is of special interest since its expression is limited to the endothelium of the brain as opposed to peripheral endothelium. Here, we...... investigate the possibility of delivering immunoliposomes and their encapsulated cargo to the brain via targeting of the transferrin receptor. We find that transferrin receptor-targeting increases the association between the immunoliposomes and primary endothelial cells in vitro, but that this does...

  6. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma

    DEFF Research Database (Denmark)

    Johnsen, Kasper B.; Burkhart, Annette; Melander, Fredrik

    2017-01-01

    investigate the possibility of delivering immunoliposomes and their encapsulated cargo to the brain via targeting of the transferrin receptor. We find that transferrin receptor-targeting increases the association between the immunoliposomes and primary endothelial cells in vitro, but that this does...... not correlate with increased cargo transcytosis. Furthermore, we show that the transferrin receptor-targeted immunoliposomes accumulate along the microvessels of the brains of rats, but find no evidence for transcytosis of the immunoliposome. Conversely, the increased accumulation correlated both with increased...... cargo uptake in the brain endothelium and subsequent cargo transport into the brain. These findings suggest that transferrin receptor-targeting is a relevant strategy of increasing drug exposure to the brain....

  7. Improved brain uptake of peptide-based CNS drugs via alternative routes of administrations of its nanocarrier delivery systems: a promising strategy for CNS targeting delivery of peptides.

    Science.gov (United States)

    Qian, Shuai; Wang, Qianwen; Zuo, Zhong

    2014-11-01

    Recently, developing peptide-based drugs to treat CNS diseases has gained increasing attention in both academics and pharmaceutical industry. However, targeting delivery of peptides to brain is one of the most challenging problems faced in the treatment of CNS diseases. After explaining the brain barriers limiting the delivery of peptides, the current review focuses on summarizing the most promising approaches for the enhancement of peptide and brain uptake, including delivery via alternative routes of administrations or using nanocarriers or intranasal administration of nanocarriers loaded with peptide. In addition, the biopharmaceutic, pharmacokinetic and pharmacodynamic details of several successful peptide-based CNS drugs are highlighted. Although using nanocarriers or delivery via alternative routes could improve to a certain extent the brain uptake of peptides, the magnitude of changes remains moderate. Alternatively, intranasal administration of nanocarriers loaded with peptide has been demonstrated to be an effective approach for CNS-targeted delivery of peptides.

  8. Targeting Malignant Brain Tumors with Antibodies

    OpenAIRE

    Rok Razpotnik; Neža Novak; Vladka Čurin Šerbec; Uros Rajcevic

    2017-01-01

    Antibodies have been shown to be a potent therapeutic tool. However, their use for targeting brain diseases, including neurodegenerative diseases and brain cancers, has been limited, particularly because the blood–brain barrier (BBB) makes brain tissue hard to access by conventional antibody-targeting strategies. In this review, we summarize new antibody therapeutic approaches to target brain tumors, especially malignant gliomas, as well as their potential drawbacks. Many different brain deli...

  9. Formulation of olfactory-targeted microparticles with tamarind seed polysaccharide to improve nose-to-brain transport of drugs.

    Science.gov (United States)

    Yarragudi, Sasi B; Richter, Robert; Lee, Helen; Walker, Greg F; Clarkson, Andrew N; Kumar, Haribalan; Rizwan, Shakila B

    2017-05-01

    Targeted delivery and retention of drug formulations in the olfactory mucosa, the target site for nose-to-brain drug absorption is a major challenge due to the geometrical complexity of the nose and nasal clearance. Recent modelling data indicates that 10μm-sized microparticles show maximum deposition in the olfactory mucosa. In the present study we tested the hypothesis that 10μm-sized mucoadhesive microparticles would preferentially deposit on, and increase retention of drug on, the olfactory mucosa in a novel 3D-printed human nasal-replica cast under simulated breathing. The naturally occurring mucoadhesive polymer, tamarind seed polysaccharide (TSP) was used to formulate the microparticles using a spray drying technique. Physicochemical properties of microparticles such as size, morphology and mucoadhesiveness was investigated using a combination of laser diffraction, electron microscopy and texture-analysis. Furthermore, FITC-dextrans (5-40kDa) were incorporated in TSP-microparticles as model drugs. Size-dependent permeability of the FITC-dextrans was observed ex vivo using porcine nasal mucosa. Using the human nasal-replica cast, greater deposition of 10μm TSP-microparticles in the olfactory region was observed compared to TSP-microparticles 2μm in size. Collectively, these findings support our hypothesis that 10μm-sized mucoadhesive microparticles can achieve selective deposition and retention of drug in the olfactory mucosa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Deep brain stimulation for obesity: past, present, and future targets.

    Science.gov (United States)

    Dupré, Derrick A; Tomycz, Nestor; Oh, Michael Y; Whiting, Donald

    2015-06-01

    The authors review the history of deep brain stimulation (DBS) in patients for treating obesity, describe current DBS targets in the brain, and discuss potential DBS targets and nontraditional stimulation parameters that may improve the effectiveness of DBS for ameliorating obesity. Deep brain stimulation for treating obesity has been performed both in animals and in humans with intriguing preliminary results. The brain is an attractive target for addressing obesity because modulating brain activity may permit influencing both sides of the energy equation--caloric intake and energy expenditure.

  11. Immunotherapy Targeting Pathological Tau Conformers in a Tangle Mouse Model Reduces Brain Pathology with Associated Functional Improvements

    National Research Council Canada - National Science Library

    Asuni, Ayodeji A; Boutajangout, Allal; Quartermain, David; Sigurdsson, Einar M

    2007-01-01

    .... Here, we present that active immunization with a phosphorylated tau epitope, in P301L tangle model mice, reduces aggregated tau in the brain and slows progression of the tangle-related behavioral phenotype...

  12. Upregulation of Haploinsufficient Gene Expression in the Brain by Targeting a Long Non-coding RNA Improves Seizure Phenotype in a Model of Dravet Syndrome

    Directory of Open Access Journals (Sweden)

    J. Hsiao

    2016-07-01

    Full Text Available Dravet syndrome is a devastating genetic brain disorder caused by heterozygous loss-of-function mutation in the voltage-gated sodium channel gene SCN1A. There are currently no treatments, but the upregulation of SCN1A healthy allele represents an appealing therapeutic strategy. In this study we identified a novel, evolutionary conserved mechanism controlling the expression of SCN1A that is mediated by an antisense non-coding RNA (SCN1ANAT. Using oligonucleotide-based compounds (AntagoNATs targeting SCN1ANAT we were able to induce specific upregulation of SCN1A both in vitro and in vivo, in the brain of Dravet knock-in mouse model and a non-human primate. AntagoNAT-mediated upregulation of Scn1a in postnatal Dravet mice led to significant improvements in seizure phenotype and excitability of hippocampal interneurons. These results further elucidate the pathophysiology of Dravet syndrome and outline a possible new approach for the treatment of this and other genetic disorders with similar etiology.

  13. Transferrin liposomes of docetaxel for brain-targeted cancer applications: formulation and brain theranostics.

    Science.gov (United States)

    Sonali; Singh, Rahul Pratap; Singh, Nitesh; Sharma, Gunjan; Vijayakumar, Mahalingam R; Koch, Biplob; Singh, Sanjay; Singh, Usha; Dash, Debabrata; Pandey, Bajarangprasad L; Muthu, Madaswamy S

    2016-05-01

    Diagnosis and therapy of brain cancer was often limited due to low permeability of delivery materials across the blood-brain barrier (BBB) and their poor penetration into the brain tissue. This study explored the possibility of utilizing theranostic d-alpha-tocopheryl polyethylene glycol 1000 succinate mono-ester (TPGS) liposomes as nanocarriers for minimally invasive brain-targeted imaging and therapy (brain theranostics). The aim of this work was to formulate transferrin conjugated TPGS coated theranostic liposomes, which contain both docetaxel and quantum dots (QDs) for imaging and therapy of brain cancer. The theranostic liposomes with and without transferrin decoration were prepared and characterized for their particle size, polydispersity, morphology, drug encapsulation efficiency, in-vitro release study and brain theranostics. The particle sizes of the non-targeted and targeted theranostic liposomes were found below 200 nm. Nearly, 71% of drug encapsulation efficiency was achieved with liposomes. The drug release from transferrin conjugated theranostic liposomes was sustained for more than 72 h with 70% of drug release. The in-vivo results indicated that transferrin receptor-targeted theranostic liposomes could be a promising carrier for brain theranostics due to nano-sized delivery and its permeability which provided an improved and prolonged brain targeting of docetaxel and QDs in comparison to the non-targeted preparations.

  14. Zika Virus Targeting in the Developing Brain.

    Science.gov (United States)

    van den Pol, Anthony N; Mao, Guochao; Yang, Yang; Ornaghi, Sara; Davis, John N

    2017-02-22

    Zika virus (ZIKV), a positive-sense RNA flavivirus, has attracted considerable attention recently for its potential to cause serious neurological problems, including microcephaly, cortical thinning, and blindness during early development. Recent findings suggest that ZIKV infection of the brain can occur not only during very early stages of development, but also in later fetal/early neonatal stages of maturation. Surprisingly, after peripheral inoculation of immunocompetent mice on the day of birth, the first cells targeted throughout the brain were isolated astrocytes. At later stages, more neurons showed ZIKV immunoreactivity, in part potentially due to ZIKV release from infected astrocytes. In all developing mice studied, we detected infection of retinal neurons; in many mice, this was also associated with infection of the lateral geniculate, suprachiasmatic nuclei, and superior colliculus, suggesting a commonality for the virus to infect cells of the visual system. Interestingly, in mature mice lacking a Type 1 interferon response (IFNR-/-), after inoculation of the eye, the initial majority of infected cells in the visual system were glial cells along the optic tract. ZIKV microinjection into the somatosensory cortex on one side of the normal mouse brain resulted in mirror infection restricted to the contralateral somatosensory cortex without any infection of midline brain regions, indicating the virus can move by axonal transport to synaptically coupled brain loci. These data support the view that ZIKV shows considerable complexity in targeting the CNS and may target different cells at different stages of brain development.SIGNIFICANCE STATEMENT Zika virus (ZIKV) can cause substantial damage to the developing human brain. Here we examine a developmental mouse model of ZIKV infection in the newborn mouse in which the brain is developmentally similar to a second-trimester human fetus. After peripheral inoculation, the virus entered the CNS in all mice tested

  15. Targeting Malignant Brain Tumors with Antibodies.

    Science.gov (United States)

    Razpotnik, Rok; Novak, Neža; Čurin Šerbec, Vladka; Rajcevic, Uros

    2017-01-01

    Antibodies have been shown to be a potent therapeutic tool. However, their use for targeting brain diseases, including neurodegenerative diseases and brain cancers, has been limited, particularly because the blood-brain barrier (BBB) makes brain tissue hard to access by conventional antibody-targeting strategies. In this review, we summarize new antibody therapeutic approaches to target brain tumors, especially malignant gliomas, as well as their potential drawbacks. Many different brain delivery platforms for antibodies have been studied such as liposomes, nanoparticle-based systems, cell-penetrating peptides (CPPs), and cell-based approaches. We have already shown the successful delivery of single-chain fragment variable (scFv) with CPP as a linker between two variable domains in the brain. Antibodies normally face poor penetration through the BBB, with some variants sufficiently passing the barrier on their own. A "Trojan horse" method allows passage of biomolecules, such as antibodies, through the BBB by receptor-mediated transcytosis (RMT). Such examples of therapeutic antibodies are the bispecific antibodies where one binding specificity recognizes and binds a BBB receptor, enabling RMT and where a second binding specificity recognizes an antigen as a therapeutic target. On the other hand, cell-based systems such as stem cells (SCs) are a promising delivery system because of their tumor tropism and ability to cross the BBB. Genetically engineered SCs can be used in gene therapy, where they express anti-tumor drugs, including antibodies. Different types and sources of SCs have been studied for the delivery of therapeutics to the brain; both mesenchymal stem cells (MSCs) and neural stem cells (NSCs) show great potential. Following the success in treatment of leukemias and lymphomas, the adoptive T-cell therapies, especially the chimeric antigen receptor-T cells (CAR-Ts), are making their way into glioma treatment as another type of cell-based therapy using the

  16. Targeting Malignant Brain Tumors with Antibodies

    Directory of Open Access Journals (Sweden)

    Rok Razpotnik

    2017-09-01

    Full Text Available Antibodies have been shown to be a potent therapeutic tool. However, their use for targeting brain diseases, including neurodegenerative diseases and brain cancers, has been limited, particularly because the blood–brain barrier (BBB makes brain tissue hard to access by conventional antibody-targeting strategies. In this review, we summarize new antibody therapeutic approaches to target brain tumors, especially malignant gliomas, as well as their potential drawbacks. Many different brain delivery platforms for antibodies have been studied such as liposomes, nanoparticle-based systems, cell-penetrating peptides (CPPs, and cell-based approaches. We have already shown the successful delivery of single-chain fragment variable (scFv with CPP as a linker between two variable domains in the brain. Antibodies normally face poor penetration through the BBB, with some variants sufficiently passing the barrier on their own. A “Trojan horse” method allows passage of biomolecules, such as antibodies, through the BBB by receptor-mediated transcytosis (RMT. Such examples of therapeutic antibodies are the bispecific antibodies where one binding specificity recognizes and binds a BBB receptor, enabling RMT and where a second binding specificity recognizes an antigen as a therapeutic target. On the other hand, cell-based systems such as stem cells (SCs are a promising delivery system because of their tumor tropism and ability to cross the BBB. Genetically engineered SCs can be used in gene therapy, where they express anti-tumor drugs, including antibodies. Different types and sources of SCs have been studied for the delivery of therapeutics to the brain; both mesenchymal stem cells (MSCs and neural stem cells (NSCs show great potential. Following the success in treatment of leukemias and lymphomas, the adoptive T-cell therapies, especially the chimeric antigen receptor-T cells (CAR-Ts, are making their way into glioma treatment as another type of cell

  17. Targeted toxins in brain tumor therapy.

    Science.gov (United States)

    Li, Yan Michael; Hall, Walter A

    2010-11-01

    Targeted toxins, also known as immunotoxins or cytotoxins, are recombinant molecules that specifically bind to cell surface receptors that are overexpressed in cancer and the toxin component kills the cell. These recombinant proteins consist of a specific antibody or ligand coupled to a protein toxin. The targeted toxins bind to a surface antigen or receptor overexpressed in tumors, such as the epidermal growth factor receptor or interleukin-13 receptor. The toxin part of the molecule in all clinically used toxins is modified from bacterial or plant toxins, fused to an antibody or carrier ligand. Targeted toxins are very effective against cancer cells resistant to radiation and chemotherapy. They are far more potent than any known chemotherapy drug. Targeted toxins have shown an acceptable profile of toxicity and safety in early clinical studies and have demonstrated evidence of a tumor response. Currently, clinical trials with some targeted toxins are complete and the final results are pending. This review summarizes the characteristics of targeted toxins and the key findings of the important clinical studies with targeted toxins in malignant brain tumor patients. Obstacles to successful treatment of malignant brain tumors include poor penetration into tumor masses, the immune response to the toxin component and cancer heterogeneity. Strategies to overcome these limitations are being pursued in the current generation of targeted toxins.

  18. Blood-brain barrier transport machineries and targeted therapy of brain diseases

    Directory of Open Access Journals (Sweden)

    Jaleh Barar

    2016-12-01

    Full Text Available Introduction: Desired clinical outcome of pharmacotherapy of brain diseases largely depends upon the safe drug delivery into the brain parenchyma. However, due to the robust blockade function of the blood-brain barrier (BBB, drug transport into the brain is selectively controlled by the BBB formed by brain capillary endothelial cells and supported by astrocytes and pericytes. Methods: In the current study, we have reviewed the most recent literature on the subject to provide an insight upon the role and impacts of BBB on brain drug delivery and targeting. Results: All drugs, either small molecules or macromolecules, designated to treat brain diseases must adequately cross the BBB to provide their therapeutic properties on biological targets within the central nervous system (CNS. However, most of these pharmaceuticals do not sufficiently penetrate into CNS, failing to meet the intended therapeutic outcomes. Most lipophilic drugs capable of penetrating BBB are prone to the efflux functionality of BBB. In contrast, all hydrophilic drugs are facing severe infiltration blockage imposed by the tight cellular junctions of the BBB. Hence, a number of strategies have been devised to improve the efficiency of brain drug delivery and targeted therapy of CNS disorders using multimodal nanosystems (NSs. Conclusion: In order to improve the therapeutic outcomes of CNS drug transfer and targeted delivery, the discriminatory permeability of BBB needs to be taken under control. The carrier-mediated transport machineries of brain capillary endothelial cells (BCECs can be exploited for the discovery, development and delivery of small molecules into the brain. Further, the receptor-mediated transport systems can be recruited for the delivery of macromolecular biologics and multimodal NSs into the brain.

  19. Development and evaluation of vinpocetine inclusion complex for brain targeting

    Directory of Open Access Journals (Sweden)

    Jiaojiao Ding

    2015-04-01

    Full Text Available The objective of this paper is to prepare vinpocetine (VIN inclusion complex and evaluate its brain targeting effect after intranasal administration. In the present study, VIN inclusion complex was prepared in order to increase its solubility. Stability constant (Kc was used for host selection. Factors influencing properties of the inclusion complex was investigated. Formation of the inclusion complex was identified by solubility study and DSC analysis. The brain targeting effect of the complex after intranasal administration was studied in rats. It was demonstrated that properties of the inclusion complex was mainly influenced by cyclodextrin type, organic acids type, system pH and host/guest molar ratio. Multiple component complexes can be formed by the addition of citric acid, with solubility improved for more than 23 times. Furthermore, In vivo study revealed that after intranasal administration, the absolute bioavailability of vinpocetine inclusion complex was 88%. Compared with intravenous injection, significant brain targeting effect was achieved after intranasal delivery, with brain targeting index 1.67. In conclusion, by intranasal administration of VIN inclusion complex, a fast onset of action and good brain targeting effect can be achieved. Intranasal route is a promising approach for the treatment of CNS diseases.

  20. Deep Brain Stimulation Target Selection for Parkinson's Disease.

    Science.gov (United States)

    Honey, Christopher R; Hamani, Clement; Kalia, Suneil K; Sankar, Tejas; Picillo, Marina; Munhoz, Renato P; Fasano, Alfonso; Panisset, Michel

    2017-01-01

    During the "DBS Canada Day" symposium held in Toronto July 4-5, 2014, the scientific committee invited experts to discuss three main questions on target selection for deep brain stimulation (DBS) of patients with Parkinson's disease (PD). First, is the subthalamic nucleus (STN) or the globus pallidus internus (GPi) the ideal target? In summary, both targets are equally effective in improving the motor symptoms of PD. STN allows a greater medications reduction, while GPi exerts a direct antidyskinetic effect. Second, are there further potential targets? Ventral intermediate nucleus DBS has significant long-term benefit for tremor control but insufficiently addresses other motor features of PD. DBS in the posterior subthalamic area also reduces tremor. The pedunculopontine nucleus remains an investigational target. Third, should DBS for PD be performed unilaterally, bilaterally or staged? Unilateral STN DBS can be proposed to asymmetric patients. There is no evidence that a staged bilateral approach reduces the incidence of DBS-related adverse events.

  1. Maintaining older brain functionality: A targeted review.

    Science.gov (United States)

    Ballesteros, Soledad; Kraft, Eduard; Santana, Silvina; Tziraki, Chariklia

    2015-08-01

    The unprecedented growth in the number of older adults in our society is accompanied by the exponential increase in the number of elderly people who will suffer cognitive decline and dementia in the next decades. This will create an enormous cost for governments, families and individuals. Brain plasticity and its role in brain adaptation to the process of aging is influenced by other changes as a result of co-morbidities, environmental factors, personality traits (psychosocial variables) and genetic and epigenetic factors. This review summarizes recent findings obtained mostly from interventional studies that aim to prevent and/or delay age-related cognitive decline in healthy adults. There are a multitude of such studies. In this paper, we focused our review on physical activity, computerized cognitive training and social enhancement interventions on improving cognition, physical health, independent living and wellbeing of older adults. The methodological limitations of some of these studies, and the need for new multi-domain synergistic interventions, based on current advances in neuroscience and social-brain theories, are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Recent advances in brain tumor-targeted nano-drug delivery systems.

    Science.gov (United States)

    Liu, Yu; Lu, Weiyue

    2012-06-01

    Brain tumors represent one of the most challenging and difficult areas in unmet medical needs. Fortunately, the past decade has seen momentous developments in brain tumor research in terms of brain tumor-targeted novel nano-drug delivery systems with significant important superiority over conventional formulations with respect to decreased toxicity and improved pharmacokinetics/pharmacodynamics. This review first introduces the characteristics of the two major obstacles in brain-tumor targeted delivery, blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB), and then reviews recent advances in brain tumor-targeted novel nano-drug delivery systems according to their targeting strategies aimed at different stages of brain tumor development and growth. Based on continuously changing vascular characteristics of brain tumors at different development and growth stages, we propose the concept of 'whole-process targeting' for brain tumor for nano-drug delivery systems, referring to a series of overall targeted drug delivery strategies aimed at key points during the whole development of brain tumors.

  3. Targeting of Deep Brain Structures with Microinjections for Delivery of Drugs, Viral Vectors, or Cell Transplants

    Science.gov (United States)

    Gonzalez-Perez, Oscar; Guerrero-Cazares, Hugo; Quiñones-Hinojosa, Alfredo

    2010-01-01

    Microinjections into the brain parenchyma are important procedures to deliver drugs, viral vectors or cell transplants. The brain lesion that an injecting needle produces during its trajectory is a major concern especially in the mouse brain for not only the brain is small but also sometimes multiple injections are needed. We show here a method to produce glass capillary needles with a 50-μm lumen which significantly reduces the brain damage and allows a precise targeting into the rodent brain. This method allows a delivery of small volumes (from 20 to 100 nl), reduces bleeding risks, and minimizes passive diffusion of drugs into the brain parenchyma. By using different size of capillary glass tubes, or changing the needle lumen, several types of substances and cells can be injected. Microinjections with a glass capillary tube represent a significant improvement in injection techniques and deep brain targeting with minimal collateral damage in small rodents. PMID:21178958

  4. Targeting Dopamine in Acute Traumatic Brain Injury

    Science.gov (United States)

    Bales, James W.; Kline, Anthony E.; Wagner, Amy K.; Dixon, C. Edward

    2010-01-01

    In addition to the initial mechanical damage, traumatic brain injury (TBI) induces a series of secondary insults, such as, but not limited to, excitotoxicity, metabolic disruption, and oxidative stress. Neuroprotective strategies after TBI have traditionally focused on cellular preservation as the measurable endpoint although multiple lines of evidence indicate that even with significant neuronal sparing deficits remain at both the cellular and behavioral level. As such, the development of therapies that can effectively confer both neuronal sparing and post-injury functional benefit is critical to providing the best treatment options for clinical TBI. Targeting dopaminergic signaling pathways is a novel approach in TBI that provides benefits to both neuronal survival and functional outcomes. Dopamine, like glutamate, can cause oxidative stress and significant cellular dysfunction when either depleted or over-expressed, and also plays an important role in central nervous system inflammation. The purpose of this review is to discuss dopamine in acute TBI and the role that dopaminergic therapies have as neuroprotective strategies. PMID:22308176

  5. Targeted training modifies oscillatory brain activity in schizophrenia patients.

    Science.gov (United States)

    Popov, Tzvetan G; Carolus, Almut; Schubring, David; Popova, Petia; Miller, Gregory A; Rockstroh, Brigitte S

    2015-01-01

    Effects of both domain-specific and broader cognitive remediation protocols have been reported for neural activity and overt performance in schizophrenia (SZ). Progress is limited by insufficient knowledge of relevant neural mechanisms. Addressing neuronal signal resolution in the auditory system as a mechanism contributing to cognitive function and dysfunction in schizophrenia, the present study compared effects of two neuroplasticity-based training protocols targeting auditory-verbal or facial affect discrimination accuracy and a standard rehabilitation protocol on magnetoencephalographic (MEG) oscillatory brain activity in an auditory paired-click task. SZ were randomly assigned to either 20 daily 1-hour sessions over 4 weeks of auditory-verbal training (N = 19), similarly intense facial affect discrimination training (N = 19), or 4 weeks of treatment as usual (TAU, N = 19). Pre-training, the 57 SZ showed smaller click-induced posterior alpha power modulation than did 28 healthy comparison participants, replicating Popov et al. (2011b). Abnormally small alpha decrease 300-800 ms around S2 improved more after targeted auditory-verbal training than after facial affect training or TAU. The improvement in oscillatory brain dynamics with training correlated with improvement on a measure of verbal learning. Results replicate previously reported effects of neuroplasticity-based psychological training on oscillatory correlates of auditory stimulus differentiation, encoding, and updating and indicate specificity of cortical training effects.

  6. Targeted training modifies oscillatory brain activity in schizophrenia patients

    Directory of Open Access Journals (Sweden)

    Tzvetan G. Popov

    2015-01-01

    Full Text Available Effects of both domain-specific and broader cognitive remediation protocols have been reported for neural activity and overt performance in schizophrenia (SZ. Progress is limited by insufficient knowledge of relevant neural mechanisms. Addressing neuronal signal resolution in the auditory system as a mechanism contributing to cognitive function and dysfunction in schizophrenia, the present study compared effects of two neuroplasticity-based training protocols targeting auditory–verbal or facial affect discrimination accuracy and a standard rehabilitation protocol on magnetoencephalographic (MEG oscillatory brain activity in an auditory paired-click task. SZ were randomly assigned to either 20 daily 1-hour sessions over 4 weeks of auditory–verbal training (N = 19, similarly intense facial affect discrimination training (N = 19, or 4 weeks of treatment as usual (TAU, N = 19. Pre-training, the 57 SZ showed smaller click-induced posterior alpha power modulation than did 28 healthy comparison participants, replicating Popov et al. (2011b. Abnormally small alpha decrease 300–800 ms around S2 improved more after targeted auditory–verbal training than after facial affect training or TAU. The improvement in oscillatory brain dynamics with training correlated with improvement on a measure of verbal learning. Results replicate previously reported effects of neuroplasticity-based psychological training on oscillatory correlates of auditory stimulus differentiation, encoding, and updating and indicate specificity of cortical training effects.

  7. BRAIN GYM IMPROVES COGNITIVE FUNCTION FOR ELDERLY

    Directory of Open Access Journals (Sweden)

    Ah. Yusuf

    2017-04-01

    Full Text Available Introduction: The degradation of cognitive function present early dementia in elderly. Brain gym is one of the alternative implementation to improve the cognitive function of elderly. The objective of this study was to analyze the effect of brain gym to the improvement of cognitive function in elderly. Method: This study used Quasy Experimental design. The populations were elderly in Social Service Unit Tresna Werdha Lamongan. The samples were recruited using purposive sampling, consist of 30 respondents, taken according to the inclusion criteria. Samples then divided into 2 groups, experimental groups and control groups. The independent variable of research this study was brain gym and the dependent variable was cognitive function at elderly. Data were collected by using MMSE score and then analyzed using Wilcoxon Signed Rank Test and Mann Whitney Test with level of significance α ≤ 0.05. Result: Result showed that there is an effect of brain gym to the improvement of cognitive function in elderly (p = 0.001. The difference of cognitive function also seen between experimental groups and control groups (p = 0.001. Discussion: The conclusion of this research is brain gym improve cognitive function in elderly. The simple movement of brain gym able to coordinate the brain function so the brain activity become more optimal hence the improvement of memory function, recall and concentration.

  8. What goes around comes around: novel pharmacological targets in the gut-brain axis.

    Science.gov (United States)

    González-Arancibia, Camila; Escobar-Luna, Jorge; Barrera-Bugueño, Camila; Díaz-Zepeda, Camilo; González-Toro, María P; Olavarría-Ramírez, Loreto; Zanelli-Massai, Francesca; Gotteland, Martin; Bravo, Javier A; Julio-Pieper, Marcela

    2016-05-01

    The gut and the brain communicate bidirectionally through anatomic and humoral pathways, establishing what is known as the gut-brain axis. Therefore, interventions affecting one system will impact on the other, giving the opportunity to investigate and develop future therapeutic strategies that target both systems. Alterations in the gut-brain axis may arise as a consequence of changes in microbiota composition (dysbiosis), modifications in intestinal barrier function, impairment of enteric nervous system, unbalanced local immune response and exaggerated responses to stress, to mention a few. In this review we analyze and discuss several novel pharmacological targets within the gut-brain axis, with potential applications to improve intestinal and mental health.

  9. Nanoparticle functionalization for brain targeting drug delivery and diagnostic

    DEFF Research Database (Denmark)

    Gomes, Maria João; Mendes, Bárbara; Martins, Susana

    2016-01-01

    carriers to cross the BBB and achieve brain, and their functionalization strategies are described; and finally the delivery of nanoparticles to the target moiety, as diagnostics or therapeutics. Therefore, this chapter is focused on how the nanoparticle surface may be functionalized for drug delivery......Nanobiotechnology has been demonstrated to be an efficient tool for targeted therapy as well as diagnosis, with particular emphasis on brain tumor and neurodegenerative diseases. On this regard, the aim of this chapter is focused on engineered nanoparticles targeted to the brain, so that they have...... the ability to overcome the blood-brain barrier (BBB) and enter the brain tissue. Firstly, it highlighted the difficulty of physically active molecules and colloidal carriers to overcome BBB, which is an impediment for the treatment of several brain diseases; then, the use of nanoparticles as advantageous...

  10. Paclitaxel improves outcome from traumatic brain injury

    OpenAIRE

    Cross, Donna J.; Garwin, Gregory G.; Cline, Marcella M.; Richards, Todd L.; Yarnykh, Vasily; Mourad, Pierre D.; Ho, Rodney J.Y.; Minoshima, Satoshi

    2015-01-01

    Pharmacologic interventions for traumatic brain injury (TBI) hold promise to improve outcome. The purpose of this study was to determine if the microtubule stabilizing therapeutic paclitaxel used for more than 20 years in chemotherapy would improve outcome after TBI. We assessed neurological outcome in mice that received direct application of paclitaxel to brain injury from controlled cortical impact (CCI). Magnetic resonance imaging was used to assess injury-related morphological changes. Ca...

  11. BRAIN GYM IMPROVES COGNITIVE FUNCTION FOR ELDERLY

    OpenAIRE

    Yusuf, Ah.; Indarwati, Retno; Jayanto, Arifudin Dwi

    2017-01-01

    Introduction: The degradation of cognitive function present early dementia in elderly. Brain gym is one of the alternative implementation to improve the cognitive function of elderly. The objective of this study was to analyze the effect of brain gym to the improvement of cognitive function in elderly. Method: This study used Quasy Experimental design. The populations were elderly in Social Service Unit Tresna Werdha Lamongan. The samples were recruited using purposive sampling, consist of 30...

  12. USE OF LIPOSOMES AND NANOPARTICLES FOR BRAIN DRUG TARGETING

    OpenAIRE

    Goutam Pal; Partha Palit

    2012-01-01

    The Blood Brain Barrier (BBB) poses a obstacle for a drugs, including antineoplastic agent, antibiotics, neuropeptides, CNS active agents, to be delivered to the brain for therapeutic reasons. The use of formulation dependent strategy such as the use of heterogenous pharmaceutical systems for its effective targeting to the brain is being explored recently. Liposomes and Nanoparticles are good possibilities to achieve the goal. Chemically modified liposomes and nanoparticles are tried in recen...

  13. Progress in brain targeting drug delivery system by nasal route.

    Science.gov (United States)

    Khan, Abdur Rauf; Liu, Mengrui; Khan, Muhammad Wasim; Zhai, Guangxi

    2017-09-06

    The blood-brain barrier (BBB) restricts the transport of potential therapeutic moieties to the brain. Direct targeting the brain via olfactory and trigeminal neural pathways by passing the BBB has gained an important consideration for delivery of wide range of therapeutics to brain. Intranasal route of transportation directly delivers the drugs to brain without systemic absorption, thus avoiding the side effects and enhancing the efficacy of neurotherapeutics. Over the last several decades, different drug delivery systems (DDSs) have been studied for targeting the brain by the nasal route. Novel DDSs such as nanoparticles (NPs), liposomes and polymeric micelles have gained potential as useful tools for targeting the brain without toxicity in nasal mucosa and central nervous system (CNS). Complex geometry of the nasal cavity presented a big challenge to effective delivery of drugs beyond the nasal valve. Recently, pharmaceutical firms utilized latest and emerging nasal drug delivery technologies to overcome these barriers. This review aims to describe the latest development of brain targeted DDSs via nasal administration. Carbopol 934p (PubChem CID: 6581) Carboxy methylcellulose (PubChem CID: 24748) Penetratin (PubChem CID: 101111470) Poly lactic-co-glycolic acid (PubChem CID: 23111554) Tween 80 (PubChem CID: 5284448). Copyright © 2017. Published by Elsevier B.V.

  14. Conjugation of functionalized SPIONs with transferrin for targeting and imaging brain glial tumors in rat model.

    Directory of Open Access Journals (Sweden)

    Weili Jiang

    Full Text Available Currently, effective and specific diagnostic imaging of brain glioma is a major challenge. Nanomedicine plays an essential role by delivering the contrast agent in a targeted manner to specific tumor cells, leading to improvement in accurate diagnosis by good visualization and specific demonstration of tumor cells. This study investigated the preparation and characterization of a targeted MR contrast agent, transferrin-conjugated superparamagnetic iron oxide nanoparticles (Tf-SPIONs, for brain glioma detection. MR imaging showed the obvious contrast change of brain glioma before and after administration of Tf-SPIONs in C6 glioma rat model in vivo on T2 weighted imaging. Significant contrast enhancement of brain glioma could still be clearly seen even 48 h post injection, due to the retention of Tf-SPIONs in cytoplasm of tumor cells which was proved by Prussian blue staining. Thus, these results suggest that Tf-SPIONs could be a potential targeting MR contrast agent for the brain glioma.

  15. SRC family kinases as novel therapeutic targets to treat breast cancer brain metastases.

    Science.gov (United States)

    Zhang, Siyuan; Huang, Wen-Chien; Zhang, Lin; Zhang, Chenyu; Lowery, Frank J; Ding, Zhaoxi; Guo, Hua; Wang, Hai; Huang, Suyun; Sahin, Aysegul A; Aldape, Kenneth D; Steeg, Patricia S; Yu, Dihua

    2013-09-15

    Despite better control of early-stage disease and improved overall survival of patients with breast cancer, the incidence of life-threatening brain metastases continues to increase in some of these patients. Unfortunately, other than palliative treatments there is no effective therapy for this condition. In this study, we reveal a critical role for Src activation in promoting brain metastasis in a preclinical model of breast cancer and we show how Src-targeting combinatorial regimens can treat HER2(+) brain metastases in this model. We found that Src was hyperactivated in brain-seeking breast cancer cells derived from human cell lines or from patients' brain metastases. Mechanistically, Src activation promoted tumor cell extravasation into the brain parenchyma via permeabilization of the blood-brain barrier. When combined with the EGFR/HER2 dual-targeting drug lapatinib, an Src-targeting combinatorial regimen prevented outgrowth of disseminated breast cancer cells through the induction of cell-cycle arrest. More importantly, this combinatorial regimen inhibited the outgrowth of established experimental brain metastases, prolonging the survival of metastases-bearing mice. Our results provide a rationale for clinical evaluation of Src-targeting regimens to treat patients with breast cancer suffering from brain metastasis. ©2013 AACR.

  16. The Rationale for Targeted Therapies and Stereotactic Radiosurgery in the Treatment of Brain Metastases

    Science.gov (United States)

    Moraes, Fabio Ynoe; Taunk, Neil K.; Marta, Gustavo Nader; Suh, John H.

    2016-01-01

    Brain metastases are the most common intracranial malignancy. Many approaches, including radiation therapy, surgery, and cytotoxic chemotherapy, have been used to treat patients with brain metastases depending on the patient’s disease burden and symptoms. However, stereotactic surgery (SRS) has revolutionized local treatment of brain metastases. Likewise, targeted therapies, including small-molecule inhibitors and monoclonal antibodies that target cancer cell metabolism or angiogenesis, have transformed managing systemic disease. Prospective data on combining these treatments for synergistic effect are limited, but early data show favorable safety and efficacy profiles. The combination of SRS and targeted therapy will further individualize treatment, potentially obviating the need for cytotoxic chemotherapy or whole-brain radiation. There is a great need to pursue research into these exciting modalities and novel combinations to further improve the treatment of patients with brain metastases. This article discusses reported and ongoing clinical trials assessing the safety and efficacy of targeted therapy during SRS. Implications for Practice: Treatment of patients with brain metastases requires a multidisciplinary approach. Stereotactic radiosurgery is increasingly used in the upfront setting to treat new brain metastasis. Targeted therapies have revolutionized systemic treatment of many malignancies and may sometimes be used as initial treatment in metastatic patients. There is sparse literature regarding safety and efficacy of combining these two treatment modalities. This article summarizes the supporting literature and highlights ongoing clinical trials in combining radiosurgery with targeted therapy. PMID:26764249

  17. Informing pedagogy through the brain-targeted teaching model.

    Science.gov (United States)

    Hardiman, Mariale

    2012-01-01

    Improving teaching to foster creative thinking and problem-solving for students of all ages will require two essential changes in current educational practice. First, to allow more time for deeper engagement with material, it is critical to reduce the vast number of topics often required in many courses. Second, and perhaps more challenging, is the alignment of pedagogy with recent research on cognition and learning. With a growing focus on the use of research to inform teaching practices, educators need a pedagogical framework that helps them interpret and apply research findings. This article describes the Brain-Targeted Teaching Model, a scheme that relates six distinct aspects of instruction to research from the neuro- and cognitive sciences.

  18. Targeted Therapies for Brain Metastases from Breast Cancer

    Directory of Open Access Journals (Sweden)

    Vyshak Alva Venur

    2016-09-01

    Full Text Available The discovery of various driver pathways and targeted small molecule agents/antibodies have revolutionized the management of metastatic breast cancer. Currently, the major targets of clinical utility in breast cancer include the human epidermal growth factor receptor 2 (HER2 and epidermal growth factor receptor (EGFR, vascular endothelial growth factor (VEGF receptor, mechanistic target of rapamycin (mTOR pathway, and the cyclin-dependent kinase 4/6 (CDK-4/6 pathway. Brain metastasis, however, remains a thorn in the flesh, leading to morbidity, neuro-cognitive decline, and interruptions in the management of systemic disease. Approximately 20%–30% of patients with metastatic breast cancer develop brain metastases. Surgery, whole brain radiation therapy, and stereotactic radiosurgery are the traditional treatment options for patients with brain metastases. The therapeutic paradigm is changing due to better understanding of the blood brain barrier and the advent of tyrosine kinase inhibitors and monoclonal antibodies. Several of these agents are in clinical practice and several others are in early stage clinical trials. In this article, we will review the common targetable pathways in the management of breast cancer patients with brain metastases, and the current state of the clinical development of drugs against these pathways.

  19. Targeted Therapies for Brain Metastases from Breast Cancer.

    Science.gov (United States)

    Venur, Vyshak Alva; Leone, José Pablo

    2016-09-13

    The discovery of various driver pathways and targeted small molecule agents/antibodies have revolutionized the management of metastatic breast cancer. Currently, the major targets of clinical utility in breast cancer include the human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF) receptor, mechanistic target of rapamycin (mTOR) pathway, and the cyclin-dependent kinase 4/6 (CDK-4/6) pathway. Brain metastasis, however, remains a thorn in the flesh, leading to morbidity, neuro-cognitive decline, and interruptions in the management of systemic disease. Approximately 20%-30% of patients with metastatic breast cancer develop brain metastases. Surgery, whole brain radiation therapy, and stereotactic radiosurgery are the traditional treatment options for patients with brain metastases. The therapeutic paradigm is changing due to better understanding of the blood brain barrier and the advent of tyrosine kinase inhibitors and monoclonal antibodies. Several of these agents are in clinical practice and several others are in early stage clinical trials. In this article, we will review the common targetable pathways in the management of breast cancer patients with brain metastases, and the current state of the clinical development of drugs against these pathways.

  20. Development of risperidone liposomes for brain targeting through intranasal route.

    Science.gov (United States)

    Narayan, Reema; Singh, Mohan; Ranjan, OmPrakash; Nayak, Yogendra; Garg, Sanjay; Shavi, Gopal V; Nayak, Usha Y

    2016-10-15

    The present paper is aimed at development of functionalized risperidone liposomes for brain targeting through nasal route for effective therapeutic management of schizophrenia. The risperidone liposomes were prepared by thin film hydration method. Various parameters such as lipid ratio and lipid to drug ratio were optimized by using Design-Expert(®) Software to obtain high entrapment with minimum vesicle size. The surface of the optimized liposomes was modified by coating stearylamine and MPEG-DSPE for enhanced penetration to the brain. The formulations were evaluated for vesicle size, zeta potential, and entrapment efficiency. The morphology was studied by Transmission Electron Microscopy (TEM). In vivo efficacy was assessed by performing pharmacokinetic study in Wistar albino rats following intranasal administration of the formulations in comparison to intravenous bolus administration of pure drug. The mean vesicle size of optimized liposomes ranged from 90 to 100nm with low polydispersity index (risperidone into the brain than plasma. High brain targeting efficiency index for LP-16 indicating preferential transport of the drug to brain. The study demonstrated successful formulation of surface modified risperidone liposomes for nasal delivery with brain targeting potential. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Genetic Characterization of Brain Metastases in the Era of Targeted Therapy

    Directory of Open Access Journals (Sweden)

    Catherine H. Han

    2017-09-01

    Full Text Available In the current era of molecularly targeted therapies and precision medicine, choice of cancer treatment has been increasingly tailored according to the molecular or genomic characterization of the cancer the individual has. Previously, the clinical observation of inadequate control of brain metastases was widely attributed to a lack of central nervous system (CNS penetration of the anticancer drugs. However, more recent data have suggested that there are genetic explanations for such observations. Genomic analyses of brain metastases and matching primary tumor and other extracranial metastases have revealed that brain metastases can harbor potentially actionable driver mutations that are unique to them. Identification of genomic alterations specific to brain metastases and targeted therapies against these mutations represent an important research area to potentially improve survival outcomes for patients who develop brain metastases. Novel approaches in genomic testing such as that using cell-free circulating tumor DNA (ctDNA in the cerebrospinal fluid (CSF facilitate advancing our understanding of the genomics of brain metastases, which is critical for precision medicine. CSF-derived ctDNA sequencing may be particularly useful in patients who are unfit for surgical resection or have multiple brain metastases, which can harbor mutations that are distinct from their primary tumors. Compared to the traditional chemotherapeutics, novel targeted agents appear to be more effective in controlling the CNS disease with better safety profiles. Several brain metastases-dedicated trials of various targeted therapies are currently underway to address the role of these agents in the treatment of CNS disease. This review focuses on recent advances in genomic profiling of brain metastases and current knowledge of targeted therapies in the management of brain metastases from cancers of the breast, lung, colorectum, kidneys, and ovaries as well as melanoma.

  2. Impacts of Blood-Brain Barrier in Drug Delivery and Targeting of Brain Tumors

    Directory of Open Access Journals (Sweden)

    Yadollah Omidi

    2012-02-01

    Full Text Available Introduction: Entry of blood circulating agents into the brain is highly selectively controlled by specific transport machineries at the blood brain barrier (BBB, whose excellent barrier restrictiveness make brain drug delivery and targeting very challenging. Methods: Essential information on BBB cellular microenvironment were reviewed and discussed towards impacts of BBB on brain drug delivery and targeting. Results: Brain capillary endothelial cells (BCECs form unique biological structure and architecture in association with astrocytes and pericytes, in which microenvironment the BCECs express restrictive tight junctional complexes that block the paracellular inward/outward traverse of biomolecules/compounds. These cells selectively/specifically control the transportation process through carrier and/or receptor mediated transport machineries that can also be exploited for the delivery of pharmaceuticals into the brain. Intelligent molecular therapies should be designed using such transport machineries for the efficient delivery of designated drugs into the brain. For better clinical outcomes, these smart pharmaceuticals should be engineered as seamless nanosystems to provide simultaneous imaging and therapy (multimodal theranostics. Conclusion: The exceptional functional presence of BBB selectively controls inward and outward transportation mechanisms, thus advanced smart multifunctional nanomedicines are needed for the effective brain drug delivery and targeting. Fully understanding the biofunctions of BBB appears to be a central step for engineering of intelligent seamless therapeutics consisting of homing device for targeting, imaging moiety for detecting, and stimuli responsive device for on-demand liberation of therapeutic agent.

  3. Improving pharmacological targeting of AKT in melanoma.

    Science.gov (United States)

    Kuzu, Omer F; Gowda, Raghavendra; Sharma, Arati; Noory, Mohammad A; Dinavahi, Saketh S; Kardos, Gregory; Drabick, Joseph J; Robertson, Gavin P

    2017-09-28

    Targeting AKT with pharmacological agents inhibiting this protein in the melanoma clinic is ineffective. This is a major contradiction considering the substantial preclinical data suggesting AKT as an effective target. Various approaches have been undertaken to unravel this contradiction and drug combinations sought that could resolve this concern. We have shown that genetic targeting AKT3 or WEE1 can be effective for inhibiting tumor growth in preclinical animal models. However, no one has examined whether combining pharmacological agents targeting each of these enzymes could be more effective than inhibiting each alone and enhance the efficacy of targeting AKT in melanoma. This report shows that combining the AKT inhibitors (AZD5363 or MK1775) with the WEE1 inhibitor, AZD5363, can synergistically kill cultured melanoma cells and decrease melanoma tumor growth by greater than 90%. Co-targeting AKT and WEE1 led to enhanced deregulation of the cell cycle and DNA damage repair pathways by modulating the transcription factors p53 and FOXM1, as well as the proteins whose expression is regulated by these two proteins. Thus, this study identifies a unique combination of pharmacological agents and the ratio needed for efficacy that could be used to potentially improve the therapeutic effectiveness of targeting AKT in the clinic. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Modeling and Targeting MYC Genes in Childhood Brain Tumors.

    Science.gov (United States)

    Hutter, Sonja; Bolin, Sara; Weishaupt, Holger; Swartling, Fredrik J

    2017-03-23

    Brain tumors are the second most common group of childhood cancers, accounting for about 20%-25% of all pediatric tumors. Deregulated expression of the MYC family of transcription factors, particularly c-MYC and MYCN genes, has been found in many of these neoplasms, and their expression levels are often correlated with poor prognosis. Elevated c-MYC/MYCN initiates and drives tumorigenesis in many in vivo model systems of pediatric brain tumors. Therefore, inhibition of their oncogenic function is an attractive therapeutic target. In this review, we explore the roles of MYC oncoproteins and their molecular targets during the formation, maintenance, and recurrence of childhood brain tumors. We also briefly summarize recent progress in the development of therapeutic approaches for pharmacological inhibition of MYC activity in these tumors.

  5. Metabolic connectomics targeting brain pathology in dementia with Lewy bodies.

    Science.gov (United States)

    Caminiti, Silvia P; Tettamanti, Marco; Sala, Arianna; Presotto, Luca; Iannaccone, Sandro; Cappa, Stefano F; Magnani, Giuseppe; Perani, Daniela

    2017-04-01

    Dementia with Lewy bodies is characterized by α-synuclein accumulation and degeneration of dopaminergic and cholinergic pathways. To gain an overview of brain systems affected by neurodegeneration, we characterized the [18F]FDG-PET metabolic connectivity in 42 dementia with Lewy bodies patients, as compared to 42 healthy controls, using sparse inverse covariance estimation method and graph theory. We performed whole-brain and anatomically driven analyses, targeting cholinergic and dopaminergic pathways, and the α-synuclein spreading. The first revealed substantial alterations in connectivity indexes, brain modularity, and hubs configuration. Namely, decreases in local metabolic connectivity within occipital cortex, thalamus, and cerebellum, and increases within frontal, temporal, parietal, and basal ganglia regions. There were also long-range disconnections among these brain regions, all supporting a disruption of the functional hierarchy characterizing the normal brain. The anatomically driven analysis revealed alterations within brain structures early affected by α-synuclein pathology, supporting Braak's early pathological staging in dementia with Lewy bodies. The dopaminergic striato-cortical pathway was severely affected, as well as the cholinergic networks, with an extensive decrease in connectivity in Ch1-Ch2, Ch5-Ch6 networks, and the lateral Ch4 capsular network significantly towards the occipital cortex. These altered patterns of metabolic connectivity unveil a new in vivo scenario for dementia with Lewy bodies underlying pathology in terms of changes in whole-brain metabolic connectivity, spreading of α-synuclein, and neurotransmission impairment.

  6. Targeting energy metabolism in brain cancer: review and hypothesis

    Directory of Open Access Journals (Sweden)

    Mukherjee Purna

    2005-10-01

    Full Text Available Abstract Malignant brain tumors are a significant health problem in children and adults and are often unmanageable. As a metabolic disorder involving the dysregulation of glycolysis and respiration, malignant brain cancer is potentially manageable through changes in metabolic environment. A radically different approach to brain cancer management is proposed that combines metabolic control analysis with the evolutionarily conserved capacity of normal cells to survive extreme shifts in physiological environment. In contrast to malignant brain tumors that are largely dependent on glycolysis for energy, normal neurons and glia readily transition to ketone bodies (β-hydroxybutyrate for energy in vivo when glucose levels are reduced. The bioenergetic transition from glucose to ketone bodies metabolically targets brain tumors through integrated anti-inflammatory, anti-angiogenic, and pro-apoptotic mechanisms. The approach focuses more on the genomic flexibility of normal cells than on the genomic defects of tumor cells and is supported from recent studies in orthotopic mouse brain tumor models and in human pediatric astrocytoma treated with dietary energy restriction and the ketogenic diet.

  7. Computational Modeling and Neuroimaging Techniques for Targeting during Deep Brain Stimulation

    Science.gov (United States)

    Sweet, Jennifer A.; Pace, Jonathan; Girgis, Fady; Miller, Jonathan P.

    2016-01-01

    Accurate surgical localization of the varied targets for deep brain stimulation (DBS) is a process undergoing constant evolution, with increasingly sophisticated techniques to allow for highly precise targeting. However, despite the fastidious placement of electrodes into specific structures within the brain, there is increasing evidence to suggest that the clinical effects of DBS are likely due to the activation of widespread neuronal networks directly and indirectly influenced by the stimulation of a given target. Selective activation of these complex and inter-connected pathways may further improve the outcomes of currently treated diseases by targeting specific fiber tracts responsible for a particular symptom in a patient-specific manner. Moreover, the delivery of such focused stimulation may aid in the discovery of new targets for electrical stimulation to treat additional neurological, psychiatric, and even cognitive disorders. As such, advancements in surgical targeting, computational modeling, engineering designs, and neuroimaging techniques play a critical role in this process. This article reviews the progress of these applications, discussing the importance of target localization for DBS, and the role of computational modeling and novel neuroimaging in improving our understanding of the pathophysiology of diseases, and thus paving the way for improved selective target localization using DBS. PMID:27445709

  8. RGD-TPGS decorated theranostic liposomes for brain targeted delivery.

    Science.gov (United States)

    Sonali; Singh, Rahul Pratap; Sharma, Gunjan; Kumari, Lakshmi; Koch, Biplob; Singh, Sanjay; Bharti, Shreekant; Rajinikanth, Paruvathanahalli Siddalingam; Pandey, Bajarangprasad L; Muthu, Madaswamy S

    2016-11-01

    The aim of this work was to formulate RGD-TPGS decorated theranostic liposomes, which contain both docetaxel (DTX) and quantum dots (QDs) for brain cancer imaging and therapy. RGD conjugated TPGS (RGD-TPGS) was synthesized and conjugation was confirmed by Fourier transform infrared (FTIR) spectroscopy and electrospray ionisation (ESI) mass spectroscopy (ESI-MS). The theranostic liposomes were prepared by the solvent injection method and characterized for their particle size, polydispersity, zeta-potential, surface morphology, drug encapsulation efficiency, and in-vitro release study. Biocompatibility and safety of theranostic liposomes were studied by reactive oxygen species (ROS) generation study and histopathology of brain. In-vivo study was performed for determination of brain theranostic effects in comparison with marketed formulation (Docel™) and free QDs. The particle sizes of the non-targeted and targeted theranostic liposomes were found in between 100 and 200nm. About 70% of drug encapsulation efficiency was achieved with liposomes. The drug release from RGD-TPGS decorated liposomes was sustained for more than 72h with 80% of drug release. The in-vivo results demonstrated that RGD-TPGS decorated theranostic liposomes were 6.47- and 6.98-fold more effective than Docel™ after 2h and 4h treatments, respectively. Further, RGD-TPGS decorated theranostic liposomes has reduced ROS generation effectively, and did not show any signs of brain damage or edema in brain histopathology. The results of this study have indicated that RGD-TPGS decorated theranostic liposomes are promising carrier for brain theranostics. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies.

    Science.gov (United States)

    Mangraviti, Antonella; Gullotti, David; Tyler, Betty; Brem, Henry

    2016-10-28

    Despite recent technological advancements and promising preclinical experiments, brain tumor patients are still met with limited treatment options. Some of the barriers to clinical improvements include the systemic toxicity of cytotoxic compounds, the impedance of the blood brain barrier (BBB), and the lack of therapeutic agents that can selectively target the intracranial tumor environment. To overcome such barriers, a number of chemotherapeutic agents and nucleic acid-based therapies are rapidly being synthesized and tested as new brain tumor-targeted delivery strategies. Novel carriers include liposomal and polymeric nanoparticles, wafers, microchips, microparticle-based nanoplatforms and cells-based vectors. Strong preclinical results suggest that these nanotechnologies are set to transform the therapeutic paradigm for brain tumor treatment. In addition to new tumoricidal agents, parallel work is also being conducted on the BBB front. Preclinical testing of chemical and physical modulation strategies is yielding improved intracranial concentrations. New diagnostic and therapeutic imaging techniques, such as high-intensity focused ultrasound and MRI-guided focused ultrasound, are being used to modulate the BBB in a more precise and non-invasive manner. This review details some of the tremendous advances that are being explored in current brain tumor targeted therapies, including local implant development, nanobiotechnology-based delivery strategies, and techniques of BBB manipulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Targeting Neuronal Networks with Combined Drug and Stimulation Paradigms Guided by Neuroimaging to Treat Brain Disorders.

    Science.gov (United States)

    Faingold, Carl L; Blumenfeld, Hal

    2015-10-01

    Improved therapy of brain disorders can be achieved by focusing on neuronal networks, utilizing combined pharmacological and stimulation paradigms guided by neuroimaging. Neuronal networks that mediate normal brain functions, such as hearing, interact with other networks, which is important but commonly neglected. Network interaction changes often underlie brain disorders, including epilepsy. "Conditional multireceptive" (CMR) brain areas (e.g., brainstem reticular formation and amygdala) are critical in mediating neuroplastic changes that facilitate network interactions. CMR neurons receive multiple inputs but exhibit extensive response variability due to milieu and behavioral state changes and are exquisitely sensitive to agents that increase or inhibit GABA-mediated inhibition. Enhanced CMR neuronal responsiveness leads to expression of emergent properties--nonlinear events--resulting from network self-organization. Determining brain disorder mechanisms requires animals that model behaviors and neuroanatomical substrates of human disorders identified by neuroimaging. However, not all sites activated during network operation are requisite for that operation. Other active sites are ancillary, because their blockade does not alter network function. Requisite network sites exhibit emergent properties that are critical targets for pharmacological and stimulation therapies. Improved treatment of brain disorders should involve combined pharmacological and stimulation therapies, guided by neuroimaging, to correct network malfunctions by targeting specific network neurons. © The Author(s) 2015.

  11. Developing a targeted, theory-informed implementation intervention using two theoretical frameworks to address health professional and organisational factors: a case study to improve the management of mild traumatic brain injury in the emergency department.

    Science.gov (United States)

    Tavender, Emma J; Bosch, Marije; Gruen, Russell L; Green, Sally E; Michie, Susan; Brennan, Sue E; Francis, Jill J; Ponsford, Jennie L; Knott, Jonathan C; Meares, Sue; Smyth, Tracy; O'Connor, Denise A

    2015-05-25

    Despite the availability of evidence-based guidelines for the management of mild traumatic brain injury in the emergency department (ED), variations in practice exist. Interventions designed to implement recommended behaviours can reduce this variation. Using theory to inform intervention development is advocated; however, there is no consensus on how to select or apply theory. Integrative theoretical frameworks, based on syntheses of theories and theoretical constructs relevant to implementation, have the potential to assist in the intervention development process. This paper describes the process of applying two theoretical frameworks to investigate the factors influencing recommended behaviours and the choice of behaviour change techniques and modes of delivery for an implementation intervention. A stepped approach was followed: (i) identification of locally applicable and actionable evidence-based recommendations as targets for change, (ii) selection and use of two theoretical frameworks for identifying barriers to and enablers of change (Theoretical Domains Framework and Model of Diffusion of Innovations in Service Organisations) and (iii) identification and operationalisation of intervention components (behaviour change techniques and modes of delivery) to address the barriers and enhance the enablers, informed by theory, evidence and feasibility/acceptability considerations. We illustrate this process in relation to one recommendation, prospective assessment of post-traumatic amnesia (PTA) by ED staff using a validated tool. Four recommendations for managing mild traumatic brain injury were targeted with the intervention. The intervention targeting the PTA recommendation consisted of 14 behaviour change techniques and addressed 6 theoretical domains and 5 organisational domains. The mode of delivery was informed by six Cochrane reviews. It was delivered via five intervention components : (i) local stakeholder meetings, (ii) identification of local opinion

  12. Deep brain stimulation in Huntington's disease: assessment of potential targets.

    Science.gov (United States)

    Sharma, Mayur; Deogaonkar, Milind

    2015-05-01

    Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder that has very few effective therapeutic interventions. Since the disease has a defined neural circuitry abnormality, neuromodulation could be an option. Case reports, original research, and animal model studies were selected from the databases of Medline and PubMed. All related studies published up to July 2014 were included in this review. The following search terms were used: "Deep brain stimulation," "DBS," "thalamotomy," "pallidal stimulation," and "Huntington's Disease," "HD," "chorea," or "hyperkinetic movement disorders." This review examines potential nodes in the HD circuitry that could be modulated using deep brain stimulation (DBS) therapy. With rapid evolution of imaging and ability to reach difficult targets in the brain with refined DBS technology, some phenotypes of HD could potentially be treated with DBS in the near future. Further clinical studies are warranted to validate the efficacy of neuromodulation and to determine the most optimal target for HD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. In vivo modeling and molecular characterization: a path towards targeted therapy of melanoma brain metastasis

    Directory of Open Access Journals (Sweden)

    Avital eGaziel-Sovran

    2013-05-01

    Full Text Available Brain metastasis from melanoma remains mostly incurable and the main cause of death from the disease. Early stage clinical trials and case studies show some promise for targeted therapies in the treatment of melanoma brain metastasis. However, the progression-free survival for currently available therapies, although significantly improved, is still very short. The development of new potent agents to eradicate melanoma brain metastasis relies on the elucidation of the molecular mechanisms that drive melanoma cells to reach and colonize the brain. The discovery of such mechanisms depends heavily on pre-clinical models that enable the testing of candidate factors and therapeutic agents in vivo. In this review we summarize the effects of available targeted therapies on melanoma brain metastasis in the clinic. We provide an overview of existing pre-clinical models to study the disease and discuss specific molecules and mechanisms reported to modulate different aspects of melanoma brain metastasis and finally, by integrating both clinical and basic data, we summarize both opportunities and challenges currently presented to researchers in the field.

  14. Vocal Tremor: Novel Therapeutic Target for Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Vinod K. Ravikumar

    2016-10-01

    Full Text Available Tremulous voice is characteristically associated with essential tremor, and is referred to as essential vocal tremor (EVT. Current estimates suggest that up to 40% of individuals diagnosed with essential tremor also present with EVT, which is associated with an impaired quality of life. Traditional EVT treatments have demonstrated limited success in long-term management of symptoms. However, voice tremor has been noted to decrease in patients receiving deep brain stimulation (DBS with the targeting of thalamic nuclei. In this study, we describe our multidisciplinary procedure for awake, frameless DBS with optimal stimulation targets as well as acoustic analysis and laryngoscopic assessment to quantify tremor reduction. Finally, we investigate the most recent clinical evidence regarding the procedure.

  15. Improved Targeting of Cancers with Nanotherapeutics

    DEFF Research Database (Denmark)

    Foster, Christian; Watson, Andre; Kaplinsky, Joseph John

    2017-01-01

    Targeted cancer nanotherapeutics offers numerous opportunities for the selective uptake of toxic chemotherapies within tumors and cancer cells. The unique properties of nanoparticles, such as their small size, large surface-to-volume ratios, and the ability to achieve multivalency of targeting...... ligands on their surface, provide superior advantages for nanoparticle-based drug delivery to a variety of cancers. This review highlights various key concepts in the design of targeted nanotherapeutics for cancer therapy, and discusses physicochemical parameters affecting nanoparticle targeting, along...... with recent developments for cancer-targeted nanomedicines....

  16. Therapies targeting lipid peroxidation in traumatic brain injury.

    Science.gov (United States)

    Anthonymuthu, Tamil Selvan; Kenny, Elizabeth Megan; Bayır, Hülya

    2016-06-01

    Lipid peroxidation can be broadly defined as the process of inserting a hydroperoxy group into a lipid. Polyunsaturated fatty acids present in the phospholipids are often the targets for peroxidation. Phospholipids are indispensable for normal structure of membranes. The other important function of phospholipids stems from their role as a source of lipid mediators - oxygenated free fatty acids that are derived from lipid peroxidation. In the CNS, excessive accumulation of either oxidized phospholipids or oxygenated free fatty acids may be associated with damage occurring during acute brain injury and subsequent inflammatory responses. There is a growing body of evidence that lipid peroxidation occurs after severe traumatic brain injury in humans and correlates with the injury severity and mortality. Identification of the products and sources of lipid peroxidation and its enzymatic or non-enzymatic nature is essential for the design of mechanism-based therapies. Recent progress in mass spectrometry-based lipidomics/oxidative lipidomics offers remarkable opportunities for quantitative characterization of lipid peroxidation products, providing guidance for targeted development of specific therapeutic modalities. In this review, we critically evaluate previous attempts to use non-specific antioxidants as neuroprotectors and emphasize new approaches based on recent breakthroughs in understanding of enzymatic mechanisms of lipid peroxidation associated with specific death pathways, particularly apoptosis. We also emphasize the role of different phospholipases (calcium-dependent and -independent) in hydrolysis of peroxidized phospholipids and generation of pro- and anti-inflammatory lipid mediators. This article is part of a Special Issue entitled SI:Brain injury and recovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Targeting DNA-PKcs and telomerase in brain tumour cells.

    Science.gov (United States)

    Gurung, Resham Lal; Lim, Hui Kheng; Venkatesan, Shriram; Lee, Phoebe Su Wen; Hande, M Prakash

    2014-10-13

    Patients suffering from brain tumours such as glioblastoma and medulloblastoma have poor prognosis with a median survival of less than a year. Identifying alternative molecular targets would enable us to develop different therapeutic strategies for better management of these tumours. Glioblastoma (MO59K and KNS60) and medulloblastoma cells (ONS76) were used in this study. Telomerase inhibitory effects of MST-312, a chemically modified-derivative of epigallocatechin gallate, in the cells were assessed using telomere repeat amplification protocol. Gene expression analysis following MST-312 treatment was done by microarray. Telomere length was measured by telomere restriction fragments analysis. Effects of MST-312 on DNA integrity were evaluated by single cell gel electrophoresis, immunofluorescence assay and cytogenetic analysis. Phosphorylation status of DNA-PKcs was measured with immunoblotting and effects on cell proliferation were monitored with cell titre glow and trypan blue exclusion following dual inhibition. MST-312 showed strong binding affinity to DNA and displayed reversible telomerase inhibitory effects in brain tumour cells. In addition to the disruption of telomere length maintenance, MST-312 treatment decreased brain tumour cell viability, induced cell cycle arrest and double strand breaks (DSBs). DNA-PKcs activation was observed in telomerase-inhibited cells presumably as a response to DNA damage. Impaired DNA-PKcs in MO59J cells or in MO59K cells treated with DNA-PKcs inhibitor, NU7026, caused a delay in the repair of DSBs. In contrast, MST-312 did not induce DSBs in telomerase negative osteosarcoma cells (U2OS). Combined inhibition of DNA-PKcs and telomerase resulted in an increase in telomere signal-free chromosomal ends in brain tumour cells as well. Interestingly, continual exposure of brain tumour cells to telomerase inhibitor led to population of cells, which displayed resistance to telomerase inhibition-mediated cell arrest. DNA-PKcs ablation

  18. MicroRNAs as diagnostic markers and therapeutic targets for traumatic brain injury.

    Science.gov (United States)

    Martinez, Bridget; Peplow, Philip V

    2017-11-01

    Traumatic brain injury (TBI) is characterized by primary damage to the brain from the external mechanical force and by subsequent secondary injury due to various molecular and pathophysiological responses that eventually lead to neuronal cell death. Secondary brain injury events may occur minutes, hours, or even days after the trauma, and provide valuable therapeutic targets to prevent further neuronal degeneration. At the present time, there is no effective treatment for TBI due, in part, to the widespread impact of numerous complex secondary biochemical and pathophysiological events occurring at different time points following the initial injury. MicroRNAs control a range of physiological and pathological functions such as development, differentiation, apoptosis and metabolism, and may serve as potential targets for progress assessment and intervention against TBI to mitigate secondary damage to the brain. This has implications regarding improving the diagnostic accuracy of brain impairment and long-term outcomes as well as potential novel treatments. Recent human studies have identified specific microRNAs in serum/plasma (miR-425-p, -21, -93, -191 and -499) and cerebro-spinal fluid (CSF) (miR-328, -362-3p, -451, -486a) as possible indicators of the diagnosis, severity, and prognosis of TBI. Experimental animal studies have examined specific microRNAs as biomarkers and therapeutic targets for moderate and mild TBI (e.g., miR-21, miR-23b). MicroRNA profiling was altered by voluntary exercise. Differences in basal microRNA expression in the brain of adult and aged animals and alterations in response to TBI (e.g., miR-21) have also been reported. Further large-scale studies with TBI patients are needed to provide more information on the changes in microRNA profiles in different age groups (children, adults, and elderly).

  19. MicroRNAs as diagnostic markers and therapeutic targets for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Bridget Martinez

    2017-01-01

    Full Text Available Traumatic brain injury (TBI is characterized by primary damage to the brain from the external mechanical force and by subsequent secondary injury due to various molecular and pathophysiological responses that eventually lead to neuronal cell death. Secondary brain injury events may occur minutes, hours, or even days after the trauma, and provide valuable therapeutic targets to prevent further neuronal degeneration. At the present time, there is no effective treatment for TBI due, in part, to the widespread impact of numerous complex secondary biochemical and pathophysiological events occurring at different time points following the initial injury. MicroRNAs control a range of physiological and pathological functions such as development, differentiation, apoptosis and metabolism, and may serve as potential targets for progress assessment and intervention against TBI to mitigate secondary damage to the brain. This has implications regarding improving the diagnostic accuracy of brain impairment and long-term outcomes as well as potential novel treatments. Recent human studies have identified specific microRNAs in serum/plasma (miR-425-p, -21, -93, -191 and -499 and cerebro-spinal fluid (CSF (miR-328, -362-3p, -451, -486a as possible indicators of the diagnosis, severity, and prognosis of TBI. Experimental animal studies have examined specific microRNAs as biomarkers and therapeutic targets for moderate and mild TBI (e.g., miR-21, miR-23b. MicroRNA profiling was altered by voluntary exercise. Differences in basal microRNA expression in the brain of adult and aged animals and alterations in response to TBI (e.g., miR-21 have also been reported. Further large-scale studies with TBI patients are needed to provide more information on the changes in microRNA profiles in different age groups (children, adults, and elderly.

  20. UPA-sensitive ACPP-conjugated nanoparticles for multi-targeting therapy of brain glioma.

    Science.gov (United States)

    Zhang, Bo; Zhang, Yujie; Liao, Ziwei; Jiang, Ting; Zhao, Jingjing; Tuo, Yanyan; She, Xiaojian; Shen, Shun; Chen, Jun; Zhang, Qizhi; Jiang, Xinguo; Hu, Yu; Pang, Zhiqing

    2015-01-01

    Now it is well evidenced that tumor growth is a comprehensive result of multiple pathways, and glioma parenchyma cells and stroma cells are closely associated and mutually compensatory. Therefore, drug delivery strategies targeting both of them simultaneously might obtain more promising therapeutic benefits. In the present study, we developed a multi-targeting drug delivery system modified with uPA-activated cell-penetrating peptide (ACPP) for the treatment of brain glioma (ANP). In vitro experiments demonstrated nanoparticles (NP) decorated with cell-penetrating peptide (CPP) or ACPP could significantly improve nanoparticles uptake by C6 glioma cells and nanoparticles penetration into glioma spheroids as compared with traditional NP and thus enhanced the therapeutic effects of its payload when paclitaxel (PTX) was loaded. In vivo imaging experiment revealed that ANP accumulated more specifically in brain glioma site than NP decorated with or without CPP. Brain slides further showed that ACPP contributed to more nanoparticles accumulation in glioma site, and ANP could co-localize not only with glioma parenchyma cells, but also with stroma cells including neo-vascular cells and tumor associated macrophages. The pharmacodynamics results demonstrated ACPP could significantly improve the therapeutic benefits of nanoparticles by significantly prolonging the survival time of glioma bearing mice. In conclusion, the results suggested that nanoparticles modified with uPA-sensitive ACPP could reach multiple types of cells in glioma tissues and provide a novel strategy for glioma targeted therapy.

  1. The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk.

    Directory of Open Access Journals (Sweden)

    Denis N Silachev

    Full Text Available BACKGROUND: Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies. METHODOLOGY/PRINCIPAL FINDINGS: We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated

  2. Clinical science workshop: targeting the gut-liver-brain axis.

    Science.gov (United States)

    Patel, Vishal C; White, Helen; Støy, Sidsel; Bajaj, Jasmohan S; Shawcross, Debbie L

    2016-12-01

    A clinical science workshop was held at the ISHEN meeting in London on Friday 11th September 2014 with the aim of thrashing out how we might translate what we know about the central role of the gut-liver-brain axis into targets which we can use in the treatment of hepatic encephalopathy (HE). This review summarises the integral role that inter-organ ammonia metabolism plays in the pathogenesis of HE with specific discussion of the roles that the small and large intestine, liver, brain, kidney and muscle assume in ammonia and glutamine metabolism. Most recently, the salivary and gut microbiome have been shown to underpin the pathophysiological changes which culminate in HE and patients with advanced cirrhosis present with enteric dysbiosis with small bowel bacterial overgrowth and translocation of bacteria and their products across a leaky gut epithelial barrier. Resident macrophages within the liver are able to sense bacterial degradation products initiating a pro-inflammatory response within the hepatic parenchyma and release of cytokines such as tumour necrosis factor alpha (TNF-α) and interleukin-8 into the systemic circulation. The endotoxemia and systemic inflammatory response that are generated predispose both to the development of infection as well as the manifestation of covert and overt HE. Co-morbidities such as diabetes and insulin resistance, which commonly accompany cirrhosis, may promote slow gut transit, promote bacterial overgrowth and increase glutaminase activity and may need to be acknowledged in HE risk stratification assessments and therapeutic regimens. Therapies are discussed which target ammonia production, utilisation or excretion at an individual organ level, or which reduce systemic inflammation and endotoxemia which are known to exacerbate the cerebral effects of ammonia in HE. The ideal therapeutic strategy would be to use an agent that can reduce hyperammonemia and reduce systemic inflammation or perhaps to adopt a combination of

  3. Mannitol Improves Brain Tissue Oxygenation in a Model of Diffuse Traumatic Brain Injury.

    Science.gov (United States)

    Schilte, Clotilde; Bouzat, Pierre; Millet, Anne; Boucheix, Perrine; Pernet-Gallay, Karin; Lemasson, Benjamin; Barbier, Emmanuel L; Payen, Jean-François

    2015-10-01

    without evidence of brain ischemia. Our findings indicate that an antiedematous agent such as mannitol can improve brain tissue oxygenation, possibly by limiting astrocyte swelling and restoring capillary perfusion.

  4. Ultrasound effects on brain-targeting mannosylated liposomes: in vitro and blood–brain barrier transport investigations

    Directory of Open Access Journals (Sweden)

    Zidan AS

    2015-07-01

    Full Text Available Ahmed S Zidan,1,2 Hibah Aldawsari1 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt Abstract: Delivering drugs to intracerebral regions can be accomplished by improving the capacity of transport through blood–brain barrier. Using sertraline as model drug for brain targeting, the current study aimed at modifying its liposomal vesicles with mannopyranoside. Box-Behnken design was employed to statistically optimize the ultrasound parameters, namely ultrasound amplitude, time, and temperature, for maximum mannosylation capacity, sertraline entrapment, and surface charge while minimizing vesicular size. Moreover, in vitro blood–brain barrier transport model was established to assess the transendothelial capacity of the optimized mannosylated vesicles. Results showed a dependence of vesicular size, mannosylation capacity, and sertraline entrapment on cavitation and bubble implosion events that were related to ultrasound power amplitude, temperature. However, short ultrasound duration was required to achieve >90% mannosylation with nanosized vesicles (<200 nm of narrow size distribution. Optimized ultrasound parameters of 65°C, 27%, and 59 seconds for ultrasound temperature, amplitude, and time were elucidated to produce 81.1%, 46.6 nm, and 77.6% sertraline entrapment, vesicular size, and mannosylation capacity, respectively. Moreover, the transendothelial ability was significantly increased by 2.5-fold by mannosylation through binding with glucose transporters. Hence, mannosylated liposomes processed by ultrasound could be a promising approach for manufacturing and scale-up of brain-targeting liposomes. Keywords: CNS delivery, sizing, lipid based formulations, quality by design, sertraline hydrochloride

  5. Target Improves Efficiency in New Construction

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    Target Corporation partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to reduce annual energy consumption in new stores by at least 50% versus requirements set by ASHRAE/ANSI/IESNA Standard 90.1-20041 as part of DOE’s Commercial Building Partnership (CBP) program.

  6. Lean Manufacturing Principles Improving the Targeting Process

    Science.gov (United States)

    2012-06-08

    Parent headquarters (HQ) often do not know how to integrate new units into their targeting process, resulting in a waste of asset allocation and...called the CARVER Method, which stands for criticality, accessibility, recuperability , vulnerability, effect and recognizability. It’s in the special...is to eliminate waste . The Lean view of waste is “anything that adds to the time and cost of making a product, but does not add values from the

  7. Subthalamic nucleus deep brain stimulation improves deglutition in Parkinson's disease.

    Science.gov (United States)

    Ciucci, Michelle R; Barkmeier-Kraemer, Julie M; Sherman, Scott J

    2008-04-15

    Relatively little is known about the role of the basal ganglia in human deglutition. Deep brain stimulation (DBS) affords us a model for examining deglutition in humans with known impairment of the basal ganglia. The purpose of this study was to examine the effects of subthalamic nuclei (STN) DBS on the oral and pharyngeal stages of deglutition in individuals with Parkinson's Disease (PD). It was hypothesized that DBS would be associated with improved deglutition. Within participant, comparisons were made between DBS in the ON and OFF conditions using the dependent variables: pharyngeal transit time, maximal hyoid bone excursion, oral total composite score, and pharyngeal total composite score. Significant improvement occurred for the pharyngeal composite score and pharyngeal transit time in the DBS ON condition compared with DBS OFF. Stimulation of the STN may excite thalamocortical or brainstem targets to sufficiently overcome the bradykinesia/hypokinesia associated with PD and return some pharyngeal stage motor patterns to performance levels approximating those of "normal" deglutition. However, the degree of hyoid bone excursion and oral stage measures did not improve, suggesting that these motor acts may be under the control of different sensorimotor pathways within the basal ganglia. 2007 Movement Disorder Society

  8. Improving privacy protection in the area of behavioural targeting

    NARCIS (Netherlands)

    Zuiderveen Borgesius, F.J.

    2014-01-01

    This PhD thesis discusses how European law could improve privacy protection in the area of behavioural targeting. Behavioural targeting, also referred to as online profiling, involves monitoring people’s online behaviour, and using the collected information to show people individually targeted

  9. Does Targeted Training Improve Residents' Teaching Skills?

    Science.gov (United States)

    Polreis, Sean; D'Eon, Marcel F.; Premkumar, Kalyani; Trinder, Krista; Bonnycastle, Deirdre

    2015-01-01

    Resident doctors have an important and integral responsibility of teaching a number of individuals. The purpose of this study was to measure the effectiveness of the University of Saskatchewan's resident-as-teacher training course--Teaching Improvement Project Systems (TIPS). Residents who attended the TIPS course from January, 2010 through June,…

  10. Quetiapine Nanoemulsion for Intranasal Drug Delivery: Evaluation of Brain-Targeting Efficiency.

    Science.gov (United States)

    Boche, Mithila; Pokharkar, Varsha

    2017-04-01

    To evaluate the possibility of improved drug delivery of quetiapine fumarate (QTP), a nanoemulsion system was developed for intranasal delivery. Effects of different HLBs of Emalex LWIS 10, PEG 400 and Transcutol P, as co-surfactants, were studied on isotropic region of pseudoternary-phase diagrams of nanoemulsion system composed of capmul MCM (CPM) as oil phase, Tween 80 as surfactant and water. Phase behaviour, globule size, transmission electron microscope (TEM) photographs and brain-targeting efficiency of quetiapine nanoemulsion were investigated. In vitro dissolution study of optimised nanoemulsion formulation, with mean diameter 144 ± 0.5 nm, showed more than twofold increase in drug release as compared with pure drug. According to results of in vivo tissue distribution study in Wistar rats, intranasal administration of QTP-loaded nanoemulsion had shorter T max compared with that of intravenous administration. Higher drug transport efficiency (DTE%) and direct nose-to-brain drug transport (DTP%) was achieved by nanoemulsion. The nanoemulsion system may be a promising strategy for brain-targeted delivery of QTP.

  11. Could targeted food taxes improve health?

    Science.gov (United States)

    Mytton, Oliver; Gray, Alastair; Rayner, Mike; Rutter, Harry

    2007-08-01

    To examine the effects on nutrition, health and expenditure of extending value added tax (VAT) to a wider range of foods in the UK. A model based on consumption data and elasticity values was constructed to predict the effects of extending VAT to certain categories of food. The resulting changes in demand, expenditure, nutrition and health were estimated. Three different tax regimens were examined: (1) taxing the principal sources of dietary saturated fat; (2) taxing foods defined as unhealthy by the SSCg3d nutrient scoring system; and (3) taxing foods in order to obtain the best health outcome. Consumption patterns and elasticity data were taken from the National Food Survey of Great Britain. The health effects of changing salt and fat intake were from previous meta-analyses. (1) Taxing only the principal sources of dietary saturated fat is unlikely to reduce the incidence of cardiovascular disease because the reduction in saturated fat is offset by a rise in salt consumption. (2) Taxing unhealthy foods, defined by SSCg3d score, might avert around 2,300 deaths per annum, primarily by reducing salt intake. (3) Taxing a wider range of foods could avert up to 3,200 cardiovascular deaths in the UK per annum (a 1.7% reduction). Taxing foodstuffs can have unpredictable health effects if cross-elasticities of demand are ignored. A carefully targeted fat tax could produce modest but meaningful changes in food consumption and a reduction in cardiovascular disease.

  12. Brain targeted delivery of mucoadhesive thermosensitive nasal gel of selegiline hydrochloride for treatment of Parkinson's disease.

    Science.gov (United States)

    Sridhar, Vinay; Wairkar, Sarika; Gaud, Ram; Bajaj, Amrita; Meshram, Pramod

    2017-07-18

    Selegiline hydrochloride (SL), is an anti-Parkinson's agent, has low-oral bioavailability due to its high first pass metabolism and scarce oral absorption. In the present study, SL mucoadhesive nasal thermosensitive gel (SNT-gel) was prepared to enhance the bioavailability and subsequently, its concentration in the brain. The SNT-gel was prepared using Poloxamer 407-Chitosan combination and optimised formulation was further evaluated for physicochemical parameters. The comparative pharmacodynamic studies including behavioural studies, biochemical testing and histopathology of the brain was carried out in rats for SNT-gel, SL-nasal solution and SL Marketed Tablets. The optimised SNT-gel formulation (SNT-V) revealed sol-gel transition at 33-34°C. In-vitro diffusion study of SNT-V showed 102.37 ± 2.1% diffusion at 12 h which reduced to 89.64 ± 1.2% in Ex-vivo diffusion. Comparative results of behavioural studies indicated an improved score of photoactometer and reduced motor deficit (catalepsy score) in SNT-gel treatment group as compared with other groups. Similarly, a significant increase in brain dopamine, reduction in monoamine oxidase B level, increase in catalase activity and level of reduced glutathione upon treatment with SNT-gel indicated its effectiveness which was also supported by histopathology results. Therefore, nasal thermosensitive gel holds better potential for brain targeting in Parkinson's disease over the conventional nasal or oral formulations.

  13. Artificial Chemical Reporter Targeting Strategy Using Bioorthogonal Click Reaction for Improving Active-Targeting Efficiency of Tumor.

    Science.gov (United States)

    Yoon, Hong Yeol; Shin, Min Lee; Shim, Man Kyu; Lee, Sangmin; Na, Jin Hee; Koo, Heebeom; Lee, Hyukjin; Kim, Jong-Ho; Lee, Kuen Yong; Kim, Kwangmeyung; Kwon, Ick Chan

    2017-05-01

    Biological ligands such as aptamer, antibody, glucose, and peptide have been widely used to bind specific surface molecules or receptors in tumor cells or subcellular structures to improve tumor-targeting efficiency of nanoparticles. However, this active-targeting strategy has limitations for tumor targeting due to inter- and intraheterogeneity of tumors. In this study, we demonstrated an alternative active-targeting strategy using metabolic engineering and bioorthogonal click reaction to improve tumor-targeting efficiency of nanoparticles. We observed that azide-containing chemical reporters were successfully generated onto surface glycans of various tumor cells such as lung cancer (A549), brain cancer (U87), and breast cancer (BT-474, MDA-MB231, MCF-7) via metabolic engineering in vitro. In addition, we compared tumor targeting of artificial azide reporter with bicyclononyne (BCN)-conjugated glycol chitosan nanoparticles (BCN-CNPs) and integrin α v β 3 with cyclic RGD-conjugated CNPs (cRGD-CNPs) in vitro and in vivo. Fluorescence intensity of azide-reporter-targeted BCN-CNPs in tumor tissues was 1.6-fold higher and with a more uniform distribution compared to that of cRGD-CNPs. Moreover, even in the isolated heterogeneous U87 cells, BCN-CNPs could bind artificial azide reporters on tumor cells more uniformly (∼92.9%) compared to cRGD-CNPs. Therefore, the artificial azide-reporter-targeting strategy can be utilized for targeting heterogeneous tumor cells via bioorthogonal click reaction and may provide an alternative method of tumor targeting for further investigation in cancer therapy.

  14. Target definition by C11-methionine-PET for the radiotherapy of brain metastases.

    Science.gov (United States)

    Matsuo, Masayuki; Miwa, Kazuhiro; Shinoda, Jun; Kako, Nobuo; Nishibori, Hironori; Sakurai, Kouta; Yano, Hirohito; Iwama, Toru; Kanematsu, Masayuki

    2009-07-01

    To evaluate the ability of 11C-methionine positron emission tomography (MET-PET) to delineate target volumes for brain metastases and to investigate to what extent tumor growth is presented by magnetic resonance imaging (MRI) and MET-PET. Three observers undertook target definition in 19 patients with 95 brain metastases by MRI and MET-PET images. MRI gross target volume (GTV) (GTV-MRI) was defined as the contrast-enhanced area on gadolinium-enhanced T1-weighted MRI. MET-PET GTV (GTV-PET) was defined as the area of an accumulation of MET-PET apparently higher than that of normal tissue on MET-PET images. The size of occupation ratio was determined using the following equation: SOR (%) of MET are within x mm margin outside GTV-MRI = the volume of the GTV-PET within x mm outside the GTV-MRI/the volume of the GTV-PET. For GTV-MRI volumes of 0.5 mL, GTV-PET volumes were larger than GTV-MRI volumes and a significant correlation was found between these variables by linear regression. For all tumor sizes and tumor characteristics, a 2-mm margin outside the GTV-MRI significantly improved the coverage of the GTV-PET. Although there were some limitations in our study associated with spatial resolution, blurring effect, and image registrations with PET images, MET-PET was supposed to have a potential as a promising tool for the precise delineation of target volumes in radiotherapy planning for brain metastases.

  15. Brain-Targeted (Pro)Renin Receptor Knockdown attenuates Angiotensin II-Dependent Hypertension

    Science.gov (United States)

    Li, Wencheng; Peng, Hua; Cao, Theresa; Sato, Ryosuke; McDaniels, Sarah. J.; Kobori, Hiroyuki; Navar, L. Gabriel; Feng, Yumei

    2012-01-01

    The (pro)renin receptor is a newly discovered member of the brain renin-angiotensin system. To investigate the role of brain (pro)renin receptor in hypertension, adeno-associated virus-mediated (pro)renin receptor shRNA was used to knockdown (pro)renin receptor expression in the brain of non-transgenic normotensive and human renin-angiotensinogen double transgenic hypertensive mice. Blood pressure was monitored using implanted telemetric probes in conscious animals. Real-time PCR and immunostaining were performed to determine (pro)renin receptor, angiotensin II type 1 receptor and vasopressin mRNA levels. Plasma vasopressin levels were determined by Enzyme-Linked Immuno Sorbent Assay. Double transgenic mice exhibited higher blood pressure, elevated cardiac and vascular sympathetic tone, and impaired spontaneous baroreflex sensitivity. Intracerebroventricular delivery of (pro)renin receptor shRNA significantly reduced blood pressure, cardiac and vasomotor sympathetic tone, and improved baroreflex sensitivity compared to the control virus treatment in double transgenic mice. (Pro)renin receptor knockdown significantly reduced angiotensin II type 1 receptor and vasopressin levels in double transgenic mice. These data indicate that (pro)renin receptor knockdown in the brain attenuates angiotensin II-dependent hypertension and is associated with a decrease insympathetic tone and an improvement of the baroreflex sensitivity. In addition, brain-targeted (pro)renin receptor knockdown is associated with down-regulation of angiotensin II type 1 receptor and vasopressin levels. We conclude that central (pro)renin receptor contributes to the pathogenesis of hypertension in human renin-angiotensinogen transgenic mice. PMID:22526255

  16. Physicochemical characterization and in vivo bioluminescence imaging of nanostructured lipid carriers for targeting the brain: apomorphine as a model drug

    Science.gov (United States)

    Hsu, Shu-Hui; Wen, Chih-Jen; Al-Suwayeh, S. A.; Chang, Hui-Wen; Yen, Tzu-Chen; Fang, Jia-You

    2010-10-01

    Nanostructured lipid carriers (NLCs) were prepared to investigate whether the duration of brain targeting and accumulation of drugs in the brain can be improved by intravenous delivery. NLCs were developed using cetyl palmitate as the lipid matrix, squalene as the cationic surfactant, and Pluronic F68, polysorbate 80 and polyethylene glycol as the interfacial additives. Solid lipid nanoparticles (SLNs) and lipid emulsions (LEs) were also prepared for comparison. An anti-Parkinson's drug, apomorphine, was used as the model drug. Nuclear magnetic resonance and differential scanning calorimetry showed possible interactions between the solid and liquid lipids in the inner core. The lipid nanoparticles with different compositions were characterized by mean size, zeta potential, apomorphine encapsulation and in vitro drug release. NLCs were 370-430 nm in size, which was between the sizes of the SLNs and LEs. A cationic surfactant was used to produce a positive surface charge of 42-50 mV. The base form of apomorphine was successfully entrapped by NLCs with an entrapment percentage of > 60%. The loading of apomorphine in nanoparticles resulted in a slower release behavior compared to the aqueous solution, with LEs showing the lowest release. In vivo real-time bioluminescence imaging of the rat brain revealed that NLCs could be targeted, through certain vessels, to selected brain regions. This effect was further confirmed by imaging the entire brain and brain slices. The results indicated that NLCs with moderate additives are a promising controlled-release and drug-targeting system.

  17. Mutations targeting the coagulation pathway are enriched in brain metastases

    NARCIS (Netherlands)

    Richichi, C. (Cristina); Fornasari, L. (Lorenzo); Melloni, G.E.M. (Giorgio E. M.); Brescia, P. (Paola); Patanè, M. (Monica); Del Bene, M. (Massimiliano); D.A.M. Mustafa (Dana); J.M. Kros (Johan); Pollo, B. (Bianca); Pruneri, G. (Giancarlo); Sciandivasci, A. (Angela); Munzone, E. (Elisabetta); Dimeco, F. (Francesco); Pelicci, P.G. (Pier Giuseppe); Riva, L. (Laura); Pelicci, G. (Giuliana)

    2017-01-01

    textabstractBrain metastases (BMs) are the most common malignancy of the central nervous system. Recently it has been demonstrated that plasminogen activator inhibitor serpins promote brain metastatic colonization, suggesting that mutations in serpins or other members of the coagulation cascade can

  18. Genetic improvement of tomato by targeted control of fruit softening

    KAUST Repository

    Uluisik, Selman

    2016-07-25

    Controlling the rate of softening to extend shelf life was a key target for researchers engineering genetically modified (GM) tomatoes in the 1990s, but only modest improvements were achieved. Hybrids grown nowadays contain \\'non-ripening mutations\\' that slow ripening and improve shelf life, but adversely affect flavor and color. We report substantial, targeted control of tomato softening, without affecting other aspects of ripening, by silencing a gene encoding a pectate lyase. © 2016 Nature America, Inc. All rights reserved.

  19. Observation and modeling of deep brain stimulation electrode depth in the pallidal target of the developing brain.

    Science.gov (United States)

    Lumsden, Daniel E; Ashmore, Jonathan; Charles-Edwards, Geoffrey; Selway, Richard; Lin, Jean-Pierre; Ashkan, Keyoumars

    2015-04-01

    It is unclear how brain growth with age affects electrode position in relation to target for children undergoing deep brain stimulation surgery. We aimed to model projected change in the distance between the entry point of the electrode into the brain and target during growth to adulthood. Modeling was performed using a neurodevelopmental magnetic resonance imaging database of age-specific templates in 6-month increments from 4 to 18 years of age. Coordinates were chosen for a set of entry points into both cerebral hemispheres and target positions within the globus pallidus internus on the youngest magnetic resonance imaging template. The youngest template was nonlinearly registered to the older templates, and the transformations generated by these registrations were applied to the original coordinates of entry and target positions, mapping these positions with increasing age. Euclidean geometry was used to calculate the distance between projected electrode entry and target with increasing age. A projected increase in distance between entry point and target of 5-10 mm was found from age 4 to 18 years. Most change appeared to occur before 7 years of age, after which minimal change in distance was found. Electrodes inserted during deep brain stimulation surgery are tethered at the point of entry to the skull. Brain growth, which could result in a relative retraction with respect to the original target position, appears to occur before 7 years of age, suggesting careful monitoring is needed for children undergoing implantation before this age. Reengineering of electrode design could avoid reimplantation surgery in young children undergoing deep brain stimulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Development of novel bioadhesive granisetron hydrochloride spanlastic gel and insert for brain targeting and study their effects on rats.

    Science.gov (United States)

    Abdelmonem, Rehab; El Nabarawi, Mohamed; Attia, Alshaimaa

    2018-11-01

    The aim of this study was to formulate granisetron hydrochloride (GH) spanlastic in mucoadhesive gels and lyophilized inserts for intranasal administration to improve GH bioavailability and brain targeting. Carpapol 934 and HPMC were incorporated in GH spanlastic in nasal gels (GHSpNGs). Gelatin and HPMC as matrix former, glycine as a collapse protecting and mannitol as an insert filler and sweeting agent were used to prepare GH spanlastic loaded in lyophilized inserts (GHSpNIs). The prepared GHSpNGs were characterized for pH measurement, drug content, rheology, and in vitro drug release. The prepared GHSpNIs were characterized for drug content, surface pH, GH release, and mucoadhesion. Biological investigations including pharmacokinetics studies and brain drug targeting efficiency dimensions were performed on rats (LC-MS/MS). The results showed thixotropic pseudoplastic gels and white insert with pH values in a physiological range, drug content (89.9-98.6%), (82.4-98.38%) for gel and insert, respectively and rapid release rate of GH. Biological studies showed that C max and AUC 0-6 h in brain and plasma after intranasal administration of gel and insert were higher compared to IV administration of GH solution. A high brain targeting efficiency (199.3%, 230%) for gel and insert, respectively and a direct nose to brain transport (49.8%, 56.95%) for gel and insert, respectively confirmed that there is a direct nose to brain transport of GH following nasal administration of GH spanlastic loaded in nasal gel and insert. GHSpNIs can be considered as potential novel drug delivery system intended for brain targeting via the nasal rout of administration than GHSpNGs.

  1. Noninvasive brain stimulation improves language learning.

    Science.gov (United States)

    Flöel, Agnes; Rösser, Nina; Michka, Olesya; Knecht, Stefan; Breitenstein, Caterina

    2008-08-01

    Anodal transcranial direct current stimulation (tDCS) is a reliable technique to improve motor learning. We here wanted to test its potential to enhance associative verbal learning, a skill crucial for both acquiring new languages in healthy individuals and for language reacquisition after stroke-induced aphasia. We applied tDCS (20 min, 1 mA) over the posterior part of the left peri-sylvian area of 19 young right-handed individuals while subjects acquired a miniature lexicon of 30 novel object names. Every subject participated in one session of anodal tDCS, one session of cathodal tDCS, and one sham session in a randomized and double-blinded design with three parallel versions of the miniature lexicon. Outcome measures were learning speed and learning success at the end of each session, and the transfer to the subjects' native language after the respective stimulation. With anodal stimulation, subjects showed faster and better associative learning as compared to sham stimulation. Mood ratings, reaction times, and response styles were comparable between stimulation conditions. Our results demonstrate that anodal tDCS is a promising technique to enhance language learning in healthy adults and may also have the potential to improve language reacquisition after stroke.

  2. Functional electrical stimulation improves brain perfusion in cranial trauma patients

    Directory of Open Access Journals (Sweden)

    Bárbara Juarez Amorim

    2011-08-01

    Full Text Available OBJECTIVE: Demonstrate brain perfusion changes due to neuronal activation after functional electrical stimulation (FES. METHOD: It was studied 14 patients with hemiplegia who were submitted to a program with FES during fourteen weeks. Brain perfusion SPECT was performed before and after FES therapy. These patients were further separated into 2 groups according to the hemiplegia cause: cranial trauma and major vascular insults. All SPECT images were analyzed using SPM. RESULTS: There was a significant statistical difference between the two groups related to patient's ages and extent of hypoperfusion in the SPECT. Patients with cranial trauma had a reduction in the hypoperfused area and patients with major vascular insult had an increase in the hypoperfused area after FES therapy. CONCLUSION: FES therapy can result in brain perfusion improvement in patients with brain lesions due to cranial trauma but probably not in patients with major vascular insults with large infarct area.

  3. Novel application of brain-targeting polyphenol compounds in sleep deprivation-induced cognitive dysfunction.

    Science.gov (United States)

    Zhao, Wei; Wang, Jun; Bi, Weina; Ferruzzi, Mario; Yemul, Shrishailam; Freire, Daniel; Mazzola, Paolo; Ho, Lap; Dubner, Lauren; Pasinetti, Giulio Maria

    2015-10-01

    Sleep deprivation produces deficits in hippocampal synaptic plasticity and hippocampal-dependent memory storage. Recent evidence suggests that sleep deprivation disrupts memory consolidation through multiple mechanisms, including the down-regulation of the cAMP-response element-binding protein (CREB) and of mammalian target of rapamycin (mTOR) signaling. In this study, we tested the effects of a Bioactive Dietary Polyphenol Preparation (BDPP), comprised of grape seed polyphenol extract, Concord grape juice, and resveratrol, on the attenuation of sleep deprivation-induced cognitive impairment. We found that BDPP significantly improves sleep deprivation-induced contextual memory deficits, possibly through the activation of CREB and mTOR signaling pathways. We also identified brain-available polyphenol metabolites from BDPP, among which quercetin-3-O-glucuronide activates CREB signaling and malvidin-3-O-glucoside activates mTOR signaling. In combination, quercetin and malvidin-glucoside significantly attenuated sleep deprivation-induced cognitive impairment in -a mouse model of acute sleep deprivation. Our data suggests the feasibility of using select brain-targeting polyphenol compounds derived from BDPP as potential therapeutic agents in promoting resilience against sleep deprivation-induced cognitive dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging

    Science.gov (United States)

    Tomitaka, Asahi; Arami, Hamed; Gandhi, Sonu; Krishnan, Kannan M.

    2015-10-01

    Magnetic Particle Imaging (MPI) is a new real-time imaging modality, which promises high tracer mass sensitivity and spatial resolution directly generated from iron oxide nanoparticles. In this study, monodisperse iron oxide nanoparticles with median core diameters ranging from 14 to 26 nm were synthesized and their surface was conjugated with lactoferrin to convert them into brain glioma targeting agents. The conjugation was confirmed with the increase of the hydrodynamic diameters, change of zeta potential, and Bradford assay. Magnetic particle spectrometry (MPS), performed to evaluate the MPI performance of these nanoparticles, showed no change in signal after lactoferrin conjugation to nanoparticles for all core diameters, suggesting that the MPI signal is dominated by Néel relaxation and thus independent of hydrodynamic size difference or presence of coating molecules before and after conjugations. For this range of core sizes (14-26 nm), both MPS signal intensity and spatial resolution improved with increasing core diameter of nanoparticles. The lactoferrin conjugated iron oxide nanoparticles (Lf-IONPs) showed specific cellular internalization into C6 cells with a 5-fold increase in MPS signal compared to IONPs without lactoferrin, both after 24 h incubation. These results suggest that Lf-IONPs can be used as tracers for targeted brain glioma imaging using MPI.

  5. Design, synthesis and biological evaluation for docetaxel-loaded brain targeting liposome with "lock-in" function.

    Science.gov (United States)

    Li, Xiaocen; Qu, Boyi; Jin, Xiuxiu; Hai, Li; Wu, Yong

    2013-12-09

    Abstract Background: Glucose-modified liposome showed a good brain-targeting ability. However, bidirectional transport of glucose transporter-1 (GLUT1) might reversely pump drugs out of the brain before releasing from the liposomes. Purpose: To overcome the bidirectional delivery of GLUT1, the thiamine disulfide system (TDS), with ability of "lock-in", was introduced and a new ligand, L-TDS-G, was designed and synthesized. Methods: The liposome was prepared and characterized for particle size, zeta potential, surface morphological property, encapsulation efficiency and release profile. C6 glioma cells were used as an in vitro model to access the cellular uptake abilities and cytotoxicity of the liposomes. Competition assay was performed to validate the GLUT1-mediated transport mechanism. Furthermore, the brain targeting abilities of the liposomes were evaluated through in vivo. Results: The preliminary evaluation in vivo demonstrated that L-TDS-G-coated liposome has an improved targeting ability and significantly increased the area under the concentration-time of docetaxel in brain as compared to naked docetaxel, non-coated and L-G coated liposomes. The relative uptake efficiency and concentration efficiency were enhanced by 3.82- and 4.99-fold compared to that of naked docetaxel, respectively. Conclusion: The results of this study indicated that L-TDS-G-coated liposome is a promising drug delivery system to enhance the brain concentrations of chemotherapeutic agents.

  6. A Novel Delivery Method of Cyclovirobuxine D for Brain-Targeting: Chitosan Coated Nanoparticles Loading Cyclovirobuxine D by Intranasal Administration.

    Science.gov (United States)

    Wei, Hanmei; Lai, Sisi; Wei, Jiabao; Yang, Lei; Jiang, Ning; Wang, Qing; Yu, Yang

    2018-08-01

    The blood-brain barrier (BBB) restricts the delivery of most drugs to the brain. In our previous study, the feasibility of cyclovirobuxine D delivery to the brain by a non-invasive nasal route was evaluated. In this study, a suitable drug delivery system by way of intranasal administration was developed, which could improve brain targeting. First, a formulation of cyclovirobuxine D (CVB-D) based on chitosan nanoparticles (CS-CVB-D-NPs) was prepared by the modified ionotropic gelation method through single-factor screening experiment. The CS-CVB-D-NPs with a entrapment efficiency (EE) of (62.82±2.59)% were found to be of a narrow polydispersity index (PI) (0.19±0.01) and (235.37± 12.71) nm in size, with a zeta potential of (33.9 ± 1.7) mV. The NPs possessed a sustained release characterization with in vitro release of 88.03 ± 2.30% at 24 h. In vivo, the higher AUC0-t(brain) of CS-CVB-D-NPs by intranasal administration revealed the development of a novel brain-targeting delivery method of CVB-D.

  7. Deep brain stimulation of globus pallidus interna, subthalamic nucleus, and pedunculopontine nucleus for Parkinson's disease: which target?

    Science.gov (United States)

    Follett, Kenneth A; Torres-Russotto, Diego

    2012-01-01

    Deep brain stimulation (DBS) is an accepted therapy for people with Parkinson's disease (PD) motor symptoms that are refractory to pharmacologic therapy. Standard DBS targets are globus pallidus interna (GPi) and subthalamic nucleus (STN). The pedunculopontine nucleus (PPN) is being investigated as a novel target. Which target provides the best outcomes is unknown. The utility of GPi and STN as targets has been confirmed in numerous studies, including randomized comparisons of GPi DBS and STN DBS that demonstrated no difference in motor outcomes. DBS at either site improves appendicular motor symptoms, but beneficial effects on axial manifestations of PD such as postural instability or gait dysfunction (PIGD) are less apparent. PPN has been introduced as a DBS target due to failure of GPi and STN DBS to improve PIGD. Small observational studies indicate improved PIGD with PPN DBS, but small blinded trials show only subjective reduction in falls with no other impact on PIGD or other PD manifestations. No single DBS target is superior to the others. Each target offers relative advantages. Further studies are needed to better define the roles of each target, particularly PPN. Choice of target should be individualized according to providers' preferences and patients' needs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Targeting brain cells with glutathione-modulated nanoliposomes: in vitro and in vivo study

    Science.gov (United States)

    Salem, Heba F; Ahmed, Sayed M; Hassaballah, Ashraf E; Omar, Mahmoud M

    2015-01-01

    Background The blood–brain barrier prevents many drug moieties from reaching the central nervous system. Therefore, glutathione-modulated nanoliposomes have been engineered to enhance the targeting of flucytosine to the brain. Methods Glutathione-modulated nanoliposomes were prepared by thin-film hydration technique and evaluated in the primary brain cells of rats. Lecithin, cholesterol, and span 65 were mixed at 1:1:1 molar ratio. The molar percentage of PEGylated glutathione varied from 0 mol% to 0.75 mol%. The cellular binding and the uptake of the targeted liposomes were both monitored by epifluorescent microscope and flow cytometry techniques. A biodistribution and a pharmacokinetic study of flucytosine and flucytosine-loaded glutathione–modulated liposomes was carried out to evaluate the in vivo brain-targeting efficiency. Results The size of glutathione-modulated nanoliposomes was glutathione increased to reach the maximum at 0.75 mol%. The uptake of the targeted liposomes by brain cells of the rats was three times greater than that of the nontargeted liposomes. An in vivo study showed that the relative efficiency was 2.632±0.089 and the concentration efficiency was 1.590±0.049, and also, the drug-targeting index was 3.670±0.824. Conclusion Overall, these results revealed that glutathione-PEGylated nanoliposomes enhance the effective delivery of flucytosine to brain and could become a promising new therapeutic option for the treatment of the brain infections. PMID:26229435

  9. Mitochondria, Bioenergetics and Excitotoxicity: New Therapeutic Targets in Perinatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Bryan Leaw

    2017-07-01

    Full Text Available Injury to the fragile immature brain is implicated in the manifestation of long-term neurological disorders, including childhood disability such as cerebral palsy, learning disability and behavioral disorders. Advancements in perinatal practice and improved care mean the majority of infants suffering from perinatal brain injury will survive, with many subtle clinical symptoms going undiagnosed until later in life. Hypoxic-ischemia is the dominant cause of perinatal brain injury, and constitutes a significant socioeconomic burden to both developed and developing countries. Therapeutic hypothermia is the sole validated clinical intervention to perinatal asphyxia; however it is not always neuroprotective and its utility is limited to developed countries. There is an urgent need to better understand the molecular pathways underlying hypoxic-ischemic injury to identify new therapeutic targets in such a small but critical therapeutic window. Mitochondria are highly implicated following ischemic injury due to their roles as the powerhouse and main energy generators of the cell, as well as cell death processes. While the link between impaired mitochondrial bioenergetics and secondary energy failure following loss of high-energy phosphates is well established after hypoxia-ischemia (HI, there is emerging evidence that the roles of mitochondria in disease extend far beyond this. Indeed, mitochondrial turnover, including processes such as mitochondrial biogenesis, fusion, fission and mitophagy, affect recovery of neurons after injury and mitochondria are involved in the regulation of the innate immune response to inflammation. This review article will explore these mitochondrial pathways, and finally will summarize past and current efforts in targeting these pathways after hypoxic-ischemic injury, as a means of identifying new avenues for clinical intervention.

  10. Emergency medicine program targets "brain drain" in Ethiopia ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    15 juil. 2014 ... "brain drain" in Ethiopia. Dr Dave MacKinnon gives a demonstration on casting to medical residents in Addis Ababa. Over the last three decades, 4,000 doctors have left Ethiopia for specialized training abroad. But very few return home to practice their specialty. Now, thanks to the Toronto-Addis Ababa ...

  11. Targeting Phosphatidylserine for Radioimmunotherapy of Breast Cancer Brain Metastasis

    Science.gov (United States)

    2013-10-01

    antibodies to the endothelial marker, CD31 (Serotec, Raleigh, NC) followed by Cy3-conjugated secondary antibody ( Jackson Immunoresearch Laboratories...in the brain. Cancer Res 67, 4190-4198, doi:67/9/4190 [pii] 10.1158/0008-5472.CAN-06- 3316 (2007). 7 Percy , D. B. et al. In vivo characterization of

  12. Brain targeting efficiency of antimigrain drug loaded mucoadhesive intranasal nanoemulsion.

    Science.gov (United States)

    Abdou, Ebtsam M; Kandil, Soha M; Miniawy, Hala M F El

    2017-08-30

    Zolmitriptan (ZT) is a well-tolerated drug in migraine treatment suffering from low bioavailability due to low amount of the drug that reaches the brain after oral and nasal delivery. Development of new nasal mucoadhesive nanoemulsion formulation for zolmitriptan may success in delivering the drug directly from the nose to the brain to achieve rapid onset of action and high drug concentration in the brain which is required for treatment of acute migraine. ZT mucoadhesive nanoemulsion were prepared and characterized for drug content, zeta potential, particle size, morphology, residence time and permeation through the nasal mucosa. The selected formula was tested in-vivo in mice for its pharmacokinetics in comparison with intravenous and nasal solution of zolmitriptan. Results showed that addition of chitosan as mucoadhesive agent in 0.3% concentration to the nanoemulsion enhanced its residence time and zetapotential with no significant effect on the globule size. All tested formulations showed higher permeability coefficients than the zolmitriptan solution through the nasal mucosa. In-vivo studies showed that the mucoadhesive nanoemulsion formulation of zolmitriptan has higher AUC0-8 and shorter Tmax in the brain than the intravenous or the nasal solution. This was related to the small globule size and higher permeability of the formulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Epigenetic Modifications, Alcoholic Brain and Potential Drug Targets.

    Science.gov (United States)

    Jangra, Ashok; Sriram, Chandra Shaker; Pandey, Suryanarayan; Choubey, Priyansha; Rajput, Prabha; Saroha, Babita; Bezbaruah, Babul Kumar; Lahkar, Mangala

    2016-10-01

    Acute and chronic alcohol exposure evidently influences epigenetic changes, both transiently and permanently, and these changes in turn influence a variety of cells and organ systems throughout the body. Many of the alcohol-induced epigenetic modifications can contribute to cellular adaptations that ultimately lead to behavioral tolerance and alcohol dependence. The persistence of behavioral changes demonstrates that long-lasting changes in gene expression, within particular regions of the brain, may contribute importantly to the addiction phenotype. The research activities over the past years have demonstrated a crucial role of epigenetic mechanisms in causing long lasting and transient changes in the expression of several genes in diverse tissues, including brain. This has stimulated recent research work that is aimed at characterizing the influence of epigenetic regulatory events in mediating the long lasting and transient effects of alcohol abuse on the brain in humans and animal models of alcohol addiction. In this study, we update our current understanding of the impact of alcohol exposure on epigenetic mechanisms in the brain and refurbish the knowledge of epigenetics in the direction of new drugs development.

  14. Ginsenoside Rg1 improves ischemic brain injury by balancing ...

    African Journals Online (AJOL)

    autophagy inhibitors decreased the mitochondrial protective effects exerted by Rg1 in OGD SK-N-SH cells. Conclusion: Rg1 improves mitochondrial dysfunction by regulating autophagy in mitochondria. Thus, it may offer protection from brain injuries ... in imbalance in intracellular redox metabolism and eventually extensive ...

  15. Working Memory Training: Improving Intelligence--Changing Brain Activity

    Science.gov (United States)

    Jausovec, Norbert; Jausovec, Ksenija

    2012-01-01

    The main objectives of the study were: to investigate whether training on working memory (WM) could improve fluid intelligence, and to investigate the effects WM training had on neuroelectric (electroencephalography--EEG) and hemodynamic (near-infrared spectroscopy--NIRS) patterns of brain activity. In a parallel group experimental design,…

  16. Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases.

    Science.gov (United States)

    Sun, Bao-Liang; Wang, Li-Hua; Yang, Tuo; Sun, Jing-Yi; Mao, Lei-Lei; Yang, Ming-Feng; Yuan, Hui; Colvin, Robert A; Yang, Xiao-Yi

    2017-09-10

    The belief that the vertebrate brain functions normally without classical lymphatic drainage vessels has been held for many decades. On the contrary, new findings show that functional lymphatic drainage does exist in the brain. The brain lymphatic drainage system is composed of basement membrane-based perivascular pathway, a brain-wide glymphatic pathway, and cerebrospinal fluid (CSF) drainage routes including sinus-associated meningeal lymphatic vessels and olfactory/cervical lymphatic routes. The brain lymphatic systems function physiological as a route of drainage for interstitial fluid (ISF) from brain parenchyma to nearby lymph nodes. Brain lymphatic drainage helps maintain water and ion balance of the ISF, waste clearance, and reabsorption of macromolecular solutes. A second physiological function includes communication with the immune system modulating immune surveillance and responses of the brain. These physiological functions are influenced by aging, genetic phenotypes, sleep-wake cycle, and body posture. The impairment and dysfunction of the brain lymphatic system has crucial roles in age-related changes of brain function and the pathogenesis of neurovascular, neurodegenerative, and neuroinflammatory diseases, as well as brain injury and tumors. In this review, we summarize the key component elements (regions, cells, and water transporters) of the brain lymphatic system and their regulators as potential therapeutic targets in the treatment of neurologic diseases and their resulting complications. Finally, we highlight the clinical importance of ependymal route-based targeted gene therapy and intranasal drug administration in the brain by taking advantage of the unique role played by brain lymphatic pathways in the regulation of CSF flow and ISF/CSF exchange. Copyright © 2017. Published by Elsevier Ltd.

  17. Non-virally engineered human adipose mesenchymal stem cells produce BMP4, target brain tumors, and extend survival.

    Science.gov (United States)

    Mangraviti, Antonella; Tzeng, Stephany Y; Gullotti, David; Kozielski, Kristen L; Kim, Jennifer E; Seng, Michael; Abbadi, Sara; Schiapparelli, Paula; Sarabia-Estrada, Rachel; Vescovi, Angelo; Brem, Henry; Olivi, Alessandro; Tyler, Betty; Green, Jordan J; Quinones-Hinojosa, Alfredo

    2016-09-01

    There is a need for enabling non-viral nanobiotechnology to allow safe and effective gene therapy and cell therapy, which can be utilized to treat devastating diseases such as brain cancer. Human adipose-derived mesenchymal stem cells (hAMSCs) display high anti-glioma tropism and represent a promising delivery vehicle for targeted brain tumor therapy. In this study, we demonstrate that non-viral, biodegradable polymeric nanoparticles (NPs) can be used to engineer hAMSCs with higher efficacy (75% of cells) than leading commercially available reagents and high cell viability. To accomplish this, we engineered a poly(beta-amino ester) (PBAE) polymer structure to transfect hAMSCs with significantly higher efficacy than Lipofectamine™ 2000. We then assessed the ability of NP-engineered hAMSCs to deliver bone morphogenetic protein 4 (BMP4), which has been shown to have a novel therapeutic effect by targeting human brain tumor initiating cells (BTIC), a source of cancer recurrence, in a human primary malignant glioma model. We demonstrated that hAMSCs genetically engineered with polymeric nanoparticles containing BMP4 plasmid DNA (BMP4/NP-hAMSCs) secrete BMP4 growth factor while maintaining their multipotency and preserving their migration and invasion capacities. We also showed that this approach can overcome a central challenge for brain therapeutics, overcoming the blood brain barrier, by demonstrating that NP-engineered hAMSCs can migrate to the brain and penetrate the brain tumor after both intranasal and systemic intravenous administration. Critically, athymic rats bearing human primary BTIC-derived tumors and treated intranasally with BMP4/NP-hAMSCs showed significantly improved survival compared to those treated with control GFP/NP-hAMCSs. This study demonstrates that synthetic polymeric nanoparticles are a safe and effective approach for stem cell-based cancer-targeting therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Astrocyte-targeted expression of IL-6 protects the CNS against a focal brain injury

    DEFF Research Database (Denmark)

    Penkowa, Milena; Giralt, Mercedes; Lago, Natalia

    2003-01-01

    The effect of CNS-targeted IL-6 gene expression has been thoroughly investigated in the otherwise nonperturbed brain but not following brain injury. Here we examined the impact of astrocyte-targeted IL-6 production in a traumatic brain injury (cryolesion) model using GFAP-IL6 transgenic mice....... This study demonstrated that transgenic IL-6 production significantly increased wound healing following the cryolesion. Thus, at 20 days postlesion (dpl) the GFAP-IL6 mice showed almost complete wound healing compared to litter mate nontransgenic controls. It seems likely that a reduced inflammatory response...... neuropathological insult such as following traumatic injury, a clear neuroprotective role is evident....

  19. Smuggling Drugs into the Brain: An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood-Brain Barrier

    NARCIS (Netherlands)

    Zuhorn, Inge; Georgieva, Julia V.; Hoekstra, Dick

    2015-01-01

    The blood-brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics

  20. Carboplatin loaded Surface modified PLGA nanoparticles: Optimization, characterization, and in vivo brain targeting studies.

    Science.gov (United States)

    Jose, S; Juna, B C; Cinu, T A; Jyoti, H; Aleykutty, N A

    2016-06-01

    The carboplatin (CP) loaded poly-lactide-co-glycolide (PLGA) nanoparticles (NPs) were formulated by modified solvent evaporation method. Its surface modification is done by 1% polysorbate80 (P80) to improve their entry into the brain after intraperitoneal administration (i.p) via receptor-mediated pathways. A formulation with maximum entrapment efficiency and minimal particle size was optimized by central composite design (CCD) based on mean particle size, and entrapment efficiencies as responses. The optimized formulation was characterized by mean particle size, entrapment efficiency, zeta potential, Fourier transform infrared (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) analysis. The surface modified NPs were analysed for mean particle, zeta potential, FTIR, and in vitro release studies. The spherical particles with mean particle size 161.9nm, 162.4nm and zeta potential value of -26.5, -23.9 were obtained for unmodified and surface modified NPs respectively. The in vitro release experiments of the surface modified PLGA NPs exhibited sustained release for more than 48h, which was in accordance with Higuchi's equation with Fickian diffusion-based release mechanism. The in vivo bio distribution of P80 coated CP loaded PLGA NPs was compared with CP solution, and CP loaded NPs, in adult wistar rats. In the brain, compared with CP solution, both types of NPs especially NPs coated with P80 increased the concentration of carboplatin by 3.27 fold. All these results suggest that the developed formulation may improve the targeted therapy for malignant brain tumors in future. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Targeting Phosphatidylserine for Radioimmunotherapy of Breast Cancer Brain Metastasis

    Science.gov (United States)

    2015-12-01

    autoradiograph film . After 12 hr incubation, autoradiograph images showed multiple hot spots on the tumor brain, while clean background signal observed on the...Contents …………………………………………………………….……...3 Introduction…………………………………………………………….…………....4 Body …………………………………………………………………………………….4 Key Research...treatment for breast cancer brain metastasis. Body : The Statement of Work in this period had two major tasks: Task 1. To study phosphatidylserine

  2. Mutations targeting the coagulation pathway are enriched in brain metastases.

    Science.gov (United States)

    Richichi, Cristina; Fornasari, Lorenzo; Melloni, Giorgio E M; Brescia, Paola; Patanè, Monica; Del Bene, Massimiliano; Mustafa, Dana A M; Kros, Johan M; Pollo, Bianca; Pruneri, Giancarlo; Sciandivasci, Angela; Munzone, Elisabetta; DiMeco, Francesco; Pelicci, Pier Giuseppe; Riva, Laura; Pelicci, Giuliana

    2017-07-26

    Brain metastases (BMs) are the most common malignancy of the central nervous system. Recently it has been demonstrated that plasminogen activator inhibitor serpins promote brain metastatic colonization, suggesting that mutations in serpins or other members of the coagulation cascade can provide critical advantages during BM formation. We performed whole-exome sequencing on matched samples of breast cancer and BMs and found mutations in the coagulation pathway genes in 5 out of 10 BM samples. We then investigated the mutational status of 33 genes belonging to the coagulation cascade in a panel of 29 BMs and we identified 56 Single Nucleotide Variants (SNVs). The frequency of gene mutations of the pathway was significantly higher in BMs than in primary tumours, and SERPINI1 was the most frequently mutated gene in BMs. These findings provide direction in the development of new strategies for the treatment of BMs.

  3. Smuggling Drugs into the Brain: An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood-Brain Barrier.

    Science.gov (United States)

    Georgieva, Julia V; Hoekstra, Dick; Zuhorn, Inge S

    2014-11-17

    The blood-brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics into the brain. This concept relies on the application of natural or genetically engineered proteins or small peptides, capable of specifically ferrying a drug-payload that is either directly coupled or encapsulated in an appropriate nanocarrier, across the blood-brain barrier via receptor-mediated transcytosis. Specifically, in this process the nanocarrier-drug system ("Trojan horse complex") is transported transcellularly across the brain endothelium, from the blood to the brain interface, essentially trailed by a native receptor. Naturally, only certain properties would favor a receptor to serve as a transporter for nanocarriers, coated with appropriate ligands. Here we briefly discuss brain microvascular endothelial receptors that have been explored until now, highlighting molecular features that govern the efficiency of nanocarrier-mediated drug delivery into the brain.

  4. Smuggling Drugs into the Brain: An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood–Brain Barrier

    Directory of Open Access Journals (Sweden)

    Julia V. Georgieva

    2014-11-01

    Full Text Available The blood–brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics into the brain. This concept relies on the application of natural or genetically engineered proteins or small peptides, capable of specifically ferrying a drug-payload that is either directly coupled or encapsulated in an appropriate nanocarrier, across the blood–brain barrier via receptor-mediated transcytosis. Specifically, in this process the nanocarrier–drug system (“Trojan horse complex” is transported transcellularly across the brain endothelium, from the blood to the brain interface, essentially trailed by a native receptor. Naturally, only certain properties would favor a receptor to serve as a transporter for nanocarriers, coated with appropriate ligands. Here we briefly discuss brain microvascular endothelial receptors that have been explored until now, highlighting molecular features that govern the efficiency of nanocarrier-mediated drug delivery into the brain.

  5. Clinical improvement in psoriasis with specific targeting of interleukin-23

    DEFF Research Database (Denmark)

    Kopp, Tamara; Riedl, Elisabeth; Bangert, Christine

    2015-01-01

    Psoriasis is a chronic inflammatory skin disorder that affects approximately 2-3% of the population worldwide and has severe effects on patients' physical and psychological well-being. The discovery that psoriasis is an immune-mediated disease has led to more targeted, effective therapies; recent...... advances have focused on the interleukin (IL)-12/23p40 subunit shared by IL-12 and IL-23. Evidence suggests that specific inhibition of IL-23 would result in improvement in psoriasis. Here we evaluate tildrakizumab, a monoclonal antibody that targets the IL-23p19 subunit, in a three-part, randomized......, placebo-controlled, sequential, rising multiple-dose phase I study in patients with moderate-to-severe psoriasis to provide clinical proof that specific targeting of IL-23p19 results in symptomatic improvement of disease severity in human subjects. A 75% reduction in the psoriasis area and severity index...

  6. Identifying targets for quality improvement in hospital antibiotic prescribing

    NARCIS (Netherlands)

    Spreuwel, P.C. van; Blok, H.; Langelaar, M.F.; Kullberg, B.J.; Mouton, J.W.; Natsch, S.S.

    2015-01-01

    OBJECTIVES: To audit antibiotic use in a university hospital and to identify targets for quality improvement in a setting with low antibiotic use and resistance rates. METHODOLOGY: A point-prevalence survey (PPS), using a patient-based audit tool for antibiotic use, was executed in the Radboud

  7. MemBrain: improving the accuracy of predicting transmembrane helices.

    Directory of Open Access Journals (Sweden)

    Hongbin Shen

    Full Text Available Prediction of transmembrane helices (TMH in alpha helical membrane proteins provides valuable information about the protein topology when the high resolution structures are not available. Many predictors have been developed based on either amino acid hydrophobicity scale or pure statistical approaches. While these predictors perform reasonably well in identifying the number of TMHs in a protein, they are generally inaccurate in predicting the ends of TMHs, or TMHs of unusual length. To improve the accuracy of TMH detection, we developed a machine-learning based predictor, MemBrain, which integrates a number of modern bioinformatics approaches including sequence representation by multiple sequence alignment matrix, the optimized evidence-theoretic K-nearest neighbor prediction algorithm, fusion of multiple prediction window sizes, and classification by dynamic threshold. MemBrain demonstrates an overall improvement of about 20% in prediction accuracy, particularly, in predicting the ends of TMHs and TMHs that are shorter than 15 residues. It also has the capability to detect N-terminal signal peptides. The MemBrain predictor is a useful sequence-based analysis tool for functional and structural characterization of helical membrane proteins; it is freely available at http://chou.med.harvard.edu/bioinf/MemBrain/.

  8. Targeting brain tumor cAMP: the case for sex-specific therapeutics

    Directory of Open Access Journals (Sweden)

    Nicole M Warrington

    2015-07-01

    Full Text Available A relationship between cyclic adenosine 3’, 5’-monophosphate (cAMP levels and brain tumor biology has been evident for nearly as long as cAMP and its synthetase, adenylate cyclase (ADCY have been known. The importance of the pathway in brain tumorigenesis has been demonstrated in vitro and in multiple animal models. Recently, we provided human validation for a cooperating oncogenic role for cAMP in brain tumorigenesis when we found that SNPs in ADCY8 were correlated with glioma (brain tumor risk in individuals with Neurofibromatosis type 1 (NF1. Together, these studies provide a strong rationale for targeting cAMP in brain tumor therapy. However, the cAMP pathway is well known to be sexually dimorphic, and SNPs in ADCY8 affected glioma risk in a sex-specific fashion, elevating the risk for females while protecting males. The cAMP pathway can be targeted at multiple levels in the regulation of its synthesis and degradation. Sex differences in response to drugs that target cAMP regulators indicate that successful targeting of the cAMP pathway for brain tumor patients is likely to require matching specific mechanisms of drug action with patient sex.

  9. Targeting Phosphatidylserine for Radioimmunotherapy of Breast Cancer Brain Metastasis

    Science.gov (United States)

    2013-10-01

    Phosphatidylserine-targeted bimodal liposomal nanoparticles for in vivo imaging of breast cancer in mice. J. Controlled Release 2014 epub ahead of...Immunol 2005;174: 4880–91. 12. Troy A, Davidson P, AtkinsonC,Hart D. Phenotypic characterisation of the dendritic cell infiltrate in prostate cancer

  10. Beyond distance and direction: the brain represents target locations non-metrically.

    Science.gov (United States)

    Thaler, Lore; Goodale, Melvyn A

    2010-03-23

    In their day-to-day activities human beings are constantly generating behavior, such as pointing, grasping or verbal reports, on the basis of visible target locations. The question arises how the brain represents target locations. One possibility is that the brain represents them metrically, i.e. in terms of distance and direction. Another equally plausible possibility is that the brain represents locations non-metrically, using for example ordered geometry or topology. Here we report two experiments that were designed to test if the brain represents locations metrically or non-metrically. We measured accuracy and variability of visually guided reach-to-point movements (Experiment 1) and probe-stimulus adjustments (Experiment 2). The specific procedure of informing subjects about the relevant response on each trial enabled us to dissociate the use of non-metric target location from the use of metric distance and direction in head/eye-centered, hand-centered and externally defined (allocentric) coordinates. The behavioral data show that subjects' responses are least variable when they can direct their response at a visible target location, the only condition that permitted the use of non-metric information about target location in our experiments. Data from Experiments 1 and 2 correspond well quantitatively. Response variability in non-metric conditions cannot be predicted based on response variability in metric conditions. We conclude that the brain uses non-metric geometrical structure to represent locations.

  11. F-18 Polyethyleneglycol stilbenes as PET imaging agents targeting A{beta} aggregates in the brain

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wei [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Oya, Shunichi [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Kung Meiping [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Hou, Catherine [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Maier, Donna L. [Department of Neuroscience, AstraZeneca, Wilmington, DE 19850 (United States); Kung, Hank F. [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States) and Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (United States)]. E-mail: kunghf@sunmac.spect.upenn.edu

    2005-11-01

    This paper describes a novel series of {sup 18}F-labeled polyethyleneglycol (PEG)-stilbene derivatives as potential {beta}-amyloid (A{beta}) plaque-specific imaging agents for positron emission tomography (PET). In these series of compounds, {sup 18}F is linked to the stilbene through a PEG chain, of which the number of ethoxy groups ranges from 2 to 5. The purpose of adding PEG groups is to lower the lipophilicity and improve bioavailability. The syntheses of the 'cold' compounds and the {sup 18}F-labeled PEG stilbene derivatives are successfully achieved. All of the fluorinated stilbenes displayed high binding affinities in an assay using postmortem AD brain homogenates (K {sub i}=2.9-6.7 nM). Labeling was successfully performed by a substitution of the mesylate group of 10a-d by [{sup 18}F]fluoride giving the target compounds [{sup 18}F]12a-d (EOS, specific activity, 900-1500 Ci/mmol; radiochemical purity >99%). In vivo biodistribution of these novel {sup 18}F ligands in normal mice exhibited excellent brain penetrations and rapid washouts after an intravenous injection (6.6-8.1 and 1.2-2.6% dose/g at 2 and 60 min, respectively). Autoradiography of postmortem AD brain sections of [{sup 18}F]12a-d confirmed the specific binding related to the presence of A{beta} plaques. In addition, in vivo plaque labeling can be clearly demonstrated with these {sup 18}F-labeled agents in transgenic mice (Tg2576), a useful animal model for Alzheimer's disease. In conclusion, the preliminary results strongly suggest these fluorinated PEG stilbene derivatives are suitable candidates as A{beta} plaque imaging agents for studying patients with Alzheimer's disease.

  12. Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI

    Science.gov (United States)

    Pei, Linmin; Reza, Syed M. S.; Li, Wei; Davatzikos, Christos; Iftekharuddin, Khan M.

    2017-03-01

    In this work, we propose a novel method to improve texture based tumor segmentation by fusing cell density patterns that are generated from tumor growth modeling. To model tumor growth, we solve the reaction-diffusion equation by using Lattice-Boltzmann method (LBM). Computational tumor growth modeling obtains the cell density distribution that potentially indicates the predicted tissue locations in the brain over time. The density patterns is then considered as novel features along with other texture (such as fractal, and multifractal Brownian motion (mBm)), and intensity features in MRI for improved brain tumor segmentation. We evaluate the proposed method with about one hundred longitudinal MRI scans from five patients obtained from public BRATS 2015 data set, validated by the ground truth. The result shows significant improvement of complete tumor segmentation using ANOVA analysis for five patients in longitudinal MR images.

  13. Improvements in Mass Spectrometry Assay Library Generation for Targeted Proteomics.

    Science.gov (United States)

    Teleman, Johan; Hauri, Simon; Malmström, Johan

    2017-07-07

    In data-independent acquisition mass spectrometry (DIA-MS), targeted extraction of peptide signals in silico using mass spectrometry assay libraries is a successful method for the identification and quantification of proteins. However, it remains unclear if high quality assay libraries with more accurate peptide ion coordinates can improve peptide target identification rates in DIA analysis. In this study, we systematically improved and evaluated the common algorithmic steps for assay library generation and demonstrate that increased assay quality results in substantially higher identification rates of peptide targets from mouse organ protein lysates measured by DIA-MS. The introduced changes are (1) a new spectrum interpretation algorithm, (2) reapplication of segmented retention time normalization, (3) a ppm fragment mass error matching threshold, (4) usage of internal peptide fragments, and (5) a multilevel false discovery rate calculation. Taken together, these changes yielded 14-36% more identified peptide targets at 1% assay false discovery rate and are implemented in three new open source tools, Fraggle, Tramler, and Franklin, available at https://github.com/fickludd/eviltools . The improved algorithms provide ways to better utilize discovery MS data, translating to substantially increased DIA performance and ultimately better foundations for drawing biological conclusions in DIA-based experiments.

  14. Moving target detection method based on improved Gaussian mixture model

    Science.gov (United States)

    Ma, J. Y.; Jie, F. R.; Hu, Y. J.

    2017-07-01

    Gaussian Mixture Model is often employed to build background model in background difference methods for moving target detection. This paper puts forward an adaptive moving target detection algorithm based on improved Gaussian Mixture Model. According to the graylevel convergence for each pixel, adaptively choose the number of Gaussian distribution to learn and update background model. Morphological reconstruction method is adopted to eliminate the shadow.. Experiment proved that the proposed method not only has good robustness and detection effect, but also has good adaptability. Even for the special cases when the grayscale changes greatly and so on, the proposed method can also make outstanding performance.

  15. Improvement in Visual Target Tracking for a Mobile Robot

    Science.gov (United States)

    Kim, Won; Ansar, Adnan; Madison, Richard

    2006-01-01

    In an improvement of the visual-target-tracking software used aboard a mobile robot (rover) of the type used to explore the Martian surface, an affine-matching algorithm has been replaced by a combination of a normalized- cross-correlation (NCC) algorithm and a template-image-magnification algorithm. Although neither NCC nor template-image magnification is new, the use of both of them to increase the degree of reliability with which features can be matched is new. In operation, a template image of a target is obtained from a previous rover position, then the magnification of the template image is based on the estimated change in the target distance from the previous rover position to the current rover position (see figure). For this purpose, the target distance at the previous rover position is determined by stereoscopy, while the target distance at the current rover position is calculated from an estimate of the current pose of the rover. The template image is then magnified by an amount corresponding to the estimated target distance to obtain a best template image to match with the image acquired at the current rover position.

  16. Identification of multi-targeted anti-migraine potential of nystatin and development of its brain targeted chitosan nanoformulation.

    Science.gov (United States)

    Girotra, Priti; Thakur, Aman; Kumar, Ajay; Singh, Shailendra Kumar

    2017-03-01

    The complex pathophysiology involved in migraine necessitates the drug treatment to act on several receptors simultaneously. The present investigation was an attempt to discover the unidentified anti-migraine activity of the already marketed drugs. Shared featured pharmacophore modeling was employed for this purpose on six target receptors (β2 adrenoceptor, Dopamine D3, 5HT1B, TRPV1, iGluR5 kainate and CGRP), resulting in the generation of five shared featured pharmacophores, which were further subjected to virtual screening of the ligands obtained from Drugbank database. Molecular docking, performed on the obtained hit compounds from virtual screening, indicated nystatin to be the only active lead against the receptors iGluR5 kainate receptor (1VSO), CGRP (3N7R), β2 adrenoceptor (3NYA) and Dopamine D3 (3PBL) with a high binding energy of -11.1, -10.9, -10.2 and -12kcal/mole respectively. The anti-migraine activity of nystatin was then adjudged by fabricating its brain targeted chitosan nanoparticles. Its brain targeting efficacy, analyzed qualitatively by confocal laser scanning microscopy, demonstrated a significant amount of drug reaching the brain. The pharmacodynamic models on Swiss male albino mice revealed significant anti-migraine activity of the nanoformulation. The present study reports for the first time the therapeutic potential of nystatin in migraine management, hence opening avenues for its future exploration. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Brain Malignancy Steering Committee clinical trials planning workshop: Report from the Targeted Therapies Working Group

    OpenAIRE

    Alexander, Brian M; Galanis, Evanthia; Yung, W.K. Alfred; Ballman, Karla V.; Boyett, James M.; Cloughesy, Timothy F.; Degroot, John F.; Huse, Jason T.; Mann, Bhupinder; Mason, Warren; Ingo K Mellinghoff; Mikkelsen, Tom; Mischel, Paul S.; O'Neill, Brian P.; Prados, Michael D.

    2014-01-01

    Glioblastoma is the most common primary brain malignancy and is associated with poor prognosis despite aggressive local and systemic therapy, which is related to a paucity of viable treatment options in both the newly diagnosed and recurrent settings. Even so, the rapidly increasing number of targeted therapies being evaluated in oncology clinical trials offers hope for the future. Given the broad range of possibilities for future trials, the Brain Malignancy Steering Committee convened a cli...

  18. Brain targeting effect of camptothecin-loaded solid lipid nanoparticles in rat after intravenous administration

    DEFF Research Database (Denmark)

    Martins, S. M.; Sarmento, B.; Nunes, C.

    2013-01-01

    This study intended to investigate the ability of solid lipid nanoparticles (SLN) to deliver camptothecin into the brain parenchyma after crossing the blood-brain barrier. For that purpose, camptothecin-loaded SLN with mean size below 200 nm, low polydispersity index (94%) were produced...... of intravenous camptothecin-loaded SLN performed in rats proved the positive role of SLN on the brain targeting since significant higher brain accumulation of camptothecin was observed, compared to non-encapsulated drug. Pharmacokinetic studies further demonstrated lower deposition of camptothecin in peripheral...... organs, when encapsulated into SLN, with consequent decrease in potential side toxicological effects. These results confirmed the potential of camptothecin-loaded SLN for antitumour brain treatments....

  19. Combination Therapy for Multi-Target Manipulation of Secondary Brain Injury Mechanisms.

    Science.gov (United States)

    Somayaji, Mahadevabharath R; Mahadevabharath, R; Przekwas; Andrzej, J; Gupta; Raj, K

    2017-08-28

    Traumatic brain injury (TBI) is a major healthcare problem that affects millions of people worldwide. Despite advances in understanding and developing preventative and treatment strategies using preclinical animal models, clinical trials to date have failed, and a "magic bullet" for effectively treating TBI-induced damage does not exist. Thus, novel pharmacological strategies to effectively manipulate the complex and heterogeneous pathophysiology of secondary injury mechanisms are needed. Given that goal, this paper discusses the relevance and advantages of combination therapies (COMTs) for "multi-target manipulation" of the injury cascade by administering multiple drugs to achieve an optimal therapeutic window of opportunity (e.g., temporally broad window) and compares these regimens to monotherapies that manipulate a single target with a single drug at a time. Furthermore, we posit that integrated mechanistic multiscale models that combine primary biomechanics, secondary injury mechano-/neurobiology, pharmacology and mathematical programming techniques could account for vast differences in the biological space and time scales and help to accelerate drug development, optimize combination pharmacotherapy protocols and improve treatment outcomes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Therapeutic targets of brain insulin resistance in sporadic Alzheimer's disease.

    Science.gov (United States)

    de la Monte, Suzanne M

    2012-01-01

    Growing evidence supports roles for brain insulin and insulin-like growth factor (IGF) resistance and metabolic dysfunction in the pathogenesis of Alzheimer's disease (AD). Whether the underlying problem stems from a primary disorder of central nervous system (CNS) neurons and glia, or secondary effects of systemic diseases such as obesity, Type 2 diabetes, or metabolic syndrome, the end-results include impaired glucose utilization, mitochondrial dysfunction, increased oxidative stress, neuroinflammation, and the propagation of cascades that result in the accumulation of neurotoxic misfolded, aggregated, and ubiquitinated fibrillar proteins. This article reviews the roles of impaired insulin and IGF signaling to AD-associated neuronal loss, synaptic disconnection, tau hyperphosphorylation, amyloid-beta accumulation, and impaired energy metabolism, and discusses therapeutic strategies and lifestyle approaches that could be used to prevent, delay the onset, or reduce the severity of AD. Finally, it is critical to recognize that AD is heterogeneous and has a clinical course that fully develops over a period of several decades. Therefore, early and multi-modal preventive and treatment approaches should be regarded as essential.

  1. Targeting anticoagulant protein S to improve hemostasis in hemophilia.

    Science.gov (United States)

    Prince, Raja; Bologna, Luca; Manetti, Mirko; Melchiorre, Daniela; Rosa, Irene; Dewarrat, Natacha; Suardi, Silvia; Amini, Poorya; Fernández, José A; Burnier, Laurent; Quarroz, Claudia; Reina Caro, Maria Desiré; Matsumura, Yasuhiro; Kremer Hovinga, Johanna A; Griffin, John H; Simon, Hans-Uwe; Ibba-Manneschi, Lidia; Saller, François; Calzavarini, Sara; Angelillo-Scherrer, Anne

    2018-01-09

    Improved treatments are needed for hemophilia A and B, bleeding disorders affecting 400,000 people worldwide. We investigated whether targeting protein S could promote hemostasis in hemophilia by re-balancing coagulation. Protein S is an anticoagulant acting as cofactor for activated protein C and tissue factor pathway inhibitor (TFPI). This dual role makes PS a key regulator of thrombin generation. Here, we report that targeting protein S rebalances coagulation in hemophilia. Protein S gene targeting in hemophilic mice protected them against bleeding, especially when intra-articular. Mechanistically, these mice displayed increased thrombin generation, resistance to activated protein C and TFPI, and improved fibrin network. Blocking protein S in plasma of hemophilia patients normalized in vitro thrombin generation. Both protein S and TFPIα were detected in hemophilic mice joints. Protein S and TFPI expression was stronger in joints of hemophilia A than hemophilia B patients when receiving on demand therapy, e.g., during a bleeding episode. In contrast, protein S and TFPI expression was decreased in hemophilia A patients receiving prophylaxis with coagulation factor concentrates, and comparable to osteoarthritis patients. These results establish protein S inhibition as both controller of coagulation and potential therapeutic target in hemophilia. The murine protein S silencing RNA approach that we successfully used in hemophilic mice might constitute a new therapeutic concept for hemophilic patients. Copyright © 2018 American Society of Hematology.

  2. Targeting Epigenetic Mechanisms in Pain Due to Trauma and Traumatic Brain Injury (TBI)

    Science.gov (United States)

    2015-10-01

    likely that we will be able to show that damage to specific  pain   pathways  or, more likely, specific molecular  processes like epigenetics mediate the...AWARD NUMBER: W81XWH-14-1-0579 TITLE: Targeting Epigenetic Mechanisms in Pain due to Trauma and Traumatic Brain Injury (TBI) PRINCIPAL...SUBTITLE Targeting Epigenetic Mechanisms in Pain due to Trauma and Traumatic Brain Injury (TBI) 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0579 5c

  3. Targeting the Glutamatergic System to Develop Novel, Improved Therapeutics for Mood Disorders

    Science.gov (United States)

    Sanacora, Gerard; Zarate, Carlos A.; Krystal, John; Manji, Husseini K.

    2009-01-01

    PREFACE Mood disorders are common, chronic, recurrent mental illnesses that affect the lives of millions of individuals worldwide. To date, the monoaminergic systems (serotonergic, noradrenergic and dopaminergic) in the brain have received the greatest attention in neurobiological studies of mood disorders, and most therapeutics target these systems. However, there is growing evidence that the glutamatergic system is central to the neurobiology and treatment of these disorders. Here, we review data supporting the involvement of the glutamatergic system in mood disorder pathophysiology as well as the efficacy of glutamatergic agents in mood disorders. We also discuss exciting new prospects for the development of improved therapeutics for these devastating disorders. PMID:18425072

  4. Multifunctional nanoliposomes with curcumin-lipid derivative and brain targeting functionality with potential applications for Alzheimer disease.

    Science.gov (United States)

    Mourtas, Spyridon; Lazar, Adina N; Markoutsa, Eleni; Duyckaerts, Charles; Antimisiaris, Sophia G

    2014-06-10

    With the objective to formulate multifunctional nanosized liposomes to target amyloid deposits in Alzheimer Disease (AD) brains, a lipid-PEG-curcumin derivative was synthesized and characterized. Multifunctional liposomes incorporating the curcumin derivative and additionally decorated with a Blood Brain Barrier (BBB) transport mediator (anti-Transferin antibody) were prepared and characterized. The fluorescence intensity of curcumin derivative was found to increase notably when the curcumin moiety was in the form of a diisopropylethylamine (DIPEA) salt. Both curcumin-derivative liposomes and curcumin-derivative Anti-TrF liposomes showed a high affinity for the amyloid deposits, on post-mortem brains samples of AD patients. The ability of both liposomes to delay Aβ1-42 peptide aggregation was confirmed by Thioflavin assay. However, the decoration of the curcumin-derivative liposomes with the Anti-TrF improved significantly the intake by the BBB cellular model. Results verify that the attachment of an antibody on the curcumin-liposome surface does not block deposit staining or prevention of Aβ aggregation, while the presence of the curcumin-PEG-lipid conjugate does not reduce their brain-targeting capability substantially, proving the potential of such multifunctional NLs for application in Alzheimer disease treatment and diagnosis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Electroencephalographic brain dynamics following manually responded visual targets.

    Directory of Open Access Journals (Sweden)

    Scott Makeig

    2004-06-01

    Full Text Available Scalp-recorded electroencephalographic (EEG signals produced by partial synchronization of cortical field activity mix locally synchronous electrical activities of many cortical areas. Analysis of event-related EEG signals typically assumes that poststimulus potentials emerge out of a flat baseline. Signals associated with a particular type of cognitive event are then assessed by averaging data from each scalp channel across trials, producing averaged event-related potentials (ERPs. ERP averaging, however, filters out much of the information about cortical dynamics available in the unaveraged data trials. Here, we studied the dynamics of cortical electrical activity while subjects detected and manually responded to visual targets, viewing signals retained in ERP averages not as responses of an otherwise silent system but as resulting from event-related alterations in ongoing EEG processes. We applied infomax independent component analysis to parse the dynamics of the unaveraged 31-channel EEG signals into maximally independent processes, then clustered the resulting processes across subjects by similarities in their scalp maps and activity power spectra, identifying nine classes of EEG processes with distinct spatial distributions and event-related dynamics. Coupled two-cycle postmotor theta bursts followed button presses in frontal midline and somatomotor clusters, while the broad postmotor "P300" positivity summed distinct contributions from several classes of frontal, parietal, and occipital processes. The observed event-related changes in local field activities, within and between cortical areas, may serve to modulate the strength of spike-based communication between cortical areas to update attention, expectancy, memory, and motor preparation during and after target recognition and speeded responding.

  6. Effects of concurrent caffeine and mobile phone exposure on local target probability processing in the human brain.

    Science.gov (United States)

    Trunk, Attila; Stefanics, Gábor; Zentai, Norbert; Bacskay, Ivett; Felinger, Attila; Thuróczy, György; Hernádi, István

    2015-09-23

    Millions of people use mobile phones (MP) while drinking coffee or other caffeine containing beverages. Little is known about the potential combined effects of MP irradiation and caffeine on cognitive functions. Here we investigated whether caffeine intake and concurrent exposure to Universal Mobile Telecommunications System (UMTS) MP-like irradiation may interactively influence neuro-cognitive function in an active visual oddball paradigm. In a full factorial experimental design, 25 participants performed a simple visual target detection task while reaction time (RT) and electroencephalogram (EEG) was recorded. Target trials were divided into Low and High probability sets based on target-to-target distance. We analyzed single trial RT and alpha-band power (amplitude) in the pre-target interval. We found that RT was shorter in High vs. Low local probability trials, and caffeine further shortened RT in High probability trials relative to the baseline condition suggesting that caffeine improves the efficiency of implicit short-term memory. Caffeine also decreased pre-target alpha amplitude resulting in higher arousal level. Furthermore, pre-target gamma power positively correlated with RT, which may have facilitated target detection. However, in the present pharmacologically validated study UMTS exposure either alone or in combination with caffeine did not alter RT or pre-stimulus oscillatory brain activity.

  7. Modifying the planning target volume to optimize the dose distribution in dynamic conformal arc therapy for large metastatic brain tumors.

    Science.gov (United States)

    Ogura, Kengo; Kosaka, Yasuhiro; Imagumbai, Toshiyuki; Ueki, Kazuhito; Narukami, Ryo; Hattori, Takayuki; Kokubo, Masaki

    2017-06-01

    When treating large metastatic brain tumors with stereotactic radiotherapy (SRT), high dose conformity to target is difficult to achieve. Employing a modified planning target volume (mPTV) instead of the original PTV may be one way to improve the dose distribution in linear accelerator-based SRT using a dynamic conformal technique. In this study, we quantitatively analyzed the impact of a mPTV on dose distribution. Twenty-four tumors with a maximum diameter of >2 cm were collected. For each tumor, two plans were created: one used a mPTV and the other did not. The mPTV was produced by shrinking or enlarging the original PTV according to the dose distribution in the original plan. The dose conformity was evaluated and compared between the plans using a two-sided paired t test. The conformity index defined by the Radiation Therapy Oncology Group was 1.34 ± 0.10 and 1.41 ± 0.13, and Paddick's conformity index was 0.75 ± 0.05 and 0.71 ± 0.06, for the plans with and without a mPTV, respectively. All of these improvements were statistically significant (P < 0.05). The use of a mPTV can improve target conformity when planning SRT for large metastatic brain tumors.

  8. Biosocial Spaces and Neurocomputational Governance: Brain-Based and Brain-Targeted Technologies in Education

    Science.gov (United States)

    Williamson, Ben; Pykett, Jessica; Nemorin, Selena

    2018-01-01

    Recently, technologies based on neuroscientific insights into brain function and structure have been promoted for application in education. The novel practices and environments produced by these technologies require new forms of "biosocial" analysis to unpack their implications for education, learning and governance. This article…

  9. Process safety improvement-Quality and target zero

    Energy Technology Data Exchange (ETDEWEB)

    Van Scyoc, Karl [Det Norske Veritas (U.S.A.) Inc., DNV Energy Solutions, 16340 Park Ten Place, Suite 100, Houston, TX 77084 (United States)], E-mail: karl.van.scyoc@dnv.com

    2008-11-15

    Process safety practitioners have adopted quality management principles in design of process safety management systems with positive effect, yet achieving safety objectives sometimes remain a distant target. Companies regularly apply tools and methods which have roots in quality and productivity improvement. The 'plan, do, check, act' improvement loop, statistical analysis of incidents (non-conformities), and performance trending popularized by Dr. Deming are now commonly used in the context of process safety. Significant advancements in HSE performance are reported after applying methods viewed as fundamental for quality management. In pursuit of continual process safety improvement, the paper examines various quality improvement methods, and explores how methods intended for product quality can be additionally applied to continual improvement of process safety. Methods such as Kaizen, Poke yoke, and TRIZ, while long established for quality improvement, are quite unfamiliar in the process safety arena. These methods are discussed for application in improving both process safety leadership and field work team performance. Practical ways to advance process safety, based on the methods, are given.

  10. Process safety improvement--quality and target zero.

    Science.gov (United States)

    Van Scyoc, Karl

    2008-11-15

    Process safety practitioners have adopted quality management principles in design of process safety management systems with positive effect, yet achieving safety objectives sometimes remain a distant target. Companies regularly apply tools and methods which have roots in quality and productivity improvement. The "plan, do, check, act" improvement loop, statistical analysis of incidents (non-conformities), and performance trending popularized by Dr. Deming are now commonly used in the context of process safety. Significant advancements in HSE performance are reported after applying methods viewed as fundamental for quality management. In pursuit of continual process safety improvement, the paper examines various quality improvement methods, and explores how methods intended for product quality can be additionally applied to continual improvement of process safety. Methods such as Kaizen, Poke yoke, and TRIZ, while long established for quality improvement, are quite unfamiliar in the process safety arena. These methods are discussed for application in improving both process safety leadership and field work team performance. Practical ways to advance process safety, based on the methods, are given.

  11. Response to Deep Brain Stimulation in Three Brain Targets with Implications in Mental Disorders: A PET Study in Rats.

    Science.gov (United States)

    Casquero-Veiga, Marta; Hadar, Ravit; Pascau, Javier; Winter, Christine; Desco, Manuel; Soto-Montenegro, María Luisa

    2016-01-01

    To investigate metabolic changes in brain networks by deep brain stimulation (DBS) of the medial prefrontal cortex (mPFC), nucleus accumbens (NAcc) and dorsomedial thalamus (DM) using positron emission tomography (PET) in naïve rats. 43 male Wistar rats underwent stereotactic surgery and concentric bipolar platinum-iridium electrodes were bilaterally implanted into one of the three brain sites. [18F]-fluoro-2-deoxy-glucose-PET (18FDG-PET) and computed tomography (CT) scans were performed at the 7th (without DBS) and 9th day (with DBS) after surgery. Stimulation period matched tracer uptake period. Images were acquired with a small-animal PET-CT scanner. Differences in glucose uptake between groups were assessed with Statistical Parametric Mapping. DBS induced site-specific metabolic changes, although a common increased metabolic activity in the piriform cortex was found for the three brain targets. mPFC-DBS increased metabolic activity in the striatum, temporal and amygdala, and reduced it in the cerebellum, brainstem (BS) and periaqueductal gray matter (PAG). NAcc-DBS increased metabolic activity in the subiculum and olfactory bulb, and decreased it in the BS, PAG, septum and hypothalamus. DM-DBS increased metabolic activity in the striatum, NAcc and thalamus and decreased it in the temporal and cingulate cortex. DBS induced significant changes in 18FDG uptake in brain regions associated with the basal ganglia-thalamo-cortical circuitry. Stimulation of mPFC, NAcc and DM induced different patterns of 18FDG uptake despite interacting with the same circuitries. This may have important implications to DBS research suggesting individualized target selection according to specific neural modulatory requirements.

  12. Recognizing off-target drug effects in the gut and brain: revisiting isotretinoin and depression.

    Science.gov (United States)

    Kollipara, R; Reisz, C

    2016-04-01

    Clinicians often face complex decisions regarding off-target drug effects, both in diagnosis and treatment. A key component in the formulation of the correct diagnosis is the temporal relationship between drug introduction and adverse effect. The sentinel injury may target the gut and brain. The description of the complaint may vary among providers. Modeling Information visualization for clinicians in real time will require the integration of time-stamped data with organ-specific complaints. © 2015 British Association of Dermatologists.

  13. Interfacing brain with computer to improve communication and rehabilitation after brain damage.

    Science.gov (United States)

    Riccio, A; Pichiorri, F; Schettini, F; Toppi, J; Risetti, M; Formisano, R; Molinari, M; Astolfi, L; Cincotti, F; Mattia, D

    2016-01-01

    Communication and control of the external environment can be provided via brain-computer interfaces (BCIs) to replace a lost function in persons with severe diseases and little or no chance of recovery of motor abilities (ie, amyotrophic lateral sclerosis, brainstem stroke). BCIs allow to intentionally modulate brain activity, to train specific brain functions, and to control prosthetic devices, and thus, this technology can also improve the outcome of rehabilitation programs in persons who have suffered from a central nervous system injury (ie, stroke leading to motor or cognitive impairment). Overall, the BCI researcher is challenged to interact with people with severe disabilities and professionals in the field of neurorehabilitation. This implies a deep understanding of the disabled condition on the one hand, and it requires extensive knowledge on the physiology and function of the human brain on the other. For these reasons, a multidisciplinary approach and the continuous involvement of BCI users in the design, development, and testing of new systems are desirable. In this chapter, we will focus on noninvasive EEG-based systems and their clinical applications, highlighting crucial issues to foster BCI translation outside laboratories to eventually become a technology usable in real-life realm. © 2016 Elsevier B.V. All rights reserved.

  14. Towards the automated localisation of targets in rapid image-sifting by collaborative brain-computer interfaces.

    Directory of Open Access Journals (Sweden)

    Ana Matran-Fernandez

    Full Text Available The N2pc is a lateralised Event-Related Potential (ERP that signals a shift of attention towards the location of a potential object of interest. We propose a single-trial target-localisation collaborative Brain-Computer Interface (cBCI that exploits this ERP to automatically approximate the horizontal position of targets in aerial images. Images were presented by means of the rapid serial visual presentation technique at rates of 5, 6 and 10 Hz. We created three different cBCIs and tested a participant selection method in which groups are formed according to the similarity of participants' performance. The N2pc that is elicited in our experiments contains information about the position of the target along the horizontal axis. Moreover, combining information from multiple participants provides absolute median improvements in the area under the receiver operating characteristic curve of up to 21% (for groups of size 3 with respect to single-user BCIs. These improvements are bigger when groups are formed by participants with similar individual performance, and much of this effect can be explained using simple theoretical models. Our results suggest that BCIs for automated triaging can be improved by integrating two classification systems: one devoted to target detection and another to detect the attentional shifts associated with lateral targets.

  15. An improved cortex-like neuromorphic system for target recognitions

    Science.gov (United States)

    Tsitiridis, Aristeidis; Yuen, Peter; Hong, Kan; Chen, Tong; Ibrahim, Izzati; Jackman, James; James, David; Richardson, Mark

    2010-10-01

    This paper reports on the enhancement of biologically-inspired machine vision through a rotation invariance mechanism. Research over the years has suggested that rotation invariance is one of the fundamental generic elements of object constancy, a known generic visual ability of the human brain. Cortex-like vision unlike conventional pixel based machine vision is achieved by mimicking neuromorphic mechanisms of the primates' brain. In this preliminary study, rotation invariance is implemented through histograms from Gabor features of an object. The performance of rotation invariance in the neuromorphic algorithm is assessed by the classification accuracies of a test data set which consists of image objects in five different orientations. It is found that a much more consistent classification result over these five different oriented data sets has been achieved by the integrated rotation invariance neuromorphic algorithm compared to the one without. In addition, the issue of varying aspect ratios of input images to these models is also addressed, in an attempt to create a robust algorithm against a wider variability of input data. The extension of the present achievement is to improve the recognition accuracies while incorporating it to a series of different real-world scenarios which would challenge the approach accordingly.

  16. Intranasal microemulsion for targeted nose to brain delivery in neurocysticercosis: Role of docosahexaenoic acid.

    Science.gov (United States)

    Shinde, Rajshree L; Bharkad, Gopal P; Devarajan, Padma V

    2015-10-01

    Intranasal Microemulsions (MEs) for nose to brain delivery of a novel combination of Albendazole sulfoxide (ABZ-SO) and Curcumin (CUR) for Neurocysticercosis (NCC), a brain infection are reported. MEs prepared by simple solution exhibited a globule size 95% was seen for both drugs. High drug targeting efficiency (DTE) to the brain compared to Capmul ME and drug solution (P<0.05) suggested the role of DHA in aiding nose to brain delivery. Histopathology study confirmed no significant changes. High efficacy of ABZ-SO: CUR (100:10ng/mL) DHA ME in vitro on Taenia solium cysts was confirmed by complete ALP inhibition and disintegration of cysts at 96h. Considering that the brain concentration at 24h was 1400±160.1ng/g (ABZ-SO) and 120±35.2ng/g (CUR), the in vitro efficacy seen at a 10 fold lower concentration of the drugs strongly supports the assumption of clinical efficacy. The intranasal DHA ME is a promising delivery system for targeted nose to brain delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Cre Fused with RVG Peptide Mediates Targeted Genome Editing in Mouse Brain Cells In Vivo.

    Science.gov (United States)

    Zou, Zhiyuan; Sun, Zhaolin; Li, Pan; Feng, Tao; Wu, Sen

    2016-12-14

    Cell penetrating peptides (CPPs) are short peptides that can pass through cell membranes. CPPs can facilitate the cellular entry of proteins, macromolecules, nanoparticles and drugs. RVG peptide (RVG hereinafter) is a 29-amino-acid CPP derived from a rabies virus glycoprotein that can cross the blood-brain barrier (BBB) and enter brain cells. However, whether RVG can be used for genome editing in the brain has not been reported. In this work, we combined RVG with Cre recombinase for bacterial expression. The purified RVG-Cre protein cut plasmids in vitro and traversed cell membranes in cultured Neuro2a cells. By tail vein-injecting RVG-Cre into Cre reporter mouse lines mTmG and Rosa26lacZ, we demonstrated that RVG-Cre could target brain cells and achieve targeted somatic genome editing in adult mice. This direct delivery of the gene-editing enzyme protein into mouse brains with RVG is much safer than plasmid- or viral-based methods, holding promise for further applications in the treatment of various brain diseases.

  18. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma.

    Science.gov (United States)

    Egawa, Junji; Schilling, Jan M; Cui, Weihua; Posadas, Edmund; Sawada, Atsushi; Alas, Basheer; Zemljic-Harpf, Alice E; Fannon-Pavlich, McKenzie J; Mandyam, Chitra D; Roth, David M; Patel, Hemal H; Patel, Piyush M; Head, Brian P

    2017-08-01

    Studies in vitro and in vivo demonstrate that membrane/lipid rafts and caveolin (Cav) organize progrowth receptors, and, when overexpressed specifically in neurons, Cav-1 augments neuronal signaling and growth and improves cognitive function in adult and aged mice; however, whether neuronal Cav-1 overexpression can preserve motor and cognitive function in the brain trauma setting is unknown. Here, we generated a neuron-targeted Cav-1-overexpressing transgenic (Tg) mouse [synapsin-driven Cav-1 (SynCav1 Tg)] and subjected it to a controlled cortical impact model of brain trauma and measured biochemical, anatomic, and behavioral changes. SynCav1 Tg mice exhibited increased hippocampal expression of Cav-1 and membrane/lipid raft localization of postsynaptic density protein 95, NMDA receptor, and tropomyosin receptor kinase B. When subjected to a controlled cortical impact, SynCav1 Tg mice demonstrated preserved hippocampus-dependent fear learning and memory, improved motor function recovery, and decreased brain lesion volume compared with wild-type controls. Neuron-targeted overexpression of Cav-1 in the adult brain prevents hippocampus-dependent learning and memory deficits, restores motor function after brain trauma, and decreases brain lesion size induced by trauma. Our findings demonstrate that neuron-targeted Cav-1 can be used as a novel therapeutic strategy to restore brain function and prevent trauma-associated maladaptive plasticity.-Egawa, J., Schilling, J. M., Cui, W., Posadas, E., Sawada, A., Alas, B., Zemljic-Harpf, A. E., Fannon-Pavlich, M. J., Mandyam, C. D., Roth, D. M., Patel, H. H., Patel, P. M., Head, B. P. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma. © FASEB.

  19. Kinome Profiling in Pediatric Brain Tumors as a New Approach for Target Discovery

    NARCIS (Netherlands)

    Sikkema, Arend H.; Diks, Sander H.; den Dunnen, Wilfred F. A.; ter Elst, Arja; Scherpen, Frank J. G.; Hoving, Eelco W.; Ruijtenbeek, Rob; Boender, Piet J.; de Wijn, Rik; Kamps, Willem A.; Peppelenbosch, Maikel P.; de Bont, Eveline S. J. M.

    2009-01-01

    Progression in pediatric brain tumor growth is thought to be the net result of signaling through various protein kinase-mediated networks driving cell proliferation. Defining new targets for treatment of human malignancies, without a priori knowledge on aberrant cell signaling activity, remains

  20. Apelin targets gut contraction to control glucose metabolism via the brain

    Science.gov (United States)

    Fournel, Audren; Drougard, Anne; Duparc, Thibaut; Marlin, Alysson; Brierley, Stuart M; Castro, Joel; Le-Gonidec, Sophie; Masri, Bernard; Colom, André; Lucas, Alexandre; Rousset, Perrine; Cenac, Nicolas; Vergnolle, Nathalie; Valet, Philippe; Cani, Patrice D; Knauf, Claude

    2017-01-01

    Objective The gut–brain axis is considered as a major regulatory checkpoint in the control of glucose homeostasis. The detection of nutrients and/or hormones in the duodenum informs the hypothalamus of the host's nutritional state. This process may occur via hypothalamic neurons modulating central release of nitric oxide (NO), which in turn controls glucose entry into tissues. The enteric nervous system (ENS) modulates intestinal contractions in response to various stimuli, but the importance of this interaction in the control of glucose homeostasis via the brain is unknown. We studied whether apelin, a bioactive peptide present in the gut, regulates ENS-evoked contractions, thereby identifying a new physiological partner in the control of glucose utilisation via the hypothalamus. Design We measured the effect of apelin on electrical and mechanical duodenal responses via telemetry probes and isotonic sensors in normal and obese/diabetic mice. Changes in hypothalamic NO release, in response to duodenal contraction modulated by apelin, were evaluated in real time with specific amperometric probes. Glucose utilisation in tissues was measured with orally administrated radiolabeled glucose. Results In normal and obese/diabetic mice, glucose utilisation is improved by the decrease of ENS/contraction activities in response to apelin, which generates an increase in hypothalamic NO release. As a consequence, glucose entry is significantly increased in the muscle. Conclusions Here, we identify a novel mode of communication between the intestine and the hypothalamus that controls glucose utilisation. Moreover, our data identified oral apelin administration as a novel potential target to treat metabolic disorders. PMID:26565000

  1. Apelin targets gut contraction to control glucose metabolism via the brain.

    Science.gov (United States)

    Fournel, Audren; Drougard, Anne; Duparc, Thibaut; Marlin, Alysson; Brierley, Stuart M; Castro, Joel; Le-Gonidec, Sophie; Masri, Bernard; Colom, André; Lucas, Alexandre; Rousset, Perrine; Cenac, Nicolas; Vergnolle, Nathalie; Valet, Philippe; Cani, Patrice D; Knauf, Claude

    2017-02-01

    The gut-brain axis is considered as a major regulatory checkpoint in the control of glucose homeostasis. The detection of nutrients and/or hormones in the duodenum informs the hypothalamus of the host's nutritional state. This process may occur via hypothalamic neurons modulating central release of nitric oxide (NO), which in turn controls glucose entry into tissues. The enteric nervous system (ENS) modulates intestinal contractions in response to various stimuli, but the importance of this interaction in the control of glucose homeostasis via the brain is unknown. We studied whether apelin, a bioactive peptide present in the gut, regulates ENS-evoked contractions, thereby identifying a new physiological partner in the control of glucose utilisation via the hypothalamus. We measured the effect of apelin on electrical and mechanical duodenal responses via telemetry probes and isotonic sensors in normal and obese/diabetic mice. Changes in hypothalamic NO release, in response to duodenal contraction modulated by apelin, were evaluated in real time with specific amperometric probes. Glucose utilisation in tissues was measured with orally administrated radiolabeled glucose. In normal and obese/diabetic mice, glucose utilisation is improved by the decrease of ENS/contraction activities in response to apelin, which generates an increase in hypothalamic NO release. As a consequence, glucose entry is significantly increased in the muscle. Here, we identify a novel mode of communication between the intestine and the hypothalamus that controls glucose utilisation. Moreover, our data identified oral apelin administration as a novel potential target to treat metabolic disorders. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Gamma Knife irradiation method based on dosimetric controls to target small areas in rat brains.

    Science.gov (United States)

    Constanzo, Julie; Paquette, Benoit; Charest, Gabriel; Masson-Côté, Laurence; Guillot, Mathieu

    2015-05-01

    Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The purpose of this work is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomography (CT), to estimate positioning variations relative to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates obtained from CT images, different regions of the brain were delimited and a treatment plan was generated. A single isocenter treatment plan delivering ≥ 100 Gy in 100% of the target volume was produced by Leksell GammaPlan using the 4 mm diameter collimator of sectors 4, 5, 7, and 8 of the Gamma Knife unit. Impact of positioning deviations of the rat brain on dose deposition was simulated by GammaPlan and validated with dosimetric measurements. The authors' results showed that 90% of the target volume received 100 ± 8 Gy and the maximum of deposited dose was 125 ± 0.7 Gy, which corresponds to an excellent relative standard deviation of 0.6%. This dose deposition calculated with GammaPlan was validated with dosimetric films resulting in a dose-profile agreement within 5%, both in X- and Z-axes. The authors' results demonstrate the feasibility of standardizing the irradiation procedure of a small volume in the rat brain using a Gamma Knife.

  3. Gamma Knife irradiation method based on dosimetric controls to target small areas in rat brains

    Energy Technology Data Exchange (ETDEWEB)

    Constanzo, Julie; Paquette, Benoit; Charest, Gabriel [Center for Radiotherapy Research, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001 12th Avenue Nord, Sherbrooke, Québec J1H 5N4 (Canada); Masson-Côté, Laurence; Guillot, Mathieu, E-mail: mathieu.guillot@usherbrooke.ca [Department of Radiation Oncology, Centre Hospitalier Universitaire de Sherbrooke, 3001 12th Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada and Center for Radiotherapy Research, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001 12th Avenue Nord, Sherbrooke, Québec J1H 5N4 (Canada)

    2015-05-15

    Purpose: Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The purpose of this work is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Methods: Euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomography (CT), to estimate positioning variations relative to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates obtained from CT images, different regions of the brain were delimited and a treatment plan was generated. A single isocenter treatment plan delivering ≥100 Gy in 100% of the target volume was produced by Leksell GammaPlan using the 4 mm diameter collimator of sectors 4, 5, 7, and 8 of the Gamma Knife unit. Impact of positioning deviations of the rat brain on dose deposition was simulated by GammaPlan and validated with dosimetric measurements. Results: The authors’ results showed that 90% of the target volume received 100 ± 8 Gy and the maximum of deposited dose was 125 ± 0.7 Gy, which corresponds to an excellent relative standard deviation of 0.6%. This dose deposition calculated with GammaPlan was validated with dosimetric films resulting in a dose-profile agreement within 5%, both in X- and Z-axes. Conclusions: The authors’ results demonstrate the feasibility of standardizing the irradiation procedure of a small volume in the rat brain using a Gamma Knife.

  4. The human functional brain network demonstrates structural and dynamical resilience to targeted attack.

    Science.gov (United States)

    Joyce, Karen E; Hayasaka, Satoru; Laurienti, Paul J

    2013-01-01

    In recent years, the field of network science has enabled researchers to represent the highly complex interactions in the brain in an approachable yet quantitative manner. One exciting finding since the advent of brain network research was that the brain network can withstand extensive damage, even to highly connected regions. However, these highly connected nodes may not be the most critical regions of the brain network, and it is unclear how the network dynamics are impacted by removal of these key nodes. This work seeks to further investigate the resilience of the human functional brain network. Network attack experiments were conducted on voxel-wise functional brain networks and region-of-interest (ROI) networks of 5 healthy volunteers. Networks were attacked at key nodes using several criteria for assessing node importance, and the impact on network structure and dynamics was evaluated. The findings presented here echo previous findings that the functional human brain network is highly resilient to targeted attacks, both in terms of network structure and dynamics.

  5. The human functional brain network demonstrates structural and dynamical resilience to targeted attack.

    Directory of Open Access Journals (Sweden)

    Karen E Joyce

    Full Text Available In recent years, the field of network science has enabled researchers to represent the highly complex interactions in the brain in an approachable yet quantitative manner. One exciting finding since the advent of brain network research was that the brain network can withstand extensive damage, even to highly connected regions. However, these highly connected nodes may not be the most critical regions of the brain network, and it is unclear how the network dynamics are impacted by removal of these key nodes. This work seeks to further investigate the resilience of the human functional brain network. Network attack experiments were conducted on voxel-wise functional brain networks and region-of-interest (ROI networks of 5 healthy volunteers. Networks were attacked at key nodes using several criteria for assessing node importance, and the impact on network structure and dynamics was evaluated. The findings presented here echo previous findings that the functional human brain network is highly resilient to targeted attacks, both in terms of network structure and dynamics.

  6. Targeting the folate receptor: improving efficacy in inorganic medicinal chemistry.

    Science.gov (United States)

    Carron, Pauraic Mc; Crowley, Aisling; O'Shea, Denis; McCann, Malachy; Howe, Orla; Hunt, Mary; Devereux, Michael

    2018-02-09

    The discovery of the high-affinity, high-specificity folate receptor in mamalian kidney cells, coupled with the ability of folate to enter cells by folate receptor-mediated endocytosis and the subsequent elucidation of the folate receptor's overexpression in specific cancer cell types; heralded the arrival of the area of chemotherapeutic folate targeting. The application of purely organic folate-based small-molecule drug conjugates that selectively target the folate receptor, which is over expressed in several diseases such as cancer, is well established. The application of inorganic folate-targeted drugs offers significant potential to expand and enhance this therapeutic approach. From the data made available to date, it is apparent that this aspect of inorganic medicinal chemistry is in its youth but has the capability to contribute greatly to cancer research, both in therapy and diagnosis. The union of folate-receptor targeting and inorganic medicine may also lead to the development of treatments for disorders such as chronic-inflammation, tuberculosis, neurodegenerative disease and leishmaniasis. In this review, we summarize what is known about the coordination chemistry of folic acid and the therapeutic potential of such complexes. We also describe approaches adopted to conjugate platinum drugs to folate- or folate-carrier- systems and their prospective ability to overcome problems associated with unwanted side-effects and resistance by improving their delivery and/or selectivity. The literature pertaining to non-platinum metal complex conjugates with folic acid is also reviewed revealing that this is an area that offers significant potential to develop targeted therapeutic approaches in areas such as chemotherapy and molecular imaging for diagnostics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Positron emission tomography and target-controlled infusion for precise modulation of brain drug concentration

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Olof [Uppsala Imanet AB, 751 85 Uppsala (Sweden); Department of Radiology, Oncology and Clinical Immunology, Division of Radiology, Uppsala University, 751 85 Uppsala (Sweden)], E-mail: olof.eriksson@uppsala.imanet.se; Josephsson, Ray [Clinical Imaging Unit, Novartis Pharma AG, CH 9057 Basel (Switzerland); Langstrom, Bengt [Uppsala Imanet AB, 751 85 Uppsala (Sweden); Bergstroem, Mats [Department of Pharmaceutical Biosciences, Faculty of Pharmacy, Uppsala University, 751 24 Uppsala (Sweden)

    2008-04-15

    Introduction: There are several instances when it is desirable to control brain concentration of pharmaceuticals, e.g., to modulate the concentration of anesthetic agents to different desired levels fitting to different needs during the course of surgery. This has so far only been possible using indirect estimates of drug concentration such as assuming constant relation between tissue and blood including extrapolations from animals. Methods: A system for controlling target tissue concentration (UIPump) was used to regulate whole-brain concentrations of a central benzodiazepine receptor antagonist at therapeutic levels with input from brain kinetics as determined with PET. The system was tested by using pharmacological doses of flumazenil mixed with tracer amounts of [{sup 11}C]flumazenil. Flumazenil was used as a model compound for anesthesia. An infusion scheme to produce three different steady-state levels in sequence was designed based on kinetic curves obtained after bolus injection. The subjects (Sprague-Dawley rats, n=6) were monitored in a microPET scanner during the whole experiment to verify resulting brain kinetic curves. Results: A steady-state brain concentration was rapidly achieved corresponding to a whole-brain concentration of 118{+-}6 ng/ml. As the infusion rate decreased to lower the exposure by a factor of 2, the brain concentration decreased to 56{+-}4 ng/ml. A third increased steady-state level of anesthesia corresponding to a whole-brain concentration of 107{+-}7 ng/ml was rapidly achieved. Conclusion: The experimental setup with computerized pump infusion and PET supervision enables accurate setting of target tissue drug concentration.

  8. Dual-Targeting Lactoferrin-Conjugated Polymerized Magnetic Polydiacetylene-Assembled Nanocarriers with Self-Responsive Fluorescence/Magnetic Resonance Imaging for In Vivo Brain Tumor Therapy.

    Science.gov (United States)

    Fang, Jen-Hung; Chiu, Tsung-Lang; Huang, Wei-Chen; Lai, Yen-Ho; Hu, Shang-Hsiu; Chen, You-Yin; Chen, San-Yuan

    2016-03-01

    Maintaining a high concentration of therapeutic agents in the brain is difficult due to the restrictions of the blood-brain barrier (BBB) and rapid removal from blood circulation. To enable controlled drug release and enhance the blood-brain barrier (BBB)-crossing efficiency for brain tumor therapy, a new dual-targeting magnetic polydiacetylene nanocarriers (PDNCs) delivery system modified with lactoferrin (Lf) is developed. The PDNCs are synthesized using the ultraviolet (UV) cross-linkable 10,12-pentacosadiynoic acid (PCDA) monomers through spontaneous assembling onto the surface of superparamagnetic iron oxide (SPIO) nanoparticles to form micelles-polymerized structures. The results demonstrate that PDNCs will reduce the drug leakage and further control the drug release, and display self-responsive fluorescence upon intracellular uptake for cell trafficking and imaging-guided tumor treatment. The magnetic Lf-modified PDNCs with magnetic resonance imaging (MRI) and dual-targeting ability can enhance the transportation of the PDNCs across the BBB for tracking and targeting gliomas. An enhanced therapeutic efficiency can be obtained using Lf-Cur (Curcumin)-PDNCs by improving the retention time of the encapsulated Cur and producing fourfold higher Cur amounts in the brain compared to free Cur. Animal studies also confirm that Lf targeting and controlled release act synergistically to significantly suppress tumors in orthotopic brain-bearing rats. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Post-mortem Findings in Huntington's Deep Brain Stimulation: A Moving Target Due to Atrophy

    Directory of Open Access Journals (Sweden)

    Vinata Vedam-Mai

    2016-04-01

    Full Text Available Background: Deep brain stimulation (DBS has been shown to be effective for Parkinson’s disease, essential tremor, and primary dystonia. However, mixed results have been reported in Huntington’s disease (HD. Case Report: A single case of HD DBS was identified from the University of Florida DBS Brain Tissue Network. The clinical presentation, evolution, surgical planning, DBS parameters, clinical outcomes, and brain pathological changes are summarized. Discussion: This case of HD DBS revealed that chorea may improve and be sustained. Minimal histopathological changes were noted around the DBS leads. Severe atrophy due to HD likely changed the DBS lead position relative to the internal capsule.

  10. Tailoring Lipid and Polymeric Nanoparticles as siRNA Carriers towards the Blood-Brain Barrier - from Targeting to Safe Administration.

    Science.gov (United States)

    Gomes, Maria João; Fernandes, Carlos; Martins, Susana; Borges, Fernanda; Sarmento, Bruno

    2017-03-01

    Blood-brain barrier is a tightly packed layer of endothelial cells surrounding the brain that acts as the main obstacle for drugs enter the central nervous system (CNS), due to its unique features, as tight junctions and drug efflux systems. Therefore, since the incidence of CNS disorders is increasing worldwide, medical therapeutics need to be improved. Consequently, aiming to surpass blood-brain barrier and overcome CNS disabilities, silencing P-glycoprotein as a drug efflux transporter at brain endothelial cells through siRNA is considered a promising approach. For siRNA enzymatic protection and efficient delivery to its target, two different nanoparticles platforms, solid lipid (SLN) and poly-lactic-co-glycolic (PLGA) nanoparticles were used in this study. Polymeric PLGA nanoparticles were around 115 nm in size and had 50 % of siRNA association efficiency, while SLN presented 150 nm and association efficiency close to 52 %. Their surface was functionalized with a peptide-binding transferrin receptor, in a site-oriented manner confirmed by NMR, and their targeting ability against human brain endothelial cells was successfully demonstrated by fluorescence microscopy and flow cytometry. The interaction of modified nanoparticles with brain endothelial cells increased 3-fold compared to non-modified lipid nanoparticles, and 4-fold compared to non-modified PLGA nanoparticles, respectively. These nanosystems, which were also demonstrated to be safe for human brain endothelial cells, without significant cytotoxicity, bring a new hopeful breath to the future of brain diseases therapies.

  11. A collaborative brain-computer interface for improving human performance.

    Directory of Open Access Journals (Sweden)

    Yijun Wang

    Full Text Available Electroencephalogram (EEG based brain-computer interfaces (BCI have been studied since the 1970s. Currently, the main focus of BCI research lies on the clinical use, which aims to provide a new communication channel to patients with motor disabilities to improve their quality of life. However, the BCI technology can also be used to improve human performance for normal healthy users. Although this application has been proposed for a long time, little progress has been made in real-world practices due to technical limits of EEG. To overcome the bottleneck of low single-user BCI performance, this study proposes a collaborative paradigm to improve overall BCI performance by integrating information from multiple users. To test the feasibility of a collaborative BCI, this study quantitatively compares the classification accuracies of collaborative and single-user BCI applied to the EEG data collected from 20 subjects in a movement-planning experiment. This study also explores three different methods for fusing and analyzing EEG data from multiple subjects: (1 Event-related potentials (ERP averaging, (2 Feature concatenating, and (3 Voting. In a demonstration system using the Voting method, the classification accuracy of predicting movement directions (reaching left vs. reaching right was enhanced substantially from 66% to 80%, 88%, 93%, and 95% as the numbers of subjects increased from 1 to 5, 10, 15, and 20, respectively. Furthermore, the decision of reaching direction could be made around 100-250 ms earlier than the subject's actual motor response by decoding the ERP activities arising mainly from the posterior parietal cortex (PPC, which are related to the processing of visuomotor transmission. Taken together, these results suggest that a collaborative BCI can effectively fuse brain activities of a group of people to improve the overall performance of natural human behavior.

  12. Stereotactic Radiosurgery of the Postoperative Resection Cavity for Brain Metastases: Prospective Evaluation of Target Margin on Tumor Control

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Clara Y.H.; Chang, Steven D. [Department of Neurosurgery, Stanford University Medical Center, Stanford, California (United States); Gibbs, Iris C. [Department of Radiation Oncology, Stanford University Medical Center, Stanford, California (United States); Adler, John R.; Harsh, Griffith R.; Lieberson, Robert E. [Department of Neurosurgery, Stanford University Medical Center, Stanford, California (United States); Soltys, Scott G., E-mail: sgsoltys@stanford.edu [Department of Radiation Oncology, Stanford University Medical Center, Stanford, California (United States)

    2012-10-01

    Purpose: Given the neurocognitive toxicity associated with whole-brain irradiation (WBRT), approaches to defer or avoid WBRT after surgical resection of brain metastases are desirable. Our initial experience with stereotactic radiosurgery (SRS) targeting the resection cavity showed promising results. We examined the outcomes of postoperative resection cavity SRS to determine the effect of adding a 2-mm margin around the resection cavity on local failure (LF) and toxicity. Patients and Methods: We retrospectively evaluated 120 cavities in 112 patients treated from 1998-2009. Factors associated with LF and distant brain failure (DF) were analyzed using competing risks analysis, with death as a competing risk. The overall survival (OS) rate was calculated by the Kaplan-Meier product-limit method; variables associated with OS were evaluated using the Cox proportional hazards and log rank tests. Results: The 12-month cumulative incidence rates of LF and DF, with death as a competing risk, were 9.5% and 54%, respectively. On univariate analysis, expansion of the cavity with a 2-mm margin was associated with decreased LF; the 12-month cumulative incidence rates of LF with and without margin were 3% and 16%, respectively (P=.042). The 12-month toxicity rates with and without margin were 3% and 8%, respectively (P=.27). On multivariate analysis, melanoma histology (P=.038) and number of brain metastases (P=.0097) were associated with higher DF. The median OS time was 17 months (range, 2-114 months), with a 12-month OS rate of 62%. Overall, WBRT was avoided in 72% of the patients. Conclusion: Adjuvant SRS targeting the resection cavity of brain metastases results in excellent local control and allows WBRT to be avoided in a majority of patients. A 2-mm margin around the resection cavity improved local control without increasing toxicity compared with our prior technique with no margin.

  13. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration

    Science.gov (United States)

    Chertok, Beata; David, Allan E.; Yang, Victor C.

    2010-01-01

    This study aimed to examine the applicability of polyethyleneimine (PEI)-modified magnetic nanoparticles (GPEI) as a potential vascular drug/gene carrier to brain tumors. In vitro, GPEI exhibited high cell association and low cell toxicity – properties which are highly desirable for intracellular drug/gene delivery. In addition, a high saturation magnetization of 93 emu/g Fe was expected to facilitate magnetic targeting of GPEI to brain tumor lesions. However, following intravenous administration, GPEI could not be magnetically accumulated in tumors of rats harboring orthotopic 9L-gliosarcomas due to its poor pharmacokinetic properties, reflected by a negligibly low plasma AUC of 12 ± 3 μg Fe/ml*min. To improve “passive” GPEI presentation to brain tumor vasculature for subsequent “active” magnetic capture, we examined the intra-carotid route as an alternative for nanoparticle administration. Intra-carotid administration in conjunction with magnetic targeting resulted in 30-fold (p = 0.002) increase in tumor entrapment of GPEI compared to that seen with intravenous administration. In addition, magnetic accumulation of cationic GPEI (ζ-potential = + 37.2 mV) in tumor lesions was 5.2-fold higher (p = 0.004) than that achieved with slightly anionic G100 (ζ-potential = −12 mV) following intra-carotid administration, while no significant accumulation difference was detected between the two types of nanoparticles in the contra-lateral brain (p = 0.187). These promising results warrant further investigation of GPEI as a potential cell-permeable, magnetically-responsive platform for brain tumor delivery of drugs and genes. PMID:20494439

  14. Risk of Leptomeningeal Disease in Patients Treated With Stereotactic Radiosurgery Targeting the Postoperative Resection Cavity for Brain Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Atalar, Banu [Department of Radiation Oncology, Acibadem University School of Medicine, Istanbul (Turkey); Modlin, Leslie A. [Department of Radiation Oncology, Stanford University Medical Center, Stanford, California (United States); Choi, Clara Y.H.; Adler, John R. [Department of Neurosurgery, Stanford University Medical Center, Stanford, California (United States); Gibbs, Iris C. [Department of Radiation Oncology, Stanford University Medical Center, Stanford, California (United States); Chang, Steven D.; Harsh, Griffith R.; Li, Gordon [Department of Neurosurgery, Stanford University Medical Center, Stanford, California (United States); Nagpal, Seema [Department of Neurology, Stanford University Medical Center, Stanford, California (United States); Hanlon, Alexandra [Department of Radiation Oncology, Stanford University Medical Center, Stanford, California (United States); Soltys, Scott G., E-mail: sgsoltys@stanford.edu [Department of Radiation Oncology, Stanford University Medical Center, Stanford, California (United States)

    2013-11-15

    Purpose: We sought to determine the risk of leptomeningeal disease (LMD) in patients treated with stereotactic radiosurgery (SRS) targeting the postsurgical resection cavity of a brain metastasis, deferring whole-brain radiation therapy (WBRT) in all patients. Methods and Materials: We retrospectively reviewed 175 brain metastasis resection cavities in 165 patients treated from 1998 to 2011 with postoperative SRS. The cumulative incidence rates, with death as a competing risk, of LMD, local failure (LF), and distant brain parenchymal failure (DF) were estimated. Variables associated with LMD were evaluated, including LF, DF, posterior fossa location, resection type (en-bloc vs piecemeal or unknown), and histology (lung, colon, breast, melanoma, gynecologic, other). Results: With a median follow-up of 12 months (range, 1-157 months), median overall survival was 17 months. Twenty-one of 165 patients (13%) developed LMD at a median of 5 months (range, 2-33 months) following SRS. The 1-year cumulative incidence rates, with death as a competing risk, were 10% (95% confidence interval [CI], 6%-15%) for developing LF, 54% (95% CI, 46%-61%) for DF, and 11% (95% CI, 7%-17%) for LMD. On univariate analysis, only breast cancer histology (hazard ratio, 2.96) was associated with an increased risk of LMD. The 1-year cumulative incidence of LMD was 24% (95% CI, 9%-41%) for breast cancer compared to 9% (95% CI, 5%-14%) for non-breast histology (P=.004). Conclusions: In patients treated with SRS targeting the postoperative cavity following resection, those with breast cancer histology were at higher risk of LMD. It is unknown whether the inclusion of whole-brain irradiation or novel strategies such as preresection SRS would improve this risk or if the rate of LMD is inherently higher with breast histology.

  15. Unilateral Opening of Rat Blood-Brain Barrier Assisted by Diagnostic Ultrasound Targeted Microbubbles Destruction

    Directory of Open Access Journals (Sweden)

    Yali Xu

    2016-01-01

    Full Text Available Objective. Blood-brain barrier (BBB is a key obstacle that prevents the medication from blood to the brain. Microbubble-enhanced cavitation by focused ultrasound can open the BBB and proves to be valuable in the brain drug delivery. The study aimed to explore the feasibility, efficacy, and safety of unilateral opening of BBB using diagnostic ultrasound targeted microbubbles destruction in rats. Methods. A transtemporal bone irradiation of diagnostic ultrasound and intravenous injection of lipid-coated microbubbles were performed at unilateral hemisphere. Pathological changes were monitored. Evans Blue extravasation grades, extraction from brain tissue, and fluorescence optical density were quantified. Lanthanum nitrate was traced by transmission electron microscopy. Results. After diagnostic ultrasound mediated microbubbles destruction, Evans Blue extravasation and fluorescence integrated optical density were significantly higher in the irradiated hemisphere than the contralateral side (all p<0.01. Erythrocytes extravasations were demonstrated in the ultrasound-exposed hemisphere (4±1, grade 2 while being invisible in the control side. Lanthanum nitrate tracers leaked through interendothelial cleft and spread to the nerve fiber existed in the irradiation side. Conclusions. Transtemporal bone irradiation under DUS mediated microbubble destruction provides us with a more accessible, safer, and higher selective BBB opening approach in rats, which is advantageous in brain targeted drugs delivery.

  16. Unilateral Opening of Rat Blood-Brain Barrier Assisted by Diagnostic Ultrasound Targeted Microbubbles Destruction.

    Science.gov (United States)

    Xu, Yali; Cui, Hai; Zhu, Qiong; Hua, Xing; Xia, Hongmei; Tan, Kaibin; Gao, Yunhua; Zhao, Jing; Liu, Zheng

    2016-01-01

    Objective. Blood-brain barrier (BBB) is a key obstacle that prevents the medication from blood to the brain. Microbubble-enhanced cavitation by focused ultrasound can open the BBB and proves to be valuable in the brain drug delivery. The study aimed to explore the feasibility, efficacy, and safety of unilateral opening of BBB using diagnostic ultrasound targeted microbubbles destruction in rats. Methods. A transtemporal bone irradiation of diagnostic ultrasound and intravenous injection of lipid-coated microbubbles were performed at unilateral hemisphere. Pathological changes were monitored. Evans Blue extravasation grades, extraction from brain tissue, and fluorescence optical density were quantified. Lanthanum nitrate was traced by transmission electron microscopy. Results. After diagnostic ultrasound mediated microbubbles destruction, Evans Blue extravasation and fluorescence integrated optical density were significantly higher in the irradiated hemisphere than the contralateral side (all p ultrasound-exposed hemisphere (4 ± 1, grade 2) while being invisible in the control side. Lanthanum nitrate tracers leaked through interendothelial cleft and spread to the nerve fiber existed in the irradiation side. Conclusions. Transtemporal bone irradiation under DUS mediated microbubble destruction provides us with a more accessible, safer, and higher selective BBB opening approach in rats, which is advantageous in brain targeted drugs delivery.

  17. GM-CSF is not essential for experimental autoimmune encephalomyelitis but promotes brain-targeted disease.

    Science.gov (United States)

    Pierson, Emily R; Goverman, Joan M

    2017-04-06

    Experimental autoimmune encephalomyelitis (EAE) has been used as an animal model of multiple sclerosis to identify pathogenic cytokines that could be therapeutic targets. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is the only cytokine reported to be essential for EAE. We investigated the role of GM-CSF in EAE in C3HeB/FeJ mice that uniquely exhibit extensive brain and spinal cord inflammation. Unexpectedly, GM-CSF-deficient C3HeB/FeJ mice were fully susceptible to EAE because IL-17 activity compensated for the loss of GM-CSF during induction of spinal cord-targeted disease. In contrast, both GM-CSF and IL-17 were needed to fully overcome the inhibitory influence of IFN-γ on the induction of inflammation in the brain. Both GM-CSF and IL-17 independently promoted neutrophil accumulation in the brain, which was essential for brain-targeted disease. These results identify a GM-CSF/IL-17/IFN-γ axis that regulates inflammation in the central nervous system and suggest that a combination of cytokine-neutralizing therapies may be needed to dampen central nervous system autoimmunity.

  18. Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on multimodal MRI, histology and structural connectivity.

    Science.gov (United States)

    Ewert, Siobhan; Plettig, Philip; Li, Ningfei; Chakravarty, M Mallar; Collins, D Louis; Herrington, Todd M; Kühn, Andrea A; Horn, Andreas

    2017-05-20

    Three-dimensional atlases of subcortical brain structures are valuable tools to reference anatomy in neuroscience and neurology. For instance, they can be used to study the position and shape of the three most common deep brain stimulation (DBS) targets, the subthalamic nucleus (STN), internal part of the pallidum (GPi) and ventral intermediate nucleus of the thalamus (VIM) in spatial relationship to DBS electrodes. Here, we present a composite atlas based on manual segmentations of a multimodal high resolution brain template, histology and structural connectivity. In a first step, four key structures were defined on the template itself using a combination of multispectral image analysis and manual segmentation. Second, these structures were used as anchor points to coregister a detailed histological atlas into standard space. Results show that this approach significantly improved coregistration accuracy over previously published methods. Finally, a sub-segmentation of STN and GPi into functional zones was achieved based on structural connectivity. The result is a composite atlas that defines key nuclei on the template itself, fills the gaps between them using histology and further subdivides them using structural connectivity. We show that the atlas can be used to segment DBS targets in single subjects, yielding more accurate results compared to priorly published atlases. The atlas will be made publicly available and constitutes a resource to study DBS electrode localizations in combination with modern neuroimaging methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Modulating antibody affinity towards the transferrin receptor to increase brain uptake of anti-transferrin receptor antibody targeted gold nanoparticles

    DEFF Research Database (Denmark)

    Johnsen, Kasper Bendix; Bak, Martin; Melander, Fredrik

    2017-01-01

    . The transferrin receptor is exclusively expressed on capillaries of the brain, which makes it an interesting target for transport of drugs towards the brain. However, the current evidence on the receptor movement in brain capillaries does not suggest transcytosis, and delivering medicines or nanoparticles using......Drug delivery to the brain is hampered by the presence of the blood-brain barrier (BBB) that under physiological conditions precludes entrance of most substances contained in the systemic circulation. Thus, this barrier must be overcome to deliver medicines into the brain parenchyma...

  20. A pathology-based substrate for target definition in radiosurgery of brain metastases.

    Science.gov (United States)

    Baumert, Brigitta G; Rutten, Isabelle; Dehing-Oberije, Cary; Twijnstra, Albert; Dirx, Miranda J M; Debougnoux-Huppertz, Ria M T L; Lambin, Philippe; Kubat, Bela

    2006-09-01

    To investigate the need of a margin other than for accuracy reasons in stereotactic radiosurgery (SRS) of brain metastases by means of histopathology. Evaluation of 45 patients from two pathology departments having had brain metastases and an autopsy of the brain. Growth patterns were reviewed with a focus on infiltration beyond the metastases boundary and made visible with immunohistochemical staining: the metastasis itself with tumor-specific markers, surrounding normal brain tissue with a glial marker, and a possible capsule with a soft tissue marker. Measurements were corrected by a tissue-shrinkage correction factor taken from literature. Outcomes parameters for infiltration were mean and maximum depths of infiltration and number of measured infiltration sites. In 48 of 76 metastases, an infiltration was present. The largest group of metastases was lung cancer. Small-cell lung cancer (SCLC) and melanoma showed a maximum depth of infiltration of > or =1 mm, and other histologies melanoma, and sarcoma, the highest number of infiltrative sites were observed (median, 2; range, 1-8). SCLC showed significantly larger infiltrative growth, compared with other diagnostic groups. In NSCLC, the highest percentage of infiltration was present (70%). Infiltrative growth beyond the border of the brain metastasis was demonstrated in 63% of the cases evaluated. Infiltrative growth, therefore, has an impact in defining the clinical target volume for SRS of brain metastases, and a margin of approximately 1 mm should be added to the visible lesion.

  1. The role of nutrition on cognition and brain health in ageing: a targeted approach.

    Science.gov (United States)

    Monti, Jim M; Moulton, Christopher J; Cohen, Neal J

    2015-12-01

    Animal experiments and cross-sectional or prospective longitudinal research in human subjects suggest a role for nutrition in cognitive ageing. However, data from randomised controlled trials (RCT) that seek causal evidence for the impact of nutrients on cognitive ageing in humans often produce null results. Given that RCT test hypotheses in a rigorous fashion, one conclusion could be that the positive effects of nutrition on the aged brain observed in other study designs are spurious. On the other hand, it may be that the design of many clinical trials conducted thus far has been less than optimal. In the present review, we offer a blueprint for a more targeted approach to the design of RCT in nutrition, cognition and brain health in ageing that focuses on three key areas. First, the role of nutrition is more suited for the maintenance of health rather than the treatment of disease. Second, given that cognitive functions and brain regions vary in their susceptibility to ageing, those that especially deteriorate in senescence should be focal points in evaluating the efficacy of an intervention. Third, the outcome measures that assess change due to nutrition, especially in the cognitive domain, should not necessarily be the same neuropsychological tests used to assess gross brain damage or major pathological conditions. By addressing these three areas, we expect that clinical trials of nutrition, cognition and brain health in ageing will align more closely with other research in this field, and aid in revealing the true nature of nutrition's impact on the aged brain.

  2. Antisense-mediated RNA targeting: versatile and expedient genetic manipulation in the brain

    Directory of Open Access Journals (Sweden)

    Ioannis eZalachoras

    2011-07-01

    Full Text Available A limiting factor in brain research still is the difficulty to evaluate in vivo the role of the increasing number of proteins implicated in neuronal processes. We discuss here the potential of antisense-mediated RNA targeting approaches. We mainly focus on those that manipulate splicing (exon skipping and exon inclusion, but will also briefly discuss mRNA targeting. Classic knockdown of expression by mRNA targeting is only one possible application of antisense oligonucleotides (AON in the control of gene function. Exon skipping and inclusion are based on the interference of AONs with splicing of pre-mRNAs. These are powerful, specific and particularly versatile techniques, which can be used to circumvent pathogenic mutations, shift splice variant expression, knock down proteins, or to create molecular models using in-frame deletions. Pre-mRNA targeting is currently used both as a research tool, e.g. in models for motor neuron disease, and in clinical trials for Duchenne muscular dystrophy and amyotrophic lateral sclerosis.AONs are particularly promising in relation to brain research, as the modified AONs are taken up extremely fast in neurons and glial cells with a long residence, and without the need for viral vectors or other delivery tools, once inside the blood brain barrier. In this review we cover 1. The principles of antisense-mediated techniques, chemistry and efficacy.2. The pros and cons of AON approaches in the brain compared to other techniques of interfering with gene function, such as transgenesis and short hairpin RNAs, in terms of specificity of the manipulation, spatial and temporal control over gene expression, toxicity and delivery issues.3. The potential applications for Neuroscience. We conclude that there is good evidence from animal studies that the CNS can be successfully targeted, but the potential of the diverse AON-based approaches appears to be under-recognized.

  3. Targeting breast to brain metastatic tumours with death receptor ligand expressing therapeutic stem cells.

    Science.gov (United States)

    Bagci-Onder, Tugba; Du, Wanlu; Figueiredo, Jose-Luiz; Martinez-Quintanilla, Jordi; Shah, Khalid

    2015-06-01

    Characterizing clinically relevant brain metastasis models and assessing the therapeutic efficacy in such models are fundamental for the development of novel therapies for metastatic brain cancers. In this study, we have developed an in vivo imageable breast-to-brain metastasis mouse model. Using real time in vivo imaging and subsequent composite fluorescence imaging, we show a widespread distribution of micro- and macro-metastasis in different stages of metastatic progression. We also show extravasation of tumour cells and the close association of tumour cells with blood vessels in the brain thus mimicking the multi-foci metastases observed in the clinics. Next, we explored the ability of engineered adult stem cells to track metastatic deposits in this model and show that engineered stem cells either implanted or injected via circulation efficiently home to metastatic tumour deposits in the brain. Based on the recent findings that metastatic tumour cells adopt unique mechanisms of evading apoptosis to successfully colonize in the brain, we reasoned that TNF receptor superfamily member 10A/10B apoptosis-inducing ligand (TRAIL) based pro-apoptotic therapies that induce death receptor signalling within the metastatic tumour cells might be a favourable therapeutic approach. We engineered stem cells to express a tumour selective, potent and secretable variant of a TRAIL, S-TRAIL, and show that these cells significantly suppressed metastatic tumour growth and prolonged the survival of mice bearing metastatic breast tumours. Furthermore, the incorporation of pro-drug converting enzyme, herpes simplex virus thymidine kinase, into therapeutic S-TRAIL secreting stem cells allowed their eradication post-tumour treatment. These studies are the first of their kind that provide insight into targeting brain metastasis with stem-cell mediated delivery of pro-apoptotic ligands and have important clinical implications. © The Author (2015). Published by Oxford University Press on

  4. Thermosensitive PLA based nanodispersion for targeting brain tumor via intranasal route

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Darshana S., E-mail: darshanaj_cup@yahoo.com [C.U. Shah College of Pharmacy, S.N.D.T Women' s University, Juhu Tara Road, Santacruz (West), Mumbai 400 049 (India); Bajaj, Amrita N. [C.U. Shah College of Pharmacy, S.N.D.T Women' s University, Juhu Tara Road, Santacruz (West), Mumbai 400 049 (India); Athawale, Rajani B., E-mail: rajani.athawale@gmail.com [C.U. Shah College of Pharmacy, S.N.D.T Women' s University, Juhu Tara Road, Santacruz (West), Mumbai 400 049 (India); Shikhande, Shruti S. [C.U. Shah College of Pharmacy, S.N.D.T Women' s University, Juhu Tara Road, Santacruz (West), Mumbai 400 049 (India); Pandey, Abhijeet [H. R Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra (India); Goel, Peeyush N.; Gude, Rajiv P. [Gude Lab, Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410 210 (India); Patil, Satish; Raut, Preeti [Cipla Pvt. Ltd., Vikhroli (West), Mumbai (India)

    2016-06-01

    Delivery of drugs to the brain via nasal route has been studied by many researchers. However, low residence time, mucociliary clearance and enzymatically active environment of nasal cavity pose many challenges to successful nasal delivery of drugs. We aim to deliver methotrexate by designing thermosensitive nanodispersion exhibiting enhanced residence time in nasal cavity and bypassing the blood brain barrier (BBB). PLA nanoparticles were developed using solvent evaporation technique. The developed nanoparticles were further dispersed in prepared thermosensitive vehicle of poloxamer 188 and Carbopol 934 to impart the property of increased residence time. The formulated nanoparticles demonstrated no interaction with the simulated nasal fluids (SNF), mucin, serum proteins and erythrocytes which demonstrate the safety of developed formulation for nasal administration. The penetration property of nanoparticles though the nasal mucosa was higher than the pure drug due to low mucociliary clearance. The developed nanoparticles diffused though the membrane pores and rapidly distributed into the brain portions compared to the pure drug. There was detectable and quantifiable amount of drug seen in the brain as demonstrated by in vivo brain distribution studies with considerably low amount of drug deposition in the lungs. The pharmacokinetic parameters demonstrated the enhancement in circulation half life, area under curve (AUC) and Cmax of the drug when administered intranasal in encapsulated form. Thus, the thermosensitive nanodispersions are surely promising delivery systems for delivering anticancer agents though the nasal route for potential treatment of brain tumors. - Highlights: • The present investigation explores intra-nasal route as potential route for targeting brain tumor. • Thermosensitive nanodispersion has been formulated for enhancing nasal residence time. • PLA nanoparticles enhance penetration into the brain owing to hydrophobic nature and small size

  5. Targeting of deep-brain structures in nonhuman primates using MR and CT Images

    Science.gov (United States)

    Chen, Antong; Hines, Catherine; Dogdas, Belma; Bone, Ashleigh; Lodge, Kenneth; O'Malley, Stacey; Connolly, Brett; Winkelmann, Christopher T.; Bagchi, Ansuman; Lubbers, Laura S.; Uslaner, Jason M.; Johnson, Colena; Renger, John; Zariwala, Hatim A.

    2015-03-01

    In vivo gene delivery in central nervous systems of nonhuman primates (NHP) is an important approach for gene therapy and animal model development of human disease. To achieve a more accurate delivery of genetic probes, precise stereotactic targeting of brain structures is required. However, even with assistance from multi-modality 3D imaging techniques (e.g. MR and CT), the precision of targeting is often challenging due to difficulties in identification of deep brain structures, e.g. the striatum which consists of multiple substructures, and the nucleus basalis of meynert (NBM), which often lack clear boundaries to supporting anatomical landmarks. Here we demonstrate a 3D-image-based intracranial stereotactic approach applied toward reproducible intracranial targeting of bilateral NBM and striatum of rhesus. For the targeting we discuss the feasibility of an atlas-based automatic approach. Delineated originally on a high resolution 3D histology-MR atlas set, the NBM and the striatum could be located on the MR image of a rhesus subject through affine and nonrigid registrations. The atlas-based targeting of NBM was compared with the targeting conducted manually by an experienced neuroscientist. Based on the targeting, the trajectories and entry points for delivering the genetic probes to the targets could be established on the CT images of the subject after rigid registration. The accuracy of the targeting was assessed quantitatively by comparison between NBM locations obtained automatically and manually, and finally demonstrated qualitatively via post mortem analysis of slices that had been labelled via Evan Blue infusion and immunohistochemistry.

  6. Strategies and tools to improve crop productivity by targeting photosynthesis.

    Science.gov (United States)

    Nuccio, Michael L; Potter, Laura; Stiegelmeyer, Suzy M; Curley, Joseph; Cohn, Jonathan; Wittich, Peter E; Tan, Xiaoping; Davis, Jimena; Ni, Junjian; Trullinger, Jon; Hall, Rick; Bate, Nicholas J

    2017-09-26

    Crop productivity needs to substantially increase to meet global food and feed demand for a rapidly growing world population. Agricultural technology developers are pursuing a variety of approaches based on both traditional technologies such as genetic improvement, pest control and mechanization as well as new technologies such as genomics, gene manipulation and environmental modelling to develop crops that are capable of meeting growing demand. Photosynthesis is a key biochemical process that, many suggest, is not yet optimized for industrial agriculture or the modern global environment. We are interested in identifying control points in maize photoassimilation that are amenable to gene manipulation to improve overall productivity. Our approach encompasses: developing and using novel gene discovery techniques, translating our discoveries into traits and evaluating each trait in a stepwise manner that reflects a modern production environment. Our aim is to provide step change advancement in overall crop productivity and deliver this new technology into the hands of growers.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  7. Improving routing efficiency through intermediate target based geographic routing

    Directory of Open Access Journals (Sweden)

    Zongming Fei

    2015-08-01

    Full Text Available The greedy strategy of geographical routing may cause the local minimum problem when there is a hole in the routing area. It depends on other strategies such as perimeter routing to find a detour path, which can be long and result in inefficiency of the routing protocol. In this paper, we propose a new approach called Intermediate Target based Geographic Routing (ITGR to solve the long detour path problem. The basic idea is to use previous experience to determine the destination areas that are shaded by the holes. The novelty of the approach is that a single forwarding path can be used to determine a shaded area that may cover many destination nodes. We design an efficient method for the source to find out whether a destination node belongs to a shaded area. The source then selects an intermediate node as the tentative target and greedily forwards packets to it, which in turn forwards the packet to the final destination by greedy routing. ITGR can combine multiple shaded areas to improve the efficiency of representation and routing. We perform simulations and demonstrate that ITGR significantly reduces the routing path length, compared with existing geographic routing protocols.

  8. Targeted activation of primitive neural stem cells in the mouse brain.

    Science.gov (United States)

    Reeve, Rachel L; Yammine, Samantha Z; DeVeale, Brian; van der Kooy, Derek

    2016-06-01

    Primitive neural stem cells (pNSCs) are the earliest NSCs to appear in the developing forebrain. They persist into the adult forebrain where they can generate all cells in the neural lineage and therefore hold great potential for brain regeneration. Thus, pNSCs are an ideal population to target to promote endogenous NSC activation. pNSCs can be isolated from the periventricular region as leukaemia inhibitory factor-responsive cells, and comprise a rare population in the adult mouse brain. We hypothesized that the pup periventricular region gives rise to more clonal pNSC-derived neurospheres but that pup-derived pNSCs are otherwise comparable to adult-derived pNSCs, and can be used to identify selective markers and activators of endogenous pNSCs. We tested the self-renewal ability, differentiation capacity and gene expression profile of pup-derived pNSCs and found them each to be comparable to adult-derived pNSCs, including being GFAP(-) , nestin(mid) , Oct4(+) . Next, we used pup pNSCs to test pharmacological compounds to activate pNSCs to promote endogenous brain repair. We hypothesized that pNSCs could be activated by targeting the cell surface proteins C-Kit and ErbB2, which were enriched in pNSCs relative to definitive NSCs (dNSCs) in an in vitro screen. C-Kit and ErbB2 signalling inhibition had distinct effects on pNSCs and dNSCs in vitro, and when infused directly into the adult brain in vivo. Targeted activation of pNSCs with C-Kit and ErbB2 modulation is a valuable strategy to activate the earliest cell in the neural lineage to contribute to endogenous brain regeneration. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Brain Malignancy Steering Committee clinical trials planning workshop: report from the Targeted Therapies Working Group.

    Science.gov (United States)

    Alexander, Brian M; Galanis, Evanthia; Yung, W K Alfred; Ballman, Karla V; Boyett, James M; Cloughesy, Timothy F; Degroot, John F; Huse, Jason T; Mann, Bhupinder; Mason, Warren; Mellinghoff, Ingo K; Mikkelsen, Tom; Mischel, Paul S; O'Neill, Brian P; Prados, Michael D; Sarkaria, Jann N; Tawab-Amiri, Abdul; Trippa, Lorenzo; Ye, Xiaobu; Ligon, Keith L; Berry, Donald A; Wen, Patrick Y

    2015-02-01

    Glioblastoma is the most common primary brain malignancy and is associated with poor prognosis despite aggressive local and systemic therapy, which is related to a paucity of viable treatment options in both the newly diagnosed and recurrent settings. Even so, the rapidly increasing number of targeted therapies being evaluated in oncology clinical trials offers hope for the future. Given the broad range of possibilities for future trials, the Brain Malignancy Steering Committee convened a clinical trials planning meeting that was held at the Udvar-Hazy Center in Chantilly, Virginia, on September 19 and 20, 2013. This manuscript reports the deliberations leading up to the event from the Targeted Therapies Working Group and the results of the meeting. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. The anteromedial GPi as a new target for deep brain stimulation in obsessive compulsive disorder.

    Science.gov (United States)

    Nair, Girish; Evans, Andrew; Bear, Renee E; Velakoulis, Dennis; Bittar, Richard G

    2014-05-01

    Deep brain stimulation (DBS) is now well established in the treatment of intractable movement disorders. Over the past decade the clinical applications have expanded into the realm of psychosurgery, including depression and obsessive compulsive disorder (OCD). The optimal targets for electrode placement in psychosurgery remain unclear, with numerous anatomical targets reported for the treatment of OCD. We present four patients with Tourette's syndrome and prominent features of OCD who underwent DBS of the anteromedial globus pallidus internus (GPi) to treat their movement disorder. Their pre-operative and post-operative OCD symptoms were compared, and responded dramatically to surgery. On the basis of these results, we propose the anteromedial (limbic) GPi as a potential surgical target for the treatment of OCD, and furnish data supporting its further investigation as a DBS target for the treatment of psychiatric conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Intraspinal Rewiring of the Corticospinal Tract Requires Target-Derived Brain-Derived Neurotrophic Factor and Compensates Lost Function after Brain Injury

    Science.gov (United States)

    Ueno, Masaki; Hayano, Yasufumi; Nakagawa, Hiroshi; Yamashita, Toshihide

    2012-01-01

    Brain injury that results in an initial behavioural deficit is frequently followed by spontaneous recovery. The intrinsic mechanism of this functional recovery has never been fully understood. Here, we show that reorganization of the corticospinal tract induced by target-derived brain-derived neurotrophic factor is crucial for spontaneous recovery…

  12. Ligand anchored poly(propyleneimine) dendrimers for brain targeting: Comparative in vitro and in vivo assessment.

    Science.gov (United States)

    Patel, Hemant K; Gajbhiye, Virendra; Kesharwani, Prashant; Jain, Narendra K

    2016-11-15

    The present investigation was aimed at developing various ligands-anchored dendrimers and comparing their brain targeting potential at one platform. Sialic acid (S), glucosamine (G) and concanavalin A (C) anchored poly(propyleneimine) (PPI) dendritic nanoconjugates were developed and evaluated for delivery of anti-cancer drug, paclitaxel (PTX) to the brain. MTT assay on U373MG human astrocytoma cells indicated IC50 values of 0.40, 0.65, 0.95, 2.00 and 3.50μM for PTX loaded SPPI, GPPI, CPPI, PPI formulations, and free PTX, respectively. The invivo pharmacokinetics and biodistribution studies in rats showed significantly higher accumulation of PTX in brain as compared to free PTX. The order of targeting potential of various ligands under investigation was found as sialic acid>glucosamine>concanavalin A. Thus, it can be concluded that sialic acid, glucosamine and Con A can be used as potential ligands to append PPI dendrimers for enhanced delivery of anticancer drugs to the brain for higher therapeutic outcome. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Targeted delivery of neural stem cells to the brain using MRI-guided focused ultrasound to disrupt the blood-brain barrier.

    Directory of Open Access Journals (Sweden)

    Alison Burgess

    Full Text Available Stem cell therapy is a promising strategy to treat neurodegenerative diseases, traumatic brain injury, and stroke. For stem cells to progress towards clinical use, the risks associated with invasive intracranial surgery used to deliver the cells to the brain, needs to be reduced. Here, we show that MRI-guided focused ultrasound (MRIgFUS is a novel method for non-invasive delivery of stem cells from the blood to the brain by opening the blood brain barrier (BBB in specific brain regions. We used MRI guidance to target the ultrasound beam thereby delivering the iron-labeled, green fluorescent protein (GFP-expressing neural stem cells specifically to the striatum and the hippocampus of the rat brain. Detection of cellular iron using MRI established that the cells crossed the BBB to enter the brain. After sacrifice, 24 hours later, immunohistochemical analysis confirmed the presence of GFP-positive cells in the targeted brain regions. We determined that the neural stem cells expressed common stem cell markers (nestin and polysialic acid suggesting they survived after transplantation with MRIgFUS. Furthermore, delivered stem cells expressed doublecortin in vivo indicating the stem cells were capable of differentiating into neurons. Together, we demonstrate that transient opening of the BBB with MRIgFUS is sufficient for transplantation of stem cells from the blood to targeted brain structures. These results suggest that MRIgFUS may be an effective alternative to invasive intracranial surgery for stem cell transplantation.

  14. Targeting Neural Endophenotypes of Eating Disorders with Non-invasive Brain Stimulation.

    Science.gov (United States)

    Dunlop, Katharine A; Woodside, Blake; Downar, Jonathan

    2016-01-01

    The term "eating disorders" (ED) encompasses a wide variety of disordered eating and compensatory behaviors, and so the term is associated with considerable clinical and phenotypic heterogeneity. This heterogeneity makes optimizing treatment techniques difficult. One class of treatments is non-invasive brain stimulation (NIBS). NIBS, including repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), are accessible forms of neuromodulation that alter the cortical excitability of a target brain region. It is crucial for NIBS to be successful that the target is well selected for the patient population in question. Targets may best be selected by stepping back from conventional DSM-5 diagnostic criteria to identify neural substrates of more basic phenotypes, including behavior related to rewards and punishment, cognitive control, and social processes. These phenotypic dimensions have been recently laid out by the Research Domain Criteria (RDoC) initiative. Consequently, this review is intended to identify potential dimensions as outlined by the RDoC and the underlying behavioral and neurobiological targets associated with ED. This review will also identify candidate targets for NIBS based on these dimensions and review the available literature on rTMS and tDCS in ED. This review systematically reviews abnormal neural circuitry in ED within the RDoC framework, and also systematically reviews the available literature investigating NIBS as a treatment for ED.

  15. Targeted Multifunctional Nanoparticles cure and image Brain Tumors: Selective MRI Contrast Enhancement and Photodynamic Therapy

    Science.gov (United States)

    Kopelman, Raoul

    2008-03-01

    Aimed at targeted therapy and imaging of brain tumors, our approach uses targeted, multi-functional nano-particles (NP). A typical nano-particle contains a biologically inert, non-toxic matrix, biodegradable and bio-eliminable over a long time period. It also contains active components, such as fluorescent chemical indicators, photo-sensitizers, MRI contrast enhancement agents and optical imaging dyes. In addition, its surface contains molecular targeting units, e.g. peptides or antibodies, as well as a cloaking agent, to prevent uptake by the immune system, i.e. enabling control of the plasma residence time. These dynamic nano-platforms (DNP) contain contrast enhancement agents for the imaging (MRI, optical, photo-acoustic) of targeted locations, i.e. tumors. Added to this are targeted therapy agents, such as photosensitizers for photodynamic therapy (PDT). A simple protocol, for rats implanted with human brain cancer, consists of tail injection with DNPs, followed by 5 min red light illumination of the tumor region. It resulted in excellent cure statistics for 9L glioblastoma.

  16. Brains in Competition: Improved Cognitive Performance and Inter-Brain Coupling by Hyperscanning Paradigm with Functional Near-Infrared Spectroscopy.

    Science.gov (United States)

    Balconi, Michela; Vanutelli, Maria E

    2017-01-01

    Hyperscanning brain paradigm was applied to competitive task for couples of subjects. Functional Near-Infrared Spectroscopy (fNIRS) and cognitive performance were considered to test inter-brain and cognitive strategy similarities between subjects (14 couples) during a joint-action. We supposed increased brain-to-brain coupling and improved cognitive outcomes due to joint-action and the competition. As supposed, the direct interaction between the subjects and the observed external feedback of their performance (an experimentally induced fictitious feedback) affected the cognitive performance with decreased Error Rates (ERs), and Response Times (RTs). In addition, fNIRS measure (oxyhemoglobin, O2Hb) revealed an increased brain activity in the prefrontal cortex (PFC) in post-feedback more than pre-feedback condition. Moreover, a higher inter-brain similarity was found for the couples during the task, with higher matched brain response in post-feedback condition than pre-feedback. Finally, a significant increased prefrontal brain lateralization effect was observed for the right hemisphere. Indeed the right PFC was more responsive with similar modalities within the couple during the post-feedback condition. The joined-task and competitive context was adduced to explain these cognitive performance improving, synergic brain responsiveness within the couples and lateralization effects (negative emotions).

  17. Brains in Competition: Improved Cognitive Performance and Inter-Brain Coupling by Hyperscanning Paradigm with Functional Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Michela Balconi

    2017-08-01

    Full Text Available Hyperscanning brain paradigm was applied to competitive task for couples of subjects. Functional Near-Infrared Spectroscopy (fNIRS and cognitive performance were considered to test inter-brain and cognitive strategy similarities between subjects (14 couples during a joint-action. We supposed increased brain-to-brain coupling and improved cognitive outcomes due to joint-action and the competition. As supposed, the direct interaction between the subjects and the observed external feedback of their performance (an experimentally induced fictitious feedback affected the cognitive performance with decreased Error Rates (ERs, and Response Times (RTs. In addition, fNIRS measure (oxyhemoglobin, O2Hb revealed an increased brain activity in the prefrontal cortex (PFC in post-feedback more than pre-feedback condition. Moreover, a higher inter-brain similarity was found for the couples during the task, with higher matched brain response in post-feedback condition than pre-feedback. Finally, a significant increased prefrontal brain lateralization effect was observed for the right hemisphere. Indeed the right PFC was more responsive with similar modalities within the couple during the post-feedback condition. The joined-task and competitive context was adduced to explain these cognitive performance improving, synergic brain responsiveness within the couples and lateralization effects (negative emotions.

  18. Cytogenomic profiling of breast cancer brain metastases reveals potential for repurposing targeted therapeutics.

    Science.gov (United States)

    Bollig-Fischer, Aliccia; Michelhaugh, Sharon K; Wijesinghe, Priyanga; Dyson, Greg; Kruger, Adele; Palanisamy, Nallasivam; Choi, Lydia; Alosh, Baraa; Ali-Fehmi, Rouba; Mittal, Sandeep

    2015-06-10

    Breast cancer brain metastases remain a significant clinical problem. Chemotherapy is ineffective and a lack of treatment options result in poor patient outcomes. Targeted therapeutics have proven to be highly effective in primary breast cancer, but lack of molecular genomic characterization of metastatic brain tumors is hindering the development of new treatment regimens. Here we contribute to fill this void by reporting on gene copy number variation (CNV) in 10 breast cancer metastatic brain tumors, assayed by array comparative genomic hybridization (aCGH). Results were compared to a list of cancer genes verified by others to influence cancer. Cancer gene aberrations were identified in all specimens and pathway-level analysis was applied to aggregate data, which identified stem cell pluripotency pathway enrichment and highlighted recurring, significant amplification of SOX2, PIK3CA, NTRK1, GNAS, CTNNB1, and FGFR1. For a subset of the metastatic brain tumor samples (n = 4) we compared patient-matched primary breast cancer specimens. The results of our CGH analysis and validation by alternative methods indicate that oncogenic signals driving growth of metastatic tumors exist in the original cancer. This report contributes support for more rapid development of new treatments of metastatic brain tumors, the use of genomic-based diagnostic tools and repurposed drug treatments.

  19. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core.

    Science.gov (United States)

    Clark, Andrew J; Davis, Mark E

    2015-10-06

    Most therapeutic agents are excluded from entering the central nervous system by the blood-brain barrier (BBB). Receptor mediated transcytosis (RMT) is a common mechanism used by proteins, including transferrin (Tf), to traverse the BBB. Here, we prepared Tf-containing, 80-nm gold nanoparticles with an acid-cleavable linkage between the Tf and the nanoparticle core to facilitate nanoparticle RMT across the BBB. These nanoparticles are designed to bind to Tf receptors (TfRs) with high avidity on the blood side of the BBB, but separate from their multidentate Tf-TfR interactions upon acidification during the transcytosis process to allow release of the nanoparticle into the brain. These targeted nanoparticles show increased ability to cross an in vitro model of the BBB and, most important, enter the brain parenchyma of mice in greater amounts in vivo after systemic administration compared with similar high-avidity nanoparticles containing noncleavable Tf. In addition, we investigated this design with nanoparticles containing high-affinity antibodies (Abs) to TfR. With the Abs, the addition of the acid-cleavable linkage provided no improvement to in vivo brain uptake for Ab-containing nanoparticles, and overall brain uptake was decreased for all Ab-containing nanoparticles compared with Tf-containing ones. These results are consistent with recent reports of high-affinity anti-TfR Abs trafficking to the lysosome within BBB endothelium. In contrast, high-avidity, Tf-containing nanoparticles with the acid-cleavable linkage avoid major endothelium retention by shedding surface Tf during their transcytosis.

  20. Reorganization of functional brain networks mediates the improvement of cognitive performance following real-time neurofeedback training of working memory.

    Science.gov (United States)

    Zhang, Gaoyan; Yao, Li; Shen, Jiahui; Yang, Yihong; Zhao, Xiaojie

    2015-05-01

    Working memory (WM) is essential for individuals' cognitive functions. Neuroimaging studies indicated that WM fundamentally relied on a frontoparietal working memory network (WMN) and a cinguloparietal default mode network (DMN). Behavioral training studies demonstrated that the two networks can be modulated by WM training. Different from the behavioral training, our recent study used a real-time functional MRI (rtfMRI)-based neurofeedback method to conduct WM training, demonstrating that WM performance can be significantly improved after successfully upregulating the activity of the target region of interest (ROI) in the left dorsolateral prefrontal cortex (Zhang et al., [2013]: PloS One 8:e73735); however, the neural substrate of rtfMRI-based WM training remains unclear. In this work, we assessed the intranetwork and internetwork connectivity changes of WMN and DMN during the training, and their correlations with the change of brain activity in the target ROI as well as with the improvement of post-training behavior. Our analysis revealed an "ROI-network-behavior" correlation relationship underlying the rtfMRI training. Further mediation analysis indicated that the reorganization of functional brain networks mediated the effect of self-regulation of the target brain activity on the improvement of cognitive performance following the neurofeedback training. The results of this study enhance our understanding of the neural basis of real-time neurofeedback and suggest a new direction to improve WM performance by regulating the functional connectivity in the WM related networks. © 2014 Wiley Periodicals, Inc.

  1. Enhanced Delivery of Gold Nanoparticles with Therapeutic Potential for Targeting Human Brain Tumors

    Science.gov (United States)

    Etame, Arnold B.

    The blood brain barrier (BBB) remains a major challenge to the advancement and application of systemic anti-cancer therapeutics into the central nervous system. The structural and physiological delivery constraints of the BBB significantly limit the effectiveness of conventional chemotherapy, thereby making systemic administration a non-viable option for the vast majority of chemotherapy agents. Furthermore, the lack of specificity of conventional systemic chemotherapy when applied towards malignant brain tumors remains a major shortcoming. Hence novel therapeutic strategies that focus both on targeted and enhanced delivery across the BBB are warranted. In recent years nanoparticles (NPs) have emerged as attractive vehicles for efficient delivery of targeted anti-cancer therapeutics. In particular, gold nanoparticles (AuNPs) have gained prominence in several targeting applications involving systemic cancers. Their enhanced permeation and retention within permissive tumor microvasculature provide a selective advantage for targeting. Malignant brain tumors also exhibit transport-permissive microvasculature secondary to blood brain barrier disruption. Hence AuNPs may have potential relevance for brain tumor targeting. However, the permeation of AuNPs across the BBB has not been well characterized, and hence is a potential limitation for successful application of AuNP-based therapeutics within the central nervous system (CNS). In this dissertation, we designed and characterized AuNPs and assessed the role of polyethylene glycol (PEG) on the physical and biological properties of AuNPs. We established a size-dependent permeation profile with respect to core size as well as PEG length when AuNPs were assessed through a transport-permissive in-vitro BBB. This study was the first of its kind to systematically examine the influence of design on permeation of AuNPs through transport-permissive BBB. Given the significant delivery limitations through the non

  2. The medial forebrain bundle as a target for deep brain stimulation for obsessive-compulsive disorder.

    Science.gov (United States)

    Coenen, Volker A; Schlaepfer, Thomas E; Goll, Peter; Reinacher, Peter C; Voderholzer, Ulrich; Tebartz van Elst, Ludger; Urbach, Horst; Freyer, Tobias

    2017-06-01

    Deep brain stimulation (DBS) is a promising putative modality for the treatment of refractory psychiatric disorders such as major depression and obsessive-compulsive disorder (OCD). Several targets have been posited; however, a clear consensus on differential efficacy and possible modes of action remain unclear. DBS to the supero-lateral branch of the medial forebrain bundle (slMFB) has recently been introduced for major depression (MD). Due to our experience with slMFB stimulation for MD, and because OCD might be related to similar dysfunctions of the reward system, treatment with slMFB DBS seams meaningful. Here we describe our first 2 cases together with a hypothetical mode of action. We describe diffusion tensor imaging (DTI) fiber tractographically (FT)-assisted implantation of the bilateral DBS systems in 2 male patients. In a selected literature overview, we discuss the possible mode of action. Both patients were successfully implanted and stimulated. The follow-up time was 12 months. One patient showed a significant response (Yale-Brown Obsessive-Compulsive Scale [YBOCS] reduction by 35%); the other patient reached remission criteria 3 months after surgery (YBOCSOCD just above the remission criterion at 12 months follow-up. While the hypermetabolism theory for OCD involves the cortico-striato-thalamo-cortical (CSTC) network, we think that there is clinical evidence that the reward system plays a crucial role. Our findings suggest an important role of this network in mechanisms of disease development and recovery. In this uncontrolled case series, continuous bilateral DBS to the slMFB led to clinically significant improvements of ratings of OCD severity. Ongoing research focuses on the role of the reward system in OCD, and its yet-underestimated role in this underlying neurobiology of the disease.

  3. Valproate administered after traumatic brain injury provides neuroprotection and improves cognitive function in rats.

    Directory of Open Access Journals (Sweden)

    Pramod K Dash

    Full Text Available BACKGROUND: Traumatic brain injury (TBI initiates a complex series of neurochemical and signaling changes that lead to pathological events including neuronal hyperactivity, excessive glutamate release, inflammation, increased blood-brain barrier (BBB permeability and cerebral edema, altered gene expression, and neuronal dysfunction. It is believed that a drug combination, or a single drug acting on multiple targets, may be an effective strategy to treat TBI. Valproate, a widely used antiepileptic drug, has a number of targets including GABA transaminase, voltage-gated sodium channels, glycogen synthase kinase (GSK-3, and histone deacetylases (HDACs, and therefore may attenuate a number of TBI-associated pathologies. METHODOLOGY/PRINCIPAL FINDINGS: Using a rodent model of TBI, we tested if post-injury administration of valproate can decrease BBB permeability, reduce neural damage and improve cognitive outcome. Dose-response studies revealed that systemic administration of 400 mg/kg (i.p., but not 15, 30, 60 or 100 mg/kg, increases histone H3 and H4 acetylation, and reduces GSK-3 activity, in the hippocampus. Thirty min post-injury administration of 400 mg/kg valproate improved BBB integrity as indicated by a reduction in Evans Blue dye extravasation. Consistent with its dose response to inhibit GSK-3 and HDACs, valproate at 400 mg/kg, but not 100 mg/kg, reduced TBI-associated hippocampal dendritic damage, lessened cortical contusion volume, and improved motor function and spatial memory. These behavioral improvements were not observed when SAHA (suberoylanilide hydroxamic acid, a selective HDAC inhibitor, was administered. CONCLUSION/SIGNIFICANCE: Our findings indicate that valproate given soon after TBI can be neuroprotective. As clinically proven interventions that can be used to minimize the damage following TBI are not currently available, the findings from this report support the further testing of valproate as an acute therapeutic strategy.

  4. An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces.

    Science.gov (United States)

    Li, Simin; Li, Jie; Li, Zheng

    2016-01-01

    Brain-machine interfaces (BMIs) seek to connect brains with machines or computers directly, for application in areas such as prosthesis control. For this application, the accuracy of the decoding of movement intentions is crucial. We aim to improve accuracy by designing a better encoding model of primary motor cortical activity during hand movements and combining this with decoder engineering refinements, resulting in a new unscented Kalman filter based decoder, UKF2, which improves upon our previous unscented Kalman filter decoder, UKF1. The new encoding model includes novel acceleration magnitude, position-velocity interaction, and target-cursor-distance features (the decoder does not require target position as input, it is decoded). We add a novel probabilistic velocity threshold to better determine the user's intent to move. We combine these improvements with several other refinements suggested by others in the field. Data from two Rhesus monkeys indicate that the UKF2 generates offline reconstructions of hand movements (mean CC 0.851) significantly more accurately than the UKF1 (0.833) and the popular position-velocity Kalman filter (0.812). The encoding model of the UKF2 could predict the instantaneous firing rate of neurons (mean CC 0.210), given kinematic variables and past spiking, better than the encoding models of these two decoders (UKF1: 0.138, p-v Kalman: 0.098). In closed-loop experiments where each monkey controlled a computer cursor with each decoder in turn, the UKF2 facilitated faster task completion (mean 1.56 s vs. 2.05 s) and higher Fitts's Law bit rate (mean 0.738 bit/s vs. 0.584 bit/s) than the UKF1. These results suggest that the modeling and decoder engineering refinements of the UKF2 improve decoding performance. We believe they can be used to enhance other decoders as well.

  5. Targeting specific cells in the brain with nanomedicines for CNS therapies.

    Science.gov (United States)

    Zhang, Fan; Lin, Yi-An; Kannan, Sujatha; Kannan, Rangaramanujam M

    2016-10-28

    Treatment of Central Nervous System (CNS) disorders still remains a major clinical challenge. The Blood-Brain Barrier (BBB), known as the major hindrance, greatly limits therapeutics penetration into the brain. Moreover, even though some therapeutics can cross BBB based on their intrinsic properties or via the use of proper nanoscale delivery vehicles, their therapeutic efficacy is still often limited without the specific uptake of drugs by the cancer or disease-associated cells. As more studies have started to elucidate the pathological roles of major cells in the CNS (for example, microglia, neurons, and astrocytes) for different disorders, nanomedicines that can enable targeting of specific cells in these diseases may provide great potential to boost efficacy. In this review, we aim to briefly cover the pathological roles of endothelial cells, microglia, tumor-associated microglia/macrophage, neurons, astrocytes, and glioma in CNS disorders and to highlight the recent advances in nanomedicines that can target specific disease-associated cells. Furthermore, we summarized some strategies employed in nanomedicine to achieve specific cell targeting or to enhance the drug neuroprotective effects in the CNS. The specific targeting at the cellular level by nanotherapy can be a more precise and effective means not only to enhance the drug availability but also to reduce side effects. Published by Elsevier B.V.

  6. Targeting neural endophenotypes of eating disorders with non-invasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Katharine A Dunlop

    2016-02-01

    Full Text Available The term eating disorders (ED encompasses a wide variety of disordered eating and compensatory behaviors, and so the term is associated with considerable clinical and phenotypic heterogeneity. This heterogeneity makes optimizing treatment techniques difficult. One class of treatments is non-invasive brain stimulation (NIBS. NIBS, including repetitive transcranial magnetic stimulation (rTMS and transcranial direct current stimulation (tDCS are accessible forms of neuromodulation that alter the cortical excitability of a target brain region. It is crucial for NIBS to be successful that the target is well selected for the patient population in question. Targets may best be selected by stepping back from conventional DSM-5 diagnostic criteria to identify neural substrates of more basic phenotypes, including behavior related rewards and punishment cognitive control, and social processes. These phenotypic dimensions have been recently laid out by the Research Domain Criteria (RDoC initiative. Consequently, this review is intended to identify potential dimensions as outlined by the RDoC and their underlying behavioral and neurobiological targets associated with ED as potential candidates for NIBS and review the available literature on rTMS and tDCS in ED. This review systematically reviews abnormal neural circuitry in ED within the RDoC framework, and also systematically reviews the available literature investigating NIBS as a treatment for ED.

  7. Targeting myeloid cells to the brain using non-myeloablative conditioning.

    Directory of Open Access Journals (Sweden)

    Chotima Böttcher

    Full Text Available Bone marrow-derived cells (BMDCs are able to colonize the central nervous system (CNS at sites of damage. This ability makes BMDCs an ideal cellular vehicle for transferring therapeutic genes/molecules to the CNS. However, conditioning is required for bone marrow-derived myeloid cells to engraft in the brain, which so far has been achieved by total body irradiation (TBI and by chemotherapy (e.g. busulfan treatment. Unfortunately, both regimens massively disturb the host's hematopoietic compartment. Here, we established a conditioning protocol to target myeloid cells to sites of brain damage in mice using non-myeloablative focal head irradiation (HI. This treatment was associated with comparatively low inflammatory responses in the CNS despite cranial radiation doses which are identical to TBI, as revealed by gene expression analysis of cytokines/chemokines such as CCL2, CXCL10, TNF-α and CCL5. HI prior to bone marrow transplantation resulted in much lower levels of blood chimerism defined as the percentage of donor-derived cells in peripheral blood ( 95% or busulfan treatment (> 50%. Nevertheless, HI effectively recruited myeloid cells to the area of motoneuron degeneration in the brainstem within 7 days after facial nerve axotomy. In contrast, no donor-derived cells were detected in the lesioned facial nucleus of busulfan-treated animals up to 2 weeks after transplantation. Our findings suggest that myeloid cells can be targeted to sites of brain damage even in the presence of very low levels of peripheral blood chimerism. We established a novel non-myeloablative conditioning protocol with minimal disturbance of the host's hematopoietic system for targeting BMDCs specifically to areas of pathology in the brain.

  8. Integrating Health Promotion Into Physical Therapy Practice to Improve Brain Health and Prevent Alzheimer Disease.

    Science.gov (United States)

    McGough, Ellen; Kirk-Sanchez, Neva; Liu-Ambrose, Teresa

    2017-07-01

    Alzheimer disease is the most common cause of dementia, and brain pathology appears years before symptoms are evident. Primary prevention through health promotion can incorporate lifestyle improvement across the lifespan. Risk factor assessment and identifying markers of disease might also trigger preventive measures needed for high-risk individuals and groups. Many potential risk factors are modifiable through exercise, and may be responsive to early intervention strategies to reduce the downward slope toward disability. Through the use of common clinical tests to identify cognitive and noncognitive functional markers of disease, detection and intervention can occur at earlier stages, including preclinical stages of disease. Physical activity and exercise interventions to address modifiable risk factors and impairments can play a pivotal role in the prevention and delay of functional decline, ultimately reducing the incidence of dementia. This article discusses prevention, prediction, plasticity, and participation in the context of preserving brain health and preventing Alzheimer disease and related dementias in aging adults. Rehabilitation professionals have opportunities to slow disease progression through research, practice, and education initiatives. From a clinical perspective, interventions that target brain health through lifestyle changes and exercise interventions show promise for preventing stroke and associated neurovascular diseases in addition to dementia. Physical therapists are well positioned to integrate primary health promotion into practice for the prevention of dementia and other neurological conditions in older adults.

  9. EAG2 potassium channel with evolutionarily conserved function as a brain tumor target

    Science.gov (United States)

    Huang, Xi; He, Ye; Dubuc, Adrian M.; Hashizume, Rintaro; Zhang, Wei; Reimand, Jüri; Yang, Huanghe; Wang, Tongfei A.; Stehbens, Samantha J.; Younger, Susan; Barshow, Suzanne; Zhu, Sijun; Cooper, Michael K.; Peacock, John; Ramaswamy, Vijay; Garzia, Livia; Wu, Xiaochong; Remke, Marc; Forester, Craig M.; Kim, Charles C.; Weiss, William A.; James, C. David; Shuman, Marc A.; Bader, Gary D.; Mueller, Sabine; Taylor, Michael D.; Jan, Yuh Nung; Jan, Lily Yeh

    2015-01-01

    Over 20% of the drugs for treating human diseases target ion channels, however, no cancer drug approved by the U.S. Food and Drug Administration (FDA) is intended to target an ion channel. Here, we demonstrate the evolutionarily conserved function of EAG2 potassium channel in promoting brain tumor growth and metastasis, delineate downstream pathways and uncover a mechanism for different potassium channels to functionally corporate and regulate mitotic cell volume and tumor progression. We show that EAG2 potassium channel is enriched at the trailing edge of migrating MB cells to regulate local cell volume dynamics, thereby facilitating cell motility. We identify the FDA-approved antipsychotic drug thioridazine as an EAG2 channel blocker that reduces xenografted MB growth and metastasis, and present a case report of repurposing thioridazine for treating a human patient. Our findings thus illustrate the potential of targeting ion channels in cancer treatment. PMID:26258683

  10. [Transfection of pEGFP-C2 in brain mediated by targeting liposome P-MMA-DOSPER].

    Science.gov (United States)

    Tang, Shaonian; Liu, Zhenhua; Zhao, Lianxu; Zou, Zhihao; Du, Mouxuan

    2008-10-01

    This research tried improving the specificity and efficiency of gene transfection in gene therapy and tried making the liposome a better gene transfer vector to brain by use of the monoclonal antibody (anti-Lex/SSEA-1)-mediated targeting of liposome. The derivatized monoclonal antibody was conjugated to the liposome DOSPER to form the targeting liposome P-MMA-DOSPER. Then, the pEGFP-C2 encapsulated in P-MMA-DOSPER or DOSPER was injected into the lateral ventricle of SD rats respectively, and the brains were taken for frosted slice 1, 3, 7 or 14 days later. The expression of GFP was observed under fluorescent microscope. There was a lot of expression of GFP around the lateral ventricle of rats in each group. But the indirect fluorescence antibody test showed the ratio of GFP+/nestin+ cells to nestin+ cells of every marking time point in the group of P-MMA-DOSPER was higher than the one in the group of DOSPER; the difference was found to be statistically significant (PMMA-DOSPER can permeat the ependyma and can transfer gene into the nerve stem cells in vivo safely and effectively.

  11. Data on overlapping brain disorders and emerging drug targets in human Dopamine Receptors Interaction Network

    Directory of Open Access Journals (Sweden)

    Avijit Podder

    2017-06-01

    Full Text Available Intercommunication of Dopamine Receptors (DRs with their associate protein partners is crucial to maintain regular brain function in human. Majority of the brain disorders arise due to malfunctioning of such communication process. Hence, contributions of genetic factors, as well as phenotypic indications for various neurological and psychiatric disorders are often attributed as sharing in nature. In our earlier research article entitled “Human Dopamine Receptors Interaction Network (DRIN: a systems biology perspective on topology, stability and functionality of the network” (Podder et al., 2014 [1], we had depicted a holistic interaction map of human Dopamine Receptors. Given emphasis on the topological parameters, we had characterized the functionality along with the vulnerable properties of the network. In support of this, we hereby provide an additional data highlighting the genetic overlapping of various brain disorders in the network. The data indicates the sharing nature of disease genes for various neurological and psychiatric disorders in dopamine receptors connecting protein-protein interactions network. The data also indicates toward an alternative approach to prioritize proteins for overlapping brain disorders as valuable drug targets in the network.

  12. Noninvasive and targeted gene delivery into the brain using microbubble-facilitated focused ultrasound.

    Directory of Open Access Journals (Sweden)

    Po-Hung Hsu

    Full Text Available Recombinant adeno-associated viral (rAAV vectors are potentially powerful tools for gene therapy of CNS diseases, but their penetration into brain parenchyma is severely limited by the blood-brain barrier (BBB and current delivery relies on invasive stereotactic injection. Here we evaluate the local, targeted delivery of rAAV vectors into the brains of mice by noninvasive, reversible, microbubble-facilitated focused ultrasound (FUS, resulting in BBB opening that can be monitored and controlled by magnetic resonance imaging (MRI. Using this method, we found that IV-administered AAV2-GFP (green fluorescence protein with a low viral vector titer (1×10(9 vg/g can successfully penetrate the BBB-opened brain regions to express GFP. We show that MRI monitoring of BBB-opening could serve as an indicator of the scale and distribution of AAV transduction. Transduction peaked at 3 weeks and neurons and astrocytes were affected. This novel, noninvasive delivery approach could significantly broaden the application of AAV-viral-vector-based genes for treatment of CNS diseases.

  13. Mucoadhesive microemulsion of ibuprofen: design and evaluation for brain targeting efficiency through intranasal route

    Directory of Open Access Journals (Sweden)

    Surjyanarayan Mandal

    2015-09-01

    Full Text Available This study aimed at designing mucoadhesive microemulsion gel to enhance the brain uptake of Ibuprofen through intranasal route. Ibuprofen loaded mucoadhesive microemulsion (MMEI was developed by incorporating polycarbophil as mucoadhesive polymer into Capmul MCM based optimal microemulsion (MEI and was subjected to characterization, stability, mucoadhesion and naso-ciliotoxicity study. Brain uptake of ibuprofen via nasal route was studied by performing biodistribution study in Swiss albino rats. MEI was found to be transparent, stable and non ciliotoxic with 66.29 ± 4.15 nm, -20.9 ± 3.98 mV and 98.66 ± 1.01% as average globule size, zeta potential and drug content respectively. Transmission Electron Microscopy (TEM study revealed the narrow globule size distribution of MEI. Following single intranasal administration of MMEI and MEI at a dose of 2.86 mg/kg, uptake of ibuprofen in the olfactory bulb was around 3.0 and 1.7 folds compared with intravenous injection of ibuprofen solution (IDS. The ratios of AUC in brain tissues to that in plasma obtained after nasal administration of MMEI were significantly higher than those after intravenous administration of IDS. Findings of the present investigation revealed that the developed mucoadhesive microemulsion gel could be a promising approach for brain targeting of ibuprofen through intranasal route.

  14. Pseudotyped Lentiviral Vectors for Retrograde Gene Delivery into Target Brain Regions

    Directory of Open Access Journals (Sweden)

    Kenta Kobayashi

    2017-08-01

    Full Text Available Gene transfer through retrograde axonal transport of viral vectors offers a substantial advantage for analyzing roles of specific neuronal pathways or cell types forming complex neural networks. This genetic approach may also be useful in gene therapy trials by enabling delivery of transgenes into a target brain region distant from the injection site of the vectors. Pseudotyping of a lentiviral vector based on human immunodeficiency virus type 1 (HIV-1 with various fusion envelope glycoproteins composed of different combinations of rabies virus glycoprotein (RV-G and vesicular stomatitis virus glycoprotein (VSV-G enhances the efficiency of retrograde gene transfer in both rodent and nonhuman primate brains. The most recently developed lentiviral vector is a pseudotype with fusion glycoprotein type E (FuG-E, which demonstrates highly efficient retrograde gene transfer in the brain. The FuG-E–pseudotyped vector permits powerful experimental strategies for more precisely investigating the mechanisms underlying various brain functions. It also contributes to the development of new gene therapy approaches for neurodegenerative disorders, such as Parkinson’s disease, by delivering genes required for survival and protection into specific neuronal populations. In this review article, we report the properties of the FuG-E–pseudotyped vector, and we describe the application of the vector to neural circuit analysis and the potential use of the FuG-E vector in gene therapy for Parkinson’s disease.

  15. Pseudotyped Lentiviral Vectors for Retrograde Gene Delivery into Target Brain Regions.

    Science.gov (United States)

    Kobayashi, Kenta; Inoue, Ken-Ichi; Tanabe, Soshi; Kato, Shigeki; Takada, Masahiko; Kobayashi, Kazuto

    2017-01-01

    Gene transfer through retrograde axonal transport of viral vectors offers a substantial advantage for analyzing roles of specific neuronal pathways or cell types forming complex neural networks. This genetic approach may also be useful in gene therapy trials by enabling delivery of transgenes into a target brain region distant from the injection site of the vectors. Pseudotyping of a lentiviral vector based on human immunodeficiency virus type 1 (HIV-1) with various fusion envelope glycoproteins composed of different combinations of rabies virus glycoprotein (RV-G) and vesicular stomatitis virus glycoprotein (VSV-G) enhances the efficiency of retrograde gene transfer in both rodent and nonhuman primate brains. The most recently developed lentiviral vector is a pseudotype with fusion glycoprotein type E (FuG-E), which demonstrates highly efficient retrograde gene transfer in the brain. The FuG-E-pseudotyped vector permits powerful experimental strategies for more precisely investigating the mechanisms underlying various brain functions. It also contributes to the development of new gene therapy approaches for neurodegenerative disorders, such as Parkinson's disease, by delivering genes required for survival and protection into specific neuronal populations. In this review article, we report the properties of the FuG-E-pseudotyped vector, and we describe the application of the vector to neural circuit analysis and the potential use of the FuG-E vector in gene therapy for Parkinson's disease.

  16. Tailoring Lipid and Polymeric Nanoparticles as siRNA Carriers towards the Blood-Brain Barrier – from Targeting to Safe Administration

    DEFF Research Database (Denmark)

    Gomes, Maria João; Fernandes, Carlos; Martins, Susana

    2017-01-01

    is increasing worldwide, medical therapeutics need to be improved. Consequently, aiming to surpass blood-brain barrier and overcome CNS disabilities, silencing P-glycoprotein as a drug efflux transporter at brain endothelial cells through siRNA is considered a promising approach. For siRNA enzymatic protection...... and efficient delivery to its target, two different nanoparticles platforms, solid lipid (SLN) and poly-lactic-co-glycolic (PLGA) nanoparticles were used in this study. Polymeric PLGA nanoparticles were around 115 nm in size and had 50 % of siRNA association efficiency, while SLN presented 150 nm...

  17. Transferrin-conjugated, fluorescein-loaded magnetic nanoparticles for targeted delivery across the blood-brain barrier.

    Science.gov (United States)

    Yan, Feng; Wang, Ying; He, Shenzhi; Ku, Shuting; Gu, Wei; Ye, Ling

    2013-10-01

    The blood-brain barrier (BBB) restricts the delivery of many potentially important therapeutic agents for the treatment of brain disorders. An efficient strategy for brain targeted delivery is the utilization of the targeting ligand conjugated nanoparticles to trigger the receptor-mediated transcytosis. In this study, transferrin (Tf) was employed as a brain targeting ligand to functionalize the fluorescein-loaded magnetic nanoparticles (FMNs). The Tf conjugated FMNs (Tf-FMNs) were characterized by transmission electron microscopy, thermal gravimetric analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Using fluorescein as an optical probe, the potential of Tf-FMNs as brain targeting drug carriers was explored in vivo. It was demonstrated that Tf-FMNs were able to cross the intact BBB, diffuse into brain neurons, and distribute in the cytoplasm, dendrites, axons, and synapses of neurons. In contrast, magnetic nanoparticles without Tf conjugation cannot cross the BBB efficiently under the same conditions. Therefore, Tf-FMNs hold great potential in serving as an efficient multifunctional platform for the brain-targeted theranostics.

  18. Gene therapy for meningioma : improved gene delivery with targeted adenoviruses

    NARCIS (Netherlands)

    Dirven, CMF; Grill, J; Lamfers, MLM; Van der Valk, P; Leonhart, AM; Van Beusechem, VW; Haisma, HJ; Pinedo, HM; Curiel, DT; Vandertop, WP; Gerritsen, WR

    Object. Due to their surgical inaccessibility or aggressive behavior, some meningiomas cannot be cured with current treatment strategies. Gene therapy is an emerging strategy for the treatment of brain tumors, which the authors investigated to determine whether adenoviruses could be used for gene

  19. Improving Global Multi-target Tracking with Local Updates

    DEFF Research Database (Denmark)

    Milan, Anton; Gade, Rikke; Dick, Anthony

    2014-01-01

    We propose a scheme to explicitly detect and resolve ambiguous situations in multiple target tracking. During periods of uncertainty, our method applies multiple local single target trackers to hypothesise short term tracks. These tracks are combined with the tracks obtained by a global multi-tar...

  20. Improving the targeting of therapeutics with single-domain antibodies.

    Science.gov (United States)

    Turner, Kendrick B; Alves, Nathan J; Medintz, Igor L; Walper, Scott A

    2016-01-01

    The targeted delivery of therapeutic agents greatly increases their effectiveness while simultaneously reducing negative side effects. In the past, targeting of therapeutics has been accomplished with nucleic acids, peptides/proteins, and conventional antibodies. A promising alternative to the conventional antibodies often used in therapeutic targeting are significantly smaller-sized antibody fragments known as single-domain antibodies (sdAbs). Recent advances in the utility of sdAbs for targeting of therapeutic agents along with relevant examples from the literature are discussed. Their advantages when compared to other targeting strategies as well as their challenges and limitations is also covered. The development of sdAb-based targeted therapeutics will likely continue. The identification of novel protein modification techniques will provide more options for sdAb modification (conjugation, immobilization, functionalization), allowing a wider array of therapeutic agents to be successfully targeted and delivered using sdAbs. This will also spur the selection of sdAbs with specificity for other targets having relevance towards therapeutics.

  1. Guidelines to PET measurements of the target occupancy in the brain for drug development

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Akihiro; Varrone, Andrea; Gulyas, Balazs; Halldin, Christer [Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatric Research, Stockholm (Sweden); Salvadori, Piero [CNR Istituto di Fisiologia Clinica, Pisa (Italy); Gee, Antony [Kings College London, Department of Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Windhorst, Albert; Lammertsma, Adriaan A. [VU University Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Vercouillie, Johnny [Universite Francois Rabelais de Tours, UMR Inserm U930, Tours (France); Bormans, Guy [KU Leuven, Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Leuven (Belgium)

    2016-11-15

    This guideline summarizes the current view of the European Association of Nuclear Medicine Drug Development Committee. The purpose of this guideline is to guarantee a high standard of PET studies that are aimed at measuring target occupancy in the brain within the framework of development programs of drugs that act within the central nervous system (CNS drugs). This guideline is intended to present information specifically adapted to European practice. The information provided should be applied within the context of local conditions and regulations. (orig.)

  2. Oxidative stress is a central target for physical exercise neuroprotection against pathological brain aging

    OpenAIRE

    Garcia-Mesa, Yoelvis; Colie, Sandra; Corpas, Ruben; Cristofol, Rosa; Comellas Padró, Francesc De Paula; Nebreda, Angel; Giménez-Llort, Lydia; Sanfeliu, Coral

    2015-01-01

    Physical exercise is suggested for preventing or delaying senescence and Alzheimer’s disease (AD). We have examined its therapeutic value in the advanced stage of AD-like pathology in 3xTg-AD female mice through voluntary wheel running from 12 to 15 months of age. Mice submitted to exercise showed improved body fitness, immunorejuvenation, improvement of behavior and cognition, and reduced amyloid and tau pathology. Brain tissue analysis of aged 3xTg-AD mice showed high levels of oxidative da...

  3. Deep Brain Stimulation Target Selection in an Advanced Parkinson's Disease Patient with Significant Tremor and Comorbid Depression

    Directory of Open Access Journals (Sweden)

    Amar S. Patel

    2017-04-01

    Full Text Available Clinical Vignette: A 67-year-old female with advanced Parkinson's disease (PD, medically refractory tremor, and a history of significant depression presents for evaluation of deep brain stimulation (DBS candidacy.  Clinical Dilemma: Traditionally, stimulation of the subthalamic nucleus (STN has been the preferred target for patients with significant PD tremor. However, STN stimulation is avoided in patients with a significant pre-surgical history of mood disorder.  Clinical Solution: Bilateral DBS of the globus pallidus interna led to significant short term improvement in PD motor symptoms, including significant tremor reduction.  Gap in Knowledge: There is insufficient evidence to support or refute clinicians' traditional preference for STN stimulation in treating refractory PD tremor. Similarly, the available evidence for risk of worsening depression and/or suicidality after STN DBS is mixed. Both questions require further clarification to guide patient and clinician decision-making.

  4. Deep brain stimulation improves survival in severe Parkinson's disease.

    Science.gov (United States)

    Ngoga, Desire; Mitchell, Rosalind; Kausar, Jamilla; Hodson, James; Harries, Anwen; Pall, Hardev

    2014-01-01

    Levodopa and other dopaminergic treatments have not had the expected effect on survival in Parkinson's disease (PD). Bilateral subthalamic nucleus deep brain stimulation (STN-DBS) has been shown to improve motor function, motor fluctuations, health-related quality of life, and to reduce medication usage and drug-induced dyskinesia in patients with severe PD refractory to medical therapy. Little however, has been described on the impact of STN-DBS on the survival of these patients. We aim in this study to examine the impact of STN-DBS on the survival of patients with severe PD. Patients who were eligible for STN-DBS were given the choice of undergoing surgery or continuing on medical treatment. Those who exercised patient choice and preferred to continue with medical treatment formed a control population. All eligible patients seen in a 10-year period are included in this study. Our primary outcome measure is a difference in mortality between the two groups with a secondary measure of admission rates to residential (nursing home) care. 106 patients underwent STN-DBS, and 41 patients exercised patient choice and declined the procedure. The two groups were matched for age, gender, ethnicity, duration of disease, rates of pre-existing depression and Levodopa equivalent doses of anti-Parkinson's medications taken. Patients undergoing STN-DBS had significantly longer survival and were significantly less likely to be admitted to a residential care home than those managed purely medically. The statistical significance of these findings persisted after adjusting for potential confounding factors (survival: p=0.002, HR 0.29 (0.13 to 0.64) (residential care home admission: OR: 0.1 (95% CI 0.0 to 0.3; padvanced PD. The effect of potential bias factors is examined. The survival advantage may arise for several postulated reasons, ranging from improvement in axial functions, such as swallowing, to some as yet unrecognised benefit of reduction in dopaminergic medication. These

  5. Outcome based definition of the anterior thalamic deep brain stimulation target in refractory epilepsy.

    Science.gov (United States)

    Lehtimäki, K; Möttönen, T; Järventausta, K; Katisko, J; Tähtinen, T; Haapasalo, J; Niskakangas, T; Kiekara, T; Öhman, J; Peltola, J

    2016-01-01

    Deep brain stimulation of the anterior nucleus of the thalamus (ANT) is an emerging therapy for refractory focal epilepsy. However, the most optimal target for stimulation has not been unambiguously described. In the present study, we investigated the correlation between the stimulation site and outcome in order to define the optimal target for deep brain stimulation in refractory epilepsy. The locations of 62 contacts used in 30 treatment attempts in 15 prospectively followed patients during a 5 year period were assessed. Treatment attempts were classified into responding and non-responding trials using seizure reduction and side effect profile as criteria. The locations of active contacts were calculated with respect to mid-commissural point and visible borders of ANT in 3T MRI (ANT-normalized coordinate system) aiming to minimize the confounding effect of individual variation in the location and size of the ANT. Contacts in successful treatment trials were located significantly more anterior and superior both in AC-PC and ANT-normalized coordinate systems. Favourable outcome was observed at 3T MRI based location of ANT but not at location predicted by Schaltenbrandt atlas sagittal data. Contacts used in successful trials were at anterior aspect of the ANT complex evidenced by the ANT-normalized coordinate system. The anti-epileptic effect of anterior thalamic DBS may be dependent on stimulation site especially in the anterior to posterior axis. Extensive anatomical variation confounds severely the targeting of ANT. Therefore, direct visualization of the desired target for stimulation is essential for favourable outcome in refractory epilepsy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Deep brain stimulation as a tool for improving cognitive functioning in Alzheimer’s dementia: a systematic review

    Directory of Open Access Journals (Sweden)

    Katja eHardenacke

    2013-12-01

    Full Text Available Deep brain stimulation (DBS is an established, in selected cases therapeutically effective, non-lesional treatment method delivering current rectangular pulses into dysfunctional brain structures via chronically implanted stimulation electrodes. DBS is a recognized method applied in movement disorders and is increasingly evaluated as a possible therapeutic option for psychiatric diseases such as refractory obsessive-compulsive disorders, Gilles de la Tourette syndrome, major depression and substance-related addiction. Latest research indicates that DBS may be a method for improving cognitive functions in Alzheimer’s dementia (AD. Translational data in healthy and AD animals appear to support this notion. Nevertheless, many aspects remain unclear, particularly with regard to the optimal target structure. The objective of this review is to present a systematic overview regarding published research on DBS and cognitive functioning in animal and human studies as well as to provide a systematic overview of the feasibility and efficacy of the treatment. We describe three studies investigating the effects of DBS in patients with dementia, using either the fornix or the nucleus basalis of Meynert as a target. In total, we identified 25 animal studies with 10 brain structures being targeted: fornix, nucleus basalis of Meynert, anterior caudate nucleus, dorsal striatum, anterior thalamic nucleus, midline thalamic nuclei, central thalamic nuclei, lateral hypothalamus, hippocampus (entorhinal cortex, perforant path and amygdala. Considering the wide and diverse spectrum of targets, we add to this review a supposition about possible underlying mechanisms of operation and recommendations for further research.

  7. Strategies to improve intracellular drug delivery by targeted liposomes

    NARCIS (Netherlands)

    Fretz, M.M.

    2007-01-01

    Biotechnological advances increased the number of novel macromolecular drugs and new drug targets. The latter are mostly found intracellular. Unfortunately, most of the new macromolecular drugs rely on drug delivery tools for their intracellular delivery because their unfavourable physicochemical

  8. An Improved GLRT Method for Target Detection in SAR Imagery

    Directory of Open Access Journals (Sweden)

    Ju Yingyun

    2015-01-01

    Full Text Available Automatic ground vehicle detection based on SAR imagery is one of the important military applications of SAR. A region-based generalized likelihood ratio test (GLRT method is proposed in this paper, and this method combines the GLRT detection theory and image segmentation technology. First, the SAR imagery is roughly segmented as land clutter region and potential target region through the split and merge procedure often used for processing the original images. Then, based on the segmentation results, the reasonable statistical models for the data in the two regions are built respectively. Finally, with the knowledge of statistical characteristics of clutter and target, GLRT detection method is applied to the each pixel in the potential target region to obtain more accurate detection results. Experimental results based on real SAR data show that the proposed method can effectively detect the ground vehicle targets from the land clutter with excellent accuracy and speed.

  9. Uniform brain tumor distribution and tumor associated macrophage targeting of systemically administered dendrimers.

    Science.gov (United States)

    Zhang, Fan; Mastorakos, Panagiotis; Mishra, Manoj K; Mangraviti, Antonella; Hwang, Lee; Zhou, Jinyuan; Hanes, Justin; Brem, Henry; Olivi, Alessandro; Tyler, Betty; Kannan, Rangaramanujam M

    2015-06-01

    Effective blood-brain tumor barrier penetration and uniform solid tumor distribution can significantly enhance therapeutic delivery to brain tumors. Hydroxyl-functionalized, generation-4 poly(amidoamine) (PAMAM) dendrimers, with their small size, near-neutral surface charge, and the ability to selectively localize in cells associated with neuroinflammation may offer new opportunities to address these challenges. In this study we characterized the intracranial tumor biodistribution of systemically delivered PAMAM dendrimers in an intracranial rodent gliosarcoma model using fluorescence-based quantification methods and high resolution confocal microscopy. We observed selective and homogeneous distribution of dendrimer throughout the solid tumor (∼6 mm) and peritumoral area within fifteen minutes after systemic administration, with subsequent accumulation and retention in tumor associated microglia/macrophages (TAMs). Neuroinflammation and TAMs have important growth promoting and pro-invasive effects in brain tumors. The rapid clearance of systemically administered dendrimers from major organs promises minimal off-target adverse effects of conjugated drugs. Therefore, selective delivery of immunomodulatory molecules to TAM, using hydroxyl PAMAM dendrimers, may hold promise for therapy of glioblastoma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Brain-targeted delivery of trans-activating transcriptor-conjugated magnetic PLGA/lipid nanoparticles.

    Directory of Open Access Journals (Sweden)

    Xiangru Wen

    Full Text Available Magnetic poly (D,L-lactide-co-glycolide (PLGA/lipid nanoparticles (MPLs were fabricated from PLGA, L-α-phosphatidylethanolamine (DOPE, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-amino (polyethylene glycol (DSPE-PEG-NH2, and magnetic nanoparticles (NPs, and then conjugated to trans-activating transcriptor (TAT peptide. The TAT-MPLs were designed to target the brain by magnetic guidance and TAT conjugation. The drugs hesperidin (HES, naringin (NAR, and glutathione (GSH were encapsulated in MPLs with drug loading capacity (>10% and drug encapsulation efficiency (>90%. The therapeutic efficacy of the drug-loaded TAT-MPLs in bEnd.3 cells was compared with that of drug-loaded MPLs. The cells accumulated higher levels of TAT-MPLs than MPLs. In addition, the accumulation of QD-loaded fluorescein isothiocyanate (FITC-labeled TAT-MPLs in bEnd.3 cells was dose and time dependent. Our results show that TAT-conjugated MPLs may function as an effective drug delivery system that crosses the blood brain barrier to the brain.

  11. Separating esterase targets of organophosphorus compounds in the brain by preparative chromatography.

    Science.gov (United States)

    Mangas, I; Vilanova, E; Benabent, M; Estévez, J

    2014-02-10

    Low level exposure to organophosphorus esters (OPs) may cause long-term neurological effects and affect specific cognition domains in experimental animals and humans. Action on known targets cannot explain most of these effects by. Soluble carboxylesterases (EC 3.1.1.1) of chicken brain have been kinetically discriminated using paraoxon, mipafox and phenylmethyl sulfonylfluoride as inhibitors and phenyl valerate as a substrate. Three different enzymatic components were discriminated and called Eα, Eβ and Eγ. In this work, a fractionation procedure with various steps was developed using protein native separation methods by preparative HPLC. Gel permeation chromatography followed by ion exchange chromatography allowed enriched fractions with different kinetic behaviors. The soluble chicken brain fraction was fractionated, while total esterase activity, proteins and enzymatic components Eα, Eβ and Eγ were monitored in each subfraction. After the analysis, 13 fractions were pooled and conserved. Preincubation of the soluble chicken brain fraction of with the organophosphorus mipafox gave rise to a major change in the ion exchange chromatography profile, but not in the molecular exchanged chromatography profile, which suggest that mipafox permanently modifies the ionic properties of numerous proteins. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Deep brain stimulation and ablation for obsessive compulsive disorder: evolution of contemporary indications, targets and techniques.

    Science.gov (United States)

    Tierney, Travis S; Abd-El-Barr, Muhammad M; Stanford, Arielle D; Foote, Kelly D; Okun, Michael S

    2014-06-01

    Surgical therapy for treatment-resistant obsessive compulsive disorder (OCD) remains an effective option for well-selected patients managed within a multidisciplinary setting. Historically, lesions within the limbic system have been used to control both obsessive thoughts and repetitive compulsions associated with this disease. We discuss classical targets as well as contemporary neuromodulatory approaches that have been shown to provide symptomatic relief. Recently, deep brain stimulation (DBS) of the anterior limb of the internal capsule/ventral striatum received Conformité Européene (CE) mark and Food and Drug Administration (FDA) approvals for treatment of intractable OCD. Remarkably, this is the first such approval for neurosurgical intervention in a strictly psychiatric indication in modern times. This target is discussed in detail along with alternative targets currently being proposed. We close with a discussion of gamma knife capsulotomy, a modality with deep historical roots. Further directions in the surgical treatment of OCD will require better preoperative predictors of postoperative responses, optimal selection of individualized targets, and rigorous reporting of adverse events and standardized outcomes. To meet these challenges, centers must be equipped with a multidisciplinary team and patient-centered approach to ensure adequate screening and follow up of patients with this difficult-to-treat condition.

  13. Intraoperative acceleration measurements to quantify improvement in tremor during deep brain stimulation surgery.

    Science.gov (United States)

    Shah, Ashesh; Coste, Jérôme; Lemaire, Jean-Jacques; Taub, Ethan; Schüpbach, W M Michael; Pollo, Claudio; Schkommodau, Erik; Guzman, Raphael; Hemm-Ode, Simone

    2017-05-01

    Deep brain stimulation (DBS) surgery is extensively used in the treatment of movement disorders. Nevertheless, methods to evaluate the clinical response during intraoperative stimulation tests to identify the optimal position for the implantation of the chronic DBS lead remain subjective. In this paper, we describe a new, versatile method for quantitative intraoperative evaluation of improvement in tremor with an acceleration sensor that is mounted on the patient's wrist during surgery. At each anatomical test position, the improvement in tremor compared to the initial tremor is estimated on the basis of extracted outcome measures. This method was tested on 15 tremor patients undergoing DBS surgery in two centers. Data from 359 stimulation tests were acquired. Our results suggest that accelerometric evaluation detects tremor changes more sensitively than subjective visual ratings. The effective stimulation current amplitudes identified from the quantitative data (1.1 ± 0.8 mA) are lower than those identified by visual evaluation (1.7 ± 0.8 mA) for similar improvement in tremor. Additionally, if these data had been used to choose the chronic implant position of the DBS lead, 15 of the 26 choices would have been different. These results show that our method of accelerometric evaluation can potentially improve DBS targeting.

  14. Use of Ultrasound Pulses Combined with Definity for Targeted Blood-Brain Barrier Disruption

    Science.gov (United States)

    McDannold, Nathan; Vykhodtseva, Natalia; Hynynen, Kullervo

    2007-05-01

    We have developed a method to combine an ultrasound contrast agent (USCA) with low-intensity focused ultrasound pulses combined to produce temporary blood-brain barrier disruption (BBBD), a potential non-invasive means for targeted drug delivery in the brain. All of our previous work used the USCA Optison. The purpose of this work was to test the feasibility of using the USCA Definity for BBBD. Thirty-six non-overlapping locations were sonicated through a craniotomy in experiments in the brains of nine rabbits (4 locations per rabbit; US frequency: 0.69MHz, burst: 10ms, PRF: 1Hz, duration: 20s; pressure amplitude: 0.2-1.5 MPa). Eleven locations were sonicated using Optison at 0.5 MPa. For both agents, the probability for BBBD was estimated to be 50% at 0.4 MPa using probit regression. In histology, small isolated areas of extravasated erythrocytes were observed in some locations. At 0.8 MPa and above, this extravasation was sometimes accompanied by tiny (dimensions of 100 μm or less) regions of damaged brain parenchyma. The magnitude of the BBBD was larger with Optison than with Definity at 0.5 MPa (P=0.04), and more areas with extravasated erythrocytes were observed (P=0.03). We conclude that BBBD is possible using Definity for the dosage of USCA and the acoustic parameters tested in this study. While the probability for BBBD as a function of pressure amplitude and the type of acute tissue effects was similar to findings with Optison, under these experimental conditions, Optison produced a larger effect.

  15. Improving your target-template alignment with MODalign.

    KAUST Repository

    Barbato, Alessandro

    2012-02-04

    SUMMARY: MODalign is an interactive web-based tool aimed at helping protein structure modelers to inspect and manually modify the alignment between the sequences of a target protein and of its template(s). It interactively computes, displays and, upon modification of the target-template alignment, updates the multiple sequence alignments of the two protein families, their conservation score, secondary structure and solvent accessibility values, and local quality scores of the implied three-dimensional model(s). Although it has been designed to simplify the target-template alignment step in modeling, it is suitable for all cases where a sequence alignment needs to be inspected in the context of other biological information. AVAILABILITY AND IMPLEMENTATION: Freely available on the web at http://modorama.biocomputing.it/modalign. Website implemented in HTML and JavaScript with all major browsers supported. CONTACT: jan.kosinski@uniroma1.it.

  16. Improving brain-machine interface performance by decoding intended future movements

    Science.gov (United States)

    Willett, Francis R.; Suminski, Aaron J.; Fagg, Andrew H.; Hatsopoulos, Nicholas G.

    2013-04-01

    Objective. A brain-machine interface (BMI) records neural signals in real time from a subject's brain, interprets them as motor commands, and reroutes them to a device such as a robotic arm, so as to restore lost motor function. Our objective here is to improve BMI performance by minimizing the deleterious effects of delay in the BMI control loop. We mitigate the effects of delay by decoding the subject's intended movements a short time lead in the future. Approach. We use the decoded, intended future movements of the subject as the control signal that drives the movement of our BMI. This should allow the user's intended trajectory to be implemented more quickly by the BMI, reducing the amount of delay in the system. In our experiment, a monkey (Macaca mulatta) uses a future prediction BMI to control a simulated arm to hit targets on a screen. Main Results. Results from experiments with BMIs possessing different system delays (100, 200 and 300 ms) show that the monkey can make significantly straighter, faster and smoother movements when the decoder predicts the user's future intent. We also characterize how BMI performance changes as a function of delay, and explore offline how the accuracy of future prediction decoders varies at different time leads. Significance. This study is the first to characterize the effects of control delays in a BMI and to show that decoding the user's future intent can compensate for the negative effect of control delay on BMI performance.

  17. Dietary resistant starch improves selected brain and behavioral functions in adult and aged rodents.

    Science.gov (United States)

    Zhou, June; Keenan, Michael J; Fernandez-Kim, Sun Ok; Pistell, Paul J; Ingram, Donald K; Li, Bing; Raggio, Anne M; Shen, Li; Zhang, Hanjie; McCutcheon, Kathleen L; Tulley, Richard T; Blackman, Marc R; Keller, Jeffrey N; Martin, Roy J

    2013-11-01

    Resistant starch (RS) is a dietary fiber that exerts multiple beneficial effects. The current study explored the effects of dietary RS on selected brain and behavioral functions in adult and aged rodents. Because glucokinase (GK) expression in hypothalamic arcuate nucleus and area postrema of the brainstem is important for brain glucose sensing, GK mRNA was measured by brain nuclei microdissection and PCR. Adult RS-fed rats had a higher GK mRNA than controls in both brain nuclei, an indicator of improved brain glucose sensing. Next, we tested whether dietary RS improve selected behaviors in aged mice. RS-fed aged mice exhibited (i) an increased eating responses to fasting, a behavioral indicator of improvement in aged brain glucose sensing; (ii) a longer latency to fall from an accelerating rotarod, a behavioral indicator of improved motor coordination; and (iii) a higher serum active glucagon-like peptide-1 (GLP-1). Then, GLP-1 receptor null (GLP-1RKO) mice were used to test the role of GLP-1 in brain glucose sensing, and they exhibited impaired eating responses to fasting. We conclude that in rodents (i) dietary RS improves two important indicators of brain function: glucose sensing and motor coordination, and (ii) GLP-1 is important in the optimal feeding response to a fast. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Targeting brain α7 nicotinic acetylcholine receptors in Alzheimer's disease: rationale and current status.

    Science.gov (United States)

    Vallés, Ana Sofía; Borroni, María Virginia; Barrantes, Francisco J

    2014-11-01

    Alzheimer's disease (AD) is the most common form of dementia among older persons. Pathognomonic hallmarks of the disease include the development of amyloid senile plaques and deposits of neurofibrillary tangles. These changes occur in the brain long before the clinical manifestations of AD (cognitive impairment in particular) become apparent. Nicotinic acetylcholine receptors (AChRs), particularly the α7 subtype, are highly expressed in brain regions relevant to cognitive and memory functions and involved in the processing of sensory information. There is strong evidence that implicates the participation of AChRs in AD. This review briefly introduces current strategies addressing the pathophysiologic findings (amyloid-β-peptide plaques, neurofibrillary tangles) and then focuses on more recent efforts of pharmacologic intervention in AD, specifically targeted to the α7 AChR. Whereas cholinesterase inhibitors such as donepezil, galantamine, or rivastigmine, together with the non-competitive N-methyl-D-aspartate receptor antagonist memantine are at the forefront of present-day clinical intervention for AD, new insights into AChR molecular pharmacology are bringing other drugs, directed at AChRs, to center stage. Among these are the positive allosteric modulators that selectively target α7 AChRs and are aimed at unleashing the factors that hinder agonist-mediated, α7 AChR channel activation. This calls for more detailed knowledge of the distribution, functional properties, and involvement of AChRs in various signaling cascades-together with the corresponding abnormalities in all these properties-to be able to engineer strategies in drug design and evaluate the therapeutic possibilities of new compounds targeting this class of neurotransmitter receptors.

  19. Improved Tracking of Targets by Cameras on a Mars Rover

    Science.gov (United States)

    Kim, Won; Ansar, Adnan; Steele, Robert

    2007-01-01

    A paper describes a method devised to increase the robustness and accuracy of tracking of targets by means of three stereoscopic pairs of video cameras on a Mars-rover-type exploratory robotic vehicle. Two of the camera pairs are mounted on a mast that can be adjusted in pan and tilt; the third camera pair is mounted on the main vehicle body. Elements of the method include a mast calibration, a camera-pointing algorithm, and a purely geometric technique for handing off tracking between different camera pairs at critical distances as the rover approaches a target of interest. The mast calibration is an extension of camera calibration in which the camera images of calibration targets at known positions are collected at various pan and tilt angles. In the camerapointing algorithm, pan and tilt angles are computed by a closed-form, non-iterative solution of inverse kinematics of the mast combined with mathematical models of the cameras. The purely geometric camera-handoff technique involves the use of stereoscopic views of a target of interest in conjunction with the mast calibration.

  20. Improvement of thrust efficiency of laser fusion rocket with shaped target

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, N; Kawabuchi, R; Kajimura, Y; Nakashima, H [Department of Advanced Energy Engineering Science, Kyushu University (Japan); Zakaharov, Y P [Institute of Laser Physics, Novosibirsk 630090 (Russian Federation)], E-mail: matsunobu@aees.kyushu-u.ac.jp

    2008-05-01

    This paper explains numerical analysis for a shaped target. The shaped target is made of fusion pellet and the pellet is surrounded by a moderator (propellant). The thrust efficiency can be improved by using the shaped target. We take up here typical models for the thrust efficiency improvement and for direction control. As a result of calculation, we have obtained an improvement of the thrust efficiency reaching 78 % with a shaped target, while it was only 66 % with a unshaped target. We also have obtained about 5 degrees of a steering angle.

  1. Targeted liposomes for drug delivery across the blood-brain barrier

    NARCIS (Netherlands)

    van Rooy, I.|info:eu-repo/dai/nl/304823074

    2011-01-01

    Our brain is protected by the blood-brain barrier (BBB). This barrier is formed by specialized endothelial cells of the brain vasculature and prevents toxic substances from entering the brain. The downside of this barrier is that many drugs that have been developed to cure brain diseases cannot

  2. heuristically improved bayesian segmentation of brain mr images

    African Journals Online (AJOL)

    Therefore, finding automatic methods for segmenting images appears to be mandatory (Kumar and. Arthanariee 2014; Rajchl, Baxter et al. 2014; Valverde, Oliver et al. 2014). Nowadays, Magnetic Resonance Imaging (MRI) is a prevalent way of realizing human brain and mostly is utilized in diagnostics and therapeutics.

  3. heuristically improved bayesian segmentation of brain mr images

    African Journals Online (AJOL)

    INTRODUCTION. Image segmentation is the process of dividing an image into its constituent non-overlapping components (Khayati, Vafadust et al. 2008; Wang ... analysis. Automatic segmentation of brain MR Images into its main tissues remains an inextricable problem in domain of medical image processing. First of all ...

  4. Mildly Reduced Brain Swelling and Improved Neurological Outcome in Aquaporin-4 Knockout Mice following Controlled Cortical Impact Brain Injury.

    Science.gov (United States)

    Yao, Xiaoming; Uchida, Kazuyoshi; Papadopoulos, Marios C; Zador, Zsolt; Manley, Geoffrey T; Verkman, Alan S

    2015-10-01

    Brain edema following traumatic brain injury (TBI) is associated with considerable morbidity and mortality. Prior indirect evidence has suggested the involvement of astrocyte water channel aquaporin-4 (AQP4) in the pathogenesis of TBI. Here, focal TBI was produced in wild type (AQP4(+/+)) and knockout (AQP4(-/-)) mice by controlled cortical impact injury (CCI) following craniotomy with dura intact (parameters: velocity 4.5 m/sec, depth 1.7 mm, dwell time 150 msec). AQP4-deficient mice showed a small but significant reduction in injury volume in the first week after CCI, with a small improvement in neurological outcome. Mechanistic studies showed reduced intracranial pressure at 6 h after CCI in AQP4(-/-) mice, compared with AQP4(+/+) control mice (11 vs. 19 mm Hg), with reduced local brain water accumulation as assessed gravimetrically. Transmission electron microscopy showed reduced astrocyte foot-process area in AQP4(-/-) mice at 24 h after CCI, with greater capillary lumen area. Blood-brain barrier disruption assessed by Evans blue dye extravasation was similar in AQP4(+/+) and AQP4(-/-) mice. We conclude that the mildly improved outcome in AQP4(-/-) mice following CCI results from reduced cytotoxic brain water accumulation, though concurrent cytotoxic and vasogenic mechanisms in TBI make the differences small compared to those seen in disorders where cytotoxic edema predominates.

  5. Targeted Polymeric Nanoparticles for Brain Delivery of High Molecular Weight Molecules in Lysosomal Storage Disorders.

    Directory of Open Access Journals (Sweden)

    Marika Salvalaio

    Full Text Available Lysosomal Storage Disorders (LSDs are a group of metabolic syndromes, each one due to the deficit of one lysosomal enzyme. Many LSDs affect most of the organ systems and overall about 75% of the patients present neurological impairment. Enzyme Replacement Therapy, although determining some systemic clinical improvements, is ineffective on the CNS disease, due to enzymes' inability to cross the blood-brain barrier (BBB. With the aim to deliver the therapeutic enzymes across the BBB, we here assayed biodegradable and biocompatible PLGA-nanoparticles (NPs in two murine models for LSDs, Mucopolysaccharidosis type I and II (MPS I and MPS II. PLGA-NPs were modified with a 7-aminoacid glycopeptide (g7, yet demonstrated to be able to deliver low molecular weight (MW molecules across the BBB in rodents. We specifically investigated, for the first time, the g7-NPs ability to transfer a model drug (FITC-albumin with a high MW, comparable to the enzymes to be delivered for LSDs brain therapy. In vivo experiments, conducted on wild-type mice and knockout mouse models for MPS I and II, also included a whole series of control injections to obtain a broad preliminary view of the procedure efficiency. Results clearly showed efficient BBB crossing of albumin in all injected mice, underlying the ability of NPs to deliver high MW molecules to the brain. These results encourage successful experiments with enzyme-loaded g7-NPs to deliver sufficient amounts of the drug to the brain district on LSDs, where exerting a corrective effect on the pathological phenotype.

  6. Targeted Iron Chelation Will Improve Recovery after Spinal Cord Injury

    Science.gov (United States)

    2014-10-01

    life. Even though sub- stantial improvements in care have increased survival rates, people with SCI now live with significant deficits for many...can re- duce tissue damage and promote functional improvement (Klapka et al., 2005; Paterniti et al., 2010; Rathore et al., 2008; Schultke et al...attenuate post-SCI pathology ( Paterniti et al., 2010). A caveat, however, is that the drug was given 30 min prior to injury. The iron chelator

  7. Neuronal process structure and growth proteins are targets of heavy PTM regulation during brain development.

    Science.gov (United States)

    Edwards, Alistair V G; Schwämmle, Veit; Larsen, Martin R

    2014-04-14

    Brain development is a process requiring precise control of many different cell types. One method to achieve this is through specific and temporally regulated modification of proteins in order to alter structure and function. Post-translational modification (PTM) of proteins is known to have wide-ranging and substantial effects on cellular function, both as part of signalling network modulation and more directly by modifying the function of key proteins. In this study, we show that PTM regulation is differentially targeted at different areas of the proteome, and that cytoskeletal proteins involved in neuronal process extension and maintenance are both more heavily modified and more frequently regulated at a PTM level. This suggests a clear role not only for PTMs in these processes, but possibly also for heavy protein modification in general. This study provides one of the most comprehensive sets of individual PTM site regulation data for mammalian brain tissue. This will provide a valuable resource for those wishing to perform comparisons or meta-analyses of large scale PTMomic data, as are becoming increasingly common. Furthermore, being focussed on protein-level events, this study also provides significant insight into detailed roles for individual modified proteins in the developing brain, helping to advance the understanding of the complex protein-driven processes that underlie development. Finally, the use of a novel bioinformatic analytical tool provides information regarding aspects of the PTMome which are not normally examined, and illuminates the role of PTMs on a more detailed, protein-centric and site-specific level in a biological context. The widespread yet uneven distributions observed will be relevant to those readers with an interest in the mechanisms of distribution of PTMS and their functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Brain Insulin Resistance and Deficiency as Therapeutic Targets in Alzheimer's Disease

    Science.gov (United States)

    de la Monte, Suzanne M

    2012-01-01

    Alzheimer's disease [AD] is the most common cause of dementia in North America. Despite 30+ years of intense investigation, the field lacks consensus regarding the etiology and pathogenesis of sporadic AD, and therefore we still do not know the best strategies for treating and preventing this debilitating and costly disease. However, growing evidence supports the concept that AD is fundamentally a metabolic disease with substantial and progressive derangements in brain glucose utilization and responsiveness to insulin and insulin-like growth factor [IGF] stimulation. Moreover, AD is now recognized to be heterogeneous in nature, and not solely the end-product of aberrantly processed, misfolded, and aggregated oligomeric amyloid-beta peptides and hyperphosphorylated tau. Other factors, including impairments in energy metabolism, increased oxidative stress, inflammation, insulin and IGF resistance, and insulin/IGF deficiency in the brain should be incorporated into all equations used to develop diagnostic and therapeutic approaches to AD. Herein, the contributions of impaired insulin and IGF signaling to AD-associated neuronal loss, synaptic disconnection, tau hyperphosphorylation, amyloid-beta accumulation, and impaired energy metabolism are reviewed. In addition, we discuss current therapeutic strategies and suggest additional approaches based on the hypothesis that AD is principally a metabolic disease similar to diabetes mellitus. Ultimately, our ability to effectively detect, monitor, treat, and prevent AD will require more efficient, accurate and integrative diagnostic tools that utilize clinical, neuroimaging, biochemical, and molecular biomarker data. Finally, it is imperative that future therapeutic strategies for AD abandon the concept of uni-modal therapy in favor of multi-modal treatments that target distinct impairments at different levels within the brain insulin/IGF signaling cascades. PMID:22329651

  9. A Generic Multi-Compartmental CNS Distribution Model Structure for 9 Drugs Allows Prediction of Human Brain Target Site Concentrations.

    Science.gov (United States)

    Yamamoto, Yumi; Välitalo, Pyry A; van den Berg, Dirk-Jan; Hartman, Robin; van den Brink, Willem; Wong, Yin Cheong; Huntjens, Dymphy R; Proost, Johannes H; Vermeulen, An; Krauwinkel, Walter; Bakshi, Suruchi; Aranzana-Climent, Vincent; Marchand, Sandrine; Dahyot-Fizelier, Claire; Couet, William; Danhof, Meindert; van Hasselt, Johan G C; de Lange, Elizabeth C M

    2017-02-01

    Predicting target site drug concentration in the brain is of key importance for the successful development of drugs acting on the central nervous system. We propose a generic mathematical model to describe the pharmacokinetics in brain compartments, and apply this model to predict human brain disposition. A mathematical model consisting of several physiological brain compartments in the rat was developed using rich concentration-time profiles from nine structurally diverse drugs in plasma, brain extracellular fluid, and two cerebrospinal fluid compartments. The effect of active drug transporters was also accounted for. Subsequently, the model was translated to predict human concentration-time profiles for acetaminophen and morphine, by scaling or replacing system- and drug-specific parameters in the model. A common model structure was identified that adequately described the rat pharmacokinetic profiles for each of the nine drugs across brain compartments, with good precision of structural model parameters (relative standard error human concentration-time profiles in different brain compartments well (symmetric mean absolute percentage error brain pharmacokinetic model was developed and its structure could adequately describe data across nine different drugs. The model could be successfully translated to predict human brain concentrations.

  10. Carbamazepine mucoadhesive nanoemulgel (MNEG) as brain targeting delivery system via the olfactory mucosa.

    Science.gov (United States)

    Samia, Omar; Hanan, Refai; Kamal, El Tahir

    2012-01-01

    Carbamazepine (CBZ) is an antiepileptic orally administered drug, but due to its low solubility in water, its gastrointestinal absorption is slow and irregular, leading to delayed brain uptake with consequent peripheral side actions. The objective of this study was the brain targeting of CBZ via the olfactory mucosa in form of an intranasal mucoadhesive o/w nanoemulgel (MNEG). CBZ was formulated in a nanoemulgel system containing oleic acid/labrasol in a ratio of 1:5 as oil/surfactant and 0.1% xanthan gum as anionic mucoadhesive polymer. The prepared MNEG was characterized with respect to oil droplet size, mucoadhesion, in-vitro release of the drug and CBZ uptake by phosphatidylcoline liposomes as an in-vitro model for olfactory cells. The anticonvulsant action of nasal MNEG was studied on chemically and electrically induced convulsive Swiss Albino mice. The in-vitro release of CBZ from MNEG was very low, however CBZ uptake via liposomal membrane reached 65% within 1 hr. Treatment of animals with MNEG significantly prolonged the onset times for convulsion of chemically convulsive mice and protected the animals from two electric shocks. One can thus spire and hope for the emergence of a new intranasal treatment of epilepsy with consequent decrease in the peripheral side actions of CBZ.

  11. Neurons are the Primary Target Cell for the Brain-Tropic Intracellular Parasite Toxoplasma gondii

    Science.gov (United States)

    Dietrich, Hans K.; Nguyen, Elizabeth; MacDonald, Wes R.; Trivedi, Tapasya; Devineni, Asha; Koshy, Anita A.

    2016-01-01

    Toxoplasma gondii, a common brain-tropic parasite, is capable of infecting most nucleated cells, including astrocytes and neurons, in vitro. Yet, in vivo, Toxoplasma is primarily found in neurons. In vitro data showing that interferon-γ-stimulated astrocytes, but not neurons, clear intracellular parasites suggest that neurons alone are persistently infected in vivo because they lack the ability to clear intracellular parasites. Here we test this theory by using a novel Toxoplasma-mouse model capable of marking and tracking host cells that directly interact with parasites, even if the interaction is transient. Remarkably, we find that Toxoplasma shows a strong predilection for interacting with neurons throughout CNS infection. This predilection remains in the setting of IFN-γ depletion; infection with parasites resistant to the major mechanism by which murine astrocytes clear parasites; or when directly injecting parasites into the brain. These findings, in combination with prior work, strongly suggest that neurons are not incidentally infected, but rather they are Toxoplasma’s primary in vivo target. PMID:26895155

  12. Targeted delivery of GDNF through the blood-brain barrier by MRI-guided focused ultrasound.

    Directory of Open Access Journals (Sweden)

    Feng Wang

    Full Text Available Neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF, are promising therapeutic agents for neurodegenerative diseases. However, the application of GDNF to treat these diseases effectively is limited because the blood-brain barrier (BBB prevents the local delivery of macromolecular therapeutic agents from entering the central nervous system (CNS. Focused ultrasound combined with microbubbles (MBs using appropriate parameters has been previously demonstrated to be able to open the BBB locally and noninvasively. This study investigated the targeted delivery of GDNF MBs through the BBB by magnetic resonance imaging (MRI-guided focused ultrasound. Evans Blue extravasation and histological examination were used to determine the optimum focused ultrasound parameters. Enzyme-linked immunosorbent assay was performed to verify the effects of GDNF bound on MBs using a biotin-avidin bridging chemistry method to promote GDNF delivery into the brain. The results showed that GDNF can be delivered locally and noninvasively into the CNS through the BBB using MRI-guided focused ultrasound combined with MBs under optimum parameters. MBs that bind GDNF combined with MRI-guided focused ultrasound may be an effective way of delivering neurotrophic factors directly into the CNS. The method described herein provides a potential means of treating patients with CNS diseases.

  13. Improved segmentation of ultrasound brain tissue incorporating expert evaluation.

    Science.gov (United States)

    Vansteenkiste, Ewout; Pizurica, Aleksandra; Philips, Wilfried

    2005-01-01

    The quantitative analysis of medical ultrasound images for the purpose of diagnosis is a difficult task due to the speckle noise present in the images. Nowadays medical doctors depend strongly on the visual interpretation of the images which is subjective to some account. Trying to reduce this noise should assist the experts in a better understanding of some pathologies. We focus on a brain disease called periventricular leukomalacia, also called white matter damage, which occurs frequently on premature neonates. For the moment the affected brain tissue is segmented semi-automatically using two different techniques that take the speckle noise into little account. Here we propose a framework which includes an efficient preprocessing step and relying on expert-based evaluation we develop an integrated segmentation method, which yields a more accurate and better reproducible segmentation.

  14. Human Adipose Tissue-Derived Mesenchymal Stem Cells Target Brain Tumor-Initiating Cells.

    Science.gov (United States)

    Choi, Seung Ah; Lee, Ji Yeoun; Kwon, Sung Eun; Wang, Kyu-Chang; Phi, Ji Hoon; Choi, Jung Won; Jin, Xiong; Lim, Ja Yun; Kim, Hyunggee; Kim, Seung-Ki

    2015-01-01

    In neuro-oncology, the biology of neural stem cells (NSCs) has been pursued in two ways: as tumor-initiating cells (TICs) and as a potential cell-based vehicle for gene therapy. NSCs as well as mesenchymal stem cells (MSCs) have been reported to possess tumor tropism capacities. However, there is little data on the migratory capacity of MSCs toward brain tumor-initiating cells (BTICs). This study focuses on the ability of human adipose tissue derived MSCs (hAT-MSCs) to target BTICs and their crosstalk in the microenvironment. BTICs were isolated from three different types of brain tumors. The migration capacities of hAT-MSCs toward BTICs were examined using an in vitro migration assay and in vivo bioluminescence imaging analysis. To investigate the crosstalk between hAT-MSCs and BTICs, we analyzed the mRNA expression patterns of cyto-chemokine receptors by RT-qPCR and the protein level of their ligands in co-cultured medium. The candidate cyto-chemokine receptors were selectively inhibited using siRNAs. Both in vitro and in vivo experiments showed that hAT-MSCs possess migratory abilities to target BTICs isolated from medulloblastoma, atypical teratoid/rhabdoid tumors (AT/RT) and glioblastoma. Different types of cyto-chemokines are involved in the crosstalk between hAT-MSCs and BTICs (medulloblastoma and AT/RT: CXCR4/SDF-1, CCR5/RANTES, IL6R/IL-6 and IL8R/IL8; glioblastoma: CXCR4/SDF-1, IL6R/IL-6, IL8R/IL-8 and IGF1R/IGF-1). Our findings demonstrated the migratory ability of hAT-MSCs for BTICs, implying the potential use of MSCs as a delivery vehicle for gene therapy. This study also confirmed the expression of hAT-MSCs cytokine receptors and the BTIC ligands that play roles in their crosstalk.

  15. Design, synthesis and biological evaluation of brain targeting l-ascorbic acid prodrugs of ibuprofen with "lock-in" function.

    Science.gov (United States)

    Zhao, Yi; Qu, Boyi; Wu, Xueying; Li, Xiaocen; Liu, Qingqing; Jin, Xiuxiu; Guo, Li; Hai, Li; Wu, Yong

    2014-07-23

    A novel brain targeting l-ascorbic acid derivatives with "lock-in" function were designed and synthesized as prodrugs to achieve the effective delivery of ibuprofen to brain by glucose transporter 1 (GLUT1) and the Na(+)-dependent vitamin C transporter SVCT2. Ibuprofen-loaded four prodrugs were tested in the animals. Results from the in vivo distribution study after i.v. administration of these four prodrugs and naked ibuprofen indicated that four prodrugs exhibited excellent transport ability across the BBB and significantly increased the level of ibuprofen in brain. Among them, prodrugs 4 showed higher brain concentration. Both biodistribution data and pharmacokinetic parameters suggested that l-ascorbic acid thiamine disulfide delivery system was a promising carrier to enhance CNS drug's delivery ability into brain. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Improvement of PIXE analytical technique by use of target-chamber with an intermediate air pressure

    Energy Technology Data Exchange (ETDEWEB)

    Szymczyk, S.; Kajfosz, J.; Hrynkiewicz, A. (Institute of Nuclear Physics, Krakow (Poland))

    1981-01-01

    The applicability of proton induced X-ray emission for the analysis of insulating targets was improved by the use of low air pressure (ca 10 mm Hg) in the target chamber. The advantages of this modification are discussed and the results obtained with targets of dried plant material are presented.

  17. Targeted Doxorubicin Delivery to Brain Tumors via Minicells: Proof of Principle Using Dogs with Spontaneously Occurring Tumors as a Model

    Science.gov (United States)

    MacDiarmid, Jennifer A.; Langova, Veronika; Bailey, Dale; Pattison, Scott T.; Pattison, Stacey L.; Christensen, Neil; Armstrong, Luke R.; Brahmbhatt, Vatsala N.; Smolarczyk, Katarzyna; Harrison, Matthew T.; Costa, Marylia; Mugridge, Nancy B.; Sedliarou, Ilya; Grimes, Nicholas A.; Kiss, Debra L.; Stillman, Bruce; Hann, Christine L.; Gallia, Gary L.; Graham, Robert M.; Brahmbhatt, Himanshu

    2016-01-01

    Background Cytotoxic chemotherapy can be very effective for the treatment of cancer but toxicity on normal tissues often limits patient tolerance and often causes long-term adverse effects. The objective of this study was to assist in the preclinical development of using modified, non-living bacterially-derived minicells to deliver the potent chemotherapeutic doxorubicin via epidermal growth factor receptor (EGFR) targeting. Specifically, this study sought to evaluate the safety and efficacy of EGFR targeted, doxorubicin loaded minicells (designated EGFRminicellsDox) to deliver doxorubicin to spontaneous brain tumors in 17 companion dogs; a comparative oncology model of human brain cancers. Methodology/Principle Findings EGFRminicellsDox were administered weekly via intravenous injection to 17 dogs with late-stage brain cancers. Biodistribution was assessed using single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). Anti-tumor response was determined using MRI, and blood samples were subject to toxicology (hematology, biochemistry) and inflammatory marker analysis. Targeted, doxorubicin-loaded minicells rapidly localized to the core of brain tumors. Complete resolution or marked tumor regression (>90% reduction in tumor volume) were observed in 23.53% of the cohort, with lasting anti-tumor responses characterized by remission in three dogs for more than two years. The median overall survival was 264 days (range 49 to 973). No adverse clinical, hematological or biochemical effects were observed with repeated administration of EGFRminicellsDox (30 to 98 doses administered in 10 of the 17 dogs). Conclusions/Significance Targeted minicells loaded with doxorubicin were safely administered to dogs with late stage brain cancer and clinical activity was observed. These findings demonstrate the strong potential for clinical applications of targeted, doxorubicin-loaded minicells for the effective treatment of patients with brain cancer. On

  18. Targeted Doxorubicin Delivery to Brain Tumors via Minicells: Proof of Principle Using Dogs with Spontaneously Occurring Tumors as a Model.

    Directory of Open Access Journals (Sweden)

    Jennifer A MacDiarmid

    Full Text Available Cytotoxic chemotherapy can be very effective for the treatment of cancer but toxicity on normal tissues often limits patient tolerance and often causes long-term adverse effects. The objective of this study was to assist in the preclinical development of using modified, non-living bacterially-derived minicells to deliver the potent chemotherapeutic doxorubicin via epidermal growth factor receptor (EGFR targeting. Specifically, this study sought to evaluate the safety and efficacy of EGFR targeted, doxorubicin loaded minicells (designated EGFRminicellsDox to deliver doxorubicin to spontaneous brain tumors in 17 companion dogs; a comparative oncology model of human brain cancers.EGFRminicellsDox were administered weekly via intravenous injection to 17 dogs with late-stage brain cancers. Biodistribution was assessed using single-photon emission computed tomography (SPECT and magnetic resonance imaging (MRI. Anti-tumor response was determined using MRI, and blood samples were subject to toxicology (hematology, biochemistry and inflammatory marker analysis. Targeted, doxorubicin-loaded minicells rapidly localized to the core of brain tumors. Complete resolution or marked tumor regression (>90% reduction in tumor volume were observed in 23.53% of the cohort, with lasting anti-tumor responses characterized by remission in three dogs for more than two years. The median overall survival was 264 days (range 49 to 973. No adverse clinical, hematological or biochemical effects were observed with repeated administration of EGFRminicellsDox (30 to 98 doses administered in 10 of the 17 dogs.Targeted minicells loaded with doxorubicin were safely administered to dogs with late stage brain cancer and clinical activity was observed. These findings demonstrate the strong potential for clinical applications of targeted, doxorubicin-loaded minicells for the effective treatment of patients with brain cancer. On this basis, we have designed a Phase 1 clinical study of

  19. Oxidative Stress Is a Central Target for Physical Exercise Neuroprotection Against Pathological Brain Aging.

    Science.gov (United States)

    García-Mesa, Yoelvis; Colie, Sandra; Corpas, Rubén; Cristòfol, Rosa; Comellas, Francesc; Nebreda, Angel R; Giménez-Llort, Lydia; Sanfeliu, Coral

    2016-01-01

    Physical exercise is suggested for preventing or delaying senescence and Alzheimer's disease (AD). We have examined its therapeutic value in the advanced stage of AD-like pathology in 3xTg-AD female mice through voluntary wheel running from 12 to 15 months of age. Mice submitted to exercise showed improved body fitness, immunorejuvenation, improvement of behavior and cognition, and reduced amyloid and tau pathology. Brain tissue analysis of aged 3xTg-AD mice showed high levels of oxidative damage. However, this damage was decreased by physical exercise through regulation of redox homeostasis. Network analyses showed that oxidative stress was a central event, which correlated with AD-like pathology and the AD-related behaviors of anxiety, apathy, and cognitive loss. This study corroborates the importance of redox mechanisms in the neuroprotective effect of physical exercise, and supports the theory of the crucial role of oxidative stress in the switch from normal brain aging to pathological aging and AD. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. High-resolution anatomy of the human brain stem using 7-T MRI: improved detection of inner structures and nerves?

    Energy Technology Data Exchange (ETDEWEB)

    Gizewski, Elke R. [Medical University Innsbruck, Department of Neuroradiology, Innsbruck (Austria); Maderwald, Stefan [University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); Linn, Jennifer; Bochmann, Katja [LMU Munich, Department of Neuroradiology, Munich (Germany); Dassinger, Benjamin [Medical University Innsbruck, Department of Neuroradiology, Innsbruck (Austria); Justus-Liebig-University Giessen, Department of Neuroradiology, Giessen (Germany); Forsting, Michael [University Hospital, University Duisburg-Essen, Departments of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Ladd, Mark E. [University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); University Hospital, University Duisburg-Essen, Departments of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany)

    2014-03-15

    The purpose of this paper is to assess the value of 7 Tesla (7 T) MRI for the depiction of brain stem and cranial nerve (CN) anatomy. Six volunteers were examined at 7 T using high-resolution SWI, MPRAGE, MP2RAGE, 3D SPACE T2, T2, and PD images to establish scanning parameters targeted at optimizing spatial resolution. Direct comparisons between 3 and 7 T were performed in two additional subjects using the finalized sequences (3 T: T2, PD, MPRAGE, SWAN; 7 T: 3D T2, MPRAGE, SWI, MP2RAGE). Artifacts and the depiction of structures were evaluated by two neuroradiologists using a standardized score sheet. Sequences could be established for high-resolution 7 T imaging even in caudal cranial areas. High in-plane resolution T2, PD, and SWI images provided depiction of inner brain stem structures such as pons fibers, raphe, reticular formation, nerve roots, and periaqueductal gray. MPRAGE and MP2RAGE provided clear depiction of the CNs. 3D T2 images improved depiction of inner brain structure in comparison to T2 images at 3 T. Although the 7-T SWI sequence provided improved contrast to some inner structures, extended areas were influenced by artifacts due to image disturbances from susceptibility differences. Seven-tesla imaging of basal brain areas is feasible and might have significant impact on detection and diagnosis in patients with specific diseases, e.g., trigeminal pain related to affection of the nerve root. Some inner brain stem structures can be depicted at 3 T, but certain sequences at 7 T, in particular 3D SPACE T2, are superior in producing anatomical in vivo images of deep brain stem structures. (orig.)

  1. Trans-cranial opening of the blood-brain barrier in targeted regions using a stereotaxic brain atlas and focused ultrasound energy.

    Science.gov (United States)

    Bing, Chenchen; Ladouceur-Wodzak, Michelle; Wanner, Clinton R; Shelton, John M; Richardson, James A; Chopra, Rajiv

    2014-01-01

    The blood-brain barrier (BBB) protects the brain by preventing the entry of large molecules; this poses a major obstacle for the delivery of drugs to the brain. A novel technique using focused ultrasound (FUS) energy combined with microbubble contrast agents has been widely used for non-invasive trans-cranial BBB opening. Traditionally, FUS research is conducted with magnetic resonance imaging (MRI) guidance, which is expensive and poses physical limitations due to the magnetic field. A system that could allow researchers to test brain therapies without MR intervention could facilitate and accelerate translational research. In this study, we present a novel FUS system that uses a custom-built FUS generator mounted on a motorized stereotaxic apparatus with embedded brain atlas to locally open the BBB in rodents. The system was initially characterized using a tissue-mimicking phantom. Rodent studies were also performed to evaluate whether non-invasive, localized BBB opening could be achieved using brain atlas-based targeting. Brains were exposed to pulsed focused ultrasound energy at 1.06 MHz in rats and 3.23 MHz in mice, with the focal pressure estimated to be 0.5-0.6 MPa through the skull. BBB opening was confirmed in gross tissue sections by the presence of Evans blue leakage in the exposed region of the brain and by histological assessment. The targeting accuracy of the stereotaxic system was better than 0.5 mm in the tissue-mimicking phantom. Reproducible localized BBB opening was verified with Evans blue dye leakage in 32/33 rats and had a targeting accuracy of ±0.3 mm. The use of higher frequency exposures in mice enabled a similar precision of localized BBB opening as was observed with the low frequency in the rat model. With this dedicated small-animal motorized stereotaxic-FUS system, we achieved accurate targeting of focused ultrasound exposures in the brain for non-invasive opening of the BBB. This system can be used as an alternative to MR

  2. Antisense Oligonucleotides Internally Labeled with Peptides Show Improved Target Recognition and Stability to Enzymatic Degradation

    DEFF Research Database (Denmark)

    Taskova, Maria; Madsen, Charlotte Stahl; Jensen, Knud Jørgen

    2017-01-01

    that target the BRAF V600E oncogene, with a library of rationally designed peptides employing CuAAC "click" chemistry. The peptide sequence has an influence on the specificity and affinity of target DNA/RNA binding. We also investigated the impact of locked nucleic acids (LNAs) on the latter. Lysine residues...... improve binding of POCs to target DNA and RNA, whereas the distance to lysine correlates exclusively with a decrease in binding of mismatched RNA targets. Glycine and tyrosine residues affect target binding as well. Importantly, the resistance of POCs to enzymatic degradation is dramatically improved...

  3. Targeted reduction of advanced glycation improves renal function in obesity

    DEFF Research Database (Denmark)

    Harcourt, Brooke E; Sourris, Karly C; Coughlan, Melinda T

    2011-01-01

    -lowering pharmaceutical, alagebrium, and mice in which the receptor for AGE (RAGE) was deleted. Obesity, resulting from a diet high in both fat and AGE, caused renal impairment; however, treatment of the RAGE knockout mice with alagebrium improved urinary albumin excretion, creatinine clearance, the inflammatory profile...

  4. A Simple and Efficient Methodology To Improve Geometric Accuracy in Gamma Knife Radiation Surgery: Implementation in Multiple Brain Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Karaiskos, Pantelis, E-mail: pkaraisk@med.uoa.gr [Medical Physics Laboratory, Medical School, University of Athens (Greece); Gamma Knife Department, Hygeia Hospital, Athens (Greece); Moutsatsos, Argyris; Pappas, Eleftherios; Georgiou, Evangelos [Medical Physics Laboratory, Medical School, University of Athens (Greece); Roussakis, Arkadios [CT and MRI Department, Hygeia Hospital, Athens (Greece); Torrens, Michael [Gamma Knife Department, Hygeia Hospital, Athens (Greece); Seimenis, Ioannis [Medical Physics Laboratory, Medical School, Democritus University of Thrace, Alexandroupolis (Greece)

    2014-12-01

    Purpose: To propose, verify, and implement a simple and efficient methodology for the improvement of total geometric accuracy in multiple brain metastases gamma knife (GK) radiation surgery. Methods and Materials: The proposed methodology exploits the directional dependence of magnetic resonance imaging (MRI)-related spatial distortions stemming from background field inhomogeneities, also known as sequence-dependent distortions, with respect to the read-gradient polarity during MRI acquisition. First, an extra MRI pulse sequence is acquired with the same imaging parameters as those used for routine patient imaging, aside from a reversal in the read-gradient polarity. Then, “average” image data are compounded from data acquired from the 2 MRI sequences and are used for treatment planning purposes. The method was applied and verified in a polymer gel phantom irradiated with multiple shots in an extended region of the GK stereotactic space. Its clinical impact in dose delivery accuracy was assessed in 15 patients with a total of 96 relatively small (<2 cm) metastases treated with GK radiation surgery. Results: Phantom study results showed that use of average MR images eliminates the effect of sequence-dependent distortions, leading to a total spatial uncertainty of less than 0.3 mm, attributed mainly to gradient nonlinearities. In brain metastases patients, non-eliminated sequence-dependent distortions lead to target localization uncertainties of up to 1.3 mm (mean: 0.51 ± 0.37 mm) with respect to the corresponding target locations in the “average” MRI series. Due to these uncertainties, a considerable underdosage (5%-32% of the prescription dose) was found in 33% of the studied targets. Conclusions: The proposed methodology is simple and straightforward in its implementation. Regarding multiple brain metastases applications, the suggested approach may substantially improve total GK dose delivery accuracy in smaller, outlying targets.

  5. Targeting small airways in asthma: Improvement in clinical benefit?

    DEFF Research Database (Denmark)

    Ulrik, Charlotte Suppli; Lange, Peter

    2010-01-01

    Background and Aim: Disease control is not achieved in a substantial proportion of patients with asthma. Recent advances in aerosol formulations and delivery devices may offer more effective therapy. This review will focus on the importance and potential clinical benefit of targeting the lung...... half the daily dose with no increased risk of systemic effects. Clinical studies of adults with asthma have shown a greater effect of ultrafine ICS, compared with non-ultrafine ICS, on quality of life, small airway patency, and markers of pulmonary and systemic inflammation, but no difference...... with regard to conventional clinical indices of lung function and asthma control. Conclusions: Asthma patients treated with ultrafine ICS, compared with non-ultrafine ICS, have at least similar chance of achieving asthma control at a lower daily dose. Further clinical studies are needed to explore whether...

  6. Targeting small airways in asthma: Improvement in clinical benefit?

    DEFF Research Database (Denmark)

    Ulrik, Charlotte Suppli; Lange, Peter

    2010-01-01

    Background and Aim:  Disease control is not achieved in a substantial proportion of patients with asthma. Recent advances in aerosol formulations and delivery devices may offer more effective therapy. This review will focus on the importance and potential clinical benefit of targeting the lung...... half the daily dose with no increased risk of systemic effects. Clinical studies of adults with asthma have shown a greater effect of ultrafine ICS, compared with non-ultrafine ICS, on quality of life, small airway patency, and markers of pulmonary and systemic inflammation, but no difference...... with regard to conventional clinical indices of lung function and asthma control. Conclusions:  Asthma patients treated with ultrafine ICS, compared with non-ultrafine ICS, have at least similar chance of achieving asthma control at a lower daily dose. Further clinical studies are needed to explore whether...

  7. Targeted genome modification technologies and their applications in crop improvements.

    Science.gov (United States)

    Chen, Kunling; Gao, Caixia

    2014-04-01

    Recent advances in genome engineering indicate that innovative crops developed by targeted genome modification (TGM) using site-specific nucleases (SSNs) have the potential to avoid the regulatory issues raised by genetically modified organisms. These powerful SSNs tools, comprising zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regulatory interspaced short palindromic repeats/CRISPR-associated systems, enable precise genome engineering by introducing DNA double-strand breaks that subsequently trigger DNA repair pathways involving either non-homologous end-joining or homologous recombination. Here, we review developments in genome-editing tools, summarize their applications in crop organisms, and discuss future prospects. We also highlight the ability of these tools to create non-transgenic TGM plants for next-generation crop breeding.

  8. Fully automated targeting using non-rigid image registration matches accuracy and exceeds precision of best manual approaches to Subthalamic Deep Brain Stimulation targeting in Parkinson's disease

    Science.gov (United States)

    Pallavaram, Srivatsan; D'Haese, Pierre-François; Lake, Wendell; Konrad, Peter E.; Dawant, Benoit M.; Neimat, Joseph S.

    2015-01-01

    Background Finding the optimal location for the implantation of the electrode in Deep Brain Stimulation (DBS) surgery is crucial for maximizing therapeutic benefit to the patient. Such targeting is challenging for several reasons including anatomical variability between patients as well as lack of consensus about the location of the optimal target. Objective To compare the performance of popular manual targeting methods against a fully automatic non-rigid image registration based approach. Methods In 71 Parkinson's disease STN-DBS implantations, an experienced functional neurosurgeon selected the target manually using three different approaches; indirect targeting using standard stereotactic coordinates, direct targeting based on the patient MRI, and indirect targeting relative to the red nucleus. Targets were also automatically predicted using a leave-one-out approach to populate the CranialVault atlas using non-rigid image registration. The different targeting methods were compared against the location of the final active contact, determined through iterative clinical programming in each individual patient. Results Targeting using standard stereotactic coordinates corresponding to the center of the motor territory of the STN had the largest targeting error (3.69 mm), followed by direct targeting (3.44 mm), average stereotactic coordinates of active contacts from this study (3.02 mm), red nucleus based targeting (2.75 mm), and non-rigid image registration based automatic predictions using the CranialVault atlas (2.70 mm). The CranialVault atlas method had statistically smaller variance than all manual approaches. Conclusions Fully automatic targeting based on non-rigid image registration using the CranialVault atlas is as accurate and more precise than popular manual methods for STN-DBS. PMID:25988929

  9. Fully automated targeting using nonrigid image registration matches accuracy and exceeds precision of best manual approaches to subthalamic deep brain stimulation targeting in Parkinson disease.

    Science.gov (United States)

    Pallavaram, Srivatsan; DʼHaese, Pierre-François; Lake, Wendell; Konrad, Peter E; Dawant, Benoit M; Neimat, Joseph S

    2015-06-01

    Finding the optimal location for the implantation of the electrode in deep brain stimulation (DBS) surgery is crucial for maximizing the therapeutic benefit to the patient. Such targeting is challenging for several reasons, including anatomic variability between patients as well as the lack of consensus about the location of the optimal target. To compare the performance of popular manual targeting methods against a fully automatic nonrigid image registration-based approach. In 71 Parkinson disease subthalamic nucleus (STN)-DBS implantations, an experienced functional neurosurgeon selected the target manually using 3 different approaches: indirect targeting using standard stereotactic coordinates, direct targeting based on the patient magnetic resonance imaging, and indirect targeting relative to the red nucleus. Targets were also automatically predicted by using a leave-one-out approach to populate the CranialVault atlas with the use of nonrigid image registration. The different targeting methods were compared against the location of the final active contact, determined through iterative clinical programming in each individual patient. Targeting by using standard stereotactic coordinates corresponding to the center of the motor territory of the STN had the largest targeting error (3.69 mm), followed by direct targeting (3.44 mm), average stereotactic coordinates of active contacts from this study (3.02 mm), red nucleus-based targeting (2.75 mm), and nonrigid image registration-based automatic predictions using the CranialVault atlas (2.70 mm). The CranialVault atlas method had statistically smaller variance than all manual approaches. Fully automatic targeting based on nonrigid image registration with the use of the CranialVault atlas is as accurate and more precise than popular manual methods for STN-DBS.

  10. DNA methylation map of mouse and human brain identifies target genes in Alzheimer’s disease

    Science.gov (United States)

    Sanchez-Mut, Jose V.; Aso, Ester; Panayotis, Nicolas; Lott, Ira; Dierssen, Mara; Rabano, Alberto; Urdinguio, Rocio G.; Fernandez, Agustin F.; Astudillo, Aurora; Martin-Subero, Jose I.; Balint, Balazs; Fraga, Mario F.; Gomez, Antonio; Gurnot, Cecile; Roux, Jean-Christophe; Avila, Jesus; Hensch, Takao K.; Ferrer, Isidre

    2013-01-01

    The central nervous system has a pattern of gene expression that is closely regulated with respect to functional and anatomical regions. DNA methylation is a major regulator of transcriptional activity, and aberrations in the distribution of this epigenetic mark may be involved in many neurological disorders, such as Alzheimer’s disease. Herein, we have analysed 12 distinct mouse brain regions according to their CpG 5’-end gene methylation patterns and observed their unique epigenetic landscapes. The DNA methylomes obtained from the cerebral cortex were used to identify aberrant DNA methylation changes that occurred in two mouse models of Alzheimer’s disease. We were able to translate these findings to patients with Alzheimer’s disease, identifying DNA methylation-associated silencing of three targets genes: thromboxane A2 receptor (TBXA2R), sorbin and SH3 domain containing 3 (SORBS3) and spectrin beta 4 (SPTBN4). These hypermethylation targets indicate that the cyclic AMP response element-binding protein (CREB) activation pathway and the axon initial segment could contribute to the disease. PMID:24030951

  11. Deep brain stimulation for obsessive-compulsive disorder: subthalamic nucleus target.

    Science.gov (United States)

    Chabardès, Stéphan; Polosan, Mircea; Krack, Paul; Bastin, Julien; Krainik, Alexandre; David, Olivier; Bougerol, Thierry; Benabid, Alim Louis

    2013-01-01

    Because of its reversibility and adaptability, deep brain stimulation (DBS) has recently gained interest in psychiatric disorders, such as obsessive-compulsive disorders (OCD) and depression. In OCD, DBS is now an alternative procedure to lesions of fascicles such as the anterior capsule, which links the orbitofrontal cortex, the cingulum, and the thalamus, and has been applied to new target such as the nucleus accumbens, with promising results. However, a recent interest has been developed toward the subthalamic nucleus (STN), a key structure of the basal ganglia that connects the motor, limbic, and associative systems. It is known from patients with Parkinson disease that STN-DBS can have significant effects on mood and cognition. Those transient effects are usually seen as "side effects" in Parkinson disease, but are clues to the underappreciated role that STN plays in the limbic circuitry, a role whose precise details are as yet unknown and under active investigation. We present the rationale supporting the use of nonmotor STN as a therapeutic target to treat OCD. In particular, we discuss the recent experience and preliminary results of our group after 6 months of nonmotor STN-DBS in patients with severe OCD. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Deep Brain Stimulation of the Basolateral Amygdala: Targeting Technique and Electrodiagnostic Findings

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Langevin

    2016-08-01

    Full Text Available The amygdala plays a critical role in emotion regulation. It could prove to be an effective neuromodulation target in the treatment of psychiatric conditions characterized by failure of extinction. We aim to describe our targeting technique, and intra-operative and post-operative electrodiagnostic findings associated with the placement of deep brain stimulation (DBS electrodes in the amygdala. We used a transfrontal approach to implant DBS electrodes in the basolateral nucleus of the amygdala (BLn of a patient suffering from severe post-traumatic stress disorder. We used microelectrode recording (MER and awake intra-operative neurostimulation to assist with the placement. Post-operatively, the patient underwent monthly surveillance electroencephalograms (EEG. MER predicted the trajectory of the electrode through the amygdala. The right BLn showed a higher spike frequency than the left BLn. Intra-operative neurostimulation of the BLn elicited pleasant memories. The monthly EEG showed the presence of more sleep patterns over time with DBS. BLn DBS electrodes can be placed using a transfrontal approach. MER can predict the trajectory of the electrode in the amygdala and it may reflect the BLn neuronal activity underlying post-traumatic stress disorder PTSD. The EEG findings may underscore the reduction in anxiety.

  13. Targeted liposomes for drug delivery across the blood-brain barrier

    OpenAIRE

    van Rooy, I.

    2011-01-01

    Our brain is protected by the blood-brain barrier (BBB). This barrier is formed by specialized endothelial cells of the brain vasculature and prevents toxic substances from entering the brain. The downside of this barrier is that many drugs that have been developed to cure brain diseases cannot cross this barrier and do not reach the brain in therapeutic concentrations. An innovative way to help these drugs to reach the brain is by encapsulating them into nanoparticles (e.g. liposomes). A tar...

  14. Targeting improved user experience in KONE CRM opportunities management

    OpenAIRE

    Parada Suarez, Diana Carolina

    2015-01-01

    The primary objective of this study is to enquire about potential elements for simplification and further enhancements of KONE CRM opportunities tab layout, and overall opportunity management at KONE, as means to improve users’ experience, foster adoption and increase levels of sales efficiency across KONE CRM users globally. This study´s theoretical framework highlights the contributions of authors like Adrian Payne (2008) and Ed Peelen (2005) in what concerns to the concept and strateg...

  15. GLP-1 improves neuropathology after murine cold lesion brain trauma

    DEFF Research Database (Denmark)

    DellaValle, Brian; Hempel, Casper; Johansen, Flemming Fryd

    2014-01-01

    brain trauma. METHODS: Severe trauma was induced with a stereotactic cryo-lesion in mice and thereafter treated with vehicle, liraglutide, or liraglutide + GLP-1 receptor antagonist. A therapeutic window was established and lesion size post-trauma was determined. Reactive oxygen species were visualized...... in vivo and quantified directly ex vivo. Hematological analysis was performed over time. Necrotic and apoptotic tone and neuroinflammation was assessed over time. CREB activation and CREB-regulated cytoprotective proteins were assessed over time. RESULTS: Lira treatment reduced lesion size by ∼50% through...

  16. Molecular profiling of patient-matched brain and extracranial melanoma metastases implicates the PI3K pathway as a therapeutic target.

    Science.gov (United States)

    Chen, Guo; Chakravarti, Nitin; Aardalen, Kimberly; Lazar, Alexander J; Tetzlaff, Michael T; Wubbenhorst, Bradley; Kim, Sang-Bae; Kopetz, Scott; Ledoux, Alicia A; Gopal, Y N Vashisht; Pereira, Cristiano Goncalves; Deng, Wanleng; Lee, Ju-Seog; Nathanson, Katherine L; Aldape, Kenneth D; Prieto, Victor G; Stuart, Darrin; Davies, Michael A

    2014-11-01

    An improved understanding of the molecular pathogenesis of brain metastases, one of the most common and devastating complications of advanced melanoma, may identify and prioritize rational therapeutic approaches for this disease. In particular, the identification of molecular differences between brain and extracranial metastases would support the need for the development of organ-specific therapeutic approaches. Hotspot mutations, copy number variations (CNV), global mRNA expression patterns, and quantitative analysis of protein expression and activation by reverse-phase protein array (RPPA) analysis were evaluated in pairs of melanoma brain metastases and extracranial metastases from patients who had undergone surgical resection for both types of tumors. The status of 154 previously reported hotspot mutations, including driver mutations in BRAF and NRAS, were concordant in all evaluable patient-matched pairs of tumors. Overall patterns of CNV, mRNA expression, and protein expression were largely similar between the paired samples for individual patients. However, brain metastases demonstrated increased expression of several activation-specific protein markers in the PI3K/AKT pathway compared with the extracranial metastases. These results add to the understanding of the molecular characteristics of melanoma brain metastases and support the rationale for additional testing of the PI3K/AKT pathway as a therapeutic target in these highly aggressive tumors. ©2014 American Association for Cancer Research.

  17. Temporal profile of improvement of tardive dystonia after globus pallidus deep brain stimulation.

    Science.gov (United States)

    Shaikh, Aasef G; Mewes, Klaus; DeLong, Mahlon R; Gross, Robert E; Triche, Shirley D; Jinnah, H A; Boulis, Nicholas; Willie, Jon T; Freeman, Alan; Alexander, Garrett E; Aia, Pratibha; Butefisch, Cathrine M; Esper, Christine D; Factor, Stewart A

    2015-02-01

    Several case reports and small series have indicated that tardive dystonia is responsive to globus pallidus deep brain stimulation. Whether different subtypes or distributions of tardive dystonia are associated with different outcomes remains unknown. We assessed the outcomes and temporal profile of improvement of eight tardive dystonia patients who underwent globus pallidus deep brain stimulation over the past six years through record review. Due to the retrospective nature of this study, it was not blinded or placebo controlled. Consistent with previous studies, deep brain stimulation improved the overall the Burke-Fahn-Marsden motor scores by 85.1 ± 13.5%. The distributions with best responses in descending order were upper face, lower face, larynx/pharynx, limbs, trunk, and neck. Patients with prominent cervical dystonia demonstrated improvement in the Toronto Western Spasmodic Torticollis Rating Scale but improvements took several months. In four patients the effects of deep brain stimulation on improvement in Burke Fahn Marsden score was rapid, while in four cases there was partial rapid response of neck and trunk dystonia followed by was gradual resolution of residual symptoms over 48 months. Our retrospective analysis shows excellent resolution of tardive dystonia after globus pallidus deep brain stimulation. We found instantaneous response, except with neck and trunk dystonia where partial recovery was followed by further resolution at slower rate. Such outcome is encouraging for using deep brain stimulation in treatment of tardive dystonia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Improvement of cancer immunotherapy by combining molecular targeted therapy

    Directory of Open Access Journals (Sweden)

    Yutaka eKawakami

    2013-05-01

    Full Text Available In human cancer cells, a constitutive activation of MAPK, STAT3, β-catenin, and various other signaling pathways triggers multiple immunosuppressive cascades. These cascades result in the production of immunosuppressive molecules (e.g. TGF-β, IL-10, IL-6, VEGF, and CCL2 and induction of immunosuppressive immune cells (e.g. regulatory T cells, tolerogenic dendritic cells, and myeloid derived suppressor cells. Consequently, immunosuppressive conditions are formed in tumor-associated microenvironments, including the tumor and sentinel lymph nodes. Some of these cancer-derived cytokines and chemokines impair immune cells and render them immunosuppressive via the activation of signaling molecules, such as STAT3, in the immune cells. Thus, administration of signal inhibitors may inhibit the multiple immunosuppressive cascades by acting simultaneously on both cancer and immune cells at the key regulatory points in the cancer-immune network. Since common signaling pathways are involved in manifestation of several hallmarks of cancer, including cancer cell proliferation/survival, invasion/metastasis, and immunosuppression, targeting these shared signaling pathways in combination with immunotherapy may be a promising strategy for cancer treatment.

  19. Lack of the Nlrp3 Inflammasome Improves Mice Recovery Following Traumatic Brain Injury.

    Science.gov (United States)

    Irrera, Natasha; Pizzino, Gabriele; Calò, Margherita; Pallio, Giovanni; Mannino, Federica; Famà, Fausto; Arcoraci, Vincenzo; Fodale, Vincenzo; David, Antonio; Francesca, Cosentino; Minutoli, Letteria; Mazzon, Emanuela; Bramanti, Placido; Squadrito, Francesco; Altavilla, Domenica; Bitto, Alessandra

    2017-01-01

    Treatment for traumatic brain injury (TBI) remains elusive despite compelling evidence from animal models for a variety of therapeutic targets. The activation of the NLRP3 (Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3) inflammasome has been proposed as key point in the brain damage associated with TBI. NLRP3 was tested as potential target for reducing neuronal loss and promoting functional recovery in a mouse model of TBI. Male NLRP3 -/- ( n = 20) and wild type ( n = 27) mice were used. A closed TBI model was performed and inflammatory and apoptotic markers were evaluated. A group of WT mice also received BAY 11-7082, a NLRP3 inhibitor, to further evaluate the role of this pathway. At 24 h following TBI NLRP3 -/- animals demonstrated a preserved cognitive function as compared to WT mice, additionally brain damage was less severe and the inflammatory mediators were reduced in brain lysates. The administration of BAY 11-7082 in WT animals subjected to TBI produced overlapping results. At day 7 histology revealed a more conserved brain structure with reduced damage in TBI NLRP3 -/- animals compared to WT. Our data indicate that the NLRP3 pathway might be exploited as molecular target for the short-term sequelae of TBI.

  20. Targeting multiple opioid receptors - improved analgesics with reduced side effects?

    Science.gov (United States)

    Günther, Thomas; Dasgupta, Pooja; Mann, Anika; Miess, Elke; Kliewer, Andrea; Fritzwanker, Sebastian; Steinborn, Ralph; Schulz, Stefan

    2017-04-05

    Classical opioid analgesics, including morphine, mediate all of their desired and undesired effects by specific activation of the μ-opioid receptor (μ receptor). The use of morphine for treating chronic pain, however, is limited by the development of constipation, respiratory depression, tolerance and dependence. Analgesic effects can also be mediated through other members of the opioid receptor family such as the κ-opioid receptor (κ receptor), δ-opioid receptor (δ receptor) and the nociceptin/orphanin FQ peptide receptor (NOP receptor). Currently, a new generation of opioid analgesics is being developed that can simultaneously bind with high affinity to multiple opioid receptors. With this new action profile, it is hoped that additional analgesic effects and fewer side effects can be achieved. Recent research is mainly focused on the development of bifunctional μ/NOP receptor agonists, which has already led to novel lead structures such as the spiroindole-based cebranopadol and a compound class with a piperidin-4-yl-1,3-dihydroindol-2-one backbone (SR16835/AT-202 and SR14150/AT-200). In addition, the ornivol BU08028 is an analogue of the clinically well-established buprenorphine. Moreover, the morphinan-based nalfurafine exerts its effect with a dominant κ receptor-component and is therefore utilized in the treatment of pruritus. The very potent dihydroetorphine is a true multi-receptor opioid ligand in that it binds to μ, κ and δ receptors. The main focus of this review is to assess the paradigm of opioid ligands targeting multiple receptors with a single chemical entity. We reflect on this rationale by discussing the biological actions of particular multi-opioid receptor ligands, but not on their medicinal chemistry and design. © 2017 The British Pharmacological Society.

  1. From word reading to multisentence comprehension: Improvements in brain activity in children with autism after reading intervention

    Directory of Open Access Journals (Sweden)

    Donna L. Murdaugh

    2017-01-01

    Conclusions: Our results provide evidence for differential recruitment of brain regions based on task demands in children with ASD, and support the potential of targeted interventions to alter brain activation in response to positive gains in treatment. Children with ASD have a different reading profile from other reading disorders that needs to be specifically targeted in interventions.

  2. Design and evaluation of lipoprotein resembling curcumin-encapsulated protein-free nanostructured lipid carrier for brain targeting.

    Science.gov (United States)

    Meng, Fanfei; Asghar, Sajid; Xu, Yurui; Wang, Jianping; Jin, Xin; Wang, Zhilin; Wang, Jing; Ping, Qineng; Zhou, Jianping; Xiao, Yanyu

    2016-06-15

    Many nanoparticle matrixes have been demonstrated to be efficient in brain targeting, but there are still certain limitations for them. To overcome the shortcomings of the existing nanoparticulate systems for brain-targeted delivery, a lipoprotein resembling protein-free nanostructured lipid carrier (PS80-NLC) loaded with curcumin was constructed and assessed for in vitro and in vivo performance. Firstly, single factor at a time approach was employed to investigate the effects of various formulation factors. Mean particle sizes of ≤100nm, high entrapment efficiency (EE, about 95%) and drug loading (DL, >3%) were obtained for the optimized formulations. In vitro release studies in the presence of plasma indicated stability of the formulation under physiological condition. Compared with NLC, PS80-NLC showed noticeably higher affinity for bEnd.3 cells (1.56 folds greater than NLC) but with lower uptake in macrophages. The brain coronal sections showed strong and widely distributed fluorescence intensity of PS80-NLC than that of NLC in the cortex. Ex vivo imaging studies further confirmed that PS80-NLC could effectively permeate BBB and preferentially accumulate in the brain (2.38 times greater than NLC). The considerable in vitro and in vivo performance of the safe and biocompatible PS80-NLC makes it a suitable option for further investigations in brain targeted drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Response surface optimization, Ex vivo and In vivo investigation of nasal spanlastics for bioavailability enhancement and brain targeting of risperidone.

    Science.gov (United States)

    Abdelrahman, Fatma Elzahraa; Elsayed, Ibrahim; Gad, Mary Kamal; Elshafeey, Ahmed Hassen; Mohamed, Magdi Ibrahim

    2017-09-15

    Transnasal brain drug targeting could ensure better drug delivery to the brain through the olfactory pathway. Risperidone bioavailability is 66% in extensive metabolizers and 82% in slow metabolizers. The aim of this study is to investigate the ability of the nanovesicular spanlastics to effectively deliver risperidone through the nasal route to the brain and increase its bioavailability. Spanlastics formulae, composed of span and polyvinyl alcohol, were designed based on central composite statistical design. The planned formulae were prepared using ethanol injection method. The prepared formulae were characterized by testing their particle size, polydispersity index, zeta potential and encapsulation efficiency. The optimized formula having the lowest particle size, polydispersity index, the highest zeta potential and encapsulation efficiency was subjected to further investigations including characterization of its rheological properties, elasticity, transmission electron microscopy, in vitro diffusion, ex vivo permeation, histopathology and in vivo biodistribution. The optimized formula was composed of 5mg/mL span and 30mg/mL polyvinyl alcohol. It showed significantly higher transnasal permeation and better distribution to the brain, when compared to the used control regarding the brain targeting efficiency and the drug transport percentage (2.16 and 1.43 folds increase, respectively). The study introduced a successful and promising formula to directly and effectively carry the drug from nose to brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Can targeted food taxes and subsidies improve the diet?

    DEFF Research Database (Denmark)

    Nordström, Leif Jonas; Thunström, Linda

    2011-01-01

    This paper analyses distributional effects of revenue-neutral tax reforms aimed at improving dietary quality and encouraging healthier grain consumption. Using data on household grain purchases, we analyse both the impact on dietary quality and the tax incidence among income groups of VAT reforms...... added sugar or saturated fat. Our results suggest that the VAT reforms have a similar impact on dietary quality across all income groups, with increases in fibre intake, but also unwanted increases in the intake of nutrients frequently overconsumed: fat, salt and sugar. The impact on dietary quality...... of the VAT reforms is therefore difficult to evaluate. With the exception of the lowest income group, the excise duty reforms seem to have a positive health effect across all other income groups, with increases in the intake of fibre and reductions in the intake of saturated fat, sugar and added sugar...

  5. Targeting Treatments to Improve Cognitive Function in Mood Disorder

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla Woznica; Rush, A. John; Gerds, Thomas A.

    2016-01-01

    OBJECTIVE: There is no established efficacious treatment for cognitive dysfunction in unipolar and bipolar disorder. This may be partially due to lack of consensus regarding the need to screen for cognitive impairment in cognition trials or which screening criteria to use. We have demonstrated in 2...... randomized placebo-controlled trials that 8 weeks of erythropoietin (EPO) treatment has beneficial effects on verbal memory across unipolar and bipolar disorder, with 58% of EPO-treated patients displaying a clinically relevant memory improvement as compared to 15% of those treated with placebo. METHODS: We...... Learning Test (RAVLT) total recall with multiple logistic regression adjusted for diagnosis, age, gender, symptom severity, and education levels. RESULTS: We included 79 patients with an ICD-10 diagnosis of unipolar or bipolar disorder, of whom 39 received EPO and 40 received placebo (saline). For EPO...

  6. Apelin-13 as a novel target for intervention in secondary injury after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hai-jun Bao

    2016-01-01

    Full Text Available The adipocytokine, apelin-13, is an abundantly expressed peptide in the nervous system. Apelin-13 protects the brain against ischemia/reperfusion injury and attenuates traumatic brain injury by suppressing autophagy. However, secondary apelin-13 effects on traumatic brain injury-induced neural cell death and blood-brain barrier integrity are still not clear. Here, we found that apelin-13 significantly decreases cerebral water content, mitigates blood-brain barrier destruction, reduces aquaporin-4 expression, diminishes caspase-3 and Bax expression in the cerebral cortex and hippocampus, and reduces apoptosis. These results show that apelin-13 attenuates secondary injury after traumatic brain injury and exerts a neuroprotective effect

  7. Deep brain stimulation improves behavior and modulates neural circuits in a rodent model of schizophrenia.

    Science.gov (United States)

    Bikovsky, Lior; Hadar, Ravit; Soto-Montenegro, María Luisa; Klein, Julia; Weiner, Ina; Desco, Manuel; Pascau, Javier; Winter, Christine; Hamani, Clement

    2016-09-01

    Schizophrenia is a debilitating psychiatric disorder with a significant number of patients not adequately responding to treatment. Deep brain stimulation (DBS) is a surgical technique currently investigated for medically-refractory psychiatric disorders. Here, we use the poly I:C rat model of schizophrenia to study the effects of medial prefrontal cortex (mPFC) and nucleus accumbens (Nacc) DBS on two behavioral schizophrenia-like deficits, i.e. sensorimotor gating, as reflected by disrupted prepulse inhibition (PPI), and attentional selectivity, as reflected by disrupted latent inhibition (LI). In addition, the neurocircuitry influenced by DBS was studied using FDG PET. We found that mPFC- and Nacc-DBS alleviated PPI and LI abnormalities in poly I:C offspring, whereas Nacc- but not mPFC-DBS disrupted PPI and LI in saline offspring. In saline offspring, mPFC-DBS increased metabolism in the parietal cortex, striatum, ventral hippocampus and Nacc, while reducing it in the brainstem, cerebellum, hypothalamus and periaqueductal gray. Nacc-DBS, on the other hand, increased activity in the ventral hippocampus and olfactory bulb and reduced it in the septal area, brainstem, periaqueductal gray and hypothalamus. In poly I:C offspring changes in metabolism following mPFC-DBS were similar to those recorded in saline offspring, except for a reduced activity in the brainstem and hypothalamus. In contrast, Nacc-DBS did not induce any statistical changes in brain metabolism in poly I:C offspring. Our study shows that mPFC- or Nacc-DBS delivered to the adult progeny of poly I:C treated dams improves deficits in PPI and LI. Despite common behavioral responses, stimulation in the two targets induced different metabolic effects. Copyright © 2016. Published by Elsevier Inc.

  8. Rapid changes in brain structure predict improvements induced by perceptual learning.

    Science.gov (United States)

    Ditye, Thomas; Kanai, Ryota; Bahrami, Bahador; Muggleton, Neil G; Rees, Geraint; Walsh, Vincent

    2013-11-01

    Practice-dependent changes in brain structure can occur in task relevant brain regions as a result of extensive training in complex motor tasks and long-term cognitive training but little is known about the impact of visual perceptual learning on brain structure. Here we studied the effect of five days of visual perceptual learning in a motion-color conjunction search task using anatomical MRI. We found rapid changes in gray matter volume in the right posterior superior temporal sulcus, an area sensitive to coherently moving stimuli, that predicted the degree to which an individual's performance improved with training. Furthermore, behavioral improvements were also predicted by volumetric changes in an extended white matter region underlying the visual cortex. These findings point towards quick and efficient plastic neural mechanisms that enable the visual brain to deal effectively with changing environmental demands. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor.

    Science.gov (United States)

    Abakumov, Maxim A; Nukolova, Natalia V; Sokolsky-Papkov, Marina; Shein, Sergey A; Sandalova, Tatiana O; Vishwasrao, Hemant M; Grinenko, Nadezhda F; Gubsky, Iliya L; Abakumov, Artem M; Kabanov, Alexander V; Chekhonin, Vladimir P

    2015-05-01

    This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3O4) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to form nanoparticles with Deff of 53±9nm. The BSA was further cross-linked to improve colloidal stability. Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to BSA through a polyethyleneglycol linker. Here we demonstrate that 1) BSA coated nanoparticles are stable and non-toxic to different cells at concentration up to 2.5mg/mL; 2) conjugation of monoclonal antibodies to nanoparticles promotes their binding to VEGF-positive glioma С6 cells in vitro; 3) targeted nanoparticles are effective in MRI visualization of the intracranial glioma. Thus, mAbVEGF-targeted BSA-coated magnetic nanoparticles are promising MRI contrast agents for glioma visualization. This work focuses on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. The authors utilize the fact that high-grade gliomas have extensive areas of necrosis and hypoxia, which results in increased secretion of angiogenesis vascular endothelial growth factor (VEGF). Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to crosslinked BSA coated ferric oxide (Fe3O4) nanoparticles. The results show that these targeted nanoparticles are effective in MRI visualization of the intracranial glioma and may provide a new and promising contrast agent. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Probiotics Improve Inflammation-Associated Sickness Behavior by Altering Communication between the Peripheral Immune System and the Brain.

    Science.gov (United States)

    D'Mello, Charlotte; Ronaghan, Natalie; Zaheer, Raza; Dicay, Michael; Le, Tai; MacNaughton, Wallace K; Surrette, Michael G; Swain, Mark G

    2015-07-29

    Patients with systemic inflammatory diseases (e.g., rheumatoid arthritis, inflammatory bowel disease, chronic liver disease) commonly develop debilitating symptoms (i.e., sickness behaviors) that arise from changes in brain function. The microbiota-gut-brain axis alters brain function and probiotic ingestion can influence behavior. However, how probiotics do this remains unclear. We have previously described a novel periphery-to-brain communication pathway in the setting of peripheral organ inflammation whereby monocytes are recruited to the brain in response to systemic TNF-α signaling, leading to microglial activation and subsequently driving sickness behavior development. Therefore, we investigated whether probiotic ingestion (i.e., probiotic mixture VSL#3) alters this periphery-to-brain communication pathway, thereby reducing subsequent sickness behavior development. Using a well characterized mouse model of liver inflammation, we now show that probiotic (VSL#3) treatment attenuates sickness behavior development in mice with liver inflammation without affecting disease severity, gut microbiota composition, or gut permeability. Attenuation of sickness behavior development was associated with reductions in microglial activation and cerebral monocyte infiltration. These events were paralleled by changes in markers of systemic immune activation, including decreased circulating TNF-α levels. Our observations highlight a novel pathway through which probiotics mediate cerebral changes and alter behavior. These findings allow for the potential development of novel therapeutic interventions targeted at the gut microbiome to treat inflammation-associated sickness behaviors in patients with systemic inflammatory diseases. This research shows that probiotics, when eaten, can improve the abnormal behaviors (including social withdrawal and immobility) that are commonly associated with inflammation. Probiotics are able to cause this effect within the body by changing how

  11. Anticancer activity of targeted proapoptotic peptides and chemotherapy is highly improved by targeted cell surface calreticulin-inducer peptides.

    Science.gov (United States)

    Obeid, Michel

    2009-09-01

    We have recently identified (a) ectocalreticulin as the main source of immunogenicity of cancer cell death induced by chemotherapy or radiotherapy, (b) ectoERP57 as critical protein for inducing cell surface exposure of calreticulin, and (c) that ectoERP57 and ectocalreticulin are cotranslocated together to the tumor cell surface by the mediator of the inhibition of PP1/GADD34 complex. Here, I report that the immunogenicity of cancer cell death induced by anticancer targeted proapoptotic peptides is also dictated by ectocalreticulin. To improve the anticancer activity of these proapoptotic peptides, I have designed several targeted chimeric inhibitor peptides of the PP1/GADD34 complex, which are comprised of an inhibitor peptide of the PP1/GADD34 complex fused to a protein transduction domain-5, to prostate homing peptide, or to the tumor antigen BiP/GRP78-binding peptide motifs. These inhibitor peptides (a) induce ectocalreticulin and ectoERP57 in a variety of tumor cell lines by the mediator of the inhibition of the interaction between PP1 and GADD34, (b) increase the phagocytosis of anticancer targeted proapoptotic peptide-treated tumor cells by dendritic cells, and (c) improve highly the anticancer activity of proapoptotic peptides and chemotherapy by suppressing or reducing the tumor growth in several isogenic mouse models of colon, mammary, and fibrosarcoma tumors and by increasing the lifespan of transgenic adenocarcinoma mouse prostate mice. These results suggest (a) that the inhibition of PP1/GADD34 complex is a key element to improve the anticancer activity of targeted proapoptotic peptides and chemotherapy and (b) that these targeted peptides combination approach could serve as a new powerful autonomous anticancer therapy.

  12. Have Changes in Systemic Treatment Improved Survival in Patients with Breast Cancer Metastatic to the Brain?

    Directory of Open Access Journals (Sweden)

    Carsten Nieder

    2008-01-01

    Full Text Available Newly developed systemic treatment regimens might lead to improved survival also in the subgroup of breast cancer patients that harbour brain metastases. In order to examine this hypothesis, a matched pairs analysis was performed that involved one group of patients, which were treated after these new drugs were introduced, and one group of patients, which were treated approximately 10 years earlier. The two groups were well balanced for the known prognostic factors age, KPS, extracranial disease status, and recursive partitioning analysis class, as well as for the extent of brain treatment. The results show that the use of systemic chemotherapy has increased over time, both before and after the diagnosis of brain metastases. However, such treatment was performed nearly exclusively in those patients with brain metastases that belonged to the prognostically more favourable groups. Survival after whole-brain radiotherapy has remained unchanged in patients without further active treatment. It has improved in prognostically better patients and especially patients that received active treatment, where the 1-year survival rates have almost doubled. As these patient groups were small, confirmation of the results in other series should be attempted. Nevertheless, the present results are compatible with the hypothesis that improved systemic therapy might contribute to prolonged survival in patients with brain metastases from breast cancer.

  13. HIF-1α- Targeting Acriflavine Provides Long Term Survival and Radiological Tumor Response in Brain Cancer Therapy.

    Science.gov (United States)

    Mangraviti, Antonella; Raghavan, Tula; Volpin, Francesco; Skuli, Nicolas; Gullotti, David; Zhou, Jinyuan; Asnaghi, Laura; Sankey, Eric; Liu, Ann; Wang, Yuan; Lee, Dong-Hoon; Gorelick, Noah; Serra, Riccardo; Peters, Michael; Schriefer, Destiny; Delaspre, Fabien; Rodriguez, Fausto J; Eberhart, Charles G; Brem, Henry; Olivi, Alessandro; Tyler, Betty

    2017-11-02

    Tumor progression, limited efficacy of current standard treatments, and the rise in patient mortality are associated with gene expression caused by the synergistic action of intratumoral hypoxia and HIF-1α activation. For this reason, recent investigations have focused on HIF-targeting therapeutic agents, with encouraging preclinical and clinical results in solid tumors. Here we describe the efficacy of a HIF-1α inhibitor, Acriflavine, and demonstrate its potency against brain cancer. This safe antibacterial dye induces cell death and apoptosis in several glioma cell lines, targets HIF-1α-mediated pathways, and decreases the level of PGK1, VEGF and HIF-1α in vitro and in vivo. Administered locally via biodegradable polymers, Acriflavine provides significant benefits in survival resulting in nearly 100% long term survival, confirmed by MRI and histological analyses. This study reports preclinical evidence that this safe, small molecule can contribute to brain tumor therapy and highlights the significance of HIF-1α-targeting molecules.

  14. Target volumes in radiation therapy of childhood brain tumours; La determination des volumes-cibles en radiotherapie pediatrique: application aux tumeurs cerebrales

    Energy Technology Data Exchange (ETDEWEB)

    Habrand, J.L.; Abdulkarim, B. [Institut Gustave Roussy, Dept. de Radiotherapie, 94 - Villejuif (France); Beaudre, A. [Institut Gustave Roussy, Unite de Radiophysique, 94 - Villejuif (France); El Khouri, M. [Institut Gustave Roussy, Dept. d' Imagerie Medicale, 94 - Villejuif (France); Kalifa, C. [Institut Gustave Roussy, Dept. de Pediatrie, 94 - Villejuif (France)

    2001-10-01

    Pediatric tumors have enjoyed considerable improvements for the past 30 years. This is mainly due to the extensive use of combined therapeutical modalities in which chemotherapy plays a prominent role. In many children, local treatment including radiotherapy, can nowadays be adapted in terms of target volume and dose to the 'response' to an initial course of chemotherapy almost on a case by case basis. This makes precise recommendation on local therapy highly difficult in this age group. We will concentrate in this paper on brain tumors in which chemotherapy is of limited value and radiotherapy still plays a key-role. (authors)

  15. Targeting the PD-1 pathway in pediatric solid tumors and brain tumors

    Directory of Open Access Journals (Sweden)

    Wagner LM

    2017-04-01

    Full Text Available Lars M Wagner,1 Val R Adams2 1Division of Pediatric Hematology/Oncology, 2Department of Pharmacy Practice and Science, University of Kentucky, Lexington, KY, USA Abstract: While remarkable advances have been made in the treatment of pediatric leukemia over the past decades, new therapies are needed for children with advanced solid tumors and high-grade brain tumors who fail standard chemotherapy regimens. Immunotherapy with immune checkpoint inhibitors acting through the programmed cell death-1 (PD-1 pathway has shown efficacy in some chemotherapy-resistant adult cancers, generating interest that these agents may also be helpful to treat certain refractory pediatric malignancies. In this manuscript we review current strategies for targeting the PD-1 pathway, highlighting putative biomarkers and the rationale for investigation of these drugs to treat common pediatric tumors such as sarcoma, neuroblastoma, and high-grade glioma. We summarize the completed and ongoing clinical trial data available, and suggest potential applications for further study. Keywords: PD-1, nivolumab, pembrolizumab, pediatric, sarcoma, neuroblastoma, glioma

  16. Marketing Educational Improvements via International Partnerships under Brain Drain Constraints

    Science.gov (United States)

    Ashton, Weslynne; Wagman, Liad

    2015-01-01

    We study the dynamics in an educational partnership between a university and a developing region. We examine how the university achieves its goals to improve and advertise its offerings while recruiting a cohort of students from the developing region and maintaining a sustainable relationship with the region and its students. We show that mutually…

  17. Jungle Gym or Brain Gym. Playgrounds Can Improve Academic Readiness.

    Science.gov (United States)

    Hendy, Teresa B.

    2000-01-01

    A well-developed playground in a park or school setting can greatly enhance childen's overall development, making playgrounds more than just fun. Playgrounds offer children opportunities to develop physically, mentally, and socially, improving academic readiness as well as overall health. The paper discusses the importance of movement, how…

  18. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study

    Science.gov (United States)

    Oommen, Anup M.; Varma, Sudhir; Casanova, Ramon; An, Yang; O’Brien, Richard; Pletnikova, Olga; Kastenmueller, Gabi; Doraiswamy, P. Murali; Kaddurah-Daouk, Rima; Thambisetty, Madhav

    2018-01-01

    Background The metabolic basis of Alzheimer disease (AD) is poorly understood, and the relationships between systemic abnormalities in metabolism and AD pathogenesis are unclear. Understanding how global perturbations in metabolism are related to severity of AD neuropathology and the eventual expression of AD symptoms in at-risk individuals is critical to developing effective disease-modifying treatments. In this study, we undertook parallel metabolomics analyses in both the brain and blood to identify systemic correlates of neuropathology and their associations with prodromal and preclinical measures of AD progression. Methods and findings Quantitative and targeted metabolomics (Biocrates AbsoluteIDQ [identification and quantification] p180) assays were performed on brain tissue samples from the autopsy cohort of the Baltimore Longitudinal Study of Aging (BLSA) (N = 44, mean age = 81.33, % female = 36.36) from AD (N = 15), control (CN; N = 14), and “asymptomatic Alzheimer’s disease” (ASYMAD, i.e., individuals with significant AD pathology but no cognitive impairment during life; N = 15) participants. Using machine-learning methods, we identified a panel of 26 metabolites from two main classes—sphingolipids and glycerophospholipids—that discriminated AD and CN samples with accuracy, sensitivity, and specificity of 83.33%, 86.67%, and 80%, respectively. We then assayed these 26 metabolites in serum samples from two well-characterized longitudinal cohorts representing prodromal (Alzheimer’s Disease Neuroimaging Initiative [ADNI], N = 767, mean age = 75.19, % female = 42.63) and preclinical (BLSA) (N = 207, mean age = 78.68, % female = 42.63) AD, in which we tested their associations with magnetic resonance imaging (MRI) measures of AD-related brain atrophy, cerebrospinal fluid (CSF) biomarkers of AD pathology, risk of conversion to incident AD, and trajectories of cognitive performance. We developed an integrated blood and brain endophenotype score that

  19. Estrogen and the brain: does estrogen treatment improve cognitive function?

    Science.gov (United States)

    Hogervorst, Eef

    2013-03-01

    In this paper we describe potential reasons for the discrepancies between data from basic sciences and observational studies and those of large treatment studies investigating the association between brain function and sex steroids. Observational studies which often showed positive associations between hormone use and cognition can be affected by 'recall bias' and 'healthy user bias', while outcomes of treatment studies were hypothesized to be modified by age at treatment, age at or type of menopause, health status, addition of a progestogen or type of estrogen treatment. However, meta-analyses of data from treatment studies negate many of these hypotheses showing at best mainly short-term (up to 6 months) positive effects of estrogen treatment on cognition regardless of age. This positive effect may reverse, particularly in older women with prolonged hormone treatment, which was predominantly seen after addition of progestogen. Medroxyprogesterone acetate seemed to have worse effects on cognition than other types of progestogen in these long-term studies. Estradiol with or without a progestogen was three times more likely to have positive effects on cognition than conjugated equine estrogens. However, two-thirds of studies showed no associations at all which may be an underestimate given the possibility of publication bias. We briefly review alternative treatments, such as testosterone and soy-derived supplements, but currently insufficient data are available for conclusive comments. Women who have undergone surgical menopause or who undergo natural menopause before age 47 may benefit most from hormone treatment and a special case may need to be made for this group. Long-term safety studies for this group are urgently needed. 2013 © The Author(s).

  20. Brain training game improves executive functions and processing speed in the elderly: a randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Rui Nouchi

    Full Text Available BACKGROUND: The beneficial effects of brain training games are expected to transfer to other cognitive functions, but these beneficial effects are poorly understood. Here we investigate the impact of the brain training game (Brain Age on cognitive functions in the elderly. METHODS AND RESULTS: Thirty-two elderly volunteers were recruited through an advertisement in the local newspaper and randomly assigned to either of two game groups (Brain Age, Tetris. This study was completed by 14 of the 16 members in the Brain Age group and 14 of the 16 members in the Tetris group. To maximize the benefit of the interventions, all participants were non-gamers who reported playing less than one hour of video games per week over the past 2 years. Participants in both the Brain Age and the Tetris groups played their game for about 15 minutes per day, at least 5 days per week, for 4 weeks. Each group played for a total of about 20 days. Measures of the cognitive functions were conducted before and after training. Measures of the cognitive functions fell into four categories (global cognitive status, executive functions, attention, and processing speed. Results showed that the effects of the brain training game were transferred to executive functions and to processing speed. However, the brain training game showed no transfer effect on any global cognitive status nor attention. CONCLUSIONS: Our results showed that playing Brain Age for 4 weeks could lead to improve cognitive functions (executive functions and processing speed in the elderly. This result indicated that there is a possibility which the elderly could improve executive functions and processing speed in short term training. The results need replication in large samples. Long-term effects and relevance for every-day functioning remain uncertain as yet. TRIAL REGISTRATION: UMIN Clinical Trial Registry 000002825.

  1. Brain Training Game Improves Executive Functions and Processing Speed in the Elderly: A Randomized Controlled Trial

    Science.gov (United States)

    Nouchi, Rui; Taki, Yasuyuki; Takeuchi, Hikaru; Hashizume, Hiroshi; Akitsuki, Yuko; Shigemune, Yayoi; Sekiguchi, Atsushi; Kotozaki, Yuka; Tsukiura, Takashi; Yomogida, Yukihito; Kawashima, Ryuta

    2012-01-01

    Background The beneficial effects of brain training games are expected to transfer to other cognitive functions, but these beneficial effects are poorly understood. Here we investigate the impact of the brain training game (Brain Age) on cognitive functions in the elderly. Methods and Results Thirty-two elderly volunteers were recruited through an advertisement in the local newspaper and randomly assigned to either of two game groups (Brain Age, Tetris). This study was completed by 14 of the 16 members in the Brain Age group and 14 of the 16 members in the Tetris group. To maximize the benefit of the interventions, all participants were non-gamers who reported playing less than one hour of video games per week over the past 2 years. Participants in both the Brain Age and the Tetris groups played their game for about 15 minutes per day, at least 5 days per week, for 4 weeks. Each group played for a total of about 20 days. Measures of the cognitive functions were conducted before and after training. Measures of the cognitive functions fell into four categories (global cognitive status, executive functions, attention, and processing speed). Results showed that the effects of the brain training game were transferred to executive functions and to processing speed. However, the brain training game showed no transfer effect on any global cognitive status nor attention. Conclusions Our results showed that playing Brain Age for 4 weeks could lead to improve cognitive functions (executive functions and processing speed) in the elderly. This result indicated that there is a possibility which the elderly could improve executive functions and processing speed in short term training. The results need replication in large samples. Long-term effects and relevance for every-day functioning remain uncertain as yet. Trial Registration UMIN Clinical Trial Registry 000002825 PMID:22253758

  2. Brain training game improves executive functions and processing speed in the elderly: a randomized controlled trial.

    Science.gov (United States)

    Nouchi, Rui; Taki, Yasuyuki; Takeuchi, Hikaru; Hashizume, Hiroshi; Akitsuki, Yuko; Shigemune, Yayoi; Sekiguchi, Atsushi; Kotozaki, Yuka; Tsukiura, Takashi; Yomogida, Yukihito; Kawashima, Ryuta

    2012-01-01

    The beneficial effects of brain training games are expected to transfer to other cognitive functions, but these beneficial effects are poorly understood. Here we investigate the impact of the brain training game (Brain Age) on cognitive functions in the elderly. Thirty-two elderly volunteers were recruited through an advertisement in the local newspaper and randomly assigned to either of two game groups (Brain Age, Tetris). This study was completed by 14 of the 16 members in the Brain Age group and 14 of the 16 members in the Tetris group. To maximize the benefit of the interventions, all participants were non-gamers who reported playing less than one hour of video games per week over the past 2 years. Participants in both the Brain Age and the Tetris groups played their game for about 15 minutes per day, at least 5 days per week, for 4 weeks. Each group played for a total of about 20 days. Measures of the cognitive functions were conducted before and after training. Measures of the cognitive functions fell into four categories (global cognitive status, executive functions, attention, and processing speed). Results showed that the effects of the brain training game were transferred to executive functions and to processing speed. However, the brain training game showed no transfer effect on any global cognitive status nor attention. Our results showed that playing Brain Age for 4 weeks could lead to improve cognitive functions (executive functions and processing speed) in the elderly. This result indicated that there is a possibility which the elderly could improve executive functions and processing speed in short term training. The results need replication in large samples. Long-term effects and relevance for every-day functioning remain uncertain as yet. UMIN Clinical Trial Registry 000002825.

  3. A brain-targeting lipidated peptide for neutralizing RNA-mediated toxicity in Polyglutamine Diseases.

    Science.gov (United States)

    Zhang, Qian; Yang, Mengbi; Sørensen, Kasper K; Madsen, Charlotte S; Boesen, Josephine T; An, Ying; Peng, Shao Hong; Wei, Yuming; Wang, Qianwen; Jensen, Knud J; Zuo, Zhong; Chan, Ho Yin Edwin; Ngo, Jacky Chi Ki

    2017-09-21

    Polyglutamine (PolyQ) diseases are progressive neurodegenerative disorders caused by both protein- and RNA-mediated toxicities. We previously showed that a peptidyl inhibitor, P3, which binds directly to expanded CAG RNA can inhibit RNA-induced nucleolar stress and suppress RNA-induced neurotoxicity. Here we report a N-acetylated and C-amidated derivative of P3, P3V8, that showed a more than 20-fold increase in its affinity for expanded CAG RNA. The P3V8 peptide also more potently alleviated expanded RNA-induced cytotoxicity in vitro, and suppressed polyQ neurodegeneration in Drosophila with no observed toxic effects. Further N-palmitoylation of P3V8 (L1P3V8) not only significantly improved its cellular uptake and stability, but also facilitated its systemic exposure and brain uptake in rats via intranasal administration. Our findings demonstrate that concomitant N-acetylation, C-amidation and palmitoylation of P3 significantly improve both its bioactivity and pharmacological profile. L1P3V8 possesses drug/lead-like properties that can be further developed into a lead inhibitor for the treatment of polyQ diseases.

  4. Prediction of brain target site concentrations on the basis of CSF PK : impact of mechanisms of blood-to-brain transport and within brain distribution

    NARCIS (Netherlands)

    Westerhout, J.

    2014-01-01

    In the development of drugs for the treatment of central nervous system (CNS) disorders, the prediction of human CNS drug action is a big challenge. Direct measurement of brain extracellular fluid (brainECF) concentrations is highly restricted in human. Therefore, unbound drug concentrations in

  5. Achieving Aichi Biodiversity Target 11 to improve the performance of protected areas and conserve freshwater biodiversity

    Science.gov (United States)

    Diego Juffe-Bignoli; Ian Harrison; Stuart HM Butchart; Rebecca Flitcroft; Virgilio Hermoso; Harry Jonas; Anna Lukasiewicz; Michele Thieme; Eren Turak; Heather Bingham; James Dalton; William Darwall; Marine Deguignet; Nigel Dudley; Royal Gardner; Jonathan Higgins; Ritesh Kumar; Simon Linke; G Randy Milton; Jamie Pittock; Kevin G Smith; Arnout van Soesbergen

    2016-01-01

    1. The Strategic Plan for Biodiversity (2011–2020), adopted at the 10th meeting of the Conference of the Parties to the Convention on Biological Diversity, sets 20 Aichi Biodiversity Targets to be met by 2020 to address biodiversity loss and ensure its sustainable and equitable use. Aichi Biodiversity Target 11 describes what an improved conservation network would look...

  6. Image-based in vivo assessment of targeting accuracy of stereotactic brain surgery in experimental rodent models

    Science.gov (United States)

    Rangarajan, Janaki Raman; Vande Velde, Greetje; van Gent, Friso; de Vloo, Philippe; Dresselaers, Tom; Depypere, Maarten; van Kuyck, Kris; Nuttin, Bart; Himmelreich, Uwe; Maes, Frederik

    2016-11-01

    Stereotactic neurosurgery is used in pre-clinical research of neurological and psychiatric disorders in experimental rat and mouse models to engraft a needle or electrode at a pre-defined location in the brain. However, inaccurate targeting may confound the results of such experiments. In contrast to the clinical practice, inaccurate targeting in rodents remains usually unnoticed until assessed by ex vivo end-point histology. We here propose a workflow for in vivo assessment of stereotactic targeting accuracy in small animal studies based on multi-modal post-operative imaging. The surgical trajectory in each individual animal is reconstructed in 3D from the physical implant imaged in post-operative CT and/or its trace as visible in post-operative MRI. By co-registering post-operative images of individual animals to a common stereotaxic template, targeting accuracy is quantified. Two commonly used neuromodulation regions were used as targets. Target localization errors showed not only variability, but also inaccuracy in targeting. Only about 30% of electrodes were within the subnucleus structure that was targeted and a-specific adverse effects were also noted. Shifting from invasive/subjective 2D histology towards objective in vivo 3D imaging-based assessment of targeting accuracy may benefit a more effective use of the experimental data by excluding off-target cases early in the study.

  7. Active video gaming improves body coordination in survivors of childhood brain tumours

    DEFF Research Database (Denmark)

    Sabel, M.; Sjölund, A.; Broeren, J.

    2016-01-01

    Purpose: We investigated whether active video gaming (AVG) could bring about regular, enjoyable, physical exercise in children treated for brain tumours, what level of physical activity could be reached and if the children’s physical functioning improved. Methods: Thirteen children, aged 7–17 years...... survivors, home-based AVG, supported by a coach, was a feasible, enjoyable and moderately intense form of exercise that improved Body Coordination.Implications for Rehabilitation Childhood brain tumour survivors frequently have cognitive problems, inferior physical functioning and are less physically active...... compared to their healthy peers. Active video gaming (AVG), supported by Internet coaching, is a feasible home-based intervention in children treated for brain tumours, promoting enjoyable, regular physical exercise of moderate intensity. In this pilot study, AVG with Nintendo Wii improved Body...

  8. Nanoparticle mediated P-glycoprotein silencing for improved drug delivery across the blood-brain barrier: a siRNA-chitosan approach.

    Directory of Open Access Journals (Sweden)

    Jostein Malmo

    Full Text Available The blood-brain barrier (BBB, composed of tightly organized endothelial cells, limits the availability of drugs to therapeutic targets in the central nervous system. The barrier is maintained by membrane bound efflux pumps efficiently transporting specific xenobiotics back into the blood. The efflux pump P-glycoprotein (P-gp, expressed at high levels in brain endothelial cells, has several drug substrates. Consequently, siRNA mediated silencing of the P-gp gene is one possible strategy how to improve the delivery of drugs to the brain. Herein, we investigated the potential of siRNA-chitosan nanoparticles in silencing P-gp in a BBB model. We show that the transfection of rat brain endothelial cells mediated effective knockdown of P-gp with subsequent decrease in P-gp substrate efflux. This resulted in increased cellular delivery and efficacy of the model drug doxorubicin.

  9. Chondroitin Sulfate is the Primary Receptor for a Peptide-Modified AAV That Targets Brain Vascular Endothelium In Vivo.

    Science.gov (United States)

    Geoghegan, James C; Keiser, Nicholas W; Okulist, Anna; Martins, Inês; Wilson, Matthew S; Davidson, Beverly L

    2014-10-14

    Recently, we described a peptide-modified AAV2 vector (AAV-GMN) containing a capsid-displayed peptide that directs in vivo brain vascular targeting and transduction when delivered intravenously. In this study, we sought to identify the receptor that mediates transduction by AAV-GMN. We found that AAV-GMN, but not AAV2, readily transduces the murine brain endothelial cell line bEnd.3, a result that mirrors previously observed in vivo transduction profiles of brain vasculature. Studies in vitro revealed that the glycosaminoglycan, chondroitin sulfate C, acts as the primary receptor for AAV-GMN. Unlike AAV2, chondroitin sulfate expression is required for cell transduction by AAV-GMN, and soluble chondroitin sulfate C can robustly inhibit AAV-GMN transduction of brain endothelial cells. Interestingly, AAV-GMN retains heparin-binding properties, though in contrast to AAV2, it poorly transduces cells that express heparan sulfate but not chondroitin sulfate, indicating that the peptide insertion negatively impacts heparan-mediated transduction. Lastly, when delivered directly, this modified virus can transduce multiple brain regions, indicating that the potential of AAV-GMN as a therapeutic gene delivery vector for central nervous system disorders is not restricted to brain vascular endothelium.

  10. Chondroitin Sulfate is the Primary Receptor for a Peptide-Modified AAV That Targets Brain Vascular Endothelium In Vivo

    Directory of Open Access Journals (Sweden)

    James C Geoghegan

    2014-01-01

    Full Text Available Recently, we described a peptide-modified AAV2 vector (AAV-GMN containing a capsid-displayed peptide that directs in vivo brain vascular targeting and transduction when delivered intravenously. In this study, we sought to identify the receptor that mediates transduction by AAV-GMN. We found that AAV-GMN, but not AAV2, readily transduces the murine brain endothelial cell line bEnd.3, a result that mirrors previously observed in vivo transduction profiles of brain vasculature. Studies in vitro revealed that the glycosaminoglycan, chondroitin sulfate C, acts as the primary receptor for AAV-GMN. Unlike AAV2, chondroitin sulfate expression is required for cell transduction by AAV-GMN, and soluble chondroitin sulfate C can robustly inhibit AAV-GMN transduction of brain endothelial cells. Interestingly, AAV-GMN retains heparin-binding properties, though in contrast to AAV2, it poorly transduces cells that express heparan sulfate but not chondroitin sulfate, indicating that the peptide insertion negatively impacts heparan-mediated transduction. Lastly, when delivered directly, this modified virus can transduce multiple brain regions, indicating that the potential of AAV-GMN as a therapeutic gene delivery vector for central nervous system disorders is not restricted to brain vascular endothelium.

  11. Zingiber officinale Mitigates Brain Damage and Improves Memory Impairment in Focal Cerebral Ischemic Rat

    Directory of Open Access Journals (Sweden)

    Jintanaporn Wattanathorn

    2011-01-01

    Full Text Available Cerebral ischemia is known to produce brain damage and related behavioral deficits including memory. Recently, accumulating lines of evidence showed that dietary enrichment with nutritional antioxidants could reduce brain damage and improve cognitive function. In this study, possible protective effect of Zingiber officinale, a medicinal plant reputed for neuroprotective effect against oxidative stress-related brain damage, on brain damage and memory deficit induced by focal cerebral ischemia was elucidated. Male adult Wistar rats were administrated an alcoholic extract of ginger rhizome orally 14 days before and 21 days after the permanent occlusion of right middle cerebral artery (MCAO. Cognitive function assessment was performed at 7, 14, and 21 days after MCAO using the Morris water maze test. The brain infarct volume and density of neurons in hippocampus were also determined. Furthermore, the level of malondialdehyde (MDA, superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px in cerebral cortex, striatum, and hippocampus was also quantified at the end of experiment. The results showed that cognitive function and neurons density in hippocampus of rats receiving ginger rhizome extract were improved while the brain infarct volume was decreased. The cognitive enhancing effect and neuroprotective effect occurred partly via the antioxidant activity of the extract. In conclusion, our study demonstrated the beneficial effect of ginger rhizome to protect against focal cerebral ischemia.

  12. Zingiber officinale Mitigates Brain Damage and Improves Memory Impairment in Focal Cerebral Ischemic Rat

    Science.gov (United States)

    Wattanathorn, Jintanaporn; Jittiwat, Jinatta; Tongun, Terdthai; Muchimapura, Supaporn; Ingkaninan, Kornkanok

    2011-01-01

    Cerebral ischemia is known to produce brain damage and related behavioral deficits including memory. Recently, accumulating lines of evidence showed that dietary enrichment with nutritional antioxidants could reduce brain damage and improve cognitive function. In this study, possible protective effect of Zingiber officinale, a medicinal plant reputed for neuroprotective effect against oxidative stress-related brain damage, on brain damage and memory deficit induced by focal cerebral ischemia was elucidated. Male adult Wistar rats were administrated an alcoholic extract of ginger rhizome orally 14 days before and 21 days after the permanent occlusion of right middle cerebral artery (MCAO). Cognitive function assessment was performed at 7, 14, and 21 days after MCAO using the Morris water maze test. The brain infarct volume and density of neurons in hippocampus were also determined. Furthermore, the level of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in cerebral cortex, striatum, and hippocampus was also quantified at the end of experiment. The results showed that cognitive function and neurons density in hippocampus of rats receiving ginger rhizome extract were improved while the brain infarct volume was decreased. The cognitive enhancing effect and neuroprotective effect occurred partly via the antioxidant activity of the extract. In conclusion, our study demonstrated the beneficial effect of ginger rhizome to protect against focal cerebral ischemia. PMID:21197427

  13. Transient disruption of vascular barriers using focused ultrasound and microbubbles for targeted drug delivery in the brain

    Science.gov (United States)

    Aryal, Muna

    The physiology of the vasculature in the central nervous system (CNS) which includes the blood-brain-barrier (BBB) and other factors, prevents the transport of most anticancer agents to the brain and restricts delivery to infiltrating brain tumors. The heterogeneous vascular permeability in tumor vessels (blood-tumor barrier; BTB), along with several other factors, creates additional hurdles for drug treatment of brain tumors. Different methods have been used to bypass the BBB/BTB, but they have their own limitations such as being invasive, non-targeted or requiring the formulation of new drugs. Magnetic Resonance Imaging guided Focused Ultrasound (MRIgFUS), when combined with circulating microbubbles, is an emerging noninvasive method to temporarily permeabilize the BBB and BTB. The purpose of this thesis was to use this alternative approach to deliver chemotherapeutic agents through the BBB/BTB for brain tumor treatment in a rodent model to overcome the hinderances encountered in prior approaches tested for drug delivery in the CNS. The results presented in thesis demonstrate that MRIgFUS can be used to achieve consistent and reproducible BBB/BTB disruption in rats. It enabled us to achieve clinically-relevant concentrations of doxorubicin (~ 4.8+/-0.5 microg/g) delivered to the brain with the sonication parameters (0.69 MHz; 0.55 MPa; 10 ms bursts; 1 Hz PRF; 60 s duration), microbubble concentration (Definity, 10 microl/kg), and liposomoal doxorubicin (Lipo-DOX) dose (5.67 mg/kg) used. The resulting doxorubicin concentration was reduced by 32% when the agent was injected 10 minute after the last sonication. Three weekly sessions of FUS and Lipo-DOX appeared to be safe in the rat brain, despite some minor tissue damage. Importantly, the severe neurotoxicity seen in earlier works using other approaches does not appear to occur with delivery via FUS-BBB disruption. The resuls from three weekly treatments of FUS and Lipo-DOX in a rat glioma model are highly

  14. Focused ultrasound delivery of Raman nanoparticles across the blood-brain barrier: Potential for targeting experimental brain tumors

    Science.gov (United States)

    Diaz, Roberto Jose; McVeigh, Patrick Z.; O’Reilly, Meaghan A.; Burrell, Kelly; Bebenek, Matthew; Smith, Christian; Etame, Arnold; Zadeh, Gelareh; Hynynen, Kullervo; Wilson, Brian C.; Rutka, James T.

    2014-01-01

    Spectral mapping of nanoparticles with surface enhanced Raman scattering (SERS) capability in the near-infrared range is an emerging molecular imaging technique. We used magnetic resonance image-guided transcranial focused ultrasound (TcMRgFUS) to reversibly disrupt the blood-brain barrier (BBB) adjacent to brain tumor margins in rats. Glioma cells were found to internalize SERS capable nanoparticles of 50 nm or 120 nm physical diameter. Surface coating with anti-epidermal growth factor receptor antibody or non-specific human immunoglobulin G, resulted in enhanced cell uptake of nanoparticles in-vitro compared to nanoparticles with methyl terminated 12-unit polyethylene glycol surface. BBB disruption permitted the delivery of SERS capable spherical 50 or 120 nm gold nanoparticles to the tumor margins. Thus, nanoparticles with SERS imaging capability can be delivered across the BBB non-invasively using TcMRgFUS and have the potential to be used as optical tracking agents at the invasive front of malignant brain tumors. PMID:24374363

  15. Radiotherapy for Brain Metastases From Renal Cell Carcinoma in the Targeted Therapy Era: The University of Rochester Experience.

    Science.gov (United States)

    Bates, James E; Youn, Paul; Peterson, Carl R; Usuki, Kenneth Y; Walter, Kevin A; Okunieff, Paul; Milano, Michael T

    2017-10-01

    Radiotherapy remains the standard approach for brain metastases from renal cell carcinoma (RCC). Kinase inhibitors (KI) have become standard of care for metastatic RCC. They also increase the radiosensitivity of various tumor types in preclinical models. Data are lacking regarding the effect of KIs among RCC patients undergoing radiotherapy for brain metastases. We report our experience of radiotherapy for brain metastatic RCC in the era of targeted therapy and analyzed effects of concurrent KI therapy. We retrospectively analyzed 25 consecutive patients who received radiotherapy for brain metastases from RCC with whole-brain radiotherapy (WBRT), stereotactic radiosurgery (SRS), or both. Kaplan-Meier rates of overall survival (OS) and brain progression-free survival (BPFS) were calculated and univariate analyses performed. Lower diagnosis-specific graded prognostic assessment (DS-GPA) score and multiple intracranial metastases were associated with decreased OS and BPFS on univariate analysis; DS-GPA is also a prognostic factor on multivariate analysis. There was no significant difference in OS or BPFS for SRS compared with WBRT or WBRT and SRS combined. The concurrent use of KI was not associated with any change in OS or BPFS. This hypothesis-generating analysis suggests among patients with brain metastatic RCC treated with the most current therapies, those selected to undergo SRS did not experience significantly different survival or control outcomes than those selected to undergo WBRT. From our experience to date, limited in patient numbers, there seems to be neither harm nor benefit in using concurrent KI therapy during radiotherapy. Given that most patients progress systemically, we would recommend considering KI use during brain radiotherapy in these patients.

  16. DPP-4 inhibitors improve cognition and brain mitochondrial function of insulin-resistant rats.

    Science.gov (United States)

    Pintana, Hiranya; Apaijai, Nattayaporn; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2013-07-01

    Recent evidence has demonstrated that insulin resistance is related to the development of type 2 diabetes mellitus. Our previous study found that high-fat diet (HFD) consumption caused not only peripheral and brain insulin resistance but also brain mitochondrial dysfunction and cognitive impairment. Vildagliptin and sitagliptin, dipeptidyl-peptidase-4 inhibitors, are recently developed anti-diabetic drugs. However, the effects of both drugs on cognitive behaviors and brain mitochondrial function in HFD-induced insulin-resistant rats have not yet been investigated. Sixty male Wistar rats were divided into two groups to receive either normal diet or HFD for 12 weeks. Rats in each group were then further divided into three treatment groups to receive either vehicle, vildagliptin (3 mg/kg per day), or sitagliptin (30 mg/kg per day) for 21 days. The cognitive behaviors of the rats were tested using the Morris Water Maze test. Blood samples were collected to determine metabolic parameters and plasma oxidative stress levels. Upon completion of the study, the animals were killed and the brains were removed to investigate brain and hippocampal mitochondrial function as well as to determine oxidative stress levels. We demonstrated that both drugs significantly improved the metabolic parameters and decreased circulating and brain oxidative stress levels in HFD-induced insulin-resistant rats. In addition, both drugs completely prevented brain and hippocampal mitochondrial dysfunction and equally improved the learning behaviors impaired by the HFD. Our findings suggest that the inhibition of dipeptidyl-peptidase-4 enzymes with vildagliptin or sitagliptin in insulin-resistant rats not only increases peripheral insulin sensitivity but also decreases brain dysfunction.

  17. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Omar Ortiz-Avila

    2015-01-01

    Full Text Available Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats. Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential ΔΨm, besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress.

  18. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats.

    Science.gov (United States)

    Ortiz-Avila, Omar; Esquivel-Martínez, Mauricio; Olmos-Orizaba, Berenice Eridani; Saavedra-Molina, Alfredo; Rodriguez-Orozco, Alain R; Cortés-Rojo, Christian

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats). Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential (ΔΨ m ), besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress.

  19. Prebiotic Effect of Fructooligosaccharides from Morinda officinalis on Alzheimer’s Disease in Rodent Models by Targeting the Microbiota-Gut-Brain Axis

    Science.gov (United States)

    Chen, Diling; Yang, Xin; Yang, Jian; Lai, Guoxiao; Yong, Tianqiao; Tang, Xiaocui; Shuai, Ou; Zhou, Gailian; Xie, Yizhen; Wu, Qingping

    2017-01-01

    Gut microbiota influences the central nervous system disorders such as Alzheimer’s disease (AD). The prebiotics and probiotics can improve the host cognition. A previous study demonstrated that fructooligosaccharides from Morinda officinalis (OMO) exert effective memory improvements in AD-like animals, thereby considered as potential prebiotics; however, the underlying mechanism still remains enigma. Thus, the present study investigated whether OMO is effective in alleviating AD by targeting the microbiota-gut-brain axis. OMO was administered in rats with AD-like symptoms (D-galactose- and Aβ1-42-induced deficient rats). Significant and systematic deterioration in AD-like animals were identified, including learning and memory abilities, histological changes, production of cytokines, and microbial community shifts. Behavioral experiments demonstrated that OMO administration can ameliorate the learning and memory abilities in both AD-like animals significantly. AD parameters showed that OMO administration cannot only improve oxidative stress and inflammation disorder, but also regulate the synthesis and secretion of neurotransmitter. Histological changes indicated that OMO administration ameliorates the swelling of brain tissues, neuronal apoptosis, and down-regulation of the expression of AD intracellular markers (Tau and Aβ1-42). 16S rRNA sequencing of gut microbiota indicated that OMO administration maintains the diversity and stability of the microbial community. In addition, OMO regulated the composition and metabolism of gut microbiota in inflammatory bowel disease (IBD) mice model treated by overdosed antibiotics and thus showed the prebiotic potential. Moreover, gut microbiota plays a major role in neurodevelopment, leading to alterations in gene expression in critical brain and intestinal regions, thereby resulting in perturbation to the programming of normal cognitive behaviors. Taken together, our findings suggest that the therapeutic effect of the

  20. Prebiotic Effect of Fructooligosaccharides from Morinda officinalis on Alzheimer’s Disease in Rodent Models by Targeting the Microbiota-Gut-Brain Axis

    Directory of Open Access Journals (Sweden)

    Diling Chen

    2017-12-01

    Full Text Available Gut microbiota influences the central nervous system disorders such as Alzheimer’s disease (AD. The prebiotics and probiotics can improve the host cognition. A previous study demonstrated that fructooligosaccharides from Morinda officinalis (OMO exert effective memory improvements in AD-like animals, thereby considered as potential prebiotics; however, the underlying mechanism still remains enigma. Thus, the present study investigated whether OMO is effective in alleviating AD by targeting the microbiota-gut-brain axis. OMO was administered in rats with AD-like symptoms (D-galactose- and Aβ1-42-induced deficient rats. Significant and systematic deterioration in AD-like animals were identified, including learning and memory abilities, histological changes, production of cytokines, and microbial community shifts. Behavioral experiments demonstrated that OMO administration can ameliorate the learning and memory abilities in both AD-like animals significantly. AD parameters showed that OMO administration cannot only improve oxidative stress and inflammation disorder, but also regulate the synthesis and secretion of neurotransmitter. Histological changes indicated that OMO administration ameliorates the swelling of brain tissues, neuronal apoptosis, and down-regulation of the expression of AD intracellular markers (Tau and Aβ1-42. 16S rRNA sequencing of gut microbiota indicated that OMO administration maintains the diversity and stability of the microbial community. In addition, OMO regulated the composition and metabolism of gut microbiota in inflammatory bowel disease (IBD mice model treated by overdosed antibiotics and thus showed the prebiotic potential. Moreover, gut microbiota plays a major role in neurodevelopment, leading to alterations in gene expression in critical brain and intestinal regions, thereby resulting in perturbation to the programming of normal cognitive behaviors. Taken together, our findings suggest that the therapeutic

  1. Prebiotic Effect of Fructooligosaccharides fromMorinda officinalison Alzheimer's Disease in Rodent Models by Targeting the Microbiota-Gut-Brain Axis.

    Science.gov (United States)

    Chen, Diling; Yang, Xin; Yang, Jian; Lai, Guoxiao; Yong, Tianqiao; Tang, Xiaocui; Shuai, Ou; Zhou, Gailian; Xie, Yizhen; Wu, Qingping

    2017-01-01

    Gut microbiota influences the central nervous system disorders such as Alzheimer's disease (AD). The prebiotics and probiotics can improve the host cognition. A previous study demonstrated that fructooligosaccharides from Morinda officinalis (OMO) exert effective memory improvements in AD-like animals, thereby considered as potential prebiotics; however, the underlying mechanism still remains enigma. Thus, the present study investigated whether OMO is effective in alleviating AD by targeting the microbiota-gut-brain axis. OMO was administered in rats with AD-like symptoms (D-galactose- and Aβ 1-42 -induced deficient rats). Significant and systematic deterioration in AD-like animals were identified, including learning and memory abilities, histological changes, production of cytokines, and microbial community shifts. Behavioral experiments demonstrated that OMO administration can ameliorate the learning and memory abilities in both AD-like animals significantly. AD parameters showed that OMO administration cannot only improve oxidative stress and inflammation disorder, but also regulate the synthesis and secretion of neurotransmitter. Histological changes indicated that OMO administration ameliorates the swelling of brain tissues, neuronal apoptosis, and down-regulation of the expression of AD intracellular markers (Tau and Aβ 1-42 ). 16S rRNA sequencing of gut microbiota indicated that OMO administration maintains the diversity and stability of the microbial community. In addition, OMO regulated the composition and metabolism of gut microbiota in inflammatory bowel disease (IBD) mice model treated by overdosed antibiotics and thus showed the prebiotic potential. Moreover, gut microbiota plays a major role in neurodevelopment, leading to alterations in gene expression in critical brain and intestinal regions, thereby resulting in perturbation to the programming of normal cognitive behaviors. Taken together, our findings suggest that the therapeutic effect of the

  2. Targeting BRAF V600E and Autophagy in Pediatric Brain Tumors

    Science.gov (United States)

    2015-10-01

    for childhood central nervous system (CNS) tumors, they remain the leading cause of death in pediatric oncology . One potential therapeutic...clinical trial design for pediatric brain tumor patients harboring the mutation. Keywords: Autophagy BRAF Brain tumor Pediatric Resistance...I submitted an abstract of my most recent findings to the Society of Neuro- Oncology Pediatric Neuro- Oncology Basic and Translational Research

  3. Linking neocortical, cognitive, and genetic variability in autism with alterations of brain plasticity: the Trigger-Threshold-Target model.

    Science.gov (United States)

    Mottron, Laurent; Belleville, Sylvie; Rouleau, Guy A; Collignon, Olivier

    2014-11-01

    The phenotype of autism involves heterogeneous adaptive traits (strengths vs. disabilities), different domains of alterations (social vs. non-social), and various associated genetic conditions (syndromic vs. nonsyndromic autism). Three observations suggest that alterations in experience-dependent plasticity are an etiological factor in autism: (1) the main cognitive domains enhanced in autism are controlled by the most plastic cortical brain regions, the multimodal association cortices; (2) autism and sensory deprivation share several features of cortical and functional reorganization; and (3) genetic mutations and/or environmental insults involved in autism all appear to affect developmental synaptic plasticity, and mostly lead to its upregulation. We present the Trigger-Threshold-Target (TTT) model of autism to organize these findings. In this model, genetic mutations trigger brain reorganization in individuals with a low plasticity threshold, mostly within regions sensitive to cortical reallocations. These changes account for the cognitive enhancements and reduced social expertise associated with autism. Enhanced but normal plasticity may underlie non-syndromic autism, whereas syndromic autism may occur when a triggering mutation or event produces an altered plastic reaction, also resulting in intellectual disability and dysmorphism in addition to autism. Differences in the target of brain reorganization (perceptual vs. language regions) account for the main autistic subgroups. In light of this model, future research should investigate how individual and sex-related differences in synaptic/regional brain plasticity influence the occurrence of autism. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Tracking Multiple Video Targets with an Improved GM-PHD Tracker.

    Science.gov (United States)

    Zhou, Xiaolong; Yu, Hui; Liu, Honghai; Li, Youfu

    2015-12-03

    Tracking multiple moving targets from a video plays an important role in many vision-based robotic applications. In this paper, we propose an improved Gaussian mixture probability hypothesis density (GM-PHD) tracker with weight penalization to effectively and accurately track multiple moving targets from a video. First, an entropy-based birth intensity estimation method is incorporated to eliminate the false positives caused by noisy video data. Then, a weight-penalized method with multi-feature fusion is proposed to accurately track the targets in close movement. For targets without occlusion, a weight matrix that contains all updated weights between the predicted target states and the measurements is constructed, and a simple, but effective method based on total weight and predicted target state is proposed to search the ambiguous weights in the weight matrix. The ambiguous weights are then penalized according to the fused target features that include spatial-colour appearance, histogram of oriented gradient and target area and further re-normalized to form a new weight matrix. With this new weight matrix, the tracker can correctly track the targets in close movement without occlusion. For targets with occlusion, a robust game-theoretical method is used. Finally, the experiments conducted on various video scenarios validate the effectiveness of the proposed penalization method and show the superior performance of our tracker over the state of the art.

  5. Tracking Multiple Video Targets with an Improved GM-PHD Tracker

    Directory of Open Access Journals (Sweden)

    Xiaolong Zhou

    2015-12-01

    Full Text Available Tracking multiple moving targets from a video plays an important role in many vision-based robotic applications. In this paper, we propose an improved Gaussian mixture probability hypothesis density (GM-PHD tracker with weight penalization to effectively and accurately track multiple moving targets from a video. First, an entropy-based birth intensity estimation method is incorporated to eliminate the false positives caused by noisy video data. Then, a weight-penalized method with multi-feature fusion is proposed to accurately track the targets in close movement. For targets without occlusion, a weight matrix that contains all updated weights between the predicted target states and the measurements is constructed, and a simple, but effective method based on total weight and predicted target state is proposed to search the ambiguous weights in the weight matrix. The ambiguous weights are then penalized according to the fused target features that include spatial-colour appearance, histogram of oriented gradient and target area and further re-normalized to form a new weight matrix. With this new weight matrix, the tracker can correctly track the targets in close movement without occlusion. For targets with occlusion, a robust game-theoretical method is used. Finally, the experiments conducted on various video scenarios validate the effectiveness of the proposed penalization method and show the superior performance of our tracker over the state of the art.

  6. Evidence that a synthetic amyloid-ß oligomer-binding peptide (ABP) targets amyloid-ß deposits in transgenic mouse brain and human Alzheimer's disease brain.

    Science.gov (United States)

    Chakravarthy, Balu; Ito, Shingo; Atkinson, Trevor; Gaudet, Chantal; Ménard, Michel; Brown, Leslie; Whitfield, James

    2014-03-14

    The synthetic ~5 kDa ABP (amyloid-ß binding peptide) consists of a region of the 228 kDa human pericentrioloar material-1 (PCM-1) protein that selectively and avidly binds in vitro Aβ1-42 oligomers, believed to be key co-drivers of Alzheimer's disease (AD), but not monomers (Chakravarthy et al., (2013) [3]). ABP also prevents Aß1-42 from triggering the apoptotic death of cultured human SHSY5Y neuroblasts, likely by sequestering Aß oligomers, suggesting that it might be a potential AD therapeutic. Here we support this possibility by showing that ABP also recognizes and binds Aβ1-42 aggregates in sections of cortices and hippocampi from brains of AD transgenic mice and human AD patients. More importantly, ABP targets Aβ1-42 aggregates when microinjected into the hippocampi of the brains of live AD transgenic mice. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  7. Quality Education Improvement: Yemen and the Problem of the "Brain Drain"

    Science.gov (United States)

    Muthanna, Abdulghani

    2015-01-01

    This paper presents an overview of the problems that hinder improvement of the quality of education in Yemen, with a particular focus on higher education institutions. It discusses in particular the problem of the brain drain and why this phenomenon is occurring in Yemen. Semi-structured interviews with three professors at higher education…

  8. Improving the Students' Spiritual Intelligence in English Writing through Whole Brain Learning

    Science.gov (United States)

    Santoso, Didik

    2016-01-01

    The objective of this research was to improve the students' spiritual intelligence in English writing through Whole Brain Learning strategy. Therefore, this study was conducted as a classroom action research. The research pocedure followed the cyclonic process of planning, action, observation, and reflection. This process was preceeded by…

  9. Brain "fog," inflammation and obesity : key aspects of neuropsychiatric disorders improved by luteolin

    Directory of Open Access Journals (Sweden)

    Theoharis Constantin Theoharides

    2015-07-01

    Full Text Available Brain fog is a constellation of symptoms that include reduced cognition, inability to concentrate and multitask, as well as loss of short and long term memory. Brain fog characterizes patients with autism spectrum disorders (ASDs, celiac disease, chronic fatigue syndrome, fibromyalgia, mastocytosis and postural tachycardia syndrome (POTS, as well as minimal cognitive impairment, an early clinical presentation of Alzheimer’s disease (AD, and other neuropsychiatric disorders. Brain fog may be due to inflammatory molecules, including adipocytokines and histamine released from mast cells (MCs further stimulating microglia activation, and causing focal brain inflammation. Recent reviews have described the potential use of natural flavonoids for the treatment of neuropsychiatric and neurodegenerative diseases. The flavone luteolin has numerous useful actions that include: anti-oxidant, anti-inflammatory, microglia inhibition, neuroprotection, and memory increase. A liposomal luteolin formulation in olive fruit extract improved attention in children with ASDs and brain fog in mastocytosis patients. Methylated luteolin analogues with increased activity and better bioavailability could be developed into effective treatments for neuropsychiatric disorders and brain fog.

  10. Brain "fog," inflammation and obesity: key aspects of neuropsychiatric disorders improved by luteolin.

    Science.gov (United States)

    Theoharides, Theoharis C; Stewart, Julia M; Hatziagelaki, Erifili; Kolaitis, Gerasimos

    2015-01-01

    Brain "fog" is a constellation of symptoms that include reduced cognition, inability to concentrate and multitask, as well as loss of short and long term memory. Brain "fog" characterizes patients with autism spectrum disorders (ASDs), celiac disease, chronic fatigue syndrome, fibromyalgia, mastocytosis, and postural tachycardia syndrome (POTS), as well as "minimal cognitive impairment," an early clinical presentation of Alzheimer's disease (AD), and other neuropsychiatric disorders. Brain "fog" may be due to inflammatory molecules, including adipocytokines and histamine released from mast cells (MCs) further stimulating microglia activation, and causing focal brain inflammation. Recent reviews have described the potential use of natural flavonoids for the treatment of neuropsychiatric and neurodegenerative diseases. The flavone luteolin has numerous useful actions that include: anti-oxidant, anti-inflammatory, microglia inhibition, neuroprotection, and memory increase. A liposomal luteolin formulation in olive fruit extract improved attention in children with ASDs and brain "fog" in mastocytosis patients. Methylated luteolin analogs with increased activity and better bioavailability could be developed into effective treatments for neuropsychiatric disorders and brain "fog."

  11. Neural networks improve brain cancer detection with Raman spectroscopy in the presence of light artifacts

    Science.gov (United States)

    Jermyn, Michael; Desroches, Joannie; Mercier, Jeanne; St-Arnaud, Karl; Guiot, Marie-Christine; Petrecca, Kevin; Leblond, Frederic

    2016-03-01

    It is often difficult to identify cancer tissue during brain cancer (glioma) surgery. Gliomas invade into areas of normal brain, and this cancer invasion is frequently not detected using standard preoperative magnetic resonance imaging (MRI). This results in enduring invasive cancer following surgery and leads to recurrence. A hand-held Raman spectroscopy is able to rapidly detect cancer invasion in patients with grade 2-4 gliomas. However, ambient light sources can produce spectral artifacts which inhibit the ability to distinguish between cancer and normal tissue using the spectral information available. To address this issue, we have demonstrated that artificial neural networks (ANN) can accurately classify invasive cancer versus normal brain tissue, even when including measurements with significant spectral artifacts from external light sources. The non-parametric and adaptive model used by ANN makes it suitable for detecting complex non-linear spectral characteristics associated with different tissues and the confounding presence of light artifacts. The use of ANN for brain cancer detection with Raman spectroscopy, in the presence of light artifacts, improves the robustness and clinical translation potential for intraoperative use. Integration with the neurosurgical workflow is facilitated by accounting for the effect of light artifacts which may occur, due to operating room lights, neuronavigation systems, windows, or other light sources. The ability to rapidly detect invasive brain cancer under these conditions may reduce residual cancer remaining after surgery, and thereby improve patient survival.

  12. Hyperbaric oxygen can induce neuroplasticity and improve cognitive functions of patients suffering from anoxic brain damage.

    Science.gov (United States)

    Hadanny, A; Golan, H; Fishlev, G; Bechor, Y; Volkov, O; Suzin, G; Ben-Jacob, E; Efrati, S

    2015-01-01

    Cognitive impairment may occur in 42-50% of cardiac arrest survivors. Hyperbaric oxygen therapy (HBO2) has recently been shown to have neurotherapeutic effects in patients suffering from chronic cognitive impairments (CCI) consequent to stroke and mild traumatic brain injury.The objective of this study was to assess the neurotherapeutic effect of HBO2 in patients suffering from CCI due to cardiac arrest. Retrospective analysis of patients with CCI caused by cardiac arrest, treated with 60 daily sessions of HBO2. Evaluation included objective computerized cognitive tests (NeuroTrax), Activity of Daily Living (ADL) and Quality of life questionnaires. The results of these tests were compared with changes in brain activity as assessed by single photon emission computed tomography (SPECT) brain imaging. The study included 11 cases of CCI patients. Patients were treated with HBO2, 0.5-7.5 years (mean 2.6 ± 0.6 years) after the cardiac arrest. HBO2 was found to induce modest, but statistically significant improvement in memory, attention and executive function (mean scores) of 12% , 20% and 24% respectively. The clinical improvements were found to be well correlated with increased brain activity in relevant brain areas as assessed by computerized analysis of the SPECT imaging. Although further research is needed, the results demonstrate the beneficial effects of HBO2 on CCI in patients after cardiac arrest, even months to years after the acute event.

  13. Cannabinoid modulation of fear extinction brain circuits: a novel target to advance anxiety treatment.

    Science.gov (United States)

    Rabinak, Christine A; Phan, K Luan

    2014-01-01

    Anxiety disorders, such as post-traumatic stress (PTSD), panic, and phobic disorders, can be conceptualized as a failure to inhibit inappropriate fear responses. A common, effective treatment strategy involves repeated presentations to the feared cue without any danger (extinction). However, extinction learning has a number of important limitations, and enhancing its effects, generalizability and durability via cognitive enhancers may improve its therapeutic impact. In this review we focus specifically on the role of the cannabinoid system in fear extinction learning and its retention. We address the following questions: What are the neural circuits mediating fear extinction?; Can we make fear extinction more effective?; Can cannabinoids facilitate fear extinction in humans?; How might the cannabinoid system effect fear extinction? Collectively, translational evidence suggest that enhancing cannabinoid transmission may facilitate extinction learning and its recall, and that the cannabinoid system is a potential pharmacological target for improving the active learning that occurs during exposure-based behavioral treatments prompting future research in terms of mechanisms research, novel treatment approaches ('cognitive enhancers'), and pharmacotherapeutic drug discovery.

  14. Combined liquid and solid-phase extraction improves quantification of brain estrogen content

    Directory of Open Access Journals (Sweden)

    Andrew eChao

    2011-09-01

    Full Text Available Accuracy in quantifying brain-derived steroid hormones (‘neurosteroids’ has become increasingly important for understanding the modulation of neuronal activity, development, and physiology. Relative to other neuroactive compounds and classical neurotransmitters, steroids pose particular challenges with regard to isolation and analysis, owing to their lipid solubility. Consequently, anatomical studies of the distribution of neurosteroids have relied primarily on the expression of neurosteroid synthesis enzymes. To evaluate the distribution of synthesis enzymes vis-à-vis the actual steroids themselves, traditional steroid quantification assays, including radioimmunoassays (RIA, have successfully employed liquid extraction methods (e.g., ether, dichloromethane or methanol to isolate steroids from microdissected brain tissue. Due to their sensitivity, safety and reliability, the use of commercial enzyme immunoassays (EIA for laboratory quantification of steroids in plasma and brain has become increasingly widespread. However, EIAs rely on enzymatic reactions in vitro, making them sensitive to interfering substances in brain tissue and thus producing unreliable results. Here, we evaluate the effectiveness of a protocol for combined, two-stage liquid/solid phase extraction as compared to conventional liquid extraction alone for the isolation of estradiol (E2 from brain tissue. We employ the songbird model system, in which brain steroid production is pronounced and linked to neural mechanisms of learning and plasticity. This study outlines a combined liquid-solid phase extraction protocol that improves the performance of a commercial EIA for the quantification of brain E2 content. We demonstrate the effectiveness of our optimized method for evaluating the region specificity of brain E2 content, compare these results to established anatomy of the estrogen synthesis enzyme and estrogen receptor, and discuss the nature of potential EIA interfering

  15. Report: Central nervous system (CNS) toxicity caused by metal poisoning: Brain as a target organ.

    Science.gov (United States)

    Gilani, Syeda Rubina; Zaidi, Syed Raza Ali; Batool, Madeeha; Bhatti, Amanat Ali; Durrani, Arjumand Iqbal; Mahmood, Zaid

    2015-07-01

    People relate the neural disorders with either inheritance or psychological violence but there might be some other reasons responsible for the ailment of people that do not have such a background. The present study explains the chronic effect of heavy toxic metals on nervous system. During experimentation, rabbits used as laboratory animals, were given test metals in their diet. Concentration of metals given to them in the diet was less than their tolerable dietary intake. Behavioral changes were observed during experimentation. Periodic increase in the metal concentration was seen in the blood sample of rabbits. They were slaughtered after a period of eight months of slow poisoning. Histological examination of brain tissues was performed. The brain samples were analyzed by Atomic absorption spectroscopy and Inductively Coupled Plasma Mass Spectrometry to find the retention of heavy metals in mammalian brain. Concentration of lead, mercury and cadmium in the blood samples of occupationally exposed people and patients with neurological disorders at the time of neurosurgery was determined by using the same techniques. During circulation, toxic metals passes through the nerve capillaries to settle down in the brain. Heavy metals cross the blood brain barrier and 'may retain themselves in it. Brain tumors and biopsy samples of patients with neurological disorder were also analyzed to relate neurotoxicity and heavy metal poisoning. Results obtained shows that lead, mercury and cadmium retain themselves in the brain for longer period of time and are one of the causes of neurotoxicity.

  16. Characteristics and Prognostic Factors for Patients With HER2-overexpressing Breast Cancer and Brain Metastases in the Era of HER2-targeted Therapy: An Argument for Earlier Detection.

    Science.gov (United States)

    Morikawa, Aki; Wang, Rui; Patil, Sujata; Diab, Adi; Yang, Jonathan; Hudis, Clifford A; McArthur, Heather L; Beal, Kathryn; Seidman, Andrew D

    2017-12-21

    Although brain metastases (BM) are associated with poor prognosis, patients with human epidermal growth factor receptor 2 (HER2) overexpressing (HER2 + ) breast cancer (BC) with BM who are treated with anti-HER2 therapy have a relatively longer survival after BM diagnosis compared with other subtypes and HER2 + patients previously untreated with anti-HER2 therapy. It is unclear if previously reported prognostic factors are applicable to patients with HER2 + BC in the era of HER2-targeted therapy. We evaluated 100 consecutive patients with HER2 + BC with BM who underwent radiation therapy as primary BM treatment from January 2001 to December 2011 at Memorial Sloan Kettering Cancer Center by retrospective review. Patient characteristics at the time of BM diagnosis and their associations with time from BM to death were evaluated by Kaplan-Meier curves, log-rank tests, and Cox proportional hazard models. Significantly better survival from BM was noted for patients with higher performance status, fewer BM lesions, continued use of HER2-targeted therapy after BM diagnosis, and better controlled extracranial metastatic disease. Absence of neurologic symptoms at BM diagnosis was significantly associated with fewer lesions, decreased use of whole brain radiotherapy, and longer survival in univariate and multivariate analysis (multivariate hazard ratio, 3.69; 95% confidence interval, 1.69-8.07). Our finding supports the continued use of HER2-targeted therapy after BM diagnosis. In addition, future research on the clinical impact of detecting asymptomatic BM in patients with HER2 + BC, in terms of improving prognosis, quality of life, and avoidance of whole brain radiotherapy, is warranted. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. DRα1-MOG-35-55 treatment reduces lesion volumes and improves neurological deficits after traumatic brain injury.

    Science.gov (United States)

    Yang, Liu; Liu, Zhijia; Ren, Honglei; Zhang, Lei; Gao, Siman; Ren, Li; Chai, Zhi; Meza-Romero, Roberto; Benedek, Gil; Vandenbark, Arthur A; Offner, Halina; Li, Minshu

    2017-10-01

    Traumatic brain injury (TBI) results in severe neurological impairments without effective treatments. Inflammation appears to be an important contributor to key pathogenic events such as secondary brain injury following TBI and therefore serves as a promising target for novel therapies. We have recently demonstrated the ability of a molecular construct comprised of the human leukocyte antigen (HLA)-DRα1 domain linked covalently to mouse (m)MOG-35-55 peptide (DRα1-MOG-35-55 construct) to reduce CNS inflammation and tissue injury in animal models of multiple sclerosis and ischemic stroke. The aim of the current study was to determine if DRα1-MOG-35-55 treatment of a fluid percussion injury (FPI) mouse model of TBI could reduce the lesion size and improve disease outcome measures. Neurodeficits, lesion size, and immune responses were determined to evaluate the therapeutic potential and mechanisms of neuroprotection induced by DRα1-MOG-35-55 treatment. The results demonstrated that daily injections of DRα1-MOG-35-55 given after FPI significantly reduced numbers of infiltrating CD74(+) and CD86(+) macrophages and increased numbers of CD206(+) microglia in the brain concomitant with smaller lesion sizes and improvement in neurodeficits. Conversely, DRα1-MOG-35-55 treatment of TBI increased numbers of circulating CD11b(+) monocytes and their expression of CD74 but had no detectable effect on cell numbers or marker expression in the spleen. These results demonstrate that DRα1-MOG-35-55 therapy can reduce CNS inflammation and significantly improve histological and clinical outcomes after TBI. Future studies will further examine the potential of DRα1-MOG-35-55 for treatment of TBI.

  18. Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: two new strategies of functionalization with apolipoprotein E

    Science.gov (United States)

    Rute Neves, Ana; Fontes Queiroz, Joana; Weksler, Babette; Romero, Ignacio A.; Couraud, Pierre-Olivier; Reis, Salette

    2015-12-01

    Nanotechnology can be an important tool to improve the permeability of some drugs for the blood-brain barrier. In this work we created a new system to enter the brain by functionalizing solid lipid nanoparticles with apolipoprotein E, aiming to enhance their binding to low-density lipoprotein receptors on the blood-brain barrier endothelial cells. Solid lipid nanoparticles were successfully functionalized with apolipoprotein E using two distinct strategies that took advantage of the strong interaction between biotin and avidin. Transmission electron microscopy images revealed spherical nanoparticles, and dynamic light scattering gave a Z-average under 200 nm, a polydispersity index below 0.2, and a zeta potential between -10 mV and -15 mV. The functionalization of solid lipid nanoparticles with apolipoprotein E was demonstrated by infrared spectroscopy and fluorimetric assays. In vitro cytotoxic effects were evaluated by MTT and LDH assays in the human cerebral microvascular endothelial cells (hCMEC/D3) cell line, a human blood-brain barrier model, and revealed no toxicity up to 1.5 mg ml-1 over 4 h of incubation. The brain permeability was evaluated in transwell devices with hCMEC/D3 monolayers, and a 1.5-fold increment in barrier transit was verified for functionalized nanoparticles when compared with non-functionalized ones. The results suggested that these novel apolipoprotein E-functionalized nanoparticles resulted in dynamic stable systems capable of being used for an improved and specialized brain delivery of drugs through the blood-brain barrier.

  19. Transcellular targeting of fiber- and hexon-modified adenovirus vectors across the brain microvascular endothelial cells in vitro.

    Science.gov (United States)

    Laakkonen, Johanna P; Engler, Tatjana; Romero, Ignacio A; Weksler, Babette; Couraud, Pierre-Olivier; Kreppel, Florian; Kochanek, Stefan

    2012-01-01

    In central nervous system (CNS)-directed gene therapy, efficient targeting of brain parenchyma through the vascular route is prevented by the endothelium and the epithelium of the blood-brain and the blood-cerebrospinal fluid barriers, respectively. In this study, we evaluated the feasibility of the combined genetic and chemical adenovirus capsid modification technology to enable transcellular delivery of targeted adenovirus (Ad) vectors across the blood-brain barrier (BBB) in vitro models. As a proof-of-principle ligand, maleimide-activated full-length human transferrin (hTf) was covalently attached to cysteine-modified Ad serotype 5 vectors either to its fiber or hexon protein. In transcytosis experiments, hTf-coupled vectors were shown to be redirected across the BBB models, the transcytosis activity of the vectors being dependent on the location of the capsid modification and the in vitro model used. The transduction efficiency of hTf-targeted vectors decreased significantly in confluent, polarized cells, indicating that the intracellular route of the vectors differed between unpolarized and polarized cells. After transcellular delivery the majority of the hTf-modified vectors remained intact and partly capable of gene transfer. Altogether, our results demonstrate that i) covalent attachment of a ligand to Ad capsid can mediate transcellular targeting across the cerebral endothelium in vitro, ii) the attachment site of the ligand influences its transcytosis efficiency and iii) combined genetic/chemical modification of Ad vector can be used as a versatile platform for the development of Ad vectors for transcellular targeting.

  20. Targeting energy metabolism in brain cancer with calorically restricted ketogenic diets.

    Science.gov (United States)

    Seyfried, Thomas N; Kiebish, Michael; Mukherjee, Purna; Marsh, Jeremy

    2008-11-01

    Information is presented on the calorically restricted ketogenic diet (CRKD) as an alternative therapy for brain cancer. In contrast to normal neurons and glia, which evolved to metabolize ketone bodies as an alternative fuel to glucose under energy-restricted conditions, brain tumor cells are largely glycolytic due to mitochondrial defects and have a reduced ability to metabolize ketone bodies. The CRKD is effective in managing brain tumor growth in animal models and in patients, and appears to act through antiangiogenic, anti-inflammatory, and proapoptotic mechanisms.

  1. Subthalamic deep brain stimulation can improve gastric emptying in Parkinson's disease.

    Science.gov (United States)

    Arai, Eiji; Arai, Makoto; Uchiyama, Tomoyuki; Higuchi, Yoshinori; Aoyagi, Kyoko; Yamanaka, Yoshitaka; Yamamoto, Tatsuya; Nagano, Osamu; Shiina, Akihiro; Maruoka, Daisuke; Matsumura, Tomoaki; Nakagawa, Tomoo; Katsuno, Tatsuro; Imazeki, Fumio; Saeki, Naokatsu; Kuwabara, Satoshi; Yokosuka, Osamu

    2012-05-01

    It is established that deep brain stimulation of the subthalamic nucleus improves motor function in advanced Parkinson's disease, but its effects on autonomic function remain to be elucidated. The present study was undertaken to investigate the effects of subthalamic deep brain stimulation on gastric emptying. A total of 16 patients with Parkinson's disease who underwent bilateral subthalamic deep brain stimulation were enrolled. Gastric emptying was expressed as the peak time of (13)CO(2) excretion (T(max)) in the (13)C-acetate breath test and was assessed in patients with and without administration of 100-150 mg levodopa/decarboxylase inhibitor before surgery, and with and without subthalamic deep brain stimulation at 3 months post-surgery. The pattern of (13)CO(2) excretion curve was analysed. To evaluate potential factors related to the effect of subthalamic deep brain stimulation on gastric emptying, we also examined the association between gastric emptying, clinical characteristics, the equivalent dose of levodopa and serum ghrelin levels. The peak time of (13)CO(2) excretion (T(max)) values for gastric emptying in patients without and with levodopa/decarboxylase inhibitor treatment were 45.6 ± 22.7 min and 42.5 ± 13.6 min, respectively (P = not significant), thus demonstrating levodopa resistance. The peak time of (13)CO(2) excretion (T(max)) values without and with subthalamic deep brain stimulation after surgery were 44.0 ± 17.5 min and 30.0 ± 12.5 min (P deep brain stimulation was effective. Simultaneously, the pattern of the (13)CO(2) excretion curve was also significantly improved relative to surgery with no stimulation (P = 0.002), although the difference with and without levodopa/decarboxylase inhibitor was not significant. The difference in peak time of (13)CO(2) excretion (T(max)) values without levodopa/decarboxylase inhibitor before surgery and without levodopa/decarboxylase inhibitor and subthalamic deep

  2. The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair.

    Directory of Open Access Journals (Sweden)

    Davide Lecca

    promoted the expression of myelin basic protein, confirming progression toward mature oligodendrocytes. Thus, GPR17 may act as a "sensor" that is activated upon brain injury on several embryonically distinct cell types, and may play a key role in both inducing neuronal death inside the ischemic core and in orchestrating the local remodeling/repair response. Specifically, we suggest GPR17 as a novel target for therapeutic manipulation to foster repair of demyelinating wounds, the types of lesions that also occur in patients with multiple sclerosis.

  3. Learning and memory improvement and neuroprotection of Gardenia jasminoides (Fructus gardenia) extract on ischemic brain injury rats.

    Science.gov (United States)

    Zhang, Haiyan; Lai, Qiong; Li, Yan; Liu, Yang; Yang, Ming

    2017-01-20

    Gardenia jasminoides Ellis is a traditional Chinese medicine (TCM) that containing a variety of effective active ingredients and exhibits diverse pharmacological functions, such as anti-inflammatory, antioxidant and nerve protection. This study investigated the effect of Gardenia jasminoides extract (GJE) and Geniposide on learning and memory improvement and neuroprotection in a rat model with chronic cerebral ischemia, as well as explore the underlying mechanisms. The crude GJE was prepared using the methods of water extraction and alcohol precipitation, and refined by macroporous adsorption resin. The chronic cerebral ischemia model was simulated by permanent occlusion of bilateral common carotid arteries in rats. GJE was taken at three doses groups (150mg/kg, 100mg/kg, 50mg/kg), Geniposide group (50mg/kg), and oral administration for 30 days. Memory function was assessed using Morris water maze test. The morphological changes of hippocampus and related parts of brain in rats by Hematoxylin and Eosin (HE) staining were observed. Moreover, the levels of Acetylcholin Esterase (AchE), Nitric Oxide Synthase (NOS), Malondialdehyde (MDA), Superoxide Dismutase (SOD) in the brain tissue were quantified. GJE contained 27% gardenoside and 72% total iridoid glycoside. The chronic cerebral ischemia rat model has been proved successfully. The memory function of the rats assessed using Morris water maze test showed that GJE significantly shortened the escape latency of rats, but had no significant improvement on the number of times crossing the platform and the percentage of time spent in the target quadrant. HE staining showed that the apoptosis and necrosis of the cortex and hippocampus in the GJE group were significantly reduced. In addition, it was found that GJE could significantly improved the content of SOD, inhibited NOS and AchE activity in brain tissue, but did not show a significant reduction in the content of MDA. The effect of medium dosage of GJE was the best

  4. Low-Z target optimization for spatial resolution improvement in megavoltage imaging

    Energy Technology Data Exchange (ETDEWEB)

    Connell, Tanner; Robar, James L. [Medical Physics Unit, McGill University Health Center, 1650 Avenue Cedar, Montreal, Quebec H3G 1A4 (Canada); Department of Radiation Oncology and Department of Physics and Atmospheric Science, Dalhousie University, 5820 University Avenue, Halifax, Nova Scotia B3H 1V7 (Canada)

    2010-01-15

    Purpose: Recently, several authors have shown contrast improvements in megavoltage portal imaging and cone-beam computed tomography using low atomic number (Z) targets. This work compliments previous studies by investigating the effects of varying different beam production parameters including target atomic number, target thickness, and incident electron energy on spatial resolution. Methods: Target materials of beryllium, aluminum, and tungsten were investigated over a range of thicknesses between 10% and 100% of the continuous slowing down approximation range of electrons. Incident electron kinetic energies of 4.5 and 7.0 MeV were used, in conjunction with custom targets installed above the carousel of a modern radiotherapy linear accelerator. Monte Carlo simulations of the accelerator were constructed and compared to the experimental results. Results: The results showed that thinner targets, as well higher incident electron energies, generally produce more favorable modulation transfer function (MTF) curves. Due to an MTF dependence of the detector system on the photon energy, the experimental results showed that low-Z targets produced superior MTF curves. Simulations showed 14.5% and 21.5% increases in f{sub 50} for the 7.0 and 4.5 MeV targets (Al; 60%R{sub %CSDA}), respectively, when moved from the carousel to the location of the clinical target. f{sub 50} values for the custom targets were compared to the clinical 6 MV beam and were found to be between 10.4% lower (4.5 MeV/W) and 15.5% higher (7.0 MeV/Be). Conclusions: Integration of low-Z external targets into the treatment head of a medical linear was achieved with only minor modifications. It was shown that reasonably high resolution images on par or better than those acquired with the clinical 6 MV beam can be achieved using external low-Z targets.

  5. Low-Z target optimization for spatial resolution improvement in megavoltage imaging.

    Science.gov (United States)

    Connell, Tanner; Robar, James L

    2010-01-01

    Recently, several authors have shown contrast improvements in megavoltage portal imaging and cone-beam computed tomography using low atomic number (Z) targets. This work compliments previous studies by investigating the effects of varying different beam production parameters including target atomic number, target thickness, and incident electron energy on spatial resolution. Target materials of beryllium, aluminum, and tungsten were investigated over a range of thicknesses between 10% and 100% of the continuous slowing down approximation range of electrons. Incident electron kinetic energies of 4.5 and 7.0 MeV were used, in conjunction with custom targets installed above the carousel of a modern radiotherapy linear accelerator. Monte Carlo simulations of the accelerator were constructed and compared to the experimental results. The results showed that thinner targets, as well higher incident electron energies, generally produce more favorable modulation transfer function (MTF) curves. Due to an MTF dependence of the detector system on the photon energy, the experimental results showed that low-Z targets produced superior MTF curves. Simulations showed 14.5% and 21.5% increases in f50 for the 7.0 and 4.5 MeV targets (A1; 60% R% CSDA), respectively, when moved from the carousel to the location of the clinical target. f50 values for the custom targets were compared to the clinical 6 MV beam and were found to be between 10.4% lower (4.5 MeV/W) and 15.5% higher (7.0 MeV/Be). Integration of low-Z external targets into the treatment head of a medical linear was achieved with only minor modifications. It was shown that reasonably high resolution images on par or better than those acquired with the clinical 6 MV beam can be achieved using external low-Z targets.

  6. Target Selection Recommendations Based on Impact of Deep Brain Stimulation Surgeries on Nonmotor Symptoms of Parkinson′s Disease

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Wang

    2015-01-01

    Full Text Available Objective: This review examines the evidence that deep brain stimulation (DBS has extensive impact on nonmotor symptoms (NMSs of patients with Parkinson′s disease (PD. Data Sources: We retrieved information from the PubMed database up to September, 2015, using various search terms and their combinations including PD, NMSs, DBS, globus pallidus internus (GPi, subthalamic nucleus (STN, and ventral intermediate thalamic nucleus. Study Selection: We included data from peer-reviewed journals on impacts of DBS on neuropsychological profiles, sensory function, autonomic symptoms, weight changes, and sleep disturbances. For psychological symptoms and cognitive impairment, we tried to use more reliable proofs: Random, control, multicenter, large sample sizes, and long period follow-up clinical studies. We categorized the NMSs into four groups: those that would improve definitively following DBS; those that are not significantly affected by DBS; those that remain controversial on their surgical benefit; and those that can be worsened by DBS. Results: In general, it seems to be an overall beneficial effect of DBS on NMSs, such as sensory, sleep, gastrointestinal, sweating, cardiovascular, odor, urological symptoms, and sexual dysfunction, GPi-DBS may produce similar results; Both STN and Gpi-DBS are safe with regard to cognition and psychology over long-term follow-up, though verbal fluency decline is related to DBS; The impact of DBS on behavioral addictions and dysphagia is still uncertain. Conclusions: As the motor effects of STN-DBS and GPi-DBS are similar, NMSs may determine the target choice in surgery of future patients.

  7. Upconversion nanoparticles conjugated with Gd(3+) -DOTA and RGD for targeted dual-modality imaging of brain tumor xenografts.

    Science.gov (United States)

    Jin, Jiefu; Xu, Zhenhua; Zhang, Yue; Gu, Yan-Juan; Lam, Michael Hon-Wah; Wong, Wing-Tak

    2013-11-01

    Glioblastoma multiforme (GBM) is the most common and malignant form of primary brain tumors in human. Small molecular magnetic resonance imaging (MRI) contrast agents are used for GBM diagnosis. However, conventional contrast agents have several limitations, such as low T1 relaxivity, short circulation half lives and absence of tumor targeting. Herein, we develop an upconversion nanoprobe labeled with Gd(3+) -DOTA and RGD (UCNP-Gd-RGD) for dual-modality imaging of glioblastoma. The preparation of UCNP-Gd-RGD starts with amine-functional upconversion nanoparticle core, followed by PEGylation, Gd(3+) DOTA conjugation and RGD labeling. The obtained UCNP-Gd-RGD has improved colloidal stability and reduced cytotoxicity compared with the UCNP core counterpart. Meanwhile, UCNP-Gd-RGD shows strong upconversion luminescence in deep-red region and three times enhancement of T1 relaxivity over Gd(3+) DOTA. Due to the recognition between UCNP-Gd-RGD and integrin αv β3 receptors, the nanoprobe specifically binds to U87MG cells, as evidenced by confocal microscopy and quantified by ICP-MS. Furthermore, UCNP-Gd-RGD demonstrates a preferential retention in subcutaneous U87MG tumor xenograft as shown in both in vivo upconversion fluorescence/MR imaging studies and ex vivo analysis. UCNP-Gd-RGD, conjugated with numerous RGD peptide and T1 contrast enhancing molecules, is promising for MR imaging of glioblastoma and delineating the tumor boundary before surgery. In addition, NIR-to-red upconversion characteristic of UCNP-Gd-RGD facilitates its potential intra-operative use for fluorescence-guided tumor resection. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Insulin improves memory and reduces chronic neuroinflammation in the hippocampus of young but not aged brains.

    Science.gov (United States)

    Adzovic, Linda; Lynn, Ashley E; D'Angelo, Heather M; Crockett, Alexis M; Kaercher, Roxanne M; Royer, Sarah E; Hopp, Sarah C; Wenk, Gary L

    2015-04-02

    The role of insulin in the brain is still not completely understood. In the periphery, insulin can decrease inflammation induced by lipopolysaccharide (LPS); however, whether insulin can reduce inflammation within the brain is unknown. Experiments administrating intranasal insulin to young and aged adults have shown that insulin improves memory. In our animal model of chronic neuroinflammation, we administered insulin and/or LPS directly into the brain via the fourth ventricle for 4 weeks in young rats; we then analyzed their spatial memory and neuroinflammatory response. Additionally, we administered insulin or artificial cerebral spinal fluid (aCSF), in the same manner, to aged rats and then analyzed their spatial memory and neuroinflammatory response. Response to chronic neuroinflammation in young rats was analyzed in the presence or absence of insulin supplementation. Here, we show for the first time that insulin infused (i.c.v.) to young rats significantly attenuated the effects of LPS by decreasing the expression of neuroinflammatory markers in the hippocampus and by improving performance in the Morris water pool task. In young rats, insulin infusion alone significantly improved their performance as compared to all other groups. Unexpectedly, in aged rats, the responsiveness to insulin was completely absent, that is, spatial memory was still impaired suggesting that an age-dependent insulin resistance may contribute to the cognitive impairment observed in neurodegenerative diseases. Our data suggest a novel therapeutic effect of insulin on neuroinflammation in the young but not the aged brain.

  9. Neuroinflammation, Finding A Marine Natural Product that Targets Microglia in Brain

    OpenAIRE

    Alejandro M. S. Mayer

    2002-01-01

    The purpose of this project is to investigate whether compounds extracted from marine organisms—soft corals, sponges, tunicates, algae and bacteria—suppress, inhibit or control the release of neurotoxic mediator compounds in the brain.

  10. Brain Histamine -Methyltransferase as a Possible Target of Treatment for Methamphetamine Overdose

    Directory of Open Access Journals (Sweden)

    Junichi Kitanaka

    2016-01-01

    Full Text Available Stereotypical behaviors induced by methamphetamine (METH overdose are one of the overt symptoms of METH abuse, which can be easily assessed in animal models. Currently, there is no successful treatment for METH overdose. There is increasing evidence that elevated levels of brain histamine can attenuate METH-induced behavioral abnormalities, which might therefore constitute a novel therapeutic treatment for METH abuse and METH overdose. In mammals, histamine N -methyltransferase (HMT is the sole enzyme responsible for degrading histamine in the brain. Metoprine, one of the most potent HMT inhibitors, can cross the blood-brain barrier and increase brain histamine levels by inhibiting HMT. Consequently, this compound can be a candidate for a prototype of drugs for the treatment of METH overdose.

  11. Targeting Epigenetic Mechanisms in Pain due to Trauma and Traumatic Brain Injury(TBI)

    Science.gov (United States)

    2016-10-01

    NSS) previously reported, staining of rat brain sections for hemosiderin (microbleeding), IgG (BBB breakdown) and amyloid precursor protein (APP...results for hemosiderin staining are provided below.   7  We also looked for evidence of

  12. Targeting c-Met receptor overcomes TRAIL-resistance in brain tumors

    National Research Council Canada - National Science Library

    Du, Wanlu; Uslar, Liubov; Sevala, Sindhura; Shah, Khalid

    2014-01-01

    .... We show that the knock down c-Met protein, but not inhibition, sensitized brain tumor cells to TRAIL-mediated apoptosis by interrupting the interaction between c-Met and TRAIL cognate death receptor (DR) 5...

  13. Targeting c-Met Receptor Overcomes TRAIL-Resistance in Brain Tumors: e95490

    National Research Council Canada - National Science Library

    Wanlu Du; Liubov Uslar; Sindhura Sevala; Khalid Shah

    2014-01-01

    .... We show that the knock down c-Met protein, but not inhibition, sensitized brain tumor cells to TRAIL-mediated apoptosis by interrupting the interaction between c-Met and TRAIL cognate death receptor (DR) 5...

  14. Preparation and Characterization of Biocompatible Chitosan Nanoparticles for Targeted Brain Delivery of Peptides.

    Science.gov (United States)

    Yemisci, Muge; Caban, Secil; Fernandez-Megia, Eduardo; Capan, Yilmaz; Couvreur, Patrick; Dalkara, Turgay

    2018-01-01

    Here, we describe a nanocarrier system that can transfer chitosan nanoparticles loaded with either small peptides such as the caspase inhibitor Z-DEVD-FMK or a large peptide like basic fibroblast growth factor across the blood-brain barrier. The nanoparticles are selectively directed to the brain and are not measurably taken up by the liver and spleen. Intravital fluorescent microscopy provides an opportunity to study the penetration kinetics of nanoparticles loaded with fluorescent agents such as Nile red. Nanoparticles functionalized with anti-transferrin antibody and loaded with peptides efficiently provided neuroprotection when systemically administered either as a formulation bearing a single peptide or a mixture of them. Failure of brain permeation of the nanoparticles after inhibition of vesicular transcytosis by imatinib as well as when nanoparticles were not functionalized with anti-transferrin antibody indicates that this nanomedicine formulation is rapidly transported across the blood-brain barrier by receptor-mediated transcytosis.

  15. Technical Note: Immunohistochemical evaluation of mouse brain irradiation targeting accuracy with 3D-printed immobilization device

    Energy Technology Data Exchange (ETDEWEB)

    Zarghami, Niloufar, E-mail: nzargham@uwo.ca; Jensen, Michael D. [Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Talluri, Srikanth; Dick, Frederick A. [Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); London Regional Cancer Program, London Health Sciences Centre, 800 Commissioners Road East, London, Ontario N6A 5W9 (Canada); Foster, Paula J. [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Ontario N6A 5K8 (Canada); Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Chambers, Ann F. [Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Department of Oncology, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); London Regional Cancer Program, London Health Sciences Centre, 800 Commissioners Road East, London, Ontario N6A 5W9 (Canada); Wong, Eugene [Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Department of Oncology, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); London Regional Cancer Program, London Health Sciences Centre, 800 Commissioners Road East, London, Ontario N6A 5W9 (Canada)

    2015-11-15

    Purpose: Small animal immobilization devices facilitate positioning of animals for reproducible imaging and accurate focal radiation therapy. In this study, the authors demonstrate the use of three-dimensional (3D) printing technology to fabricate a custom-designed mouse head restraint. The authors evaluate the accuracy of this device for the purpose of mouse brain irradiation. Methods: A mouse head holder was designed for a microCT couch using CAD software and printed in an acrylic based material. Ten mice received half-brain radiation while positioned in the 3D-printed head holder. Animal placement was achieved using on-board image guidance and computerized asymmetric collimators. To evaluate the precision of beam localization for half-brain irradiation, mice were sacrificed approximately 30 min after treatment and brain sections were stained for γ-H2AX, a marker for DNA breaks. The distance and angle of the γ-H2AX radiation beam border to longitudinal fissure were measured on histological samples. Animals were monitored for any possible trauma from the device. Results: Visualization of the radiation beam on ex vivo brain sections with γ-H2AX immunohistochemical staining showed a sharp radiation field within the tissue. Measurements showed a mean irradiation targeting error of 0.14 ± 0.09 mm (standard deviation). Rotation between the beam axis and mouse head was 1.2° ± 1.0° (standard deviation). The immobilization device was easily adjusted to accommodate different sizes of mice. No signs of trauma to the mice were observed from the use of tooth block and ear bars. Conclusions: The authors designed and built a novel 3D-printed mouse head holder with many desired features for accurate and reproducible radiation targeting. The 3D printing technology was found to be practical and economical for producing a small animal imaging and radiation restraint device and allows for customization for study specific needs.

  16. Technical Note: Immunohistochemical evaluation of mouse brain irradiation targeting accuracy with 3D-printed immobilization device.

    Science.gov (United States)

    Zarghami, Niloufar; Jensen, Michael D; Talluri, Srikanth; Foster, Paula J; Chambers, Ann F; Dick, Frederick A; Wong, Eugene

    2015-11-01

    Small animal immobilization devices facilitate positioning of animals for reproducible imaging and accurate focal radiation therapy. In this study, the authors demonstrate the use of three-dimensional (3D) printing technology to fabricate a custom-designed mouse head restraint. The authors evaluate the accuracy of this device for the purpose of mouse brain irradiation. A mouse head holder was designed for a microCT couch using cad software and printed in an acrylic based material. Ten mice received half-brain radiation while positioned in the 3D-printed head holder. Animal placement was achieved using on-board image guidance and computerized asymmetric collimators. To evaluate the precision of beam localization for half-brain irradiation, mice were sacrificed approximately 30 min after treatment and brain sections were stained for γ-H2AX, a marker for DNA breaks. The distance and angle of the γ-H2AX radiation beam border to longitudinal fissure were measured on histological samples. Animals were monitored for any possible trauma from the device. Visualization of the radiation beam on ex vivo brain sections with γ-H2AX immunohistochemical staining showed a sharp radiation field within the tissue. Measurements showed a mean irradiation targeting error of 0.14±0.09 mm (standard deviation). Rotation between the beam axis and mouse head was 1.2°±1.0° (standard deviation). The immobilization device was easily adjusted to accommodate different sizes of mice. No signs of trauma to the mice were observed from the use of tooth block and ear bars. The authors designed and built a novel 3D-printed mouse head holder with many desired features for accurate and reproducible radiation targeting. The 3D printing technology was found to be practical and economical for producing a small animal imaging and radiation restraint device and allows for customization for study specific needs.

  17. Causal evidence for frontal involvement in memory target maintenance by posterior brain areas during distracter interference of visual working memory.

    Science.gov (United States)

    Feredoes, Eva; Heinen, Klaartje; Weiskopf, Nikolaus; Ruff, Christian; Driver, Jon

    2011-10-18

    Dorsolateral prefrontal cortex (DLPFC) is recruited during visual working memory (WM) when relevant information must be maintained in the presence of distracting information. The mechanism by which DLPFC might ensure successful maintenance of the contents of WM is, however, unclear; it might enhance neural maintenance of memory targets or suppress processing of distracters. To adjudicate between these possibilities, we applied time-locked transcranial magnetic stimulation (TMS) during functional MRI, an approach that permits causal assessment of a stimulated brain region's influence on connected brain regions, and evaluated how this influence may change under different task conditions. Participants performed a visual WM task requiring retention of visual stimuli (faces or houses) across a delay during which visual distracters could be present or absent. When distracters were present, they were always from the opposite stimulus category, so that targets and distracters were represented in distinct posterior cortical areas. We then measured whether DLPFC-TMS, administered in the delay at the time point when distracters could appear, would modulate posterior regions representing memory targets or distracters. We found that DLPFC-TMS influenced posterior areas only when distracters were present and, critically, that this influence consisted of increased activity in regions representing the current memory targets. DLPFC-TMS did not affect regions representing current distracters. These results provide a new line of causal evidence for a top-down DLPFC-based control mechanism that promotes successful maintenance of relevant information in WM in the presence of distraction.

  18. A real-time brain-machine interface combining motor target and trajectory intent using an optimal feedback control design.

    Science.gov (United States)

    Shanechi, Maryam M; Williams, Ziv M; Wornell, Gregory W; Hu, Rollin C; Powers, Marissa; Brown, Emery N

    2013-01-01

    Real-time brain-machine interfaces (BMI) have focused on either estimating the continuous movement trajectory or target intent. However, natural movement often incorporates both. Additionally, BMIs can be modeled as a feedback control system in which the subject modulates the neural activity to move the prosthetic device towards a desired target while receiving real-time sensory feedback of the state of the movement. We develop a novel real-time BMI using an optimal feedback control design that jointly estimates the movement target and trajectory of monkeys in two stages. First, the target is decoded from neural spiking activity before movement initiation. Second, the trajectory is decoded by combining the decoded target with the peri-movement spiking activity using an optimal feedback control design. This design exploits a recursive Bayesian decoder that uses an optimal feedback control model of the sensorimotor system to take into account the intended target location and the sensory feedback in its trajectory estimation from spiking activity. The real-time BMI processes the spiking activity directly using point process modeling. We implement the BMI in experiments consisting of an instructed-delay center-out task in which monkeys are presented with a target location on the screen during a delay period and then have to move a cursor to it without touching the incorrect targets. We show that the two-stage BMI performs more accurately than either stage alone. Correct target prediction can compensate for inaccurate trajectory estimation and vice versa. The optimal feedback control design also results in trajectories that are smoother and have lower estimation error. The two-stage decoder also performs better than linear regression approaches in offline cross-validation analyses. Our results demonstrate the advantage of a BMI design that jointly estimates the target and trajectory of movement and more closely mimics the sensorimotor control system.

  19. A real-time brain-machine interface combining motor target and trajectory intent using an optimal feedback control design.

    Directory of Open Access Journals (Sweden)

    Maryam M Shanechi

    Full Text Available Real-time brain-machine interfaces (BMI have focused on either estimating the continuous movement trajectory or target intent. However, natural movement often incorporates both. Additionally, BMIs can be modeled as a feedback control system in which the subject modulates the neural activity to move the prosthetic device towards a desired target while receiving real-time sensory feedback of the state of the movement. We develop a novel real-time BMI using an optimal feedback control design that jointly estimates the movement target and trajectory of monkeys in two stages. First, the target is decoded from neural spiking activity before movement initiation. Second, the trajectory is decoded by combining the decoded target with the peri-movement spiking activity using an optimal feedback control design. This design exploits a recursive Bayesian decoder that uses an optimal feedback control model of the sensorimotor system to take into account the intended target location and the sensory feedback in its trajectory estimation from spiking activity. The real-time BMI processes the spiking activity directly using point process modeling. We implement the BMI in experiments consisting of an instructed-delay center-out task in which monkeys are presented with a target location on the screen during a delay period and then have to move a cursor to it without touching the incorrect targets. We show that the two-stage BMI performs more accurately than either stage alone. Correct target prediction can compensate for inaccurate trajectory estimation and vice versa. The optimal feedback control design also results in trajectories that are smoother and have lower estimation error. The two-stage decoder also performs better than linear regression approaches in offline cross-validation analyses. Our results demonstrate the advantage of a BMI design that jointly estimates the target and trajectory of movement and more closely mimics the sensorimotor control system.

  20. Targeting energy metabolism in brain cancer through calorie restriction and the ketogenic diet

    Directory of Open Access Journals (Sweden)

    Seyfried B

    2009-09-01

    Full Text Available Malignant brain tumors are a significant health problem in children and adults and are largely unmanageable. As a metabolic disorder involving the dysregulation of glycolysis and respiration (the Warburg effect, malignant brain cancer can be managed through changes in metabolic environment. In contrast to malignant brain tumors that are mostly dependent on glycolysis for energy, normal neurons and glia readily transition to ketone bodies (β-hydroxybutyrate for energy in vivo when glucose levels are reduced. The transition from glucose to ketone bodies as a major energy source is an evolutionary conserved adaptation to food deprivation that permits the survival of normal cells during extreme shifts in nutritional environment. Only those cells with a flexible genome, honed through millions of years of environmental forcing and variability selection, can transition from one energy state to another. We propose a different approach to brain cancer management that exploits the metabolic flexibility of normal cells at the expense of the genetically defective and less metabolically flexible tumor cells. This approach to brain cancer management is supported from recent studies in orthotopic mouse brain tumor models and in human pediatric astrocytoma treated with calorie restriction and the ketogenic diet. Issues of implementation and use protocols are discussed.

  1. Targeting energy metabolism in brain cancer through calorie restriction and the ketogenic diet.

    Science.gov (United States)

    Seyfried, B Thomas N; Kiebish, Michael; Marsh, Jeremy; Mukherjee, Purna

    2009-09-01

    Malignant brain tumors are a significant health problem in children and adults and are largely unmanageable. As a metabolic disorder involving the dysregulation of glycolysis and respiration (the Warburg effect), malignant brain cancer can be managed through changes in metabolic environment. In contrast to malignant brain tumors that are mostly dependent on glycolysis for energy, normal neurons and glia readily transition to ketone bodies (beta-hydroxybutyrate) for energy in vivo when glucose levels are reduced. The transition from glucose to ketone bodies as a major energy source is an evolutionary conserved adaptation to food deprivation that permits the survival of normal cells during extreme shifts in nutritional environment. Only those cells with a flexible genome, honed through millions of years of environmental forcing and variability selection, can transition from one energy state to another. We propose a different approach to brain cancer management that exploits the metabolic flexibility of normal cells at the expense of the genetically defective and less metabolically flexible tumor cells. This approach to brain cancer management is supported from recent studies in orthotopic mouse brain tumor models and in human pediatric astrocytoma treated with calorie restriction and the ketogenic diet. Issues of implementation and use protocols are discussed.

  2. Divide and Conquer: Sub-Grouping of ASD Improves ASD Detection Based on Brain Morphometry.

    Science.gov (United States)

    Katuwal, Gajendra J; Baum, Stefi A; Cahill, Nathan D; Michael, Andrew M

    2016-01-01

    Low success (ASD) classification using brain morphometry from the large multi-site ABIDE dataset and inconsistent findings on brain morphometric abnormalities in ASD can be attributed to the ASD heterogeneity. In this study, we show that ASD brain morphometry is highly heterogeneous, and demonstrate that the heterogeneity can be mitigated and classification improved if autism severity (AS), verbal IQ (VIQ) and age are used with morphometric features. Morphometric features from structural MRIs (sMRIs) of 734 males (ASD: 361, controls: 373) of ABIDE were derived using FreeSurfer. Applying the Random Forest classifier, an AUC of 0.61 was achieved. Adding VIQ and age to morphometric features, AUC improved to 0.68. Sub-grouping the subjects by AS, VIQ and age improved the classification with the highest AUC of 0.8 in the moderate-AS sub-group (AS = 7-8). Matching subjects on age and/or VIQ in each sub-group further improved the classification with the highest AUC of 0.92 in the low AS sub-group (AS = 4-5). AUC decreased with AS and VIQ, and was the lowest in the mid-age sub-group (13-18 years). The important features were mainly from the frontal, temporal, ventricular, right hippocampal and left amygdala regions. However, they highly varied with AS, VIQ and age. The curvature and folding index features from frontal, temporal, lingual and insular regions were dominant in younger subjects suggesting their importance for early detection. When the experiments were repeated using the Gradient Boosting classifier similar results were obtained. Our findings suggest that identifying brain biomarkers in sub-groups of ASD can yield more robust and insightful results than searching across the whole spectrum. Further, it may allow identification of sub-group specific brain biomarkers that are optimized for early detection and monitoring, increasing the utility of sMRI as an important tool for early detection of ASD.

  3. Improvement of Blood-Brain Barrier Integrity in Traumatic Brain Injury and Hemorrhagic Shock Following Treatment With Valproic Acid and Fresh Frozen Plasma.

    Science.gov (United States)

    Nikolian, Vahagn C; Dekker, Simone E; Bambakidis, Ted; Higgins, Gerald A; Dennahy, Isabel S; Georgoff, Patrick E; Williams, Aaron M; Andjelkovic, Anuska V; Alam, Hasan B

    2018-01-01

    Combined traumatic brain injury and hemorrhagic shock are highly lethal. Following injuries, the integrity of the blood-brain barrier can be impaired, contributing to secondary brain insults. The status of the blood-brain barrier represents a potential factor impacting long-term neurologic outcomes in combined injuries. Treatment strategies involving plasma-based resuscitation and valproic acid therapy have shown efficacy in this setting. We hypothesize that a component of this beneficial effect is related to blood-brain barrier preservation. Following controlled traumatic brain injury, hemorrhagic shock, various resuscitation and treatment strategies were evaluated for their association with blood-brain barrier integrity. Analysis of gene expression profiles was performed using Porcine Gene ST 1.1 microarray. Pathway analysis was completed using network analysis tools (Gene Ontology, Ingenuity Pathway Analysis, and Parametric Gene Set Enrichment Analysis). Female Yorkshire swine were subjected to controlled traumatic brain injury and 2 hours of hemorrhagic shock (40% blood volume, mean arterial pressure 30-35 mmHg). Subjects were resuscitated with 1) normal saline, 2) fresh frozen plasma, 3) hetastarch, 4) fresh frozen plasma + valproic acid, or 5) hetastarch + valproic acid (n = 5 per group). After 6 hours of observation, brains were harvested for evaluation. Immunofluoroscopic evaluation of the traumatic brain injury site revealed significantly increased expression of tight-junction associated proteins (zona occludin-1, claudin-5) following combination therapy (fresh frozen plasma + valproic acid and hetastarch + valproic acid). The extracellular matrix protein laminin was found to have significantly improved expression with combination therapies. Pathway analysis indicated that valproic acid significantly modulated pathways involved in endothelial barrier function and cell signaling. Resuscitation with fresh frozen plasma results in improved expression of

  4. Cinnamon extract improves insulin sensitivity in the brain and lowers liver fat in mouse models of obesity.

    Directory of Open Access Journals (Sweden)

    Tina Sartorius

    Full Text Available OBJECTIVES: Treatment of diabetic subjects with cinnamon demonstrated an improvement in blood glucose concentrations and insulin sensitivity but the underlying mechanisms remained unclear. This work intends to elucidate the impact of cinnamon effects on the brain by using isolated astrocytes, and an obese and diabetic mouse model. METHODS: Cinnamon components (eugenol, cinnamaldehyde were added to astrocytes and liver cells to measure insulin signaling and glycogen synthesis. Ob/ob mice were supplemented with extract from cinnamomum zeylanicum for 6 weeks and cortical brain activity, locomotion and energy expenditure were evaluated. Insulin action was determined in brain and liver tissues. RESULTS: Treatment of primary astrocytes with eugenol promoted glycogen synthesis, whereas the effect of cinnamaldehyde was attenuated. In terms of brain function in vivo, cinnamon extract improved insulin sensitivity and brain activity in ob/ob mice, and the insulin-stimulated locomotor activity was improved. In addition, fasting blood glucose levels and glucose tolerance were greatly improved in ob/ob mice due to cinnamon extracts, while insulin secretion was unaltered. This corresponded with lower triglyceride and increased liver glycogen content and improved insulin action in liver tissues. In vitro, Fao cells exposed to cinnamon exhibited no change in insulin action. CONCLUSIONS: Together, cinnamon extract improved insulin action in the brain as well as brain activity and locomotion. This specific effect may represent an important central feature of cinnamon in improving insulin action in the brain, and mediates metabolic alterations in the periphery to decrease liver fat and improve glucose homeostasis.

  5. Cinnamon Extract Improves Insulin Sensitivity in the Brain and Lowers Liver Fat in Mouse Models of Obesity

    Science.gov (United States)

    Sartorius, Tina; Peter, Andreas; Schulz, Nadja; Drescher, Andrea; Bergheim, Ina; Machann, Jürgen; Schick, Fritz; Siegel-Axel, Dorothea; Schürmann, Annette; Weigert, Cora; Häring, Hans-Ulrich; Hennige, Anita M.

    2014-01-01

    Objectives Treatment of diabetic subjects with cinnamon demonstrated an improvement in blood glucose concentrations and insulin sensitivity but the underlying mechanisms remained unclear. This work intends to elucidate the impact of cinnamon effects on the brain by using isolated astrocytes, and an obese and diabetic mouse model. Methods Cinnamon components (eugenol, cinnamaldehyde) were added to astrocytes and liver cells to measure insulin signaling and glycogen synthesis. Ob/ob mice were supplemented with extract from cinnamomum zeylanicum for 6 weeks and cortical brain activity, locomotion and energy expenditure were evaluated. Insulin action was determined in brain and liver tissues. Results Treatment of primary astrocytes with eugenol promoted glycogen synthesis, whereas the effect of cinnamaldehyde was attenuated. In terms of brain function in vivo, cinnamon extract improved insulin sensitivity and brain activity in ob/ob mice, and the insulin-stimulated locomotor activity was improved. In addition, fasting blood glucose levels and glucose tolerance were greatly improved in ob/ob mice due to cinnamon extracts, while insulin secretion was unaltered. This corresponded with lower triglyceride and increased liver glycogen content and improved insulin action in liver tissues. In vitro, Fao cells exposed to cinnamon exhibited no change in insulin action. Conclusions Together, cinnamon extract improved insulin action in the brain as well as brain activity and locomotion. This specific effect may represent an important central feature of cinnamon in improving insulin action in the brain, and mediates metabolic alterations in the periphery to decrease liver fat and improve glucose homeostasis. PMID:24643026

  6. Cinnamon extract improves insulin sensitivity in the brain and lowers liver fat in mouse models of obesity.

    Science.gov (United States)

    Sartorius, Tina; Peter, Andreas; Schulz, Nadja; Drescher, Andrea; Bergheim, Ina; Machann, Jürgen; Schick, Fritz; Siegel-Axel, Dorothea; Schürmann, Annette; Weigert, Cora; Häring, Hans-Ulrich; Hennige, Anita M

    2014-01-01

    Treatment of diabetic subjects with cinnamon demonstrated an improvement in blood glucose concentrations and insulin sensitivity but the underlying mechanisms remained unclear. This work intends to elucidate the impact of cinnamon effects on the brain by using isolated astrocytes, and an obese and diabetic mouse model. Cinnamon components (eugenol, cinnamaldehyde) were added to astrocytes and liver cells to measure insulin signaling and glycogen synthesis. Ob/ob mice were supplemented with extract from cinnamomum zeylanicum for 6 weeks and cortical brain activity, locomotion and energy expenditure were evaluated. Insulin action was determined in brain and liver tissues. Treatment of primary astrocytes with eugenol promoted glycogen synthesis, whereas the effect of cinnamaldehyde was attenuated. In terms of brain function in vivo, cinnamon extract improved insulin sensitivity and brain activity in ob/ob mice, and the insulin-stimulated locomotor activity was improved. In addition, fasting blood glucose levels and glucose tolerance were greatly improved in ob/ob mice due to cinnamon extracts, while insulin secretion was unaltered. This corresponded with lower triglyceride and increased liver glycogen content and improved insulin action in liver tissues. In vitro, Fao cells exposed to cinnamon exhibited no change in insulin action. Together, cinnamon extract improved insulin action in the brain as well as brain activity and locomotion. This specific effect may represent an important central feature of cinnamon in improving insulin action in the brain, and mediates metabolic alterations in the periphery to decrease liver fat and improve glucose homeostasis.

  7. Effectiveness of Animal Assisted Therapy after brain injury: A bridge to improved outcomes in CRT.

    Science.gov (United States)

    Stapleton, Mary

    2016-06-18

    Animal Assisted Therapy (AAT) has been widely used as a complementary therapy in mental health treatment especially to remediate social skill deficits. The goal of AAT is to improve social, emotional, and cognitive functioning. The purpose of this article is to draw upon the literature on AAT and explore specific applications to cognitive rehabilitation therapy (CRT) and social skills training. This study provides a systematic review of most of the available literature on ATT and assesses that potential uses of ATT for brain injury rehabilitation. Although the efficacy of AAT is not currently well documented by rigorous research, (Kazin, 2010) anecdotal evidence suggests that brain injury survivors may benefit from the combination of AAT and cognitive rehabilitation techniques. Acquired Brain Injury (ABI) survivors with cognitive impairments can benefit from AAT as part of a comprehensive and holistic rehabilitation treatment plan.

  8. Target detection in sun glint using the improved MWIR polarization technique

    Science.gov (United States)

    Zheng, Ji; Zhao, Huijie; Li, Yansong; Cheng, Chi; Sun, Xiaofeng; Song, Pengfei; Wang, Shitao

    2017-08-01

    The sun glint problem is a major issue to be addressed for MWIR marine targets detection. The traditional technique based on the single horizontal linear polarizer was a common method to reduce the sun glint by eliminating its s-polarized component, nevertheless, the residual p-polarized component could be still too strong to saturate the detector in some cases. To solve this problem, the improved polarization technique based on two rotatable polarizers is presented. The field experiment results show that the improved polarization technique can significantly reduce sun glint and enhance the contrast of target images, confirming the effectiveness of the technology.

  9. Target-specific deep brain stimulation of the ventral capsule/ventral striatum for the treatment of neuropsychiatric disease.

    Science.gov (United States)

    Zhang, Chencheng; Li, Dianyou; Jin, Haiyan; Zeljic, Kristina; Sun, Bomin

    2017-10-01

    Deep brain stimulation (DBS) is a well-established therapy for Parkinson's disease and other movement disorders. An accumulating body of evidence supports the extension of DBS application for the treatment of refractory psychiatric disorders. The ventral capsule/ventral striatum (VC/VS) is the most common anatomical target for obsessive-compulsive disorder (OCD), addiction, and depression. However, no specific electrode is available for the clinical targeting of these areas for DBS. According to the anatomical features of the VC/VS, a novel electrode was developed for simultaneous and independently programmed stimulation of the nucleus accumbens (NAc) and the anterior limb of the internal capsule (ALIC). This VC/VS-specific electrode has the potential to enhance stimulus intensity, provide independent and flexible target stimulation.

  10. Deep Brain Stimulation in Parkinson’s Disease: New and Emerging Targets for Refractory Motor and Nonmotor Symptoms

    Directory of Open Access Journals (Sweden)

    Dustin Anderson

    2017-01-01

    Full Text Available Parkinson’s disease (PD is a progressive neurodegenerative condition characterized by bradykinesia, tremor, rigidity, and postural instability (PI, in addition to numerous nonmotor manifestations. Many pharmacological therapies now exist to successfully treat PD motor symptoms; however, as the disease progresses, it often becomes challenging to treat with medications alone. Deep brain stimulation (DBS has become a crucial player in PD treatment, particularly for patients who have disabling motor complications from medical treatment. Well-established DBS targets include the subthalamic nucleus (STN, the globus pallidus pars interna (GPi, and to a lesser degree the ventral intermediate nucleus (VIM of the thalamus. Studies of alternative DBS targets for PD are ongoing, the majority of which have shown some clinical benefit; however, more carefully designed and controlled studies are needed. In the present review, we discuss the role of these new and emerging DBS targets in treating refractory axial motor symptoms and other motor and nonmotor symptoms (NMS.

  11. Ensemble learning can significantly improve human microRNA target prediction.

    Science.gov (United States)

    Yu, Seunghak; Kim, Juho; Min, Hyeyoung; Yoon, Sungroh

    2014-10-01

    MicroRNAs (miRNAs) regulate the function of their target genes by down-regulating gene expression, participating in various biological processes. Since the discovery of the first miRNA, computational tools have been essential to predict targets of given miRNAs that can be biologically verified. The precise mechanism underlying miRNA-mRNA interaction has not yet been elucidated completely, and it is still difficult to predict miRNA targets computationally in a robust fashion, despite the large number of in silico prediction methodologies in existence. Because of this limitation, different target prediction tools often report different and (occasionally conflicting) sets of targets. Therefore, we propose a novel target prediction methodology called stacking-based miRNA interaction learner ensemble (SMILE) that employs the concept of stacked generalization (stacking), which is a type of ensemble learning that integrates the outcomes of individual prediction tools with the aim of surpassing the performance of the individual tools. We tested the proposed SMILE method on human miRNA-mRNA interaction data derived from public databases. In our experiments, SMILE improved the accuracy of the target prediction significantly in terms of the area under the receiver operating characteristic curve. Any new target prediction tool can easily be incorporated into the proposed methodology as a component learner, and we anticipate that SMILE will provide a flexible and effective framework for elucidating in vivo miRNA-mRNA interaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Targeting sepsis as a performance improvement metric: role of the nurse.

    Science.gov (United States)

    Kleinpell, Ruth; Schorr, Christa A

    2014-01-01

    Sepsis is the body's systemic response to infection that can be complicated by acute organ dysfunction and is associated with high mortality rates and adverse outcomes for acute and critically ill patients. The 2012 Surviving Sepsis Campaign guidelines advocated for implementation of evidence-based practice care for sepsis, with a focus on quality improvement. Nurses are directly involved in identification and management of sepsis. Implementing performance improvement strategies aimed at early recognition and targeted treatment can further improve sepsis care and patient outcomes. This article presents an overview of the process of implementing performance improvement initiatives for sepsis care, highlighting the significant contribution of nursing care.

  13. Deep brain stimulation in rats: different targets induce similar antidepressant-like effects but influence different circuits.

    Science.gov (United States)

    Hamani, Clement; Amorim, Beatriz O; Wheeler, Anne L; Diwan, Mustansir; Driesslein, Klaus; Covolan, Luciene; Butson, Christopher R; Nobrega, José N

    2014-11-01

    Recent studies in patients with treatment-resistant depression have shown similar results with the use of deep brain stimulation (DBS) in the subcallosal cingulate gyrus (SCG), ventral capsule/ventral striatum (VC/VS) and nucleus accumbens (Acb). As these brain regions are interconnected, one hypothesis is that by stimulating these targets one would just be influencing different relays in the same circuitry. We investigate behavioral, immediate early gene expression, and functional connectivity changes in rats given DBS in homologous regions, namely the ventromedial prefrontal cortex (vmPFC), white matter fibers of the frontal region (WMF) and nucleus accumbens. We found that DBS delivered to the vmPFC, Acb but not WMF induced significant antidepressant-like effects in the FST (31%, 44%, and 17% reduction in immobility compared to controls). Despite these findings, stimulation applied to these three targets induced distinct patterns of regional activity and functional connectivity. While animals given vmPFC DBS had increased cortical zif268 expression, changes after Acb stimulation were primarily observed in subcortical structures. In animals receiving WMF DBS, both cortical and subcortical structures at a distance from the target were influenced by stimulation. In regard to functional connectivity, DBS in all targets decreased intercorrelations among cortical areas. This is in contrast to the clear differences observed in subcortical connectivity, which was reduced after vmPFC DBS but increased in rats receiving Acb or WMF stimulation. In conclusion, results from our study suggest that, despite similar antidepressant-like effects, stimulation of the vmPFC, WMF and Acb induces distinct changes in regional brain activity and functional connectivity. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Chronic intermittent fasting improves cognitive functions and brain structures in mice.

    Directory of Open Access Journals (Sweden)

    Liaoliao Li

    Full Text Available Obesity is a major health issue. Obesity started from teenagers has become a major health concern in recent years. Intermittent fasting increases the life span. However, it is not known whether obesity and intermittent fasting affect brain functions and structures before brain aging. Here, we subjected 7-week old CD-1 wild type male mice to intermittent (alternate-day fasting or high fat diet (45% caloric supplied by fat for 11 months. Mice on intermittent fasting had better learning and memory assessed by the Barnes maze and fear conditioning, thicker CA1 pyramidal cell layer, higher expression of drebrin, a dendritic protein, and lower oxidative stress than mice that had free access to regular diet (control mice. Mice fed with high fat diet was obese and with hyperlipidemia. They also had poorer exercise tolerance. However, these obese mice did not present significant learning and memory impairment or changes in brain structures or oxidative stress compared with control mice. These results suggest that intermittent fasting improves brain functions and structures and that high fat diet feeding started early in life does not cause significant changes in brain functions and structures in obese middle-aged animals.

  15. Chronic intermittent fasting improves cognitive functions and brain structures in mice.

    Science.gov (United States)

    Li, Liaoliao; Wang, Zhi; Zuo, Zhiyi

    2013-01-01

    Obesity is a major health issue. Obesity started from teenagers has become a major health concern in recent years. Intermittent fasting increases the life span. However, it is not known whether obesity and intermittent fasting affect brain functions and structures before brain aging. Here, we subjected 7-week old CD-1 wild type male mice to intermittent (alternate-day) fasting or high fat diet (45% caloric supplied by fat) for 11 months. Mice on intermittent fasting had better learning and memory assessed by the Barnes maze and fear conditioning, thicker CA1 pyramidal cell layer, higher expression of drebrin, a dendritic protein, and lower oxidative stress than mice that had free access to regular diet (control mice). Mice fed with high fat diet was obese and with hyperlipidemia. They also had poorer exercise tolerance. However, these obese mice did not present significant learning and memory impairment or changes in brain structures or oxidative stress compared with control mice. These results suggest that intermittent fasting improves brain functions and structures and that high fat diet feeding started early in life does not cause significant changes in brain functions and structures in obese middle-aged animals.

  16. Mechanisms underlying brain monitoring during anesthesia: limitations, possible improvements, and perspectives.

    Science.gov (United States)

    Cascella, Marco

    2016-04-01

    Currently, anesthesiologists use clinical parameters to directly measure the depth of anesthesia (DoA). This clinical standard of monitoring is often combined with brain monitoring for better assessment of the hypnotic component of anesthesia. Brain monitoring devices provide indices allowing for an immediate assessment of the impact of anesthetics on consciousness. However, questions remain regarding the mechanisms underpinning these indices of hypnosis. By briefly describing current knowledge of the brain's electrical activity during general anesthesia, as well as the operating principles of DoA monitors, the aim of this work is to simplify our understanding of the mathematical processes that allow for translation of complex patterns of brain electrical activity into dimensionless indices. This is a challenging task because mathematical concepts appear remote from clinical practice. Moreover, most DoA algorithms are proprietary algorithms and the difficulty of exploring the inner workings of mathematical models represents an obstacle to accurate simplification. The limitations of current DoA monitors - and the possibility for improvement - as well as perspectives on brain monitoring derived from recent research on corticocortical connectivity and communication are also discussed.

  17. Brain metastasis in lung cancer: Building a molecular and systems-level understanding to improve outcomes.

    Science.gov (United States)

    Ebben, Johnathan D; You, Ming

    2016-09-01

    Lung cancer is a clinically difficult disease with rising disease burden around the world. Unfortunately, most lung cancers present at a clinically advanced stage. Of these cancers, many also present with brain metastasis which complicates the clinical picture. This review summarizes current knowledge on the molecular basis of lung cancer brain metastases. We start from the clinical perspective, aiming to provide a clinical context for a significant problem that requires much deeper scientific investigation. We review new research governing the metastatic process, including tumor cell signaling, establishment of a receptive tumor niches in the brain and evaluate potential new therapeutic options that take advantage of these new scientific advances. Lung cancer remains the largest single cause of cancer mortality in the United States (Siegel et al., 2015). This continues to be the clinical picture despite significant advances in therapy, including the advent of targeted molecular therapies and newly adopted immunotherapies for certain subtypes of lung cancer. In the vast majority of cases, lung cancer presents as advanced disease; in many instances, this advanced disease state is intimately associated with micro and macrometastatic disease (Goldberg et al., 2015). For both non-small cell lung cancer and small cell lung cancer patients, the predominant metastatic site is the brain, with up to 68% of patients with mediastinal lymph node metastasis eventually demonstrating brain metastasis (Wang et al., 2009).The frequency (incidence) of brain metastasis is highest in lung cancers, relative to other common epithelial malignancies (Schouten et al., 2002). Other studies have attempted to predict the risk of brain metastasis in the setting of previously non-metastatic disease. One of the largest studies to do this, analyzing historical data from 1973 to 2011 using the SEER database revealed a 9% risk of patients with previously non-metastatic NSCLC developing brain

  18. Effective treatment of glioblastoma requires crossing the blood-brain barrier and targeting tumors including cancer stem cells: The promise of nanomedicine.

    Science.gov (United States)

    Kim, Sang-Soo; Harford, Joe B; Pirollo, Kathleen F; Chang, Esther H

    2015-12-18

    Glioblastoma multiforme (GBM) is the most aggressive and lethal type of brain tumor. Both therapeutic resistance and restricted permeation of drugs across the blood-brain barrier (BBB) play a major role in the poor prognosis of GBM patients. Accumulated evidence suggests that in many human cancers, including GBM, therapeutic resistance can be attributed to a small fraction of cancer cells known as cancer stem cells (CSCs). CSCs have been shown to have stem cell-like properties that enable them to evade traditional cytotoxic therapies, and so new CSC-directed anti-cancer therapies are needed. Nanoparticles have been designed to selectively deliver payloads to relevant target cells in the body, and there is considerable interest in the use of nanoparticles for CSC-directed anti-cancer therapies. Recent advances in the field of nanomedicine offer new possibilities for overcoming CSC-mediated therapeutic resistance and thus significantly improving management of GBM. In this review, we will examine the current nanomedicine approaches for targeting CSCs and their therapeutic implications. The inhibitory effect of various nanoparticle-based drug delivery system towards CSCs in GBM tumors is the primary focus of this review. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Pharmacological approach for targeting dysfunctional brain plasticity: Focus on neural cell adhesion molecule (NCAM).

    Science.gov (United States)

    Aonurm-Helm, Anu; Jaako, Külli; Jürgenson, Monika; Zharkovsky, Alexander

    2016-11-01

    Brain plasticity refers to the ability of the brain to undergo functionally relevant adaptations in response to external and internal stimuli. Alterations in brain plasticity have been associated with several neuropsychiatric disorders, and current theories suggest that dysfunctions in neuronal circuits and synaptogenesis have a major impact in the development of these diseases. Among the molecules that regulate brain plasticity, neural cell adhesion molecule (NCAM) and its polysialylated form PSA-NCAM have been of particular interest for years because alterations in NCAM and PSA-NCAM levels have been associated with memory impairment, depression, autistic spectrum disorders and schizophrenia. In this review, we discuss the roles of NCAM and PSA-NCAM in the regulation of brain plasticity and, in particular, their roles in the mechanisms of depression. We also demonstrate that the NCAM-mimetic peptides FGL and Enreptin are able to restore disrupted neuronal plasticity. FGL peptide has also been demonstrated to ameliorate the symptoms of depressive-like behavior in NCAM-deficient mice and therefore, may be considered a new drug candidate for the treatment of depression as well as other neuropsychiatric disorders with disrupted neuroplasticity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Targeting c-Met receptor overcomes TRAIL-resistance in brain tumors.

    Directory of Open Access Journals (Sweden)

    Wanlu Du

    Full Text Available Tumor necrosis factor related apoptosis-inducing ligand (TRAIL induced apoptosis specifically in tumor cells. However, with approximately half of all known tumor lines being resistant to TRAIL, the identification of TRAIL sensitizers and their mechanism of action become critical to broadly use TRAIL as a therapeutic agent. In this study, we explored whether c-Met protein contributes to TRAIL sensitivity. We found a direct correlation between the c-Met expression level and TRAIL resistance. We show that the knock down c-Met protein, but not inhibition, sensitized brain tumor cells to TRAIL-mediated apoptosis by interrupting the interaction between c-Met and TRAIL cognate death receptor (DR 5. This interruption greatly induces the formation of death-inducing signaling complex (DISC and subsequent downstream apoptosis signaling. Using intracranially implanted brain tumor cells and stem cell (SC lines engineered with different combinations of fluorescent and bioluminescent proteins, we show that SC expressing a potent and secretable TRAIL (S-TRAIL have a significant anti-tumor effect in mice bearing c-Met knock down of TRAIL-resistant brain tumors. To our best knowledge, this is the first study that demonstrates c-Met contributes to TRAIL sensitivity of brain tumor cells and has implications for developing effective therapies for brain tumor patients.

  1. Improving working memory performance in brain-injured patients using hypnotic suggestion.

    Science.gov (United States)

    Lindeløv, Jonas K; Overgaard, Rikke; Overgaard, Morten

    2017-04-01

    Working memory impairment is prevalent in brain injured patients across lesion aetiologies and severities. Unfortunately, rehabilitation efforts for this impairment have hitherto yielded small or no effects. Here we show in a randomized actively controlled trial that working memory performance can be effectively restored by suggesting to hypnotized patients that they have regained their pre-injury level of working memory functioning. Following four 1-h sessions, 27 patients had a medium-sized improvement relative to 22 active controls (Bayes factors of 342 and 37.5 on the two aggregate outcome measures) and a very large improvement relative to 19 passive controls (Bayes factor = 1.7 × 1013). This was a long-term effect as revealed by no deterioration following a 6.7 week no-contact period (Bayes factors = 7.1 and 1.3 in favour of no change). To control for participant-specific effects, the active control group was crossed over to the working memory suggestion and showed superior improvement. By the end of the study, both groups reached a performance level at or above the healthy population mean with standardized mean differences between 1.55 and 2.03 relative to the passive control group. We conclude that, if framed correctly, hypnotic suggestion can effectively improve working memory following acquired brain injury. The speed and consistency with which this improvement occurred, indicate that there may be a residual capacity for normal information processing in the injured brain. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. LNA for Optimization of Fluorescent Oligonucleotide Probes: Improved Spectral Properties and Target Binding

    DEFF Research Database (Denmark)

    Astakhova, Irina V; Ustinov, Alexey V; Korshun, Vladimir A

    2011-01-01

    Mixmer LNA/DNA fluorescent probes containing the 1-(phenylethynyl)pyrene fluorophore attached to 2'-arabino-uridine were synthesized and studied. The conjugates displayed significantly higher hybridization affinity to target DNA, increased fluorescence quantum yields of single-stranded oligonucle......-stranded oligonucleotides and their duplexes, and improved ability to form an interstrand excimer compared to analogous non-LNA probes....

  3. Targeting of 111In-Labeled Dendritic Cell Human Vaccines Improved by Reducing Number of Cells

    NARCIS (Netherlands)

    Aarntzen, Erik H. J. G.; Srinivas, Mangala; Bonetto, Fernando; Cruz, Luis J.; Verdijk, Pauline; Schreibelt, Gerty; van de Rakt, Mandy; Lesterhuis, W. Joost; van Riel, Maichel; Punt, Cornelius J. A.; Adema, Gosse J.; Heerschap, Arend; Figdor, Carl G.; Oyen, Wim J.; de Vries, I. Jolanda M.

    2013-01-01

    PURPOSE: Anticancer dendritic cell (DC) vaccines require the DCs to relocate to lymph nodes (LN) to trigger immune responses. However, these migration rates are typically very poor. Improving the targeting of ex vivo generated DCs to LNs might increase vaccine efficacy and reduce costs. We

  4. Weak mitochondrial targeting sequence determines tissue-specific subcellular localization of glutamine synthetase in liver and brain cells.

    Science.gov (United States)

    Matthews, Gideon D; Gur, Noa; Koopman, Werner J H; Pines, Ophry; Vardimon, Lily

    2010-02-01

    Evolution of the uricotelic system for ammonia detoxification required a mechanism for tissue-specific subcellular localization of glutamine synthetase (GS). In uricotelic vertebrates, GS is mitochondrial in liver cells and cytoplasmic in brain. Because these species contain a single copy of the GS gene, it is not clear how tissue-specific subcellular localization is achieved. Here we show that in chicken, which utilizes the uricotelic system, the GS transcripts of liver and brain cells are identical and, consistently, there is no difference in the amino acid sequence of the protein. The N-terminus of GS, which constitutes a 'weak' mitochondrial targeting signal (MTS), is sufficient to direct a chimeric protein to the mitochondria in hepatocytes and to the cytoplasm in astrocytes. Considering that a weak MTS is dependent on a highly negative mitochondrial membrane potential (DeltaPsi) for import, we examined the magnitude of DeltaPsi in hepatocytes and astrocytes. Our results unexpectedly revealed that DeltaPsi in hepatocytes is considerably more negative than that of astrocytes and that converting the targeting signal into 'strong' MTS abolished the capability to confer tissue-specific subcellular localization. We suggest that evolutional selection of weak MTS provided a tool for differential targeting of an identical protein by taking advantage of tissue-specific differences in DeltaPsi.

  5. Improved OAM-Based Radar Targets Detection Using Uniform Concentric Circular Arrays

    Directory of Open Access Journals (Sweden)

    Mingtuan Lin

    2016-01-01

    Full Text Available Without any relative moves or beam scanning, the novel Orbital-Angular-Momentum- (OAM- based radar targets detection technique using uniform concentric circular arrays (UCCAs shows the azimuthal estimation ability, which provides new perspective for radar system design. However, the main estimation method, that is, Fast Fourier Transform (FFT, under this scheme suffers from low resolution. As a solution, this paper rebuilds the OAM-based radar targets detection model and introduces the multiple signal classification (MUSIC algorithm to improve the resolution for detecting targets within the main lobes. The spatial smoothing technique is proposed to tackle the coherent problem brought by the proposed model. Analytical study and simulation demonstrate the superresolution estimation capacity the MUSIC algorithm can achieve for detecting targets within the main lobes. The performance of the MUSIC algorithm to detect targets not illuminated by the main lobes is further evaluated. Despite the fact that MUSIC algorithm loses the resolution advantage under this case, its estimation is more robust than that of the FFT method. Overall, the proposed MUSIC algorithm for the OAM-based radar system demonstrates the superresolution ability for detecting targets within the main lobes and good robustness for targets out of the main lobes.

  6. Brain Jogging Training to Improve Motivation and Learning Result of Tennis Skills

    Science.gov (United States)

    Tafaqur, M.; Komarudin; Mulyana; Saputra, M. Y.

    2017-03-01

    This research is aimed to determine the effect of brain jogging towards improvement of motivation and learning result of tennis skills. The method used in this research is experimental method. The population of this research is 15 tennis athletes of Core Siliwangi Bandung Tennis Club. The sampling technique used in this research is purposive sampling technique. Sample of this research is the 10 tennis athletes of Core Siliwangi Bandung Tennis Club. Design used for this research is pretest-posttest group design. Data analysis technique used in this research is by doing Instrument T-test to measure motivation using The Sport Motivation Scale questionnaire (SMS-28) and Instrument to measure learning result of tennis skill by using tennis skills test, which include: (1) forehand test, (2) backhand test, and (3) service placement test. The result of this research showed that brain jogging significantly impact the improvement of motivation and learning result of tennis skills.

  7. IMPROVED HYBRID SEGMENTATION OF BRAIN MRI TISSUE AND TUMOR USING STATISTICAL FEATURES

    Directory of Open Access Journals (Sweden)

    S. Allin Christe

    2010-08-01

    Full Text Available Medical image segmentation is the most essential and crucial process in order to facilitate the characterization and visualization of the structure of interest in medical images. Relevant application in neuroradiology is the segmentation of MRI data sets of the human brain into the structure classes gray matter, white matter and cerebrospinal fluid (CSF and tumor. In this paper, brain image segmentation algorithms such as Fuzzy C means (FCM segmentation and Kohonen means(K means segmentation were implemented. In addition to this, new hybrid segmentation technique, namely, Fuzzy Kohonen means of image segmentation based on statistical feature clustering is proposed and implemented along with standard pixel value clustering method. The clustered segmented tissue images are compared with the Ground truth and its performance metric is also found. It is found that the feature based hybrid segmentation gives improved performance metric and improved classification accuracy rather than pixel based segmentation.

  8. Sustained delivery of nicotinamide limits cortical injury and improves functional recovery following traumatic brain injury

    OpenAIRE

    Goffus, Andrea M.; Anderson, Gail D; Hoane, Michael R.

    2010-01-01

    Previously, we have demonstrated that nicotinamide (NAM), a neuroprotective soluble B-group vitamin, improves recovery of function following traumatic brain injury (TBI). However, no prior studies have examined whether NAM is beneficial following continuous infusions over 7 days post-TBI. The purpose of this study was to investigate the preclinical efficacy of NAM treatment as it might be delivered clinically; over several days by slow infusion. Rats were prepared with either unilateral contr...

  9. Sustained Delivery of Nicotinamide Limits Cortical Injury and Improves Functional Recovery Following Traumatic Brain Injury

    OpenAIRE

    Goffus, Andrea M.; Anderson, Gail D; Hoane, Michael R.

    2010-01-01

    Previously, we have demonstrated that nicotinamide (NAM), a neuroprotective soluble B-group vitamin, improves recovery of function following traumatic brain injury (TBI). However, no prior studies have examined whether NAM is beneficial following continuous infusions over 7 days post-TBI. The purpose of this study was to investigate the preclinical efficacy of NAM treatment as it might be delivered clinically; over several days by slow infusion. Rats were prepared with either unilateral contr...

  10. The nuclear receptor PPARγ as a therapeutic target for cerebrovascular and brain dysfunction in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Nektaria Nicolakakis

    2010-05-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are ligand-activated nuclear transcription factors that regulate peripheral lipid and glucose metabolism. Three subtypes make up the PPAR family (α, γ, β/δ, and synthetic ligands for PPARα (fibrates and PPARγ (Thiazolidinediones, TZDs are currently prescribed for the respective management of dyslipidemia and type 2 diabetes. In contrast to the well characterized action of PPARs in the periphery, little was known about the presence or function of these receptors in the brain and cerebral vasculature, until fairly recently. Indeed, research in the last decade has uncovered these receptors in most brain cell types, and has shown that their activation, particularly that of PPARγ, is implicated in normal brain and cerebrovascular physiology, and confers protection under pathological conditions. Notably, accumulating evidence has highlighted the therapeutic potential of PPARγ ligands in the treatment of brain disorders such as Alzheimer’s disease (AD, leading to the testing of the TZDs pioglitazone and rosiglitazone in AD clinical trials. This review will focus on the benefits of PPARγ agonists for vascular, neuronal and glial networks, and assess the value of these compounds as future AD therapeutics in light of evidence from transgenic mouse models and recent clinical trials.

  11. Neural correlates of training-induced improvements of calculation skills in patients with brain lesions.

    Science.gov (United States)

    Claros-Salinas, Dolores; Greitemann, Georg; Hassa, Thomas; Nedelko, Violetta; Steppacher, Inga; Harris, Joseph Allen; Schoenfeld, Mircea Ariel

    2014-01-01

    The loss of calculation skills due to brain lesions leads to a major reduction in the quality of life and is often associated with difficulties of returning to work and a normal life. Very little is known about the neural mechanisms underlying performance improvement due to calculation training during rehabilitation. The current study investigates the neural basis of training-induced changes in patients with acalculia following ischemic stroke or traumatic brain lesions. Functional hemodynamic responses (fMRI) were recorded in seven patients during calculation and perceptual tasks both before and after acalculia training. Despite the heterogeneity of brain lesions associated with acalculia in our patient sample, a common pattern of training-induced changes emerged. Performance improvements were associated with widespread deactivations in the prefrontal cortex. These deactivations were calculation-specific and only observed in patients exhibiting a considerable improvement after training. These findings suggest that the training-induced changes in our patients rely on an increase of frontal processing efficiency.

  12. Candesartan improves ischemia-induced impairment of the blood-brain barrier in vitro.

    Science.gov (United States)

    So, Gohei; Nakagawa, Shinsuke; Morofuji, Yoichi; Hiu, Takeshi; Hayashi, Kentaro; Tanaka, Kunihiko; Suyama, Kazuhiko; Deli, Maria A; Nagata, Izumi; Matsuo, Takayuki; Niwa, Masami

    2015-05-01

    Candesartan has been reported to have a protective effect on cerebral ischemia in vivo and in human ischemic stroke. We studied the direct effects of candesartan on blood-brain barrier (BBB) function with our in vitro monolayer model generated using rat brain capillary endothelial cells (RBECs). The in vitro BBB model was subjected to normoxia or 6-h oxygen glucose deprivation (OGD)/24-h reoxygenation, with or without candesartan. 6-h OGD/24-h reoxygenation decreased transendothelial electrical resistance and increased the endothelial permeability for sodium fluorescein in RBEC monolayers. Candesartan (10 nM) improved RBEC barrier dysfunction induced by 6-h OGD/24-h reoxygenation. Immunostaining and immunoblotting analysis indicated that the effect of candesartan on barrier function under 6-h OGD/24-h reoxygenation was not related to the expression levels of tight junction proteins. However, candesartan affected RBEC morphological changes induced by 6-h OGD/24-h reoxygenation. We analyzed oxidative stress and cell viability using chemical reagents. Candesartan improved cell viability following 6-h OGD/24-h reoxygenation, whereas candesartan had no effect on oxidative stress. These results show that candesartan directly improves cell function and viability of brain capillary endothelial cells under OGD/reoxygenation, suggesting that the protective effects of candesartan on ischemic stroke are related to protection of the BBB.

  13. Reactive oxygen species-activated nanoprodrug of Ibuprofen for targeting traumatic brain injury in mice.

    Directory of Open Access Journals (Sweden)

    Morgan A Clond

    Full Text Available Traumatic brain injury (TBI is an enormous public health problem, with 1.7 million new cases of TBI recorded annually by the Centers for Disease Control. However, TBI has proven to be an extremely challenging condition to treat. Here, we apply a nanoprodrug strategy in a mouse model of TBI. The novel nanoprodrug contains a derivative of the nonsteroidal anti-inflammatory drug (NSAID ibuprofen in an emulsion with the antioxidant α-tocopherol. The ibuprofen derivative, Ibu2TEG, contains a tetra ethylene glycol (TEG spacer consisting of biodegradable ester bonds. The biodegradable ester bonds ensure that the prodrug molecules break down hydrolytically or enzymatically. The drug is labeled with the fluorescent reporter Cy5.5 using nonbiodegradable bonds to 1-octadecanethiol, allowing us to reliably track its accumulation in the brain after TBI. We delivered a moderate injury using a highly reproducible mouse model of closed-skull controlled cortical impact to the parietal region of the cortex, followed by an injection of the nanoprodrug at a dose of 0.2 mg per mouse. The blood brain barrier is known to exhibit increased permeability at the site of injury. We tested for accumulation of the fluorescent drug particles at the site of injury using confocal and bioluminescence imaging of whole brains and brain slices 36 hours after administration. We demonstrated that the drug does accumulate preferentially in the region of injured tissue, likely due to an enhanced permeability and retention (EPR phenomenon. The use of a nanoprodrug approach to deliver therapeutics in TBI represents a promising potential therapeutic modality.

  14. The immunology of traumatic brain injury: a prime target for Alzheimer’s disease prevention

    Directory of Open Access Journals (Sweden)

    Giunta Brian

    2012-08-01

    Full Text Available Abstract A global health problem, traumatic brain injury (TBI is especially prevalent in the current era of ongoing world military conflicts. Its pathological hallmark is one or more primary injury foci, followed by a spread to initially normal brain areas via cascades of inflammatory cytokines and chemokines resulting in an amplification of the original tissue injury by microglia and other central nervous system immune cells. In some cases this may predispose individuals to later development of Alzheimer’s disease (AD. The inflammatory-based progression of TBI has been shown to be active in humans for up to 17 years post TBI. Unfortunately, all neuroprotective drug trials have failed, and specific treatments remain less than efficacious. These poor results might be explained by too much of a scientific focus on neurons without addressing the functions of microglia in the brain, which are at the center of proinflammatory cytokine generation. To address this issue, we provide a survey of the TBI-related brain immunological mechanisms that may promote progression to AD. We discuss these immune and microglia-based inflammatory mechanisms involved in the progression of post-trauma brain damage to AD. Flavonoid-based strategies to oppose the antigen-presenting cell-like inflammatory phenotype of microglia will also be reviewed. The goal is to provide a rationale for investigations of inflammatory response following TBI which may represent a pathological link to AD. In the end, a better understanding of neuroinflammation could open therapeutic avenues for abrogation of secondary cell death and behavioral symptoms that may mediate the progression of TBI to later AD.

  15. Downregulation of GNA13-ERK network in prefrontal cortex of schizophrenia brain identified by combined focused and targeted quantitative proteomics.

    Science.gov (United States)

    Hirayama-Kurogi, Mio; Takizawa, Yohei; Kunii, Yasuto; Matsumoto, Junya; Wada, Akira; Hino, Mizuki; Akatsu, Hiroyasu; Hashizume, Yoshio; Yamamoto, Sakon; Kondo, Takeshi; Ito, Shingo; Tachikawa, Masanori; Niwa, Shin-Ichi; Yabe, Hirooki; Terasaki, Tetsuya; Setou, Mitsutoshi; Ohtsuki, Sumio

    2017-03-31

    Schizophrenia is a disabling mental illness associated with dysfunction of the prefrontal cortex, which affects cognition and emotion. The purpose of the present study was to identify altered molecular networks in the prefrontal cortex of schizophrenia patients by comparing protein expression levels in autopsied brains of patients and controls, using a combination of targeted and focused quantitative proteomics. We selected 125 molecules possibly related to schizophrenia for quantification by knowledge-based targeted proteomics. Among the quantified molecules, GRIK4 and MAO-B were significantly decreased in plasma membrane and cytosolic fractions, respectively, of prefrontal cortex. Focused quantitative proteomics identified 15 increased and 39 decreased proteins. Network analysis identified "GNA13-ERK1-eIF4G2 signaling" as a downregulated network, and proteins involved in this network were significantly decreased. Furthermore, searching downstream of eIF4G2 revealed that eIF4A1/2 and CYFIP1 were decreased, suggesting that downregulation of the network suppresses expression of CYFIP1, which regulates actin remodeling and is involved in axon outgrowth and spine formation. Downregulation of this signaling seems likely to impair axon formation and synapse plasticity of neuronal cells, and could be associated with development of cognitive impairment in the pathology of schizophrenia. The present study compared the proteome of the prefrontal cortex between schizophrenia patients and healthy controls by means of targeted proteomics and global quantitative proteomics. Targeted proteomics revealed that GRIK4 and MAOB were significantly decreased among 125 putatively schizophrenia-related proteins in prefrontal cortex of schizophrenia patients. Global quantitative proteomics identified 54 differentially expressed proteins in schizophrenia brains. The protein profile indicates attenuation of "GNA13-ERK signaling" in schizophrenia brain. In particular, EIF4G2 and CYFIP1

  16. Biomimetic synthesis of proline-derivative templated mesoporous silica for increasing the brain distribution of diazepam and improving the pharmacodynamics of nimesulide.

    Science.gov (United States)

    Li, Heran; Wang, Jianxin; Cong, Jialiang; Wei, Chen; Li, Jing; Liu, Hongzhuo; Li, Sanming; Yang, Mingshi

    2017-11-01

    Herein a new kind of proline-derivative templated mesoporous silica with curved channels (CMS) was biomimetically synthesized and applied as carrier to improve the drug dissolution and bioavailability of hydrophobic diazepam (DZP) and nimesulide (NMS). Drugs can be incorporated into CMS with high efficiency; during this process, they successfully transformed to amorphous phase. As a result, the dissolution rate of DZP and NMS was significantly improved. Biodistribution study confirmed that CMS converted DZP distribution in mice with the tendency of lung targeting and brain targeting. At 45 min postadministration, the concentrations of DZP in plasma, lung and brain were 8.57-fold, 124.94-fold and 19.55-fold higher from 1:3 DZP/CMS sample than that of pure DZP sample, respectively. At 90 min postadministration, the content of DZP in brain was 62.31-fold higher for 1:3 DZP/CMS sample than that of pure DZP. Besides, the anti-inflammatory and analgesic effects of 1:3 NMS/CMS were systematic evaluated using mouse ankle swelling test (MAST), mouse ear swelling test (MEST) and mouse writhing test (MWT). The results indicated that after incorporating into CMS, the therapeutic effects of NMS were obviously improved, and the inhibition rates of 1:3 NMS/CMS in all pharmacodynamics tests varied from 102.2% to 904.3%.

  17. Three-dimensional textural features of conventional MRI improve diagnostic classification of childhood brain tumours.

    Science.gov (United States)

    Fetit, Ahmed E; Novak, Jan; Peet, Andrew C; Arvanitits, Theodoros N

    2015-09-01

    The aim of this study was to assess the efficacy of three-dimensional texture analysis (3D TA) of conventional MR images for the classification of childhood brain tumours in a quantitative manner. The dataset comprised pre-contrast T1 - and T2-weighted MRI series obtained from 48 children diagnosed with brain tumours (medulloblastoma, pilocytic astrocytoma and ependymoma). 3D and 2D TA were carried out on the images using first-, second- and higher order statistical methods. Six supervised classification algorithms were trained with the most influential 3D and 2D textural features, and their performances in the classification of tumour types, using the two feature sets, were compared. Model validation was carried out using the leave-one-out cross-validation (LOOCV) approach, as well as stratified 10-fold cross-validation, in order to provide additional reassurance. McNemar's test was used to test the statistical significance of any improvements demonstrated by 3D-trained classifiers. Supervised learning models trained with 3D textural features showed improved classification performances to those trained with conventional 2D features. For instance, a neural network classifier showed 12% improvement in area under the receiver operator characteristics curve (AUC) and 19% in overall classification accuracy. These improvements were statistically significant for four of the tested classifiers, as per McNemar's tests. This study shows that 3D textural features extracted from conventional T1 - and T2-weighted images can improve the diagnostic classification of childhood brain tumours. Long-term benefits of accurate, yet non-invasive, diagnostic aids include a reduction in surgical procedures, improvement in surgical and therapy planning, and support of discussions with patients' families. It remains necessary, however, to extend the analysis to a multicentre cohort in order to assess the scalability of the techniques used. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Retrieval practice improves memory in survivors of severe traumatic brain injury.

    Science.gov (United States)

    Sumowski, James F; Coyne, Julia; Cohen, Amanda; Deluca, John

    2014-02-01

    To investigate whether retrieval practice (RP) improves delayed recall after short and long delays in survivors of severe traumatic brain injury (TBI) relative to massed restudy (MR) and spaced restudy (SR). 3(learning condition: MR, SR, RP)×2(delayed recall: 30min, 1wk) within-subject experiment. Nonprofit medical rehabilitation research center. Memory-impaired (memory impairment engenders confidence that this strategy would work outside the laboratory to improve memory in real-life settings. Future randomized controlled trials of RP training are needed. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. Exercise Improves Physical Function and Mental Health of Brain Cancer Survivors: Two Exploratory Case Studies.

    Science.gov (United States)

    Levin, Gregory T; Greenwood, Kenneth M; Singh, Favil; Tsoi, Daphne; Newton, Robert U

    2016-06-01

    Background Malignant brain tumors are unpredictable and incurable, with 5-year survival rates less than 30%. The poor prognosis combined with intensive treatment necessitates the inclusion of complementary and supportive therapies that optimize quality of life and reduce treatment-related declines in health. Exercise therapy has been shown to be beneficial in other cancer populations, but no evidence is available for brain cancer survivors. Therefore, we report results from 2 preliminary cases. Methods Two female patients diagnosed with glioblastoma multiforme and oligodendroglioma participated in a structured and supervised 12-week exercise program. The program consisted of two 1-hour resistance and aerobic exercise sessions per week and additional self-managed aerobic sessions. Outcome measures of strength, cardiovascular fitness, and several psychological indicators (depression, anxiety, and quality of life) were recorded at baseline, after 6 weeks and at the conclusion of the intervention. Results Exercise was well tolerated; both participants completed all 24 sessions and the home-based component with no adverse effects. Objective outcome measures displayed positive responses relating to reduced morbidity. Similar positive responses were found for psychological outcomes. Scores on the Hospital Anxiety and Depression Scale showed clinically meaningful improvements in depression and total distress. Conclusion These findings provide initial evidence that, despite the difficulties associated with brain cancer treatment and survivorship, exercise may be safe and beneficial and should be considered in the overall management of patients with brain cancer. © The Author(s) 2015.

  20. Parkinsonian gait improves with bilateral subthalamic nucleus deep brain stimulation during cognitive multi-tasking.

    Science.gov (United States)

    Chenji, Gaurav; Wright, Melissa L; Chou, Kelvin L; Seidler, Rachael D; Patil, Parag G

    2017-05-01

    Gait impairment in Parkinson's disease reduces mobility and increases fall risk, particularly during cognitive multi-tasking. Studies suggest that bilateral subthalamic deep brain stimulation, a common surgical therapy, degrades motor performance under cognitive dual-task conditions, compared to unilateral stimulation. To measure the impact of bilateral versus unilateral subthalamic deep brain stimulation on walking kinematics with and without cognitive dual-tasking. Gait kinematics of seventeen patients with advanced Parkinson's disease who had undergone bilateral subthalamic deep brain stimulation were examined off medication under three stimulation states (bilateral, unilateral left, unilateral right) with and without a cognitive challenge, using an instrumented walkway system. Consistent with earlier studies, gait performance declined for all six measured parameters under cognitive dual-task conditions, independent of stimulation state. However, bilateral stimulation produced greater improvements in step length and double-limb support time than unilateral stimulation, and achieved similar performance for other gait parameters. Contrary to expectations from earlier studies of dual-task motor performance, bilateral subthalamic deep brain stimulation may assist in maintaining temporal and spatial gait performance under cognitive dual-task conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Improving Functional MRI Registration Using Whole-Brain Functional Correlation Tensors.

    Science.gov (United States)

    Zhou, Yujia; Yap, Pew-Thian; Zhang, Han; Zhang, Lichi; Feng, Qianjin; Shen, Dinggang

    2017-09-01

    Population studies of brain function with resting-state functional magnetic resonance imaging (rs-fMRI) largely rely on the accurate inter-subject registration of functional areas. This is typically achieved through registration of the corresponding T1-weighted MR images with more structural details. However, accumulating evidence has suggested that such strategy cannot well-align functional regions which are not necessarily confined by the anatomical boundaries defined by the T1-weighted MR images. To mitigate this problem, various registration algorithms based directly on rs-fMRI data have been developed, most of which have utilized functional connectivity (FC) as features for registration. However, most of the FC-based registration methods usually extract the functional features only from the thin and highly curved cortical grey matter (GM), posing a great challenge in accurately estimating the whole-brain deformation field. In this paper, we demonstrate that the additional useful functional features can be extracted from brain regions beyond the GM, particularly, white-matter (WM) based on rs-fMRI, for improving the overall functional registration. Specifically, we quantify the local anisotropic correlation patterns of the blood oxygenation level-dependent (BOLD) signals, modeled by functional correlation tensors (FCTs), in both GM and WM. Functional registration is then performed based on multiple components of the whole-brain FCTs using a multichannel Large Deformation Diffeomorphic Metric Mapping (mLDDMM) algorithm. Experimental results show that our proposed method achieves superior functional registration performance, compared with other conventional registration methods.

  2. Brain derived neurotrophic factor mediated learning, fear acquisition and extinction as targets for developing novel treatments for anxiety

    Directory of Open Access Journals (Sweden)

    Karina Soares de Oliveira

    Full Text Available ABSTRACT Anxiety and obsessive-compulsive related disorders are highly prevalent and disabling disorders for which there are still treatment gaps to be explored. Fear is a core symptom of these disorders and its learning is highly dependent on the activity of the neurotrophin brain-derived neurotrophic factor (BDNF. Should BDNF-mediated fear learning be considered a target for the development of novel treatments for anxiety and obsessive-compulsive related disorders? We review the evidence that suggests that BDNF expression is necessary for the acquisition of conditioned fear, as well as for the recall of its extinction. We describe the findings related to fear learning and genetic/epigenetic manipulation of Bdnf expression in animals and BDNF allelic variants in humans. Later, we discuss how manipulation of BDNF levels represents a promising potential treatment target that may increase the benefits of therapies that extinguish previously conditioned fear.

  3. Infrared dim-small target tracking via singular value decomposition and improved Kernelized correlation filter

    Science.gov (United States)

    Qian, Kun; Zhou, Huixin; Rong, Shenghui; Wang, Bingjian; Cheng, Kuanhong

    2017-05-01

    Infrared small target tracking plays an important role in applications including military reconnaissance, early warning and terminal guidance. In this paper, an effective algorithm based on the Singular Value Decomposition (SVD) and the improved Kernelized Correlation Filter (KCF) is presented for infrared small target tracking. Firstly, the super performance of the SVD-based algorithm is that it takes advantage of the target's global information and obtains a background estimation of an infrared image. A dim target is enhanced by subtracting the corresponding estimated background with update from the original image. Secondly, the KCF algorithm is combined with Gaussian Curvature Filter (GCF) to eliminate the excursion problem. The GCF technology is adopted to preserve the edge and eliminate the noise of the base sample in the KCF algorithm, helping to calculate the classifier parameter for a small target. At last, the target position is estimated with a response map, which is obtained via the kernelized classifier. Experimental results demonstrate that the presented algorithm performs favorably in terms of efficiency and accuracy, compared with several state-of-the-art algorithms.

  4. Improvement of brain perfusion SPET using iterative reconstruction with scatter and non-uniform attenuation correction

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, T.; Vanninen, E.; Kuikka, J.T. [Kuopio Central Hospital (Finland). Dept. of Clinical Physiology; Koskinen, M.O. [Dept. of Clinical Physiology and Nuclear Medicine, Tampere Univ. Hospital, Tampere (Finland); Alenius, S. [Signal Processing Lab., Tampere Univ. of Technology, Tampere (Finland)

    2000-09-01

    Filtered back-projection (FBP) is generally used as the reconstruction method for single-photon emission tomography although it produces noisy images with apparent streak artefacts. It is possible to improve the image quality by using an algorithm with iterative correction steps. The iterative reconstruction technique also has an additional benefit in that computation of attenuation correction can be included in the process. A commonly used iterative method, maximum-likelihood expectation maximisation (ML-EM), can be accelerated using ordered subsets (OS-EM). We have applied to the OS-EM algorithm a Bayesian one-step late correction method utilising median root prior (MRP). Methodological comparison was performed by means of measurements obtained with a brain perfusion phantom and using patient data. The aim of this work was to quantitate the accuracy of iterative reconstruction with scatter and non-uniform attenuation corrections and post-filtering in SPET brain perfusion imaging. SPET imaging was performed using a triple-head gamma camera with fan-beam collimators. Transmission and emission scans were acquired simultaneously. The brain phantom used was a high-resolution three-dimensional anthropomorphic JB003 phantom. Patient studies were performed in ten chronic pain syndrome patients. The images were reconstructed using conventional FBP and iterative OS-EM and MRP techniques including scatter and nonuniform attenuation corrections. Iterative reconstructions were individually post-filtered. The quantitative results obtained with the brain perfusion phantom were compared with the known actual contrast ratios. The calculated difference from the true values was largest with the FBP method; iteratively reconstructed images proved closer to the reality. Similar findings were obtained in the patient studies. The plain OS-EM method improved the contrast whereas in the case of the MRP technique the improvement in contrast was not so evident with post-filtering. (orig.)

  5. Functional improvement after carotid endarterectomy: demonstrated by gait analysis and acetazolamide stress brain perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Kim, G. E.; Yoo, J. Y.; Kim, D. G.; Moon, D. H. [Asan Medical Center, Seoul (Korea, Republic of)

    2005-07-01

    Scientific documentation of neurologic improvement following carotid endarterectomy (CEA) has not been established. The purpose of this prospective study is to investigate whether CEA performed for the internal carotid artery flow lesion improves gait and cerebrovascular hemodynamic status in patients with gait disturbance. We prospectively performed pre- and postCEA gait analysis and acetazolamide stress brain perfusion SPECT (Acz-SPECT) with Tc-99m ECD in 91 patients (M/F: 81/10, mean age: 64.1 y) who had gait disturbance before receiving CEA. Gait performance was assessed using a Vicon 370 motion analyzer. The gait improvement after CEA was correlated to cerebrovascular hemodynamic change as well as symptom duration. 12 hemiparetic stroke patients (M/F=9/3, mean age: 51 y) who did not receive CEA as a control underwent gait analysis twice in a week interval to evaluate whether repeat testing of gait performance shows learning effect. Of 91 patients, 73 (80%) patients showed gait improvement (change of gait speed > 10%) and 42 (46%) showed marked improvement (change of gait speed > 20%), but no improvement was observed in control group at repeat test. Post-operative cerebrovascular hemodynamic improvement was noted in 49 (54%) of 91 patients. There was marked gait improvement in patients group with cerebrovascular hemodynamic improvement compared to no change group (p<0.05). Marked gait improvement and cerebrovascular hemodynamic improvement were noted in 53% and 61% of the patient who had less than 3 month history of symptom compared to 31% and 24% of the patients who had longer than 3 months, respectively (p<0.05). Marked gait improvement was obtained in patients who had improvement of cerebrovascular hemodynamic status on Acz-SPECT after CEA. These results suggest functional improvement such as gait can result from the improved perfusion of misery perfusion area, which is viable for a longer period compared to literatures previously reported.

  6. Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury

    Science.gov (United States)

    2016-01-01

    limited to the military population, and has become a well-recognized medical problem in contact sports such as football and boxing (McKee, 2009). The...in contact sports , such as football and boxing.4 The majority of TBI victims are young, otherwise healthy adults—in fact, TBI is now recog- nized as a...sequelae of traumatic brain injury: relationship to neurochemical and biomechanical mechanisms. Lab Invest. 74(2):315-42. 15. Prow NA, Irani DN

  7. Complexity and pitfalls of mass spectrometry-based targeted metabolomics in brain research.

    Science.gov (United States)

    Urban, Michael; Enot, David P; Dallmann, Guido; Körner, Lisa; Forcher, Verena; Enoh, Peter; Koal, Therese; Keller, Matthias; Deigner, Hans-Peter

    2010-11-15

    Current quantitative metabolomic research in brain tissue is challenged by several analytical issues. To compare data of metabolite pattern, ratios of individual metabolite concentrations and composed classifiers characterizing a distinct state, standardized workup conditions, and extraction medium are crucial. Differences in physicochemical properties of individual compounds and compound classes such as polarity determine extraction yields and, thus, ratios of compounds with varying properties. Also, variations in suppressive effects related to coextracted matrix components affect standards or references and their concentration-dependent responses.The selection of a common tissue extraction protocol is an ill-posed problem because it can be regarded as a multiple objective decision depending on factors such as sample handling practicability, measurement precision, control of matrix effects, and relevance of the chemical assay. This study systematically evaluates the impact of extraction solvents and the impact of the complex brain tissue on measured metabolite levels, taking into account ionization efficiency as well as challenges encountered in the trace-level quantification of the analytes in brain matrices. In comparison with previous studies that relied on nontargeted platforms, consequently emphasizing the global behavior of the metabolomic fingerprint, here we focus on several series of metabolites spanning over extensive polarity, concentration, and molecular mass ranges. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Neural Stem Cells Secreting Anti-HER2 Antibody Improve Survival in a Preclinical Model of HER2 Overexpressing Breast Cancer Brain Metastases.

    Science.gov (United States)

    Kanojia, Deepak; Balyasnikova, Irina V; Morshed, Ramin A; Frank, Richard T; Yu, Dou; Zhang, Lingjiao; Spencer, Drew A; Kim, Julius W; Han, Yu; Yu, Dihua; Ahmed, Atique U; Aboody, Karen S; Lesniak, Maciej S

    2015-10-01

    The treatment of human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer has been revolutionized by trastuzumab. However, longer survival of these patients now predisposes them to forming HER2 positive brain metastases, as the therapeutic antibodies cannot cross the blood brain barrier. The current oncologic repertoire does not offer a rational, nontoxic targeted therapy for brain metastases. In this study, we used an established human neural stem cell line, HB1.F3 NSCs and generated a stable pool of cells secreting a high amount of functional full-length anti-HER2 antibody, equivalent to trastuzumab. Anti-HER2Ab secreted by the NSCs (HER2Ab-NSCs) specifically binds to HER2 overexpressing human breast cancer cells and inhibits PI3K-Akt signaling. This translates to HER2Ab-NSC inhibition of breast cancer cell growth in vitro. Preclinical in vivo experiments using HER2Ab overexpressing NSCs in a breast cancer brain metastases (BCBM) mouse model demonstrate that intracranial injection of HER2Ab-NSCs significantly improves survival. In effect, these NSCs provide tumor localized production of HER2Ab, minimizing any potential off-target side effects. Our results establish HER2Ab-NSCs as a novel, nontoxic, and rational therapeutic approach for the successful treatment of HER2 overexpressing BCBM, which now warrants further preclinical and clinical investigation. © 2015 AlphaMed Press.

  9. Improving hand hygiene at eight hospitals in the United States by targeting specific causes of noncompliance.

    Science.gov (United States)

    Chassin, Mark R; Mayer, Carrie; Nether, Klaus

    2015-01-01

    Hospitals and infection prevention specialists have attempted to achieve high levels of compliance with hand hygiene protocols for many decades. Despite these efforts, measured performance is disappointingly low. The Joint Commission Center for Transforming Healthcare convened teams of experts in performance improvement and infectious disease from eight hospitals for its hand hygiene quality improvement project, which was conducted from December 2008 through September 2010. Together, they used Lean, Six Sigma, and change management methods to measure the magnitude of hand hygiene noncompliance, assess specific causes of hand hygiene failures, develop and test interventions targeted to specific causes, and sustain improved levels of performance. At baseline, hand hygiene compliance averaged 47.5% across all eight hospitals. Initial data revealed 41 different causes of hand hygiene noncompliance, which were condensed into 24 groups of causes. Key causes varied greatly among the hospitals. Each hospital developed and implemented specific interventions targeted to its most important causes of hand hygiene noncompliance. The improvements were associated with a 70.5% increase in compliance across the eight hospitals from 47.5% to 81.0% ( p sustained for 11 months through the end of the project period. Lean, Six Sigma, and change management tools were used to identify specific causes of hand hygiene noncompliance at individual hospitals and target specific interventions to remedy the most important causes. This approach allowed each hospital to customize its improvement efforts by focusing on the causes most prevalent at its own facility. Such a targeted approach may be more effective, efficient, and sustainable than "one-size-fits-all" strategies.

  10. Overall survival and the response to radiotherapy among molecular subtypes of breast cancer brain metastases treated with targeted therapies.

    Science.gov (United States)

    Miller, Jacob A; Kotecha, Rupesh; Ahluwalia, Manmeet S; Mohammadi, Alireza M; Chao, Samuel T; Barnett, Gene H; Murphy, Erin S; Vogelbaum, Michael A; Angelov, Lilyana; Peereboom, David M; Suh, John H

    2017-06-15

    The current study was conducted to investigate survival and the response to radiotherapy among patients with molecular subtypes of breast cancer brain metastases treated with or without targeted therapies. Patients diagnosed with breast cancer brain metastases at a single tertiary care institution were included. The primary outcome was overall survival, whereas secondary outcomes included the cumulative incidences of distant intracranial failure, local failure, and radiation necrosis. Competing risks regression was used to model secondary outcomes. Within the study period, 547 patients presented with 3224 brain metastases and met inclusion criteria. Among patients with human epidermal growth factor receptor 2 (HER2)-amplified disease, 80% received HER2 antibodies and 38% received HER2/epidermal growth factor receptor tyrosine kinase inhibitors (TKIs). The median survival was significantly shorter in the basal cohort (8.4 months), and progressively increased in the luminal A (12.3 months), HER2-positive (15.4 months), and luminal B (18.8 months) cohorts (Pbrain radiotherapy for salvage. Cancer 2017;123:2283-2293. © 2017 American Cancer Society. © 2017 American Cancer Society.

  11. Ghrelin and the brain-gut axis as a pharmacological target for appetite control.

    Science.gov (United States)

    Seim, Inge; El-Salhy, Magdy; Hausken, Trygve; Gundersen, Doris; Chopin, Lisa

    2012-01-01

    Appetite regulation is highly complex and involves a large number of orexigenic and anorexigenic peptide hormones. These are small, processed, secreted peptides derived from larger prepropeptide precursors. These peptides are important targets for the development of therapeutics for obesity, a global health epidemic. As a case study, we consider the ghrelin axis. The ghrelin axis is likely to be a particularly useful drug target, as it also plays a role in energy homeostasis, adipogenesis, insulin regulation and reward associated with food intake. Ghrelin is the only known circulating gut orexigenic peptide hormone. As it appears to play a role in diet-induced obesity, blocking the action of ghrelin is likely to be effective for treating and preventing obesity. The ghrelin peptide has been targeted using a number of approaches, with ghrelin mirror-image oligonucleotides (Spiegelmers) and immunotherapy showing some promise. The ghrelin receptor, the growth hormone secretagogue receptor, may also provide a useful target and a number of antagonists and inverse agonists have been developed. A particularly promising new target is the enzyme which octanoylates ghrelin, ghrelin O-acyltransferase (GOAT), and drugs that inhibit GOAT are likely to circumvent pharmacological issues associated with approaches that directly target ghrelin or its receptor.

  12. Improved CSF classification and lesion detection in MR brain images with multiple sclerosis

    Science.gov (United States)

    Wolff, Yulian; Miron, Shmuel; Achiron, Anat; Greenspan, Hayit

    2007-03-01

    The study deals with the challenging task of automatic segmentation of MR brain images with multiple sclerosis lesions (MSL). Multi-Channel data is used, including "fast fluid attenuated inversion recovery" (fast FLAIR or FF), and statistical modeling tools are developed, in order to improve cerebrospinal fluid (CSF) classification and to detect MSL. Two new concepts are proposed for use within an EM framework. The first concept is the integration of prior knowledge as it relates to tissue behavior in different MRI modalities, with special attention given to the FF modality. The second concept deals with running the algorithm on a subset of the input that is most likely to be noise- and artifact-free data. This enables a more reliable learning of the Gaussian mixture model (GMM) parameters for brain tissue statistics. The proposed method focuses on the problematic CSF intensity distribution, which is a key to improved overall segmentation and lesion detection. A level-set based active contour stage is performed for lesion delineation, using gradient and shape properties combined with previously learned region intensity statistics. In the proposed scheme there is no need for preregistration of an atlas, a common characteristic in brain segmentation schemes. Experimental results on real data are presented.

  13. Patient-derived xenografts from non-small cell lung cancer brain metastases are valuable translational platforms for the development of personalized targeted therapy.

    Science.gov (United States)

    Lee, Hye Won; Lee, Jung-Il; Lee, Se Jeong; Cho, Hyun Jung; Song, Hye Jin; Jeong, Da Eun; Seo, Yun Jee; Shin, Sang; Joung, Je-Gun; Kwon, Yong-Jun; Choi, Yoon-La; Park, Woong-Yang; Lee, Hyun Moo; Seol, Ho Jun; Shim, Young Mog; Joo, Kyeung Min; Nam, Do-Hyun

    2015-03-01

    The increasing prevalence of distant metastases from non-small cell lung cancer (NSCLC) indicates an urgent need for novel therapeutic modalities. Brain metastasis is particularly common in NSCLC, with severe adverse effects on clinical prognosis. Although the molecular heterogeneity of NSCLC and availability of various targeted agents suggest personalized therapeutic approaches for such brain metastases, further development of appropriate preclinical models is needed to validate the strategies. We established patient-derived xenografts (PDX) using NSCLC brain metastasis surgical samples and elucidated their possible preclinical and clinical implications for personalized treatment. NSCLC brain metastases (n = 34) showed a significantly higher successful PDX establishment rate than primary specimens (n = 64; 74% vs. 23%). PDXs derived from NSCLC brain metastases recapitulated the pathologic, genetic, and functional properties of corresponding parental tumors. Furthermore, tumor spheres established in vitro from the xenografts under serum-free conditions maintained their in vivo brain metastatic potential. Differential phenotypic and molecular responses to 20 targeted agents could subsequently be screened in vitro using these NSCLC PDXs derived from brain metastases. Although PDX establishment from primary NSCLCs was significantly influenced by histologic subtype, clinical aggressiveness, and genetic alteration status, the brain metastases exhibited consistently adequate in vivo tumor take rate and in vitro tumor sphere formation capacity, regardless of clinical and molecular conditions. Therefore, PDXs from NSCLC brain metastases may better represent the heterogeneous advanced NSCLC population and could be utilized as preclinical models to meet unmet clinical needs such as drug screening for personalized treatments. ©2014 American Association for Cancer Research.

  14. Current status of deep brain stimulation for obsessive-compulsive disorder: a clinical review of different targets.

    Science.gov (United States)

    de Koning, Pelle P; Figee, Martijn; van den Munckhof, Pepijn; Schuurman, P Richard; Denys, Damiaan

    2011-08-01

    Obsessive-compulsive disorder (OCD) is a chronic psychiatric disorder that affects 2% of the general population. Despite optimal cognitive-behavioral and pharmacologic therapy, approximately 10% of patients remain treatment resistant. Currently, deep brain stimulation (DBS) is being investigated as an experimental therapy for treatment-refractory OCD. This review focuses on the efficacy and adverse events of all published DBS targets for OCD: anterior limb of the internal capsule, ventral striatum/ventral capsule, nucleus accumbens, nucleus subthalamicus, and inferior thalamic peduncle. Small studies with various designs indicate an overall average Yale-Brown Obsessive Compulsive Scale score decrease ranging from 6.8 to 31 points. The average overall responder rate is ±50%. The frequency of adverse events seems to be limited. Larger prospective studies including neuroimaging are needed to estimate adequately the true potential of DBS in treatment of OCD and to elucidate its underlying mechanism of action and optimal brain target. We conclude that DBS may be a promising and safe therapy for treatment-resistant OCD.

  15. Convection-enhanced delivery of targeted quantum dot-immunoliposome hybrid nanoparticles to intracranial brain tumor models.

    Science.gov (United States)

    Weng, Kevin C; Hashizume, Rintaro; Noble, Charles O; Serwer, Laura P; Drummond, Daryl C; Kirpotin, Dmitri B; Kuwabara, Anne M; Chao, Lucy X; Chen, Fanqing F; James, Charles D; Park, John W

    2013-12-01

    The aim of this work is to evaluate combining targeting strategy and convection-enhanced delivery in brain tumor models by imaging quantum dot-immunoliposome hybrid nanoparticles. An EGF receptor-targeted, quantum dot-immunoliposome hybrid nanoparticle (QD-IL) was synthesized. In vitro uptake was measured by flow cytometry and intracellular localization was imaged by confocal microscopy. In the in vivo study, QD-ILs were delivered to intracranial xenografts via convection-enhanced delivery and fluorescence was monitored noninvasively in real-time. QD-ILs exhibited specific and efficient uptake in vitro and exhibited approximately 1.3- to 5.0-fold higher total fluorescence compared with nontargeted counterpart in intracranial brain tumor xenografts in vivo. QD-ILs serve as an effective imaging agent in vitro and in vivo, and the data suggest that ligand-directed liposomal nanoparticles in conjunction with convection-enhanced delivery may offer therapeutic benefits for glioblastoma treatment as a result of specific and efficient uptake by malignant cells.

  16. Visual attention distracter insertion for improved EEG rapid serial visual presentation (RSVP) target stimuli detection

    Science.gov (United States)

    Khosla, Deepak; Huber, David J.; Martin, Kevin

    2017-05-01

    This paper† describes a technique in which we improve upon the prior performance of the Rapid Serial Visual Presentation (RSVP) EEG paradigm for image classification though the insertion of visual attention distracters and overall sequence reordering based upon the expected ratio of rare to common "events" in the environment and operational context. Inserting distracter images maintains the ratio of common events to rare events at an ideal level, maximizing the rare event detection via P300 EEG response to the RSVP stimuli. The method has two steps: first, we compute the optimal number of distracters needed for an RSVP stimuli based on the desired sequence length and expected number of targets and insert the distracters into the RSVP sequence, and then we reorder the RSVP sequence to maximize P300 detection. We show that by reducing the ratio of target events to nontarget events using this method, we can allow RSVP sequences with more targets without sacrificing area under the ROC curve (azimuth).

  17. Antidepressant-like properties of novel HDAC6-selective inhibitors with improved brain bioavailability.

    Science.gov (United States)

    Jochems, Jeanine; Boulden, Janette; Lee, Bridgin G; Blendy, Julie A; Jarpe, Matthew; Mazitschek, Ralph; Van Duzer, John H; Jones, Simon; Berton, Olivier

    2014-01-01

    HDAC inhibitors have been reported to produce antidepressant and pro-cognitive effects in animal models, however, poor brain bioavailability or lack of isoform selectivity of current probes has limited our understanding of their mode of action. We report the characterization of novel pyrimidine hydroxyl amide small molecule inhibitors of HDAC6, brain bioavailable upon systemic administration. We show that two compounds in this family, ACY-738 and ACY-775, inhibit HDAC6 with low nanomolar potency and a selectivity of 60- to 1500-fold over class I HDACs. In contrast to tubastatin A, a reference HDAC6 inhibitor with similar potency and peripheral activity, but more limited brain bioavailability, ACY-738 and ACY-775 induce dramatic increases in α-tubulin acetylation in brain and stimulate mouse exploratory behaviors in novel, but not familiar environments. Interestingly, despite a lack of detectable effect on histone acetylation, we show that ACY-738 and ACY-775 share the antidepressant-like properties of other HDAC inhibitors, such as SAHA and MS-275, in the tail suspension test and social defeat paradigm. These effects of ACY-738 and ACY-775 are directly attributable to the inhibition of HDAC6 expressed centrally, as they are fully abrogated in mice with a neural-specific loss of function of HDAC6. Furthermore, administered in combination, a behaviorally inactive dose of ACY-738 markedly potentiates the anti-immobility activity of a subactive dose of the selective serotonin reuptake inhibitor citalopram. Our results validate new isoform-selective probes for in vivo pharmacological studies of HDAC6 in the CNS and reinforce the viability of this HDAC isoform as a potential target for antidepressant development.

  18. Cathepsin B is a New Drug Target for Traumatic Brain Injury Therapeutics: Evidence for E64d as a Promising Lead Drug Candidate

    Directory of Open Access Journals (Sweden)

    Gregory eHook

    2015-09-01

    Full Text Available There currently is no therapeutic drug treatment for traumatic brain injury (TBI despite decades of experimental clinical trials. This may be because the mechanistic pathways for improving TBI outcomes have yet to be identified and exploited. As such, there remains a need to seek out new molecular targets and their drug candidates to find new treatments for TBI. This review presents supporting evidence for cathepsin B, a cysteine protease, as a potentially important drug target for TBI. Cathepsin B expression is greatly up-regulated in TBI animal models, as well as in trauma patients. Importantly, knockout of the cathepsin B gene in TBI mice results in substantial improvements of TBI-caused deficits in behavior, pathology, and biomarkers, as well as improvements in related injury models. During the process of TBI-induced injury, cathepsin B likely escapes the lysosome, its normal subcellular location, into the cytoplasm or extracellular matrix (ECM where its unleashed proteolytic power causes destruction via necrotic, apoptotic, autophagic, and activated glia-induced cell death, together with ECM breakdown and inflammation. Significantly, chemical inhibitors of cathepsin B are effective for improving deficits in TBI and related injuries including ischemia, cerebral bleeding, cerebral aneurysm, edema, pain, infection, nephritis, epilepsy, rheumatoid arthritis, pancreatitis, Huntington’s disease, and Alzheimer’s disease. The inhibitor E64d shows prominent efficacy for amelioration of TBI-caused deficits in preclinical models. In clinical trials, E64d has been shown to be safe based on its toxicological profile and, thus, illustrates the compound as an excellent candidate for drug development. These data support the overall conclusion that drug development of cathepsin B inhibitors, with E64d or a novel analog as a lead drug candidate, should be accelerated to improve the outcomes of TBI and related injuries.

  19. Nasal in-situ gels for delivery of rasagiline mesylate: improvement in bioavailability and brain localization.

    Science.gov (United States)

    Ravi, P R; Aditya, N; Patil, S; Cherian, L

    2015-01-01

    Intranasal thermosensitive gel for rasagiline mesylate (RM) was developed for effective treatment of Parkinson's disease. Intranasal gels were prepared by combination of poloxamer 407 and poloxamer 188 (1:1) with mucoadhesive polymers (carbopol 934 P and chitosan). The formulations were evaluated for sol-gel transition temperature, in-vitro drug release and in-vivo mucociliary transit time. Further, optimal intranasal gel formulations were tested for in-vivo pharmacokinetic behavior, nasal toxicity studies and brain uptake studies. It was found that optimal formulations had acceptable gelation temperature (28-33 °C) and adequate in-vitro drug release profile. Pharmacokinetic study in rabbits showed significant (p toxic to rat nasal mucosa. Estimation of RM in rat brain tissue showed significant (p < 0.01) improvement in uptake of RM form intranasal gel formulations than nasal solution.

  20. Genome-wide identification of Bcl11b gene targets reveals role in brain-derived neurotrophic factor signaling.

    Directory of Open Access Journals (Sweden)

    Bin Tang

    Full Text Available B-cell leukemia/lymphoma 11B (Bcl11b is a transcription factor showing predominant expression in the striatum. To date, there are no known gene targets of Bcl11b in the nervous system. Here, we define targets for Bcl11b in striatal cells by performing chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq in combination with genome-wide expression profiling. Transcriptome-wide analysis revealed that 694 genes were significantly altered in striatal cells over-expressing Bcl11b, including genes showing striatal-enriched expression similar to Bcl11b. ChIP-seq analysis demonstrated that Bcl11b bound a mixture of coding and non-coding sequences that were within 10 kb of the transcription start site of an annotated gene. Integrating all ChIP-seq hits with the microarray expression data, 248 direct targets of Bcl11b were identified. Functional analysis on the integrated gene target list identified several zinc-finger encoding genes as Bcl11b targets, and further revealed a significant association of Bcl11b to brain-derived neurotrophic factor/neurotrophin signaling. Analysis of ChIP-seq binding regions revealed significant consensus DNA binding motifs for Bcl11b. These data implicate Bcl11b as a novel regulator of the BDNF signaling pathway, which is disrupted in many neurological disorders. Specific targeting of the Bcl11b-DNA interaction could represent a novel therapeutic approach to lowering BDNF signaling specifically in striatal cells.

  1. Targeting the ecology within: The role of the gut-brain axis and human microbiota in drug addiction.

    Science.gov (United States)

    Skosnik, Patrick D; Cortes-Briones, Jose A

    2016-08-01

    Despite major advances in our understanding of the brain using traditional neuroscience, reliable and efficacious treatments for drug addiction have remained elusive. Hence, the time has come to utilize novel approaches, particularly those drawing upon contemporary advances in fields outside of established neuroscience and psychiatry. Put another way, the time has come for a paradigm shift in the addiction sciences. Apropos, a revolution in the area of human health is underway, which is occurring at the nexus between enteric microbiology and neuroscience. It has become increasingly clear that the human microbiota (the vast ecology of bacteria residing within the human organism), plays an important role in health and disease. This is not surprising, as it has been estimated that bacteria living in the human body (approximately 1kg of mass, roughly equivalent to that of the human brain) outnumber human cells 10 to 1. While advances in the understanding of the role of microbiota in other areas of human health have yielded intriguing results (e.g., Clostridium difficile, irritable bowel syndrome, autism, etc.), to date, no systematic programs of research have examined the role of microbiota in drug addiction. The current hypothesis, therefore, is that gut dysbiosis plays a key role in addictive disorders. In the context of this hypothesis, this paper provides a rationale for future research to target the "gut-brain axis" in addiction. A brief background of the gut-brain axis is provided, along with a series of hypothesis-driven ideas outlining potential treatments for addiction via manipulations of the "ecology within." Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Protecting Neural Structures and Cognitive Function During Prolonged Space Flight by Targeting the Brain Derived Neurotrophic Factor Molecular Network

    Science.gov (United States)

    Schmidt, M. A.; Goodwin, T. J.

    2014-01-01

    Brain derived neurotrophic factor (BDNF) is the main activity-dependent neurotrophin in the human nervous system. BDNF is implicated in production of new neurons from dentate gyrus stem cells (hippocampal neurogenesis), synapse formation, sprouting of new axons, growth of new axons, sprouting of new dendrites, and neuron survival. Alterations in the amount or activity of BDNF can produce significant detrimental changes to cortical function and synaptic transmission in the human brain. This can result in glial and neuronal dysfunction, which may contribute to a range of clinical conditions, spanning a number of learning, behavioral, and neurological disorders. There is an extensive body of work surrounding the BDNF molecular network, including BDNF gene polymorphisms, methylated BDNF gene promoters, multiple gene transcripts, varied BDNF functional proteins, and different BDNF receptors (whose activation differentially drive the neuron to neurogenesis or apoptosis). BDNF is also closely linked to mitochondrial biogenesis through PGC-1alpha, which can influence brain and muscle metabolic efficiency. BDNF AS A HUMAN SPACE FLIGHT COUNTERMEASURE TARGET Earth-based studies reveal that BDNF is negatively impacted by many of the conditions encountered in the space environment, including oxidative stress, radiation, psychological stressors, sleep deprivation, and many others. A growing body of work suggests that the BDNF network is responsive to a range of diet, nutrition, exercise, drug, and other types of influences. This section explores the BDNF network in the context of 1) protecting the brain and nervous system in the space environment, 2) optimizing neurobehavioral performance in space, and 3) reducing the residual effects of space flight on the nervous system on return to Earth

  3. Nurse-coordinated care improves the achievement of LDL cholesterol targets through more intensive medication titration.

    Science.gov (United States)

    Snaterse, Marjolein; Jorstad, Harald T; Heiligenberg, Marlies; Ter Riet, Gerben; Boekholdt, S Matthijs; Scholte Op Reimer, Wilma; Peters, Ron J

    2017-01-01

    Nurse-coordinated care (NCC) improves the achievement of low-density lipoprotein-cholesterol (LDL-C) targets after an acute coronary syndrome (ACS). We hypothesised that NCC improves achievement of LDL-C targets through more intensive medication titration. We used data from Randomised Evaluation of Secondary Prevention by Outpatient Nurse Specialists (RESPONSE), a multicentre randomised trial on the efficacy of NCC in 754 ACS patients. Follow-up data were collected at 6 and 12 months. To enable comparison between the various types and dosages of statins, we used the average lipid-lowering potency (ALLP, % LDL-C lowering) as an indicator of lipid-lowering medication intensity. Most patients in NCC intervention and usual care groups (96%) had started lipid-lowering therapy during the index hospitalisation. At 6 months, titration activities (up or down) were applied in 45% of NCC patients compared with 24% of patients receiving usual care (ptitration activities at 6 months were recorded in 63% and 30% of NCC and usual care patients respectively (ptitration activities in both groups at 12 months (69% vs 43%, ptitration to reach LDL-C targets as compared with usual care alone. Further, merely starting the guideline-recommended dose is insufficient to reach the guideline-recommended LDL-C target level. TC1290 (Netherlands).

  4. Improved prediction of drug-target interactions using regularized least squares integrating with kernel fusion technique

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Ming; Wang, Yanli, E-mail: ywang@ncbi.nlm.nih.gov; Bryant, Stephen H., E-mail: bryant@ncbi.nlm.nih.gov

    2016-02-25

    Identification of drug-target interactions (DTI) is a central task in drug discovery processes. In this work, a simple but effective regularized least squares integrating with nonlinear kernel fusion (RLS-KF) algorithm is proposed to perform DTI predictions. Using benchmark DTI datasets, our proposed algorithm achieves the state-of-the-art results with area under precision–recall curve (AUPR) of 0.915, 0.925, 0.853 and 0.909 for enzymes, ion channels (IC), G protein-coupled receptors (GPCR) and nuclear receptors (NR) based on 10 fold cross-validation. The performance can further be improved by using a recalculated kernel matrix, especially for the small set of nuclear receptors with AUPR of 0.945. Importantly, most of the top ranked interaction predictions can be validated by experimental data reported in the literature, bioassay results in the PubChem BioAssay database, as well as other previous studies. Our analysis suggests that the proposed RLS-KF is helpful for studying DTI, drug repositioning as well as polypharmacology, and may help to accelerate drug discovery by identifying novel drug targets. - Graphical abstract: Flowchart of the proposed RLS-KF algorithm for drug-target interaction predictions. - Highlights: • A nonlinear kernel fusion algorithm is proposed to perform drug-target interaction predictions. • Performance can further be improved by using the recalculated kernel. • Top predictions can be validated by experimental data.

  5. Opening of brain blood barrier induced by red light and central analgesic improvement of cobra neurotoxin.

    Science.gov (United States)

    Ye, Yong; Li, Yue; Fang, Fei

    2014-05-05

    Cobra neurotoxin (NT) has central analgesic effects, but it is difficult to pass through brain blood barrier (BBB). A novel method of red light induction is designed to help NT across BBB, which is based on photosensitizer activation by red light to generate reactive oxygen species (ROS) to open BBB. The effects were evaluated on cell models and animals in vivo with illumination by semiconductor laser at 670nm on photosensitizer pheophorbide isolated from silkworm excrement. Brain microvascular endothelial cells and astrocytes were co-cultured to build up BBB cell model. The radioactivity of (125)I-NT was measured in cells and tissues for NT permeation. Three ways of cranial irradiation, nasal cavity and intravascular irradiation were tested with combined injection of (125)I-NT 20μg/kg and pheophorbide 100μg/kg to rats, and organs of rats were separated and determined the radioactivity. Paw pressure test in rats, hot plate and writhing test in mice were applied to appraise the analgesic effects. NT across BBB cell model increased with time of illumination, and reached stable level after 60min. So did ROS in cells. NT mainly distributed in liver and kidney of rats, significantly increased in brain after illumination, and improved analgesic effects. Excitation of pheophorbide at red light produces ROS to open BBB, help NT enter brain, and enhance its central action. This research provides a new method for drug across BBB to improve its central role. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Using an alumni survey to target improvements in an emergency medicine training programme.

    Science.gov (United States)

    Gaeta, Theodore; Mahalingam, Gowtham; Pyle, Matthew; Dam, Aaron; Visconti, Annette

    2018-03-01

    The Accreditation Council for Graduate Medical Education (ACGME) is the governing body responsible for accrediting graduate medical training programme in the USA. The Emergency Medicine Milestones (EM-Milestones) were developed by the ACGME and American Board of Emergency Medicine as a guide and monitoring tool for the knowledge, skills, abilities and experiences to be acquired during training. Alumni surveys have been reported as a valuable resource for training programme to identify areas for improvement; however, there are few studies regarding programme improvement in emergency medicine. We aimed to use the EM-Milestones, adapted as an alumni self-assessment survey, to identify areas for training programme improvement. This study was conducted at an urban, academic affiliated, community hospital in New York city with an emergency medicine training programme consisting of 30 residents over 3 years. Alumni of our emergency medicine training programme were sent an EM-Milestones-based self-assessment survey. Participants evaluated their ability in each EM-Milestones subcompetency on a Likert scale. Data were analysed using descriptive statistics. Response rate was 74% (69/93). Alumni reported achieving the target performance in 5/6 general competencies, with Systems-Based Practice falling below the target performance. The survey further identified 6/23 subcompetencies (Pharmacotherapy, Ultrasound, Wound Management, Patient Safety, Systems-Based Management and Technology) falling below the target performance level. Alumni self-evaluation of competence using the EM-Milestones provides valuable information concerning confidence to practice independently; these data, coupled with regular milestone evaluation of existing trainees, can identify problem areas and provide a blueprint for targeted programme improvement. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted

  7. The Molecular Mechanisms of Plant-Derived Compounds Targeting Brain Cancer

    Directory of Open Access Journals (Sweden)

    Hueng-Chuen Fan

    2018-01-01

    Full Text Available Glioblastoma multiforme (GBM is one of the most aggressive and malignant forms of brain tumors. Despite recent advances in operative and postoperative treatments, it is almost impossible to perform complete resection of these tumors owing to their invasive and diffuse nature. Several natural plant-derived products, however, have been demonstrated to have promising therapeutic effects, such that they may serve as resources for anticancer drug discovery. The therapeutic effects of one such plant product, n-butylidenephthalide (BP, are wide-ranging in nature, including impacts on cancer cell apoptosis, cell cycle arrest, and cancer cell senescence. The compound also exhibits a relatively high level of penetration through the blood-brain barrier (BBB. Taken together, its actions have been shown to have anti-proliferative, anti-chemoresistance, anti-invasion, anti-migration, and anti-dissemination effects against GBM. In addition, a local drug delivery system for the subcutaneous and intracranial implantation of BP wafers that significantly reduce tumor size in xenograft models, as well as orthotopic and spontaneous brain tumors in animal models, has been developed. Isochaihulactone (ICL, another kind of plant product, possesses a broad spectrum of pharmacological activities, including impacts on cancer cell apoptosis and cell cycle arrest, as well as anti-proliferative and anti-chemoresistance effects. Furthermore, these actions have been specifically shown to have cancer-fighting effects on GBM. In short, the results of various studies reviewed herein have provided substantial evidence indicating that BP and ICH are promising novel anticancer compounds with good potential for clinical applications.

  8. THE SERENDIPITY CASE OF THE PEDUNCULOPONTINE NUCLEUS LOW FREQUENCY BRAIN STIMULATION: CHASING A GAIT RESPONSE, FINDING SLEEP AND COGNITION IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    Alessandro eStefani

    2013-06-01

    Full Text Available Deep brain stimulation (DBS of the subthalamic nucleus (STN is an efficacious therapy for Parkinson’s disease (PD but its effects on non-motor facets may be detrimental. The low-frequency stimulation (LFS of the pedunculopontine nucleus (PPN or the nucleus tegmenti pedunculopontini –PPTg- opened new perspectives. In our hands, PPTg-LFS revealed a modest influence on gait but increased sleep quality and degree of attentiveness. At odds with potential adverse events following STN-DBS, executive functions, under PPTg-ON, ameliorated. A recent study comparing both targets found that only PPTg-LFS improved night-time sleep and daytime sleepiness.Chances are that different neurosurgical groups influence either the PPN sub-portion identified as pars dissipata (more interconnected with GPi/STN or the caudal PPN region known as pars compacta, preferentially targeting intralaminar and associative nucleus of the thalamus. Yet, the wide electrical field delivered affects a plethora of en passant circuits, and a fine distinction on the specific pathways involved is elusive. This review explores our angle of vision, by which PPTg-LFS activates cholinergic and glutamatergic ascending fibres, influencing non motor behaviours.

  9. Earth Science Data and Models for Improved Targeting of Humanitarian Aid

    Science.gov (United States)

    Brown, Molly E.

    2011-01-01

    Humanitarian assistance to developing countries has long focused on countries that have political, economic and strategic interest to the United States. Recent changes in global security concerns have heightened the perception that humanitarian action is becoming increasingly politicized. This is seen to be largely driven by the 'global war on terror' along with a push by donors and the United Nations for closer integration between humanitarian action and diplomatic, military and other spheres of engagement in conflict and crisis-affected states (HPG 2010). As we enter an era of rising commodity prices and increasing uncertainty in global food production due to a changing climate, scientific data and analysis will be increasingly important to improve the targeting of humanitarian assistance. Earth science data enables appropriate humanitarian response to complex food emergencies that arise in regions outside the areas of current strategic and security focus. As the climate changes, new places will become vulnerable to food insecurity and will need emergency assistance. Earth science data and multidisciplinary models will enable an information-based comparison of need that goes beyond strategic and political considerations to identify new hotspots of food insecurity as they emerge. These analyses will improve aid targeting and timeliness while reducing strategic risk by highlighting new regions at risk of crisis in a rapidly changing world. Improved targeting with respect to timing and location could reduce cost while increasing the likelihood that those who need aid get it.

  10. Purinergic System Dysfunction in Mood Disorders: A Key Target for Developing Improved Therapeutics

    Science.gov (United States)

    Ortiz, Robin; Ulrich, Henning; Zarate, Carlos A; Machado-Vieira, Rodrigo

    2014-01-01

    Uric acid and purines (such as adenosine) regulate mood, sleep, activity, appetite, cognition, memory, convulsive threshold, social interaction, drive, and impulsivity. A link between purinergic dysfunction and mood disorders was first proposed a century ago. Interestingly, a recent nationwide population-based study showed elevated risk of gout in subjects with bipolar disorder (BD), and a recent meta-analysis and systematic review of placebo-controlled trials of adjuvant purinergic modulators confirmed their benefits in bipolar mania. Uric acid may modulate energy and activity levels, with higher levels associated with higher energy and BD spectrum. Several recent genetic studies suggest that the purinergic system particularly the modulation of P1 and P2 receptor subtypes—plays a role in mood disorders, lending credence to this model. Nucleotide concentrations can be measured using brain spectroscopy, and ligands for in vivo positron emission tomography (PET) imaging of adenosine (P1) receptors have been developed, thus allowing potential target engagement studies. This review discusses the key role of the purinergic system in the pathophysiology of mood disorders. Focusing on this promising therapeutic target may lead to the development of therapies with antidepressant, mood stabilization, and cognitive effects. PMID:25445063

  11. Dietary docosahexaenoic acid (DHA) as lysophosphatidylcholine, but not as free acid, enriches brain DHA and improves memory in adult mice.

    Science.gov (United States)

    Sugasini, Dhavamani; Thomas, Riya; Yalagala, Poorna C R; Tai, Leon M; Subbaiah, Papasani V

    2017-09-12

    Docosahexaenoic acid (DHA) is uniquely concentrated in the brain, and is essential for its function, but must be mostly acquired from diet. Most of the current supplements of DHA, including fish oil and krill oil, do not significantly increase brain DHA, because they are hydrolyzed to free DHA and are absorbed as triacylglycerol, whereas the transporter at blood brain barrier is specific for phospholipid form of DHA. Here we show that oral administration of DHA to normal adult mice as lysophosphatidylcholine (LPC) (40 mg DHA/kg) for 30 days increased DHA content of the brain by >2-fold. In contrast, the same amount of free DHA did not increase brain DHA, but increased the DHA in adipose tissue and heart. Moreover, LPC-DHA treatment markedly improved the spatial learning and memory, as measured by Morris water maze test, whereas free DHA had no effect. The brain derived neurotrophic factor increased in all brain regions with LPC-DHA, but not with free DHA. These studies show that dietary LPC-DHA efficiently increases brain DHA content and improves brain function in adult mammals, thus providing a novel nutraceutical approach for the prevention and treatment of neurological diseases associated with DHA deficiency, such as Alzheimer's disease.

  12. Videogame-based group therapy to improve self-awareness and social skills after traumatic brain injury

    National Research Council Canada - National Science Library

    Llorens, Roberto; Noé, Enrique; Ferri, Joan; Alcañiz, Mariano

    2015-01-01

    This study determines the feasibility of different approaches to integrative videogame-based group therapy for improving self-awareness, social skills, and behaviors among traumatic brain injury (TBI...

  13. Early Non-anticoagulant Desulfated Heparin After TBI: Reduced Brain Edema and Leukocyte Mobilization is Associated with Improved Watermaze Learning Ability Weeks After Injury.

    Science.gov (United States)

    Nagata, Katsuhiro; Suto, Yujin; Cognetti, John; Browne, Kevin D; Kumasaka, Kenichiro; Johnson, Victoria E; Kaplan, Lewis; Marks, Joshua; Smith, Douglas H; Pascual, Jose L

    2018-01-26

    Unfractionated heparin (UFH) administered immediately after TBI reduces brain leukocyte (LEU) accumulation, and enhances early cognitive recovery, but may increase bleeding after injury. It is unknown how non-anticoagulant heparins such as 2,3-O desulfated heparin (ODSH), impact post-TBI cerebral inflammation and long term recovery. We hypothesized that ODSH after TBI reduces LEU-mediated brain inflammation and improves long term neurological recovery. CD1 male mice (n=66) underwent either TBI (controlled cortical impact; CCI) or sham craniotomy. ODSH [25mg/kg (25ODSH) or 50mg/kg (50ODSH)] or saline was administered for 48h after TBI in 46 animals. At 48h, intravital microscopy visualized rolling LEUs and fluorescent albumin leakage in the pial circulation, and the Garcia Neurological Test (GNT) assessed neurologic function. Brain edema (wet/dry ratio) was evaluated post-mortem. In a separate group of animals (n=20), learning/memory ability (% time swimming in the Probe platform quadrant) was assessed by the Morris Water Maze (MWM) 17 days after TBI. ANOVA with Bonferroni correction determined significance (pLearning/memory ability (% time swimming in target quadrant) was lowest in CCI (5.9±6.4%) and significantly improved in the 25ODSH group (27.5±8.2% p=0.025). ODSH after TBI reduces cerebral LEU recruitment, microvascular permeability and edema. ODSH may also improve acute neurological recovery leading to improved learning/memory ability weeks after injury. 1 STUDY TYPE: Therapeutic Trial.

  14. Development of a Bifunctional Aptamer Targeting the Transferrin Receptor and Epithelial Cell Adhesion Molecule (EpCAM) for the Treatment of Brain Cancer Metastases.

    Science.gov (United States)

    Macdonald, Joanna; Henri, Justin; Goodman, Lynda; Xiang, Dongxi; Duan, Wei; Shigdar, Sarah

    2017-04-19

    The treatment of brain disorders is greatly hindered by the presence of the blood-brain barrier, which restricts the overwhelming majority of small molecules from entering the brain. A novel approach by which to overcome this barrier is to target receptor mediated transport mechanisms present on the endothelial cell membranes. Therefore, we fused an aptamer that binds to epithelial cell adhesion molecule-expressing cancer cells to an aptamer targeting the transferrin receptor. This generated a proof of concept bifunctional aptamer that can overcome the blood-brain barrier and potentially specifically target brain disorders. The initial fusion of the two sequences enhanced the binding affinity of both aptamers while maintaining specificity. Additionally, mutations were introduced into both binding loops to determine their effect on aptamer specificity. The ability of the aptamer to transcytose the blood-brain barrier was then confirmed in vivo following a 1 nmol injection. This study has shown that through the fusion of two aptamer sequences, a bifunctional aptamer can be generated that has the potential to be developed for the specific treatment of brain disorders.

  15. Derivation of injury-responsive dendritic cells for acute brain targeting and therapeutic protein delivery in the stroke-injured rat.

    Directory of Open Access Journals (Sweden)

    Nathan C Manley

    Full Text Available Research with experimental stroke models has identified a wide range of therapeutic proteins that can prevent the brain damage caused by this form of acute neurological injury. Despite this, we do not yet have safe and effective ways to deliver therapeutic proteins to the injured brain, and this remains a major obstacle for clinical translation. Current targeted strategies typically involve invasive neurosurgery, whereas systemic approaches produce the undesirable outcome of non-specific protein delivery to the entire brain, rather than solely to the injury site. As a potential way to address this, we developed a protein delivery system modeled after the endogenous immune cell response to brain injury. Using ex-vivo-engineered dendritic cells (DCs, we find that these cells can transiently home to brain injury in a rat model of stroke with both temporal and spatial selectivity. We present a standardized method to derive injury-responsive DCs from bone marrow and show that injury targeting is dependent on culture conditions that maintain an immature DC phenotype. Further, we find evidence that when loaded with therapeutic cargo, cultured DCs can suppress initial neuron death caused by an ischemic injury. These results demonstrate a non-invasive method to target ischemic brain injury and may ultimately provide a way to selectively deliver therapeutic compounds to the injured brain.

  16. Flashing characters with famous faces improves ERP-based brain-computer interface performance

    Science.gov (United States)

    Kaufmann, T.; Schulz, S. M.; Grünzinger, C.; Kübler, A.

    2011-10-01

    Currently, the event-related potential (ERP)-based spelling device, often referred to as P300-Speller, is the most commonly used brain-computer interface (BCI) for enhancing communication of patients with impaired speech or motor function. Among numerous improvements, a most central feature has received little attention, namely optimizing the stimulus used for eliciting ERPs. Therefore we compared P300-Speller performance with the standard stimulus (flashing characters) against performance with stimuli known for eliciting particularly strong ERPs due to their psychological salience, i.e. flashing familiar faces transparently superimposed on characters. Our results not only indicate remarkably increased ERPs in response to familiar faces but also improved P300-Speller performance due to a significant reduction of stimulus sequences needed for correct character classification. These findings demonstrate a promising new approach for improving the speed and thus fluency of BCI-enhanced communication with the widely used P300-Speller.

  17. SU-E-T-471: Improvement of Gamma Knife Treatment Planning Through Tumor Control Probability for Metastatic Brain Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z [East Carolina University, Greenville, NC (United States); Feng, Y [East Carolina Univ, Rockville, MD (United States); Lo, S [Case Western Reserve University, Cleveland, OH (United States); Grecula, J [Ohio State University, Columbus, OH (United States); Mayr, N; Yuh, W [University of Washington, Seattle, WA (United States)

    2015-06-15

    Purpose: The dose–volume histogram (DVH) has been normally accepted as a tool for treatment plan evaluation. However, spatial information is lacking in DVH. As a supplement to the DVH in three-dimensional treatment planning, the differential DVH (DDVH) provides the spatial variation, the size and magnitude of the different dose regions within a region of interest, which can be incorporated into tumor control probability model. This study was to provide a method in evaluating and improving Gamma Knife treatment planning. Methods: 10 patients with brain metastases from different primary tumors including melanoma (#1,#4,#5, #10), breast cancer (#2), prostate cancer (#3) and lung cancer (#6–9) were analyzed. By using Leksell GammaPlan software, two plans were prepared for each patient. Special attention was given to the DDVHs that were different for different plans and were used for a comparison between two plans. Dose distribution inside target and tumor control probability (TCP) based on DDVH were calculated, where cell density and radiobiological parameters were adopted from literature. The plans were compared based on DVH, DDVH and TCP. Results: Using DVH, the coverage and selectivity were the same between plans for 10 patients. DDVH were different between two plans for each patient. The paired t-test showed no significant difference in TCP between the two plans. For brain metastases from melanoma (#1, #4–5), breast cancer (#2) and lung cancer (#6–8), the difference in TCP was less than 5%. But the difference in TCP was about 6.5% for patient #3 with the metastasis from prostate cancer, 10.1% and 178.7% for two patients (#9–10) with metastasis from lung cancer. Conclusion: Although DVH provides average dose–volume information, DDVH provides differential dose– volume information with respect to different regions inside the tumor. TCP provides radiobiological information and adds additional information on improving treatment planning as well as adaptive

  18. Does non-invasive brain stimulation improve cognition in major depressive disorder? A systematic review.

    Science.gov (United States)

    Tortella, Gabriel; Selingardi, Priscila M L; Moreno, Marina L; Veronezi, Beatriz P; Brunoni, Andre R

    2014-01-01

    Non-invasive brain stimulation (NIBS) techniques, such as repeated transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), have been increasingly used in different contexts to improve cognitive performance and ameliorate depression symptoms. Considering that major depression is usually accompanied by cognitive deficits, NIBS technique could be also helpful to improve cognition in depressed patients. In this systematic review, we researched for articles published in PubMed/MEDLINE from the first date available to June 2014 that assessed cognitive performance in patients with depression before and after NIBS. Out of 191 references, 25 (16 for rTMS and 9 for tDCS) studies matched our eligibility criteria. Non-invasive brain stimulation interventions, such as rTMS and tDCS seem to be a promising tool for cognitive enhancement in MDD, although several issues and biases (e.g., blinding issues, tests without correction for multiple comparisons, placebo effects and exploratory analyses, practice effects) hinder us to conclude that NIBS technique improve cognition in patients with depression. We discussed possible shortcomings of the included studies, such as the use of different depression treatment protocols, the possibility that some findings were false-positive results of the employed cognitive tasks and whether cognition improvement could have been an epiphenomenon secondary to depression improvement. To conclude, whereas these non-pharmacological, non-invasive techniques are particularly appealing for cognitive improvement in depression, further studies are still warranted to disentangle whether NIBS technique induce positive effects on cognition beyond their antidepressant effects.

  19. Combined MRI and MRS improves pre-therapeutic diagnoses of pediatric brain tumors over MRI alone

    Energy Technology Data Exchange (ETDEWEB)

    Shiroishi, Mark S.; Nelson, Marvin D. [Children' s Hospital Los Angeles/Keck School of Medicine of USC, Department of Radiology, Los Angeles, CA (United States); Panigrahy, Ashok [Children' s Hospital Los Angeles/Keck School of Medicine of USC, Department of Radiology, Los Angeles, CA (United States); Children' s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Department of Pediatric Radiology, Pittsburgh, PA (United States); Moore, Kevin R. [Primary Children' s Medical Center, Department of Radiology, Salt Lake City, UT (United States); Gilles, Floyd H. [Children' s Hospital Los Angeles/Keck School of Medicine of USC, Department of Pathology, Los Angeles, CA (United States); Gonzalez-Gomez, Ignacio [All Children' s Hospital, Department of Pathology, St. Petersburg, FL (United States); Blueml, Stefan [Children' s Hospital Los Angeles/Keck School of Medicine of USC, Department of Radiology, Los Angeles, CA (United States); Rudi Schulte Research Institute, Santa Barbara, CA (United States)

    2015-09-15

    The specific goal of this study was to determine whether the inclusion of MRS had a measureable and positive impact on the accuracy of pre-surgical MR examinations of untreated pediatric brain tumors over that of MRI alone in clinical practice. Final imaging reports of 120 pediatric patients with newly detected brain tumors who underwent combined MRI/MRS examinations were retrospectively reviewed. Final pathology was available in all cases. Group A comprised 60 subjects studied between June 2001 and January 2005, when MRS was considered exploratory and radiologists utilized only conventional MRI to arrive at a diagnosis. For group B, comprising 60 subjects studied between January 2005 and March 2008, the radiologists utilized information from both MRI and MRS. Furthermore, radiologists revisited group A (blind review, time lapse >4 years) to determine whether the additional information from MRS would have altered their interpretation. Sixty-three percent of patients in group A were diagnosed correctly, whereas in 10 % the report was partially correct with the final tumor type mentioned (but not mentioned as most likely tumor), while in 27 % of cases the reports were wrong. For group B, the diagnoses were correct in 87 %, partially correct in 5 %, and incorrect in 8 % of the cases, which is a significant improvement (p < 0.005). Re-review of combined MRI and MRS of group A resulted 87 % correct, 7 % partially correct, and 7 % incorrect diagnoses, which is a significant improvement over the original diagnoses (p < 0.05). Adding MRS to conventional MRI significantly improved diagnostic accuracy in preoperative pediatric patients with untreated brain tumors. (orig.)

  20. Improved labeling of subcortical brain structures in atlas-based segmentation of magnetic resonance images.

    Science.gov (United States)

    Yousefi, Siamak; Kehtarnavaz, Nasser; Gholipour, Ali

    2012-07-01

    Precise labeling of subcortical structures plays a key role in functional neurosurgical applications. Labels from an atlas image are propagated to a patient image using atlas-based segmentation. Atlas-based segmentation is highly dependent on the registration framework used to guide the atlas label propagation. This paper focuses on atlas-based segmentation of subcortical brain structures and the effect of different registration methods on the generated subcortical labels. A single-step and three two-step registration methods appearing in the literature based on affine and deformable registration algorithms in the ANTS and FSL algorithms are considered. Experiments are carried out with two atlas databases of IBSR and LPBA40. Six segmentation metrics consisting of Dice overlap, relative volume error, false positive, false negative, surface distance, and spatial extent are used for evaluation. Segmentation results are reported individually and as averages for nine subcortical brain structures. Based on two statistical tests, the results are ranked. In general, among four different registration strategies investigated in this paper, a two-step registration consisting of an initial affine registration followed by a deformable registration applied to subcortical structures provides superior segmentation outcomes. This method can be used to provide an improved labeling of the subcortical brain structures in MRIs for different applications.

  1. Voluntary Exercise Preconditioning Activates Multiple Antiapoptotic Mechanisms and Improves Neurological Recovery after Experimental Traumatic Brain Injury.

    Science.gov (United States)

    Zhao, Zaorui; Sabirzhanov, Boris; Wu, Junfang; Faden, Alan I; Stoica, Bogdan A

    2015-09-01

    Physical activity can attenuate neuronal loss, reduce neuroinflammation, and facilitate recovery after brain injury. However, little is known about the mechanisms of exercise-induced neuroprotection after traumatic brain injury (TBI) or its modulation of post-traumatic neuronal cell death. Voluntary exercise, using a running wheel, was conducted for 4 weeks immediately preceding (preconditioning) moderate-level controlled cortical impact (CCI), a well-established experimental TBI model in mice. Compared to nonexercised controls, exercise preconditioning (pre-exercise) improved recovery of sensorimotor performance in the beam walk task, as well as cognitive/affective functions in the Morris water maze, novel object recognition, and tail-suspension tests. Further, pre-exercise reduced lesion size, attenuated neuronal loss in the hippocampus, cortex, and thalamus, and decreased microglial activation in the cortex. In addition, exercise preconditioning activated the brain-derived neurotrophic factor pathway before trauma and amplified the injury-dependent increase in heat shock protein 70 expression, thus attenuating key apoptotic pathways. The latter include reduction in CCI-induced up-regulation of proapoptotic B-cell lymphoma 2 (Bcl-2)-homology 3-only Bcl-2 family molecules (Bid, Puma), decreased mitochondria permeabilization with attenuated release of cytochrome c and apoptosis-inducing factor (AIF), reduced AIF translocation to the nucleus, and attenuated caspase activation. Given these neuroprotective actions, voluntary physical exercise may serve to limit the consequences of TBI.

  2. Gaussian mixture models and semantic gating improve reconstructions from human brain activity

    Directory of Open Access Journals (Sweden)

    Sanne eSchoenmakers

    2015-01-01

    Full Text Available Better acquisition protocols and analysis techniques are making it possible to use fMRI to obtain highly detailed visualizations of brain processes. In particular we focus on the reconstruction of natural images from BOLD responses in visual cortex. We expand our linear Gaussian framework for percept decoding with Gaussian mixture models to better represent the prior distribution of natural images. Reconstruction of such images then boils down to probabilistic inference in a hybrid Bayesian network. In our set-up, different mixture components correspond to different character categories. Our framework can automatically infer higher-order semantic categories from lower-level brain areas. Furthermore the framework can gate semantic information from higher-order brain areas to enforce the correct category during reconstruction. When categorical information is not available, we show that automatically learned clusters in the data give a similar improvement in reconstruction. The hybrid Bayesian network leads to highly accurate reconstructions in both supervised and unsupervised settings.

  3. Dynamic monitors of brain function: a new target in neurointensive care unit.

    Science.gov (United States)

    Bosco, Enrico; Marton, Elisabetta; Feletti, Alberto; Scarpa, Bruno; Longatti, Pierluigi; Zanatta, Paolo; Giorgi, Emanuele; Sorbara, Carlo

    2011-07-15

    Somatosensory evoked potential (SEP) recordings and continuous electroencephalography (EEG) are important tools with which to predict Glasgow Outcome Scale (GOS) scores. Their combined use may potentially allow for early detection of neurological impairment and more effective treatment of clinical deterioration. We followed up 68 selected comatose patients between 2007 and 2009 who had been admitted to the Neurosurgical Intensive Care Unit of Treviso Hospital after being diagnosed with subarachnoid haemorrhage (51 cases) or intracerebral haemorrhage (17 cases). Quantitative brain function monitoring was carried out using a remote EEG-SEP recording system connected to a small amplification head box with 28 channels and a multimodal stimulator (NEMO; EBNeuro, Italy NeMus 2; EBNeuro S.p.A., Via P. Fanfani 97/A - 50127 Firenze, Italy). For statistical analysis, we fit a binary logistic regression model to estimate the effect of brain function monitoring on the probability of GOS scores equal to 1. We also designed a proportional odds model for GOS scores, depending on amplitude and changes in both SEPs and EEG as well as on the joint effect of other related variables. Both families of models, logistic regression analysis and proportional odds ratios, were fit by using a maximum likelihood test and the partial effect of each variable was assessed by using a likelihood ratio test. Using the logistic regression model, we observed that progressive deterioration on the basis of EEG was associated with an increased risk of dying by almost 24% compared to patients whose condition did not worsen according to EEG. SEP decreases were also significant; for patients with worsening SEPs, the odds of dying increased to approximately 32%. In the proportional odds model, only modifications of Modified Glasgow Coma Scale scores and SEPs during hospitalisation statistically significantly predicted GOS scores. Patients whose SEPs worsened during the last time interval had an

  4. Characterisation, in-vitro and in-vivo evaluation of valproic acid-loaded nanoemulsion for improved brain bioavailability.

    Science.gov (United States)

    Tan, Suk Fei; Kirby, Brian P; Stanslas, Johnson; Basri, Hamidon Bin

    2017-11-01

    This study was aimed to investigate the potential of formulated valproic acid-encapsulated nanoemulsion (VANE) to improve the brain bioavailability of valproic acid (VPA). Valproic acid-encapsulated nanoemulsions were formulated and physically characterised (osmolarity, viscosity, drug content, drug encapsulation efficiency). Further investigations were also conducted to estimate the drug release, cytotoxic profile, in-vitro blood-brain barrier (BBB) permeability, pharmacokinetic parameter and the concentration of VPA and VANE in blood and brain. Physical characterisation confirmed that VANE was suitable for parenteral administration. Formulating VPA into nanoemulsion significantly reduced the cytotoxicity of VPA. In-vitro drug permeation suggested that VANEs crossed the BBB as freely as VPA. Pharmacokinetic parameters of VANE-treated rats in plasma and brain showed F3 VANE had a remarkable improvement in AUC, prolongation of half-life and reduction in clearance compared to VPA. Given the same extent of in-vitro BBB permeation of VPA and VANE, the higher bioavailability of VANE in brain was believed to have due to higher concentration of VANE in blood. The brain bioavailability of VPA was improved by prolonging the half-life of VPA by encapsulating it within the nanoemulsion-T80. Nanoemulsion containing VPA has alleviated the cytotoxic effect of VPA and improved the plasma and brain bioavailability for parenteral delivery of VPA. © 2017 Royal Pharmaceutical Society.

  5. Cognitive Improvement after Mild Traumatic Brain Injury Measured with Functional Neuroimaging during the Acute Period.

    Directory of Open Access Journals (Sweden)

    Glenn R Wylie

    Full Text Available Functional neuroimaging studies in mild traumatic brain injury (mTBI have been largely limited to patients with persistent post-concussive symptoms, utilizing images obtained months to years after the actual head trauma. We sought to distinguish acute and delayed effects of mild traumatic brain injury on working memory functional brain activation patterns < 72 hours after mild traumatic brain injury (mTBI and again one-week later. We hypothesized that clinical and fMRI measures of working memory would be abnormal in symptomatic mTBI patients assessed < 72 hours after injury, with most patients showing clinical recovery (i.e., improvement in these measures within 1 week after the initial assessment. We also hypothesized that increased memory workload at 1 week following injury would expose different cortical activation patterns in mTBI patients with persistent post-concussive symptoms, compared to those with full clinical recovery. We performed a prospective, cohort study of working memory in emergency department patients with isolated head injury and clinical diagnosis of concussion, compared to control subjects (both uninjured volunteers and emergency department patients with extremity injuries and no head trauma. The primary outcome of cognitive recovery was defined as resolution of reported cognitive impairment and quantified by scoring the subject's reported cognitive post-concussive symptoms at 1 week. Secondary outcomes included additional post-concussive symptoms and neurocognitive testing results. We enrolled 46 subjects: 27 with mild TBI and 19 controls. The time of initial neuroimaging was 48 (+22 S.D. hours after injury (time 1. At follow up (8.7, + 1.2 S.D., days after injury, time 2, 18 of mTBI subjects (64% reported moderate to complete cognitive recovery, 8 of whom fully recovered between initial and follow-up imaging. fMRI changes from time 1 to time 2 showed an increase in posterior cingulate activation in the mTBI subjects

  6. A dual functional fluorescent probe for glioma imaging mediated by blood-brain barrier penetration and glioma cell targeting.

    Science.gov (United States)

    Ma, Hongwei; Gao, Zhiyong; Yu, Panfeng; Shen, Shun; Liu, Yongmei; Xu, Bainan

    2014-06-20

    Glioma is a huge threat for human being because it was hard to be completely removed owing to both the infiltrating growth of glioma cells and integrity of blood brain barrier. Thus effectively imaging the glioma cells may pave a way for surgical removing of glioma. In this study, a fluorescent probe, Cy3, was anchored onto the terminal of AS1411, a glioma cell targeting aptamer, and then TGN, a BBB targeting peptide, was conjugated with Cy3-AS1411 through a PEG linker. The production, named AsT, was characterized by gel electrophoresis, (1)H NMR and FTIR. In vitro cellular uptake and glioma spheroid uptake demonstrated the AsT could not only be uptaken by both glioma and endothelial cells, but also penetrate through endothelial cell monolayer and uptake by glioma spheroids. In vivo, AsT could effectively target to glioma with high intensity. In conclusion, AsT could be used as an effective glioma imaging probe. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Perceptions of communicative competence after traumatic brain injury: implications for ecologically-driven intervention targets.

    Science.gov (United States)

    Cannizzaro, Michael; Allen, Elizabeth M; Prelock, Patricia

    2011-12-01

    The present study investigated the relationship between non-verbal behaviours and perceptions of the communication abilities of an individual with anomia secondary to traumatic brain injury (TBI). Thirty-four university students studying Communication Sciences and Disorders were randomly assigned to watch or listen to six short clips of an individual with TBI engaged in conversation. Participants rated the individual on communication parameters from a modified version of the Pragmatic Protocol and four other dependent measures of communicative competence. A significant positive correlation was identified between perceptions of gestures and ratings of overall communicative competence, and between perceptions of hand and arm movements and ratings of overall communicative competence. Participant raters who viewed the individual's movements as inappropriate also rated her overall communication abilities less favourably. This finding highlights individuality in perception of communication competence and the importance of assessing communication partners' perceptions in a client's environment to determine socially relevant treatment goals.

  8. Orexin 1 receptors are a novel target to modulate panic responses and the panic brain network.

    Science.gov (United States)

    Johnson, Philip L; Samuels, Brian C; Fitz, Stephanie D; Federici, Lauren M; Hammes, Nathan; Early, Maureen C; Truitt, William; Lowry, Christopher A; Shekhar, Anantha

    2012-12-05

    Although the hypothalamic orexin system is known to regulate appetitive behaviors and promote wakefulness and arousal (Sakurai, 2007 [56]), this system may also be important in adaptive and pathological anxiety/stress responses (Suzuki et al., 2005 [4]). In a recent study, we demonstrated that CSF orexin levels were significantly higher in patients experiencing panic attacks compared to non-panicking depressed subjects (Johnson et al., 2010 [9]). Furthermore, genetically silencing orexin synthesis or blocking orexin 1 receptors attenuated lactate-induced panic in an animal model of panic disorder. Therefore, in the present study, we tested if orexin (ORX) modulates panic responses and brain pathways activated by two different panicogenic drugs. We conducted a series of pharmacological, behavioral, physiological and immunohistochemical experiments to study the modulation by the orexinergic inputs of anxiety behaviors, autonomic responses, and activation of brain pathways elicited by systemic injections of anxiogenic/panicogenic drugs in rats. We show that systemic injections of two different anxiogenic/panicogenic drugs (FG-7142, an inverse agonist at the benzodiazepine site of the GABA(A) receptor, and caffeine, a nonselective competitive adenosine receptor antagonist) increased c-Fos induction in a specific subset of orexin neurons located in the dorsomedial/perifornical (DMH/PeF) but not the lateral hypothalamus. Pretreating rats with an orexin 1 receptor antagonist attenuated the FG-7142-induced anxiety-like behaviors, increased heart rate, and neuronal activation in key panic pathways, including subregions of the central nucleus of the amygdala, bed nucleus of the stria terminalis, periaqueductal gray and in the rostroventrolateral medulla. Overall, the data here suggest that the ORX neurons in the DMH/PeF region are critical to eliciting coordinated panic responses and that ORX1 receptor antagonists constitute a potential novel treatment strategy for panic and

  9. Brain activation predicts treatment improvement in patients with major depressive disorder.

    LENUS (Irish Health Repository)

    Samson, Andrea C

    2012-02-01

    Major depressive disorder (MDD) is associated with alterations in brain function that might be useful for therapy evaluation. The current study aimed to identify predictors for therapy improvement and to track functional brain changes during therapy. Twenty-one drug-free patients with MDD underwent functional MRI twice during performance of an emotional perception task: once before and once after 4 weeks of antidepressant treatment (mirtazapine or venlafaxine). Twelve healthy controls were investigated once with the same methods. A significant difference between groups was a relative greater activation of the right dorsolateral prefrontal cortex (dlPFC) in the patients vs. controls. Before treatment, patients responding better to pharmacological treatment showed greater activation in the dorsomedial PFC (dmPFC), posterior cingulate cortex (pCC) and superior frontal gyrus (SFG) when viewing of negative emotional pictures was compared with the resting condition. Activations in the caudate nucleus and insula contrasted for emotional compared to neutral stimuli were also associated with successful treatment. Responders had also significantly higher levels of activation, compared to non-responders, in a range of other brain regions. Brain activation related to treatment success might be related to altered self-referential processes and a differential response to external emotional stimuli, suggesting differences in the processing of emotionally salient stimuli between those who are likely to respond to pharmacological treatment and those who will not. The present investigation suggests the pCC, dmPFC, SFG, caudate nucleus and insula may have a key role as a biological marker for treatment response and predictor for therapeutic success.

  10. Valeriana wallichii root extract improves sleep quality and modulates brain monoamine level in rats.

    Science.gov (United States)

    Sahu, Surajit; Ray, Koushik; Yogendra Kumar, M S; Gupta, Shilpa; Kauser, Hina; Kumar, Sanjeev; Mishra, Kshipra; Panjwani, Usha

    2012-07-15

    The present study was performed to investigate the effects of Valeriana wallichi (VW) aqueous root extract on sleep-wake profile and level of brain monoamines on Sprague-Dawley rats. Electrodes and transmitters were implanted to record EEG and EMG in freely moving condition and the changes were recorded telemetrically after oral administration of VW in the doses of 100, 200 and 300 mg/kg body weight. Sleep latency was decreased and duration of non-rapid eye movement (NREM) sleep was increased in a dose dependent manner. A significant decrease of sleep latency and duration of wakefulness were observed with VW at doses of 200 and 300 mg/kg. Duration of NREM sleep as well as duration of total sleep was increased significantly after treatment with VW at the doses of 200 and 300 mg/kg. VW also increased EEG slow wave activity during NREM sleep at the doses of 200 and 300 mg/kg. Level of norepinephrine (NE), dopamine (DA), dihydroxyphenylacetic acid (DOPAC), serotonin (5-HT) and hydroxy indole acetic acid (HIAA) were measured in frontal cortex and brain stem after VW treatment at the dose of 200mg/kg. NE and 5HT level were decreased significantly in both frontal cortex and brain stem. DA and HIAA level significantly decreased only in cortex. DOPAC level was not changed in any brain region studied. In conclusion it can be said that VW water extract has a sleep quality improving effect which may be dependent upon levels of monoamines in cortex and brainstem. Copyright © 2012 Elsevier GmbH. All rights reserved.

  11. Significance of targeted therapy and genetic alterations in EGFR, ALK, or KRAS on survival in patients with non-small cell lung cancer treated with radiotherapy for brain metastases.

    Science.gov (United States)

    Mak, Kimberley S; Gainor, Justin F; Niemierko, Andrzej; Oh, Kevin S; Willers, Henning; Choi, Noah C; Loeffler, Jay S; Sequist, Lecia V; Shaw, Alice T; Shih, Helen A

    2015-02-01

    We determined the impact of genetic alterations in EGFR, ALK, or KRAS on survival after radiotherapy for brain metastases in non-small cell lung cancer (NSCLC). Of 172 genotyped NSCLC patients treated with radiotherapy for brain metastases in 2005-2012, 54 had cancers with EGFR mutations, 12 had ALK rearrangements, 38 had KRAS mutations, and 68 were wild-type (WT). Overall survival (OS) was determined. Median follow-up was 8.6 months. Median OS was 13.6 months for patients with EGFR mutations and 26.3 months for patients with ALK rearrangements, in contrast to 5.7 months for KRAS-mutant patients and 5.5 months for WT patients (P = .001). On multivariate analysis, adjusting for receipt of targeted therapy after cranial radiotherapy, ALK rearrangements were associated with improved OS (HR, 0.31; 95% CI, 0.13-0.74; P = .008). EGFR mutations were not significantly associated with improved OS on multivariate analysis (HR, 0.71; 95% CI, 0.37-1.38; P = .3). KRAS mutations were also not associated with improved OS (HR, 0.93; 95% CI, 0.59-1.47; P = .8). Receipt of targeted therapy after cranial radiotherapy was independently associated with improved OS (HR, 0.30; 95% CI, 0.17-0.54; P genetic alterations in ALK have improved survival outcomes after radiotherapy for brain metastases compared with EGFR, KRAS, or WT. Subsequent receipt of targeted therapy was associated with additional improvement in OS. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Pioneering topological methods for network-based drug-target prediction by exploiting a brain-network self-organization theory.

    Science.gov (United States)

    Durán, Claudio; Daminelli, Simone; Thomas, Josephine M; Haupt, V Joachim; Schroeder, Michael; Cannistraci, Carlo Vittorio

    2017-04-26

    The bipartite network representation of the drug-target interactions (DTIs) in a biosystem enhances understanding of the drugs' multifaceted action modes, suggests therapeutic switching for approved drugs and unveils possible side effects. As experimental testing of DTIs is costly and time-consuming, computational predictors are of great aid. Here, for the first time, state-of-the-art DTI supervised predictors custom-made in network biology were compared-using standard and innovative validation frameworks-with unsupervised pure topological-based models designed for general-purpose link prediction in bipartite networks. Surprisingly, our results show that the bipartite topology alone, if adequately exploited by means of the recently proposed local-community-paradigm (LCP) theory-initially detected in brain-network topological self-organization and afterwards generalized to any complex network-is able to suggest highly reliable predictions, with comparable performance with the state-of-the-art-supervised methods that exploit additional (non-topological, for instance biochemical) DTI knowledge. Furthermore, a detailed analysis of the novel predictions revealed that each class of methods prioritizes distinct true interactions; hence, combining methodologies based on diverse principles represents a promising strategy to improve drug-target discovery. To conclude, this study promotes the power of bio-inspired computing, demonstrating that simple unsupervised rules inspired by principles of topological self-organization and adaptiveness arising during learning in living intelligent systems (like the brain) can efficiently equal perform complicated algorithms based on advanced, supervised and knowledge-based engineering. © The Author 2017. Published by Oxford University Press.

  13. Frontline Science: CXCR7 mediates CD14(+)CD16(+) monocyte transmigration across the blood brain barrier: a potential therapeutic target for NeuroAIDS.

    Science.gov (United States)

    Veenstra, Mike; Williams, Dionna W; Calderon, Tina M; Anastos, Kathryn; Morgello, Susan; Berman, Joan W

    2017-11-01

    CD14(+)CD16(+) monocytes transmigrate into the CNS of HIV-positive people in response to chemokines elevated in the brains of infected individuals, including CXCL12. Entry of these cells leads to viral reservoirs, neuroinflammation, and neuronal damage. These may eventually lead to HIV-associated neurocognitive disorders. Although antiretroviral therapy (ART) has significantly improved the lives of HIV-infected people, the prevalence of cognitive deficits remains unchanged despite ART, still affecting >50% of infected individuals. There are no therapies to reduce these deficits or to prevent CNS entry of CD14(+)CD16(+) monocytes. The goal of this study was to determine whether CXCR7, a receptor for CXCL12, is expressed on CD14(+)CD16(+) monocytes and whether a small molecule CXCR7 antagonist (CCX771) can prevent CD14(+)CD16(+) monocyte transmigration into the CNS. We showed for the first time that CXCR7 is on CD14(+)CD16(+) monocytes and that it may be a therapeutic target to reduce their entry into the brain. We demonstrated that CD14(+)CD16(+) monocytes and not the more abundant CD14(+)CD16(-) monocytes or T cells transmigrate to low homeostatic levels of CXCL12. This may be a result of increased CXCR7 on CD14(+)CD16(+) monocytes. We showed that CCX771 reduced transmigration of CD14(+)CD16(+) monocytes but not of CD14(+)CD16(-) monocytes from uninfected and HIV-infected individuals and that it reduced CXCL12-mediated chemotaxis of CD14(+)CD16(+) monocytes. We propose that CXCR7 is a therapeutic target on CD14(+)CD16(+) monocytes to limit their CNS entry, thereby reducing neuroinflammation, neuronal damage, and HIV-associated neurocognitive disorders. Our data also suggest that CCX771 may reduce CD14(+)CD16(+) monocyte-mediated inflammation in other disorders. © Society for Leukocyte Biology.

  14. Multi-Target Tracking Using an Improved Gaussian Mixture CPHD Filter.

    Science.gov (United States)

    Si, Weijian; Wang, Liwei; Qu, Zhiyu

    2016-11-23

    The cardinalized probability hypothesis density (CPHD) filter is an alternative approximation to the full multi-target Bayesian filter for tracking multiple targets. However, although the joint propagation of the posterior intensity and cardinality distribution in its recursion allows more reliable estimates of the target number than the PHD filter, the CPHD filter suffers from the spooky effect where there exists arbitrary PHD mass shifting in the presence of missed detections. To address this issue in the Gaussian mixture (GM) implementation of the CPHD filter, this paper presents an improved GM-CPHD filter, which incorporates a weight redistribution scheme into the filtering process to modify the updated weights of the Gaussian components when missed detections occur. In addition, an efficient gating strategy that can adaptively adjust the gate sizes according to the number of missed detections of each Gaussian component is also presented to further improve the computational efficiency of the proposed filter. Simulation results demonstrate that the proposed method offers favorable performance in terms of both estimation accuracy and robustness to clutter and detection uncertainty over the existing methods.

  15. Noise reduction improves memory for target language speech in competing native but not foreign language speech.

    Science.gov (United States)

    Ng, Elaine Hoi Ning; Rudner, Mary; Lunner, Thomas; Rönnberg, Jerker

    2015-01-01

    A hearing aid noise reduction (NR) algorithm reduces the adverse effect of competing speech on memory for target speech for individuals with hearing impairment with high working memory capacity. In the present study, we investigated whether the positive effect of NR could be extended to individuals with low working memory capacity, as well as how NR influences recall performance for target native speech when the masker language is non-native. A sentence-final word identification and recall (SWIR) test was administered to 26 experienced hearing aid users. In this test, target spoken native language (Swedish) sentence lists were presented in competing native (Swedish) or foreign (Cantonese) speech with or without binary masking NR algorithm. After each sentence list, free recall of sentence final words was prompted. Working memory capacity was measured using a reading span (RS) test. Recall performance was associated with RS. However, the benefit obtained from NR was not associated with RS. Recall performance was more disrupted by native than foreign speech babble and NR improved recall performance in native but not foreign competing speech. Noise reduction improved memory for speech heard in competing speech for hearing aid users. Memory for native speech was more disrupted by native babble than foreign babble, but the disruptive effect of native speech babble was reduced to that of foreign babble when there was NR.

  16. Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie; Hodge, Bri-Mathias; Lu, Siyuan; Hamann, Hendrik F.; Lehman, Brad; Simmons, Joseph; Campos, Edwin; Banunarayanan, Venkat

    2015-08-05

    Accurate solar power forecasting allows utilities to get the most out of the solar resources on their systems. To truly measure the improvements that any new solar forecasting methods can provide, it is important to first develop (or determine) baseline and target solar forecasting at different spatial and temporal scales. This paper aims to develop baseline and target values for solar forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output. forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output.

  17. Improving cancer therapies by targeting the physical and chemical hallmarks of the tumor microenvironment.

    Science.gov (United States)

    Ivey, Jill W; Bonakdar, Mohammad; Kanitkar, Akanksha; Davalos, Rafael V; Verbridge, Scott S

    2016-09-28

    Tumors are highly heterogeneous at the patient, tissue, cellular, and molecular levels. This multi-scale heterogeneity poses significant challenges for effective therapies, which ideally must not only distinguish between tumorous and healthy tissue, but also fully address the wide variety of tumorous sub-clones. Commonly used therapies either leverage a biological phenotype of cancer cells (e.g. high rate of proliferation) or indiscriminately kill all the cells present in a targeted volume. Tumor microenvironment (TME) targeting represents a promising therapeutic direction, because a number of TME hallmarks are conserved across different tumor types, despite the underlying genetic heterogeneity. Historically, TME targeting has largely focused on the cells that support tumor growth (e.g. vascular endothelial cells). However, by viewing the intrinsic physical and chemical alterations in the TME as additional therapeutic opportunities rather than barriers, a new class of TME-inspired treatments has great promise to complement or replace existing therapeutic strategies. In this review we summarize the physical and chemical hallmarks of the TME, and discuss how these tumor characteristics either currently are, or may ultimately be targeted to improve cancer therapies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Targeting accuracy and closing timeline of the microbubble-enhanced focused ultrasound blood-brain barrier opening in non-human primates

    Science.gov (United States)

    Marquet, Fabrice; Tung, Yao-Sheng; Teichert, Tobias; Wu, Shih-Ying; Wang, Shutao; Downs, Matthew; Ferrera, Vincent P.; Konofagou, Elisa E.

    2012-11-01

    The delivery of drugs to specific neural targets faces two fundamental problems: Most drugs do not cross the blood-brain barrier and those that do spread to all parts of the brain. To date there exists only one non-invasive methodology with the potential to solve these problems: selective blood-brain barrier disruption using micro-bubble enhanced focused ultrasound. We have recently developed a single-element 500 kHz spherical transducer ultrasound setup for use in the non-human primate. Using this system for selective blood-brain barrier disruption is technically no more challenging than positioning a TMS coil, and does not rely on MRI-guided targeting or expensive phased array ultrasound systems. So far, however, the targeting accuracy that can be achieved with this system has not been quantified systematically. Here we tested the accuracy of the system by targeting the caudate nucleus of the basal ganglia in two macaque monkeys. Our results show that average in-plane error of the system is on the order of 2 mm and targeting error in depth, i.e., along the ultrasound path, is even smaller and averaged 1.2 mm. In summary, targeting accuracy of our system is good enough to enable the selective delivery of drugs to specific sub-structures of the basal ganglia.

  19. Targeting the Innate Immune Response to Improve Cardiac Graft Recovery after Heart Transplantation: Implications for the Donation after Cardiac Death

    Directory of Open Access Journals (Sweden)

    Stefano Toldo

    2016-06-01

    Full Text Available Heart transplantation (HTx is the ultimate treatment for end-stage heart failure. The number of patients on waiting lists for heart transplants, however, is much higher than the number of available organs. The shortage of donor hearts is a serious concern since the population affected by heart failure is constantly increasing. Furthermore, the long-term success of HTx poses some challenges despite the improvement in the management of the short-term complications and in the methods to limit graft rejection. Myocardial injury occurs during transplantation. Injury initiated in the donor as result of brain or cardiac death is exacerbated by organ procurement and storage, and is ultimately amplified by reperfusion injury at the time of transplantation. The innate immune system is a mechanism of first-line defense against pathogens and cell injury. Innate immunity is activated during myocardial injury and produces deleterious effects on the heart structure and function. Here, we briefly discuss the role of the innate immunity in the initiation of myocardial injury, with particular focus on the Toll-like receptors and inflammasome, and how to potentially expand the donor population by targeting the innate immune response.

  20. [Improving the quality of cancer pain management in palliative care unit: Targeted clinical audit].

    Science.gov (United States)

    Tricou, Colombe; Ruer, Murielle; Ledoux, Mathilde; Perceau-Chambard, Élise; Decrept, Dorothée; Chabloz, Claire; Filbet, Marilène

    Goal This study aims to assess the quality of the cancer pain management in Palliative care unit. The method used was the targeted clinical audit. The audit grid was built according to the recommendations of the pilot Committee, and tested until the final version with 19 items was obtained. In this retrospective study, 60 consecutive patients were studied on 2 periods of time. The first one (T1) shows the gap between the patient's chart and the expected standard, and proposes corrective measures. The second one (T2) re-assesses, using the same items list, the efficacy of these measures. After the corrective measures, the patients' medical record documentation was significantly improved at T2 for: neuropathic pain assessment improved, from 3% (T1) to 67% (T2) (P<0.001), so did pain assessment during the titration, from 6.7% (T1) to 90% (T2) (P<0.001). The overdoses symptoms assessment improved from 17% at T1 to 93% at T2, (P=0.002) and breakthrough pain evaluation improved from 3% at T1 to 73% at T2, (P<0.001). The pain reassessment after the rescue doses improved from 10% at T1 to 73% at T2 (P<0.001). The other points improved but not significantly. The quality of the pain cancer management was improved during the audit, but some points (patient education and in patient medical record documentation) can be improved. We need to continue to implement the improvement measures in our unit. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  1. Targeting Multiple-Myeloma-Induced Immune Dysfunction to Improve Immunotherapy Outcomes

    Directory of Open Access Journals (Sweden)

    Sergio Rutella

    2012-01-01

    Full Text Available Multiple myeloma (MM is a plasma cell malignancy associated with high levels of monoclonal (M protein in the blood and/or serum. MM can occur de novo or evolve from benign monoclonal gammopathy of undetermined significance (MGUS. Current translational research into MM focuses on the development of combination therapies directed against molecularly defined targets and that are aimed at achieving durable clinical responses. MM cells have a unique ability to evade immunosurveillance through several mechanisms including, among others, expansion of regulatory T cells (Treg, reduced T-cell cytotoxic activity and responsiveness to IL-2, defects in B-cell immunity, and induction of dendritic cell (DC dysfunction. Immune defects could be a major cause of failure of the recent immunotherapy trials in MM. This article summarizes our current knowledge on the molecular determinants of immune evasion in patients with MM and highlights how these pathways can be targeted to improve patients’ clinical outcome.

  2. Microscale sample deposition onto hydrophobic target plates for trace level detection of neuropeptides in brain tissue by MALDI-MS.

    Science.gov (United States)

    Wei, Hui; Dean, Stacey L; Parkin, Mark C; Nolkrantz, Kerstin; O'Callaghan, James P; Kennedy, Robert T

    2005-10-01

    A sample preparation method that combines a modified target plate with a nanoscale reversed-phase column (nanocolumn) was developed for detection of neuropeptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). A gold-coated MALDI plate was modified with an octadecanethiol (ODT) self-assembled monolayer to create a hydrophobic surface that could concentrate peptide samples into a approximately 200-500-microm diameter spot. The spot sizes generated were comparable to those obtained for a substrate patterned with 200-microm hydrophilic spots on a hydrophobic substrate. The sample spots on the ODT-coated plate were 100-fold smaller than those formed on an unmodified gold plate with a 1-microl sample and generated 10 to 50 times higher mass sensitivity for peptide standards by MALDI-TOF MS. When the sample was deposited on an ODT-modified plate from a nanocolumn, the detection limit for peptides was as low as 20 pM for 5-microl samples corresponding to 80 amol deposited. This technique was used to analyze extracts of microwave-fixed tissue from rat brain striatum. Ninety-eight putative peptides were detected including several that had masses matching neuropeptides expected in this brain region such as substance P, rimorphin, and neurotensin. Twenty-three peptides had masses that matched peaks detected by capillary liquid chromatography with electrospray ionization MS. Copyright (c) 2005 John Wiley & Sons, Ltd.

  3. Surface functionalizing of a lipid nanosystem to promote brain targeting: step-by-step design and physico-chemical characterization.

    Science.gov (United States)

    Cózar-Bernal, M J; García-Esteban, E; Sánchez-Soto, P J; Rabasco, A M; González-Rodríguez, M L

    2016-11-01

    The use of lipid nanosystems as drug delivery to the central nervous system may be advantageous over the current strategies. The aim of this study was to develop and characterize functionalized liposomes for treatment of brain diseases. The covalent method of coupling IgG to liposomes via the derivatized lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[4-(p-maleimidophenyl)butyramide](MPB-PE) was investigated. Optimized coupling conditions are shown to result in the efficient conjugation of IgG to liposomes containing low concentrations of MPB-PE (3/1 SH:IgG). The qualitative analysis has shown that after the extrusion process, more homogeneous populations of vesicles have been obtained with a nanometric size suitable to be effective to further anchor the protein. Negative values of zeta potential demonstrate that they are stable systems. Lyophilization was used to maintain the stability of the formulation. These very interesting results encourage further investigations to formulate peptide- and protein-loaded immunoliposomes, making targeting of liposomes as an attractive approach for brain drug delivery.

  4. Differential Expression of FosB Proteins and Potential Target Genes in Select Brain Regions of Addiction and Depression Patients.

    Directory of Open Access Journals (Sweden)

    Paula A Gajewski

    Full Text Available Chronic exposure to stress or drugs of abuse has been linked to altered gene expression throughout the body, and changes in gene expression in discrete brain regions are thought to underlie many psychiatric diseases, including major depressive disorder and drug addiction. Preclinical models of these disorders have provided evidence for mechanisms of this altered gene expression, including transcription factors, but evidence supporting a role for these factors in human patients has been slow to emerge. The transcription factor ΔFosB is induced in the prefrontal cortex (PFC and hippocampus (HPC of rodents in response to stress or cocaine, and its expression in these regions is thought to regulate their "top down" control of reward circuitry, including the nucleus accumbens (NAc. Here, we use biochemistry to examine the expression of the FosB family of transcription factors and their potential gene targets in PFC and HPC postmortem samples from depressed patients and cocaine addicts. We demonstrate that ΔFosB and other FosB isoforms are downregulated in the HPC but not the PFC in the brains of both depressed and addicted individuals. Further, we show that potential ΔFosB transcriptional targets, including GluA2, are also downregulated in the HPC but not PFC of cocaine addicts. Thus, we provide the first evidence of FosB gene expression in human HPC and PFC in these psychiatric disorders, and in light of recent findings demonstrating the critical role of HPC ΔFosB in rodent models of learning and memory, these data suggest that reduced ΔFosB in HPC could potentially underlie cognitive deficits accompanying chronic cocaine abuse or depression.

  5. Preservation of Essential Odor-Guided Behaviors and Odor-Based Reversal Learning after Targeting Adult Brain Serotonin Synthesis.

    Science.gov (United States)

    Carlson, Kaitlin S; Whitney, Meredith S; Gadziola, Marie A; Deneris, Evan S; Wesson, Daniel W

    2016-01-01

    The neurotransmitter serotonin (5-HT) is considered a powerful modulator of sensory system organization and function in a wide range of animals. The olfactory system is innervated by midbrain 5-HT neurons into both its primary and secondary odor-processing stages. Facilitated by this circuitry, 5-HT and its receptors modulate olfactory system function, including odor information input to the olfactory bulb. It is unknown, however, whether the olfactory system requires 5-HT for even its most basic behavioral functions. To address this question, we established a conditional genetic approach to specifically target adult brain tryptophan hydroxylase 2 ( Tph2 ), encoding the rate-limiting enzyme in brain 5-HT synthesis, and nearly eliminate 5-HT from the mouse forebrain. Using this novel model, we investigated the behavior of 5-HT-depleted mice during performance in an olfactory go/no-go task. Surprisingly, the near elimination of 5-HT from the forebrain, including the olfactory bulbs, had no detectable effect on the ability of mice to perform the odor-based task. Tph2 -targeted mice not only were able to learn the task, but also had levels of odor acuity similar to those of control mice when performing coarse odor discrimination. Both groups of mice spent similar amounts of time sampling odors during decision-making. Furthermore, odor reversal learning was identical between 5-HT-depleted and control mice. These results suggest that 5-HT neurotransmission is not necessary for the most essential aspects of olfaction, including odor learning, discrimination, and certain forms of cognitive flexibility.

  6. An Improved Brain-Inspired Emotional Learning Algorithm for Fast Classification

    Directory of Open Access Journals (Sweden)

    Ying Mei

    2017-06-01

    Full Text Available Classification is an important task of machine intelligence in the field of information. The artificial neural network (ANN is widely used for classification. However, the traditional ANN shows slow training speed, and it is hard to meet the real-time requirement for large-scale applications. In this paper, an improved brain-inspired emotional learning (BEL algorithm is proposed for fast classification. The BEL algorithm was put forward to mimic the high speed of the emotional learning mechanism in mammalian brain, which has the superior features of fast learning and low computational complexity. To improve the accuracy of BEL in classification, the genetic algorithm (GA is adopted for optimally tuning the weights and biases of amygdala and orbitofrontal cortex in the BEL neural network. The combinational algorithm named as GA-BEL has been tested on eight University of California at Irvine (UCI datasets and two well-known databases (Japanese Female Facial Expression, Cohn–Kanade. The comparisons of experiments indicate that the proposed GA-BEL is more accurate than the original BEL algorithm, and it is much faster than the traditional algorithm.

  7. Management of acute coronary syndromes at hospital discharge: do targeted educational interventions improve practice quality?

    Science.gov (United States)

    Peterson, Gregory M; Thompson, Angus; Pulver, Lisa K; Robertson, Marion B; Brieger, David; Wai, Angela; Tett, Susan E

    2012-01-01

    Evidence-based guidelines exist for the management of patients with acute coronary syndromes (ACS), yet adherence is suboptimal. The Discharge Management of Acute Coronary Syndrome project used a quality improvement approach, with targeted intervention strategies to optimize: prescription of guideline-recommended medications; education regarding lifestyle modifications, including cardiac rehabilitation (CR); and communication between hospital staff, patients, and general practitioners. Hospitals across Australia participated in a quality improvement cycle of audit, feedback, intervention, and reaudit. Interventions involved educational meetings, academic detailing and point-of-care reminders, and feedback of baseline audit results. Outcome measures included prescription of guideline-recommended medications, referral to CR, and documentation and communication of management plan. At baseline, 49 hospitals recruited 1,545 patients, and postintervention, 45 hospitals remained active in the project and recruited 1,589 patients. Three thousand and thirty-four hospital staff attended group education or academic detailing sessions. Postintervention, there was a significant increase in the prescription of all four guideline-recommended medications (69% vs. 57%; pplans. Targeted educational interventions used as part of a quality improvement cycle can enhance adherence to evidence-based guidelines for the management of patients with ACS. © 2011 National Association for Healthcare Quality.

  8. Neuronal process structure and growth proteins are targets of heavy PTM regulation during brain development

    DEFF Research Database (Denmark)

    Edwards, Alistair V G; Schwämmle, Veit; Larsen, Martin Røssel

    2014-01-01

    to have wide-ranging and substantial effects on cellular function, both as part of signalling network modulation and more directly by modifying the function of key proteins. In this study, we show that PTM regulation is differentially targeted at different areas of the proteome, and that cytoskeletal...... proteins involved in neuronal process extension and maintenance are both more heavily modified and more frequently regulated at a PTM level. This suggests a clear role not only for PTMs in these processes, but possibly also for heavy protein modification in general. BIOLOGICAL SIGNIFICANCE: This study...

  9. Positive correlation between ADAR expression and its targets suggests a complex regulation mediated by RNA editing in the human brain

    Science.gov (United States)

    Liscovitch, Noa; Bazak, Lily; Levanon, Erez Y; Chechik, Gal

    2014-01-01

    A-to-I RNA editing by adenosine deaminases acting on RNA is a post-transcriptional modification that is crucial for normal life and development in vertebrates. RNA editing has been shown to be very abundant in the human transcriptome, specifically at the primate-specific Alu elements. The functional role of this wide-spread effect is still not clear; it is believed that editing of transcripts is a mechanism for their down-regulation via processes such as nuclear retention or RNA degradation. Here we combine 2 neural gene expression datasets with genome-level editing information to examine the relation between the expression of ADAR genes with the expression of their target genes. Specifically, we computed the spatial correlation across structures of post-mortem human brains between ADAR and a large set of targets that were found to be edited in their Alu repeats. Surprisingly, we found that a large fraction of the edited genes are positively correlated with ADAR, opposing the assumption that editing would reduce expression. When considering the correlations between ADAR and its targets over development, 2 gene subsets emerge, positively correlated and negatively correlated with ADAR expression. Specifically, in embryonic time points, ADAR is positively correlated with many genes related to RNA processing and regulation of gene expression. These findings imply that the suggested mechanism of regulation of expression by editing is probably not a global one; ADAR expression does not have a genome wide effect reducing the expression of editing targets. It is possible, however, that RNA editing by ADAR in non-coding regions of the gene might be a part of a more complex expression regulation mechanism. PMID:25692240

  10. Neurologic music therapy improves executive function and emotional adjustment in traumatic brain injury rehabilitation.

    Science.gov (United States)

    Thaut, Michael H; Gardiner, James C; Holmberg, Dawn; Horwitz, Javan; Kent, Luanne; Andrews, Garrett; Donelan, Beth; McIntosh, Gerald R

    2009-07-01

    This study examined the immediate effects of neurologic music therapy (NMT) on cognitive functioning and emotional adjustment with brain-injured persons. Four treatment sessions were held, during which participants were given a pre-test, participated in 30 min of NMT that focused on one aspect of rehabilitation (attention, memory, executive function, or emotional adjustment), which was followed by post-testing. Control participants engaged in a pre-test, 30 min of rest, and then a post-test. Treatment participants showed improvement in executive function and overall emotional adjustment, and lessening of depression, sensation seeking, and anxiety. Control participants improved in emotional adjustment and lessening of hostility, but showed decreases in measures of memory, positive affect, and sensation seeking.

  11. Tailored deep brain stimulation optimization for improved airway protective outcomes in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Michelle S. Troche

    2016-09-01

    Full Text Available There is no consensus regarding the effects of deep brain stimulation (DBS surgery on swallowing outcomes in Parkinson's disease (PD. No prospective studies have compared airway protective outcomes following DBS to the subthalamic nucleus (STN versus globus pallidus interna (GPi. A recent retrospective study described swallowing outcomes pre- and post-STN vs. GPi DBS in a cohort of 34 patients with PD. The results revealed that the patients who received GPi DBS maintained their swallowing function post-DBS, while those in the STN group significantly worsened in swallowing safety. As DBS surgery becomes a common management option in PD it is important to understand the impact of DBS on airway protective outcomes; especially given that aspiration pneumonia is the leading cause of death in this population. We present a case report in which optimizing DBS settings with the goal of improving laryngeal function resulted in immediate improvements to swallowing safety.

  12. Improving working memory performance in