WorldWideScience

Sample records for brain imaging techniques

  1. Image Processing Technique for Brain Abnormality Detection

    Directory of Open Access Journals (Sweden)

    Ashraf Anwar

    2013-02-01

    Full Text Available Medical imaging is expensive and very much sophisticated because of proprietary software and expert personalities. This paper introduces an inexpensive, user friendly general-purpose image processing tool and visualization program specifically designed in MATLAB to detect much of the brain disorders as early as possible. The application provides clinical and quantitative analysis of medical images. Minute structural difference of brain gradually results in major disorders such as schizophrenia, Epilepsy, inherited speech and language disorder, Alzheimer's dementia etc. Here the main focusing is given to diagnose the disease related to the brain and its psychic nature (Alzheimer’s disease.

  2. Brain imaging

    International Nuclear Information System (INIS)

    The techniques of brain imaging and results in perfusion studies and delayed images are outlined. An analysis of the advantages and disadvantages of the brain scan in a variety of common problems is discussed, especially as compared with other available procedures. Both nonneoplastic and neoplastic lesions are considered. (Auth/C.F.)

  3. High Resolution Mri Brain Image Segmentation Technique Using Holder Exponent

    OpenAIRE

    M. Ganesh; Palanisamy, V.

    2012-01-01

    Image segmentation is a technique to locate certain objects or boundaries within an image. Imagesegmentation plays a crucial role in many medical imaging applications. There are many algorithms andtechniques have been developed to solve image segmentation problems. Spectral pattern is not sufficient inhigh resolution image for image segmentation due to variability of spectral and structural information.Thus the spatial pattern or texture techniques are used. Thus the concept of Holder Exponen...

  4. Unsupervised Neural Techniques Applied to MR Brain Image Segmentation

    Directory of Open Access Journals (Sweden)

    A. Ortiz

    2012-01-01

    Full Text Available The primary goal of brain image segmentation is to partition a given brain image into different regions representing anatomical structures. Magnetic resonance image (MRI segmentation is especially interesting, since accurate segmentation in white matter, grey matter and cerebrospinal fluid provides a way to identify many brain disorders such as dementia, schizophrenia or Alzheimer’s disease (AD. Then, image segmentation results in a very interesting tool for neuroanatomical analyses. In this paper we show three alternatives to MR brain image segmentation algorithms, with the Self-Organizing Map (SOM as the core of the algorithms. The procedures devised do not use any a priori knowledge about voxel class assignment, and results in fully-unsupervised methods for MRI segmentation, making it possible to automatically discover different tissue classes. Our algorithm has been tested using the images from the Internet Brain Image Repository (IBSR outperforming existing methods, providing values for the average overlap metric of 0.7 for the white and grey matter and 0.45 for the cerebrospinal fluid. Furthermore, it also provides good results for high-resolution MR images provided by the Nuclear Medicine Service of the “Virgen de las Nieves” Hospital (Granada, Spain.

  5. A technique for the deidentification of structural brain MR images

    DEFF Research Database (Denmark)

    Bischoff-Grethe, Amanda; Ozyurt, I Burak; Busa, Evelina;

    2007-01-01

    Due to the increasing need for subject privacy, the ability to deidentify structural MR images so that they do not provide full facial detail is desirable. A program was developed that uses models of nonbrain structures for removing potentially identifying facial features. When a novel image is...... presented, the optimal linear transform is computed for the input volume (Fischl et al. [2002]: Neuron 33:341-355; Fischl et al. [2004]: Neuroimage 23 (Suppl 1):S69-S84). A brain mask is constructed by forming the union of all voxels with nonzero probability of being brain and then morphologically dilated...... inspection showed none had brain tissue removed. In a detailed analysis of the impact of defacing on skull-stripping, 16 datasets were bias corrected with N3 (Sled et al. [1998]: IEEE Trans Med Imaging 17:87-97), defaced, and then skull-stripped using either a hybrid watershed algorithm (Ségonne et al. [2004...

  6. Visualizing the blind brain: brain imaging of visual field defects from early recovery to rehabilitation techniques

    Directory of Open Access Journals (Sweden)

    Marika eUrbanski

    2014-09-01

    Full Text Available Visual field defects (VFDs are one of the most common consequences observed after brain injury, especially after a stroke in the posterior cerebral artery territory. Less frequently, tumours, traumatic brain injury, brain surgery or demyelination can also determine various visual disabilities, from a decrease in visual acuity to cerebral blindness. VFD is a factor of bad functional prognosis as it compromises many daily life activities (e.g., obstacle avoidance, driving, and reading and therefore the patient’s quality of life. Spontaneous recovery seems to be limited and restricted to the first six months, with the best chance of improvement at one month. The possible mechanisms at work could be partly due to cortical reorganization in the visual areas (plasticity and/or partly to the use of intact alternative visual routes, first identified in animal studies and possibly underlying the phenomenon of blindsight. Despite processes of early recovery, which is rarely complete, and learning of compensatory strategies, the patient’s autonomy may still be compromised at more chronic stages. Therefore, various rehabilitation therapies based on neuroanatomical knowledge have been developed to improve VFDs. These use eye-movement training techniques (e.g., visual search, saccadic eye movements, reading training, visual field restitution (the Vision Restoration Therapy, VRT, or perceptual learning. In this review, we will focus on studies of human adults with acquired VFDs, which have used different imaging techniques (Positron Emission Tomography: PET, Diffusion Tensor Imaging: DTI, functional Magnetic Resonance Imaging: fMRI, MagnetoEncephalography: MEG or neurostimulation techniques (Transcranial Magnetic Stimulation: TMS; transcranial Direct Current Stimulation, tDCS to show brain activations in the course of spontaneous recovery or after specific rehabilitation techniques.

  7. An Improved Image Mining Technique For Brain Tumour Classification Using Efficient Classifier

    CERN Document Server

    Rajendran, P

    2010-01-01

    An improved image mining technique for brain tumor classification using pruned association rule with MARI algorithm is presented in this paper. The method proposed makes use of association rule mining technique to classify the CT scan brain images into three categories namely normal, benign and malign. It combines the low level features extracted from images and high level knowledge from specialists. The developed algorithm can assist the physicians for efficient classification with multiple keywords per image to improve the accuracy. The experimental result on prediagnosed database of brain images showed 96 percent and 93 percent sensitivity and accuracy respectively.

  8. Advanced techniques in magnetic resonance imaging of the brain in children with ADHD

    Energy Technology Data Exchange (ETDEWEB)

    Pastura, Giuseppe, E-mail: giuseppe.pastura@terra.com.b [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Pediatria; Mattos, Paulo [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Psiquiatria; Gasparetto, Emerson Leandro [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Radiologia; Araujo, Alexandra Prufer de Queiroz Campos [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Neuropediatria

    2011-04-15

    Attention deficit hyperactivity disorder (ADHD) affects about 5% of school-aged child. Previous published works using different techniques of magnetic resonance imaging (MRI) have demonstrated that there may be some differences between the brain of people with and without this condition. This review aims at providing neurologists, pediatricians and psychiatrists an update on the differences between the brain of children with and without ADHD using advanced techniques of magnetic resonance imaging such as diffusion tensor imaging, brain volumetry and cortical thickness, spectroscopy and functional MRI. Data was obtained by a comprehensive, non-systematic review of medical literature. The regions with a greater number of abnormalities are splenium of the corpus callosum, cingulated gyrus, caudate nucleus, cerebellum, striatum, frontal and temporal cortices. The brain regions where abnormalities are observed in studies of diffusion tensor, volumetry, spectroscopy and cortical thickness are the same involved in neurobiological theories of ADHD coming from studies with functional magnetic resonance imaging. (author)

  9. Advanced techniques in magnetic resonance imaging of the brain in children with ADHD

    International Nuclear Information System (INIS)

    Attention deficit hyperactivity disorder (ADHD) affects about 5% of school-aged child. Previous published works using different techniques of magnetic resonance imaging (MRI) have demonstrated that there may be some differences between the brain of people with and without this condition. This review aims at providing neurologists, pediatricians and psychiatrists an update on the differences between the brain of children with and without ADHD using advanced techniques of magnetic resonance imaging such as diffusion tensor imaging, brain volumetry and cortical thickness, spectroscopy and functional MRI. Data was obtained by a comprehensive, non-systematic review of medical literature. The regions with a greater number of abnormalities are splenium of the corpus callosum, cingulated gyrus, caudate nucleus, cerebellum, striatum, frontal and temporal cortices. The brain regions where abnormalities are observed in studies of diffusion tensor, volumetry, spectroscopy and cortical thickness are the same involved in neurobiological theories of ADHD coming from studies with functional magnetic resonance imaging. (author)

  10. Brain imaging and brain function

    International Nuclear Information System (INIS)

    This book is a survey of the applications of imaging studies of regional cerebral blood flow and metabolism to the investigation of neurological and psychiatric disorders. Contributors review imaging techniques and strategies for measuring regional cerebral blood flow and metabolism, for mapping functional neural systems, and for imaging normal brain functions. They then examine the applications of brain imaging techniques to the study of such neurological and psychiatric disorders as: cerebral ischemia; convulsive disorders; cerebral tumors; Huntington's disease; Alzheimer's disease; depression and other mood disorders. A state-of-the-art report on magnetic resonance imaging of the brain and central nervous system rounds out the book's coverage

  11. A Review of Fully Automated Techniques for Brain Tumor Detection From MR Images

    Directory of Open Access Journals (Sweden)

    Anjum Hayat Gondal

    2013-02-01

    Full Text Available Radiologists use medical images to diagnose diseases precisely. However, identification of brain tumor from medical images is still a critical and complicated job for a radiologist. Brain tumor identification form magnetic resonance imaging (MRI consists of several stages. Segmentation is known to be an essential step in medical imaging classification and analysis. Performing the brain MR images segmentation manually is a difficult task as there are several challenges associated with it. Radiologist and medical experts spend plenty of time for manually segmenting brain MR images, and this is a non-repeatable task. In view of this, an automatic segmentation of brain MR images is needed to correctly segment White Matter (WM, Gray Matter (GM and Cerebrospinal Fluid (CSF tissues of brain in a shorter span of time. The accurate segmentation is crucial as otherwise the wrong identification of disease can lead to severe consequences. Taking into account the aforesaid challenges, this research is focused towards highlighting the strengths and limitations of the earlier proposed segmentation techniques discussed in the contemporary literature. Besides summarizing the literature, the paper also provides a critical evaluation of the surveyed literature which reveals new facets of research. However, articulating a new technique is beyond the scope of this paper.

  12. Brain imaging and schizophrenia

    International Nuclear Information System (INIS)

    Brain structures and brain function have been investigated by the new brain imaging techniques for more than ten years. In Psychiatry, these techniques could afford a new understanding of mental diseases. In schizophrenic patients, CAT scanner and RMI pointed out statistically significant ventricular enlargments which are presently considered as evidence for abnormalities in brain maturation. Functional imaging techniques reported metabolic dysfunctions in the cortical associative areas which are probably linked to the cognitive features of schizophrenics

  13. A technique for the deidentification of structural brain MR images

    DEFF Research Database (Denmark)

    Bischoff-Grethe, Amanda; Ozyurt, I Burak; Busa, Evelina;

    2007-01-01

    . All voxels outside the mask with a nonzero probability of being a facial feature are set to 0. The algorithm was applied to 342 datasets that included two different T1-weighted pulse sequences and four different diagnoses (depressed, Alzheimer's, and elderly and young control groups). Visual......Due to the increasing need for subject privacy, the ability to deidentify structural MR images so that they do not provide full facial detail is desirable. A program was developed that uses models of nonbrain structures for removing potentially identifying facial features. When a novel image is...

  14. Magnetic resonance imaging acquisition techniques intended to decrease movement artefact in paediatric brain imaging: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Woodfield, Julie [University of Edinburgh, Child Life and Health, Edinburgh (United Kingdom); Kealey, Susan [Western General Hospital, Department of Neuroradiology, Edinburgh (United Kingdom)

    2015-08-15

    Attaining paediatric brain images of diagnostic quality can be difficult because of young age or neurological impairment. The use of anaesthesia to reduce movement in MRI increases clinical risk and cost, while CT, though faster, exposes children to potentially harmful ionising radiation. MRI acquisition techniques that aim to decrease movement artefact may allow diagnostic paediatric brain imaging without sedation or anaesthesia. We conducted a systematic review to establish the evidence base for ultra-fast sequences and sequences using oversampling of k-space in paediatric brain MR imaging. Techniques were assessed for imaging time, occurrence of movement artefact, the need for sedation, and either image quality or diagnostic accuracy. We identified 24 relevant studies. We found that ultra-fast techniques had shorter imaging acquisition times compared to standard MRI. Techniques using oversampling of k-space required equal or longer imaging times than standard MRI. Both ultra-fast sequences and those using oversampling of k-space reduced movement artefact compared with standard MRI in unsedated children. Assessment of overall diagnostic accuracy was difficult because of the heterogeneous patient populations, imaging indications, and reporting methods of the studies. In children with shunt-treated hydrocephalus there is evidence that ultra-fast MRI is sufficient for the assessment of ventricular size. (orig.)

  15. An Improved Technique for Identification and Classification of Brain Disorder from MRI Brain Image

    Directory of Open Access Journals (Sweden)

    Finitha Joseph

    2014-04-01

    Full Text Available Medical image processing is developing recently due to its wide applications. An efficient MRI image segmentation is needed at present. In this paper, MRI brain segmentation is done by Semi supervised learning which does not require pathology modelling and, thus, allows high degree of automation. In abnormality detection, a vector is characterized as anomalous if it does not comply with the probability distribution obtained from normal data. The estimation of the probability density function, however, is usually not feasible due to large data dimensionality. In order to overcome this challenge, we treat every image as a network of locally coherent image partitions (overlapping blocks. We formulate and maximize a strictly concave likelihood function estimating abnormality for each partition and fuse the local estimates into a globally optimal estimate that satisfies the consistency constraints, based on a distributed estimation algorithm. After this features are extracted by Gray-Level Co-occurrence Matrices (GLCM algorithm and those features are given to Particle Spam Optimization (PSO and finally classification is done by using Library Support Vector Machine (LIBSVM.Thus results are evaluated and proved its efficiency using accuracy.

  16. AN IMPROVED TECHNIQUE FOR IDENTIFICATION AND CLASSIFICATION OF BRAIN DISORDER FROM MRI BRAIN IMAGE

    Directory of Open Access Journals (Sweden)

    Finitha Joseph

    2015-11-01

    Full Text Available Medical image processing is developing recently due to its wide applications. An efficient MRI image segmentation is needed at present. In this paper, MRI brain segmentation is done by Semi supervised learning which does not require pathology modelling and, thus, allows high degree of automation. In abnormality detection, a vector is characterized as anomalous if it does not comply with the probability distribution obtained from normal data. The estimation of the probability density function, however, is usually not feasible due to large data dimensionality. In order to overcome this challenge, we treat every image as a network of locally coherent image partitions (overlapping blocks. We formulate and maximize a strictly concave likelihood function estimating abnormality for each partition and fuse the local estimates into a globally optimal estimate that satisfies the consistency constraints, based on a distributed estimation algorithm. After this features are extracted by Gray-Level Co-occurrence Matrices (GLCM algorithm and those features are given to Particle Spam Optimization (PSO and finally classification is done by using Library Support Vector Machine (LIBSVM.Thus results are evaluated and proved its efficiency using accuracy.

  17. Human brain imaging

    International Nuclear Information System (INIS)

    Just as there have been dramatic advances in the molecular biology of the human brain in recent years, there also have been remarkable advances in brain imaging. This paper reports on the development and broad application of microscopic imaging techniques which include the autoradiographic localization of receptors and the measurement of glucose utilization by autoradiography. These approaches provide great sensitivity and excellent anatomical resolution in exploring brain organization and function. The first noninvasive external imaging of receptor distributions in the living human brain was achieved by positron emission tomography (PET) scanning. Developments, techniques and applications continue to progress. Magnetic resonance imaging (MRI) is also becoming important. Its initial clinical applications were in examining the structure and anatomy of the brain. However, more recent uses, such as MRI spectroscopy, indicate the feasibility of exploring biochemical pathways in the brain, the metabolism of drugs in the brain, and also of examining some of these procedures at an anatomical resolution which is substantially greater than that obtainable by PET scanning. The issues will be discussed in greater detail

  18. Inclusion of brain in FDG PET/CT scanning techniques in cancer patients: Does it obviate the need for dedicated brain imaging?

    International Nuclear Information System (INIS)

    Metastases to the brain can affect about 10-20% cancer patients. Rising incidence of brain metastases in recent years is related to improved survival rates as a result of advances in cancer therapy and development of more sensitive diagnostic imaging techniques. In patients with extracranial malignancies detection of brain metastases is very important in deciding further diagnostic procedures, planning therapeutic strategies and also to ascertain prognosis. Computerized tomography (CT) and magnetic resonance imaging (MRI) are the modalities which have been traditionally used to assess metastatic disease to the central nervous system. It is generally accepted that MRI (contrast enhanced) is superior to CT scan (contrast enhanced) in the diagnosis of brain metastases. An inherently better soft tissue contrast resolution, stronger contrast enhancement, lack of bone artifacts and partial volume effects and direct multiplanar imaging enables MRI to pick up smaller sized as well as more number of metastases than a CT scan

  19. Brain imaging in dementia.

    Science.gov (United States)

    Bonifacio, Guendalina; Zamboni, Giovanna

    2016-06-01

    The introduction of MRI and positron emission tomography (PET) brain imaging has contributed significantly to the understanding of different dementia syndromes. Over the past 20 years these imaging techniques have been increasingly used for clinical characterisation and differential diagnosis, and to provide insight into the effects on functional capacity of the brain, patterns of spatial distribution of different dementia syndromes and their natural history and evolution over time. Brain imaging is also increasingly used in clinical trials, as part of inclusion criteria and/or as a surrogate outcome measure. Here we review all the relatively specific findings that can be identified with different MRI and PET techniques in each of the most frequent dementing disorders. PMID:26933232

  20. Detecting brain tumor in computed tomography images using Markov random fields and fuzzy C-means clustering techniques

    International Nuclear Information System (INIS)

    Brain tumors, are an abnormal growth of tissues in the brain. They may arise in people of any age. They must be detected early, diagnosed accurately, monitored carefully, and treated effectively in order to optimize patient outcomes regarding both survival and quality of life. Manual segmentation of brain tumors from CT scan images is a challenging and time consuming task. Size and location accurate detection of brain tumor plays a vital role in the successful diagnosis and treatment of tumors. Brain tumor detection is considered a challenging mission in medical image processing. The aim of this paper is to introduce a scheme for tumor detection in CT scan images using two different techniques Hidden Markov Random Fields (HMRF) and Fuzzy C-means (FCM). The proposed method has been developed in this research in order to construct hybrid method between (HMRF) and threshold. These methods have been applied on 4 different patient data sets. The result of comparison among these methods shows that the proposed method gives good results for brain tissue detection, and is more robust and effective compared with (FCM) techniques

  1. Detecting brain tumor in computed tomography images using Markov random fields and fuzzy C-means clustering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Abdulbaqi, Hayder Saad [School of Physics, Universiti Sains Malaysia, 11700, Penang (Malaysia); Department of Physics, College of Education, University of Al-Qadisiya, Al-Qadisiya (Iraq); Jafri, Mohd Zubir Mat; Omar, Ahmad Fairuz; Mustafa, Iskandar Shahrim Bin [School of Physics, Universiti Sains Malaysia, 11700, Penang (Malaysia); Abood, Loay Kadom [Department of Computer Science, College of Science, University of Baghdad, Baghdad (Iraq)

    2015-04-24

    Brain tumors, are an abnormal growth of tissues in the brain. They may arise in people of any age. They must be detected early, diagnosed accurately, monitored carefully, and treated effectively in order to optimize patient outcomes regarding both survival and quality of life. Manual segmentation of brain tumors from CT scan images is a challenging and time consuming task. Size and location accurate detection of brain tumor plays a vital role in the successful diagnosis and treatment of tumors. Brain tumor detection is considered a challenging mission in medical image processing. The aim of this paper is to introduce a scheme for tumor detection in CT scan images using two different techniques Hidden Markov Random Fields (HMRF) and Fuzzy C-means (FCM). The proposed method has been developed in this research in order to construct hybrid method between (HMRF) and threshold. These methods have been applied on 4 different patient data sets. The result of comparison among these methods shows that the proposed method gives good results for brain tissue detection, and is more robust and effective compared with (FCM) techniques.

  2. THE STUDY OF THE BRAIN IN A PATIENT WITH TYPE 1 DIABETES MELLITUS USING TECHNIQUES OF MAGNETIC RESONANCE IMAGING

    Directory of Open Access Journals (Sweden)

    Yu. G. Samoylova

    2015-12-01

    Full Text Available Type 1 diabetes mellitus (T1DM is now widely distributed worldwide and in theRussian Federation, it is an important medical and social problem in connection with the development of serious, disabling complications. Some of these complications could make changes in the brain which are accompanied by cognitive impairments that decrease quality of life and worsening disease compensation. The diagnosis of these disorders to date, possible by using modern methods of magnetic resonance imaging, which describe not only the morphological changes of the brain, but also the metabolism of nervous tissue. The study of the brain, namely structural and metabolic manifestations of diabetes, is one of the priority problem of modern medical science.The aim of the study was to evaluate dynamics in the different techniques of magnetic resonance imaging in the diagnosis of brain changes in patients with T1DM.Research methods included physical examination, in accordance with the diagnostic algorithm of patients with T1DM, a neurologist consultation, an assessment of cognitive function, analysis of brain changes using standard magnetic resonance imaging and spectroscopy. Statistical processing was performed using software package R-system. This publication presents a clinical case of a patient with T1DM and severe cognitive impairments are associated with changes in the brain, diagnosed using standard magnetic resonance imaging and spectroscopy. The study shows the positive role of correction of carbohydrate metabolism in improving cognitive function in a patient with T1DM.In addition, the process analysis revealed the absence of dynamic changes in the brain of a patient with T1DM according to standard magnetic resonance imaging. This required the use of additional techniques – magnetic resonance spectroscopy, which revealed changes of metabolism in the thalamus N-acetyl aspartate, choline and creatinine.

  3. Brain arteriovenous malformations : from imaging technique improvement toward treatment paradigm shift

    OpenAIRE

    Clarençon, Frédéric

    2014-01-01

    Brain arteriovenous malformations (bAVMs) are aggressive vascular malformations presenting a haemorrhagic complication risk that may lead to severe consequences in terms of morbi-­‐mortality. Available imaging tools poorly help in understanding their angio-­‐architecture. We have developed two imaging tools improving our understanding of the anatomy of these malformations: a semi-­‐automated segmentation algorithm and a convex spherical anamorphosis algorithm. These algorithms have been elabo...

  4. Non-invasive functional brain imaging using combined MEG-fMRI techniques

    International Nuclear Information System (INIS)

    Reconstruction of the distribution of neural activities in the brain from extra-cranial electromagnetic fields (MEG: magnetoencephalography), which is also called the MEG inverse problem, is inherently ill-posed, and can only be solved under certain mathematical and/or physiological assumptions. This paper introduces a method of integrating neuroimaging data obtained from a functional magnetic resonance imaging (fMRI) experiment as well as the anatomical brain structure into the MEG inverse problem to enhance spatial resolution without compromising the excellent temporal resolution of MEG measurements. A 'weighted' minimum-norm estimation framework was used to include fMRI activation maps into the MEG inverse procedure. The proposed method was applied to reconstruct the spatiotemporal dynamics of brain activity during the perception of 3D object structures from 2D motion, and showed promise in improving the spatial and temporal resolution of non-invasive visualizations of human brain activities. (author)

  5. Brain image Compression, a brief survey

    Directory of Open Access Journals (Sweden)

    Saleha Masood

    2013-01-01

    Full Text Available Brain image compression is known as a subfield of image compression. It allows the deep analysis and measurements of brain images in different modes. Brain images are compressed to analyze and diagnose in an effective manner while reducing the image storage space. This survey study describes the different existing techniques regarding brain image compression. The techniques come under different categories. The study also discusses these categories.

  6. Development of an automatic 3D coregistration technique of brain PET and MR images

    International Nuclear Information System (INIS)

    Cross-modality coregistration of positron emission tomography (PET) and magnetic resonance imaging (MR) could enhance the clinical information. In this study we propose a refined technique to improve the robustness of registration, and to implement more realistic visualization of the coregistered images. Using the sinogram of PET emission scan, we extracted the robust head boundary and used boundary-enhanced PET ot coregister PET with MR. The pixels having 10% of maximum pixel value were considered as the boundary of sinogram. Boundary pixel values were exchanged with maximum value of sinogram. One hundred eighty boundary points were extracted at intervals of about 2 degree using simple threshold method from each slice of MR images. Best affined transformation between the two point sets was performed using least square fitting which should minimize the sum of Euclidean distance between the point sets. We reduced calculation time using pre-defined distance map. Finally we developed an automatic coregistration program using this boundary detection and surface matching technique. We designed a new weighted normalization technique to display the coregistered PET and MR images simultaneously. Using our newly developed method, robust extraction of head boundary was possible and spatial registration was successfully performed. Mean displacement error was less than 2.0 mm. In visualization of coregistered images using weighted normalization method, structures shown in MR image could be realistically represented. Our refined technique could practically enhance the performance of automated three dimensional coregistration

  7. Automated brain tumor segmentation in magnetic resonance imaging based on sliding-window technique and symmetry analysis

    Institute of Scientific and Technical Information of China (English)

    Lian Yanyun; Song Zhijian

    2014-01-01

    Background Brain tumor segmentation from magnetic resonance imaging (MRI) is an important step toward surgical planning,treatment planning,monitoring of therapy.However,manual tumor segmentation commonly used in clinic is time-consuming and challenging,and none of the existed automated methods are highly robust,reliable and efficient in clinic application.An accurate and automated tumor segmentation method has been developed for brain tumor segmentation that will provide reproducible and objective results close to manual segmentation results.Methods Based on the symmetry of human brain,we employed sliding-window technique and correlation coefficient to locate the tumor position.At first,the image to be segmented was normalized,rotated,denoised,and bisected.Subsequently,through vertical and horizontal sliding-windows technique in turn,that is,two windows in the left and the right part of brain image moving simultaneously pixel by pixel in two parts of brain image,along with calculating of correlation coefficient of two windows,two windows with minimal correlation coefficient were obtained,and the window with bigger average gray value is the location of tumor and the pixel with biggest gray value is the locating point of tumor.At last,the segmentation threshold was decided by the average gray value of the pixels in the square with center at the locating point and 10 pixels of side length,and threshold segmentation and morphological operations were used to acquire the final tumor region.Results The method was evaluated on 3D FSPGR brain MR images of 10 patients.As a result,the average ratio of correct location was 93.4% for 575 slices containing tumor,the average Dice similarity coefficient was 0.77 for one scan,and the average time spent on one scan was 40 seconds.Conclusions An fully automated,simple and efficient segmentation method for brain tumor is proposed and promising for future clinic use.Correlation coefficient is a new and effective feature for tumor

  8. Quantitative Analysis of Diffusion Weighted MR Images of Brain Tumor Using Signal Intensity Gradient Technique

    Directory of Open Access Journals (Sweden)

    S. S. Shanbhag

    2014-01-01

    Full Text Available The purpose of this study was to evaluate the role of diffusion weighted-magnetic resonance imaging (DW-MRI in the examination and classification of brain tumors, namely, glioma and meningioma. Our hypothesis was that as signal intensity variations on diffusion weighted (DW images depend on histology and cellularity of the tumor, analysing the signal intensity characteristics on DW images may allow differentiating between the tumor types. Towards this end the signal intensity variations on DW images of the entire tumor volume data of 20 subjects with glioma and 12 subjects with meningioma were investigated and quantified using signal intensity gradient (SIG parameter. The relative increase in the SIG values (RSIG for the subjects with glioma and meningioma was in the range of 10.08–28.36 times and 5.60–9.86 times, respectively, compared to their corresponding SIG values on the contralateral hemisphere. The RSIG values were significantly different between the subjects with glioma and meningioma (P<0.01, with no overlap between RSIG values across the two tumors. The results indicate that the quantitative changes in the RSIG values could be applied in the differential diagnosis of glioma and meningioma, and their adoption in clinical diagnosis and treatment could be helpful and informative.

  9. Imaging the Addicted Human Brain

    OpenAIRE

    Fowler, Joanna S.; Volkow, Nora D.; Kassed, Cheryl A; Chang, Linda

    2007-01-01

    Modern imaging techniques enable researchers to observe drug actions and consequences as they occur and persist in the brains of abusing and addicted individuals. This article presents the five most commonly used techniques, explains how each produces images, and describes how researchers interpret them. The authors give examples of key findings illustrating how each technique has extended and deepened our knowledge of the neurobiological bases of drug abuse and addiction, and they address po...

  10. Functional Brain Imaging: A Comprehensive Survey

    CERN Document Server

    Sarraf, Saman

    2016-01-01

    Functional brain imaging allows measuring dynamic functionality in all brain regions. It is broadly used in clinical cognitive neuroscience as, well as in research. It will allow the observation of neural activities in the brain simultaneously. From the beginning when functional brain imaging was initiated by the mapping of brain functions proposed by phrenologists, many scientists were asking why we need to image brain functionality since we have already structural information. Simply, their important question was including a great answer. Functional information of the human brain would definitely complement structural information, helping to have a better understanding of what is happening in the brain. This paper, which could be useful to those who have an interest in functional brain imaging, such as engineers, will present a quick review of modalities used in functional brain imaging. We will concentrate on the most used techniques in functional imaging which are functional magnetic resonance imaging (fM...

  11. Dynamic multi-coil technique (DYNAMITE) shimming for echo-planar imaging of the human brain at 7 Tesla.

    Science.gov (United States)

    Juchem, Christoph; Umesh Rudrapatna, S; Nixon, Terence W; de Graaf, Robin A

    2015-01-15

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large-scale brain connectivity

  12. Future of functional brain imaging

    International Nuclear Information System (INIS)

    To examine the living human brain's sensory, motor and cognitive interactions and to understand how activities in anatomically distinct neural processing regions are orchestrated to perform complex tasks represents a future challenge to neuroscientists. Until recently, functional brain imaging data have been constrained by the severely limited spatial (5-15 mm) and temporal resolution (from a few seconds to minutes) of the nuclear medicine methods, single-photon emission tomography (SPET) and positron emission tomography (PET). The advent of new non-invasive, fast imaging methods - functional magnetic resonance imaging (fMRI), serial X-ray computed tomography ('cine' CT) and magnetoencephalography (MEG) - has created a need for a survey to compare these techniques with conventional SPET and PET. Each technique has unique advantages and simultaneously serious limitations. No method has achieved a clear supremacy in functional brain imaging. (orig.)

  13. Attentional deficit Syndrome in adults: Correlation of clinical findings of imaging using brain SPECT technique

    International Nuclear Information System (INIS)

    The Attention Deficit Syndrome (ADS) in the adult is a clinical entity of difficult diagnosis and with a rewarding improvement of quality of life when this entity is diagnosed and treated successfully. There is an absence of diagnostic tests and therefore there is full justification for research applications for Functional NeuroIMaging techniques in ADS. Objectives We report functional imaging findings by means of HMPAO NeuroSPECT in a group of 23 adult SDA patients. These findings submit diagnostic Neuroimaging functional patterns that are characteristic of adult SDA. Method We report results in a group of 23 adult patients (17 males and 6 females) with clinical diagnosis of SDA. Patients were subjected to NeuroSPECT imaging and 58 Brodmann areas ROIS were analyzed including cortex and subcortical structures. Results Analysis of MAXIMAL perfusion within the Brodmann Area (2.5% higher pixel counts, expressed as % of higher pixel in cortex or cerebellum, whichever was smaller) demonstrates bilateral focal hyperperfusion in areas 9,10, 17,18,22,23,24 and 31 of Brodmann. In the analysis of MINIMAL values (2.5% minimal values within the Brodmann area) there is bilateral focal hypoperfusion in areas 4,11,12,18,19, and 36 and area 20 left. MEAN uptake in these Broadmann areas was diminished in area 24 left and bilateral areas 25. In the subcortical structures there is bilateral thalamic hyperperfusion. Conclusions Our results support the concept of the role of structures outside of the cerebral frontal cortex in the pathogenic of SDA. We refer to areas in the intersection of temporo-occipital lobes and also the parietal lobes. We analyzed the clinical weight of medial frontal hyperperfusion as part of the default mode, and the explanation that this model might have in the variance of neuropsychological performances observed in these patients. Furthermore our findings support also the significance of subcortical structures in the bottom-up regulation. This current report

  14. Novel techniques with multiphoton microscopy: Deep-brain imaging with microprisms, neurometabolism of epilepsy, and counterfeit paper money detection

    Science.gov (United States)

    Chia, Thomas H.

    Multiphoton microscopy is a laser-scanning fluorescence imaging method with extraordinary potential. We describe three innovative multiphoton microscopy techniques across various disciplines. Traditional in vivo fluorescence microscopy of the mammalian brain has a limited penetration depth (counterfeit paper money because of its significant differences in fluorescence lifetime when compared to genuine paper money. We used scanning multiphoton laser excitation to sample a ˜4 mm2 region from 54 genuine Reserve Notes. Three types of counterfeit samples were tested. Four out of the nine counterfeit samples fit to a one-component decay. Five out of nine counterfeit samples fit to a two-component model, but are identified as counterfeit due to significant deviations in the longer lifetime component compared to genuine bills.

  15. Dynamic Multi-Coil Technique (DYNAMITE) Shimming for Echo-Planar Imaging of the Human Brain at 7 Tesla

    OpenAIRE

    Juchem, Christoph; Rudrapatna, S. Umesh; Nixon, Terence W.; de Graaf, Robin A.

    2014-01-01

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong ...

  16. Future perspectives in imaging human brain function: A theoretical analysis of techniques that could be used to image neuronal firing in the human brain

    International Nuclear Information System (INIS)

    There have been enormous advances in the applications of computerised tomography since its inception just over a decade ago, and, as may be seen in many of the other presentations in this symposium, imaging techniques such as PET and NMR can be used to give three dimensional images of various types of metabolic activity. However, attempts to use these techniques to produce images of neuronal functional activity in the sense of neuronal discharge rate have proved to be more difficult, largely because the only parameters that can be measured at present are metabolic, and these have an uncertain relation to the underlying neuronal electrical activity. There appears to be a linear relationship between metabolic activity and the rate of neuronal discharge for lower rates of discharge but it is non-linear over the whole range, and only applies to the steady state. For clinical and neurophysiological applications, it would be very useful to have an imaging device that could produce images of neuronal electrical activity directly, with a high temporal resolution of the order of the action potential, so that individual spikes could be distinguished. This paper is a summary of recent theoretical work which represents an attempt to determine whether such a device could be constructed in the forseeable future. The results are based on an extensive review of the literature and recalculation of data where appropriate. The conclusions are, perhaps surprisingly, positive, and two techniques are put forward as suitable candidates. However, the work is naturally speculative, and is intended more as a basis for discussion with respect to directions for future research than as a statement of certain fact

  17. Functional Brain Imaging

    Directory of Open Access Journals (Sweden)

    K. Vessal

    2005-08-01

    Full Text Available Introduction & Background: The historical evolution of concepts of the mind has had a tremendous impact on human civilization. Aside from Smith’s surgical papyrus, there exists practically no documentation down to the era of Hippocrates. While in Corpus, the seat of all sensations is put in the brain, there is an amazing regression, for many centuries thereafter notably influenced by Aristotle, to displace it to the heart. This erroneous diversion promulgated in De Anima with minor corrections by Galen, has per-petuated to our time when we say, for example, that we love something with our very hearts or “knowing by heart” when we mean to memorize something. Avicenna challenged many of Aristotle’s ideas in El-monnafs (psychology section of Al Shafa, paving the road for the later European Renaissance. Cartesian choice of pineal body as the seat of soul in the first half of the 7th century was a fundamental departure from brain-soul dichotomy. It was followed by Gall’s pseudo-science, phrenology, as the first attempt of brain mapping in ascribing “mental faculties” to the speculative “organs” of the brain. Brain mapping through Functional Brain Imaging has flourished ex-tensively in the past decades -starting from PET with later substitution by fMRI- as robust tools for interro-gating mysteries of the brain. With a surprising pace of development, Functional Brain Imaging heralds a welcome adjunct to the science of radiology in ex-ploring mind and human behavior. Given the multi-tude of appropriate MRI machines operating across the country, attention to this aspect of imaging can invigorate research in radiology and boost generation of knowledge in this rapidly growing field. Recent advances in MRI fast imaging, fMRI, as well as clini-cal and spectroscopic imaging with present clinical application and future trends are discussed.

  18. Brain tumors imaging

    International Nuclear Information System (INIS)

    At the beginning of the illness, we should use an anatomical technique for brain exploration (CT scan or MRI) to see the boundaries of the lesion before the diagnostic biopsy. After treatment (chemotherapy and/or radiotherapy and/or surgery), the evolution of the lesion can be observed with functional techniques (SPECT Thallium or MIBI or PET scan). (author)

  19. Brain Image Motion Correction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus;

    2015-01-01

    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  20. Functional brain imaging

    International Nuclear Information System (INIS)

    Functional magnetic resonance imaging (fMRI) is a non-invasive method that has become one of the major tools for understanding human brain function and in recent years has also been developed for clinical applications. Changes in hemodynamic signals correspond to changes in neuronal activity with good spatial and temporal resolution in fMRI. Using high-field MR systems and increasingly dedicated statistics and postprocessing, activated brain areas can be detected and superimposed on anatomical images. Currently, fMRI data are often combined in multimodal imaging, e. g. with diffusion tensor imaging (DTI) sequences. This method is helping to further understand the physiology of cognitive brain processes and is also being used in a number of clinical applications. In addition to the blood oxygenation level-dependent (BOLD) signals, this article deals with the construction of fMRI investigations, selection of paradigms and evaluation in the clinical routine. Clinically, this method is mainly used in the planning of brain surgery, analyzing the location of brain tumors in relation to eloquent brain areas and the lateralization of language processing. As the BOLD signal is dependent on the strength of the magnetic field as well as other limitations, an overview of recent developments is given. Increases of magnetic field strength (7 T), available head coils and advances in MRI analytical methods have led to constant improvement in fMRI signals and experimental design. Especially the depiction of eloquent brain regions can be done easily and quickly and has become an essential part of presurgical planning. (orig.)

  1. Minireview of Stereoselective Brain Imaging

    DEFF Research Database (Denmark)

    Smith, Donald F.; Jakobsen, Steen

    2014-01-01

    Stereoselectivity is a fundamental principle in living systems. Stereoselectivity reflects the dependence of molecular processes on the spatial orientation of constituent atoms. Stereoselective processes govern many aspects of brain function and direct the course of many psychotropic drugs. Today......, modern imaging techniques such as SPECT and PET provide a means for studying stereoselective processes in the living brain. Chemists have prepared numerous radiolabelled stereoisomers for use in SPECT and PET in order to explore various molecular processes in the living brain of anesthetized laboratory...... animals and awake humans. The studies have demonstrated how many aspects of neurotransmission consist of crucial stereoselective events that can affect brain function in health and disease. Here, we present a brief account of those findings in hope of stimulating further interest in the vital topic....

  2. Live cell imaging techniques to study T cell trafficking across the blood-brain barrier in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Coisne Caroline

    2013-01-01

    Full Text Available Abstract Background The central nervous system (CNS is an immunologically privileged site to which access for circulating immune cells is tightly controlled by the endothelial blood–brain barrier (BBB located in CNS microvessels. Under physiological conditions immune cell migration across the BBB is low. However, in neuroinflammatory diseases such as multiple sclerosis, many immune cells can cross the BBB and cause neurological symptoms. Extravasation of circulating immune cells is a multi-step process that is regulated by the sequential interaction of different adhesion and signaling molecules on the immune cells and on the endothelium. The specialized barrier characteristics of the BBB, therefore, imply the existence of unique mechanisms for immune cell migration across the BBB. Methods and design An in vitro mouse BBB model maintaining physiological barrier characteristics in a flow chamber and combined with high magnification live cell imaging, has been established. This model enables the molecular mechanisms involved in the multi-step extravasation of T cells across the in vitro BBB, to be defined with high-throughput analyses. Subsequently these mechanisms have been verified in vivo using a limited number of experimental animals and a spinal cord window surgical technique. The window enables live observation of the dynamic interaction between T cells and spinal cord microvessels under physiological and pathological conditions using real time epifluorescence intravital imaging. These in vitro and in vivo live cell imaging methods have shown that the BBB endothelium possesses unique and specialized mechanisms involved in the multi-step T cell migration across this endothelial barrier under physiological flow. The initial T cell interaction with the endothelium is either mediated by T cell capture or by T cell rolling. Arrest follows, and then T cells polarize and especially CD4+ T cells crawl over long distances against the direction of

  3. Classification of Medical Brain Images

    Institute of Scientific and Technical Information of China (English)

    Pan Haiwei(潘海为); Li Jianzhong; Zhang Wei

    2003-01-01

    Since brain tumors endanger people's living quality and even their lives, the accuracy of classification becomes more important. Conventional classifying techniques are used to deal with those datasets with characters and numbers. It is difficult, however, to apply them to datasets that include brain images and medical history (alphanumeric data), especially to guarantee the accuracy. For these datasets, this paper combines the knowledge of medical field and improves the traditional decision tree. The new classification algorithm with the direction of the medical knowledge not only adds the interaction with the doctors, but also enhances the quality of classification. The algorithm has been used on real brain CT images and a precious rule has been gained from the experiments. This paper shows that the algorithm works well for real CT data.

  4. Brain hypoxia imaging

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ho Chun [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-04-15

    The measurement of pathologically low levels of tissue pO{sub 2} is an important diagnostic goal for determining the prognosis of many clinically important diseases including cardiovascular insufficiency, stroke and cancer. The target tissues nowadays have mostly been tumors or the myocardium, with less attention centered on the brain. Radiolabelled nitroimidazole or derivatives may be useful in identifying the hypoxic cells in cerebrovascular disease or traumatic brain injury, and hypoxic-ischemic encephalopathy. In acute stroke, the target of therapy is the severely hypoxic but salvageable tissue. {sup 18}F-MISO PET and {sup 99m}Tc-EC-metronidazole SPECT in patients with acute ischemic stroke identified hypoxic tissues and ischemic penumbra, and predicted its outcome. A study using {sup 123}I-IAZA in patient with closed head injury detected the hypoxic tissues after head injury. Up till now these radiopharmaceuticals have drawbacks due to its relatively low concentration with hypoxic tissues associated with/without low blood-brain barrier permeability and the necessity to wait a long time to achieve acceptable target to background ratios for imaging in acute ischemic stroke. It is needed to develop new hypoxic marker exhibiting more rapid localization in the hypoxic region in the brain. And then, the hypoxic brain imaging with imidazoles or non-imidazoles may be very useful in detecting the hypoxic tissues, determining therapeutic strategies and developing therapeutic drugs in several neurological disease, especially, in acute ischemic stroke.

  5. Electromagnetic brain imaging

    International Nuclear Information System (INIS)

    Present imaging methods of cerebral neuro-activity like brain functional MRI and positron emission tomography (PET) secondarily measure only average activities within a time of the second-order (low time-resolution). In contrast, the electromagnetic brain imaging (EMBI) directly measures the faint magnetic field (10-12-10-13 T) yielded by the cerebral activity with use of multiple arrayed sensors equipped on the head surface within a time of sub-millisecond order (high time-resolution). The sensor array technology to find the signal source from the measured data is common in wide areas like signal procession for radar, sonar, and epicenter detection by seismic wave. For estimating and reconstructing the active region in the brain in EMBI, the efficient method must be developed and this paper describes the direct and inverse problems concerned in signal and image processions of EMBI. The direct problem involves the cerebral magnetic field/lead field matrix and inverse problem for reconstruction of signal source, the MUSIC (multiple signal classification) algorithm, GLRT (generalized likelihood ratio test) scan, and adaptive beamformer. As an example, given are results of magnetic intensity changes (unit, fT) in the somatosensory cortex vs time (msec) measured by 160 sensors and of images reconstructed from EMBI and MRI during electric muscle afferent input from the hand. The real-time imaging is thus possible with EMBI and extremely, the EMBI image, the real-time cerebral signals, can inversely operate a machine, of which application directs toward the brain/machine interface development. (R.T.)

  6. Permeability imaging in pediatric brain tumors

    OpenAIRE

    Lam, Sandi; Lin, Yimo; Warnke, Peter C.

    2014-01-01

    While traditional computed tomography (CT) and magnetic resonance (MR) imaging illustrate the structural morphology of brain pathology, newer, dynamic imaging techniques are able to show the movement of contrast throughout the brain parenchyma and across the blood-brain barrier (BBB). These data, in combination with pharmacokinetic models, can be used to investigate BBB permeability, which has wide-ranging applications in the diagnosis and management of central nervous system (CNS) tumors in ...

  7. THE STUDY OF THE BRAIN IN A PATIENT WITH TYPE 1 DIABETES MELLITUS USING TECHNIQUES OF MAGNETIC RESONANCE IMAGING

    OpenAIRE

    Yu. G. Samoylova; N. G. Zhukova; M. V. Matveyeva; M. A. Rotkank; O. S. Tonkikh

    2015-01-01

    Type 1 diabetes mellitus (T1DM) is now widely distributed worldwide and in theRussian Federation, it is an important medical and social problem in connection with the development of serious, disabling complications. Some of these complications could make changes in the brain which are accompanied by cognitive impairments that decrease quality of life and worsening disease compensation. The diagnosis of these disorders to date, possible by using modern methods of magnetic resonance imaging, wh...

  8. Comparison of iterative model, hybrid iterative, and filtered back projection reconstruction techniques in low-dose brain CT: impact of thin-slice imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakaura, Takeshi; Iyama, Yuji; Kidoh, Masafumi; Yokoyama, Koichi [Amakusa Medical Center, Diagnostic Radiology, Amakusa, Kumamoto (Japan); Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Oda, Seitaro; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Tokuyasu, Shinichi [Philips Electronics, Kumamoto (Japan); Harada, Kazunori [Amakusa Medical Center, Department of Surgery, Kumamoto (Japan)

    2016-03-15

    The purpose of this study was to evaluate the utility of iterative model reconstruction (IMR) in brain CT especially with thin-slice images. This prospective study received institutional review board approval, and prior informed consent to participate was obtained from all patients. We enrolled 34 patients who underwent brain CT and reconstructed axial images with filtered back projection (FBP), hybrid iterative reconstruction (HIR) and IMR with 1 and 5 mm slice thicknesses. The CT number, image noise, contrast, and contrast noise ratio (CNR) between the thalamus and internal capsule, and the rate of increase of image noise in 1 and 5 mm thickness images between the reconstruction methods, were assessed. Two independent radiologists assessed image contrast, image noise, image sharpness, and overall image quality on a 4-point scale. The CNRs in 1 and 5 mm slice thickness were significantly higher with IMR (1.2 ± 0.6 and 2.2 ± 0.8, respectively) than with FBP (0.4 ± 0.3 and 1.0 ± 0.4, respectively) and HIR (0.5 ± 0.3 and 1.2 ± 0.4, respectively) (p < 0.01). The mean rate of increasing noise from 5 to 1 mm thickness images was significantly lower with IMR (1.7 ± 0.3) than with FBP (2.3 ± 0.3) and HIR (2.3 ± 0.4) (p < 0.01). There were no significant differences in qualitative analysis of unfamiliar image texture between the reconstruction techniques. IMR offers significant noise reduction and higher contrast and CNR in brain CT, especially for thin-slice images, when compared to FBP and HIR. (orig.)

  9. Comparison of iterative model, hybrid iterative, and filtered back projection reconstruction techniques in low-dose brain CT: impact of thin-slice imaging

    International Nuclear Information System (INIS)

    The purpose of this study was to evaluate the utility of iterative model reconstruction (IMR) in brain CT especially with thin-slice images. This prospective study received institutional review board approval, and prior informed consent to participate was obtained from all patients. We enrolled 34 patients who underwent brain CT and reconstructed axial images with filtered back projection (FBP), hybrid iterative reconstruction (HIR) and IMR with 1 and 5 mm slice thicknesses. The CT number, image noise, contrast, and contrast noise ratio (CNR) between the thalamus and internal capsule, and the rate of increase of image noise in 1 and 5 mm thickness images between the reconstruction methods, were assessed. Two independent radiologists assessed image contrast, image noise, image sharpness, and overall image quality on a 4-point scale. The CNRs in 1 and 5 mm slice thickness were significantly higher with IMR (1.2 ± 0.6 and 2.2 ± 0.8, respectively) than with FBP (0.4 ± 0.3 and 1.0 ± 0.4, respectively) and HIR (0.5 ± 0.3 and 1.2 ± 0.4, respectively) (p < 0.01). The mean rate of increasing noise from 5 to 1 mm thickness images was significantly lower with IMR (1.7 ± 0.3) than with FBP (2.3 ± 0.3) and HIR (2.3 ± 0.4) (p < 0.01). There were no significant differences in qualitative analysis of unfamiliar image texture between the reconstruction techniques. IMR offers significant noise reduction and higher contrast and CNR in brain CT, especially for thin-slice images, when compared to FBP and HIR. (orig.)

  10. Brain imaging and autism

    Energy Technology Data Exchange (ETDEWEB)

    Zilbovicius, M. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), INSERM CEA 0205, 91 - Orsay (France)

    2006-07-01

    Autism is a neuro-developmental disorder with a range of clinical presentations, from mild to severe, referred to as autism spectrum disorders (ASD). The most common clinical ASD sign is social interaction impairment, which is associated with verbal and non-verbal communication deficits and stereotyped and obsessive behaviors. Thanks to recent brain imaging studies, scientists are getting a better idea of the neural circuits involved in ASD. Indeed, functional brain imaging, such as positron emission tomography (PET), single positron emission tomograph y (SPECT) and functional MRI (fMRI) have opened a new perspective to study normal and pathological brain functions. Three independent studies have found anatomical and rest functional temporal abnormalities. These anomalies are localized in the superior temporal sulcus bilaterally which are critical for perception of key social stimuli. In addition, functional studies have shown hypo-activation of most areas implicated in social perception (face and voice perception) and social cognition (theory of mind). These data suggest an abnormal functioning of the social brain network. The understanding of such crucial abnormal mechanism may drive the elaboration of new and more adequate social re-educative strategies in autism. (author)

  11. Brain imaging and autism

    International Nuclear Information System (INIS)

    Autism is a neuro-developmental disorder with a range of clinical presentations, from mild to severe, referred to as autism spectrum disorders (ASD). The most common clinical ASD sign is social interaction impairment, which is associated with verbal and non-verbal communication deficits and stereotyped and obsessive behaviors. Thanks to recent brain imaging studies, scientists are getting a better idea of the neural circuits involved in ASD. Indeed, functional brain imaging, such as positron emission tomography (PET), single positron emission tomograph y (SPECT) and functional MRI (fMRI) have opened a new perspective to study normal and pathological brain functions. Three independent studies have found anatomical and rest functional temporal abnormalities. These anomalies are localized in the superior temporal sulcus bilaterally which are critical for perception of key social stimuli. In addition, functional studies have shown hypo-activation of most areas implicated in social perception (face and voice perception) and social cognition (theory of mind). These data suggest an abnormal functioning of the social brain network. The understanding of such crucial abnormal mechanism may drive the elaboration of new and more adequate social re-educative strategies in autism. (author)

  12. A comparative study of surface- and volume-based techniques for the automatic registration between CT and SPECT brain images

    International Nuclear Information System (INIS)

    Image registration of multimodality images is an essential task in numerous applications in three-dimensional medical image processing. Medical diagnosis can benefit from the complementary information in different modality images. Surface-based registration techniques, while still widely used, were succeeded by volume-based registration algorithms that appear to be theoretically advantageous in terms of reliability and accuracy. Several applications of such algorithms for the registration of CT-MRI, CT-PET, MRI-PET, and SPECT-MRI images have emerged in the literature, using local optimization techniques for the matching of images. Our purpose in this work is the development of automatic techniques for the registration of real CT and SPECT images, based on either surface- or volume-based algorithms. Optimization is achieved using genetic algorithms that are known for their robustness. The two techniques are compared against a well-established method, the Iterative Closest Point--ICP. The correlation coefficient was employed as an independent measure of spatial match, to produce unbiased results. The repeated measures ANOVA indicates the significant impact of the choice of registration method on the magnitude of the correlation (F=4.968, p=0.0396). The volume-based method achieves an average correlation coefficient value of 0.454 with a standard deviation of 0.0395, as opposed to an average of 0.380 with a standard deviation of 0.0603 achieved by the surface-based method and an average of 0.396 with a standard deviation equal to 0.0353 achieved by ICP. The volume-based technique performs significantly better compared to both ICP (p<0.05, Neuman Keuls test) and the surface-based technique (p<0.05, Neuman-Keuls test). Surface-based registration and ICP do not differ significantly in performance

  13. Imaging brain plasticity after trauma

    OpenAIRE

    Kou, Zhifeng; Iraji, Armin

    2014-01-01

    The brain is highly plastic after stroke or epilepsy; however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrated both structural reorganization as well as functional compensation by the recruitment of other brain regions. ...

  14. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...

  15. Brain Friendly Techniques: Mind Mapping

    Science.gov (United States)

    Goldberg, Cristine

    2004-01-01

    Mind Mapping can be called the Swiss Army Knife for the brain, a total visual thinking tool or a multi-handed thought catcher. Invented by Tony Buzan in the early 1970s and used by millions around the world, it is a method that can be a part of a techniques repertoire when teaching information literacy, planning, presenting, thinking, and so…

  16. Suitability of helical multislice acquisition technique for routine unenhanced brain CT: an image quality study using a 16-row detector configuration

    International Nuclear Information System (INIS)

    Subjective and objective image quality (IQ) criteria, radiation doses, and acquisition times were compared using incremental monoslice, incremental multislice, and helical multislice acquisition techniques for routine unenhanced brain computed tomography (CT). Twenty-four patients were examined by two techniques in the same imaging session using a 16-row CT system equipped with 0.75-width detectors. Contiguous ''native'' 3-mm-thick slices were reconstructed for all acquisitions from four detectors for each slice (4 x 0.75 mm), with one channel available per detector. Two protocols were tailored to compare: (1) one-slice vs four-slice incremental images; (2) incremental vs helical four-slice images. Two trained observers independently scored 12 subjective items of IQ. Preference for the technique was assessed by one-tailed t test and the interobserver variation by two-tailed t test. The two observers gave very close IQ scores for the three techniques without significant interobserver variations. Measured IQ parameters failed to reveal any difference between techniques, and an approximate half radiation dose reduction was obtained by using the full 16-row configuration. Acquisition times were cumulatively shortened by using the multislice and the helical modality. (orig.)

  17. MRI Brain Image Segmentation based on Thresholding

    Directory of Open Access Journals (Sweden)

    G. Evelin Sujji, Y.V.S. Lakshmi, G. Wiselin Jiji

    2013-03-01

    Full Text Available Medical Image processing is one of the mostchallenging topics in research field. The mainobjective of image segmentation is to extract variousfeatures of the image that are used foranalysing,interpretation and understanding of images.Medical Resonance Image plays a major role inMedical diagnostics. Image processing in MRI ofbrain is highlyessential due to accurate detection ofthe type of brain abnormality which can reduce thechance of fatal result. This paper outlines anefficient image segmentation technique that candistinguish the pathological tissues such asedemaandtumourfrom thenormal tissues such as WhiteMatter(WM,GreyMatter(GM, andCerebrospinal Fluid(CSF. Thresholding is simplerand most commonly used techniques in imagesegmentation. This technique can be used to detectthe contour of thetumourin brain.

  18. Brain tumor (image)

    Science.gov (United States)

    Brain tumors are classified depending on the exact site of the tumor, the type of tissue involved, benign ... tendencies of the tumor, and other factors. Primary brain tumors can arise from the brain cells, the meninges ( ...

  19. Deep brain stimulation: new techniques.

    Science.gov (United States)

    Hariz, Marwan

    2014-01-01

    The technology of the hardware used in deep brain stimulation (DBS), and the mode of delivering the stimulation have not significantly evolved since the start of the modern era of DBS 25 years ago. However, new technology is now being developed along several avenues. New features of the implantable pulse generator (IPG) allow fractionation of the electric current into variable proportions between different contacts of the multi-polar lead. Another design consists in leads that allow selective current steering from directionally placed electrode contacts that would deliver the stimulation in a specific direction or even create a directional shaped electric field that would conform to the anatomy of the brain target aimed at, avoiding adjacent structures, and thus avoiding side effects. Closed loop adaptive stimulation technologies are being developed, allowing a tracking of the pathological local field potential of the brain target, and delivering automatically the stimulation to suppress the pathological activity as soon as it is detected and for as long as needed. This feature may contribute to a DBS therapy "on demand", instead of continuously. Finally, advances in imaging technology are providing "new" brain targets, and increasingly allowing DBS to be performed accurately while avoiding the risks of microelectrode recording. PMID:24262179

  20. New developments in the imaging of brains

    International Nuclear Information System (INIS)

    A review is given for the imaging techniques of brains. Separate paragraphs are devoted to echography, computerized tomography and magnetic resonance imaging. Special attention is payed to new developments such as magnetic resonance spectroscopy used for metabolic processes. (R.B.) 11 refs

  1. Imaging brain plasticity after trauma

    Science.gov (United States)

    Kou, Zhifeng; Iraji, Armin

    2014-01-01

    The brain is highly plastic after stroke or epilepsy; however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrated both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the field is still short of proper means on how to guide the choice of TBI rehabilitation or treatment plan to promote brain plasticity. The authors also point out the new direction of brain plasticity investigation. PMID:25206874

  2. Imaging brain plasticity after trauma

    Institute of Scientific and Technical Information of China (English)

    Zhifeng Kou; Armin Iraji

    2014-01-01

    The brain is highly plastic after stroke or epilepsy;however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrat-ed both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the ifeld is still short of proper means on how to guide the choice of TBI rehabilitation or treat-ment plan to promote brain plasticity. The authors also point out the new direction of brain plas-ticity investigation.

  3. Advantages in functional imaging of the brain

    Directory of Open Access Journals (Sweden)

    Walter Mier

    2015-05-01

    Full Text Available As neuronal pathologies cause only minor morphological alterations, molecular imaging techniques are a prerequisite for the study of diseases of the brain. The development of molecular probes that specifically bind biochemical markers and the advances of instrumentation have revolutionized the possibilities to gain insight into the human brain organization and beyond this visualize structure-function and brain-behavior relationships. The review describes the development and current applications of functional brain imaging techniques with a focus on applications in psychiatry. A historical overview of the development of functional imaging is followed by the portrayal of the principles and applications of positron emission tomography (PET and functional magnetic resonance imaging (fMRI, two key molecular imaging techniques that have revolutionized the ability to image molecular processes in the brain. In the juxtaposition of PET and fMRI in hybrid PET/MRI scanners enhances the significance of both modalities for research in neurology and psychiatry and might pave the way for a new area of personalized medicine.

  4. Brain water mapping with MR imaging

    International Nuclear Information System (INIS)

    This paper reports on a recently developed MR imaging technique to determine the spatial distribution of brain water to healthy volunteers. A noninvasive MR imaging technique to obtain absolute measurements of brain water has been developed and validated with phantom and animal studies. Patient confirmation was obtained from independent gravimetric measurements of brain tissue samples harvested by biopsy. This approach entails the production of accurate T1 maps from multiple inversion recovery images of a selected anatomic section and their subsequent conversion into an absolute water image by means of a previously determined calibration curve. Twenty healthy volunteers were studied and their water distribution was determined in a standard section. The following brain water values means and SD grams of water per gram of tissue) were obtained for selected brain regions; white matter, 68.9% ± 1.0; corpus callosum, 67.4% ± 1.1; thalamus, 75.3% ± 1.4; and caudate nucleus, 80.3% ± 1.4. MR imaging water mapping is a valid means of determining water content in a variety of brain tissues

  5. NIH Conference. Brain imaging: aging and dementia

    International Nuclear Information System (INIS)

    The brain imaging techniques of positron emission tomography using [18F]-fluoro-2-deoxy-D-glucose, and computed tomography, together with neuropsychological tests, were used to examine overall brain function and anatomy in three study populations: healthy men at different ages, patients with presumptive Alzheimer's disease, and adults with Down's syndrome. Brain glucose use did not differ with age, whereas an age-related decrement in gray matter volume was found on computed tomographic assessment in healthy subjects. Memory deficits were found to precede significant reductions in brain glucose utilization in mild to moderate Alzheimer's dementia. Furthermore, differences between language and visuoconstructive impairments in patients with mild to moderate Alzheimer's disease were related to hemispheric asymmetry of brain metabolism. Brain glucose utilization was found to be significantly elevated in young adults with Down's syndrome, compared with controls. The importance of establishing strict criteria for selecting control subjects and patients is explained in relation to the findings

  6. Triazolam-induced modulation of muscarinic acetylcholine receptor in living brain slices as revealed by a new positron-based imaging technique

    International Nuclear Information System (INIS)

    The effect of triazolam, a potent benzodiazepine (BZ) agonist, on muscarinic acetylcholinergic receptor (mAChR) binding was investigated in living brain slices by use of a novel positron-based imaging technique. Fresh rat brain slices were incubated with [11C]N-methyl-4-piperidylbenzilate ([11C]NMPB), a mAChR antagonist, in oxygenated Krebs-Ringer solution at 37 degree C. During incubation, time-resolved imaging of [11C]NMPB binding in the slices was constructed on the storage phosphor screens. Addition of triazolam (1 μM) plus muscimol (30 μM), a GABAA receptor agonist, to the incubation mixture decreased the specific binding of [11C]NMPB. Ro15-1788, a BZ receptor antagonist, prevented this effect, indicating that the effect was exerted through the GABAA/BZ receptor complex. These results demonstrated that stimulation of the GABAA/BZ receptor lowers the affinity of the mAChR for its ligand, which may underlie the BZ-induced amnesia, a serious clinical side effect of BZ. No such effect in the P2-fraction instead implies that the integrity of the neuronal cells and/or their environment is prerequisite for the modulation of mAChR by GABAA/BZ stimulation. (author)

  7. Recent advances in imaging of brain tumors

    Directory of Open Access Journals (Sweden)

    D A Sanghvi

    2009-01-01

    The next decade will witness further sophistication of these techniques, with data available from larger studies. It is expected that imaging will continue to provide new and unique insights in neuro-oncology, which should hopefully contribute to the better management of patients with brain tumors.

  8. Underwater Image Reconstruction Using Image Fusion Technique.

    OpenAIRE

    Ms. Kulkarni Aparna S.

    2013-01-01

    In proposed work the image fusion technique is used for reconstruction of underwater image. The main purpose of proposed work is to improve resolution of underwater image. There are various method employed for reconstruction of underwater images but some have limitations such as low resolution. Resolution is one of the parameter which is important for quality of images. Wavelet based image reconstruction may improve resolution of underwater images. Image fusion technique has three levels 1) d...

  9. Proton MRS imaging in pediatric brain tumors.

    Science.gov (United States)

    Zarifi, Maria; Tzika, A Aria

    2016-06-01

    Magnetic resonance (MR) techniques offer a noninvasive, non-irradiating yet sensitive approach to diagnosing and monitoring pediatric brain tumors. Proton MR spectroscopy (MRS), as an adjunct to MRI, is being more widely applied to monitor the metabolic aspects of brain cancer. In vivo MRS biomarkers represent a promising advance and may influence treatment choice at both initial diagnosis and follow-up, given the inherent difficulties of sequential biopsies to monitor therapeutic response. When combined with anatomical or other types of imaging, MRS provides unique information regarding biochemistry in inoperable brain tumors and can complement neuropathological data, guide biopsies and enhance insight into therapeutic options. The combination of noninvasively acquired prognostic information and the high-resolution anatomical imaging provided by conventional MRI is expected to surpass molecular analysis and DNA microarray gene profiling, both of which, although promising, depend on invasive biopsy. This review focuses on recent data in the field of MRS in children with brain tumors. PMID:27233788

  10. Functional brain imaging - baric and clinical questions

    International Nuclear Information System (INIS)

    The advancing biological knowledge of disease processes plays a central part in the progress of modern psychiatry. An essential contribution comes from the functional and structural brain imaging techniques (CT, MRI, SPECT, PET). Their application is important for biological oriented research in psychiatry and there is also a growing relevance in clinical aspects. This development is taken into account by recent diagnostic classification systems in psychiatry. The capabilities and limitations of functional brain imaging in the context of research and clinic will be presented and discussed by examples and own investigations. (orig.)

  11. Survey on Denoising Techniques in Medical Images

    Directory of Open Access Journals (Sweden)

    Ravi Mohan

    2013-07-01

    Full Text Available Denoising of Medical Images is challenging problems for researchers noise is not only effect the quality of image but it Creates a major change in calculation of medical field. The Medical Images normally have a problem of high level components of noises. There are different techniques for producing medical images such as Magnetic Resonance Imaging(MRI, X-ray, Computed Tomography and Ultrasound, during this process noise is added that decreases the image quality and image analysis. Image denoising is an important task in image processing, use of wavelet transform improves the quality of an image and reduces noise level. Noise is an inherent property of medical imaging, and it generally tends to reduce the image resolution and contrast, thereby reducing the diagnostic value of this imaging modality there is an emergent attentiveness in using multi-resolution Wavelet filters in a variety of medical imaging applications. We Have review recent wavelet based denoising techniques for medical ultrasound, magnetic resonance images, and some tomography imaging techniques like Positron Emission tomography and Computer tomography imaging and discuss some of their potential applications in the clinical investigations of the brain. The paper deals with the use of wavelet transform for signal and image de-noising employing a selected method of thresholding of appropriate decomposition coefficients

  12. Imaging biomarkers in primary brain tumours

    Energy Technology Data Exchange (ETDEWEB)

    Lopci, Egesta; Chiti, Arturo [Humanitas Clinical and Research Center, Nuclear Medicine Department, Rozzano, MI (Italy); Franzese, Ciro; Navarria, Pierina; Scorsetti, Marta [Humanitas Clinical and Research Center, Radiosurgery and Radiotherapy, Rozzano, MI (Italy); Grimaldi, Marco [Humanitas Clinical and Research Center, Radiology, Rozzano, MI (Italy); Zucali, Paolo Andrea; Simonelli, Matteo [Humanitas Clinical and Research Center, Medical Oncology, Rozzano, MI (Italy); Bello, Lorenzo [Humanitas Clinical and Research Center, Neurosurgery, Rozzano, MI (Italy)

    2015-04-01

    We are getting used to referring to instrumentally detectable biological features in medical language as ''imaging biomarkers''. These two terms combined reflect the evolution of medical imaging during recent decades, and conceptually comprise the principle of noninvasive detection of internal processes that can become targets for supplementary therapeutic strategies. These targets in oncology include those biological pathways that are associated with several tumour features including independence from growth and growth-inhibitory signals, avoidance of apoptosis and immune system control, unlimited potential for replication, self-sufficiency in vascular supply and neoangiogenesis, acquired tissue invasiveness and metastatic diffusion. Concerning brain tumours, there have been major improvements in neurosurgical techniques and radiotherapy planning, and developments of novel target drugs, thus increasing the need for reproducible, noninvasive, quantitative imaging biomarkers. However, in this context, conventional radiological criteria may be inappropriate to determine the best therapeutic option and subsequently to assess response to therapy. Integration of molecular imaging for the evaluation of brain tumours has for this reason become necessary, and an important role in this setting is played by imaging biomarkers in PET and MRI. In the current review, we describe most relevant techniques and biomarkers used for imaging primary brain tumours in clinical practice, and discuss potential future developments from the experimental context. (orig.)

  13. Imaging biomarkers in primary brain tumours

    International Nuclear Information System (INIS)

    We are getting used to referring to instrumentally detectable biological features in medical language as ''imaging biomarkers''. These two terms combined reflect the evolution of medical imaging during recent decades, and conceptually comprise the principle of noninvasive detection of internal processes that can become targets for supplementary therapeutic strategies. These targets in oncology include those biological pathways that are associated with several tumour features including independence from growth and growth-inhibitory signals, avoidance of apoptosis and immune system control, unlimited potential for replication, self-sufficiency in vascular supply and neoangiogenesis, acquired tissue invasiveness and metastatic diffusion. Concerning brain tumours, there have been major improvements in neurosurgical techniques and radiotherapy planning, and developments of novel target drugs, thus increasing the need for reproducible, noninvasive, quantitative imaging biomarkers. However, in this context, conventional radiological criteria may be inappropriate to determine the best therapeutic option and subsequently to assess response to therapy. Integration of molecular imaging for the evaluation of brain tumours has for this reason become necessary, and an important role in this setting is played by imaging biomarkers in PET and MRI. In the current review, we describe most relevant techniques and biomarkers used for imaging primary brain tumours in clinical practice, and discuss potential future developments from the experimental context. (orig.)

  14. Psoriatic arthritis: imaging techniques

    Directory of Open Access Journals (Sweden)

    E. Lubrano

    2012-06-01

    Full Text Available Imaging techniques to assess psoriatic arthritis (PsA include radiography, ultrasonography (US, magnetic resonance imaging (MRI, computed tomography (CT and bone scintigraphy. The radiographic hallmark of PsA is the combination of destructive changes (joint erosions, tuft resorption, osteolysis with bone proliferation (including periarticular and shaft periostitis, ankylosis, spur formation and non-marginal syndesmophytes. US has an increasing important role in the evaluation of PsA. In fact, power Doppler US is useful mainly for its ability to assess musculoskeletal (joints, tendons, entheses and cutaneous (skin and nails involvement, to monitor efficacy of therapy and to guide steroid injections at the level of inflamed joints, tendon sheaths and entheses. MRI allows direct visualization of inflammation in peripheral and axial joints, and peripheral and axial entheses, and has dramatically improved the possibilities for early diagnosis and objective monitoring of the disease process in PsA. MRI has allowed explaining the relationships among enthesitis, synovitis and osteitis in PsA, supporting a SpA pattern of inflammation where enthesitis is the primary target of inflammation. CT has little role in assessment of peripheral joints, but it may be useful in assessing elements of spine disease. CT accuracy is similar to MRI in assessment of erosions in sacroiliac joint involvement, but CT is not as effective in detecting synovial inflammation. Bone scintigraphy lacks specificity and is now supplanted with US and MRI techniques.

  15. Morphological Techniques for Medical Images: A Review

    Directory of Open Access Journals (Sweden)

    Isma Irum

    2012-08-01

    Full Text Available Image processing is playing a very important role in medical imaging with its versatile applications and features towards the development of computer aided diagnostic systems, automatic detections of abnormalities and enhancement in ultrasonic, computed tomography, magnetic resonance images and lots more applications. Medical images morphology is a field of study where the medical images are observed and processed on basis of geometrical and changing structures. Medical images morphological techniques has been reviewed in this study underlying the some human organ images, the associated diseases and processing techniques to address some anatomical problem detection. Images of Human brain, bone, heart, carotid, iris, lesion, liver and lung have been discussed in this study.

  16. Optimized Discretization Schemes For Brain Images

    Directory of Open Access Journals (Sweden)

    USHA RANI.N,

    2011-02-01

    Full Text Available In medical image processing active contour method is the important technique in segmenting human organs. Geometric deformable curves known as levelsets are widely used in segmenting medical images. In this modeling , evolution of the curve is described by the basic lagrange pde expressed as a function of space and time. This pde can be solved either using continuous functions or discrete numerical methods.This paper deals with the application of numerical methods like finite diffefence and TVd-RK methods for brain scans. The stability and accuracy of these methods are also discussed. This paper also deals with the more accurate higher order non-linear interpolation techniques like ENO and WENO in reconstructing the brain scans like CT,MRI,PET and SPECT is considered.

  17. Advanced MRI techniques of the fetal brain

    International Nuclear Information System (INIS)

    Evaluation of the normal and pathological fetal brain. Magnetic resonance imaging (MRI). Advanced MRI of the fetal brain. Diffusion tensor imaging (DTI) is used in clinical practice, all other methods are used at a research level. Serving as standard methods in the future. Combined structural and functional data for all gestational ages will allow more specific insight into the developmental processes of the fetal brain. This gain of information will help provide a common understanding of complex spatial and temporal procedures of early morphological features and their impact on cognitive and sensory abilities. (orig.)

  18. Modelling Brain Tissue using Magnetic Resonance Imaging

    OpenAIRE

    Dyrby, Tim Bjørn; Hansen, Lars Kai

    2008-01-01

    Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking models then use the directions of greatest diffusion as estimates of white matter fibre orientation. Several fibre tracking algorithms have emerged in the last few years that provide reproducible visu...

  19. Optical Methods and Instrumentation in Brain Imaging and Therapy

    CERN Document Server

    2013-01-01

    This book provides a comprehensive up-to-date review of optical approaches used in brain imaging and therapy. It covers a variety of imaging techniques including diffuse optical imaging, laser speckle imaging, photoacoustic imaging and optical coherence tomography. A number of laser-based therapeutic approaches are reviewed, including photodynamic therapy, fluorescence guided resection and photothermal therapy. Fundamental principles and instrumentation are discussed for each imaging and therapeutic technique. Represents the first publication dedicated solely to optical diagnostics and therapeutics in the brain Provides a comprehensive review of the principles of each imaging/therapeutic modality Reviews the latest advances in instrumentation for optical diagnostics in the brain Discusses new optical-based therapeutic approaches for brain diseases

  20. Optical fine-needle imaging biopsy of the brain

    OpenAIRE

    Kim, Jun Ki; Choi, Jin Woo; Yun, Seok H.

    2013-01-01

    We demonstrate optical fine-needle imaging biopsy (FNIB), combining a fine needle (22 gauge) and a high-resolution side-view probe (350-μm diameter) for minimally invasive interrogation of brain tissue in situ. We apply this technique to examine pathogenesis in murine models of neurodegeneration, brain metastasis of melanoma, and arterial occlusion, respectively. The demonstrated ability to obtain cellular images in the deep brain without craniotomy may be useful in the longitudinal studies o...

  1. Imaging of brain activity by positron emission tomography

    International Nuclear Information System (INIS)

    Brain function is associated with regional energy metabolism and blood flow increase. Such brain activity is visualized by using external scintigraphy. Positron emission tomography (PET) is the currently available most superior technique, allowing three-dimensional imaging of subtle blood flow. In this article, imaging methods and application of PET are discussed in terms of the following items: (1) measurement of cerebral glucose consumption, (2) PET in persons with visual impairment, (3) association between brain function and regional cerebral blood flow, (4) measurement of cerebral blood flow, (5) method for decreasing noise in PET imaging, (6) anatomic standardization of PET images, and (7) speech load and regional cerebral activity images. (N.K.)

  2. Review of advanced imaging techniques

    OpenAIRE

    Yu Chen; Chia-Pin Liang; Yang Liu; Fischer, Andrew H.; Parwani, Anil V.; Liron Pantanowitz

    2012-01-01

    Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images ("optical biopsies") at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography) are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These...

  3. IMAGE ENHANCEMENT USING IMAGE FUSION AND IMAGE PROCESSING TECHNIQUES

    OpenAIRE

    Arjun Nelikanti

    2015-01-01

    Principle objective of Image enhancement is to process an image so that result is more suitable than original image for specific application. Digital image enhancement techniques provide a multitude of choices for improving the visual quality of images. Appropriate choice of such techniques is greatly influenced by the imaging modality, task at hand and viewing conditions. This paper will provide a combination of two concepts, image fusion by DWT and digital image processing techniques. The e...

  4. Fast optical imaging of human brain function

    Directory of Open Access Journals (Sweden)

    Gabriele Gratton

    2010-06-01

    Full Text Available Great advancements in brain imaging during the last few decades have opened a large number of new possibilities for neuroscientists. The most dominant methodologies (electrophysiological and magnetic resonance-based methods emphasize temporal and spatial information, respectively. However, theorizing about brain function has recently emphasized the importance of rapid (within 100 ms or so interactions between different elements of complex neuronal networks. Fast optical imaging, and in particular the event-related optical signal (EROS, a technology that has emerged over the last 15 years may provide descriptions of localized (to sub-cm level brain activity with a temporal resolution of less than 100 ms. The main limitations of EROS are its limited penetration, which allows us to image cortical structures not deeper than 3 cm from the surface of the head, and its low signal-to-noise ratio. Advantages include the fact that EROS is compatible with most other imaging methods, including electrophysiological, magnetic resonance, and trans-cranial magnetic stimulation techniques, with which can be recorded concurrently. In this paper we present a summary of the research that has been conducted so far on fast optical imaging, including evidence for the possibility of recording neuronal signals with this method, the properties of the signals, and various examples of applications to the study of human cognitive neuroscience. Extant issues, controversies, and possible future developments are also discussed.

  5. Imaging assessment of traumatic brain injury.

    Science.gov (United States)

    Currie, Stuart; Saleem, Nayyar; Straiton, John A; Macmullen-Price, Jeremy; Warren, Daniel J; Craven, Ian J

    2016-01-01

    Traumatic brain injury (TBI) constitutes injury that occurs to the brain as a result of trauma. It should be appreciated as a heterogeneous, dynamic pathophysiological process that starts from the moment of impact and continues over time with sequelae potentially seen many years after the initial event. Primary traumatic brain lesions that may occur at the moment of impact include contusions, haematomas, parenchymal fractures and diffuse axonal injury. The presence of extra-axial intracranial lesions such as epidural and subdural haematomas and subarachnoid haemorrhage must be anticipated as they may contribute greatly to secondary brain insult by provoking brain herniation syndromes, cranial nerve deficits, oedema and ischaemia and infarction. Imaging is fundamental to the management of patients with TBI. CT remains the imaging modality of choice for initial assessment due to its ease of access, rapid acquisition and for its sensitivity for detection of acute haemorrhagic lesions for surgical intervention. MRI is typically reserved for the detection of lesions that may explain clinical symptoms that remain unresolved despite initial CT. This is especially apparent in the setting of diffuse axonal injury, which is poorly discerned on CT. Use of particular MRI sequences may increase the sensitivity of detecting such lesions: diffusion-weighted imaging defining acute infarction, susceptibility-weighted imaging affording exquisite data on microhaemorrhage. Additional advanced MRI techniques such as diffusion tensor imaging and functional MRI may provide important information regarding coexistent structural and functional brain damage. Gaining robust prognostic information for patients following TBI remains a challenge. Advanced MRI sequences are showing potential for biomarkers of disease, but this largely remains at the research level. Various global collaborative research groups have been established in an effort to combine imaging data with clinical and

  6. Mechanism of Chronic Pain in Rodent Brain Imaging

    Science.gov (United States)

    Chang, Pei-Ching

    Chronic pain is a significant health problem that greatly impacts the quality of life of individuals and imparts high costs to society. Despite intense research effort in understanding of the mechanism of pain, chronic pain remains a clinical problem that has few effective therapies. The advent of human brain imaging research in recent years has changed the way that chronic pain is viewed. To further extend the use of human brain imaging techniques for better therapies, the adoption of imaging technique onto the animal pain models is essential, in which underlying brain mechanisms can be systematically studied using various combination of imaging and invasive techniques. The general goal of this thesis is to addresses how brain develops and maintains chronic pain in an animal model using fMRI. We demonstrate that nucleus accumbens, the central component of mesolimbic circuitry, is essential in development of chronic pain. To advance our imaging technique, we develop an innovative methodology to carry out fMRI in awake, conscious rat. Using this cutting-edge technique, we show that allodynia is assoicated with shift brain response toward neural circuits associated nucleus accumbens and prefrontal cortex that regulate affective and cognitive component of pain. Taken together, this thesis provides a deeper understanding of how brain mediates pain. It builds on the existing body of knowledge through maximizing the depth of insight into brain imaging of chronic pain.

  7. Fueling and imaging brain activation

    Directory of Open Access Journals (Sweden)

    Gerald A Dienel

    2012-07-01

    Full Text Available Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models.

  8. The clinical use of brain SPECT imaging in neuropsychiatry

    International Nuclear Information System (INIS)

    This article reviews the literature on brain SPECT imaging in brain trauma, dementia, and temporal lobe epilepsy. Brain SPECT allows clinicians the ability to view cerebral areas of healthy, low, and excessive perfusion. This information can be correlated with what is known about the function or dysfunction of each area. SPECT has a number of advantages over other imaging techniques, including wider availability, lower cost, and high quality resolution with multi-headed cameras. There are a number of issues that compromise the effective use of SPECT, including low quality of some imaging cameras, and variability of image rendering and readings (Au)

  9. REGISTRATION OF BRAIN IMAGES USING MODIFIED ADAPTIVE POLAR TRANSFORM

    Directory of Open Access Journals (Sweden)

    D.Sasikala,

    2010-09-01

    Full Text Available Image registration has great significance in medicine, with a lot of techniques anticipated in it. This paper discusses an approach for medical image registration. It registers images of the mono or multi modalities for CT or MRI images using Modified Adaptive Polar Transform. The performance of the Adaptive Polar Transform with theproposed technique is examined. The results prove that the proposed method performs better than Adaptive Polar Transform technique. The proposed method reduces the errors and also the elapsed time for registration. An analysis is presented for the medical image registration of brain images using Adaptive Polar Transform and Modified Adaptive Polar Transform.

  10. Simultaneous multislice (SMS) imaging techniques

    OpenAIRE

    Barth, Markus; Breuer, Felix; Koopmans, Peter J.; Norris, David G.; Poser, Benedikt A.

    2015-01-01

    Simultaneous multislice imaging (SMS) using parallel image reconstruction has rapidly advanced to become a major imaging technique. The primary benefit is an acceleration in data acquisition that is equal to the number of simultaneously excited slices. Unlike in‐plane parallel imaging this can have only a marginal intrinsic signal‐to‐noise ratio penalty, and the full acceleration is attainable at fixed echo time, as is required for many echo planar imaging applications. Furthermore, for some ...

  11. Functional brain imaging; Funktionelle Hirnbildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Gizewski, E.R. [Medizinische Universitaet Innsbruck, Universitaetsklinik fuer Neuroradiologie, Innsbruck (Austria)

    2016-02-15

    Functional magnetic resonance imaging (fMRI) is a non-invasive method that has become one of the major tools for understanding human brain function and in recent years has also been developed for clinical applications. Changes in hemodynamic signals correspond to changes in neuronal activity with good spatial and temporal resolution in fMRI. Using high-field MR systems and increasingly dedicated statistics and postprocessing, activated brain areas can be detected and superimposed on anatomical images. Currently, fMRI data are often combined in multimodal imaging, e. g. with diffusion tensor imaging (DTI) sequences. This method is helping to further understand the physiology of cognitive brain processes and is also being used in a number of clinical applications. In addition to the blood oxygenation level-dependent (BOLD) signals, this article deals with the construction of fMRI investigations, selection of paradigms and evaluation in the clinical routine. Clinically, this method is mainly used in the planning of brain surgery, analyzing the location of brain tumors in relation to eloquent brain areas and the lateralization of language processing. As the BOLD signal is dependent on the strength of the magnetic field as well as other limitations, an overview of recent developments is given. Increases of magnetic field strength (7 T), available head coils and advances in MRI analytical methods have led to constant improvement in fMRI signals and experimental design. Especially the depiction of eloquent brain regions can be done easily and quickly and has become an essential part of presurgical planning. (orig.) [German] Mittlerweile ist die funktionelle MRT (fMRT) eine Methode, die nicht mehr nur in der neurowissenschaftlichen Routine verwendet wird. Die fMRT ermoeglicht die nichtinvasive Darstellung der Hirnaktivitaet in guter raeumlicher und zeitlicher Aufloesung unter Ausnutzung der Durchblutungsaenderung aufgrund der erhoehten Nervenzellaktivitaet. Unter

  12. Quantitative imaging of brain chemistry

    International Nuclear Information System (INIS)

    We can now measure how chemicals affect different regions of the human brain. One area involves the study of drugs - in-vivo neuro-pharmacology; another involves the study of toxic chemical effects - in vivo neurotoxicology. The authors approach is to label drugs with positron-emitting radioactive tracers - chiefly carbon-11 with a half-life of 20 minutes and fluorine-18 with a half-life of 110 minutes. The labeled drugs are injected intravenously and a positron emission tomography (PET) scanner is used to map out the distribution of the radioactivity within the brain from the moment of injection until about 90 minutes later. Mathematical models are used to calculate receptor concentrations and the affinity of the receptors for the injected radioactive tracer. By means of PET scanning, they look at cross sections or visual slices throughout the human brain, obtaining computer-generated images in any plane. The authors are investigating the functions of specific drugs or specific receptors, as well as looking at the metabolic activity in different parts of the brain as revealed in glucose metabolism. For example, the authors are studying opiate receptors in patients with a variety of conditions: those who suffer from chronic pain, those who are congenitally insensitive to pain and drug addicts. They are studying patients with schizophrenia, tardive dyskinesia, Parkinson's disease, Huntington's disease, depressed patients and sex-offenders. They are relating the state of the neurotransmitter/neuroreceptor systems to behavior. In essence, they believe that they can now examine in living human beings what relates the structure of the brain to the function of the mind that is chemistry

  13. Nuclear magnetic resonance imaging in brain tumors

    International Nuclear Information System (INIS)

    Full text: Magnetic resonance imaging (MRI) is a non-invasive imaging method based on the detecting signal from hydrogen nuclei of water molecules and fat. Performances of MRI are continuously increasing, and its domains of investigation of the human body are growing in both morphological and functional study. MRI also allows It also performing advanced management of tumours especially in the brain, by combining anatomical information (morphological MRI), functional (diffusion, perfusion and BOLD contrast) and metabolic (tissue composition in magnetic resonance spectroscopy (MRS)). The MRI techniques have an important role in cancerology. These techniques allow essential information for the diagnosis and answering therapist's questions before, during or after the treatment. The MR allows clarifying the localization of expanding processes, the differential diagnosis between brain tumour and a lesion confined by another structural aspect, the diagnosis of the tumoral aspect of a lesion, the histological ranking in case of glial tumour and the extension of its localization as well as the therapeutic follow-up (pre-therapeutic and post-therapeutics assessments). A better combination between the morphological, functional and metabolic studies, as well as integrating new technical developments, especially while using a multichannel bird cage coils the 3T magnet and suitable computing software, would allow significant improvements of the exploration strategies and management of brain tumors.

  14. Advances in brain imaging of neuropathic pain

    Institute of Scientific and Technical Information of China (English)

    CHEN Fu-yong; TAO Wei; LI Yong-jie

    2008-01-01

    Objective To review the literature on the use of brain imaging,including functional magnetic resonance imaging(fMRI), positron emission tomography(PET),magnetic resonance spectroscopy(MRS)and voxel-based morphometry(VBM)in investigation of the activity in diverse brain regions that creates and modulates chronic neuropathic pain. Data sources English literatures from January 1,2000 to July 31,2007 that examined human brain activity in chronic neuropathic pain were accessed through MEDLINE/CD ROM,using PET,fMRI,VBM,MRS and receptor binding. Study selection Published articles about the application of fMRI,PET,VBM,MRS and chronic neuropathic pain were selected. Data extraction Data were mainly extracted from 40 representative articles as the research basis. Results The PET studies suggested that spontaneous neuropathic pain is associated with changes in thalamic activity. Both PET and fMRI have been used to investigate the substrate of allodynia.The VBM demonstrated that brain structural changes are involved in chronic neuropathic pain,which is not seen in a matched control group.However,the results obtained had a large variety,which may be due to different pain etiology,pain distribution,lesion tomography,symptoms and stimulation procedures. Conclusions Application of the techniques of brain imaging plays a very important role in the study of structural and functional reorganization In patients with neuropathic pain.However,a unique"pain matrix" has not been defined.Future studies should be conducted using a prospective longitudinal research design,which would guarantee the control for many confounding factors.

  15. Statistical normalization techniques for magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Russell T. Shinohara

    2014-01-01

    Full Text Available While computed tomography and other imaging techniques are measured in absolute units with physical meaning, magnetic resonance images are expressed in arbitrary units that are difficult to interpret and differ between study visits and subjects. Much work in the image processing literature on intensity normalization has focused on histogram matching and other histogram mapping techniques, with little emphasis on normalizing images to have biologically interpretable units. Furthermore, there are no formalized principles or goals for the crucial comparability of image intensities within and across subjects. To address this, we propose a set of criteria necessary for the normalization of images. We further propose simple and robust biologically motivated normalization techniques for multisequence brain imaging that have the same interpretation across acquisitions and satisfy the proposed criteria. We compare the performance of different normalization methods in thousands of images of patients with Alzheimer's disease, hundreds of patients with multiple sclerosis, and hundreds of healthy subjects obtained in several different studies at dozens of imaging centers.

  16. Preoperative functional brain mapping with MEG and MR imaging

    International Nuclear Information System (INIS)

    This paper reports on the feasibility of using MEG and MR imaging data for postoperative planning in surgical procedures employing sterotaxic techniques. Stereotaxic frame and frameless examinations were performed with selective display of images and superimposed MEG data. The Talairach/Tournoux whole-brain proportional voxel technique of statistically determining the most likely anatomic structures in a voxel of brain allows more precise localization of MEG data. A detailed anatomic atlas library provides a powerful computer-based reference for evaluation. Correlations of MEG findings with well-established functional anatomic references may provide a noninvasive means of preoperative brain mapping

  17. Brain image fusion: Co-registration error

    International Nuclear Information System (INIS)

    Semi automatic and manually fused brain image registration using anatomical magnetic resonance (MR) and functional single photon emission tomography (SPECT) have been used to quantify the spatial registration error. An internal quality assurance protocol is employed to reject studies whose image quality was bad or the acquisition parameters were wrong. At the beginning when this technique was started, a training programme was carried out using fiducial markers in phantom and patients to estimate the co-registration error. The brain Hoffman phantom (Data Spectrum Model BR-3D-P), with 3 fiducial markers containing 2 μCi 99mTc99m as SPECT marker and Gadodiamide MR marker. SPECT data were acquired with a dual head camera (ADAC) with ultra high resolution collimators and 128x128 matrix size, 64 projections and post filter using iterative reconstruction method (number of iteration 12), with attenuation correction. MR images were acquired using 1.5T GE SIGNA 3D spoiled-gradient sequence with 20 minimum TR, TE 6.24, matrix size 256x256 and 124 axial slices separated by 1.6 mm. The same acquisition protocol was used for the 13 patient studies. They have been injected with 740 MBq of 99mTc-MIBI, radioisotope that provides functional information which can be used to detect tumour regrowth with higher specificity than post Gadolinium I.V administration imaging brain MR. Woods's Automatic Image Registration method for intermodality rigid transformations has been used for fusion. Fine tuning of this transformation to achieve good fit converts the methodology in semi automatic. The algorithms could be classified as linear when alignment transformation (translation, rotation and scaling) is computed between both 3D volumes. Manual fusion of both images was also accomplished without landmarks using anatomical structures as reference. Using visualization techniques for both methods, it is possible to combine color and gray scale image for each pixel using 16 bits display. Such

  18. NMR imaging technique

    International Nuclear Information System (INIS)

    This invention provides a method that can be adapted to existing NMR tomographic scanners of producing spectra of any given point in the image of the specimen slice, the intensity distribution of a selected resonance within an area of the image of the specimen slice, or an entire NMR spectrum of the given area. The method comprises acquiring n projections of the specimen slice, where n is greater than 1. Each of the projections is then shifted by Δ f for the point (the frequency offset of the signal arising from the point, from the true chemical shift)

  19. Assessment of brain retraction injury from tumor operation with 99Tcm-ECD brain SPECT imaging

    International Nuclear Information System (INIS)

    Objective: To evaluate the rCBF of brain retraction injury by 99Tcm-ECD SPECT imaging. Methods: The 99Tcm-ECD SPECT brain imaging was performed in 21 patients with brain tumor before and after operation. To compare the rCBF of peripheral tumor region with that of retraction injury region by semi-quantitative analysis. The rCBF levels of the central and peripheral areas of brain retraction injury were also studied. Results: Both the peripheral tumor region before operation and retraction region after operation were ischemic, but the difference between them was significant (P99Tcm-ECD SPECT brain imaging is a useful technique in detecting retraction injury come from brain tumor operation

  20. Molecular Imaging of Tumors Using a Quantitative T1 Mapping Technique via Magnetic Resonance Imaging

    OpenAIRE

    Kelsey Herrmann; Johansen, Mette L.; Craig, Sonya E.; Jason Vincent; Michael Howell; Ying Gao; Lan Lu; Bernadette Erokwu; Agnes, Richard S.; Zheng-Rong Lu; Pokorski, Jonathan K.; James Basilion; Vikas Gulani; Mark Griswold; Chris Flask

    2015-01-01

    Magnetic resonance imaging (MRI) of glioblastoma multiforme (GBM) with molecular imaging agents would allow for the specific localization of brain tumors. Prior studies using T 1-weighted MR imaging demonstrated that the SBK2-Tris-(Gd-DOTA)3 molecular imaging agent labeled heterotopic xenograft models of brain tumors more intensely than non-specific contrast agents using conventional T 1-weighted imaging techniques. In this study, we used a dynamic quantitative T 1 mapping strategy to more ob...

  1. Brain imaging in lung cancer patients without symptoms of brain metastases: a national survey of current practice in England

    International Nuclear Information System (INIS)

    Aim: To determine current practice regarding brain imaging for newly diagnosed lung cancer patients without symptoms of brain metastases. Materials and methods: A survey questionnaire was sent by e-mail to all the lung cancer lead clinicians in England currently on the National Cancer Intelligence Network database. The survey asked whether brain imaging was used in new lung cancer patients without symptoms or signs to suggest brain metastases; and if so, which patient subgroups were imaged according to cell type, stage of disease, and intention to treat, and which techniques were used to image these patients. Responses were received between February and May 2014. Results: Fifty-nine of 154 centres replied to the survey (38%). Thirty of the 59 centres (51%) did not image the brain in these patients. Twenty-nine of the 59 (49%) centres imaged the brain in at least certain subgroups. Of those centres that did image the brain 21 (72%) used CT as the first-line imaging technique and six (20%) used MRI. Twenty-five of 59 (42%) centres stated that the 2011 NICE guidelines had led to a change in their practice. Conclusion: There is wide variation in practice regarding brain imaging in this patient group in England, with no brain imaging at all in approximately half of centres and a spectrum of imaging in the other half. When the brain is imaged, CT is the technique most commonly used. The 2011 NICE guidelines have led to some change in practice but not to national uniformity. - Highlights: • Ascertain current practice in brain imaging for staging asymptomatic lung cancer patients. • Survey questionnaire sent to all the lung cancer lead clinicians in England. • Wide variation in practice with regard to brain imaging in this patient group. • No brain imaging at all in approximately half of centres and a spectrum of imaging in the other half • The 2011 NICE guidelines have led to some change in practice but not to national uniformity

  2. Review of advanced imaging techniques

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2012-01-01

    Full Text Available Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images ("optical biopsies" at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy. This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques.

  3. Effects of PUFA supplementation evidenced by brain imaging

    Directory of Open Access Journals (Sweden)

    Puri Basant K.

    2011-07-01

    Full Text Available This paper describes how the effects of PUFA supplementation can be indexed by neuroimaging. The role of structural magnetic resonance imaging studies are detailed in respect of testing a brain (lipid hypothesis and in respect of using a gold-standard image registration technique. The role of magnetic resonance spectroscopy of the brain is considered with respect to a recent advance in the analysis of 31-phosphorus neurospectroscopy data that enables motion-restricted membrane phospholipids to be quantified.

  4. EDITORIAL: Imaging Systems and Techniques Imaging Systems and Techniques

    Science.gov (United States)

    Giakos, George; Yang, Wuqiang; Petrou, M.; Nikita, K. S.; Pastorino, M.; Amanatiadis, A.; Zentai, G.

    2011-10-01

    This special feature on Imaging Systems and Techniques comprises 27 technical papers, covering essential facets in imaging systems and techniques both in theory and applications, from research groups spanning three different continents. It mainly contains peer-reviewed articles from the IEEE International Conference on Imaging Systems and Techniques (IST 2011), held in Thessaloniki, Greece, as well a number of articles relevant to the scope of this issue. The multifaceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment, and the technological revolution; there is an urgent need to address and propose dynamic and innovative solutions to problems that tend to be either complex and static or rapidly evolving with a lot of unknowns. For instance, exploration of the engineering and physical principles of new imaging systems and techniques for medical applications, remote sensing, monitoring of space resources and enhanced awareness, exploration and management of natural resources, and environmental monitoring, are some of the areas that need to be addressed with urgency. Similarly, the development of efficient medical imaging techniques capable of providing physiological information at the molecular level is another important area of research. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, using high resolution and high selectivity nanoimaging techniques, can play an important role in the diagnosis and treatment of cancer, as well as provide efficient drug-delivery imaging solutions for disease treatment with increased sensitivity and specificity. On the other hand, technical advances in the development of efficient digital imaging systems and techniques and tomographic devices operating on electric impedance tomography, computed tomography, single-photon emission and positron emission tomography detection principles are anticipated to have a significant impact on a

  5. Role of Hybrid Brain Imaging in Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Amer M. Burhan

    2015-12-01

    Full Text Available This is a focused review of imaging literature to scope the utility of hybrid brain imaging in neuropsychiatric disorders. The review focuses on brain imaging modalities that utilize hybrid (fusion techniques to characterize abnormal brain molecular signals in combination with structural and functional changes that have been observed in neuropsychiatric disorders. An overview of clinical hybrid brain imaging technologies for human use is followed by a selective review of the literature that conceptualizes the use of these technologies in understanding basic mechanisms of major neuropsychiatric disorders and their therapeutics. Neuronal network abnormalities are highlighted throughout this review to scope the utility of hybrid imaging as a potential biomarker for each disorder.

  6. Simultaneous multislice (SMS) imaging techniques.

    Science.gov (United States)

    Barth, Markus; Breuer, Felix; Koopmans, Peter J; Norris, David G; Poser, Benedikt A

    2016-01-01

    Simultaneous multislice imaging (SMS) using parallel image reconstruction has rapidly advanced to become a major imaging technique. The primary benefit is an acceleration in data acquisition that is equal to the number of simultaneously excited slices. Unlike in-plane parallel imaging this can have only a marginal intrinsic signal-to-noise ratio penalty, and the full acceleration is attainable at fixed echo time, as is required for many echo planar imaging applications. Furthermore, for some implementations SMS techniques can reduce radiofrequency (RF) power deposition. In this review the current state of the art of SMS imaging is presented. In the Introduction, a historical overview is given of the history of SMS excitation in MRI. The following section on RF pulses gives both the theoretical background and practical application. The section on encoding and reconstruction shows how the collapsed multislice images can be disentangled by means of the transmitter pulse phase, gradient pulses, and most importantly using multichannel receiver coils. The relationship between classic parallel imaging techniques and SMS reconstruction methods is explored. The subsequent section describes the practical implementation, including the acquisition of reference data, and slice cross-talk. Published applications of SMS imaging are then reviewed, and the article concludes with an outlook and perspective of SMS imaging. PMID:26308571

  7. In vivo calcium imaging of the aging and diseased brain

    International Nuclear Information System (INIS)

    Over the last decade, in vivo calcium imaging became a powerful tool for studying brain function. With the use of two-photon microscopy and modern labelling techniques, it allows functional studies of individual living cells, their processes and their interactions within neuronal networks. In vivo calcium imaging is even more important for studying the aged brain, which is hard to investigate in situ due to the fragility of neuronal tissue. In this article, we give a brief overview of the techniques applicable to image aged rodent brain at cellular resolution. We use multicolor imaging to visualize specific cell types (neurons, astrocytes, microglia) as well as the autofluorescence of the ''aging pigment'' lipofuscin. Further, we illustrate an approach for simultaneous imaging of cortical cells and senile plaques in mouse models of Alzheimer's disease. (orig.)

  8. In vivo calcium imaging of the aging and diseased brain

    Energy Technology Data Exchange (ETDEWEB)

    Eichhoff, Gerhard; Busche, Marc A.; Garaschuk, Olga [Technical University of Munich, Institute of Neuroscience, Munich (Germany)

    2008-03-15

    Over the last decade, in vivo calcium imaging became a powerful tool for studying brain function. With the use of two-photon microscopy and modern labelling techniques, it allows functional studies of individual living cells, their processes and their interactions within neuronal networks. In vivo calcium imaging is even more important for studying the aged brain, which is hard to investigate in situ due to the fragility of neuronal tissue. In this article, we give a brief overview of the techniques applicable to image aged rodent brain at cellular resolution. We use multicolor imaging to visualize specific cell types (neurons, astrocytes, microglia) as well as the autofluorescence of the ''aging pigment'' lipofuscin. Further, we illustrate an approach for simultaneous imaging of cortical cells and senile plaques in mouse models of Alzheimer's disease. (orig.)

  9. A Novel Approach for MRI Brain Images Segmentation

    Directory of Open Access Journals (Sweden)

    Abo-Eleneen Z. A

    2013-03-01

    Full Text Available Segmentation of brain from magnetic resonance (MR images has important applications in neuroimaging, in particular it facilitates in extracting different brain tissues such as cerebrospinal fluids, white matter and gray matter. That helps in determining the volume of the tissues in three-dimensional brain MR images, which yields in analyzing many neural disorders such as epilepsy and Alzheimer disease. The Fisher information is a measure of the fluctuations in the observations. In a sense, the Fisher information of an image specifies the quality of the image. In this paper, we developed a new thresholding method using the Fisher information measure and intensity contrast to segment medical images. It is the weighted sum of the Fisher information measure and intensity contrast between the object and background. This technique is a powerful method for noisy image segmentation. The method applied on a normal MR brain images and a glioma MR brain images. Experimental results show that the use of the Fisher information effectively segmented MR brain images.

  10. Imaging of cerebritis, encephalitis, and brain abscess.

    Science.gov (United States)

    Rath, Tanya J; Hughes, Marion; Arabi, Mohammad; Shah, Gaurang V

    2012-11-01

    Imaging plays an important role in the diagnosis and treatment of brain abscess, pyogenic infection, and encephalitis. The role of CT and MRI in the diagnosis and management of pyogenic brain abscess and its complications is reviewed. The imaging appearances of several common and select uncommon infectious encephalitides are reviewed. Common causes of encephalitis in immunocompromised patients, and their imaging appearances, are also discussed. When combined with CSF, serologic studies and patient history, imaging findings can suggest the cause of encephalitis. PMID:23122258

  11. A Unified Framework for Brain Segmentation in MR Images

    Directory of Open Access Journals (Sweden)

    S. Yazdani

    2015-01-01

    Full Text Available Brain MRI segmentation is an important issue for discovering the brain structure and diagnosis of subtle anatomical changes in different brain diseases. However, due to several artifacts brain tissue segmentation remains a challenging task. The aim of this paper is to improve the automatic segmentation of brain into gray matter, white matter, and cerebrospinal fluid in magnetic resonance images (MRI. We proposed an automatic hybrid image segmentation method that integrates the modified statistical expectation-maximization (EM method and the spatial information combined with support vector machine (SVM. The combined method has more accurate results than what can be achieved with its individual techniques that is demonstrated through experiments on both real data and simulated images. Experiments are carried out on both synthetic and real MRI. The results of proposed technique are evaluated against manual segmentation results and other methods based on real T1-weighted scans from Internet Brain Segmentation Repository (IBSR and simulated images from BrainWeb. The Kappa index is calculated to assess the performance of the proposed framework relative to the ground truth and expert segmentations. The results demonstrate that the proposed combined method has satisfactory results on both simulated MRI and real brain datasets.

  12. Fast and Accurate Brain Image Retrieval Using Gabor Wavelet Algorithm

    Directory of Open Access Journals (Sweden)

    J.Esther

    2014-01-01

    Full Text Available CBIR in medical image databases are used to assist physician in diagnosis the diseases and also used to aid diagnosis by identifying similar past cases. In order to retrieve a fast, accurate and an effective similarity of images from the large data set. The pre-processing step is extraction of brain. It removes the unwanted non-brain areas like scalp, skull, neck, eyes, ear etc from the MRI Head scan images. After removing the unwanted areas of non-brain region, it is very effective to retrieve the similar images. In this paper it is proposed a brain extraction technique using fuzzy morphological operators. For the experimental results 1200 MRI images are taken from scan centre and some brain images are collected from web and these have been implemented with popular brain extraction algorithm of Graph- Cut Algorithm (GCUT and Expectation Maximization algorithm (EMA. The experiment result shows that the proposed algorithm fuzzy morphological operator algorithm (FMOA is prompting the best promising results. Using this FMOA result retrieved the brain image from the large collection of databases using Gabor-Wavelet Transform.

  13. Diffuse Optical Tomography for Brain Imaging: Theory

    Science.gov (United States)

    Yuan, Zhen; Jiang, Huabei

    Diffuse optical tomography (DOT) is a noninvasive, nonionizing, and inexpensive imaging technique that uses near-infrared light to probe tissue optical properties. Regional variations in oxy- and deoxy-hemoglobin concentrations as well as blood flow and oxygen consumption can be imaged by monitoring spatiotemporal variations in the absorption spectra. For brain imaging, this provides DOT unique abilities to directly measure the hemodynamic, metabolic, and neuronal responses to cells (neurons), and tissue and organ activations with high temporal resolution and good tissue penetration. DOT can be used as a stand-alone modality or can be integrated with other imaging modalities such as fMRI/MRI, PET/CT, and EEG/MEG in studying neurophysiology and pathology. This book chapter serves as an introduction to the basic theory and principles of DOT for neuroimaging. It covers the major aspects of advances in neural optical imaging including mathematics, physics, chemistry, reconstruction algorithm, instrumentation, image-guided spectroscopy, neurovascular and neurometabolic coupling, and clinical applications.

  14. AN ANN BASED BRAIN ABNORMALITY DETECTION USING MR IMAGES

    Directory of Open Access Journals (Sweden)

    K.V. Kulhalli

    2013-02-01

    Full Text Available The Main purpose of this paper is to design, implement and evaluate a strong automatic diagnostic system that increases the accuracy of tumor diagnosis in brain using MR images. This presented work classifies the brain tissues as normal or abnormal automatically, using computer vision. This saves lot of radiologist time to carryout monotonous repeated job. The acquired MR images are processed using image preprocessing techniques. The preprocessed images are then segmented, and the various features are extracted. The extracted features are fed to the artificial neural network as input that trains the network using error back propagation algorithm for correct decision making.

  15. Identifying brain neoplasms using dye-enhanced multimodal confocal imaging

    Science.gov (United States)

    Wirth, Dennis; Snuderl, Matija; Sheth, Sameer; Kwon, Churl-Su; Frosch, Matthew P.; Curry, William; Yaroslavsky, Anna N.

    2012-02-01

    Brain tumors cause significant morbidity and mortality even when benign. Completeness of resection of brain tumors improves quality of life and survival; however, that is often difficult to accomplish. The goal of this study was to evaluate the feasibility of using multimodal confocal imaging for intraoperative detection of brain neoplasms. We have imaged different types of benign and malignant, primary and metastatic brain tumors. We correlated optical images with histopathology and evaluated the possibility of interpreting confocal images in a manner similar to pathology. Surgical specimens were briefly stained in 0.05 mg/ml aqueous solution of methylene blue (MB) and imaged using a multimodal confocal microscope. Reflectance and fluorescence signals of MB were excited at 642 nm. Fluorescence emission of MB was registered between 670 and 710 nm. After imaging, tissues were processed for hematoxylin and eosin (H&E) histopathology. The results of comparison demonstrate good correlation between fluorescence images and histopathology. Reflectance images provide information about morphology and vascularity of the specimens, complementary to that provided by fluorescence images. Multimodal confocal imaging has the potential to aid in the intraoperative detection of microscopic deposits of brain neoplasms. The application of this technique may improve completeness of resection and increase patient survival.

  16. A versatile new technique to clear mouse and human brain

    Science.gov (United States)

    Costantini, Irene; Di Giovanna, Antonino Paolo; Allegra Mascaro, Anna Letizia; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Sacconi, Leonardo; Pavone, Francesco S.

    2015-07-01

    Large volumes imaging with microscopic resolution is limited by light scattering. In the last few years based on refractive index matching, different clearing approaches have been developed. Organic solvents and water-based optical clearing agents have been used for optical clearing of entire mouse brain. Although these methods guarantee high transparency and preservation of the fluorescence, though present other non-negligible limitations. Tissue transformation by CLARITY allows high transparency, whole brain immunolabelling and structural and molecular preservation. This method however requires a highly expensive refractive index matching solution limiting practical applicability. In this work we investigate the effectiveness of a water-soluble clearing agent, the 2,2'-thiodiethanol (TDE) to clear mouse and human brain. TDE does not quench the fluorescence signal, is compatible with immunostaining and does not introduce any deformation at sub-cellular level. The not viscous nature of the TDE make it a suitable agent to perform brain slicing during serial two-photon (STP) tomography. In fact, by improving penetration depth it reduces tissue slicing, decreasing the acquisition time and cutting artefacts. TDE can also be used as a refractive index medium for CLARITY. The potential of this method has been explored by imaging a whole transgenic mouse brain with the light sheet microscope. Moreover we apply this technique also on blocks of dysplastic human brain tissue transformed with CLARITY and labeled with different antibody. This clearing approach significantly expands the application of single and two-photon imaging, providing a new useful method for quantitative morphological analysis of structure in mouse and human brain.

  17. Three-dimensional microtomographic imaging of human brain cortex

    CERN Document Server

    Mizutania, Ryuta; Uesugi, Kentaro; Ohyama, Masami; Takekoshi, Susumu; Osamura, R Yoshiyuki; Suzuki, Yoshio

    2016-01-01

    This paper describes an x-ray microtomographic technique for imaging the three-dimensional structure of the human cerebral cortex. Neurons in the brain constitute a neural circuit as a three-dimensional network. The brain tissue is composed of light elements that give little contrast in a hard x-ray transmission image. The contrast was enhanced by staining neural cells with metal compounds. The obtained structure revealed the microarchitecture of the gray and white matter regions of the frontal cortex, which is responsible for the higher brain functions.

  18. Brain imaging studies of sleep disorder

    International Nuclear Information System (INIS)

    Brain imaging studies of narcolepsy (NA)/cataplexy (CA), a typical sleep disorder, are summarized together with techniques of functional and structural imaging means. single photon emission CT (SPECT) is based on the distribution of tracers labeled by single photon emitters like 99mTc and 123I for seeing the blood flow and receptors. PET using positron emitters like 15O and 18F for blood flow and for glucose metabolism, respectively, is of higher resolution and more quantitative than SPECT. Functional MRI (fMRI) depicts the cerebral activity through signal difference by blood oxygenation level dependence (BOLD) effect, and MR spectroscopy (MRS) depicts and quantifies biomaterials through the difference of their nuclear chemical shifts in the magnetic field. Morphologic imaging studies involve the measurement of the volume of the region of interest by comparison with the reference region such as the whole brain volume. Voxel-based morphometry (VBM) has changed to its more advanced surface-based analysis (SBA) of T1-enhanced image. Diffusion tensor imaging (DTI) is based on the tissue water diffusion. Functional SPECT/PET studies have suggested the decrease of blood flow and metabolic activity in the hypothalamus (HT) and other related regions at the conscious resting state, and locally increased blood flow in cingulate gyrus (CG) and amygdaloid complex (AC) at affective CA/PA seizure. fMRI has suggested the hypoactivity of HT and hyperactivity of AC at the seizure. VBM-based studies have not given the consistent results, but DTI studies have suggested an important participation of AC at the seizure. (T.T.)

  19. MR image-guided portal verification for brain treatment field

    International Nuclear Information System (INIS)

    Purpose: To investigate a method for the generation of digitally reconstructed radiographs directly from MR images (DRR-MRI) to guide a computerized portal verification procedure. Methods and Materials: Several major steps were developed to perform an MR image-guided portal verification procedure. Initially, a wavelet-based multiresolution adaptive thresholding method was used to segment the skin slice-by-slice in MR brain axial images. Some selected anatomical structures, such as target volume and critical organs, were then manually identified and were reassigned to relatively higher intensities. Interslice information was interpolated with a directional method to achieve comparable display resolution in three dimensions. Next, a ray-tracing method was used to generate a DRR-MRI image at the planned treatment position, and the ray tracing was simply performed on summation of voxels along the ray. The skin and its relative positions were also projected to the DRR-MRI and were used to guide the search of similar features in the portal image. A Canny edge detector was used to enhance the brain contour in both portal and simulation images. The skin in the brain portal image was then extracted using a knowledge-based searching technique. Finally, a Chamfer matching technique was used to correlate features between DRR-MRI and portal image. Results: The MR image-guided portal verification method was evaluated using a brain phantom case and a clinical patient case. Both DRR-CT and DRR-MRI were generated using CT and MR phantom images with the same beam orientation and then compared. The matching result indicated that the maximum deviation of internal structures was less than 1 mm. The segmented results for brain MR slice images indicated that a wavelet-based image segmentation technique provided a reasonable estimation for the brain skin. For the clinical patient case with a given portal field, the MR image-guided verification method provided an excellent match between

  20. EDITORIAL: Imaging systems and techniques Imaging systems and techniques

    Science.gov (United States)

    Yang, Wuqiang; Giakos, George; Nikita, Konstantina; Pastorino, Matteo; Karras, Dimitrios

    2009-10-01

    The papers in this special issue focus on providing the state-of-the-art approaches and solutions to some of the most challenging imaging areas, such as the design, development, evaluation and applications of imaging systems, measuring techniques, image processing algorithms and instrumentation, with an ultimate aim of enhancing the measurement accuracy and image quality. This special issue explores the principles, engineering developments and applications of new imaging systems and techniques, and encourages broad discussion of imaging methodologies, shaping the future and identifying emerging trends. The multi-faceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment and technological evolution. There is an urgent need to address new problems, which tend to be either static but complex, or dynamic, e.g. rapidly evolving with time, with many unknowns, and to propose innovative solutions. For instance, the battles against cancer and terror, monitoring of space resources and enhanced awareness, management of natural resources and environmental monitoring are some of the areas that need to be addressed. The complexity of the involved imaging scenarios and demanding design parameters, e.g. speed, signal-to-noise ratio (SNR), specificity, contrast, spatial resolution, scatter rejection, complex background and harsh environments, necessitate the development of a multi-functional, scalable and efficient imaging suite of sensors, solutions driven by innovation, and operation on diverse detection and imaging principles. Efficient medical imaging techniques capable of providing physiological information at the molecular level present another important research area. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, and using high-resolution, high-selectivity nano-imaging methods, quantum dots, nanoparticles, biomarkers, nanostructures, nanosensors, micro-array imaging chips

  1. Neuronal Clustering of Brain fMRI Images

    OpenAIRE

    Lachiche, N; Hommet, J.; J. Korczak; Braud, A.

    2005-01-01

    Functional Magnetic Resonance Imaging (fMRI) allows the neuroscientists to observe the human brain in vivo. The current approach consists in statistically validating their hypotheses. Data mining techniques provide an opportunity to help them in making up their hypotheses. This paper shows how a neuronal clustering technique can highlight active areas thanks to an appropriate distance between fMRI image sequences. This approach has been integrated into an interactive environment for knowledge...

  2. Brain MR imaging in dietarily treated phenylketonuria

    Energy Technology Data Exchange (ETDEWEB)

    Breysem, L. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Smet, M.H. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Johannik, K. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Hecke, P. van [Dept. of Radiology, University Hospitals, Leuven (Belgium); Francois, B. [L. Willems Inst., Diepenbeek (Belgium); Wilms, G. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Bosmans, H. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Marchal, G. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Jaeken, J. [Dept. of Pediatrics, University Hospitals, Leuven (Belgium); Demaerel, P. [Dept. of Radiology, University Hospitals, Leuven (Belgium)

    1994-08-01

    Magnetic resonance imaging is the most efficient imaging modality to evaluate brain gray and white matter of patients with metabolic diseases. The main purpose of our study was to investigate the relation between brain MRI abnormalities and the phenylalanine (phe) and tyrosine (tyr) blood levels in 38 phenylketonuria (PKU) patients. Increased periventricular white matter intensity on T2-weighted brain images was the only pathologic finding in 24 patients. Brain MRI abnormalities were scored (4) and correlated with the individual mean phe and phe/tyr levels during 1 year preceding MR examination and with phe tolerance. The residual activity of phenylalanine hydroxylase was defined for each patient by an oral phe tolerance. The appearance of MRI abnormalities on brain T2-weighted images correlates with a threshold mean phe level (averaged over the year preceding the examination). (orig.)

  3. SU-E-J-39: Comparison of PTV Margins Determined by In-Room Stereoscopic Image Guidance and by On-Board Cone Beam Computed Tomography Technique for Brain Radiotherapy Patients

    International Nuclear Information System (INIS)

    Purpose: Stereoscopic in room kV image guidance is a faster tool in daily monitoring of patient positioning. Our centre, for the first time in the world, has integrated such a solution from BrainLAB (ExacTrac) with Elekta's volumetric cone beam computed tomography (XVI). Using van Herk's formula, we compared the planning target volume (PTV) margins calculated by both these systems for patients treated with brain radiotherapy. Methods: For a total of 24 patients who received partial or whole brain radiotherapy, verification images were acquired for 524 treatment sessions by XVI and for 334 sessions by ExacTrac out of the total 547 sessions. Systematic and random errors were calculated in cranio-caudal, lateral and antero-posterior directions for both techniques. PTV margins were then determined using van Herk formula. Results: In the cranio-caudal direction, systematic error, random error and the calculated PTV margin were found to be 0.13 cm, 0.12 cm and 0.41 cm with XVI and 0.14 cm, 0.13 cm and 0.44 cm with ExacTrac. The corresponding values in lateral direction were 0.13 cm 0.1 cm and 0.4 cm with XVI and 0.13 cm, 0.12 cm and 0.42 cm with ExacTrac imaging. The same parameters for antero-posterior were for 0.1 cm, 0.11 cm and 0.34 cm with XVI and 0.13 cm, 0.16 cm and 0.43 cm with ExacTrac imaging. The margins estimated with the two imaging modalities were comparable within ± 1 mm limit. Conclusion: Verification of setup errors in the major axes by two independent imaging systems showed the results are comparable and within ± 1 mm. This implies that planar imaging based ExacTrac can yield equal accuracy in setup error determination as the time consuming volumetric imaging which is considered as the gold standard. Accordingly PTV margins estimated by this faster imaging technique can be confidently used in clinical setup

  4. SU-E-J-39: Comparison of PTV Margins Determined by In-Room Stereoscopic Image Guidance and by On-Board Cone Beam Computed Tomography Technique for Brain Radiotherapy Patients

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, T; Paul, S; Munshi, A; Sarkar, B; Krishnankutty, S; Sathya, J; George, S; Jassal, K; Roy, S; Mohanti, B [Fortis Memorial Research Institute, Gurgaon (India)

    2014-06-01

    Purpose: Stereoscopic in room kV image guidance is a faster tool in daily monitoring of patient positioning. Our centre, for the first time in the world, has integrated such a solution from BrainLAB (ExacTrac) with Elekta's volumetric cone beam computed tomography (XVI). Using van Herk's formula, we compared the planning target volume (PTV) margins calculated by both these systems for patients treated with brain radiotherapy. Methods: For a total of 24 patients who received partial or whole brain radiotherapy, verification images were acquired for 524 treatment sessions by XVI and for 334 sessions by ExacTrac out of the total 547 sessions. Systematic and random errors were calculated in cranio-caudal, lateral and antero-posterior directions for both techniques. PTV margins were then determined using van Herk formula. Results: In the cranio-caudal direction, systematic error, random error and the calculated PTV margin were found to be 0.13 cm, 0.12 cm and 0.41 cm with XVI and 0.14 cm, 0.13 cm and 0.44 cm with ExacTrac. The corresponding values in lateral direction were 0.13 cm 0.1 cm and 0.4 cm with XVI and 0.13 cm, 0.12 cm and 0.42 cm with ExacTrac imaging. The same parameters for antero-posterior were for 0.1 cm, 0.11 cm and 0.34 cm with XVI and 0.13 cm, 0.16 cm and 0.43 cm with ExacTrac imaging. The margins estimated with the two imaging modalities were comparable within ± 1 mm limit. Conclusion: Verification of setup errors in the major axes by two independent imaging systems showed the results are comparable and within ± 1 mm. This implies that planar imaging based ExacTrac can yield equal accuracy in setup error determination as the time consuming volumetric imaging which is considered as the gold standard. Accordingly PTV margins estimated by this faster imaging technique can be confidently used in clinical setup.

  5. Exploring brain function with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Since its invention in the early 1990s, functional magnetic resonance imaging (fMRI) has rapidly assumed a leading role among the techniques used to localize brain activity. The spatial and temporal resolution provided by state-of-the-art MR technology and its non-invasive character, which allows multiple studies of the same subject, are some of the main advantages of fMRI over the other functional neuroimaging modalities that are based on changes in blood flow and cortical metabolism. This paper describes the basic principles and methodology of fMRI and some aspects of its application to functional activation studies. Attention is focused on the physiology of the blood oxygenation level-dependent (BOLD) contrast mechanism and on the acquisition of functional time-series with echo planar imaging (EPI). We also provide an introduction to the current strategies for the correction of signal artefacts and other image processing techniques. In order to convey an idea of the numerous applications of fMRI, we will review some of the recent results in the fields of cognitive and sensorimotor psychology and physiology

  6. [Imaging of brain changes in chronic pain].

    Science.gov (United States)

    Vartiainen, Nuutti; Forss, Nina

    2014-01-01

    Modern methods of brain imaging have enabled objective measurements of functional and structural brain changes associated with chronic pain conditions. According to recent investigations, chronic pain is not only associated with abnormally strong or prolonged activity of regions processing acute pain, but also with activation of brain networks that are characteristic for each pain state, changes in cortical remodeling, as well as local reduction of grey matter in several regions of the brain. Brain changes associated with chronic pain facilitate the understanding of mechanisms of various chronic pain conditions. PMID:25211820

  7. Clinical application of synthesized brain surface imaging for preoperative simulation of brain biopsy under local anesthesia

    International Nuclear Information System (INIS)

    Surface anatomy scanning (SAS) is the technique which permits the direct visualization of brain surface structures, including cortical sulci, guri, subcortical lesions as well as skin markings for craniotomy. A synthesized brain surface image is a technique that combines MR angiography (MRA) with SAS, and it proposed by us for detecting cerebral superficial veins with these surface structures on the same image. The purpose of this report is to present the result of applying the synthesized brain surface image to the preoperative simulation of biopsy under local anesthesia in 2 cases of multiple metastatic brain tumors. The parameters for SAS were TR/TE=50/40 msec, flip angle=60deg by the fast T2 technique using refocused FID in steady-state (STERF technique). SAS images were processed by gray scale reversal. The MRA data were acquired with two-dimensional time of flight (TOF) sequence after intravenous administration of Gd-DTPA. Before imaging, the water-filled plastic tubes were placed on the patients scalp as markings for craniotomy. Their positions were planned by the neurosurgeons. On SAS, the markings for burr-hole appeared located above the tumors. However on the synthesized brain surface images, the positions of burr-hole were considered to be inadequate, since superficial cerebral vein and sinus were also visualized in the area of the markings. From these results, the positions of burr-hole were reset to avoid the venous structures, and so as to include the lesions in operations. The biopsies were performed successfully and safely because the venous structure could be excluded from the operative field. By this technique it was easy to confirm the relationships among lesions, skin markings and venous structures. The technique described appears to be a useful method for preoperative simulation of biopsies for multiple metastatic brain tumors under local anesthesia. (author)

  8. STEREOLOGICAL EVALUATION OF BRAIN MAGNETIC RESONANCE IMAGES OF SCHIZOPHRENIC PATIENTS

    Directory of Open Access Journals (Sweden)

    Amani Abdelrazag Elfaki

    2013-11-01

    Full Text Available Advances in neuroimaging have enabled studies of specific neuroanatomical abnormalities with relevance to schizophrenia. This study quantified structural alterations on brain magnetic resonance (MR images of patients with schizophrenia. MR brain imaging was done on 88 control and 57 schizophrenic subjects and Dicom images were analyzed with ImageJ software. The brain volume was estimated with the planimetric stereological technique. The volume fraction of brain structures was also estimated. The results showed that, the mean volume of right, left, and total hemispheres in controls were 551, 550, and 1101 cm³, respectively. The mean volumes of right, left, and total hemispheres in schizophrenics were 513, 512, and 1026 cm³, respectively. The schizophrenics’ brains were smaller than the controls (p < 0.05. The mean volume of total white matter of controls (516 cm³ was bigger than the schizophrenics’ volume (451 cm³, (p < 0.05. The volume fraction of total white matter was also lower in schizophrenics (p < 0.05. Volume fraction of the lateral ventricles was higher in schizophrenics (p < 0.05. According to the findings, the volumes of schizophrenics’ brain were smaller than the controls and the volume fractional changes in schizophrenics showed sex dependent differences. We conclude that stereological analysis of MR brain images is useful for quantifying schizophrenia related structural changes.

  9. Brain Imaging with Positron Emission Tomography: Quantification and Biomedical Applications in Alzheimer's Disease and Brain Tumors

    OpenAIRE

    Wardak, Mirwais

    2013-01-01

    Positron emission tomography (PET) is a unique and powerful imaging technique that is used to visualize and quantify various biological processes in living subjects in health and disease. PET imaging can also provide biological information for the assessment of therapies. In this dissertation, we will cover three projects that utilize the quantitative capability of PET for studying two neurological disorders: Alzheimer's disease and brain tumors.One of the goals in PET imaging is to produce...

  10. Wearable 3-D Photoacoustic Tomography for Functional Brain Imaging in Behaving Rats

    OpenAIRE

    Tang, Jianbo; Jason E. Coleman; DAI, XIANJIN; Jiang, Huabei

    2016-01-01

    Understanding the relationship between brain function and behavior remains a major challenge in neuroscience. Photoacoustic tomography (PAT) is an emerging technique that allows for noninvasive in vivo brain imaging at micrometer-millisecond spatiotemporal resolution. In this article, a novel, miniaturized 3D wearable PAT (3D-wPAT) technique is described for brain imaging in behaving rats. 3D-wPAT has three layers of fully functional acoustic transducer arrays. Phantom imaging experiments rev...

  11. Understanding Diffusion MR Imaging Techniques: From Scalar Diffusion-weighted Imaging to Diffusion Tensor Imaging and Beyond

    OpenAIRE

    Hagmann, P.; Jonasson, L.; Maeder, P; Thiran, Jean-Philippe; Wedeen, V.; Meuli, R

    2006-01-01

    The complex structural organization of the white matter of the brain can be depicted in vivo in great detail with advanced diffusion magnetic resonance (MR) imaging schemes. Diffusion MR imaging techniques are increasingly varied, from the simplest and most commonly used technique —the mapping of apparent diffusion coefficient values— to the more complex, such as diffusion tensor imaging, q-ball imaging, diffusion spectrum imaging, and tractography. The type of structural information obtained...

  12. Imaging Brain Development: Benefiting from Individual Variability

    OpenAIRE

    Megha Sharda; Nicholas E.V. Foster; Hyde, Krista L.

    2015-01-01

    Human brain development is a complex process that evolves from early childhood to young adulthood. Major advances in brain imaging are increasingly being used to characterize the developing brain. These advances have further helped to elucidate the dynamic maturational processes that lead to the emergence of complex cognitive abilities in both typical and atypical development. However, conventional approaches involve categorical group comparison models and tend to disregard the role of widesp...

  13. Radar rainfall image repair techniques

    Directory of Open Access Journals (Sweden)

    Stephen M. Wesson

    2004-01-01

    Full Text Available There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological echoes that influence radar data quality on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing the images in both a computationally fast and accurate manner, and are nearest neighbour techniques of two sub-types: Individual Target and Border Tracing. The contaminated data is estimated through Kriging, considered the optimal technique for the spatial interpolation of Gaussian data, where the 'screening effect' that occurs with the Kriging weighting distribution around target points is exploited to ensure computational efficiency. Matrix rank reduction techniques in combination with Singular Value Decomposition (SVD are also suggested for finding an efficient solution to the Kriging Equations which can cope with near singular systems. Rainfall estimation at ground level from radar rainfall volume scan data is of interest and importance in earth bound applications such as hydrology and agriculture. As an extension of the above, Ordinary Kriging is applied to three-dimensional radar rainfall data to estimate rainfall rate at ground level. Keywords: ground clutter, data infilling, Ordinary Kriging, nearest neighbours, Singular Value Decomposition, border tracing, computation time, ground level rainfall estimation

  14. Natural image classification driven by human brain activity

    Science.gov (United States)

    Zhang, Dai; Peng, Hanyang; Wang, Jinqiao; Tang, Ming; Xue, Rong; Zuo, Zhentao

    2016-03-01

    Natural image classification has been a hot topic in computer vision and pattern recognition research field. Since the performance of an image classification system can be improved by feature selection, many image feature selection methods have been developed. However, the existing supervised feature selection methods are typically driven by the class label information that are identical for different samples from the same class, ignoring with-in class image variability and therefore degrading the feature selection performance. In this study, we propose a novel feature selection method, driven by human brain activity signals collected using fMRI technique when human subjects were viewing natural images of different categories. The fMRI signals associated with subjects viewing different images encode the human perception of natural images, and therefore may capture image variability within- and cross- categories. We then select image features with the guidance of fMRI signals from brain regions with active response to image viewing. Particularly, bag of words features based on GIST descriptor are extracted from natural images for classification, and a sparse regression base feature selection method is adapted to select image features that can best predict fMRI signals. Finally, a classification model is built on the select image features to classify images without fMRI signals. The validation experiments for classifying images from 4 categories of two subjects have demonstrated that our method could achieve much better classification performance than the classifiers built on image feature selected by traditional feature selection methods.

  15. Modelling Brain Tissue using Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Dyrby, Tim Bjørn

    2008-01-01

    an ongoing chemical reaction due to the fixative used. Short-term instabilities within the first 15 hours of DWI scanning were observed and found likely to be caused by the preparation of the postmortem tissue prior to MR scanning. This artefact can be avoided e.g. by simply excluding DW......Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking...... environment differs from that of in vivo both due to a lowered environmental temperature and due to the fixation process itself. We argue that the perfusion fixation procedure employed in this thesis ensures that the postmortem tissue is as close to that of in vivo as possible. Different fibre reconstruction...

  16. Brain MR imaging in child abuse

    International Nuclear Information System (INIS)

    Intracranial injuries represent the most severe manifestation of child abuse. CT of the brain is the current standard for evaluation of these infants; however, MR imaging offers several potential advantages. MR imaging and CT were performed in ten infants who suffered intracranial trauma owing to child abuse. CT was slightly better at demonstrating subarachnoid hemorrhage and had definite advantages for defining fractures. MR imaging was superior in the demonstration of subacute extraaxial hemorrhage, deep brain injuries owing to shearing effects from shaking, and anoxic injuries. MR imaging has a definite complementary role in the evaluation of acute intracranial trauma in child abuse victims

  17. Raman Imaging Techniques and Applications

    CERN Document Server

    2012-01-01

    Raman imaging has long been used to probe the chemical nature of a sample, providing information on molecular orientation, symmetry and structure with sub-micron spatial resolution. Recent technical developments have pushed the limits of micro-Raman microscopy, enabling the acquisition of Raman spectra with unprecedented speed, and opening a pathway to fast chemical imaging for many applications from material science and semiconductors to pharmaceutical drug development and cell biology, and even art and forensic science. The promise of tip-enhanced raman spectroscopy (TERS) and near-field techniques is pushing the envelope even further by breaking the limit of diffraction and enabling nano-Raman microscopy.

  18. Differential MRI Diagnosis Between Brain Abscess and Necrotic or Cystic Brain Tumors Using Diffusion Weighted Images

    Directory of Open Access Journals (Sweden)

    Zinat Miabi

    2009-01-01

    Full Text Available "nIntroduction: Differentiating brain abscesses from cystic or necrotic tumors by CT or MR imaging can be difficult. Difficulties in the diagnosis of intracranial abscess are mainly due to the combination of often unspecified clinical findings and similarities in the morphologic appearance of some intracranial mass lesions, such as cystic gliomas, metastases, and brain abscesses. Diffusion-weighted imaging provides a way to evaluate the diffusion properties of water molecules in tissue and has been used for diseases such as ischemia, tumors, epilepsy, and white matter disorders. The goal of this study was to evaluate the diagnostic utility of diffusion MRI to differentiate between brain abscesses and necrotic or cystic brain tumors. "nMaterials and Methods: MRI was performed in 17 patients (12 men and five women; age range, 19–74 years [mean, 55 years] with necrotic lesions and MR imaging evidence of ring-shaped enhancement after the injection of contrast material .In addition to standard MR sequences diffusion weighted MRI with apparent coefficient (ADC maps. "nResults: Eleven patients had tumors, and six had pyogenic abscesses. The tumors were glioblastomas (five patients, anaplastic astrocytoma (three patients, metastases (three patients, and primary malignancy, including lung (2 and breast (1 cancer. Surgical or stereotactic biopsies were obtained, and histologic studies were performed in all except one case (case 5. In the cases of abscess, bacteriologic analysis was also conducted. None of these lesions appeared hemorrhagic on T1-weighted images. "nConclusion: Diffusion-weighted imaging is useful for differentiating brain abscess from cystic or necrotic brain tumor, which is often difficult with conventional MR imaging. Diffusion-weighted imaging is useful as an additional imaging technique for establishing the differential diagnosis between brain abscesses and cystic or necrotic brain tumors. It requires less imaging time and is more

  19. Brain and nervous system (image)

    Science.gov (United States)

    The nervous system controls the many complicated and interconnected functions of the body and mind. Motor, sensory cognitive and autonomic function are all coordinated and driven by the brain and nerves. As people age, nerve ...

  20. Brain and nervous system (image)

    Science.gov (United States)

    ... complicated and interconnected functions of the body and mind. Motor, sensory cognitive and autonomic function are all coordinated and driven by the brain and nerves. As people age, nerve cells deteriorated ...

  1. Brain magnetic resonance imaging with contrast dependent on blood oxygenation

    International Nuclear Information System (INIS)

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity

  2. Brain magnetic resonance imaging with contrast dependent on blood oxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W. (AT and T Bell Laboratories, Murray Hill, NJ (United States))

    1990-12-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity.

  3. Wavelet Based Image Denoising Technique

    Directory of Open Access Journals (Sweden)

    Sachin D Ruikar

    2011-03-01

    Full Text Available This paper proposes different approaches of wavelet based image denoising methods. The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. Wavelet algorithms are useful tool for signal processing such as image compression and denoising. Multi wavelets can be considered as an extension of scalar wavelets. The main aim is to modify the wavelet coefficients in the new basis, the noise can be removed from the data. In this paper, we extend the existing technique and providing a comprehensive evaluation of the proposed method. Results based on different noise, such as Gaussian, Poisson’s, Salt and Pepper, and Speckle performed in this paper. A signal to noise ratio as a measure of the quality of denoising was preferred.

  4. Imaging techniques in thyroid diagnostics

    International Nuclear Information System (INIS)

    Imaging techniques were discussed in a comprehensive manner and in consideration of the rapid recent progress. 30 papers were presented on the subjects of, roughly, radiology, nuclear medicine, and sonography. Apart from conventional radiodiagnostics, which may even yield epidemiological information, the first section also discussed pneumatological functional analysis as a mean of diagnosing tracheal insufficiencies. Thyroid CT is the method of choice in the mediastinal manifestations of thyroid diseases and in examinations of the organs next to the thyroid. Orbital CT yields completely new findings on the pathophysiology, differential diagnosis and therapy of endocrineous orbitopathy. - While the diagnostic value of nuclear spin tomography remains uncertain, thyroid scintiscanning has reached maturity by now. In contrast to scanners, which give a general image, the γ camera can detect regional functional phenomena. Fluorescence scintiscanning, apart from quantification of intrathyroid iodine, enables scintigraphic imaging of the thyroid without incorporation of radioactivity. - The recent progress in thyroid sonography has been dramatic. Apart from the simple and reproducible technique of volumetry, nonstandard echo structures indicate diffuse or focal fine tissue lesions, and sonography has therefore become an accepted technique prior to fine needle biopsy or scintiscanning. (orig.)

  5. Imaging Techniques for Microwave Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Donne, T. [FOM-Institute for Plasma Physics Rijnhuizen, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Luhmann Jr, N.C. [University of California, Davis, CA 95616 (United States); Park, H.K. [POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Tobias, B.

    2011-07-01

    Advances in microwave technology have made it possible to develop a new generation of microwave imaging diagnostics for measuring the parameters of magnetic fusion devices. The most prominent of these diagnostics is electron cyclotron emission imaging (ECE-I). After the first generation of ECE-I diagnostics utilized at the TEXT-U, RTP and TEXTOR tokamaks and the LHD stellarator, new systems have recently come into operation on ASDEX-UG and DIII-D, soon to be followed by a system on KSTAR. The DIII-D and KSTAR systems feature dual imaging arrays that observe different parts of the plasma. The ECE-I diagnostic yields two-dimensional movies of the electron temperature in the plasma and has given already new insights into the physics of sawtooth oscillations, tearing modes and edge localized modes. Microwave Imaging Reflectometry (MIR) is used on LHD to measure electron density fluctuations. A pilot MIR system has been tested at TEXTOR and, based on the promising results, a new system is now under design for KSTAR. The system at TEXTOR was used to measure the plasma rotation velocity. The system at KSTAR and also the one on LHD will be/are used for measuring the profile of the electron density fluctuations in the plasma. Other microwave imaging diagnostics are phase imaging interferometry, and imaging microwave scattering. The emphasis in this paper will be largely focused on ECE-I. First an overview of the advances in microwave technology are discussed, followed by a description of a typical ECE-I system along with some typical experimental results. Also the utilization of imaging techniques in other types of microwave diagnostics will be briefly reviewed. This document is composed of the slides of the presentation. (authors)

  6. Brain Magnetic Resonance Imaging in Tyrosinemia

    International Nuclear Information System (INIS)

    A 3.5-year-old girl with tyrosinemia is reported. A computed tomography scan of the abdomen revealed multiple hepatic nodules. Brain magnetic resonance imaging revealed bilateral high-signal changes confined to the globus pallidus on T2-weighted images. Globus pallidus lesions likely represented neuropathologic changes such as astocytosis, delayed myelination, and status spongiosus (myelin splitting and vacuolation)

  7. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    Science.gov (United States)

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…

  8. Image Registration Concept and Techniques: A Review

    Directory of Open Access Journals (Sweden)

    Sombir Singh Bisht

    2014-04-01

    Full Text Available In the past few years the global need for low computation, less time consuming, and good quality image mapping methods has caused an image registration technique alive in multiple application areas. Image registration is the method of superimposition the pixels or control points from one image over another image namely the target image and reference image respectively. The concentration is on various methods of mapping parameters. Input images are reference image and the sensed image. Basically image registration is of two types Area based and Feature based. Area based works on the intensity of image and feature based is based on feature points or objects of image. Also the simple and efficient registration techniques are very essential in many application areas. This paper presents a review on image registration techniques as well as the hybrid registration approach. Many authors have also reported the modified registration techniques, each technique is reviewed according to its merits and drawbacks.

  9. Scanning Techniques for Brain-Tumour, Localization

    International Nuclear Information System (INIS)

    The colour scanner has been used to scan two small clinical series of brain tumour cases, one by means of As74 using positron detection, the other with I131-labelled albumin using gamma detection and a focusing collimator. The results of these series are given and the value of the procedure to the clinician is presented. Matthews has shown, in studies on tumour- bearing rats, that Bi206 citrate should be a particularly favourable material for brain tumour localization and a preliminary attempt has been made to scan with this material using gamma detection and a focusing collimator. Preliminary results of this study are presented. The focusing collimators used with the gamma-emitting isotopes have a deep geometrical focus and isocount responses are obtained on point sources which are almost depth independent for 20 cm. Experimental results on a series of collimators lead to design data for building such collimators to a given specification. Stationary detector scanning has been carried out on brain-tumour cases using a gamma camera with storage-tube display. The advantages of such machines lie in greater sensitivity and more rapid visualization of the pattern of distribution of radioactivity, which in turn enables dynamic studies to be carried out. Problems which occur with such machines include the difficulty in marking anatomical features and the geometric distortions which occur. These are compared for pin-hole and matrix viewing apertures. The improvement in performance resulting from circuit modifications to remove the dependence of picture size on gamma-ray energy is discussed. The analysis of cerebral scans presents difficulties when the suspected region is only slightly greater in count-rate than its surroundings. A ''normal'' count-rate pattern for a head has been determined by dividing scans into regions which are approximately anatomically equivalent from patient to patient, and counting scintiscan marks in each region. Any abnormal scan may then be

  10. Magnetic resonance imaging of a brain abscess

    International Nuclear Information System (INIS)

    Magnetic resonance imaging (MRI) was performed on 13 patients with brain abscesses, and the alternation of MRI findings, as correlated with the progression of brain-abscess formation, was reviewed. In the cerebritis stage, spin-echo images showed a high intensity, and inversion-recovery images, a low intensity, due to inflammation and edema. The spin-echo images were very sensitive in delineating the brain edema; however, it was difficult to distinguish the inflammation from the surrounding edema. In the capsule stage, due to the accumulation of purulent material, the central necrotic area was demonstrated as a low-intensity area, while the capsule of the abscess was revealed as an iso-intensity ring on the inversion-recovery images. The central necrotic area also decreased in intensity on spin-echo images in the later period of this stage. With contrast enhancement (Gd-DTPA), the SR image showed the capsule as a high-intensity ring. MRI was found to be a useful method for estimating the process of the formation of a brain abscess. (author)

  11. Magnetic resonance imaging of a brain abscess

    Energy Technology Data Exchange (ETDEWEB)

    Oikawa, Akihiro; Kagawa, Mizuo; Yatoh, Seiji; Izawa, Masahiro; Ujiie, Hiroshi; Sakaguchi, Jun; Onda, Hideaki; Kitamura, Kohichi

    1988-06-01

    Magnetic resonance imaging (MRI) was performed on 13 patients with brain abscesses, and the alternation of MRI findings, as correlated with the progression of brain-abscess formation, was reviewed. In the cerebritis stage, spin-echo images showed a high intensity, and inversion-recovery images, a low intensity, due to inflammation and edema. The spin-echo images were very sensitive in delineating the brain edema; however, it was difficult to distinguish the inflammation from the surrounding edema. In the capsule stage, due to the accumulation of purulent material, the central necrotic area was demonstrated as a low-intensity area, while the capsule of the abscess was revealed as an iso-intensity ring on the inversion-recovery images. The central necrotic area also decreased in intensity on spin-echo images in the later period of this stage. With contrast enhancement (Gd-DTPA), the SR image showed the capsule as a high-intensity ring. MRI was found to be a useful method for estimating the process of the formation of a brain abscess.

  12. Brain imaging, genetics and emotion

    NARCIS (Netherlands)

    Aleman, Andre; Swart, Marte; van Rijn, Sophie

    2008-01-01

    This paper reviews the published evidence on genetically driven variation in neurotransmitter function and brain circuits involved in emotion. Several studies point to a role of the serotonin transporter promoter polymorphism in amygdala activation during emotion perception. We also discuss other po

  13. Noninvasive, in vivo imaging of the mouse brain using photoacoustic microscopy

    OpenAIRE

    Stein, Erich W.; Maslov, Konstantin; Wang, Lihong V.

    2009-01-01

    Noninvasive, high resolution imaging of mouse brain activity is poised to provide clinically translatable insights into human neurological disease progression. Toward noninvasive imaging of brain activity through the hemodynamic response, the dark-field photoacoustic microscopy (PAM) technique was enhanced to image the cortex vasculature of the mouse brain in vivo using endogenous hemoglobin contrast. Specifically, the PAM system was redesigned to efficiently collect photoacoustic waves origi...

  14. Recent advances in imaging of brain tumors

    OpenAIRE

    D A Sanghvi

    2009-01-01

    The recent advances in brain tumor imaging offer unique anatomical as well as pathophysiological information that provides new insights on brain tumors, directed at facilitating therapeutic decisions and providing information regarding prognosis. This information is presently utilized in clinical practice for initial diagnosis and noninvasive, preoperative grading of tumors, biopsy planning, surgery, and radiation portal planning, as well as, prognostication. The newer advances described in t...

  15. Image Inpainting by Kriging Interpolation Technique

    OpenAIRE

    2013-01-01

    Image inpainting is the art of predicting damaged regions of an image. The manual way of image inpainting is a time consuming. Therefore, there must be an automatic digital method for image inpainting that recovers the image from the damaged regions. In this paper, a novel statistical image inpainting algorithm based on Kriging interpolation technique was proposed. Kriging technique automatically fills the damaged region in an image using the information available from its surrounding regions...

  16. Generating text from functional brain images

    Directory of Open Access Journals (Sweden)

    Francisco ePereira

    2011-08-01

    Full Text Available Recent work has shown that it is possible to take brain images acquired during viewing of a scene and reconstruct an approximation of the scene from those images. Here we show that it is also possible to generate text about the mental content reflected in brain images. We began with images collected as participants read names of concrete items (e.g., "Apartment" while also seeing line drawings of the item named. We built a model of the mental semantic representation of concrete concepts from text data and learned to map aspects of such representation to patterns of activation in the corresponding brain image. In order to validate this mapping, without accessing information about the items viewed for left-out individual brain images, we were able to generate from each one a collection of semantically pertinent words (e.g., "door," "window" for "Apartment". Furthermore, we show that the ability to generate such words allows us to perform a classification task and thus validate our method quantitatively.

  17. MR imaging of regional late brain development

    International Nuclear Information System (INIS)

    This paper reports, to complement current knowledge on brain development, late regional brain maturation assessed with quantitative MR imaging. Axial and coronal head spin-echo (SE) images were obtained in 60 healthy individuals aged 5--56 years, with a double-echo, flow compensated imaging sequence obtained with a 1.5-T Magnetom spectroscopy and imaging system. T2-weighted images were calculated from the intensity differences in SE images at echo times (TEs) of 15 and 90 msec (TR = 2.5 second). The mean T2 values were determined at 16 sites in each cerebral hemisphere. T2 values of the six frontal subcortical white matter (FSCWM) sites and of the internal capsule (IC) were evaluated. Mean T2 values in the IC decreased until age 10 years, whereas this decrease continued in the FSCWM past age 15 years before reaching a plateau. Differential age-dependent patterns of mean T2 values emerged between the six FSCWM sites. The spread of T2 values varied at different sites independent of the age of the individuals. T2- values have previously been shown to reflect the status of brain development. The authors' data on the six FSCWM sites and the IC extend these findings to specific substructures of the brain. Interindividual variations and technical issues are responsible for the observed spread of data

  18. Four-view spect brain imaging detector

    International Nuclear Information System (INIS)

    This paper reports that with increasing use of single photon radiopharmaceuticals for brain imaging, there is a growing demand for efficient, economical SPECT brain imaging instrumentation. This new multiple view imaging detector design has the sensitivity advantages of an array of four discrete cameras, but functions essentially like a single camera head. Four separate flat crystals are surrounded with PMT's which perform as a single array for photon event detection. Unique windows on adjoining crystal edges are coupled to corner light pipe/PMT assemblies. Reduced edge packing range, and sharing of corner PMT's allows a compact assembly volume, even with 3 inch PMT's. The imaging volume is approximately a 23 centimeter cube, and the imaging electronics are nearly the same as used in a single 64 PMT gamma camera

  19. Brain 'imaging' in the Renaissance.

    Science.gov (United States)

    Paluzzi, Alessandro; Belli, Antonio; Bain, Peter; Viva, Laura

    2007-12-01

    During the Renaissance, a period of 'rebirth' for humanities and science, new knowledge and speculation began to emerge about the function of the human body, replacing ancient religious and philosophical dogma. The brain must have been a fascinating mystery to a Renaissance artist, but some speculation existed at that time on the function of its parts. Here we show how revived interest in anatomy and life sciences may have influenced the figurative work of Italian and Flemish masters, such as Rafael, Michelangelo and David. We present a historical perspective on the artists and the period in which they lived, their fascination for human anatomy and its symbolic use in their art. Prior to the 16th century, knowledge of the brain was limited and influenced in a dogmatic way by the teachings of Galen(1) who, as we now know, conducted his anatomical studies not on humans but on animals.(2) Nemesus, Bishop of Emesa, in around the year 400 was one of the first to attribute mental faculties to the brain, specifically to the ventricles. He identified two anterior (lateral) ventricles, to which he assigned perception, a middle ventricle responsible for cognition and a posterior ventricle for memory.(2,3) After a long period of stasis in the Middle Ages, Renaissance scholars realized the importance of making direct observations on dissected cadavers. Between 1504 and 1507, Leonardo da Vinci conducted experiments to reveal the anatomy of the ventricular system in the brain. He injected hot wax through a tube thrust into the ventricular cavities of an ox and then scraped the overlying brain off, thus obtaining, in a simple but ingenious way, an accurate cast of the ventricles.(2,4) Leonardo shared the belief promoted by scholarly Christians that the ventricles were the abode of rational soul. We have several examples of hidden symbolism in Renaissance paintings, but the influence of phrenology and this rudimentary knowledge of neuroanatomy on artists of that period is under

  20. Molecular imaging of the brain. Using multi-quantum coherence and diagnostics of brain disorders

    International Nuclear Information System (INIS)

    Explains the basics of the MRI and its use in the diagnostics and the treatment of the human brain disorders. Examines multi-quantum magnetic resonance imaging methods and the diagnostics of brain disorders. Covers how in a non-invasive manner one can diagnose diseases of the brain. This book examines multi-quantum magnetic resonance imaging methods and the diagnostics of brain disorders. It consists of two Parts. The part I is initially devoted towards the basic concepts of the conventional single quantum MRI techniques. It is supplemented by the basic knowledge required to understand multi-quantum MRI. Practical illustrations are included both on recent developments in conventional MRI and the MQ-MRI. This is to illustrate the connection between theoretical concepts and their scope in the clinical applications. The Part II initially sets out the basic details about quadrupole charge distribution present in certain nuclei and their importance about the functions they perform in our brain. Some simplified final mathematical expressions are included to illustrate facts about the basic concepts of the quantum level interactions between magnetic dipole and the electric quadrupole behavior of useful nuclei present in the brain. Selected practical illustrations, from research and clinical practices are included to illustrate the newly emerging ideas and techniques. The reader should note that the two parts of the book are written with no interdependence. One can read them quite independently.

  1. Laser Doppler imaging for intraoperative human brain mapping.

    Science.gov (United States)

    Raabe, A; Van De Ville, D; Leutenegger, M; Szelényi, A; Hattingen, E; Gerlach, R; Seifert, V; Hauger, C; Lopez, A; Leitgeb, R; Unser, M; Martin-Williams, E J; Lasser, T

    2009-02-15

    The identification and accurate location of centers of brain activity are vital both in neuro-surgery and brain research. This study aimed to provide a non-invasive, non-contact, accurate, rapid and user-friendly means of producing functional images intraoperatively. To this end a full field Laser Doppler imager was developed and integrated within the surgical microscope and perfusion images of the cortical surface were acquired during awake surgery whilst the patient performed a predetermined task. The regions of brain activity showed a clear signal (10-20% with respect to the baseline) related to the stimulation protocol which lead to intraoperative functional brain maps of strong statistical significance and which correlate well with the preoperative fMRI and intraoperative cortical electro-stimulation. These initial results achieved with a prototype device and wavelet based regressor analysis (the hemodynamic response function being derived from MRI applications) demonstrate the feasibility of LDI as an appropriate technique for intraoperative functional brain imaging. PMID:19049824

  2. An Analysis of Pyramidal Image Fusion Techniques

    OpenAIRE

    Meek, T. R.

    1999-01-01

    This paper discusses the application of multiresolution image fusion techniques to synthetic aperture radar (SAR) and Landsat imagery. Results were acquired through the development and application of image fusion software to test images. The test images were fused using six image fusion techniques that are the combinations from three types of image decomposition algorithms (ratio of low pass [RoLP] pyramids, gradient pyramids, and morphological pyramids) and two types of fusion algorithms (se...

  3. Assessment of vessel diameters for MR brain angiography processed images

    Science.gov (United States)

    Moraru, Luminita; Obreja, Cristian-Dragos; Moldovanu, Simona

    2015-12-01

    The motivation was to develop an assessment method to measure (in)visible differences between the original and the processed images in MR brain angiography as a method of evaluation of the status of the vessel segments (i.e. the existence of the occlusion or intracerebral vessels damaged as aneurysms). Generally, the image quality is limited, so we improve the performance of the evaluation through digital image processing. The goal is to determine the best processing method that allows an accurate assessment of patients with cerebrovascular diseases. A total of 10 MR brain angiography images were processed by the following techniques: histogram equalization, Wiener filter, linear contrast adjustment, contrastlimited adaptive histogram equalization, bias correction and Marr-Hildreth filter. Each original image and their processed images were analyzed into the stacking procedure so that the same vessel and its corresponding diameter have been measured. Original and processed images were evaluated by measuring the vessel diameter (in pixels) on an established direction and for the precise anatomic location. The vessel diameter is calculated using the plugin ImageJ. Mean diameter measurements differ significantly across the same segment and for different processing techniques. The best results are provided by the Wiener filter and linear contrast adjustment methods and the worst by Marr-Hildreth filter.

  4. Image reconstruction for brain CT slices

    Institute of Scientific and Technical Information of China (English)

    吴建明; 施鹏飞

    2004-01-01

    Different modalities in biomedical images, like CT, MRI and PET scanners, provide detailed cross-sectional views of human anatomy. This paper introduces three-dimensional brain reconstruction based on CT slices. It contains filtering, fuzzy segmentation, matching method of contours, cell array structure and image animation. Experimental results have shown its validity. The innovation is matching method of contours and fuzzy segmentation algorithm of CT slices.

  5. Radionuclide brain imaging in acquired immunodeficiency syndrome (AIDS)

    International Nuclear Information System (INIS)

    Infection with the Human Immunodeficiency Virus type 1 (HIV-1) may produce a variety of central nervous system (CNS) symptoms and signs. CNS involvement in patients with the Acquired Immunodeficiency Syndrome (AIDS) includes AIDS dementia complex or HIV-1 associated cognitive/motor complex (widely known as HIV encephalopathy), progressive multifocal leucoencephalopathy (PML), opportunistic infections such as Toxoplasma gondii, TB, Cryptococcus and infiltration by non-Hodgkin's B cell lymphoma. High resolution structural imaging investigations, either X-ray Computed Tomography (CT scan) or Magnetic Resonance Imaging (MRI) have contributed to the understanding and definition of cerebral damage caused by HIV encephalopathy. Atrophy and mainly high signal scattered white matter abnormalities are commonly seen with MRI. PML produces focal white matter high signal abnormalities due to multiple foci of demyelination. However, using structural imaging techniques there are no reliable parameters to distinguish focal lesions due to opportunistic infection (Toxoplasma gondii abscess) from neoplasm (lymphoma infiltration). It is studied the use of radionuclide brain imaging techniques in the investigation of HIV infected patients. Brain perfusion Single Photon Emission Tomography (SPET), neuroreceptor and Positron Emission Tomography (PET) studies are reviewed. Greater emphasis is put on the potential of some radiopharmaceuticals, considered to be brain tumour markers, to distinguish intracerebral lymphoma infiltration from Toxoplasma infection. SPET with 201Tl using quantification (tumour to non-tumour radioactivity ratios) appears a very promising technique to identify intracerebral lymphoma

  6. Radionuclide brain imaging in acquired immunodeficiency syndrome (AIDS)

    Energy Technology Data Exchange (ETDEWEB)

    Costa, D.C.; Gacinovic, S.; Miller, R.F. [London University College Medical School, Middlesex Hospital, London (United Kingdom)

    1995-09-01

    Infection with the Human Immunodeficiency Virus type 1 (HIV-1) may produce a variety of central nervous system (CNS) symptoms and signs. CNS involvement in patients with the Acquired Immunodeficiency Syndrome (AIDS) includes AIDS dementia complex or HIV-1 associated cognitive/motor complex (widely known as HIV encephalopathy), progressive multifocal leucoencephalopathy (PML), opportunistic infections such as Toxoplasma gondii, TB, Cryptococcus and infiltration by non-Hodgkin`s B cell lymphoma. High resolution structural imaging investigations, either X-ray Computed Tomography (CT scan) or Magnetic Resonance Imaging (MRI) have contributed to the understanding and definition of cerebral damage caused by HIV encephalopathy. Atrophy and mainly high signal scattered white matter abnormalities are commonly seen with MRI. PML produces focal white matter high signal abnormalities due to multiple foci of demyelination. However, using structural imaging techniques there are no reliable parameters to distinguish focal lesions due to opportunistic infection (Toxoplasma gondii abscess) from neoplasm (lymphoma infiltration). It is studied the use of radionuclide brain imaging techniques in the investigation of HIV infected patients. Brain perfusion Single Photon Emission Tomography (SPET), neuroreceptor and Positron Emission Tomography (PET) studies are reviewed. Greater emphasis is put on the potential of some radiopharmaceuticals, considered to be brain tumour markers, to distinguish intracerebral lymphoma infiltration from Toxoplasma infection. SPET with {sup 201}Tl using quantification (tumour to non-tumour radioactivity ratios) appears a very promising technique to identify intracerebral lymphoma.

  7. Metabolic imaging of the heart and brain

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) can provide quantitative images of cerebral function. Detailed maps of critical functional areas such as those concerned with language may ultimately guide the neurosurgeon. In vivo pharmacology of the brain is also being conducted with PET and offers the opportunity for better understanding of the pathophysiology of specific diseases and to tailor therapies to the needs of individual patients. The development of single photon emission computed tomography (SPECT) and radiopharmaceuticals whose intracerebral distribution reflects metabolism, perfusion, and receptor function promises to bring into general medical practice the remarkable diagnostic advances that have previously been limited to a small number of PET centers. Tracers of perfusion and metabolism have been particularly useful in the assessment of Alzheimer disease, cerebrovascular disease, epilepsy, and schizophrenia. SPECT of the heart has been coupled with radiopharmaceuticals that reflect cardiac perfusion, metabolism, and infarction. These studies have been particularly helpful in the identification and assessment of coronary artery disease in its therapy. The recent introduction of Tc-99m-labeled radiotracers further extends the application of this technique to patients with acute ischemia and infarction and to assessment of the effect of interventions such as angioplasty and lytic therapy. Radiolabeled antibody fragments to myosini provide a further tool for early identification of infarction and estimation of its size

  8. Tooling Techniques Enhance Medical Imaging

    Science.gov (United States)

    2012-01-01

    mission. The manufacturing techniques developed to create the components have yielded innovations advancing medical imaging, transportation security, and even energy efficiency.

  9. Round Randomized Learning Vector Quantization for Brain Tumor Imaging

    Directory of Open Access Journals (Sweden)

    Siti Norul Huda Sheikh Abdullah

    2016-01-01

    Full Text Available Brain magnetic resonance imaging (MRI classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function.

  10. Round Randomized Learning Vector Quantization for Brain Tumor Imaging

    Science.gov (United States)

    2016-01-01

    Brain magnetic resonance imaging (MRI) classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ) is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function.

  11. TWO STAGE SPATIAL DOMAIN IMAGE FUSION TECHNIQUES

    Directory of Open Access Journals (Sweden)

    C. Morris

    2014-08-01

    Full Text Available The objective of Image fusion is to combine the information from number of images of the same scene from different sensors or the images with focus on different objects. The result of image fusion is an image which is more informative and of better quality. In this paper a detailed survey of Select Maximum /minimum and principal component analysis for spatial domain image fusion techniques is done. On the basis of the survey an improved spatial domain fusion technique is proposed. The proposed spatial domain technique output performs as the state of the art spatial domain techniques.

  12. New approaches in intelligent image analysis techniques, methodologies and applications

    CERN Document Server

    Nakamatsu, Kazumi

    2016-01-01

    This book presents an Introduction and 11 independent chapters, which are devoted to various new approaches of intelligent image processing and analysis. The book also presents new methods, algorithms and applied systems for intelligent image processing, on the following basic topics: Methods for Hierarchical Image Decomposition; Intelligent Digital Signal Processing and Feature Extraction; Data Clustering and Visualization via Echo State Networks; Clustering of Natural Images in Automatic Image Annotation Systems; Control System for Remote Sensing Image Processing; Tissue Segmentation of MR Brain Images Sequence; Kidney Cysts Segmentation in CT Images; Audio Visual Attention Models in Mobile Robots Navigation; Local Adaptive Image Processing; Learning Techniques for Intelligent Access Control; Resolution Improvement in Acoustic Maps. Each chapter is self-contained with its own references. Some of the chapters are devoted to the theoretical aspects while the others are presenting the practical aspects and the...

  13. Diffusion tensor imaging and fiber tractography in brain malformations

    International Nuclear Information System (INIS)

    Diffusion tensor imaging (DTI) is an advanced MR technique that provides qualitative and quantitative information about the micro-architecture of white matter. DTI and its post-processing tool fiber tractography (FT) have been increasingly used in the last decade to investigate the microstructural neuroarchitecture of brain malformations. This article aims to review the use of DTI and FT in the evaluation of a variety of common, well-described brain malformations, in particular by pointing out the additional information that DTI and FT renders compared with conventional MR sequences. In addition, the relevant existing literature is summarized. (orig.)

  14. Diffusion tensor imaging and fiber tractography in brain malformations

    Energy Technology Data Exchange (ETDEWEB)

    Poretti, Andrea; Meoded, Avner; Huisman, Thierry A.G.M. [The Johns Hopkins University School of Medicine, Division of Pediatric Radiology, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Rossi, Andrea [G. Gaslini Institue, Pediatric Neuroradiology, Genova (Italy); Raybaud, Charles [University of Toronto, Department of Neuroradiology, Hospital for Sick Children, Toronto, ON (Canada)

    2013-01-15

    Diffusion tensor imaging (DTI) is an advanced MR technique that provides qualitative and quantitative information about the micro-architecture of white matter. DTI and its post-processing tool fiber tractography (FT) have been increasingly used in the last decade to investigate the microstructural neuroarchitecture of brain malformations. This article aims to review the use of DTI and FT in the evaluation of a variety of common, well-described brain malformations, in particular by pointing out the additional information that DTI and FT renders compared with conventional MR sequences. In addition, the relevant existing literature is summarized. (orig.)

  15. MR imaging of acute hemorrhagic brain infarction

    International Nuclear Information System (INIS)

    Six patients with acute hemorrhagic brain infarct were imaged using spin-echo (SE) pulse sequences on a 1.5 Tesla MR scanner. Including two patients with repeated MR imaging, a total of eight examinations, all performed within 15 days after stroke, were analyzed retrospectively. Four patients revealed massive hemorrhages in the basal ganglia or cerebellum and three cases demonstrated multiple linear hemorrhages in the cerebral cortex. On T1-weighted images, hemorrhages were either mildly or definitely hyperintense relative to gray matter, while varied from mildly hypointense to hyperintense on T2-weighted images. T1-weighted images were superior to T2-weighted images in detection of hemorrhgage. CT failed to detect hemorrhage in two of five cases: indicative of MR superiority to CT in the diagnosis of acute hemorrhagic infarcts. (author)

  16. MR imaging of acute hemorrhagic brain infarction

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, Akira; Ohnari, Norihiro; Ohno, Masato (Kyushu Rosai Hospital, Fukuoka (Japan))

    1989-11-01

    Six patients with acute hemorrhagic brain infarct were imaged using spin-echo (SE) pulse sequences on a 1.5 Tesla MR scanner. Including two patients with repeated MR imaging, a total of eight examinations, all performed within 15 days after stroke, were analyzed retrospectively. Four patients revealed massive hemorrhages in the basal ganglia or cerebellum and three cases demonstrated multiple linear hemorrhages in the cerebral cortex. On T1-weighted images, hemorrhages were either mildly or definitely hyperintense relative to gray matter, while varied from mildly hypointense to hyperintense on T2-weighted images. T1-weighted images were superior to T2-weighted images in detection of hemorrhgage. CT failed to detect hemorrhage in two of five cases: indicative of MR superiority to CT in the diagnosis of acute hemorrhagic infarcts. (author).

  17. Simulation of brain tumor resection in image-guided neurosurgery

    Science.gov (United States)

    Fan, Xiaoyao; Ji, Songbai; Fontaine, Kathryn; Hartov, Alex; Roberts, David; Paulsen, Keith

    2011-03-01

    Preoperative magnetic resonance images are typically used for neuronavigation in image-guided neurosurgery. However, intraoperative brain deformation (e.g., as a result of gravitation, loss of cerebrospinal fluid, retraction, resection, etc.) significantly degrades the accuracy in image guidance, and must be compensated for in order to maintain sufficient accuracy for navigation. Biomechanical finite element models are effective techniques that assimilate intraoperative data and compute whole-brain deformation from which to generate model-updated MR images (uMR) to improve accuracy in intraoperative guidance. To date, most studies have focused on early surgical stages (i.e., after craniotomy and durotomy), whereas simulation of more complex events at later surgical stages has remained to be a challenge using biomechanical models. We have developed a method to simulate partial or complete tumor resection that incorporates intraoperative volumetric ultrasound (US) and stereovision (SV), and the resulting whole-brain deformation was used to generate uMR. The 3D ultrasound and stereovision systems are complimentary to each other because they capture features deeper in the brain beneath the craniotomy and at the exposed cortical surface, respectively. In this paper, we illustrate the application of the proposed method to simulate brain tumor resection at three temporally distinct surgical stages throughout a clinical surgery case using sparse displacement data obtained from both the US and SV systems. We demonstrate that our technique is feasible to produce uMR that agrees well with intraoperative US and SV images after dural opening, after partial tumor resection, and after complete tumor resection. Currently, the computational cost to simulate tumor resection can be up to 30 min because of the need for re-meshing and the trial-and-error approach to refine the amount of tissue resection. However, this approach introduces minimal interruption to the surgical workflow

  18. Three-dimensional reconstruction of functional brain images

    International Nuclear Information System (INIS)

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  19. Three-dimensional reconstruction of functional brain images

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao [Kyoto Univ. (Japan)

    1999-08-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  20. Imaging visual function of the human brain

    International Nuclear Information System (INIS)

    Imaging of human brain structure and activity with particular reference to visual function is reviewed along with methods of obtaining the data including computed tomographic (CT) scan, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET). The literature is reviewed and the potential for a new understanding of brain visual function is discussed. PET is reviewed from basic physical principles to the most recent visual brain findings with oxygen-15. It is shown that there is a potential for submillimeter localization of visual functions with sequentially different visual stimuli designed for the temporal separation of the responses. Single photon emission computed tomography (SPECT), a less expensive substitute for PET, is also discussed. MRS is covered from basic physical principles to the current state of the art of in vivo biochemical analysis. Future possible clinical applications are discussed. Improved understanding of the functional neural organization of vision and brain will open a window to maps and circuits of human brain function.119 references

  1. Transport, monitoring, and successful brain MR imaging in unsedated neonates

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Amit M. [St. Louis Children' s Hospital at the Washington University School of Medicine, Department of Pediatrics and Newborn Medicine, St. Louis, MO (United States); St. Louis Children' s Hospital, Division of Newborn Medicine, St. Louis, MO (United States); Neil, Jeffrey J. [St. Louis Children' s Hospital at the Washington University School of Medicine, Department of Neurology, St. Louis, MO (United States); Mallinckrodt Institute of Radiology, St. Louis, MO (United States); McKinstry, Robert C. [Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Inder, Terrie E. [St. Louis Children' s Hospital at the Washington University School of Medicine, Department of Pediatrics and Newborn Medicine, St. Louis, MO (United States); St. Louis Children' s Hospital at the Washington University School of Medicine, Department of Neurology, St. Louis, MO (United States); Mallinckrodt Institute of Radiology, St. Louis, MO (United States)

    2008-03-15

    Neonatal cerebral MR imaging is a sensitive technique for evaluating brain injury in the term and preterm infant. In term encephalopathic infants, MR imaging reliably detects not only the pattern of brain injury but might also provide clues about the timing of injury. In premature infants, MR imaging has surpassed US in the detection of white matter injury, a common lesion in this population. Concerns remain about the safety and transport of sedated neonates for MR examination to radiology suites, which are usually located at a distance from neonatal intensive care units. We present our own institutional experience and guidelines used to optimize the performance of cerebral MR examinations in neonates without sedation or anesthesia. (orig.)

  2. Towards an hybrid system for annotating brain MRI images

    OpenAIRE

    Mechouche, Ammar; Golbreich, Christine; Gibaud, Bernard

    2006-01-01

    This paper describes a method combining symbolic and numerical techniques for annotating brain Magnetic Resonance images. The goal is to assist existing automatic labelling methods which are mostly statistical in nature and do not work very well in certain situations such as the presence of lesions. The system uses existing statistical methods for generating ABox facts that constitute a set of initial information sufficient for fruitful reasoning. The reasoning is supported by an OWL ontology...

  3. Adapting Parcellation Schemes to Study Fetal Brain Connectivity in Serial Imaging Studies

    DEFF Research Database (Denmark)

    Cheng, Xi; Wilm, Jakob; Seshamani, Sharmishtaa;

    2013-01-01

    developing fetal brain such functional and associated structural markers are not consistently present over time. In this study we adapt two non-atlas based parcellation schemes to study the development of connectivity networks of a fetal monkey brain using Diffusion Weighted Imaging techniques. Results...... demonstrate that the fetal brain network exhibits small-world characteristics and a pattern of increased cluster coefficients and decreased global efficiency. These findings may provide a route to creating a new biomarker for healthy fetal brain development....

  4. Thresholding magnetic resonance images of human brain

    Institute of Scientific and Technical Information of China (English)

    Qing-mao HU; Wieslaw L NOWINSKI

    2005-01-01

    In this paper, methods are proposed and validated to determine low and high thresholds to segment out gray matter and white matter for MR images of different pulse sequences of human brain. First, a two-dimensional reference image is determined to represent the intensity characteristics of the original three-dimensional data. Then a region of interest of the reference image is determined where brain tissues are present. The non-supervised fuzzy c-means clustering is employed to determine: the threshold for obtaining head mask, the low threshold for T2-weighted and PD-weighted images, and the high threshold for T1-weighted, SPGR and FLAIR images. Supervised range-constrained thresholding is employed to determine the low threshold for T1-weighted, SPGR and FLAIR images. Thresholding based on pairs of boundary pixels is proposed to determine the high threshold for T2- and PD-weighted images. Quantification against public data sets with various noise and inhomogeneity levels shows that the proposed methods can yield segmentation robust to noise and intensity inhomogeneity. Qualitatively the proposed methods work well with real clinical data.

  5. MR imaging of the fetal brain

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, Orit A. [University of California, San Francisco, Department of Radiology, Neuroradiology Section, San Francisco, CA (United States)

    2010-01-15

    Fetal MRI is clinically performed to evaluate the brain in cases where an abnormality is detected by prenatal sonography. These most commonly include ventriculomegaly, abnormalities of the corpus callosum, and abnormalities of the posterior fossa. Fetal MRI is also increasingly performed to evaluate fetuses who have normal brain findings on prenatal sonogram but who are at increased risk for neurodevelopmental abnormalities, such as complicated monochorionic twin pregnancies. This paper will briefly discuss the common clinical conditions imaged by fetal MRI as well as recent advances in fetal MRI research. (orig.)

  6. Internal brain motion pumping of CSF using high-resolution velocity MR imaging

    International Nuclear Information System (INIS)

    An MR velocity density (MRVD) technique able to detect velocities as low as 0.4 mm/sec was applied to obtain images of the brain synchronized to the cardiac cycle in 25 healthy subjects and five patients. During systole (100-200 msec after the R wave), MRVD images demonstrated a caudad velocity in the central regions of the brain, most prominent in the brain stem (up to 1.5 mm/sec). This caudad brain motion and the synchronous ejection of cerebrospinal fluid (CSF) from the ventricles into the basal cisterns, taken together, strongly suggest a cardiac-driven pumping action of the brain on the CSF

  7. Computerized morphometric assessment of brain structure with MR imaging

    International Nuclear Information System (INIS)

    Limitation of imaging technique and measurement method are believed to underlie much of the variability across morphometric studies of the brain. To reduce variability, the authors have chosen three-dimensional MR gradient-echo imaging as the optimal imaging technique and developed a semiautomated mensuration system in conjunction with EKTRON Applied Imaging Inc with high accuracy and reliability. Images were acquired on a 1.O-T MR imaging system (Siemens, Magnetom) using coronal gradient-echo, three-dimensional (fast low-angle shot) sequence. The basic algorithmic philosophy for automatic extraction of anatomic structures was the definition of an exterior edge. The program is menu-driven and designed to run on SUN 3-160 series microcomputer. Accuracy of the system was tested with a simple geometric phantom, a complex human ventricular phantom, and a fresh postmortem brain. System accuracy was within 2% of the true volumes. System reliability was evaluated in three patient populations: 12 patients with Alzheimer disease, nine schizophrenics, and nine normal age-matched Alzheimer controls

  8. Imaging Techniques in Endodontics: An Overview

    OpenAIRE

    Deepak, B. S.; T S Subash; Narmatha, V. J.; Anamika, T.; Snehil, T. K.; D B Nandini

    2012-01-01

    This review provides an overview of the relevance of imaging techniques such as, computed tomography, cone beam computed tomography, and ultrasound, to endodontic practice. Many limitations of the conventional radiographic techniques have been overcome by the newer methods. Advantages and disadvantages of various imaging techniques in endodontic practice are also discussed.

  9. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury

    Institute of Scientific and Technical Information of China (English)

    Quan Jiang

    2016-01-01

    Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance im-aging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic.

  10. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury

    Directory of Open Access Journals (Sweden)

    Quan Jiang

    2016-01-01

    Full Text Available Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance imaging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic.

  11. Magnetic resonance imaging in diffuse brain injury

    International Nuclear Information System (INIS)

    Forty cases diagnosed as diffuse brain injury (DBI) were studied by magnetic resonance imaging (MRI) performed within 3 days after injury. These cases were divided into two groups, which were the concussion group and diffuse axonal injury (DAI) group established by Gennarelli. There were no findings on computerized tomography (CT) in the concussion group except for two cases which had a brain edema or subarachnoid hemorrhage. But on MRI, high intensity areas on T2 weighted imaging were demonstrated in the cerebral white matter in this group. Many lesions in this group were thought to be edemas of the cerebral white matter, because of the fact that on serial MRI, they were isointense. In mild types of DAI, the lesions on MRI were located only in the cerebral white matter, whereas, in the severe types of DAI, lesions were located in the basal ganglia, the corpus callosum, the dorsal part of the brain stem as well as in the cerebral white matter. As for CT findings, parenchymal lesions were not visualized especially in mild DAI. Our results suggested that the lesions in cerebral concussion were edemas in cerebral white matter. In mild DAI they were non-hemorrhagic contusion; and in severe DAI they were hemorrhagic contusions in the cerebral white matter, the basal ganglia, the corpus callosum or the dorsal part of the brain stem. (author)

  12. Magnetic resonance imaging in diffuse brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Hiroyuki; Yasuda, Kazuhiro; Mashiko, Kunihiro; Henmi, Hiroshi; Otsuka, Toshibumi; Kobayashi, Shiro; Nakazawa, Shozo (Nippon Medical School, Tokyo (Japan))

    1992-01-01

    Forty cases diagnosed as diffuse brain injury (DBI) were studied by magnetic resonance imaging (MRI) performed within 3 days after injury. These cases were divided into two groups, which were the concussion group and diffuse axonal injury (DAI) group established by Gennarelli. There were no findings on computerized tomography (CT) in the concussion group except for two cases which had a brain edema or subarachnoid hemorrhage. But on MRI, high intensity areas on T2 weighted imaging were demonstrated in the cerebral white matter in this group. Many lesions in this group were thought to be edemas of the cerebral white matter, because of the fact that on serial MRI, they were isointense. In mild types of DAI, the lesions on MRI were located only in the cerebral white matter, whereas, in the severe types of DAI, lesions were located in the basal ganglia, the corpus callosum, the dorsal part of the brain stem as well as in the cerebral white matter. As for CT findings, parenchymal lesions were not visualized especially in mild DAI. Our results suggested that the lesions in cerebral concussion were edemas in cerebral white matter. In mild DAI they were non-hemorrhagic contusion; and in severe DAI they were hemorrhagic contusions in the cerebral white matter, the basal ganglia, the corpus callosum or the dorsal part of the brain stem. (author).

  13. Color Image Enhancement Techniques: A Critical Review

    Directory of Open Access Journals (Sweden)

    Anish Kumar Vishwakarma

    2012-02-01

    Full Text Available Image enhancement is one of the key issues in high quality pictures such as digital camera and HDTV. Since Image clarity is very easily affected by lighting, weather, or equipment that has been used to capture the image. These conditions lead to image may suffer from loss of information. As a result, many techniques have developed known as image Enhancement techniques to recover the information in an image. This paper presents a literature review on some of the image Enhancement techniques for color image enhancement like, Contrast Stretching, Histogram Equalization and its improvement versions, Homomorphic Filtering, Retinex, and Wavelet Multiscale Transform. Comparison of all the techniques concludes the better approach for its future research.

  14. Imaging Techniques for Microwave Diagnostics

    NARCIS (Netherlands)

    Tobias, B.; Donne, A. J. H.; Park, H. K.; Boom, J. E.; Choi, M. J.; Classen, I.G.J.; Domier, C.W.; Kong, X.; Lee, W.; Liang, T.; N C Luhmann Jr.,; Munsat, T.; Yu, L.; Yun, G. S.

    2011-01-01

    Imaging diagnostics, such as Electron Cyclotron Emission Imaging (ECEI) and Microwave Imaging Reflectometry (MIR), exhibit unique characteristics that make them particularly well suited to the validation of theoretical models for plasma instabilities and turbulent fluctuations. A 2-D picture of plas

  15. Brain CT image and handedness of schizophrenia

    International Nuclear Information System (INIS)

    Brain CT images were reviewed of 98 schizophrenic patients and 90 healthy persons in relation to handedness and aging. CT images were further reconstructed to examine morphologically subtle changes in each region. Schizophrenic patients had progressive brain atrophy and dilated lateral ventricles, especially on the left side and in the posterior part of the lateral ventricle. These findings were more marked in left-handed than in right-handed schizophrenic patients. According to age groups, there were significant differences between schizophrenic and normal persons over the age of 40. The incidence of left handedness was significantly higher in schizophrenic patients in their fourties than the age-matched normal persons (31.4% vs 15.1%). Morphological abnormality and laterality might be due to the same pathologic consequences. (N.K.)

  16. Comparison of FSE and EPI with brain MR imaging

    International Nuclear Information System (INIS)

    To compare the usefulness of echo-planar imaging(EPI) and fast spin-echo(FSE) in routine brain MR imaging. Twenty-five patients with various intracranial diseases were prospectively examined with T2-weighted MR imaging on a 1.5T unit using FSE, spin echo single-shot EPI(SS-EPI) and multi-shot EPI(MS-EPI) techniques. For qualitative assessment, overall image quality, discrimination between cortical gray-white matter and between basal ganglia-white matter, lesion conspicuity, image distortion and artifacts(motion, ghost, flow, and susceptibility) were all evaluated using a subjective scoring system ranging from 1 to 4 (1 for the worst and 4 for the best). For quantitative assessment, contrast and contrast-to-noise ratio(CNR) were calculated for cortical gray-white matter, basal ganglia-white matter, and lesion-white matter. Overall image quality, discrimination between cortical gray-white matter, basal ganglia-white matter, and lesion-white matter, lesion conspicuity, image distortion and susceptibility artifacts showed the highest value in FSE and the lowest in SS-EPI. Motion artifacts were seen only in FSE, while flow and ghost artifacts were most commonly seen in SS-EPI. Contrast and CNR of anatomical and pathologic structures showed the highest value in FSE, especially for cortical gray-white matter and basal ganglia-white matter. With regard to overall image quality, image distortion, susceptibility artifacts, contrast and CNR, EPI is far inferior to FSE. In routine brain MR imaging., the usefulness of EPI techniques would therefore be very limited

  17. Imaging Brain Mechanisms in Chronic Visceral Pain

    OpenAIRE

    Mayer, Emeran A.; Gupta, Arpana; Kilpatrick, Lisa A.; Hong, Jui-Yang

    2015-01-01

    Chronic visceral pain syndromes are important clinical problems with largely unmet medical needs. Based on the common overlap with other chronic disorders of visceral or somatic pain, mood and affect, and their responsiveness to centrally targeted treatments, an important role of central nervous system in their pathophysiology is likely. A growing number of brain imaging studies in irritable bowel syndrome, functional dyspepsia and bladder pain syndrome/interstitial cystitis has identified ab...

  18. Non-FDG PET imaging of brain tumors

    Institute of Scientific and Technical Information of China (English)

    HUANG Zemin; GUAN Yihui; ZUO Chuantao; ZHANG Zhengwei; XUE Fangping; LIN Xiangtong

    2007-01-01

    Due to relatively high uptake of glucose in the brain cortex, the use of FDG PET imaging is greatly limited in brain tumor imaging, especially for low-grade gliomas and some metastatic tumours. More and more tracers with higher specificity were developed lately for brain tumor imaging. There are 3 main types of non-FDG PET tracers:amino acid tracers, choline tracers and nucleic acid tracers. These tracers are now widely applied in many aspects of brain tumor imaging. This article summarized the general use of non-FDG PET in different aspects of brain tumor imaging.

  19. Concussion in athletics: ongoing clinical and brain imaging research controversies.

    Science.gov (United States)

    Slobounov, Semyon; Gay, Michael; Johnson, Brian; Zhang, Kai

    2012-06-01

    Concussion, the most common form of traumatic brain injury, proves to be increasingly complex and not mild in nature as its synonymous term mild traumatic brain injury (mTBI) would imply. Despite the increasing occurrence and prevalence of mTBI there is no universally accepted definition and conventional brain imaging techniques lack the sensitivity to detect subtle changes it causes. Moreover, clinical management of sports induced mild traumatic brain injury has not changed much over the past decade. Advances in neuroimaging that include electroencephalography (EEG), functional magnetic resonance imaging (fMRI), resting-state functional connectivity, diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS) offer promise in aiding research into understanding the complexities and nuances of mTBI which may ultimately influence clinical management of the condition. In this paper the authors review the major findings from these advanced neuroimaging methods along with current controversy within this field of research. As mTBI is frequently associated with youth and sports injury this review focuses on sports-related mTBI in the younger population. PMID:22669496

  20. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging

    KAUST Repository

    Magistretti, Pierre J.

    2015-05-01

    The energy demands of the brain are high: they account for at least 20% of the body\\'s energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and pointat a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales. © 2015 Elsevier Inc.

  1. Fetal trauma: brain imaging in four neonates

    International Nuclear Information System (INIS)

    The purpose of this paper is to describe brain pathology in neonates after major traffic trauma in utero during the third trimester. Our patient cohort consisted of four neonates born by emergency cesarean section after car accident in the third trimester of pregnancy. The median gestational age (n=4) was 36 weeks (range: 30-38). Immediate post-natal and follow-up brain imaging consisted of cranial ultrasound (n=4), computed tomography (CT) (n=1) and post-mortem magnetic resonance imaging (MRI) (n=1). Pathology findings were correlated with the imaging findings (n=3). Cranial ultrasound demonstrated a huge subarachnoidal hemorrhage (n=1), subdural hematoma (n=1), brain edema with inversion of the diastolic flow (n=1) and severe ischemic changes (n=1). In one case, CT demonstrated the presence and extension of the subarachnoidal hemorrhage, a parietal fracture and a limited intraventricular hemorrhage. Cerebellar hemorrhage and a small cerebral frontal contusion were seen on post-mortem MRI in a child with a major subarachnoidal hemorrhage on ultrasound. None of these four children survived (three children died within 2 days and one child died after 1 month). Blunt abdominal trauma during pregnancy can cause fetal cranial injury. In our cases, skull fracture, intracranial hemorrhage and hypoxic-ischemic encephalopathy were encountered. (orig.)

  2. Brain Basics

    Medline Plus

    Full Text Available ... Research Modern research tools and techniques are giving scientists a more detailed understanding of the brain than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies ...

  3. Molecular Imaging of the Brain Using Multi-Quantum Coherence and Diagnostics of Brain Disorders

    CERN Document Server

    Kaila, M M

    2013-01-01

    This book examines multi-quantum magnetic resonance imaging methods and the diagnostics of brain disorders. It consists of two Parts. The part I is initially devoted towards the basic concepts of the conventional single quantum MRI techniques. It is supplemented by the basic knowledge required to understand multi-quantum MRI. Practical illustrations are included both on recent developments in conventional MRI and the MQ-MRI. This is to illustrate the connection between theoretical concepts and their scope in the clinical applications. The Part II initially sets out the basic details about quadrupole charge distribution present in certain nuclei and their importance about the functions they perform in our brain. Some simplified final mathematical expressions are included to illustrate facts about the basic concepts of the quantum level interactions between magnetic dipole and the electric quadrupole behavior of useful nuclei present in the brain. Selected practical illustrations, from research and clinical pra...

  4. A novel algorithm for segmentation of brain MR images

    International Nuclear Information System (INIS)

    Accurate and fully automatic segmentation of brain from magnetic resonance (MR) scans is a challenging problem that has received an enormous amount of . attention lately. Many researchers have applied various techniques however a standard fuzzy c-means algorithm has produced better results compared to other methods. In this paper, we present a modified fuzzy c-means (FCM) based algorithm for segmentation of brain MR images. Our algorithm is formulated by modifying the objective function of the standard FCM and uses a special spread method to get a smooth and slow varying bias field This method has the advantage that it can be applied at an early stage in an automated data analysis before a tissue model is available. The results on MRI images show that this method provides better results compared to standard FCM algorithms. (author)

  5. Functional imaging of the human brain using conventional MRI

    International Nuclear Information System (INIS)

    It was shown in 1991 by Belliveau and coworkers that the activation of the human brain can be visualized in a completely noninvasive way by MRI. First publications coming from the US claimed that very high magnetic field strength or echo planar imaging, both available only at a few research sites, would be necessary to do this job. Recently, it was demonstrated that functional imaging of the human brain can be done with high spatial resolution MRI using conventional FLASH-sequences with the commercial widely available 1,5 Tesla systems. First results have been reported for visual as well as primary motor cortex activation in healthy volunteers. The key to a successful application of the conventional technique lies in the design of extremely low bandwidth, long echo-time FLASH-sequences with high spatial resolution. (orig.)

  6. Automatic Image Registration Technique of Remote Sensing Images

    OpenAIRE

    M. Wahed; Gh.S.El-tawel; A.Gad El-karim

    2013-01-01

    Image registration is a crucial step in most image processing tasks for which the final result is achieved from a combination of various resources. Automatic registration of remote-sensing images is a difficult task as it must deal with the intensity changes and variation of scale, rotation and illumination of the images. This paper proposes image registration technique of multi-view, multi- temporal and multi-spectral remote sensing images. Firstly, a preprocessing step is performed by apply...

  7. Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging.

    Directory of Open Access Journals (Sweden)

    David A Feinberg

    Full Text Available Echo planar imaging (EPI is an MRI technique of particular value to neuroscience, with its use for virtually all functional MRI (fMRI and diffusion imaging of fiber connections in the human brain. EPI generates a single 2D image in a fraction of a second; however, it requires 2-3 seconds to acquire multi-slice whole brain coverage for fMRI and even longer for diffusion imaging. Here we report on a large reduction in EPI whole brain scan time at 3 and 7 Tesla, without significantly sacrificing spatial resolution, and while gaining functional sensitivity. The multiplexed-EPI (M-EPI pulse sequence combines two forms of multiplexing: temporal multiplexing (m utilizing simultaneous echo refocused (SIR EPI and spatial multiplexing (n with multibanded RF pulses (MB to achieve m×n images in an EPI echo train instead of the normal single image. This resulted in an unprecedented reduction in EPI scan time for whole brain fMRI performed at 3 Tesla, permitting TRs of 400 ms and 800 ms compared to a more conventional 2.5 sec TR, and 2-4 times reductions in scan time for HARDI imaging of neuronal fibertracks. The simultaneous SE refocusing of SIR imaging at 7 Tesla advantageously reduced SAR by using fewer RF refocusing pulses and by shifting fat signal out of the image plane so that fat suppression pulses were not required. In preliminary studies of resting state functional networks identified through independent component analysis, the 6-fold higher sampling rate increased the peak functional sensitivity by 60%. The novel M-EPI pulse sequence resulted in a significantly increased temporal resolution for whole brain fMRI, and as such, this new methodology can be used for studying non-stationarity in networks and generally for expanding and enriching the functional information.

  8. Quantitative iodine-123 IMP imaging of brain perfusion in schizophrenia

    International Nuclear Information System (INIS)

    Decreased perfusion in the frontal lobes of patients with chronic schizophrenia has been reported by multiple observes using a variety of techniques. Other observers have been unable to confirm this finding using similar techniques. In this study quantitative single photon emission computed tomography brain imaging was performed using p,5n [123I]IMP in five normal subjects and ten chronically medicated patients with schizophrenia. The acquisition data were preprocessed with an image dependent Metz filter and reconstructed using a ramp filtered back projection technique. The uptake in each of 50 regions of interest in each subject was normalized to the uptake in the cerebellum. There were no significant confirmed differences in the comparable ratios of normal subjects and patients with schizophrenia even at the p = 0.15 level. Hypofrontality was not observed

  9. MR imaging of late radiation brain injury

    International Nuclear Information System (INIS)

    One hundred and four patients treated with radiotherapy for intracranial tumors and their related conditions were reviewed to evaluate the usefulness of magnetic resonance (MR) imaging in demonstrating increased signal intensity areas on T2-weighted images that were considered to be late adverse effects of irradiation of the brain. High signal intensity areas of the white matter were divided into five patterns according to their size and extension. Severity was found to increase with age and irradiation doses of more than 50 Gy. In patients with irradiation doses of more than 60 Gy, the severity of increased with shorter interval after radiotherapy than in those given low irradiation doses. Clinical findings such as mental deterioration, motor abnormality, and visual defect were observed in 12 patients. These findings were closely correlated with the severity of the MR pattern. In most patients, high signal intensity areas were stable or progressive during the course of follow-up. However, these areas were regressive in three patients. Imaging with Gd-DTPA was performed in 36 patients, six of whom showed enhancement. Pathological findings on enhancement included astrocyte proliferation and coalescing vacuoles in neural tissue. MR imaging is an excellent method with which to monitor the adverse effects of radiotherapy of the brain. (author)

  10. Exploring miniature insect brains using micro-CT scanning techniques.

    Science.gov (United States)

    Smith, Dylan B; Bernhardt, Galina; Raine, Nigel E; Abel, Richard L; Sykes, Dan; Ahmed, Farah; Pedroso, Inti; Gill, Richard J

    2016-01-01

    The capacity to explore soft tissue structures in detail is important in understanding animal physiology and how this determines features such as movement, behaviour and the impact of trauma on regular function. Here we use advances in micro-computed tomography (micro-CT) technology to explore the brain of an important insect pollinator and model organism, the bumblebee (Bombus terrestris). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue free from trauma and in its natural stereo-geometry, and showcase our 3D reconstructions and analyses of 19 individual brains at high resolution. Development of this protocol allows relatively rapid and cost effective brain reconstructions, making it an accessible methodology to the wider scientific community. The protocol describes the necessary steps for sample preparation, tissue staining, micro-CT scanning and 3D reconstruction, followed by a method for image analysis using the freeware SPIERS. These image analysis methods describe how to virtually extract key composite structures from the insect brain, and we demonstrate the application and precision of this method by calculating structural volumes and investigating the allometric relationships between bumblebee brain structures. PMID:26908205

  11. Imaging brain mechanisms in chronic visceral pain.

    Science.gov (United States)

    Mayer, Emeran A; Gupta, Arpana; Kilpatrick, Lisa A; Hong, Jui-Yang

    2015-04-01

    Chronic visceral pain syndromes are important clinical problems with largely unmet medical needs. Based on the common overlap with other chronic disorders of visceral or somatic pain, mood and affect, and their responsiveness to centrally targeted treatments, an important role of central nervous system in their pathophysiology is likely. A growing number of brain imaging studies in irritable bowel syndrome, functional dyspepsia, and bladder pain syndrome/interstitial cystitis has identified abnormalities in evoked brain responses, resting state activity, and connectivity, as well as in gray and white matter properties. Structural and functional alterations in brain regions of the salience, emotional arousal, and sensorimotor networks, as well as in prefrontal regions, are the most consistently reported findings. Some of these changes show moderate correlations with behavioral and clinical measures. Most recently, data-driven machine-learning approaches to larger data sets have been able to classify visceral pain syndromes from healthy control subjects. Future studies need to identify the mechanisms underlying the altered brain signatures of chronic visceral pain and identify targets for therapeutic interventions. PMID:25789437

  12. Spatial normalization of brain images and beyond.

    Science.gov (United States)

    Mangin, J-F; Lebenberg, J; Lefranc, S; Labra, N; Auzias, G; Labit, M; Guevara, M; Mohlberg, H; Roca, P; Guevara, P; Dubois, J; Leroy, F; Dehaene-Lambertz, G; Cachia, A; Dickscheid, T; Coulon, O; Poupon, C; Rivière, D; Amunts, K; Sun, Z Y

    2016-10-01

    The deformable atlas paradigm has been at the core of computational anatomy during the last two decades. Spatial normalization is the variant endowing the atlas with a coordinate system used for voxel-based aggregation of images across subjects and studies. This framework has largely contributed to the success of brain mapping. Brain spatial normalization, however, is still ill-posed because of the complexity of the human brain architecture and the lack of architectural landmarks in standard morphological MRI. Multi-atlas strategies have been developed during the last decade to overcome some difficulties in the context of segmentation. A new generation of registration algorithms embedding architectural features inferred for instance from diffusion or functional MRI is on the verge to improve the architectural value of spatial normalization. A better understanding of the architectural meaning of the cortical folding pattern will lead to use some sulci as complementary constraints. Improving the architectural compliance of spatial normalization may impose to relax the diffeomorphic constraint usually underlying atlas warping. A two-level strategy could be designed: in each region, a dictionary of templates of incompatible folding patterns would be collected and matched in a way or another using rare architectural information, while individual subjects would be aligned using diffeomorphisms to the closest template. Manifold learning could help to aggregate subjects according to their morphology. Connectivity-based strategies could emerge as an alternative to deformation-based alignment leading to match the connectomes of the subjects rather than images. PMID:27344104

  13. Clinics in diagnostic imaging (153). Severe hypoxic ischaemic brain injury.

    OpenAIRE

    Chua, Wynne; Lim, Boon Keat; Lim, Tchoyoson Choie Cheio

    2014-01-01

    A 58-year-old Indian woman presented with asystole after an episode of haemetemesis, with a patient downtime of 20 mins. After initial resuscitation efforts, computed tomography of the brain, obtained to evaluate neurological injury, demonstrated evidence of severe hypoxic ischaemic brain injury. The imaging features of hypoxic ischaemic brain injury and the potential pitfalls with regard to image interpretation are herein discussed.

  14. A Shape Based Image Search Technique

    Directory of Open Access Journals (Sweden)

    Aratrika Sarkar

    2014-08-01

    Full Text Available This paper describes an interactive application we have developed based on shaped-based image retrieval technique. The key concepts described in the project are, imatching of images based on contour matching; iimatching of images based on edge matching; iiimatching of images based on pixel matching of colours. Further, the application facilitates the matching of images invariant of transformations like i translation ; ii rotation; iii scaling. The key factor of the system is, the system shows the percentage unmatched of the image uploaded with respect to the images already existing in the database graphically, whereas, the integrity of the system lies on the unique matching techniques used for optimum result. This increases the accuracy of the system. For example, when a user uploads an image say, an image of a mango leaf, then the application shows all mango leaves present in the database as well other leaves matching the colour and shape of the mango leaf uploaded.

  15. Image Mining Techniques and Applications.

    OpenAIRE

    Deepika Kishor Nagthane

    2013-01-01

    Digitization in every sector leads to the growth of digital data in a tremendous amount. Digital data are not only available in the form of text but it is also available in the form of images, audio and video. Decision making people in every field like business, public sector, hospital, etc. are trying to get useful and implicit information from the already existing digital data bases. Image mining is the concept used to extract implicit and useful data from images stored in the large data ba...

  16. RS Image Fusion Technique for Information Preservation

    Institute of Scientific and Technical Information of China (English)

    WU Lianxi; SU Xiaoxia; LI Dajun

    2004-01-01

    A simple spectral preserving image fusion technique, Edge Enhancement Color Normalized (EECN), was proposed to merge two kinds of image data. In addition, a mathematical model was also proposed to evaluate spectral property of the fused production of EECN. The results were clearly demonstrated by an image fusion experiment using Landsat-5 TM and IRS-1C Panchromatic images of Beijing, China. The visual evaluation and mathematical analysis compared with Brovey transform confirmed that the fused image of EECN is quite similar in color to the lower resolution multi-spectral images, and its space resolution is the same as the higher solution panchromatic image.

  17. BRAIN FUNCTIONAL IMAGING BASED ON BRAIN TISSUE OXYGEN CONTENT VIA MAGNETIC RESONANCE

    Directory of Open Access Journals (Sweden)

    M.A OGHABIAN

    2003-03-01

    Full Text Available Introduction: FMRI is a new approach in MRI to provide functional data of human brain activities. Some methods such as BOLD contrast, perfusion imaging, diffusion imaging, and spectroscopy in MRI have used to yield functional images. Material and Methods: This research was performed in imaging center of IMAM KHOMEINI hospital in TEHRAN in 1997. The experiments were performed on a conventional 1.5- T picker MR instrument, using a standard head coil. CE – FAST gradient echo images were obtained (TR=100, TE = 35, 128*256 matrix, 10 mm slice, FOV = 250 mm, F.A =25 Degree, NEX = 1, 13 s per image. Images were obtained during sensory - motor stimulation by pressing fingers to each other, coronal oblique images were acquired through central sulcus (precentral gyrus where the related sensory cortex is. Then, the Images were transferred to personal computers in order to eliminate noise and highlight the functional differences. These images were processed by various mathematical methods such as subtraction and student T- test. Results: Although some changes were seen in functional area, there were not significant results by the conventional system protocols. Some new protocols were designed and implemented to increase the sensitivity of the system to functional changes. Discussion: However, more research needs to be done in the future to obtain faster and more efficient techniques and in regard to clinical applications of the method.

  18. Three modality image registration of brain SPECT/CT and MR images for quantitative analysis of dopamine transporter imaging

    Science.gov (United States)

    Yamaguchi, Yuzuho; Takeda, Yuta; Hara, Takeshi; Zhou, Xiangrong; Matsusako, Masaki; Tanaka, Yuki; Hosoya, Kazuhiko; Nihei, Tsutomu; Katafuchi, Tetsuro; Fujita, Hiroshi

    2016-03-01

    Important features in Parkinson's disease (PD) are degenerations and losses of dopamine neurons in corpus striatum. 123I-FP-CIT can visualize activities of the dopamine neurons. The activity radio of background to corpus striatum is used for diagnosis of PD and Dementia with Lewy Bodies (DLB). The specific activity can be observed in the corpus striatum on SPECT images, but the location and the shape of the corpus striatum on SPECT images only are often lost because of the low uptake. In contrast, MR images can visualize the locations of the corpus striatum. The purpose of this study was to realize a quantitative image analysis for the SPECT images by using image registration technique with brain MR images that can determine the region of corpus striatum. In this study, the image fusion technique was used to fuse SPECT and MR images by intervening CT image taken by SPECT/CT. The mutual information (MI) for image registration between CT and MR images was used for the registration. Six SPECT/CT and four MR scans of phantom materials are taken by changing the direction. As the results of the image registrations, 16 of 24 combinations were registered within 1.3mm. By applying the approach to 32 clinical SPECT/CT and MR cases, all of the cases were registered within 0.86mm. In conclusions, our registration method has a potential in superimposing MR images on SPECT images.

  19. Image Based Authentication Using Steganography Technique

    OpenAIRE

    Satish Kumar Sonker; Sanjeev Kumar; Amit Kumar; Dr. Pragya Singh

    2013-01-01

    In the world of Information Security we are generally using Traditional (Text based) or multi factor Authentication Approach. Through which we are facing a lot of problems and it’s also less secure too. In these types conventional method attacks like brute-force attack, Dictionary Attack etc., are possible. This paper proposes the Image Based Authentication Using Steganography Technique considering the advantage of steganography technique along with the image. Including steganography in image...

  20. Brain dopaminergic systems : imaging with positron tomography

    International Nuclear Information System (INIS)

    Imaging of the dopaminergic system in the human brain with the in vivo use of Positron Emission Tomography emerged in the late 1980s as a tool of major importance in clinical neurosciences and pharmacology. The last few years have witnessed rapid development of new radiotracers specific to receptors, reuptake sites and enzymes of the dopamine system; the application of these radiotracers has led to major break-troughs in the pathophysiology and therapy of movement disorders and schizophrenic-like psychoses. This book is the first to collect, in a single volume, state-of-the-art contributions to the various aspects of this research. Its contents address methodological issues related to the design, labelling, quantitative imaging and compartmental modeli-sation of radioligands of the post-synaptic, pre-synaptic and enzyme sites of the dopamine system and to their use in clinical research in the fields of Parkinson's disease as well as other movement disorders, psychoses and neuroleptic receptor occupancy. The chapters were written by leading European scientists in the field of PET, gathered together in Caen (France, November 1990) under the aegis of the EEC Concerted Action on PET Investigations of Cellular Regeneration and Degeneration. This book provides a current and comprehensive overview on PET studies of the brain dopamine system which should aid and interest neurologists , psychiatrists, pharmacologists and medical imaging scientists. (author). refs.; figs.; tabs

  1. Incorporating virtual reality graphics with brain imaging for assessment of sport-related concussions.

    Science.gov (United States)

    Slobounov, Semyon; Sebastianelli, Wayne; Newell, Karl M

    2011-01-01

    There is a growing concern that traditional neuropsychological (NP) testing tools are not sensitive to detecting residual brain dysfunctions in subjects suffering from mild traumatic brain injuries (MTBI). Moreover, most MTBI patients are asymptomatic based on anatomical brain imaging (CT, MRI), neurological examinations and patients' subjective reports within 10 days post-injury. Our ongoing research has documented that residual balance and visual-kinesthetic dysfunctions along with its underlying alterations of neural substrates may be detected in "asymptomatic subjects" by means of Virtual Reality (VR) graphics incorporated with brain imaging (EEG) techniques. PMID:22254575

  2. Comparative Study of Image Enhancement Techniques

    OpenAIRE

    Seema Rajput; PROF. S.R.SURALKAR

    2013-01-01

    Fingerprints are the oldest and most widely used form of biometric identification. The performance of any fingerprint recognizer highly depends on the fingerprint image quality. Different types of noises in the fingerprint images pose greater difficulty for recognizers. However, fingerprint images are rarely of perfect quality. They may be degraded and corrupted due to variations in skin and impressionconditions. Thus, image enhancement techniques are employed prior to minutiae extraction to ...

  3. Solvation effects on brain uptakes of isomers of 99mTc brain imaging agents

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Analysis of electrostatic hydration free energies of the isomers of the 99mTc-BAT and 99mTc-DADT complexes is carried out using the computer simulation technique. The results show that not only a correlation exists between the logarithm of the brain uptake and the electrostatic hydration free energy for the isomers of 99mTc-brain radiopharmaceuticals, but also a linear relationship exists between the logarithm of the ratio of the brain uptake of the syn isomer to that of the anti one and the difference between the electrostatic hydration free energy of the syn-isomer and that of the anti one. Furthermore, the investigation on the important factors influencing the brain uptakes of 99mTc-radiopharmaceuticals and the reasons of the different biodistribution of the isomers of the 99mTc-complexes is explored at the molecular level. The results may provide a reference for the rational drug design of brain imaging agents.

  4. Color Image Classification and Retrieval using Image mining Techniques

    Directory of Open Access Journals (Sweden)

    Dr.V.Mohan,

    2010-05-01

    Full Text Available Mining Image data is one of the essential features in the present scenario. Image data is the major one which plays vital role in every aspect of the systems like business for marketing, hospital for surgery, engineering for construction, Web for publication and so on. The other area in the Image mining system is the Content-BasedImage Retrieval (CBIR. CBIR systems perform retrieval based on the similarity defined in terms of extracted features with more objectiveness. But, the features of the query image alone will not be sufficient constraint for retrieving images. Hence, a new technique Color Image Classification and Retrieval using a Image Technique isproposed for improving user interaction with image retrieval systems by fully exploiting the similarity information.

  5. Image reconstruction by NMR Fresnel diffractive imaging technique

    International Nuclear Information System (INIS)

    A new approach to MR angiography, the NMR diffractive imaging technique, has been investigated. The expression for NMR signals obtained in the NMR diffractive imaging technique is similar to the equation for Fresnel diffraction in light waves or sound waves. Therefore, it is possible to reconstruct an image focusing on any plane in the depth direction from data scanned two-dimensionally by changing an imaging parameter in the reconstruction step. To support this imaging technique, a coil system composed of six coils was designed. Experiments were performed using an ultra-low-field MRI scanner to acquire two-dimensional data in the proposed technique. Even though blurred images outside the focus are superimposed on the image in the focal plane, the three-dimensional distribution of the object can be recognized by moving the focal plane in the depth direction. To obtain supplemental information for the object, acquiring images from different angles is helpful for recognizing the spatial distribution of the object more precisely. Although the image obtained contains blurred images outside the focus the proposed imaging technique is expected to be useful in MR fast angiography. (author)

  6. A New Technique for Digital Image Watermarking

    Institute of Scientific and Technical Information of China (English)

    Xiang-Sheng Wu

    2005-01-01

    In this paper, a new technique is proposed for rotation, scaling and translation (RST) invariant image watermarking based on log-polar mappings (LPM) and phase-only filtering (POF). The watermark is embedded in the LPM of Fourier magnitude spectrum of the original image, and a small portion of resulting LPM spectrum is used to calculate the watermark positions. This technique avoids computing inverse log-polar mapping (ILPM) to preserve the quality of the watermarked image, and avoids exhaustive search to save computation time and reduce false detection. Experimental results demonstrate that the digital watermarking technique is invariant and robust to rotation, scaling, and translation transformation.

  7. Pediatric imaging: Current and emerging techniques

    Directory of Open Access Journals (Sweden)

    Shenoy-Bhangle A

    2010-01-01

    Full Text Available Imaging has always been an important component of the clinical evaluation of pediatric patients. Rapid technological advances in imaging are making noninvasive evaluation of a wide range of pediatric diseases possible. Ultrasound and magnetic resonance imaging (MRI are two imaging modalities that do not involve ionizing radiation and are preferred imaging modalities in the pediatric population. Computed tomography (CT remains the imaging modality with the highest increase in utilization in children due to its widespread availability and rapid image acquisition. Emerging imaging applications to be discussed include MR urography, voiding urosonography with use of ultrasound contrast agents, CT dose reduction techniques, MR enterography for inflammatory bowel disease, and MR cine airway imaging.

  8. Progress in imaging of brain radiation injury

    International Nuclear Information System (INIS)

    The mechanisms of brain radiation injury mainly include three hypotheses: vascular injury, glial cells damage and immune response. Most scholars' studies have recently supported the former two ones. Vascular injury plays a major role in the effect of delayed radiation injury. Focal brain injury and diffuse white matter injury can be definitely diagnosed by CT and MRI. T2-weighted imaging (T2WI) in MRI shows high sensitivity in water contents, and is not affected by the beam hardening artifacts from the cranial base. Compared with CT, the sensitivity of MR for detecting white matter lesions is two to threefold higher. When lesions occurs at the site of an irradiated cerebral tumor, tumor recurrence and focal cerebral necrosis cannot be differentiated by CT or MR, PET and MRS now present a certain advantage of differential diagnosis. Tumor presents high metabolism and necrosis demonstrates low metabolism by utilizing PET scanning, however PET's sensitivity and specificity are far from satisfactory. The amount or ratio of metabolic products in the region of interest measured by MRS contributes to the deferential diagnosis. In addition, PET functional imaging and MRS can also predict the early asymptomatic reversible radiation injury so as to allow the early therapy of steroids and possibly other drugs, prior to the development of irreversible changes

  9. Animal imaging studies of potential brain damage

    Science.gov (United States)

    Gatley, S. J.; Vazquez, M. E.; Rice, O.

    To date, animal studies have not been able to predict the likelihood of problems in human neurological health due to HZE particle exposure during space missions outside the Earth's magnetosphere. In ongoing studies in mice, we have demonstrated that cocaine stimulated locomotor activity is reduced by a moderate dose (120 cGy) of 1 GeV 56Fe particles. We postulate that imaging experiments in animals may provide more sensitive and earlier indicators of damage due to HZE particles than behavioral tests. Since the small size of the mouse brain is not well suited to the spatial resolution offered by microPET, we are now repeating some of our studies in a rat model. We anticipate that this will enable us to identify imaging correlates of behavioral endpoints. A specific hypothesis of our studies is that changes in the metabolic rate for glucose in striatum of animals will be correlated with alterations in locomotor activity. We will also evaluate whether the neuroprotective drug L-deprenyl reduces the effect of radiation on locomotor activity. In addition, we will conduct microPET studies of brain monoamine oxidase A and monoamine oxidase B in rats before and at various times after irradiation with HZE particles. The hypothesis is that monoamine oxidase A, which is located in nerve terminals, will be unchanged or decreased after irradiation, while monoamine oxidase B, which is located in glial cells, will be increased after irradiation. Neurochemical effects that could be measured using PET could in principle be applied in astronauts, in terms of detecting and monitoring subtle neurological damage that might have occurred during long space missions. More speculative uses of PET are in screening candidates for prolonged space missions (for example, for adequate reserve in critical brain circuits) and in optimizing medications to treat impairments after missions.

  10. Functional brain imaging to investigate the higher brain dysfunction induced by diffuse brain injury

    International Nuclear Information System (INIS)

    Higher brain dysfunction is the major problem of patients who recover from neurotrauma the prevents them from returning to their previous social life. Many such patients do not have focal brain damage detected with morphological imaging. We focused on studying the focal brain dysfunction that can be detected only with functional imaging with positron emission tomography (PET) in relation to the score of various cognition batteries. Patients who complain of higher brain dysfunction without apparent morphological cortical damage were recruited for this study. Thirteen patients with diffuse axonal injury (DAI) or cerebral concussion was included. They underwent a PET study to image glucose metabolism by 18F-fluorodeoxyglucose (FDG), and central benodiazepine receptor (cBZD-R) (marker of neuronal body) by 11C-flumazenil, together with cognition measurement by WAIS-R, WMS-R, and WCST etc. PET data were compared with age matched normal controls using statistical parametric mapping (SPM)2. DAI patients had a significant decrease in glucose matabolism and cBZD-R distribution in the cingulated cortex than normal controls. Patients diagnosed with concussion because of shorter consciousness disturbance also had abnormal FDG uptake and cBZD-R distribution. Cognition test scores were variable among patients. Degree of decreased glucose metabolism and cBZD-R distribution in the dominant hemishphere corresponded well to the severity of cognitive disturbance. PET molecular imaging was useful to depict focal cortical dysfunction of neurotrauma patients even when morphological change was not apparent. This method may be promising to clarify the pathophysiology of higher brain dysfunction of patients with diffuse axonal injury or chronic traumatic encephalopathy. (author)

  11. Modern imaging techniques in the pediatric radiology; Moderne Bildgebungstechniken in der paediatrischen Radiologie

    Energy Technology Data Exchange (ETDEWEB)

    Staatz, Gundula [Universitaetsmedizin Mainz (Germany). Sektion Kinderradiologie; Stenzel, Martin [Universitaetsklinikum Jena (Germany). Sektion Paediatrische Radiologie; Mentzel, Hans-Joachim [Universitaetsklinikum Freiburg (Germany). Abt. Kinderradiologie

    2014-12-15

    The contribution on modern imaging techniques in the pediatric radiology covers the following topics: new sequencing techniques in pediatric skull MRI (magnetic resonance imaging): analysis of brain volume changes, diffusion weighted MRI, fractional anisotropy and fiber tracking, susceptibility weighted MRI; fetal MRI and whole-body MRI.

  12. Current and emerging techniques in gastrointestinal imaging

    Directory of Open Access Journals (Sweden)

    McSweeney S

    2010-01-01

    Full Text Available This review is devoted to current and emerging techniques in gastrointestinal (GI imaging. It is divided into three sections focusing on areas that are both interesting and challenging: imaging of the small bowel and appendix, imaging of the colon and rectum and finally liver and pancreas in the upper abdomen. The first section covers cross-sectional imaging of the small bowel using the techniques of multidetector computed tomography (MDCT (including CT enterography and magnetic resonance imaging (MRI. The evaluation of mesenteric ischemia and GI tract bleeding using MDCT angiography is also reviewed. Current imaging practice in the evaluation of appendix is also reviewed and illustrated. The second section reviews CT and MR colonography and imaging of the rectum. It describes CT virtual colonoscopy (CTVC with emphasis on the advantages and disadvantages of the technique with discussion of the role of CTVC in screening. The intriguing topic of MR colonography (MRC is also reviewed. Imaging of the rectum with emphasis on imaging of rectal cancer is described with the roles of CT, MR, endoluminal ultrasound and positron emission tomography scanning discussed. The final section reviews current and emerging techniques in liver imaging with the role of ultrasound including contrast ultrasound, MDCT and MR (including contrast agents discussed. The new developments and applications of imaging of pancreatic disease are discussed with emphasis on the role of MDCT and MRI with gadolinium. This review highlights the current role and advancement of imaging techniques with new diagnostic and prognostic information pertinent to gastrointestinal disease continuing to emerge.

  13. Brain MR imaging in systemic lupus erythematous

    International Nuclear Information System (INIS)

    To present MR imaging findings of intracranial lesions in systemic lupus erythematosus(SLE), a retrospective study was performed on MR images of 33 SLE patients with neurologic symptoms and signs. MR imaging was performed on either a 0.5 T (21 patients) or 2.0 T unit (12 patients), using T1-weighted, proton-density-weighted, and T2-weighted spin echo sequences in all patients. In seven patients, post-contrast T1-weighted images were also obtained after administration of gadopentetate dimeglumine. The main MR findings consisted of focal lesions suggesting ischemia/infarct (15 patients), diffuse brain atrophy (8), and findings associated with infection (4). The MR findings were normal in 11 patients (33%). The focal lesions suggesting ischemia/infarcts presumably secondary to vasculitis were distributed in the cortex or subcortical white matter (7 patients), deep periventricular white matter (3), or in both areas (5). Most of the focal lesions were multiple and small in size. The findings associated with infection were variable and included communicating hydrocephalus, meningeal enhancement, granuloma, etc. MR findings of SLE were non-specific and therefore clinical correlation is needed when evaluating SLE in MR

  14. A comparison of signal processing techniques for Intrinsic Optical Signal imaging in mice.

    Science.gov (United States)

    Turley, Jordan A; Nilsson, Michael; Walker, Frederick Rohan; Johnson, Sarah J

    2015-08-01

    Intrinsic Optical Signal imaging is a technique which allows the visualisation and mapping of activity related changes within the brain with excellent spatial and temporal resolution. We analysed a variety of signal and image processing techniques applied to real mouse imaging data. The results were compared in an attempt to overcome the unique issues faced when performing the technique on mice and improve the understanding of post processing options available. PMID:26737728

  15. FULLY AUTOMATIC FRAMEWORK FOR SEGMENTATION OF BRAIN MRI IMAGE

    Institute of Scientific and Technical Information of China (English)

    Lin Pan; Zheng Chongxun; Yang Yong; Gu Jianwen

    2005-01-01

    Objective To propose an automatic framework for segmentation of brain image in this paper. Methods The brain MRI image segmentation framework consists of three-step segmentation procedures. First, Non-brain structures removal by level set method. Then, the non-uniformity correction method is based on computing estimates of tissue intensity variation. Finally, it uses a statistical model based on Markov random filed for MRI brain image segmentation. The brain tissue can be classified into cerebrospinal fluid, white matter and gray matter. Results To evaluate the proposed our method, we performed two sets of experiments, one on simulated MR and another on real MR brain data. Conclusion The efficacy of the brain MRI image segmentation framework has been demonstrated by the extensive experiments. In the future, we are also planning on a large-scale clinical evaluation of this segmentation framework.

  16. The role of diffusion weighted magnetic resonance imaging in assessment of normal myelination in infantile brain

    OpenAIRE

    Shaimaa R.A. Fadeel; Moataz M. Montasser; Ashraf N. Etaby; Reda M.A. Darweesh

    2015-01-01

    Background: Myelination is a dynamic process starting during fetal life and proceeds predominantly after birth in a well-defined, predetermined manner. MR techniques such as diffusion-weighted images and the measurement of the apparent diffusion coefficient (ADC) have been applied to the study of normal brain development. Aim of the work: To demonstrate the role of Diffusion Weighted Imaging and ADC maps in assessing normal progression of the infantile brain myelination. Patients and me...

  17. CT and MRI imaging of the brain in MELAS syndrome

    International Nuclear Information System (INIS)

    MELAS syndrome (mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes) is a rare, multisystem disorder which belongs to a group of mitochondrial metabolic diseases. As other diseases in this group, it is inherited in the maternal line. In this report, we discussed a case of a 10-year-old girl with clinical and radiological picture of MELAS syndrome. We would like to describe characteristic radiological features of MELAS syndrome in CT, MRI and MR spectroscopy of the brain and differential diagnosis. The rarity of this disorder and the complexity of its clinical presentation make MELAS patients among the most difficult to diagnose. Brain imaging studies require a wide differential diagnosis, primarily to distinguish between MELAS and ischemic stroke. Particularly helpful are the MRI and MR spectroscopy techniques

  18. Compact and mobile high resolution PET brain imager

    Science.gov (United States)

    Majewski, Stanislaw; Proffitt, James

    2011-02-08

    A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage.

  19. Blank Background Image Lossless Compression Technique

    OpenAIRE

    Samer Sawalha; Arafat Awajan

    2014-01-01

    This paper presents a new technique able to provide a very good compression ratio in preserving the quality of the important components of the image called main objects. It focuses on applications where the image is of large size and consists of an object or a set of objects on background such as identity photos. In these applications, the background of the objects is in general uniform and represents insignificant information for the application. The results of this new techniques show that ...

  20. Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in brain CT

    International Nuclear Information System (INIS)

    Purpose: To compare image quality and visualization of normal structures and lesions in brain computed tomography (CT) with adaptive statistical iterative reconstruction (ASIR) and filtered back projection (FBP) reconstruction techniques in different X-ray tube current–time products. Materials and methods: In this IRB-approved prospective study, forty patients (nineteen men, twenty-one women; mean age 69.5 ± 11.2 years) received brain scan at different tube current–time products (300 and 200 mAs) in 64-section multi-detector CT (GE, Discovery CT750 HD). Images were reconstructed with FBP and four levels of ASIR-FBP blending. Two radiologists (please note that our hospital is renowned for its geriatric medicine department, and these two radiologists are more experienced in chronic cerebral vascular disease than in neoplastic disease, so this research did not contain cerebral tumors but as a discussion) assessed all the reconstructed images for visibility of normal structures, lesion conspicuity, image contrast and diagnostic confidence in a blinded and randomized manner. Volume CT dose index (CTDIvol) and dose-length product (DLP) were recorded. All the data were analyzed by using SPSS 13.0 statistical analysis software. Results: There was no statistically significant difference between the image qualities at 200 mAs with 50% ASIR blending technique and 300 mAs with FBP technique (p > .05). While between the image qualities at 200 mAs with FBP and 300 mAs with FBP technique a statistically significant difference (p < .05) was found. Conclusion: ASIR provided same image quality and diagnostic ability in brain imaging with greater than 30% dose reduction compared with FBP reconstruction technique

  1. Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in brain CT

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Qingguo, E-mail: renqg83@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Dewan, Sheilesh Kumar, E-mail: sheilesh_d1@hotmail.com [Department of Geriatrics, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Li, Ming, E-mail: minli77@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Li, Jianying, E-mail: Jianying.Li@med.ge.com [CT Imaging Research Center, GE Healthcare China, Beijing (China); Mao, Dingbiao, E-mail: maodingbiao74@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Wang, Zhenglei, E-mail: Williswang_doc@yahoo.com.cn [Department of Radiology, Shanghai Electricity Hospital, Shanghai 200050 (China); Hua, Yanqing, E-mail: cjr.huayanqing@vip.163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China)

    2012-10-15

    Purpose: To compare image quality and visualization of normal structures and lesions in brain computed tomography (CT) with adaptive statistical iterative reconstruction (ASIR) and filtered back projection (FBP) reconstruction techniques in different X-ray tube current–time products. Materials and methods: In this IRB-approved prospective study, forty patients (nineteen men, twenty-one women; mean age 69.5 ± 11.2 years) received brain scan at different tube current–time products (300 and 200 mAs) in 64-section multi-detector CT (GE, Discovery CT750 HD). Images were reconstructed with FBP and four levels of ASIR-FBP blending. Two radiologists (please note that our hospital is renowned for its geriatric medicine department, and these two radiologists are more experienced in chronic cerebral vascular disease than in neoplastic disease, so this research did not contain cerebral tumors but as a discussion) assessed all the reconstructed images for visibility of normal structures, lesion conspicuity, image contrast and diagnostic confidence in a blinded and randomized manner. Volume CT dose index (CTDI{sub vol}) and dose-length product (DLP) were recorded. All the data were analyzed by using SPSS 13.0 statistical analysis software. Results: There was no statistically significant difference between the image qualities at 200 mAs with 50% ASIR blending technique and 300 mAs with FBP technique (p > .05). While between the image qualities at 200 mAs with FBP and 300 mAs with FBP technique a statistically significant difference (p < .05) was found. Conclusion: ASIR provided same image quality and diagnostic ability in brain imaging with greater than 30% dose reduction compared with FBP reconstruction technique.

  2. A comparison of image inpainting techniques

    Science.gov (United States)

    Liu, Yaojie; Shu, Chang

    2015-03-01

    Image inpainting is an important research topic in the field of image processing. The objective of inpainting is to "guess" the lost information according to surrounding image information, which can be applied in old photo restoration, object removal and demosaicing. Based on the foundation of previous literature of image inpainting and image modeling, this paper provides an overview of the state-of-art image inpainting methods. This survey first covers mathematics models of inpainting and different kinds of image impairment. Then it goes to the main components of an image, the structure and the texture, and states how these inpainting models and algorithms deal with the two separately, using PDE's method, exemplar-based method and etc. Afterwards sparse-representation-based inpainting and related techniques are introduced. Experimental analysis will be presented to evaluate the relative merits of different algorithms, with the measure of Peak Signal to Noise Ratio (PSNR) as well as direct visual perception.

  3. FCM Clustering Algorithms for Segmentation of Brain MR Images

    Directory of Open Access Journals (Sweden)

    Yogita K. Dubey

    2016-01-01

    Full Text Available The study of brain disorders requires accurate tissue segmentation of magnetic resonance (MR brain images which is very important for detecting tumors, edema, and necrotic tissues. Segmentation of brain images, especially into three main tissue types: Cerebrospinal Fluid (CSF, Gray Matter (GM, and White Matter (WM, has important role in computer aided neurosurgery and diagnosis. Brain images mostly contain noise, intensity inhomogeneity, and weak boundaries. Therefore, accurate segmentation of brain images is still a challenging area of research. This paper presents a review of fuzzy c-means (FCM clustering algorithms for the segmentation of brain MR images. The review covers the detailed analysis of FCM based algorithms with intensity inhomogeneity correction and noise robustness. Different methods for the modification of standard fuzzy objective function with updating of membership and cluster centroid are also discussed.

  4. Reconstruction techniques for optoacoustic imaging

    Science.gov (United States)

    Frenz, Martin; Koestli, Kornel P.; Paltauf, Guenther; Schmidt-Kloiber, Heinz; Weber, Heinz P.

    2001-06-01

    Optoacoustics is a method to gain information from inside a tissue. This is done by irradiating a tissue with a short light pulse, which generates a pressure distribution inside the tissue that mirrors the absorber distribution. The pressure distribution measured on the tissue-surface allows, by applying a back-projection method, to calculate a tomography image of the absorber distribution. This study presents a novel computational algorithm based on Fourier transform, which, at least in principle, yields an exact 3D reconstruction of the distribution of absorbed energy density inside turbid media. The reconstruction is based on 2D pressure distributions captured outside at different times. The FFT reconstruction algorithm is first tested in the back projection of simulated pressure transients of small model absorbers, and finally applied to reconstruct the distribution of artificial blood vessels in three dimensions.

  5. MR angiography using fast imaging techniques

    International Nuclear Information System (INIS)

    The use of fast imaging techniques provides new information about blood flow, by calculation of dynamic parameters. Using ECG-triggered gradient echo sequences, a section is imaged at various trigger delay times. Different flow velocities at several delay times lead to images with varying intensities within the vessels. According to the actual hear rate, 25-32 delay times may be sampled during one measurement. By processing the whole window of a temporal series, new flow-sensitive images are generated (e.g., by calculating the standard deviation pixel by pixel). Varying components of the arteries are extracted, while stationary tissue is eliminated. The high temporal resolution obtained with fast imaging techniques allows the display of flow phenomena in vessels in the form of MR imaging movies

  6. Lung Cancer Detection Using Image Processing Techniques

    Directory of Open Access Journals (Sweden)

    Mokhled S. AL-TARAWNEH

    2012-08-01

    Full Text Available Recently, image processing techniques are widely used in several medical areas for image improvement in earlier detection and treatment stages, where the time factor is very important to discover the abnormality issues in target images, especially in various cancer tumours such as lung cancer, breast cancer, etc. Image quality and accuracy is the core factors of this research, image quality assessment as well as improvement are depending on the enhancement stage where low pre-processing techniques is used based on Gabor filter within Gaussian rules. Following the segmentation principles, an enhanced region of the object of interest that is used as a basic foundation of feature extraction is obtained. Relying on general features, a normality comparison is made. In this research, the main detected features for accurate images comparison are pixels percentage and mask-labelling.

  7. Techniques for thyroid imaging; Les techniques d`imagerie thyroidienne

    Energy Technology Data Exchange (ETDEWEB)

    Hermans, J.

    1995-12-31

    Advances in imaging techniques has improved our understanding of diseases. The different imaging techniques for visualizing the thyroid parenchyma, including cyto-puncture, sonography, CT-scan, scintigraphy, magnetic resonance imaging, have provided various types of information. Do these techniques really provide the clinician with the answers to his questions. The information provided by the different imaging techniques is presented together with the insufficiencies of each method. Faced with the rising cost of health services, we developed analysis instruments which should help the clinician in a more rational use of diagnostic examinations. The question which most often arises is that of an isolated nodule within a multi-nodular goiter : is it malignant or benign. the analysis of the available techniques shows that cost-effective strategy uses conventional Tc99m or I123 scintigraphy and thallium 201 scintigraphy. With this strategy, the risk of missing a thyroid cancer is approximately 1.75%. With cyto-puncture, this risk is multiplied by a factor of 2.5 reaching 4.5%. (Author). 31 refs., 7 tabs.

  8. IMAGE ANALYSIS BASED ON EDGE DETECTION TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies edge detection technique to obtain a Difference In Strength (DIS) map. An initial segmented result is obtained based on K-means clustering technique and the minimum distance. Then the region process is modeled by MRF to obtain an image that contains different intensity regions. The gradient values are calculated and then the watershed technique is used. DIS calculation is used for each pixel to define all the edges (weak or strong) in the image. The DIS map is obtained. This help as priority knowledge to know the possibility of the region segmentation by the next step (MRF), which gives an image that has all the edges and regions information. In MRF model,gray level l, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The segmentation results are improved by using watershed algorithm. After all pixels of the segmented regions are processed, a map of primitive region with edges is generated. The edge map is obtained using a merge process based on averaged intensity mean values. A common edge detectors that work on (MRF) segmented image are used and the results are compared. The segmentation and edge detection result is one closed boundary per actual region in the image.

  9. Development of Wavelet Image Compression Technique to Particle Image Velocimetry

    Institute of Scientific and Technical Information of China (English)

    HuiLi

    2000-01-01

    In order to reduce the noise in the images and the physical storage,the wavelet-based image compression technique was applied to PIV processing in this paper,To study the effect of the wavelet bases,the standard PIV images were compressed by some known wavelet families,Daubechies,Coifman and Baylkin families with various compression ratios.It was found that a higher order wavelet base provided good compression performance for compressing PIV images,The error analysis of velocity field obtained indicated that the high compression ratio even up to 64:1,can be realized without losing significant flow information in PIV processing.The wavelet compression technique of PIV was applied to the experimental images of jet flow and showed excellent performance,A reduced number of erroneous vectors can be realized by varying compression ratio.It can say that the wavelet image compression technique is very effective in PIV system.

  10. Imaging Techniques in Spinal Cord Injury

    OpenAIRE

    Ellingson, BM; Salamon, N.; Holly, LT

    2012-01-01

    © 2014 Elsevier Inc. Background Spinal imaging plays a critical role in the diagnosis, treatment, and rehabilitation of patients with spinal cord injury (SCI). In recent years there has been increasing interest in the development of advanced imaging techniques to provide pertinent microstructural and metabolic information that is not provided by conventional modalities. Methods This review details the pathophysiological structural changes that accompany SCI, as well as their imaging correlate...

  11. Image processing techniques for digital orthophotoquad production

    Science.gov (United States)

    Hood, Joy J.; Ladner, L. J.; Champion, Richard A.

    1989-01-01

    Orthophotographs have long been recognized for their value as supplements or alternatives to standard maps. Recent trends towards digital cartography have resulted in efforts by the US Geological Survey to develop a digital orthophotoquad production system. Digital image files were created by scanning color infrared photographs on a microdensitometer. Rectification techniques were applied to remove tile and relief displacement, thereby creating digital orthophotos. Image mosaicking software was then used to join the rectified images, producing digital orthophotos in quadrangle format.

  12. Quantitative Perfusion and Permeability Biomarkers in Brain Cancer from Tomographic CT and MR Images

    OpenAIRE

    Eilaghi, Armin; Yeung, Timothy; d’Esterre, Christopher; Bauman, Glenn; Yartsev, Slav; Easaw, Jay; Fainardi, Enrico; Lee, Ting-Yim; Frayne, Richard

    2016-01-01

    Dynamic contrast-enhanced perfusion and permeability imaging, using computed tomography and magnetic resonance systems, are important techniques for assessing the vascular supply and hemodynamics of healthy brain parenchyma and tumors. These techniques can measure blood flow, blood volume, and blood–brain barrier permeability surface area product and, thus, may provide information complementary to clinical and pathological assessments. These have been used as biomarkers to enhance the treatme...

  13. Superresolution imaging: a survey of current techniques

    Science.gov (United States)

    Cristóbal, G.; Gil, E.; Šroubek, F.; Flusser, J.; Miravet, C.; Rodríguez, F. B.

    2008-08-01

    Imaging plays a key role in many diverse areas of application, such as astronomy, remote sensing, microscopy, and tomography. Owing to imperfections of measuring devices (e.g., optical degradations, limited size of sensors) and instability of the observed scene (e.g., object motion, media turbulence), acquired images can be indistinct, noisy, and may exhibit insuffcient spatial and temporal resolution. In particular, several external effects blur images. Techniques for recovering the original image include blind deconvolution (to remove blur) and superresolution (SR). The stability of these methods depends on having more than one image of the same frame. Differences between images are necessary to provide new information, but they can be almost unperceivable. State-of-the-art SR techniques achieve remarkable results in resolution enhancement by estimating the subpixel shifts between images, but they lack any apparatus for calculating the blurs. In this paper, after introducing a review of current SR techniques we describe two recently developed SR methods by the authors. First, we introduce a variational method that minimizes a regularized energy function with respect to the high resolution image and blurs. In this way we establish a unifying way to simultaneously estimate the blurs and the high resolution image. By estimating blurs we automatically estimate shifts with subpixel accuracy, which is inherent for good SR performance. Second, an innovative learning-based algorithm using a neural architecture for SR is described. Comparative experiments on real data illustrate the robustness and utilization of both methods.

  14. Imaging of Age-related Brain Changes: A Population-based Approach

    NARCIS (Netherlands)

    M.W. Vernooij (Meike)

    2009-01-01

    textabstractThe objective of the studies described in this thesis was to investigate with magnetic resonance imaging (MRI) brain changes that may function as preclinical imaging markers for neurodegenerative and cerebrovascular disease. For this goal, advanced MRI techniques were applied in the Rott

  15. Automatic Image Registration Technique of Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    M. Wahed

    2013-03-01

    Full Text Available Image registration is a crucial step in most image processing tasks for which the final result is achieved from a combination of various resources. Automatic registration of remote-sensing images is a difficult task as it must deal with the intensity changes and variation of scale, rotation and illumination of the images. This paper proposes image registration technique of multi-view, multi- temporal and multi-spectral remote sensing images. Firstly, a preprocessing step is performed by applying median filtering to enhance the images. Secondly, the Steerable Pyramid Transform is adopted to produce multi-resolution levels of reference and sensed images; then, the Scale Invariant Feature Transform (SIFT is utilized for extracting feature points that can deal with the large variations of scale, rotation and illumination between images .Thirdly, matching the features points by using the Euclidian distance ratio; then removing the false matching pairs using the RANdom SAmple Consensus (RANSAC algorithm. Finally, the mapping function is obtained by the affine transformation. Quantitative comparisons of our technique with the related techniques show a significant improvement in the presence of large scale, rotation changes, and the intensity changes. The effectiveness of the proposed technique is demonstrated by the experimental results.

  16. MR Image Segmentation of Patients’ Brain Using Disease Specific a Priori Knowledge

    Directory of Open Access Journals (Sweden)

    Hassan Tavakkoli & Ali Sadeqi

    2012-02-01

    Full Text Available Segmentation of high quality brain MR images using a priori knowledge about brain structuresenables a more accurate and comprehensive interpretation. Benefits of applying a prioriknowledge about the brain structures may also be employed for image segmentation of specificbrain and neural patients. Such procedure may be performed to determine the disease stage ormonitor its gradual progression over time. However segmenting brain images of patients usinggeneral a priori knowledge which corresponds to healthy subjects would result in inaccurate andunreliable interpretation in the regions which are affected by the disease. In this paper, atechnique is proposed for extracting a priori knowledge about structural distribution of differentbrain tissues affected by a specific disease to be applied for accurate segmentation of thepatients’ brain images. For this purpose, extracted a priori knowledge is gradually represented asdisease specific probability maps throughout an iterative process, and then is utilized in astatistical approach for segmentation of new patients’ images. Experiments conducted on a largeset of images acquired from patients with a similar neurodegenerative disease implied success ofthe proposed technique for representing meaningful a priori knowledge as disease specificprobability maps. Promising results obtained also indicated an accurate segmentation of brainMR images of the new patients using the represented a priori knowledge, into three tissueclasses of gray matter, white matter, and cerebrospinal fluid. This enables an accurate estimationof tissues’ thickness and volumes and can be counted as a substantial forward step for morereliable monitoring and interpretation of progression in specific brain and neural diseases.

  17. Cluster imaging of multi-brain networks (CIMBN: a general framework for hyperscanning and modeling a group of interacting brains

    Directory of Open Access Journals (Sweden)

    Lian eDuan

    2015-07-01

    Full Text Available Studying the neural basis of human social interactions is a key topic in the field of social neuroscience. Brain imaging studies in this field usually focus on the neural correlates of the social interactions between two participants. However, as the participant number further increases, even by a small amount, great difficulties raise. One challenge is how to concurrently scan all the interacting brains with high ecological validity, especially for a large number of participants. The other challenge is how to effectively model the complex group interaction behaviors emerging from the intricate neural information exchange among a group of socially organized people. Confronting these challenges, we propose a new approach called Cluster Imaging of Multi-brain Networks (CIMBN. CIMBN consists of two parts. The first part is a cluster imaging technique with high ecological validity based on multiple functional near-infrared spectroscopy (fNIRS systems. Using this technique, we can easily extend the simultaneous imaging capacity of social neuroscience studies up to dozens of participants. The second part of CIMBN is a multi-brain network (MBN modeling method based on graph theory. By taking each brain as a network node and the relationship between any two brains as a network edge, one can construct a network model for a group of interacting brains. The emergent group social behaviors can then be studied using the network’s properties, such as its topological structure and information exchange efficiency. Although there is still much work to do, as a general framework for hyperscanning and modeling a group of interacting brains, CIMBN can provide new insights into the neural correlates of group social interactions, and advance social neuroscience and social psychology.

  18. Cluster imaging of multi-brain networks (CIMBN): a general framework for hyperscanning and modeling a group of interacting brains.

    Science.gov (United States)

    Duan, Lian; Dai, Rui-Na; Xiao, Xiang; Sun, Pei-Pei; Li, Zheng; Zhu, Chao-Zhe

    2015-01-01

    Studying the neural basis of human social interactions is a key topic in the field of social neuroscience. Brain imaging studies in this field usually focus on the neural correlates of the social interactions between two participants. However, as the participant number further increases, even by a small amount, great difficulties raise. One challenge is how to concurrently scan all the interacting brains with high ecological validity, especially for a large number of participants. The other challenge is how to effectively model the complex group interaction behaviors emerging from the intricate neural information exchange among a group of socially organized people. Confronting these challenges, we propose a new approach called "Cluster Imaging of Multi-brain Networks" (CIMBN). CIMBN consists of two parts. The first part is a cluster imaging technique with high ecological validity based on multiple functional near-infrared spectroscopy (fNIRS) systems. Using this technique, we can easily extend the simultaneous imaging capacity of social neuroscience studies up to dozens of participants. The second part of CIMBN is a multi-brain network (MBN) modeling method based on graph theory. By taking each brain as a network node and the relationship between any two brains as a network edge, one can construct a network model for a group of interacting brains. The emergent group social behaviors can then be studied using the network's properties, such as its topological structure and information exchange efficiency. Although there is still much work to do, as a general framework for hyperscanning and modeling a group of interacting brains, CIMBN can provide new insights into the neural correlates of group social interactions, and advance social neuroscience and social psychology. PMID:26283906

  19. Computer-Aided Diagnosis Systems for Brain Diseases in Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Yasuo Yamashita

    2009-07-01

    Full Text Available This paper reviews the basics and recent researches of computer-aided diagnosis (CAD systems for assisting neuroradiologists in detection of brain diseases, e.g., asymptomatic unruptured aneurysms, Alzheimer's disease, vascular dementia, and multiple sclerosis (MS, in magnetic resonance (MR images. The CAD systems consist of image feature extraction based on image processing techniques and machine learning classifiers such as linear discriminant analysis, artificial neural networks, and support vector machines. We introduce useful examples of the CAD systems in the neuroradiology, and conclude with possibilities in the future of the CAD systems for brain diseases in MR images.

  20. Whole Mouse Brain Image Reconstruction from Serial Coronal Sections Using FIJI (ImageJ).

    Science.gov (United States)

    Paletzki, Ronald; Gerfen, Charles R

    2015-01-01

    Whole-brain reconstruction of the mouse enables comprehensive analysis of the distribution of neurochemical markers, the distribution of anterogradely labeled axonal projections or retrogradely labeled neurons projecting to a specific brain site, or the distribution of neurons displaying activity-related markers in behavioral paradigms. This unit describes a method to produce whole-brain reconstruction image sets from coronal brain sections with up to four fluorescent markers using the freely available image-processing program FIJI (ImageJ). PMID:26426384

  1. Whole-brain dynamic CT angiography and perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orrison, W.W. [CHW Nevada Imaging Company, Nevada Imaging Centers, Spring Valley, Las Vegas, NV (United States); College of Osteopathic Medicine, Touro University Nevada, Henderson, NV (United States); Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Department of Medical Education, University of Nevada School of Medicine, Reno, NV (United States); Snyder, K.V.; Hopkins, L.N. [Department of Neurosurgery, Millard Fillmore Gates Circle Hospital, Buffalo, NY (United States); Roach, C.J. [School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States); Ringdahl, E.N. [Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV (United States); Nazir, R. [Shifa International Hospital, Islamabad (Pakistan); Hanson, E.H., E-mail: eric.hanson@amigenics.co [College of Osteopathic Medicine, Touro University Nevada, Henderson, NV (United States); Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States)

    2011-06-15

    The availability of whole brain computed tomography (CT) perfusion has expanded the opportunities for analysing the haemodynamic parameters associated with varied neurological conditions. Examples demonstrating the clinical utility of whole-brain CT perfusion imaging in selected acute and chronic ischaemic arterial neurovascular conditions are presented. Whole-brain CT perfusion enables the detection and focused haemodynamic analyses of acute and chronic arterial conditions in the central nervous system without the limitation of partial anatomical coverage of the brain.

  2. Whole-brain dynamic CT angiography and perfusion imaging

    International Nuclear Information System (INIS)

    The availability of whole brain computed tomography (CT) perfusion has expanded the opportunities for analysing the haemodynamic parameters associated with varied neurological conditions. Examples demonstrating the clinical utility of whole-brain CT perfusion imaging in selected acute and chronic ischaemic arterial neurovascular conditions are presented. Whole-brain CT perfusion enables the detection and focused haemodynamic analyses of acute and chronic arterial conditions in the central nervous system without the limitation of partial anatomical coverage of the brain.

  3. Analysis and simulation of brain signal data by EEG signal processing technique using MATLAB

    OpenAIRE

    Sasikumar Gurumurthy; Vudi Sai Mahit; Rittwika Ghosh

    2013-01-01

    EEG is brain signal processing technique that allows gaining the understanding of the complex inner mechanisms of the brain and abnormal brain waves have shown to be associated with particular brain disorders. The analysis of brain waves plays an important role in diagnosis of different brain disorders. MATLAB provides an interactive graphic user interface (GUI) allowing users to flexiblyand interactively process their high-density EEG dataset and other brain signal data different techniques ...

  4. A Novel Approach for MRI Brain Images Segmentation

    OpenAIRE

    Abo-Eleneen Z. A; Gamil Abdel-Azim

    2013-01-01

    Segmentation of brain from magnetic resonance (MR) images has important applications in neuroimaging, in particular it facilitates in extracting different brain tissues such as cerebrospinal fluids, white matter and gray matter. That helps in determining the volume of the tissues in three-dimensional brain MR images, which yields in analyzing many neural disorders such as epilepsy and Alzheimer disease. The Fisher information is a measure of the fluctuations in the observations. In a sense, ...

  5. Brain abscesses in diffusion-weighted imaging (DWI) - comparison to cystic brain tumors

    International Nuclear Information System (INIS)

    The clinical usefulness of diffusion-weighted imaging (DWI) was evaluated in patients with brain abscesses in comparison to patients with cystic brain tumors. Five patients with surgically confirmed brain abscesses underwent beside a brain MRI examination with contrast media application diffusion weighted imaging. Apparent diffusion coefficients (rADC) in three orthogonal diffusion gradient were calculated. The same protocol was used to examine 5 patients with cystic brain tumors. Showing an rADC of 0.33 x 10-3/mm2/s abscesses have a highly restricted diffusion in comparison to cystic brain tumors with an rADC of 1,67 x 10-3/mm2/s. Diffusion weighted imaging is a usefull diagnostic tool in the work up of brain abscesses. (orig.)

  6. Functional brain imaging of gastrointestinal sensation in health and disease

    Institute of Scientific and Technical Information of China (English)

    Lukas Van Oudenhove; Steven J Coen; Qasim Aziz

    2007-01-01

    It has since long been known, from everyday experience as well as from animal and human studies, that psychological processes-both affective and cognitiveexert an influence on gastrointestinal sensorimotor function. More specifically, a link between psychological factors and visceral hypersensitivity has been suggested,mainly based on research in functional gastrointestinal disorder patients. However, until recently, the exact nature of this putative relationship remained unclear,mainly due to a lack of non-invasive methods to study the (neurobiological) mechanisms underlying this relationship in non-sleeping humans. As functional brain imaging, introduced in visceral sensory neuroscience some 10 years ago, does provide a method for in vivo study of brain-gut interactions, insight into the neurobiological mechanisms underlying visceral sensation in general and the influence of psychological factors more particularly,has rapidly grown. In this article, an overview of brain imaging evidence on gastrointestinal sensation will be given, with special emphasis on the brain mechanisms underlying the interaction between affective & cognitive processes and visceral sensation. First, the reciprocal neural pathways between the brain and the gut (braingut axis) will be briefly outlined, including brain imaging evidence in healthy volunteers. Second, functional brain imaging studies assessing the influence of psychological factors on brain processing of visceral sensation in healthy humans will be discussed in more detail.Finally, brain imaging work investigating differences in brain responses to visceral distension between healthy volunteers and functional gastrointestinal disorder patients will be highlighted.

  7. IMAGE AUTHENTICATION TECHNIQUES AND ADVANCES SURVEY

    Directory of Open Access Journals (Sweden)

    Derroll David

    2015-10-01

    Full Text Available With the advanced technologies in the area of Engineering the World has become a smaller place and communication is in our finger tips. The multimedia sharing traffic through electronic media has increased tremendously in the recent years with the higher use of social networking sites. The statistics of amount of images uploaded in the internet per day is very huge. Digital Image security has become vulnerable due to increase transmission over non-secure channel and needs protection. Digital Images play a crucial role in medical and military images etc. and any tampering of them is a serious issue. Several approaches are introduced to authenticate multimedia images. These approaches can be categorized into fragile and semi-fragile watermarking, conventional cryptography and digital signatures based on the image content. The aim of this paper is to provide a comparative study and also a survey of emerging techniques for image authentication. The important requirements for an efficient image authentication system design are discussed along with the classification of image authentication into tamper detection, localization and reconstruction and robustness against image processing operation. Furthermore, the concept of image content based authentication is enlightened.

  8. Intracranial Hemorrhage Annotation for CT Brain Images

    Directory of Open Access Journals (Sweden)

    Tong Hau Lee

    2011-01-01

    Full Text Available In this paper, we created a decision-making model to detect intracranial hemorrhage and adopted Expectation Maximization(EM segmentation to segment the Computed Tomography (CT images. In this work, basically intracranial hemorrhage is classified into two main types which are intra-axial hemorrhage and extra-axial hemorrhage. In order to ease classification, contrast enhancement is adopted to finetune the contrast of the hemorrhage. After that, k-means is applied to group the potential and suspicious hemorrhagic regions into one cluster. The decision-making process is to identify whether the suspicious regions are hemorrhagic regions or non-regions of interest. After the hemorrhagic detection, the images are segmented into brain matter and cerebrospinal fluid (CSF by using expectation-maximization (EM segmentation. The acquired experimental results are evaluated in terms of recall and precision. The encouraging results have been attained whereby the proposed system has yielded 0.9333 and 0.8880 precision for extra-axial and intra-axial hemorrhagic detection respectively, whereas recall rate obtained is 0.9245 and 0.8043 for extra-axial and intra-axial hemorrhagic detection respectively.

  9. Interpretation techniques. [image enhancement and pattern recognition

    Science.gov (United States)

    Dragg, J. L.

    1974-01-01

    The image enhancement and geometric correction and registration techniques developed and/or demonstrated on ERTS data are relatively mature and greatly enhance the utility of the data for a large variety of users. Pattern recognition was improved by the use of signature extension, feature extension, and other classification techniques. Many of these techniques need to be developed and generalized to become operationally useful. Advancements in the mass precision processing of ERTS were demonstrated, providing the hope for future earth resources data to be provided in a more readily usable state. Also in evidence is an increasing and healthy interaction between the techniques developers and the user/applications investigators.

  10. Functional connectivity of the rodent brain using optical imaging

    Science.gov (United States)

    Guevara Codina, Edgar

    The aim of this thesis is to apply functional connectivity in a variety of animal models, using several optical imaging modalities. Even at rest, the brain shows high metabolic activity: the correlation in slow spontaneous fluctuations identifies remotely connected areas of the brain; hence the term "functional connectivity". Ongoing changes in spontaneous activity may provide insight into the neural processing that takes most of the brain metabolic activity, and so may provide a vast source of disease related changes. Brain hemodynamics may be modified during disease and affect resting-state activity. The thesis aims to better understand these changes in functional connectivity due to disease, using functional optical imaging. The optical imaging techniques explored in the first two contributions of this thesis are Optical Imaging of Intrinsic Signals and Laser Speckle Contrast Imaging, together they can estimate the metabolic rate of oxygen consumption, that closely parallels neural activity. They both have adequate spatial and temporal resolution and are well adapted to image the convexity of the mouse cortex. In the last article, a depth-sensitive modality called photoacoustic tomography was used in the newborn rat. Optical coherence tomography and laminar optical tomography were also part of the array of imaging techniques developed and applied in other collaborations. The first article of this work shows the changes in functional connectivity in an acute murine model of epileptiform activity. Homologous correlations are both increased and decreased with a small dependence on seizure duration. These changes suggest a potential decoupling between the hemodynamic parameters in resting-state networks, underlining the importance to investigate epileptic networks with several independent hemodynamic measures. The second study examines a novel murine model of arterial stiffness: the unilateral calcification of the right carotid. Seed-based connectivity analysis

  11. A summary of image segmentation techniques

    Science.gov (United States)

    Spirkovska, Lilly

    1993-01-01

    Machine vision systems are often considered to be composed of two subsystems: low-level vision and high-level vision. Low level vision consists primarily of image processing operations performed on the input image to produce another image with more favorable characteristics. These operations may yield images with reduced noise or cause certain features of the image to be emphasized (such as edges). High-level vision includes object recognition and, at the highest level, scene interpretation. The bridge between these two subsystems is the segmentation system. Through segmentation, the enhanced input image is mapped into a description involving regions with common features which can be used by the higher level vision tasks. There is no theory on image segmentation. Instead, image segmentation techniques are basically ad hoc and differ mostly in the way they emphasize one or more of the desired properties of an ideal segmenter and in the way they balance and compromise one desired property against another. These techniques can be categorized in a number of different groups including local vs. global, parallel vs. sequential, contextual vs. noncontextual, interactive vs. automatic. In this paper, we categorize the schemes into three main groups: pixel-based, edge-based, and region-based. Pixel-based segmentation schemes classify pixels based solely on their gray levels. Edge-based schemes first detect local discontinuities (edges) and then use that information to separate the image into regions. Finally, region-based schemes start with a seed pixel (or group of pixels) and then grow or split the seed until the original image is composed of only homogeneous regions. Because there are a number of survey papers available, we will not discuss all segmentation schemes. Rather than a survey, we take the approach of a detailed overview. We focus only on the more common approaches in order to give the reader a flavor for the variety of techniques available yet present enough

  12. Diagnosis of scaphoid fracture: optimal imaging techniques

    Directory of Open Access Journals (Sweden)

    Geijer M

    2013-07-01

    Full Text Available Mats Geijer Center for Medical Imaging and Physiology, Skåne University Hospital and Lund University, Lund, Sweden Abstract: This review aims to provide an overview of modern imaging techniques for evaluation of scaphoid fracture, with emphasis on occult fractures and an outlook on the possible evolution of imaging; it also gives an overview of the pathologic and anatomic basis for selection of techniques. Displaced scaphoid fractures detected by wrist radiography, with or without special scaphoid views, pose no diagnostic problems. After wrist trauma with clinically suspected scaphoid fracture and normal scaphoid radiography, most patients will have no clinically important fracture. Between 5% and 19% of patients (on average 16% in meta-analyses will, however, have an occult scaphoid fracture which, untreated, may lead to later, potentially devastating, complications. Follow-up imaging may be done with repeat radiography, tomosynthesis, computed tomography, magnetic resonance imaging (MRI, or bone scintigraphy. However, no method is perfect, and choice of imaging may be based on availability, cost, perceived accuracy, or personal preference. Generally, MRI and bone scintigraphy are regarded as the most sensitive modalities, but both are flawed by false positive results at various rates. Keywords: occult fracture, wrist, radiography, computed tomography, magnetic resonance imaging, radionuclide imaging

  13. Magnetic resonance imaging based volumetry: a primary approach to unravelling the brain

    Institute of Scientific and Technical Information of China (English)

    Huang Xiaoqi; Lü Su; Li Dongming; Gong Qiyong

    2007-01-01

    Magnetic resonance (MR) imaging based volumetry is recognized as an important technique for studying the brain. In this review, two principle volumetric methods using high resolution MR images were introduced, namely the Cavalieri method and the voxel based morphometry (VBM). The Cavalieri method represents a manual technique that allows the volume of brain structures to be estimated efficiently with no systematic error or sampling bias, whereby the VBM represents an automated image analysis which involves the use of statistical parametric mapping of the MR imaging data. Both methods have been refined and applied extensively in recent neuroscience research. The present paper aims to describe the development of methodologies and also to update the knowledge of their applications in studying the normal and diseased brain.

  14. Pattern Recognition in NeuroImaging: What can machine learning classifiers bring to the analysis of functional brain imaging?

    OpenAIRE

    Schrouff, Jessica

    2013-01-01

    The study of the brain development and functioning raises many question that are tracked using neuroimaging techniques such as positron emission tomography or (functional) magnetic resonance imaging. During the last decades, various techniques have been developed to analyse neuroimaging data. These techniques brought valuable insight on neuroscientific questions, but encounter limitations which make them unsuitable to tackle more complex problems. More recently, machine learning based models,...

  15. Brain imaging and psychotherapy: methodological considerations and practical implications.

    Science.gov (United States)

    Linden, David E J

    2008-11-01

    The development of psychotherapy has been based on psychological theories and clinical effects. However, an investigation of the neurobiological mechanisms of psychological interventions is also needed in order to improve indication and prognosis, inform the choice of parallel pharmacotherapy, provide outcome measures and potentially even aid the development of new treatment protocols. This neurobiological investigation can be informed by animal models, for example of learning and conditioning, but will essentially need the non-invasive techniques of functional neuroimaging in order to assess psychotherapy effects on patients' brains, which will be reviewed here. Most research so far has been conducted in obsessive compulsive disorder (OCD), anxiety disorders and depression. Effects in OCD were particularly exciting in that both cognitive behavioural therapy and medication with a selective serotonin inhibitor led to a reduction in blood flow in the caudate nucleus. In phobia, brief courses of behavioural therapy produced marked reductions of paralimbic responses to offensive stimuli in line with the clinical improvement. Findings in depression are less consistent, with both increases and decreases in prefrontal metabolism being reported. However, they are important in pointing to different mechanisms for the clinical effects of pharmacotherapy (more "bottom up") and psychotherapy (more "top down"). For the future it would be desirable if the findings of psychotherapy changes to brain activation patterns were confirmed in larger groups with homogenous imaging protocols. Functional imaging has already made great contributions to the understanding of the neural correlates of psychopathology. For example, evidence converges to suggest that the subgenual cingulate is crucial for mood regulation. One current clinical application of these findings is deep brain stimulation in areas highlighted by such imaging studies. I will discuss their initial application in depression

  16. In vivo diffusion tensor imaging in infants: assessment of brain development and correlation with language abilities in childhood

    OpenAIRE

    Aeby, Alec

    2013-01-01

    Rapid and important cerebral developmental changes occur between the third trimester of gestation and the first postnatal months (Sidman and Rakic, 1982). Assessment of these changes in term and preterm infants is of great interest, as it provides insights into early brain development but also how early birth may affect normal brain development (Mewes et al. 2006).Conventional brain magnetic resonance imaging (MRI) is a useful technique to provide structural information on brain development, ...

  17. Retinal Image Simulation of Subjective Refraction Techniques.

    Directory of Open Access Journals (Sweden)

    Sara Perches

    Full Text Available Refraction techniques make it possible to determine the most appropriate sphero-cylindrical lens prescription to achieve the best possible visual quality. Among these techniques, subjective refraction (i.e., patient's response-guided refraction is the most commonly used approach. In this context, this paper's main goal is to present a simulation software that implements in a virtual manner various subjective-refraction techniques-including Jackson's Cross-Cylinder test (JCC-relying all on the observation of computer-generated retinal images. This software has also been used to evaluate visual quality when the JCC test is performed in multifocal-contact-lens wearers. The results reveal this software's usefulness to simulate the retinal image quality that a particular visual compensation provides. Moreover, it can help to gain a deeper insight and to improve existing refraction techniques and it can be used for simulated training.

  18. Retinal Image Simulation of Subjective Refraction Techniques.

    Science.gov (United States)

    Perches, Sara; Collados, M Victoria; Ares, Jorge

    2016-01-01

    Refraction techniques make it possible to determine the most appropriate sphero-cylindrical lens prescription to achieve the best possible visual quality. Among these techniques, subjective refraction (i.e., patient's response-guided refraction) is the most commonly used approach. In this context, this paper's main goal is to present a simulation software that implements in a virtual manner various subjective-refraction techniques--including Jackson's Cross-Cylinder test (JCC)--relying all on the observation of computer-generated retinal images. This software has also been used to evaluate visual quality when the JCC test is performed in multifocal-contact-lens wearers. The results reveal this software's usefulness to simulate the retinal image quality that a particular visual compensation provides. Moreover, it can help to gain a deeper insight and to improve existing refraction techniques and it can be used for simulated training. PMID:26938648

  19. Laser Doppler imaging for intraoperative human brain mapping

    OpenAIRE

    Raabe, A; Van De Ville, D.; Leutenegger, M.; Szelényi, A; Hattingen, E; R. Gerlach; Seifert, V.; Hauger, C.; Lopez, A; Leitgeb, R.; Unser, M.; Martin-Williams, E.J.; Lasser, T.

    2009-01-01

    The identification and accurate location of centers of brain activity are vital both in neuro-surgery and brain research. This study aimed to provide a non-invasive, non-contact, accurate, rapid and user-friendly means of producing functional images intraoperatively. To this end a full field Laser Doppler imager was developed and integrated within the surgical microscope and perfusion images of the cortical surface were acquired during awake surgery whilst the patient performed a predet...

  20. Diffusion MRI of the neonate brain: acquisition, processing and analysis techniques

    International Nuclear Information System (INIS)

    Diffusion MRI (dMRI) is a popular noninvasive imaging modality for the investigation of the neonate brain. It enables the assessment of white matter integrity, and is particularly suited for studying white matter maturation in the preterm and term neonate brain. Diffusion tractography allows the delineation of white matter pathways and assessment of connectivity in vivo. In this review, we address the challenges of performing and analysing neonate dMRI. Of particular importance in dMRI analysis is adequate data preprocessing to reduce image distortions inherent to the acquisition technique, as well as artefacts caused by head movement. We present a summary of techniques that should be used in the preprocessing of neonate dMRI data, and demonstrate the effect of these important correction steps. Furthermore, we give an overview of available analysis techniques, ranging from voxel-based analysis of anisotropy metrics including tract-based spatial statistics (TBSS) to recently developed methods of statistical analysis addressing issues of resolving complex white matter architecture. We highlight the importance of resolving crossing fibres for tractography and outline several tractography-based techniques, including connectivity-based segmentation, the connectome and tractography mapping. These techniques provide powerful tools for the investigation of brain development and maturation. (orig.)

  1. Diffusion MRI of the neonate brain: acquisition, processing and analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pannek, Kerstin [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, School of Medicine, Brisbane (Australia); University of Queensland, Centre for Advanced Imaging, Brisbane (Australia); Guzzetta, Andrea [IRCCS Stella Maris, Department of Developmental Neuroscience, Calambrone Pisa (Italy); Colditz, Paul B. [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, Perinatal Research Centre, Brisbane (Australia); Rose, Stephen E. [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, Centre for Advanced Imaging, Brisbane (Australia); University of Queensland Centre for Clinical Research, Royal Brisbane and Women' s Hospital, Brisbane (Australia)

    2012-10-15

    Diffusion MRI (dMRI) is a popular noninvasive imaging modality for the investigation of the neonate brain. It enables the assessment of white matter integrity, and is particularly suited for studying white matter maturation in the preterm and term neonate brain. Diffusion tractography allows the delineation of white matter pathways and assessment of connectivity in vivo. In this review, we address the challenges of performing and analysing neonate dMRI. Of particular importance in dMRI analysis is adequate data preprocessing to reduce image distortions inherent to the acquisition technique, as well as artefacts caused by head movement. We present a summary of techniques that should be used in the preprocessing of neonate dMRI data, and demonstrate the effect of these important correction steps. Furthermore, we give an overview of available analysis techniques, ranging from voxel-based analysis of anisotropy metrics including tract-based spatial statistics (TBSS) to recently developed methods of statistical analysis addressing issues of resolving complex white matter architecture. We highlight the importance of resolving crossing fibres for tractography and outline several tractography-based techniques, including connectivity-based segmentation, the connectome and tractography mapping. These techniques provide powerful tools for the investigation of brain development and maturation. (orig.)

  2. The role of magnetic resonance imaging in the management of brain metastases: diagnosis to prognosis

    OpenAIRE

    Zakaria, Rasheed; Das, Kumar; Bhojak, Maneesh; Radon, Mark; Walker, Carol; Jenkinson, Michael D

    2014-01-01

    This article reviews the different MRI techniques available for the diagnosis, treatment and monitoring of brain metastases with a focus on applying advanced MR techniques to practical clinical problems. Topics include conventional MRI sequences and contrast agents, functional MR imaging, diffusion weighted MR, MR spectroscopy and perfusion MR. The role of radiographic biomarkers is discussed as well as future directions such as molecular imaging and MR guided high frequency ultrasound.

  3. Image processing techniques for remote sensing data

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    -Type text/plain; charset=UTF-8 4. IMAGE PROCE:>SINGTOO~IQUE3FOR RmOTE SmSING DATA M. R. RAIirnH KUMAR National Institute of Oceanography, Dona PaUla, Goa-403004. Digital image processing is used for improvement of pictorial information for human... interpretation and for processing of scene data for autonomous machine perception. The technique of digital image processing are used for' automatic character/pattern recognition, industrial robots for product assembly and inspection, military recognizance...

  4. Performance evaluation of breast image compression techniques

    International Nuclear Information System (INIS)

    Novel diagnosis orienting tele working systems manipulate, store, and process medical data through real time communication - conferencing schemes. One of the most important factors affecting the performance of these systems is image handling. Compression algorithms can be applied to the medical images, in order to minimize : a) the volume of data to be stored in the database, b) the demanded bandwidth from the network, c) the transmission costs, and to minimize the speed of the transmitted data. In this paper an estimation of all the factors of the process that affect the presentation of breast images is made, from the time the images are produced from a modality, till the compressed images are stored, or transmitted in a Broadband network (e.g. B-ISDN). The images used were scanned images of the TOR(MAX) Leeds breast phantom, as well as typical breast images. A comparison of seven compression techniques has been done, based on objective criteria such as Mean Square Error (MSE), resolution, contrast, etc. The user can choose the appropriate compression ratio in order to achieve the desired image quality. (authors)

  5. Functional imaging in treatment planning of brain lesions

    International Nuclear Information System (INIS)

    Purpose: Explore the use of functional imaging data in radiation treatment planning of brain lesions. Methods and Materials: Compare the treatment-planning process with and without the use of functional brain imaging for clinical cases where functional studies using either single photon emission computed tomography or magnetic resonance imaging are available. Results: A method to register functional image data with planning image studies is needed for functional treatment planning. Functional volumes are not simply connected regions. One activation study may produce many isolated functional areas. After finding the functional volumes and registering the functional information with the planning imaging data, the tools used for conventional three-dimensional treatment planning are sufficient for functional treatment planning. However, the planning system must provide dose-volume histograms for volumes of interest that consist of isolated pieces. Treatment plans that spare functional brain while providing identical target coverage can be constructed for lesions situated near the functional volume. However, the dose to other areas of the brain may be increased. Conclusions: Functional imaging will make determination of dose response of eloquent areas of the brain possible when combined with volumetric dose information and neuropsychological evaluation prior to and after radiation therapy. Realizing the full potential of functional imaging studies will require improved delineation of activated volumes and determination of the uncertainties in functional volume delineation. Optimization of treatment plans by minimizing dose to volumes activated during functional imaging studies should be used cautiously, because the dose to ''silent,'' but possibly eloquent, brain may be increased

  6. Automatic segmentation and classification of human brain image based on a fuzzy brain atlas

    Science.gov (United States)

    Tan, Ou; Jia, Chunguang; Duan, Huilong; Lu, Weixue

    1998-09-01

    It is difficult to automatically segment and classify tomograph images of actual patient's brain. Therefore, many interactive operations are performed. It is very time consuming and its precision is much depended on the user. In this paper, we combine a brain atlas and 3D fuzzy image segmentation into the image matching. It can not only find out the precise boundary of anatomic structure but also save time of the interactive operation. At first, the anatomic information of atlas is mapped into tomograph images of actual brain with a two step image matching method. Then, based on the mapping result, a 3D fuzzy structure mask is calculated. With the fuzzy information of anatomic structure, a new method of fuzzy clustering based on genetic algorithm is used to segment and classify the real brain image. There is only a minimum requirement of interaction in the whole process, including removing the skull and selecting some intrinsic point pairs.

  7. Optimized Fuzzy Logic Based Segmentation for Abnormal MRI Brain Images Analysis

    Directory of Open Access Journals (Sweden)

    Indah Soesanti

    2011-09-01

    Full Text Available In this paper an optimized fuzzy logic based segmentation for abnormal MRI brain images analysis is presented. A conventional fuzzy c-means (FCM technique does not use the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The FCM algorithm that incorporates spatial information into the membership function is used for clustering, while a conventional FCM algorithm does not fully utilize the spatial information in the image.The advantage of the technique is less sensitive to noise than the others. Originality of this research is focused in application of the technique on a normal and a glioma MRI brain images, and analysis of the area of abnormal mass from segmented images. The results show that the method effectively segmented MRI brain images, and the segmented normal and glioma MRI brain images can be analyzed for diagnosis purpose. The area of abnormal mass is identified from 7.15 to 19.41 cm2.

  8. Functional magnetic resonance imaging of higher brain activity

    International Nuclear Information System (INIS)

    Functional magnetic resonance images (fMRIs) exhibit small differences in the magnetic resonance signal intensity in positions corresponding to focal areas of brain activation. These signal are caused by variation in the oxygenation state of the venous vasculature. Using this non-invasive and dynamic method, it is possible to localize functional brain activation, in vivo, in normal individuals, with an accuracy of millimeters and a temporal resolution of seconds. Though a series of technical difficulties remain, fMRI is increasingly becoming a key method for visualizing the working brain, and uncovering the topographical organization of the human brain, and understanding the relationship between brain and the mind

  9. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging.

    Science.gov (United States)

    Yan, Chao-Gan; Wang, Xin-Di; Zuo, Xi-Nian; Zang, Yu-Feng

    2016-07-01

    Brain imaging efforts are being increasingly devoted to decode the functioning of the human brain. Among neuroimaging techniques, resting-state fMRI (R-fMRI) is currently expanding exponentially. Beyond the general neuroimaging analysis packages (e.g., SPM, AFNI and FSL), REST and DPARSF were developed to meet the increasing need of user-friendly toolboxes for R-fMRI data processing. To address recently identified methodological challenges of R-fMRI, we introduce the newly developed toolbox, DPABI, which was evolved from REST and DPARSF. DPABI incorporates recent research advances on head motion control and measurement standardization, thus allowing users to evaluate results using stringent control strategies. DPABI also emphasizes test-retest reliability and quality control of data processing. Furthermore, DPABI provides a user-friendly pipeline analysis toolkit for rat/monkey R-fMRI data analysis to reflect the rapid advances in animal imaging. In addition, DPABI includes preprocessing modules for task-based fMRI, voxel-based morphometry analysis, statistical analysis and results viewing. DPABI is designed to make data analysis require fewer manual operations, be less time-consuming, have a lower skill requirement, a smaller risk of inadvertent mistakes, and be more comparable across studies. We anticipate this open-source toolbox will assist novices and expert users alike and continue to support advancing R-fMRI methodology and its application to clinical translational studies. PMID:27075850

  10. Dynamic magnetic resonance inverse imaging of human brain function.

    Science.gov (United States)

    Lin, Fa-Hsuan; Wald, Lawrence L; Ahlfors, Seppo P; Hämäläinen, Matti S; Kwong, Kenneth K; Belliveau, John W

    2006-10-01

    MRI is widely used for noninvasive hemodynamic-based functional brain imaging. In traditional spatial encoding, however, gradient switching limits the temporal resolution, which makes it difficult to unambiguously identify possible fast nonhemodynamic changes. In this paper we propose a novel reconstruction approach, called dynamic inverse imaging (InI), that is capable of providing millisecond temporal resolution when highly parallel detection is used. To achieve an order-of-magnitude speedup in generating time-resolved contrast estimates and dynamic statistical parametric maps (dSPMs), the spatial information is derived from an array of detectors rather than by time-consuming gradient-encoding methods. The InI approach was inspired by electroencephalography (EEG) and magnetoencephalography (MEG) source localization techniques. Dynamic MR InI was evaluated by means of numerical simulations. InI was also applied to measure BOLD hemodynamic time curves at 20-ms temporal resolution in a visual stimulation experiment using a 90-channel head array. InI is expected to improve the time resolution of MRI and provide increased flexibility in the trade-off between spatial and temporal resolution for studies of dynamic activation patterns in the human brain. PMID:16964616

  11. Study of Noise Detection and Noise Removal Techniques in Medical Images

    Directory of Open Access Journals (Sweden)

    Bhausaheb Shinde

    2012-03-01

    Full Text Available In this work we taken different medical images like MRI, Cancer, X-ray, and Brain and calculated standard derivations and mean of all these medical images. To finding salt & pepper noise and then applied median filtering technique for removal of noise. After removing a noise by using median filtering techniques again standard derivations and mean are evaluated. This experimental analysis will improve the accuracy of MRI, Cancer, X-ray and Brain images for easy diagnosis. The results, which we have achieved, are more useful and they prove to be helpful for general medical practitioners to analyze the symptoms of the patients.

  12. Retinal Imaging Techniques for Diabetic Retinopathy Screening.

    Science.gov (United States)

    Goh, James Kang Hao; Cheung, Carol Y; Sim, Shaun Sebastian; Tan, Pok Chien; Tan, Gavin Siew Wei; Wong, Tien Yin

    2016-03-01

    Due to the increasing prevalence of diabetes mellitus, demand for diabetic retinopathy (DR) screening platforms is steeply increasing. Early detection and treatment of DR are key public health interventions that can greatly reduce the likelihood of vision loss. Current DR screening programs typically employ retinal fundus photography, which relies on skilled readers for manual DR assessment. However, this is labor-intensive and suffers from inconsistency across sites. Hence, there has been a recent proliferation of automated retinal image analysis software that may potentially alleviate this burden cost-effectively. Furthermore, current screening programs based on 2-dimensional fundus photography do not effectively screen for diabetic macular edema (DME). Optical coherence tomography is becoming increasingly recognized as the reference standard for DME assessment and can potentially provide a cost-effective solution for improving DME detection in large-scale DR screening programs. Current screening techniques are also unable to image the peripheral retina and require pharmacological pupil dilation; ultra-widefield imaging and confocal scanning laser ophthalmoscopy, which address these drawbacks, possess great potential. In this review, we summarize the current DR screening methods using various retinal imaging techniques, and also outline future possibilities. Advances in retinal imaging techniques can potentially transform the management of patients with diabetes, providing savings in health care costs and resources. PMID:26830491

  13. Quantitative Techniques in PET-CT Imaging

    NARCIS (Netherlands)

    Basu, Sandip; Zaidi, Habib; Holm, Soren; Alavi, Abass

    2011-01-01

    The appearance of hybrid PET/CT scanners has made quantitative whole body scanning of radioactive tracers feasible. This paper deals with the novel concepts for assessing global organ function and disease activity based on combined functional (PET) and structural (CT or MR) imaging techniques, their

  14. Smartphones as pocketable labs: visions for mobile brain imaging and neurofeedback.

    Science.gov (United States)

    Stopczynski, Arkadiusz; Stahlhut, Carsten; Petersen, Michael Kai; Larsen, Jakob Eg; Jensen, Camilla Falk; Ivanova, Marieta Georgieva; Andersen, Tobias S; Hansen, Lars Kai

    2014-01-01

    Mobile brain imaging solutions, such as the Smartphone Brain Scanner, which combines low cost wireless EEG sensors with open source software for real-time neuroimaging, may transform neuroscience experimental paradigms. Normally subject to the physical constraints in labs, neuroscience experimental paradigms can be transformed into dynamic environments allowing for the capturing of brain signals in everyday contexts. Using smartphones or tablets to access text or images may enable experimental design capable of tracing emotional responses when shopping or consuming media, incorporating sensorimotor responses reflecting our actions into brain machine interfaces, and facilitating neurofeedback training over extended periods. Even though the quality of consumer neuroheadsets is still lower than laboratory equipment and susceptible to environmental noise, we show that mobile neuroimaging solutions, like the Smartphone Brain Scanner, complemented by 3D reconstruction or source separation techniques may support a range of neuroimaging applications and thus become a valuable addition to high-end neuroimaging solutions. PMID:23994206

  15. Pattern recognition on brain magnetic resonance imaging in alpha dystroglycanopathies

    Directory of Open Access Journals (Sweden)

    Bindu Parayil

    2010-01-01

    Full Text Available Alpha dystroglycanopathies are heterogeneous group of disorders both phenotypically and genetically. A subgroup of these patients has characteristic brain imaging findings. Four patients with typical imaging findings of alpha dystroglycanopathy are reported. Phenotypic features included: global developmental delay, contractures, hypotonia and oculomotor abnormalities in all. Other manifestations were consanguinity (3, seizures (3, macrocephaly (1, microcephaly (3, retinal changes (2 and hypogenitalism (2. Magnetic resonance imaging (MRI of the brain revealed polymicrogyria, white matter changes, pontine hypoplasia, and subcortical cerebellar cysts in all the patients, ventriculomegaly, callosal abnormalities, and absent septum pellucidum in two and Dandy -Walker variant malformation in three. Magnetic resonace imaging of the first cousin of one the patient had the same characteristic imaging features. Brain imaging findings were almost identical despite heterogeneity in clinical presentation and histopathological features. Pattern recognition of MR imaging features may serve as a clue to the diagnosis of alpha dystroglycanopathy.

  16. [Cucumber diseases diagnosis using multispectral imaging technique].

    Science.gov (United States)

    Feng, Jie; Liao, Ning-Fang; Zhao, Bo; Luo, Yong-Dao; Li, Bao-Ju

    2009-02-01

    For a reliable diagnosis of plant diseases and insect pests, spectroscopy analysis technique and mutispectral imaging technique are proposed to diagnose five cucumber diseases, namely Trichothecium roseum, Sphaerotheca fuliginea, Cladosporium cucumerinum, Corynespora cassiicola and Pseudoperonospora cubensis. In the experiment, the cucumbers' multispectral images of 14 visible lights channels, near infrared channel and panchromatic channel were captured using narrow-band multispectral imaging system under standard observation environment. And the 5 cucumber diseases, healthy leaves and reference white were classified using their multispectral information, the distance, angle and relativity. The discrimination of Trichothecium roseum, Sphaerotheca fuliginea, Cladosporium cucumerinum, and reference white was 100%, and that of Pseudoperonospora cubensis and healthy leaves was 80% and 93.33% respectively. The mean correct discrimination of diseases was 81.90% when the distance and relativity were used together. The result shows that the method realized good accuracy in the cucumber diseases diagnosis. PMID:19445229

  17. The role of functional imaging techniques in the dementia

    International Nuclear Information System (INIS)

    Evaluation of dementia in patients with early symptoms of cognitive decline is clinically challenging, but the need for early, accurate diagnosis has become more crucial, since several medication for the treatment of mild to moderate Alzheimer' disease are available. Many neurodegenerative diseases produce significant brain function alteration even when structural imaging (CT of MRI) reveal no specific abnormalities. The role of PET and SPECT brain imaging in the initial assessment and differential diagnosis of dementia is beginning to evolve rapidly and growing evidence indicates that appropriate incorporation of PET into the clinical work up can improve diagnostic and prognostic accuracy with respect to Alzheimer's disease, the most common cause of dementia in the geriatric population. In the fast few years, studies comparing neuropathologic examination with PET have established reliable and consistent accuracy for diagnostic evaluations using PET - accuracies substantially exceeding those of comparable studies of diagnostic value of SPECT or of both modalities assessed side by side, or of clinical evaluations done without nuclear imaging. This review deals the role of functional brian imaging techniques in the evaluation of dementias and the role of nuclear neuroimaging in the early detection and diagnosis of Alzheimer's disease

  18. Application of radiosurgical techniques to produce a primate model of brain lesions

    Directory of Open Access Journals (Sweden)

    Jun Kunimatsu

    2015-04-01

    Full Text Available Behavioral analysis of subjects with discrete brain lesions provides important information about the mechanisms of various brain functions. However, it is generally difficult to experimentally produce discrete lesions in deep brain structures. Here we show that a radiosurgical technique, which is used as an alternative treatment for brain tumors and vascular malformations, is applicable to create non-invasive lesions in experimental animals for the research in systems neuroscience. We delivered highly focused radiation (130–150 Gy at ISO center to the frontal eye field of macaque monkeys using a clinical linear accelerator (LINAC. The effects of irradiation were assessed by analyzing oculomotor performance along with magnetic resonance (MR images before and up to 8 months following irradiation. In parallel with tissue edema indicated by MR images, deficits in saccadic and smooth pursuit eye movements were observed during several days following irradiation. Although initial signs of oculomotor deficits disappeared within a month, damage to the tissue and impaired eye movements gradually developed during the course of the subsequent 6 months. Postmortem histological examinations showed necrosis and hemorrhages within a large area of the white matter and, to a lesser extent, in the adjacent gray matter, which was centered at the irradiated target. These results indicated that the LINAC system was useful for making brain lesions in experimental animals, while the suitable radiation parameters to generate more focused lesions need to be further explored. We propose the use of a radiosurgical technique for establishing animal models of brain lesions, and discuss the possible uses of this technique for functional neurosurgical treatments in humans.

  19. Retractor-induced brain shift compensation in image-guided neurosurgery

    Science.gov (United States)

    Fan, Xiaoyao; Ji, Songbai; Hartov, Alex; Roberts, David; Paulsen, Keith

    2013-03-01

    In image-guided neurosurgery, intraoperative brain shift significantly degrades the accuracy of neuronavigation that is solely based on preoperative magnetic resonance images (pMR). To compensate for brain deformation and to maintain the accuracy in image guidance achieved at the start of surgery, biomechanical models have been developed to simulate brain deformation and to produce model-updated MR images (uMR) to compensate for brain shift. To-date, most studies have focused on shift compensation at early stages of surgery (i.e., updated images are only produced after craniotomy and durotomy). Simulating surgical events at later stages such as retraction and tissue resection are, perhaps, clinically more relevant because of the typically much larger magnitudes of brain deformation. However, these surgical events are substantially more complex in nature, thereby posing significant challenges in model-based brain shift compensation strategies. In this study, we present results from an initial investigation to simulate retractor-induced brain deformation through a biomechanical finite element (FE) model where whole-brain deformation assimilated from intraoperative data was used produce uMR for improved accuracy in image guidance. Specifically, intensity-encoded 3D surface profiles at the exposed cortical area were reconstructed from intraoperative stereovision (iSV) images before and after tissue retraction. Retractor-induced surface displacements were then derived by coregistering the surfaces and served as sparse displacement data to drive the FE model. With one patient case, we show that our technique is able to produce uMR that agrees well with the reconstructed iSV surface after retraction. The computational cost to simulate retractor-induced brain deformation was approximately 10 min. In addition, our approach introduces minimal interruption to the surgical workflow, suggesting the potential for its clinical application.

  20. Potential new approaches for the development of brain imaging agents for single-photon applications

    International Nuclear Information System (INIS)

    This paper describes new strategies for the brain-specific delivery of radionuclides that can be used to evaluate regional cerebral perfusion by single photon imaging techniques. A description of several examples of interesting new strategies that have recently been reported is presented. A new approach at this institution for the brain-specific delivery of radioiodinated iodophenylalkyl-substituted dihyronicotinamide systems is described which shows good brain uptake and retention in preliminary studies in rats. Following transport into the brain these agents appear to undergo facile intracerebral oxidation to the quaternized analogues which do not recross the intact blood-brain barrier and so are effectively trapped in the brain. 49 refs., 9 figs., 1 tab

  1. Potential new approaches for the development of brain imaging agents for single-photon applications

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, F.F. Jr.; Srivastava, P.C.

    1984-01-01

    This paper describes new strategies for the brain-specific delivery of radionuclides that can be used to evaluate regional cerebral perfusion by single photon imaging techniques. A description of several examples of interesting new strategies that have recently been reported is presented. A new approach at this institution for the brain-specific delivery of radioiodinated iodophenylalkyl-substituted dihyronicotinamide systems is described which shows good brain uptake and retention in preliminary studies in rats. Following transport into the brain these agents appear to undergo facile intracerebral oxidation to the quaternized analogues which do not recross the intact blood-brain barrier and so are effectively trapped in the brain. 49 refs., 9 figs., 1 tab.

  2. Appropriate Contrast Enhancement Measures for Brain and Breast Cancer Images

    Directory of Open Access Journals (Sweden)

    Suneet Gupta

    2016-01-01

    Full Text Available Medical imaging systems often produce images that require enhancement, such as improving the image contrast as they are poor in contrast. Therefore, they must be enhanced before they are examined by medical professionals. This is necessary for proper diagnosis and subsequent treatment. We do have various enhancement algorithms which enhance the medical images to different extents. We also have various quantitative metrics or measures which evaluate the quality of an image. This paper suggests the most appropriate measures for two of the medical images, namely, brain cancer images and breast cancer images.

  3. Robust image registration for functional magnetic resonance imaging of the brain.

    Science.gov (United States)

    Hsu, C C; Wu, M T; Lee, C

    2001-09-01

    Motion-related artifacts are still a major problem in data analysis of functional magnetic resonance imaging (FMRI) studies of brain activation. However, the traditional image registration algorithm is prone to inaccuracy when there are residual variations owing to counting statistics, partial volume effects or biological variation. In particular, susceptibility artifacts usually result in remarkable signal intensity variance, and they can mislead the estimation of motion parameters. In this study, Two robust estimation algorithms for the registration of FMRI images are described. The first estimation algorithm was based on the Newton method and used Tukey's biweight objective function. The second estimation algorithm was based on the Levenberg-Marquardt technique and used a skipped mean objective function. The robust M-estimators can suppress the effects of the outliers by scaling down their error magnitudes or completely rejecting outliers using a weighting function. The proposed registration methods consisted of the following steps: fast segmentation of the brain region from noisy background as a preprocessing step; pre-registration of the volume centroids to provide a good initial estimation; and two robust estimation algorithms and a voxel sampling technique to find the affine transformation parameters. The accuracy of the algorithms was within 0.5 mm in translation and within 0.5 degrees in rotation. For the FMRI data sets, the performance of the algorithms was visually compared with the AIR 2.0 software, which is a software for image registration, using colour-coded statistical mapping by the Kolmogorov-Smirov method. Experimental results showed, that the algorithms provided significant improvement in correcting motion-related artifacts and can enhance the detection of real brain activation. PMID:11712647

  4. Functional connectivity of the rat brain in magnetic resonance imaging

    OpenAIRE

    Kalthoff, Daniel

    2011-01-01

    INTRODUCTION: Functional connectivity – generally defined by Friston as “temporal correlation of a neurophysiological index measured in different brain areas” – was first reported for human functional magnetic resonance imaging (fMRI) of the brain by Biswal and co-workers in 1995. It relies on spontaneous low frequency fluctuations (< 0.1 Hz) of the blood oxygenation level dependent (BOLD) signal that are synchronized in distant brain regions in the absence of any task or stimulus, hence the ...

  5. Model-based brain shift compensation in image-guided neurosurgery

    Science.gov (United States)

    Ji, Songbai; Liu, Fenghong; Fan, Xiaoyao; Hartov, Alex; Roberts, David; Paulsen, Keith

    2009-02-01

    Intraoperative brain shift compensation is important for improving the accuracy of neuronavigational systems and ultimately, the accuracy of brain tumor resection as well as patient quality of life. Biomechanical models are practical methods for brain shift compensation in the operating room (OR). These methods assimilate incomplete deformation data on the brain acquired from intraoperative imaging techniques (e.g., ultrasound and stereovision), and simulate whole-brain deformation under loading and boundary conditions in the OR. Preoperative images of the patient's head (e.g., preoperative magnetic resonance images (pMR)) are then deformed accordingly based on the computed displacement field to generate updated visualizations for subsequent surgical guidance. Apparently, the clinical feasibility of the technique depends on the efficiency as well as the accuracy of the computational scheme. In this paper, we identify the major steps involved in biomechanical simulation of whole-brain deformation and demonstrate the efficiency and accuracy of each step. We show that a combined computational cost of 5 minutes with an accuracy of 1-2 millimeter can be achieved which suggests that the technique is feasible for routine application in the OR.

  6. Liver Ultrasound Image Analysis using Enhancement Techniques

    Directory of Open Access Journals (Sweden)

    Smriti Sahu, Maheedhar Dubey, Mohammad Imroze Khan

    2012-12-01

    Full Text Available Liver cancer is the sixth most common malignanttumour and the third most common cause ofcancer-related deaths worldwide. Chronic Liverdamage affects up to 20% of our population. It hasmany causes - viral infections (Hepatitis B and C,toxins, genetic, metabolic and autoimmune diseases.The rate of liver cancer in Australia has increasedfour-fold in the past 20 years. For detection andqualitative diagnosis of liver diseases, Ultrasound(US image is an easy-to-use and minimally invasiveimaging modality. Medical images are oftendeteriorated by noise due to various sources ofinterferences and other phenomena known asSpeckle noise. Therefore it is required to apply somedigital image processing techniques for smoothingor suppression of speckle noise in ultrasoundimages. This paper attempts to undertake the studythree types of the image enhancement techniquesincluding, Shock Filter, Contrast Limited AdaptiveHistogram Equalization (CLAHE and Spatialfilter. These smoothing techniques are comparedusing performance matrices Peak Signal to NoiseRatio (PSNR and Mean Square Error (MSE. Ithas been observed that the Spatial high pass filtergives the better performance than others for liverultrasound image analysis.

  7. Do brain image databanks support understanding of normal ageing brain structure? A systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Dickie, David Alexander; Job, Dominic E.; Wardlaw, Joanna M. [University of Edinburgh, Division of Clinical Neurosciences, Western General Hospital, Brain Research Imaging Centre (BRIC), Edinburgh (United Kingdom); Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Edinburgh (United Kingdom); Poole, Ian [Toshiba Medical Visualisation Systems Europe, Ltd., Edinburgh (United Kingdom); Ahearn, Trevor S.; Staff, Roger T.; Murray, Alison D. [University of Aberdeen, Aberdeen Biomedical Imaging Centre, Aberdeen (United Kingdom); Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Edinburgh (United Kingdom)

    2012-07-15

    To document accessible magnetic resonance (MR) brain images, metadata and statistical results from normal older subjects that may be used to improve diagnoses of dementia. We systematically reviewed published brain image databanks (print literature and Internet) concerned with normal ageing brain structure. From nine eligible databanks, there appeared to be 944 normal subjects aged {>=}60 years. However, many subjects were in more than one databank and not all were fully representative of normal ageing clinical characteristics. Therefore, there were approximately 343 subjects aged {>=}60 years with metadata representative of normal ageing, but only 98 subjects were openly accessible. No databank had the range of MR image sequences, e.g. T2*, fluid-attenuated inversion recovery (FLAIR), required to effectively characterise the features of brain ageing. No databank supported random subject retrieval; therefore, manual selection bias and errors may occur in studies that use these subjects as controls. Finally, no databank stored results from statistical analyses of its brain image and metadata that may be validated with analyses of further data. Brain image databanks require open access, more subjects, metadata, MR image sequences, searchability and statistical results to improve understanding of normal ageing brain structure and diagnoses of dementia. (orig.)

  8. Do brain image databanks support understanding of normal ageing brain structure? A systematic review

    International Nuclear Information System (INIS)

    To document accessible magnetic resonance (MR) brain images, metadata and statistical results from normal older subjects that may be used to improve diagnoses of dementia. We systematically reviewed published brain image databanks (print literature and Internet) concerned with normal ageing brain structure. From nine eligible databanks, there appeared to be 944 normal subjects aged ≥60 years. However, many subjects were in more than one databank and not all were fully representative of normal ageing clinical characteristics. Therefore, there were approximately 343 subjects aged ≥60 years with metadata representative of normal ageing, but only 98 subjects were openly accessible. No databank had the range of MR image sequences, e.g. T2*, fluid-attenuated inversion recovery (FLAIR), required to effectively characterise the features of brain ageing. No databank supported random subject retrieval; therefore, manual selection bias and errors may occur in studies that use these subjects as controls. Finally, no databank stored results from statistical analyses of its brain image and metadata that may be validated with analyses of further data. Brain image databanks require open access, more subjects, metadata, MR image sequences, searchability and statistical results to improve understanding of normal ageing brain structure and diagnoses of dementia. (orig.)

  9. Structural brain imaging in diabetes : A methodological perspective

    NARCIS (Netherlands)

    Jongen, Cynthia; Biessels, Geert Jan

    2008-01-01

    Brain imaging provides information on brain anatomy and function and progression of cerebral abnormalities can be monitored. This may provide insight into the aetiology of diabetes related cerebral disorders. This paper focuses on the methods for the assessment of white matter hyperintensities and b

  10. Automated morphometry of transgenic mouse brains in MR images

    NARCIS (Netherlands)

    Scheenstra, Alize Elske Hiltje

    2011-01-01

    Quantitative and local morphometry of mouse brain MRI is a relatively new field of research, where automated methods can be exploited to rapidly provide accurate and repeatable results. In this thesis we reviewed several existing methods and applications of quantitative morphometry to brain MR image

  11. STUDY OF BRAIN TUMOURS BY NOVE L MAGNETIC RESONANCE TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Mohammad Shamim

    2015-01-01

    Full Text Available In the present study , thirty patients in the age range of 22 to 63 years of age were included after being diagnosed to be having brain tumour on CT scan or conventional MRI. In addition DWI , MRS , and PWI were carried out i n these patients. All the patients with suspicious malignant lesions were then subjected to FDG - PET examination . Histopathological correlation was obtained in all the patients to serve as gold standard against which other modalities will be assessed for th eir sensitivity , specificity , positive predictive value , negative predictive value and diagnostic accuracy. Out of thirty patients selected for this study , twenty cases were found to be malignant and ten cases were benign on Histopathological evaluation. Majority of malignant lesions were glioblastoma multiforme. Amongst benign cases , majorities were meningioma , one was a Granulomatous lesion and one was a benign cystic lesion. MRI including the novel techniques showed high sensitivity and spe cificity in identifying malignant brain lesions and has a future role in better characterization of brain tumours. Wherever available , it should be integrated in routine workup of patients presenting with brain tumours or for follow up of patients undergon e surgery / adjuvant chemotherapy.

  12. Skull-stripping for Tumor-bearing Brain Images

    CERN Document Server

    Bauer, Stefan; Reyes, Mauricio

    2012-01-01

    Skull-stripping separates the skull region of the head from the soft brain tissues. In many cases of brain image analysis, this is an essential preprocessing step in order to improve the final result. This is true for both registration and segmentation tasks. In fact, skull-stripping of magnetic resonance images (MRI) is a well-studied problem with numerous publications in recent years. Many different algorithms have been proposed, a summary and comparison of which can be found in [Fennema-Notestine, 2006]. Despite the abundance of approaches, we discovered that the algorithms which had been suggested so far, perform poorly when dealing with tumor-bearing brain images. This is mostly due to additional difficulties in separating the brain from the skull in this case, especially when the lesion is located very close to the skull border. Additionally, images acquired according to standard clinical protocols, often exhibit anisotropic resolution and only partial coverage, which further complicates the task. There...

  13. Imaging of brain tumors with histological correlations. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Drevelegas, Antonios (ed.)

    2011-07-01

    This volume provides a deeper understanding of the diagnosis of brain tumors by correlating radiographic imaging features with the underlying pathological abnormalities. All modern imaging modalities are used to complete a diagnostic overview of brain tumors with emphasis on recent advances in diagnostic neuroradiology. High-quality illustrations depicting common and uncommon imaging characteristics of a wide range of brain tumors are presented and analysed, drawing attention to the ways in which these characteristics reflect different aspects of pathology. Important theoretical considerations are also discussed. Since the first edition, chapters have been revised and updated and new material has been added, including detailed information on the clinical application of functional MRI and diffusion tensor imaging. Radiologists and other clinicians interested in the current diagnostic approach to brain tumors will find this book to be an invaluable and enlightening clinical tool. (orig.)

  14. Tablet surface characterisation by various imaging techniques

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Rantanen, Jukka; Yliruusi, Jouko

    2003-01-01

    The aim of this study was to characterise tablet surfaces using different imaging and roughness analytical techniques including optical microscopy, scanning electron microscopy (SEM), laser profilometry and atomic force microscopy (AFM). The test materials compressed were potassium chloride (KCl......) and sodium chloride (NaCl). It was found that all methods used suggested that the KCl tablets were smoother than the NaCl tablets and higher compression pressure made the tablets smoother. Imaging methods like optical microscopy and SEM can give useful information about the roughness of the sample...

  15. Fetal magnetic resonance imaging: methods and techniques

    International Nuclear Information System (INIS)

    Since the introduction of fetal magnetic resonance imaging (MRI) into prenatal diagnostics, advances in coil technology and development of ultrafast sequences have further enhanced this technique. At present numerous sequences are available to visualize the whole fetus with high resolution and image quality, even in late stages of pregnancy. Taking into consideration the special circumstances of examination and adjusting sequence parameters to gestational age, fetal anatomy can be accurately depicted. The variety of sequences also allows further characterization of fetal tissues and pathologies. Fetal MRI not only supplies additional information to routine ultrasound studies, but also reveals fetal morphology and pathology in a way hitherto not possible. (orig.)

  16. Review of Intelligent Techniques Applied for Classification and Preprocessing of Medical Image Data

    OpenAIRE

    H S Hota; Shukla, S.P.; Kajal Gulhare

    2013-01-01

    Medical image data like ECG, EEG and MRI, CT-scan images are the most important way to diagnose disease of human being in precise way and widely used by the physician. Problem can be clearly identified with the help of these medical images. A robust model can classify the medical image data in better way .In this paper intelligent techniques like neural network and fuzzy logic techniques are explored for MRI medical image data to identify tumor in human brain. Also need of preprocessing of me...

  17. Multichannel optical brain imaging to separate cerebral vascular, tissue metabolic, and neuronal effects of cocaine

    Science.gov (United States)

    Ren, Hugang; Luo, Zhongchi; Yuan, Zhijia; Pan, Yingtian; Du, Congwu

    2012-02-01

    Characterization of cerebral hemodynamic and oxygenation metabolic changes, as well neuronal function is of great importance to study of brain functions and the relevant brain disorders such as drug addiction. Compared with other neuroimaging modalities, optical imaging techniques have the potential for high spatiotemporal resolution and dissection of the changes in cerebral blood flow (CBF), blood volume (CBV), and hemoglobing oxygenation and intracellular Ca ([Ca2+]i), which serves as markers of vascular function, tissue metabolism and neuronal activity, respectively. Recently, we developed a multiwavelength imaging system and integrated it into a surgical microscope. Three LEDs of λ1=530nm, λ2=570nm and λ3=630nm were used for exciting [Ca2+]i fluorescence labeled by Rhod2 (AM) and sensitizing total hemoglobin (i.e., CBV), and deoxygenated-hemoglobin, whereas one LD of λ1=830nm was used for laser speckle imaging to form a CBF mapping of the brain. These light sources were time-sharing for illumination on the brain and synchronized with the exposure of CCD camera for multichannel images of the brain. Our animal studies indicated that this optical approach enabled simultaneous mapping of cocaine-induced changes in CBF, CBV and oxygenated- and deoxygenated hemoglobin as well as [Ca2+]i in the cortical brain. Its high spatiotemporal resolution (30μm, 10Hz) and large field of view (4x5 mm2) are advanced as a neuroimaging tool for brain functional study.

  18. The potential of using brain images for authentication.

    Science.gov (United States)

    Chen, Fanglin; Zhou, Zongtan; Shen, Hui; Hu, Dewen

    2014-01-01

    Biometric recognition (also known as biometrics) refers to the automated recognition of individuals based on their biological or behavioral traits. Examples of biometric traits include fingerprint, palmprint, iris, and face. The brain is the most important and complex organ in the human body. Can it be used as a biometric trait? In this study, we analyze the uniqueness of the brain and try to use the brain for identity authentication. The proposed brain-based verification system operates in two stages: gray matter extraction and gray matter matching. A modified brain segmentation algorithm is implemented for extracting gray matter from an input brain image. Then, an alignment-based matching algorithm is developed for brain matching. Experimental results on two data sets show that the proposed brain recognition system meets the high accuracy requirement of identity authentication. Though currently the acquisition of the brain is still time consuming and expensive, brain images are highly unique and have the potential possibility for authentication in view of pattern recognition. PMID:25126604

  19. Brain Imaging, Forward Inference, and Theories of Reasoning

    OpenAIRE

    Evan Heit

    2015-01-01

    This review focuses on the issue of how neuroimaging studies address theoretical accounts of reasoning, through the lens of the method of forward inference (Henson, 2005, 2006). After theories of deductive and inductive reasoning are briefly presented, the method of forward inference for distinguishing between psychological theories based on brain imaging evidence is critically reviewed. Brain imaging studies of reasoning, comparing deductive and inductive arguments, comparing meaningful ve...

  20. An automated and simple method for brain MR image extraction

    OpenAIRE

    Zhu Zixin; Liu Jiafeng; Zhang Haiyan; Li Haiyun

    2011-01-01

    Abstract Background The extraction of brain tissue from magnetic resonance head images, is an important image processing step for the analyses of neuroimage data. The authors have developed an automated and simple brain extraction method using an improved geometric active contour model. Methods The method uses an improved geometric active contour model which can not only solve the boundary leakage problem but also is less sensitive to intensity inhomogeneity. The method defines the initial fu...

  1. SQUID based multichannel system for brain functional imaging

    OpenAIRE

    Vettoliere, Antonio

    2012-01-01

    A multichannel system for brain imaging containing 163 SQUID magnetometers arranged in a helmet shaped multisensorial array has been developed. To this aim, a previous investigation of a several SQUID configurations has been performed in order to choose a SQUID sensor having best performance for brain imaging on the basis of system working conditions. In particular, magnetometer and planar gradiometer have been designed, fabricated and characterized. Furthermore, a small magnetometer has b...

  2. Automatic registration of CT and MR brain images using correlation of geometrical features

    International Nuclear Information System (INIS)

    This paper describes an automated approach to register CT and MR brain images. Differential operators in scale space are applied to each type of image data, so as to produce feature images depicting ''ridgeness''. The resulting CT and MR feature images show similarities which can be used for matching. No segmentation is needed and the method is devoid of human interaction. The matching is accomplished by hierarchical correlation techniques. Results of 2-D and 3-D matching experiments are presented. The correlation function ensures an accurate match even if the scanned volumes to be matched do not completely overlap, or if some of the features in the images are not similar

  3. Creation and evaluation of complementary composite three-dimensional image in various brain diseases. An application of three-dimensional brain SPECT image and three-dimensional CT image

    International Nuclear Information System (INIS)

    The purpose of this study was to develop 3D composite images for use in functional and anatomical evaluation of various cerebral pathologies. Imaging studies were performed in normal volunteers, patients with hydrocephalus and patients with brain tumor (meningioma and metastatic tumor) using a three-detector SPECT system (Prism 3000) and helical CT scanner (Xvigor). 123I-IMP was used in normal volunteers and patients with hydrocephalus, and 201TLCL in patients with brain tumor. An Application Visualization System-Medical Viewer (AVS-MV) was used on a workstation (Titan 2) to generate 3D images. A new program was developed by synthesizing surface rendering and volume rendering techniques. The clinical effects of shunt operations were successfully evaluated in patients with hydrocephalus by means of translucent 3D images of the deep brain. Changes in the hypoperfusion area around the cerebral ventricle were compared with morphological changes in the cerebral ventricle on CT. In addition to the information concerning the characteristics of brain tumors and surrounding edemas, hemodynamic changes and changeable hypoperfusion areas around the tumors were visualized on 3D composite CT and SPECT images. A new method of generating 3D composite images of CT and SPECT was developed by combining graphic data from different systems on the same workstation. Complementary 3D composite images facilitated quantitative analysis of brain volume and functional analysis in various brain diseases. (author)

  4. Creation and evaluation of complementary composite three-dimensional image in various brain diseases. An application of three-dimensional brain SPECT image and three-dimensional CT image

    Energy Technology Data Exchange (ETDEWEB)

    Seiki, Yoshikatsu; Shibata, Iekado; Mito, Toshiaki; Sugo, Nobuo [Toho Univ., Tokyo (Japan). School of Medicine

    2000-09-01

    The purpose of this study was to develop 3D composite images for use in functional and anatomical evaluation of various cerebral pathologies. Imaging studies were performed in normal volunteers, patients with hydrocephalus and patients with brain tumor (meningioma and metastatic tumor) using a three-detector SPECT system (Prism 3000) and helical CT scanner (Xvigor). {sup 123}I-IMP was used in normal volunteers and patients with hydrocephalus, and {sup 201}TLCL in patients with brain tumor. An Application Visualization System-Medical Viewer (AVS-MV) was used on a workstation (Titan 2) to generate 3D images. A new program was developed by synthesizing surface rendering and volume rendering techniques. The clinical effects of shunt operations were successfully evaluated in patients with hydrocephalus by means of translucent 3D images of the deep brain. Changes in the hypoperfusion area around the cerebral ventricle were compared with morphological changes in the cerebral ventricle on CT. In addition to the information concerning the characteristics of brain tumors and surrounding edemas, hemodynamic changes and changeable hypoperfusion areas around the tumors were visualized on 3D composite CT and SPECT images. A new method of generating 3D composite images of CT and SPECT was developed by combining graphic data from different systems on the same workstation. Complementary 3D composite images facilitated quantitative analysis of brain volume and functional analysis in various brain diseases. (author)

  5. Fractal and wavelet image compression techniques

    CERN Document Server

    Welstead, Stephen

    1999-01-01

    Interest in image compression for internet and other multimedia applications has spurred research into compression techniques that will increase storage capabilities and transmission speed. This tutorial provides a practical guide to fractal and wavelet approaches--two techniques with exciting potential. It is intended for scientists, engineers, researchers, and students. It provides both introductory information and implementation details. Three Windows-compatible software systems are included so that readers can explore the new technologies in depth. Complete C/C++ source code is provided, e

  6. Image Data Mining for Pattern Classification and Visualization of Morphological Changes in Brain MR Images.

    Science.gov (United States)

    Murakawa, Saki; Ikuta, Rie; Uchiyama, Yoshikazu; Shiraishi, Junji

    2016-02-01

    Hospital information systems (HISs) and picture archiving and communication systems (PACSs) are archiving large amounts of data (i.e., "big data") that are not being used. Therefore, many research projects in progress are trying to use "big data" for the development of early diagnosis, prediction of disease onset, and personalized therapies. In this study, we propose a new method for image data mining to identify regularities and abnormalities in the large image data sets. We used 70 archived magnetic resonance (MR) images that were acquired using three-dimensional magnetization-prepared rapid acquisition with gradient echo (3D MP-RAGE). These images were obtained from the Alzheimer's disease neuroimaging initiative (ADNI) database. For anatomical standardization of the data, we used the statistical parametric mapping (SPM) software. Using a similarity matrix based on cross-correlation coefficients (CCs) calculated from an anatomical region and a hierarchical clustering technique, we classified all the abnormal cases into five groups. The Z score map identified the difference between a standard normal brain and each of those from the Alzheimer's groups. In addition, the scatter plot obtained from two similarity matrixes visualized the regularities and abnormalities in the image data sets. Image features identified using our method could be useful for understanding of image findings associated with Alzheimer's disease. PMID:26902379

  7. An Effective Method of Image Retrieval using Image Mining Techniques

    Directory of Open Access Journals (Sweden)

    A.Kannan

    2010-11-01

    Full Text Available The present research scholars are having keen interest in doing their research activities in the area of Data mining all over the world. Especially, [13]Mining Image data is the one of the essential features in this present scenario since image data plays vital role in every aspect of the system such as business for marketing, hospital for surgery, engineering for construction, Web for publication and so on. The other area in the Image mining system is the Content-Based Image Retrieval (CBIR which performs retrieval based on the similarity defined in terms of extracted features with more objectiveness. The drawback in CBIR is the features of the query image alone are considered. Hence, a new technique called Image retrieval based on optimum clusters is proposed for improving user interaction with image retrieval systems by fully exploiting the similarity information. The index is created by describing the images according to their color characteristics, with compact feature vectors, that represent typical color distributions [12].

  8. A tunable continuous wave (CW) and short-pulse optical source for THz brain imaging applications

    International Nuclear Information System (INIS)

    We demonstrate recent advances toward the development of a novel 2D THz imaging system for brain imaging applications both at the macroscopic and at the bimolecular level. A frequency-synthesized THz source based on difference frequency generation between optical wavelengths is presented, utilizing supercontinuum generation in a highly nonlinear optical fiber with subsequent spectral carving by means of a fiber Fabry–Perot filter. Experimental results confirm the successful generation of THz radiation in the range of 0.2–2 THz, verifying the enhanced frequency tunability properties of the proposed system. Finally, the roadmap toward capturing functional brain information by exploiting THz imaging technologies is discussed, outlining the unique advantages offered by THz frequencies and their complementarity with existing brain imaging techniques

  9. Functional MR imaging of working memory in the human brain

    International Nuclear Information System (INIS)

    In order to investigate the functional brain anatomy associated with verbal and visual working memory, functional magnetic resonance imaging was performed. In ten normal right handed subjects, functional MR images were obtained using a 1.5-T MR scanner and the EPI BOLD technique. An item recognition task was used for stimulation, and during the activation period of the verbal working memory task, consonant letters were used. During the activation period of the visual working memory task, symbols or diagrams were employed instead of letters. For the post-processing of images, the SPM program was used, with the threshold of significance set at p < .001. We assessed activated brain areas during the two stimulation tasks and compared the activated regions between the two tasks. The prefrontal cortex and secondary visual cortex were activated bilaterally by both verbal and visual working memory tasks, and the patterns of activated signals were similar in both tasks. The superior parietal cortex was also activated by both tasks, with lateralization to the left in the verbal task, and bilaterally without lateralization in the visual task. The inferior frontal cortex, inferior parietal cortex and temporal gyrus were activated exclusively by the verbal working memory task, predominantly in the left hemisphere. The prefrontal cortex is activated by two stimulation tasks, and this is related to the function of the central executive. The language areas activated by the verbal working memory task may be a function of the phonological loop. Bilateral prefrontal and superior parietal cortices activated by the visual working memory task may be related to the visual maintenance of objects, representing visual working memory

  10. Pork grade evaluation using hyperspectral imaging techniques

    Science.gov (United States)

    Zhou, Rui; Cai, Bo; Wang, Shoubing; Ji, Huihua; Chen, Huacai

    2011-11-01

    The method to evaluate the grade of the pork based on hyperspectral imaging techniques was studied. Principal component analysis (PCA) was performed on the hyperspectral image data to extract the principal components which were used as the inputs of the evaluation model. By comparing the different discriminating rates in the calibration set and the validation set under different information, the choice of the components can be optimized. Experimental results showed that the classification evaluation model was the optimal when the principal of component (PC) of spectra was 3, while the corresponding discriminating rate was 89.1% in the calibration set and 84.9% in the validation set. It was also good when the PC of images was 9, while the corresponding discriminating rate was 97.2% in the calibration set and 91.1% in the validation set. The evaluation model based on both information of spectra and images was built, in which the corresponding PCs of spectra and images were used as the inputs. This model performed very well in grade classification evaluation, and the discriminating rates of calibration set and validation set were 99.5% and 92.7%, respectively, which were better than the two evaluation models based on single information of spectra or images.

  11. Study on rotating modulator imaging technique

    International Nuclear Information System (INIS)

    Background: Nuclear security and safety is becoming one of the most concerned topics around the world after Fukushima nuclear accident. Recent reports of IAEA show that the potential risks exist internationally and domestically. A good solution of promoting nuclear security and safety is to develop advanced nuclear radiation monitoring technologies including γ-ray imaging. Purpose: In order to improve the sensitivity of a γ-ray imaging system with little increase of system complexity and cost, rotating modulator (RM) imaging technique using non-position-sensitive detectors was first introduced in nuclear monitoring studies. Methods: Modulation pattern of RM system was deduced mathematically and its profile was calculated by a dedicated program written in Matlab. The system sensitivity was analyzed based on the profile. Detector outputs were produced by Monte Carlo simulation. The Noise-Compensating Algebraic Reconstruction (NCAR) algorithm was applied to the image reconstruct from simulated outputs. Results: A RM imaging system has a relative sensitivity of 62% compared with a coded aperture system when detector areas of the two systems are equal. On condition that the detector diameter is 3.8 cm and image distance is 80 cm, an angular resolution of 0.8° is achieved. Conclusion: Based on the simulating results, a RM system design suitable for vehicle and robotic platform is proposed. (authors)

  12. Research on hyperspectral polarization imaging technique

    Science.gov (United States)

    Zhao, Haibo; Feng, Lei; Zhou, Yu; Wang, Zheng; Lin, Xuling

    2015-08-01

    The summary of hyperspectral polarization remote sensing detection is presented, including the characteristics and mechanism of polarization detection, the expression of polarization light and the detection method. The present research of hyperspectral polarization remote sensing is introduced. A novel method of hyperspectral polarization imaging technique is discussed, which is based on static modulation adding with the double refraction crystal. The static modulation is composed of one polarizer and two retarders. The double refraction crystal is used to generate interference image. The four Stokes vectors and spectral information can be detected only by one measurement. The method of static modulation is introduced in detail and is simulated by computer. The experimental system is also established in laboratory. The basic concept of the technique is verified. The simulation error of DOP (polarization degree detection) is about 1%. The experimental error of DOP is less than 5%. The merits of the novel system are no moving parts, compactness and no electrical element.

  13. Techniques on mesh generation for the brain shift simulation

    CERN Document Server

    Lobos, Claudio; Payan, Yohan; Hitschfeld, Nancy

    2007-01-01

    Neurosurgery interventions involve complex tracking systems because a tissue deformation takesplace. The neuronavigation system relies only on preoperative images. In order to overcome the soft tissue deformations and guarantee the accuracy of the navigation a biomechanical model can be used during surgery to simulate the deformation of the brain. Therefore, a mesh generation for an optimal real-time Finite Element Model (FEM) becomes crucial. In this work we present different alternatives from a meshgeneration point of view that were evaluated to optimize the process in terms of elements quantity and quality as well as constraints of a intraoperative application and patient specific data.

  14. Wireless image-data transmission from an implanted image sensor through a living mouse brain by intra body communication

    Science.gov (United States)

    Hayami, Hajime; Takehara, Hiroaki; Nagata, Kengo; Haruta, Makito; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2016-04-01

    Intra body communication technology allows the fabrication of compact implantable biomedical sensors compared with RF wireless technology. In this paper, we report the fabrication of an implantable image sensor of 625 µm width and 830 µm length and the demonstration of wireless image-data transmission through a brain tissue of a living mouse. The sensor was designed to transmit output signals of pixel values by pulse width modulation (PWM). The PWM signals from the sensor transmitted through a brain tissue were detected by a receiver electrode. Wireless data transmission of a two-dimensional image was successfully demonstrated in a living mouse brain. The technique reported here is expected to provide useful methods of data transmission using micro sized implantable biomedical sensors.

  15. A Review of Image Data Clustering Techniques

    OpenAIRE

    Ashwini Gulhane; Prashant L. Paikrao; D. S. Chaudhari

    2012-01-01

    In order to the find the close association between the density of data points, in the given data set of pixels of an image, clustering provides an easy analysis and proper validation. In this paper various clustering techniques along with some clustering algorithms are described. Further k-means algorithm, its limitations and a new approach of clustering called as M-step clustering that may overcomes these limitations of k-means is included.

  16. Assessment of regularization techniques for electrocardiographic imaging

    OpenAIRE

    Milanič, Matija; Jazbinšek, Vojko; MacLeod, Robert S; Brooks, Dana H.; Hren, Rok

    2013-01-01

    A widely used approach to solving the inverse problem in electrocardiography involves computing potentials on the epicardium from measured electrocardiograms (ECGs) on the torso surface. The main challenge of solving this electrocardiographic imaging (ECGI) problem lies in its intrinsic ill-posedness. While many regularization techniques have been developed to control wild oscillations of the solution, the choice of proper regularization methods for obtaining clinically accepta...

  17. Comparison of four paper imaging techniques

    International Nuclear Information System (INIS)

    This paper discusses four paper imaging techniques (β-radiography, electrography, light transmission, and soft X-radiography) which were compared in terms of their process parameters and image characteristics (exposure time, spatial variation, contrast, spatial resolution, correlation with mass, and limitation in basis weight range) with the same newsprint samples and the same electron microscope film. Electrography gave a higher spatial resolution, shorter exposure time, and the wider basis weight range than β-radiography. The light transmission image could be obtained in a very short time, but it gave the poorest spatial resolution and correlation with mass. Soft X-radiography gave the biggest spatial resolution but the poorest spatial variation and contrast

  18. Task-specific evaluation of 3D image interpolation techniques

    Science.gov (United States)

    Grevera, George J.; Udupa, Jayaram K.; Miki, Yukio

    1998-06-01

    Image interpolation is an important operation that is widely used in medical imaging, image processing, and computer graphics. A variety of interpolation methods are available in the literature. However, their systematic evaluation is lacking. At a previous meeting, we presented a framework for the task independent comparison of interpolation methods based on a variety of medical image data pertaining to different parts of the human body taken from different modalities. In this new work, we present an objective, task-specific framework for evaluating interpolation techniques. The task considered is how the interpolation methods influence the accuracy of quantification of the total volume of lesions in the brain of Multiple Sclerosis (MS) patients. Sixty lesion detection experiments coming from ten patient studies, two subsampling techniques and the original data, and 3 interpolation methods is presented along with a statistical analysis of the results. This work comprises a systematic framework for the task-specific comparison of interpolation methods. Specifically, the influence of three interpolation methods in MS lesion quantification is compared.

  19. Multi circular-cavity surface coil for magnetic resonance imaging of monkey's brain at 4 Tesla

    Science.gov (United States)

    Osorio, A. I.; Solis-Najera, S. E.; Vázquez, F.; Wang, R. L.; Tomasi, D.; Rodriguez, A. O.

    2014-11-01

    Animal models in medical research has been used to study humans diseases for several decades. The use of different imaging techniques together with different animal models offers a great advantage due to the possibility to study some human pathologies without the necessity of chirurgical intervention. The employ of magnetic resonance imaging for the acquisition of anatomical and functional images is an excellent tool because its noninvasive nature. Dedicated coils to perform magnetic resonance imaging experiments are obligatory due to the improvement on the signal-to-noise ratio and reduced specific absorption ratio. A specifically designed surface coil for magnetic resonance imaging of monkey's brain is proposed based on the multi circular-slot coil. Numerical simulations of the magnetic and electric fields were also performed using the Finite Integration Method to solve Maxwell's equations for this particular coil design and, to study the behavior of various vector magnetic field configurations and specific absorption ratio. Monkey's brain images were then acquired with a research-dedicated magnetic resonance imaging system at 4T, to evaluate the anatomical images with conventional imaging sequences. This coil showed good quality images of a monkey's brain and full compatibility with standard pulse sequences implemented in research-dedicated imager.

  20. Computed tomographic imaging of the brain of normal neonatal foals

    Directory of Open Access Journals (Sweden)

    L Cabrera

    2015-01-01

    Full Text Available The aim of this study was to provide a more complete description of normal cross-sectional anatomy of the neonatal brain of the foal and associated structures by computed tomography (CT and gross anatomical sections. Using a fourth-generation CT scanner, 2-mm contiguous transverse images were acquired from two neonatal 5-days-old Quarter horse foals. After the study the animals were euthanised for reasons unrelated to head pathology. To assist in the accurate identification of brain and associated structures, transverse CT images were obtained and compared with the corresponding frozen cross-sections of the head. CT images matched well with their corresponding transverse gross sections and provided good differentiation between the bones and the soft tissues of the head. These CT images are intended to be a useful initial anatomic reference in the interpretation for clinical CT imaging studies of the brain and associated structures in live neonatal foals.

  1. Magnetic resonance imaging in assessment of treatment response of gamma knife for brain tumors

    Institute of Scientific and Technical Information of China (English)

    GAO Xiao; ZHANG Xue-ning; ZHANG Yun-ting; YU Chun-shui; XU De-sheng

    2011-01-01

    Objective To review the applications of magnetic resonance imaging (MRI) techniques in assessing treatment response to gamma knife radiosurgery for brain tumors.Data sources Published articles about assessing treatment response to gamma knife radiosurgery for brain tumors were selected using PubMed. The search terms were "MRI", "gamma knife" and "brain tumors".Study selection Articles regarding the MRI techniques using for early assessment of treatment response of gamma knife were selected.Results MRI techniques, especially diffusion weighted imaging, perfusion weighted imaging, magnetic resonance spectroscopy, are useful for early assessment of treatment response of gamma knife by detecting the hemodynamic, metabolic, and cellular alterations. Moreover, they can also provide important information on prognosis.Conclusions Diffusion weighted imaging, perfusion weighted imaging and magnetic resonance spectroscopy can provide early assessment of treatment response of gamma knife for brain tumors, and also information of tumor progression or recurrence earlier than conventional MRI. But there are still many questions to be answered which should be based on the development and advancement of MRI and related disciplines.

  2. Upright CBCT: A novel imaging technique

    Directory of Open Access Journals (Sweden)

    Xenia J Fave

    2014-03-01

    Full Text Available Purpose: We present a method for acquiring and correcting upright images using the on board CBCT imager. An upright imaging technique would allow for the introduction of upright radiation therapy treatments, which would benefit a variety of patients including those with thoracic cancers whose lung volumes are increased in an upright position and those who experience substantial discomfort during supine treatment positions.Methods: To acquire upright CBCT images, the linac head was positioned at 0 degrees, the KV imager and detector arms extended to their lateral positions, and the couch placed at 270 degrees. The KV imager was programmed to begin taking continuous fluoroscopic projections as the couch rotated from 270 to 90 degrees. The FOV was extended by performing this procedure twice, once with the detector shifted 14.5 cm towards the gantry and once with it shifted 14.5 cm away from the gantry. The two resulting sets of images were stitched together prior to reconstruction. The imaging parameters were chosen to deliver the some dose as that delivered during a simulation CT. A simulation CT was deformably registered to an upright CBCT reconstruction in order to evaluate the possibility of correcting the HU values via mapping.Results: Both spatial linearity and high contrast resolution were maintained in upright CBCT when compared to a simulation CT. Low contrast resolution and HU linearity decreased. Streaking artifacts were caused by the limited 180 degree arc angle and a sharp point artifact in the center of the axial slices resulted at the site of the stitching. A method for correcting the HUs was shown to be robust against these artifacts.Conclusion: Upright CBCT could be of great benefit to many patients. This study demonstrates its feasibility and presents solutions to some of its first hurdles before clinical implementation.--------------------------Cite this article as:Fave X, Yang J, Balter P, Court L. Upright CBCT: A novel imaging

  3. Cortical surface-based statistical analysis of brain PET images

    International Nuclear Information System (INIS)

    Precise and focal analysis of brain PET using voxel-based statistical mapping is limited due to the innate low spatial resolution of PET images which causes partial volume effect as well as due to the low precision of the image registration. In this study, we propose a cortical surface-based method for the precise analysis of brain PET images in combination with MRI. 18F-FDG brain PET images were acquired using GE ADVANCE PET scanner in 3D mode. 3D T1-weighted axial MR images were acquired from Philips Intera 1.5T scanner with slice thickness 1.5 mm and FOV=22 cm. The first step of analysis, we segmented gray and white matter from the structural T1 images using Freesurfer (MGH, Harvard Medical School) which extract the white matter surface using a deformable surface model. The cortical surface was further parcellated automatically into 85 anatomically relevant brain sub-regions. The second step, we developed a method for registering PET images to MRI in combination with a mutual information algorithm to maximize total metabolic activity within the gray matter band. Partial volume correction of PET image was conducted utilizing the extracted gray matter. The third step, we calculated mean cortical activity along the path from the white matter surface to the gray matter surface. The cortical activity was represented on the spatially normalized surface which statistical evaluation of cortical activity was conducted with. We evaluated the surface-based representation of PET images and the registration of PET images and the registration of PET and MRI utilizing cortical parcellation. The preliminary results showed that our method is very promising in the analysis of subtle cortical activity difference. We proposed a novel surface-based approach of brain PET analysis using high resolution MRI. Cortical Surface-based method was very efficient in the precise representation of brain activity, correction of partial volume effect as well as better spatial normalization

  4. Cortical surface-based statistical analysis of brain PET images

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae Jeong; Kim, Jae Jin; Yoon, Mi Jin; Yoo, Young Hoon; Lee, Jong Doo [School of Medicine, Yonsei University, Seoul (Korea, Republic of)

    2004-07-01

    Precise and focal analysis of brain PET using voxel-based statistical mapping is limited due to the innate low spatial resolution of PET images which causes partial volume effect as well as due to the low precision of the image registration. In this study, we propose a cortical surface-based method for the precise analysis of brain PET images in combination with MRI. {sup 18}F-FDG brain PET images were acquired using GE ADVANCE PET scanner in 3D mode. 3D T1-weighted axial MR images were acquired from Philips Intera 1.5T scanner with slice thickness 1.5 mm and FOV=22 cm. The first step of analysis, we segmented gray and white matter from the structural T1 images using Freesurfer (MGH, Harvard Medical School) which extract the white matter surface using a deformable surface model. The cortical surface was further parcellated automatically into 85 anatomically relevant brain sub-regions. The second step, we developed a method for registering PET images to MRI in combination with a mutual information algorithm to maximize total metabolic activity within the gray matter band. Partial volume correction of PET image was conducted utilizing the extracted gray matter. The third step, we calculated mean cortical activity along the path from the white matter surface to the gray matter surface. The cortical activity was represented on the spatially normalized surface which statistical evaluation of cortical activity was conducted with. We evaluated the surface-based representation of PET images and the registration of PET images and the registration of PET and MRI utilizing cortical parcellation. The preliminary results showed that our method is very promising in the analysis of subtle cortical activity difference. We proposed a novel surface-based approach of brain PET analysis using high resolution MRI. Cortical Surface-based method was very efficient in the precise representation of brain activity, correction of partial volume effect as well as better spatial normalization.

  5. Detection of brain lesions at the skull base using diffusion-weighted imaging with readout-segmented echo-planar imaging and generalized autocalibrating partially parallel acquisitions

    OpenAIRE

    Xiao-Er Wei; Wen-Bin Li; Ming-Hua Li; Yue-Hua Li; Dan Wang; Yu-Zhen Zhang; Li-Xin Jin

    2011-01-01

    Objective: To analyze the value of readout-segmented echo-planar imaging (rs-EPI) with parallel imaging and a two-dimensional (2D) navigator-based reacquisition technique in the detection of brain lesions at the skull base. Materials and Methods: A total of 54 patients (male 37, female 17) with suspected skull-base intracranial lesions underwent magnetic resonance imaging (MRI), including pre-T1 weighted imaging, T2-weighted imaging, Fluid Attenuated Inversion Recovery (FLAIR), standard singl...

  6. Brain SPECT imaging in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Temporal lobe epilepsy is diagnosed by clinical symptoms and signs and by localization of an epileptogenic focus. A brain SPECT study of two patients with temporal lobe epilepsy, using 99mTc-HMPAO, was used to demonstrate a perfusion abnormality in the temporal lobe, while brain CT and MRI were non-contributory. The electroencephalogram, though abnormal, did not localize the diseased area. The potential role of the SPECT study in diagnosis and localization of temporal lobe epilepsy is discussed. (orig.)

  7. Whole brain imaging with Serial Two-Photon Tomography

    Directory of Open Access Journals (Sweden)

    Stephen P Amato

    2016-03-01

    Full Text Available Imaging entire mouse brains at submicron resolution has historically been a challenging undertaking and largely confined to the province of dedicated atlasing initiatives. The has limited systematic investigations into important areas of neuroscience, such as neural circuits, brain mapping and neurodegeneration. In this paper, we describe in detail Serial Two-Photon (STP tomography, a robust, reliable method for imaging entire brains with histological detail. We provide examples of how the basic methodology can be extended to other imaging modalities, such as optical coherence tomography, in order to provide unique contrast mechanisms. Furthermore we provide a survey of the research that STP tomography has enabled in the field of neuroscience, provide examples of how this technology enables quantitative whole brain studies, and discuss the current limitations of STP tomography-based approaches

  8. Whole Brain Imaging with Serial Two-Photon Tomography

    Science.gov (United States)

    Amato, Stephen P.; Pan, Feng; Schwartz, Joel; Ragan, Timothy M.

    2016-01-01

    Imaging entire mouse brains at submicron resolution has historically been a challenging undertaking and largely confined to the province of dedicated atlasing initiatives. This has limited systematic investigations into important areas of neuroscience, such as neural circuits, brain mapping and neurodegeneration. In this article, we describe in detail Serial Two-Photon (STP) tomography, a robust, reliable method for imaging entire brains with histological detail. We provide examples of how the basic methodology can be extended to other imaging modalities, such as Optical Coherence Tomography (OCT), in order to provide unique contrast mechanisms. Furthermore, we provide a survey of the research that STP tomography has enabled in the field of neuroscience, provide examples of how this technology enables quantitative whole brain studies, and discuss the current limitations of STP tomography-based approaches. PMID:27047350

  9. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments.

    Science.gov (United States)

    Gorgolewski, Krzysztof J; Auer, Tibor; Calhoun, Vince D; Craddock, R Cameron; Das, Samir; Duff, Eugene P; Flandin, Guillaume; Ghosh, Satrajit S; Glatard, Tristan; Halchenko, Yaroslav O; Handwerker, Daniel A; Hanke, Michael; Keator, David; Li, Xiangrui; Michael, Zachary; Maumet, Camille; Nichols, B Nolan; Nichols, Thomas E; Pellman, John; Poline, Jean-Baptiste; Rokem, Ariel; Schaefer, Gunnar; Sochat, Vanessa; Triplett, William; Turner, Jessica A; Varoquaux, Gaël; Poldrack, Russell A

    2016-01-01

    The development of magnetic resonance imaging (MRI) techniques has defined modern neuroimaging. Since its inception, tens of thousands of studies using techniques such as functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research, there has been no widely adopted standard for organizing and describing the data collected in an imaging experiment. This renders sharing and reusing data (within or between labs) difficult if not impossible and unnecessarily complicates the application of automatic pipelines and quality assurance protocols. To solve this problem, we have developed the Brain Imaging Data Structure (BIDS), a standard for organizing and describing MRI datasets. The BIDS standard uses file formats compatible with existing software, unifies the majority of practices already common in the field, and captures the metadata necessary for most common data processing operations. PMID:27326542

  10. Histogram analysis with automated extraction of brain-tissue region from whole-brain CT images

    OpenAIRE

    Kondo, Masatoshi; Yamashita, Koji; Yoshiura, Takashi; Hiwatash, Akio; Shirasaka, Takashi; Arimura, Hisao; Nakamura, Yasuhiko; Honda, Hiroshi

    2015-01-01

    To determine whether an automated extraction of the brain-tissue region from CT images is useful for the histogram analysis of the brain-tissue region was studied. We used the CT images of 11 patients. We developed an automatic brain-tissue extraction algorithm. We evaluated the similarity index of this automated extraction method relative to manual extraction, and we compared the mean CT number of all extracted pixels and the kurtosis and skewness of the distribution of CT numbers of all ext...

  11. Improved MR Brain Image Segmentation Using Adaptive Gabor Filtering Scheme with Fuzzy C-Means Algorithm

    Directory of Open Access Journals (Sweden)

    P. Hari Krishnan

    2014-08-01

    Full Text Available Image segmentation is the foremost process in medical image processing. It aids the diagnostic and clinical analysis of MRI (Magnetic Resonance Imaging images that were acquired through the most complex procedures of medical diagnostics. The earliest soft computing techniques in segmenting images were carried out through Fuzzy C-Means (FCM and similar extensions of various clustering algorithms. In this paper, we introduced an innovative method that uses Gabor energy filter with adaptive features to pre-extract the information of various regions of a brain image, obtained either from a MRI or CT scanner. The noise-reduced image with blurred features was then made to undergo modifications by applying unsupervised learning methods such as FCM technique, whose output has efficient exclusion of certain strength of noise elements resulting in better classified pixels.

  12. Penetrating brain injury with machete, stuck to calvarium: Hurdles in imaging and solutions

    Directory of Open Access Journals (Sweden)

    Mehul Modi

    2014-01-01

    Full Text Available Penetrating brain injury is a less common form of traumatic brain injury in civilian set up, with a higher mortality and morbidity. A detailed preoperative imaging is warranted to ascertain the extent of injury and involvement of neurovascular structures. We present a rare case of penetrating brain injury with a long machete, who underwent emergency craniotomy, removal of the weapon, debridement and evacuation of the brain contusion and dural repair. Due to the sheer size of the weapon stuck to the calvarium, only X-rays could be performed preoperatively. The difficulties posed by the case, requiring modifications in standard imaging, possible solutions to address the problem and individualized management techniques are discussed in this report.

  13. Look again: effects of brain images and mind-brain dualism on lay evaluations of research.

    Science.gov (United States)

    Hook, Cayce J; Farah, Martha J

    2013-09-01

    Brain scans have frequently been credited with uniquely seductive and persuasive qualities, leading to claims that fMRI research receives a disproportionate share of public attention and funding. It has been suggested that functional brain images are fascinating because they contradict dualist beliefs regarding the relationship between the body and the mind. Although previous research has indicated that brain images can increase judgments of an article's scientific reasoning, the hypotheses that brain scans make research appear more interesting, surprising, or worthy of funding have not been tested. Neither has the relation between the allure of brain imaging and dualism. In the following three studies, laypersons rated both fictional research descriptions and real science news articles accompanied by brain scans, bar charts, or photographs. Across 988 participants, we found little evidence of neuroimaging's seductive allure or of its relation to self-professed dualistic beliefs. These results, taken together with other recent null findings, suggest that brain images are less powerful than has been argued. PMID:23879877

  14. 3D-visualization of intracranial vessels and brain anatomy in magnetic resonance imaging

    International Nuclear Information System (INIS)

    This paper describes a 3D-image processing approach to generate a combination display of intracranial vessels and adjacent brain tissue surfaces in magnetic resonance imaging (MRI). The algorithm is based on the ray-tracing principle and may be regarded as a union of the techniques of surface integration and maximum intensity projection (MIP). Measurement methods and preprocessing steps of acquisition of a flow-compensated vessel dataset and a T1 weighted tissue volume with isolated brain with equal partitioning are described. The method is intended as a tool for the optimization of neurosurgical planning

  15. Recent development in noninvasive brain activity measurement by functional magnetic resonance imaging (fMRI)

    International Nuclear Information System (INIS)

    fMRI (functional magnetic resonance imaging) is a non-invasive brain imaging technique with which the distribution of neural activity is estimated by measuring local blood flow changes. Blood-oxygenation-level-dependent (BOLD) method measures changes in the density of deoxidized hemoglobin in blood caused by blood flow changes, while other methods have been developed to measure the blood flow changes directly. Effort has been expended to realize a submillimeter spatial resolution by using higher static magnetic field. fMRI has been carried out with various mental tasks, and many important findings have been made on the localization of higher brain functions. (author)

  16. Special feature on imaging systems and techniques

    Science.gov (United States)

    Yang, Wuqiang; Giakos, George

    2013-07-01

    The IEEE International Conference on Imaging Systems and Techniques (IST'2012) was held in Manchester, UK, on 16-17 July 2012. The participants came from 26 countries or regions: Austria, Brazil, Canada, China, Denmark, France, Germany, Greece, India, Iran, Iraq, Italy, Japan, Korea, Latvia, Malaysia, Norway, Poland, Portugal, Sweden, Switzerland, Taiwan, Tunisia, UAE, UK and USA. The technical program of the conference consisted of a series of scientific and technical sessions, exploring physical principles, engineering and applications of new imaging systems and techniques, as reflected by the diversity of the submitted papers. Following a rigorous review process, a total of 123 papers were accepted, and they were organized into 30 oral presentation sessions and a poster session. In addition, six invited keynotes were arranged. The conference not only provided the participants with a unique opportunity to exchange ideas and disseminate research outcomes but also paved a way to establish global collaboration. Following the IST'2012, a total of 55 papers, which were technically extended substantially from their versions in the conference proceeding, were submitted as regular papers to this special feature of Measurement Science and Technology . Following a rigorous reviewing process, 25 papers have been finally accepted for publication in this special feature and they are organized into three categories: (1) industrial tomography, (2) imaging systems and techniques and (3) image processing. These papers not only present the latest developments in the field of imaging systems and techniques but also offer potential solutions to existing problems. We hope that this special feature provides a good reference for researchers who are active in the field and will serve as a catalyst to trigger further research. It has been our great pleasure to be the guest editors of this special feature. We would like to thank the authors for their contributions, without which it would

  17. Wavelet Based Image Fusion for Detection of Brain Tumor

    Directory of Open Access Journals (Sweden)

    CYN Dwith

    2013-01-01

    Full Text Available Brain tumor, is one of the major causes for the increase in mortality among children and adults. Detecting the regions of brain is the major challenge in tumor detection. In the field of medical image processing, multi sensor images are widely being used as potential sources to detect brain tumor. In this paper, a wavelet based image fusion algorithm is applied on the Magnetic Resonance (MR images and Computed Tomography (CT images which are used as primary sources to extract the redundant and complementary information in order to enhance the tumor detection in the resultant fused image. The main features taken into account for detection of brain tumor are location of tumor and size of the tumor, which is further optimized through fusion of images using various wavelet transforms parameters. We discuss and enforce the principle of evaluating and comparing the performance of the algorithm applied to the images with respect to various wavelets type used for the wavelet analysis. The performance efficiency of the algorithm is evaluated on the basis of PSNR values. The obtained results are compared on the basis of PSNR with gradient vector field and big bang optimization. The algorithms are analyzed in terms of performance with respect to accuracy in estimation of tumor region and computational efficiency of the algorithms.

  18. Imaging Findings of Brain Death on 3-Tesla MRI

    International Nuclear Information System (INIS)

    To demonstrate the usefulness of 3-tesla (3T) magnetic resonance imaging (MRI) including T2-weighted imaging (T2WI), diffusion weighted imaging (DWI), time-of-flight (TOF) magnetic resonance angiography (MRA), T2*-weighted gradient recalled echo (GRE), and susceptibility weighted imaging (SWI) in diagnosing brain death. Magnetic resonance imaging findings for 10 patients with clinically verified brain death (group I) and seven patients with comatose or stuporous mentality who did not meet the clinical criteria of brain death (group II) were retrospectively reviewed. Tonsilar herniation and loss of intraarterial flow signal voids (LIFSV) on T2WI were highly sensitive and specific findings for the diagnosis of brain death (p < 0.001 and < 0.001, respectively). DWI, TOF-MRA, and GRE findings were statistically different between the two groups (p = 0.015, 0.029, and 0.003, respectively). However, cortical high signal intensities in T2WI and SWI findings were not statistically different between the two group (p = 0.412 and 1.0, respectively). T2-weighted imaging, DWI, and MRA using 3T MRI may be useful for diagnosing brain death. However, SWI findings are not specific due to high false positive findings.

  19. Integrated Semiconductor Optical Sensors for Chronic, Minimally-Invasive Imaging of Brain Function

    OpenAIRE

    Lee, Thomas T.; Levi, Ofer; Cang, Jianhua; Kaneko, Megumi; Stryker, Michael P.; Smith, Stephen J; Shenoy, Krishna V.; Harris, James S.

    2006-01-01

    Intrinsic Optical Signal (IOS) imaging is a widely accepted technique for imaging brain activity. We propose an integrated device consisting of interleaved arrays of gallium arsenide (GaAs) based semiconductor light sources and detectors operating at telecommunications wavelengths in the near-infrared. Such a device will allow for long-term, minimally invasive monitoring of neural activity in freely behaving subjects, and will enable the use of structured illumination patterns to improve syst...

  20. A REVIEW ON INFLUENCE OF MUSIC ON BRAIN ACTIVITY USING SIGNAL PROCESSING AND IMAGING SYSTEM

    Directory of Open Access Journals (Sweden)

    Dr. K. ADALARASU,

    2011-04-01

    Full Text Available As per clinical neuroscience, listening to music involves many brain activities and its study has advanced greatly in the last thirty years. Research shows that music has significant effect on our body and mind. Music has a positive effect on the hormone system and allows the brain to concentrate more easily and assimilate more information in less time, thereby boosting learning and information intake and thus augmenting cognitive skills. Studies have found that the silence between two musical notes triggers brain cells and neurons which are responsible for the development of sharp memory. Music at different pitches (for example, Madhyamavati, Sankarabarnam raga and so on elicits exceptionally emotions and is capable ofreliably affecting the mood of individuals, which in turn changes the brain activity. This article provides a brief overview of currently available signal processing and imaging techniques to study the influence of different music on human brain activity.

  1. Time-difference imaging of magnetic induction tomography in a three-layer brain physical phantom

    International Nuclear Information System (INIS)

    Magnetic induction tomography (MIT) is a contactless and noninvasive technique to reconstruct the conductivity distribution in a human cross-section. In this paper, we want to study the feasibility of imaging the low-contrast perturbation and small volume object in human brains. We construct a three-layer brain physical phantom which mimics the real conductivity distribution of brains by introducing an artificial skull layer. Using our MIT data acquisition system on this phantom and differential algorithm, we have obtained a series of reconstructed images of conductivity perturbation objects. All of the conductivity perturbation objects in the brain phantom can be clearly distinguished in the reconstructed images. The minimum detectable conductivity difference between the object and the background is 0.03 S m−1 (12.5%). The minimum detectable inner volume of the objects is 3.4 cm3. The three-layer brain physical phantom is able to simulate the conductivity distribution of the main structures of a human brain. The images of the low-contrast perturbation and small volume object show the prospect of MIT in the future. (paper)

  2. Measurement and imaging of brain function using MRI, MEG, and TMS

    International Nuclear Information System (INIS)

    This paper reviews functional imaging techniques in neuroscience such as magnetic resonance imaging (MRI) functional MRI (fMRI), magnetoencephalogray (MEG), and transcranial magnetic stimulation (TMS). fMRI and MEG allow the neuronal activity of the brain to be measured non-invasively. MEG detects an electrical activity as neuronal activity, while, fMRI detects a hemodynamic response as neuronal activity. TMS is the application of a brief magnetic pulse or a train of pulses to the skull, which results in the induction of a local electric current in the underlying surface of the brain, thereby producing a localized axonal depolarization. As a non-invasive and effective method to make reversible lesions in the human brain, TMS has a long and successful history. All of these techniques have major potential for applications in the neuroscience and medicine. (author)

  3. SPECT brain imaging with N-isopropyl [123I]-p-iodoamphetamine

    International Nuclear Information System (INIS)

    N-isopropyl-[123I]-p-iodoamphetamine is a lipophilic tracer that passes readily across the blood-brain barrier and is retained long enough to permit planar and tomographic imaging. Its distribution in the brain is proportional to blood flow, and its brain concentration remains unchanged between 30 min and 1 hr after intravenous injection. Tomographic imaging demonstrates increased activity in the gray matter, basal ganglia, and thalamus as would be expected with a cerebral perfusion tracer. In patients with acute cerebral infarction, decreased perfusion occurs immediately with the onset of symptoms. The technique also has utility in epilepsy in defining the abnormal focus in patients with medically intractable temporal-lobe epilepsy. This technique should prove to be a routine nuclear medicine procedure for the evaluation of cerebral perfusion

  4. Clinical anatomy of the canine brain using magnetic resonance imaging.

    Science.gov (United States)

    Leigh, Edmund J; Mackillop, Edward; Robertson, Ian D; Hudson, Lola C

    2008-01-01

    The purpose of this study was to produce an magnetic resonsnce (MR) image atlas of clinically relevant brain anatomy and to relate this neuroanatomy to clinical signs. The brain of a large mixed breed dog was imaged in transverse, sagittal, and dorsal planes using a 1.5 T MR unit and the following pulse sequences: Turbo (fast) spin echo (TSE) T2, T1, and T2- weighted spatial and chemical shift-encoded excitation sequence. Relevant neuroanatomic structures were identified using anatomic texts, sectioned cadaver heads, and previously published atlases. Major subdivisions of the brain were mapped and the neurologic signs of lesions in these divisions were described. TSE T2-weighted images were found to be the most useful for identifying clinically relevant neuroanatomy. Relating clinical signs to morphology as seen on MR will assist veterinarians to better understand clinically relevant neuroanatomy in MR images. PMID:18418990

  5. Clinical advantage and limitation of the 3-dimensional magnetic resonance imaging of the brain

    International Nuclear Information System (INIS)

    The authors discuss practical techniques of 3-dimensional magnetic resonance images. Raw data for 3-dimensional MRI were acquired using a 3D turbo-FLASH sequence. The data were processed in the following three ways; 1) volume rendering of all the raw data, 2) segmentation of the brain from other tissue using other software and the volume rendering of all the raw data, and 3) reconstruction of 2-dimensional image of the arbitrary orientation (oblique-oblique and curvature) using multi-planar reconstruction (MPR). In addition to these basic techniques, a surgical window technique, maximum intensity projection (MIP), and skin marking using fatty acid gel in capsules can provide the following unique images; 1) surface images of the skin, skull and brain, 2) images of the arteries and the main cortical vein superimposed on the brain-surface images, and 3) surgical images simulating craniotomy. The drawbacks of 3-dimensional MRI at present are twofold; 1)it requires mini-computers, which is not always available at every clinical site, and 2) the time necessary for data processing and image reconstruction depends on the performance of the computer, but in any case the segmentation of the brain from other soft tissue is a time-consuming job, one which generally takes several hours. However, it is expected that these present limitations of 3-dimentional MRI are only temporary because fast and high cost-performance computers for this specific purpose (image processing) have recently become available. The authors stress that the most important factor which drives the development of a high cost-performance system for 3-dimensional MRI is the demand from clinicians, who realize the advantages of 3-dimensional MRI. (author)

  6. Identifying Brain Image Level Endophenotypes in Epilepsy

    CERN Document Server

    Cheng, Wei; Tian, Ge; Feng, Jianfeng; Wang, Zhengge; Zhang, Zhiqiang; Lu, GuangMing

    2012-01-01

    A brain wide association study (BWAS) based on the logistic regression was first developed and applied to a large population of epilepsy patients (168) and healthy controls (136). It was found that the most significant links associated with epilepsy are those bilateral links with regions mainly belonging to the default mode network and subcortex, such as amygdala, fusiform gyrus, inferior temporal gyrus, hippocampus, temporal pole, parahippocampal gyrus, insula, middle occipital gyrus, cuneus. These links were found to have much higher odd ratios than other links, and all of them showed reduced functional couplings in patients compared with controls. Interestingly, with the increasing of the seizure onset frequency or duration of illness, the functional connection between these bilateral regions became further reduced. On the other hand, as a functional compensation and brain plasticity, connections of these bilateral regions to other brain regions were abnormally enhanced and became even much stronger with t...

  7. Functional photoacoustic imaging to observe regional brain activation induced by cocaine hydrochloride

    Science.gov (United States)

    Jo, Janggun; Yang, Xinmai

    2011-09-01

    Photoacoustic microscopy (PAM) was used to detect small animal brain activation in response to drug abuse. Cocaine hydrochloride in saline solution was injected into the blood stream of Sprague Dawley rats through tail veins. The rat brain functional change in response to the injection of drug was then monitored by the PAM technique. Images in the coronal view of the rat brain at the locations of 1.2 and 3.4 mm posterior to bregma were obtained. The resulted photoacoustic (PA) images showed the regional changes in the blood volume. Additionally, the regional changes in blood oxygenation were also presented. The results demonstrated that PA imaging is capable of monitoring regional hemodynamic changes induced by drug abuse.

  8. A numerical model for the study of photoacoustic imaging of brain tumours

    CERN Document Server

    Firouzi, Kamyar

    2015-01-01

    Photoacoustic imaging has shown great promise for medical imaging, where optical energy absorption by blood haemoglobin is used as the contrast mechanism. A numerical method was developed for the in-silico assessment of the photoacoustic image reconstruction of the brain. Image segmentation techniques were used to prepare a digital phantom from MR images. Light transport through brain tissue was modelled using a Finite Element approach. The resulting acoustic pressure was then estimated by pulsed photoacoustics considerations. The forward acoustic wave propagation was modelled by the linearized coupled first order wave equations and solved by an acoustic k-space method. Since skull bone is an elastic solid and strongly attenuates ultrasound (due to both scattering and absorption), a k-space method was developed for elastic media. To model scattering effects, a new approach was applied based on propagation in random media. In addition, absorption effects were incorporated using a power law. Finally, the acoust...

  9. Survey of Despeckling Techniques for Medical Ultrasound Images

    Directory of Open Access Journals (Sweden)

    Jappreet Kaur

    2011-07-01

    Full Text Available Ultrasound imaging is the most commonly used imaging system in medical field. Main problem related to this imaging technique is introduction of speckle noise, thus making the image unclear. The success of ultrasonic examination depends on the image quality which is usually retarded due to speckle noise. There have been several techniques for effective suppression of speckle noise present in ultrasound images. This paper presents a review of some significant work carried out for despeckling of ultrasound images.

  10. Image Resolution Enhancement using DWT and Spatial Domain Interpolation Technique

    OpenAIRE

    Mrs. G. Padma Priya; Prof. T. Venkateswarlu

    2016-01-01

    Image Resolution is one of the important quality metrics of images. Images with high resolution are required in many fields. In this paper, a new resolution enhancement technique is proposed based on the interpolation of four sub band images generated by Discrete Wavelet Transform (DWT) and the original Low Resolution (LR) input image. In this technique, the four sub band images generated by DWT and the input LR image are interpolated with scaling factor, α and then performed inve...

  11. Pancreaticojejunostomy: Images of an Invagination Technique

    Directory of Open Access Journals (Sweden)

    Offir Ben-Ishay

    2010-11-01

    Full Text Available Pancreaticoduodenectomy is the treatment of choice for resectable periampullary tumors. Anastomosis between the remnant of the pancreas and the intestine can be fashioned by various methods. An anastomotic leak can result in sepsis and even death. The rate of these complications is reported to be 10-28.5% [1]. Two widely used techniques for fashioning a pancreatic anastomosis are practiced: end to side duct to mucosa anastomosis or telescopic invagination of the pancreas into the lumen of the bowel. Some authors have suggested that the invagination technique reduces the rate of anastomotic leaks and the rate of pancreatic fistula formation [2]. These complications directly correlate with morbidity and mortality after a Whipple procedure [3]. We would like to share with the readers interesting computerized tomography (CT images of a pancreaticojejunostomy fashioned by a telescopic invagination anastomosis between the remnant of the pancreas and a loop of the small bowel.

  12. Novel imaging technique for birefringent materials

    CERN Document Server

    Lewis, J G

    1998-01-01

    less than 40 seconds. Retardation and orientation changes of less than 1nm and 1 deg, respectively, can be resolved with a spatial resolution close to that of a conventional polarizing microscope image. A wide variety of optically anisotropic materials have been examined to demonstrate both the quantitative and qualitative nature of this new sensitive polarization microscopy technique. Preliminary measurements have shown that when the system is extended to use two or more wavelengths it is also capable of directly extracting information about the order of the phase difference. Many transparent materials including crystals, polymers, biological tissues and textile fibres are birefringent or optically anisotropic, i.e. the refractive index varies with the direction of vibration of light. Birefringent measurements are important as they provide information about the underlying structure of a material. In general, the most sensitive techniques for measuring birefringence are those that modulate the polarization st...

  13. Selection of appropriate template for spatial normalization of brain images: tensor based morphometry

    International Nuclear Information System (INIS)

    Although there have been remarkable advances in spatial normalization techniques, the differences in the shape of the hemispheres and the sulcal pattern of brains relative to age, gender, races, and diseases cannot be fully overcome by the nonlinear spatial normalization techniques. T1 SPGR MR images in 16 elderly male normal volunteers (>55 y. mean age: = 61.8 ± 3.5 y) were spatially normalized onto the age/gender specific Korean templates, and the Caucasian MNI template and the extent of the deformations were compared. These particular subjects were never included in the development of the templates. First , the images were matched into the templates using an affine transformation to eliminate the global difference between the templates and source images. Second the affine registration was followed by an estimation of nonlinear deformation. Determinants of the Jacobian matrices of the nonlinear deformation were then calculated for every voxel to estimate the regional volume change during the nonlinear transformation Jacobian determinant images highlighted the great magnitude of the relative local volume changes obtained when the elderly brains were spatially normalized onto the young/midlife male or female templates. They reflect the enlargement of CSF space in the lateral ventricles, sylvian fissures and cisterna magna, and the shrinkage of the cortex noted mainly in frontal, insular and lateral temporal cortexes, and the cerebellums in the aged brains. In the Jacobian determinant images, a regional shrinkage of the brain in the left middle prefrontal cortex was observed in addition to the regional expansion in the ventricles and sylvian fissures, which may be due to the age differences between the template and source images. The regional anatomical difference between template and source images could impose an extreme deformation of the source images during the spatial normalization and therefore. Individual brains should be placed into the appropriate template

  14. Evolving Concept of Small Vessel Disease through Advanced Brain Imaging.

    OpenAIRE

    Norrving, Bo

    2015-01-01

    Imaging plays a crucial role in studying and understanding cerebral small vessel disease. Several important findings have emerged from recent applications of advanced brain imaging methods. In patients with acute lacunar syndromes, diffusionweighted MRI studies have shown that the diagnostic precision of using clinical features alone or combined with CT scan findings to diagnose small vessel disease as the underlying cause is poor. Followup imaging studies on patients with acute infarcts rela...

  15. A Review of Image Mosaicing Techniques

    OpenAIRE

    Vaghela, Dushyant; Naina, Prof. Kapildev

    2014-01-01

    Image Mosaicing is a method of constructing multiple images of the same scene into a larger image. The output of the image mosaic will be the union of two input images. Image-mosaicing algorithms are used to get mosaiced image. Image Mosaicing processed is basically divided in to 5 phases. Which includes; Feature point extraction, Image registration, Homography computation, Warping and Blending if Image. Various corner detection algorithm is being used for Feature extraction. This corner prod...

  16. Human brain activity with functional NIR optical imager

    Science.gov (United States)

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  17. MR imaging of the neonatal brain: Pathologic features

    International Nuclear Information System (INIS)

    Seventy-three neonates, aged 29-43 weeks since conception, were studied. US and/or CT correlations were obtained in most infants with pathology. In the first 4-5 days after hemorrhage, US and CT were superior to MR imaging, but after that time MR imaging was the single best modality for imaging blood. In early premature infants with very watery white matter, US detected infarction and brain edema that were poorly seen on both MR imaging and CT. However, in late premature and full-term infants, MR imaging was better than CT in distinguishing between normal white matter and infarction. Only MR imaging disclosed delayed myelination in 13 term infants with hydrocephalus and severe asphyxia. MR imaging with play an important role in imaging neonates once MR imaging-compatible monitors and neonatal head coils become widely available

  18. Brain magnetic resonance imaging of infants exposed prenatally to buprenorphine

    International Nuclear Information System (INIS)

    Purpose: To evaluate the brains of newborns exposed to buprenorphine prenatally. Material and Methods: Seven neonates followed up antenatally in connection with their mothers' buprenorphine replacement therapy underwent 1.5T magnetic resonance imaging (MRI) of the brain before the age of 2 months. The infants were born to heavy drug abusers. Four mothers were hepatitis C positive, and all were HIV negative. All mothers smoked tobacco and used benzodiazepines. All pregnancies were full term, and no perinatal asphyxia occurred. All but one neonate had abstinence syndrome and needed morphine replacement therapy. Results: Neither structural abnormalities nor abnormalities in signal intensity were recorded. Conclusion: Buprenorphine replacement therapy does not seem to cause any major structural abnormalities of the brain, and it may prevent known hypoxic-ischemic brain changes resulting from uncontrolled drug abuse. Longitudinal studies are needed to assess possible abnormalities in the brain maturation process

  19. Metabolic Syndrome, Brain Magnetic Resonance Imaging, and Cognition

    OpenAIRE

    Cavalieri, Margherita; Ropele, Stefan; Petrovic, Katja; Pluta-Fuerst, Aga; Homayoon, Nina; Enzinger, Christian; Grazer, Anja; Katschnig, Petra; Schwingenschuh, Petra; Berghold, Andrea; Schmidt, Reinhold

    2010-01-01

    OBJECTIVE We explored cognitive impairment in metabolic syndrome in relation to brain magnetic resonance imaging (MRI) findings. RESEARCH DESIGN AND METHODS We studied 819 participants free of clinical stroke and dementia of the population-based Austrian Stroke Prevention Study who had undergone brain MRI, neuropsychological testing, and a risk factor assessment relevant to National Cholesterol Education Program Adult Treatment Panel III criteria–defined metabolic syndrome. High-sensitivity C...

  20. Computer technique for correction of nonhomogeneous distribution in radiologic images

    International Nuclear Information System (INIS)

    An image processing technique to provide a 'Heel' effect compensation on medical images is presented. It is reported that the technique can improve the structures detection due to background homogeneity and can be used for any radiologic system

  1. Dual Channel Pulse Coupled Neural Network Algorithm for Fusion of Multimodality Brain Images with Quality Analysis

    Directory of Open Access Journals (Sweden)

    Kavitha SRINIVASAN

    2014-09-01

    Full Text Available Background: In the review of medical imaging techniques, an important fact that emerged is that radiologists and physicians still are in a need of high-resolution medical images with complementary information from different modalities to ensure efficient analysis. This requirement should have been sorted out using fusion techniques with the fused image being used in image-guided surgery, image-guided radiotherapy and non-invasive diagnosis. Aim: This paper focuses on Dual Channel Pulse Coupled Neural Network (PCNN Algorithm for fusion of multimodality brain images and the fused image is further analyzed using subjective (human perception and objective (statistical measures for the quality analysis. Material and Methods: The modalities used in fusion are CT, MRI with subtypes T1/T2/PD/GAD, PET and SPECT, since the information from each modality is complementary to one another. The objective measures selected for evaluation of fused image were: Information Entropy (IE - image quality, Mutual Information (MI – deviation in fused to the source images and Signal to Noise Ratio (SNR – noise level, for analysis. Eight sets of brain images with different modalities (T2 with T1, T2 with CT, PD with T2, PD with GAD, T2 with GAD, T2 with SPECT-Tc, T2 with SPECT-Ti, T2 with PET are chosen for experimental purpose and the proposed technique is compared with existing fusion methods such as the Average method, the Contrast pyramid, the Shift Invariant Discrete Wavelet Transform (SIDWT with Harr and the Morphological pyramid, using the selected measures to ascertain relative performance. Results: The IE value and SNR value of the fused image derived from dual channel PCNN is higher than other fusion methods, shows that the quality is better with less noise. Conclusion: The fused image resulting from the proposed method retains the contrast, shape and texture as in source images without false information or information loss.

  2. High contrast and homogeneous staining of paraffin sections of whole human brains for three dimensional ultrahigh resolution image analysis.

    Science.gov (United States)

    Schmitt, O; Eggers, R

    1998-01-01

    The gallocyanin chromalum stain belongs to the classical DNA-RNA staining techniques in histochemistry. It has some important features for successful object orientated image analysis of whole sections of the human brain. To obtain reproducible staining results with these large sections, the method of Einarson was adapted to image analytical requirements. We discuss staining in a warm staining solution, pH adjustment, and optimal stain composition. The embedding procedure for whole human brains is considered as well. PMID:9554583

  3. APPROACHING THE BIOLOGY OF HUMAN PARENTAL ATTACHMENT: BRAIN IMAGING, OXYTOCIN AND COORDINATED ASSESSMENTS OF MOTHERS AND FATHERS

    OpenAIRE

    Swain, JE; Kim, P; Spicer, J; Ho, SS; Dayton, CJ; Elmadih, A; Abel, KM

    2014-01-01

    Brain networks that govern parental response to infant signals have been studied with imaging techniques over the last 15 years. The complex interaction of thoughts and behaviors required for sensitive parenting of offspring enable formation of each individual’s first social bonds and critically shape infants’ behavior. This review concentrates on magnetic resonance imaging experiments which directly examine the brain systems involved in parental responses to infant cues. First, we introduce ...

  4. Gd-DTPA-enhanced MR imaging for metastatic brain tumors

    International Nuclear Information System (INIS)

    The present series consists of 24 patients with brain metastasis smaller than 10 mm in diameter demonstrated on Gd-DTPA enhanced MR imaging (Gd-MRI). All patients underwent contrast-enhanced (CE) CT to be compared with Gd-MRI in size, number and detectability. The primary lesions of the series included 18 patients with lung cancer (9 with adenocarcinoma, 4 with small cell cancer, 3 with squamous cell cancer and 2 with large cell cancer), 4 with breast cancer, and each 1 with parotid cancer and renal cell carcinoma. All 24 patients except one who underwent surgery were treated with radiation therapy. In 13 patients examined by Gd-MRI and CE-CT both before and after the brain irradiation, therapeutic effect was estimated on each diagnostic imaging comparatively. In regard to size of brain metastases of 24 patients, 91 lesions smaller than 5 mm in diameter were detected by Gd-MRI but only 15 by CE-CT. Three of all patients, no brain metastasis was found on CE-CT. In 6 patients estimated as CR (complete remission) by CE-CT after brain irradiation, Gd-MRI evidenced tumor residues in 5 patients to alter the score of therapeutic effect as PR (partial remission). The difference in therapeutic effects confirmed by Gd-MRI was noted according to histological results and size of metastasis. The most radiosensitive tumor was small cell lung cancer, of which brain metastases smaller than 5 mm in diameter completely disappeared after 20∼50 Gy irradiation. Prophylactic whole brain irradiation has been an alternative indication for small cell lung cancer when CT showed no evidence of brain metastasis. However, our data strongly suggest that the small or tiny brain metastases negative on CE-CT will become new subjects of 'radical' radiotherapy. The higher sensitivity of Gd-MRI for detecting brain metastasis may propose new clinical prospects in staging, planning of therapy and estimation of therapeutic effect. (author)

  5. Brain SPECT imaging of Alzheimer's disease and mild cognitive impairment

    International Nuclear Information System (INIS)

    Objective: To assess the early diagnostic and prognostic value of brain SPECT imaging in Alzheimer's disease (AD) and mild cognitive impairment (MCI). Methods: Brain SPECT imaging and follow-up study were performed in 33 AD patients, 17 MCI patients and 12 cognitive normal subjects. Results: The typical feature of AD was bilateral temporoparietal hypoperfusion. Compared with MCI and normal group, the regional cerebral blood flow (rCBF) of temporal lobe, parietal lobe, frontal lobe, thalamus and cingulum decreased significantly (P< 0.05). MCI had a significant lower rCBF in temporal lobe only than that in normal group (P<0.05). Besides, the rCBF in cingulum of instable MCI was much lower than that in cingulum of stable MCI (P<0.05). Conclusion: Brain SPECT imaging can provide useful information for the early diagnosis of AD and MCI, and also for the prognosis of MCI. (authors)

  6. Normal feline brain: clinical anatomy using magnetic resonance imaging.

    Science.gov (United States)

    Mogicato, G; Conchou, F; Layssol-Lamour, C; Raharison, F; Sautet, J

    2012-04-01

    The purpose of this study was to provide a clinical anatomy atlas of the feline brain using magnetic resonance imaging (MRI). Brains of twelve normal cats were imaged using a 1.5 T magnetic resonance unit and an inversion/recovery sequence (T1). Fourteen relevant MRI sections were chosen in transverse, dorsal, median and sagittal planes. Anatomic structures were identified and labelled using anatomical texts and Nomina Anatomica Veterinaria, sectioned specimen heads, and previously published articles. The MRI sections were stained according to the major embryological and anatomical subdivisions of the brain. The relevant anatomical structures seen on MRI will assist clinicians to better understand MR images and to relate this neuro-anatomy to clinical signs. PMID:21919951

  7. Cerenkov and radioluminescence imaging of brain tumor specimens during neurosurgery

    Science.gov (United States)

    Spinelli, Antonello Enrico; Schiariti, Marco P.; Grana, Chiara M.; Ferrari, Mahila; Cremonesi, Marta; Boschi, Federico

    2016-05-01

    We presented the first example of Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI) of human tumor specimens. A patient with a brain meningioma localized in the left parietal region was injected with 166 MBq of Y90-DOTATOC the day before neurosurgery. The specimens of the tumor removed during surgery were imaged using both CLI and RLI using an optical imager prototype developed in our laboratory. The system is based on a cooled electron multiplied charge coupled device coupled with an f/0.95 17-mm C-mount lens. We showed for the first time the possibility of obtaining CLI and RLI images of fresh human brain tumor specimens removed during neurosurgery.

  8. Imaging Monoamine Oxidase in the Human Brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  9. The psychopath magnetized: insights from brain imaging

    OpenAIRE

    Anderson, Nathaniel E.; Kiehl, Kent A.

    2011-01-01

    Psychopaths commit a disproportionate amount of violent crime, and this places a substantial economic and emotional burden on society. Elucidation of the neural correlates of psychopathy may lead to improved management and treatment of the condition. Although some methodological issues remain, the neuroimaging literature is generally converging on a set of brain regions and circuits that are consistently implicated in the condition: the orbitofrontal cortex, amygdala, and the anterior and pos...

  10. Imaging Monoamine Oxidase in the Human Brain

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets

  11. Advanced MR brain imaging in preterm infants

    OpenAIRE

    Bruine, Francisca Teresa de

    2013-01-01

    The aim of the thesis is to investigate the diagnostic value of MRI performed around term equivalent age in evaluating brain injury and predicting neurodevelopmental outcome at two years corrected age in very preterm infants with a gestational age of less than 32 weeks. MRI is a powerful tool to diagnose all types of white matter injury and is more sensitive than ultrasound in detecting punctate white matter lesions which are associated with developmental delay and cerebral palsy. The positiv...

  12. Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains.

    Directory of Open Access Journals (Sweden)

    Martin K Schwarz

    Full Text Available In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain.

  13. Review of Intelligent Techniques Applied for Classification and Preprocessing of Medical Image Data

    Directory of Open Access Journals (Sweden)

    H S Hota

    2013-01-01

    Full Text Available Medical image data like ECG, EEG and MRI, CT-scan images are the most important way to diagnose disease of human being in precise way and widely used by the physician. Problem can be clearly identified with the help of these medical images. A robust model can classify the medical image data in better way .In this paper intelligent techniques like neural network and fuzzy logic techniques are explored for MRI medical image data to identify tumor in human brain. Also need of preprocessing of medical image data is explored. Classification technique has been used extensively in the field of medical imaging. The conventional method in medical science for medical image data classification is done by human inspection which may result misclassification of data sometime this type of problem identification are impractical for large amounts of data and noisy data, a noisy data may be produced due to some technical fault of the machine or by human errors and can lead misclassification of medical image data. We have collected number of papers based on neural network and fuzzy logic along with hybrid technique to explore the efficiency and robustness of the model for brain MRI data. It has been analyzed that intelligent model along with data preprocessing using principal component analysis (PCA and segmentation may be the competitive model in this domain.

  14. Use of automated image registration to generate mean brain SPECT image of Alzheimer's patients

    International Nuclear Information System (INIS)

    The purpose of this study was to compute and compare the group mean HMPAO brain SPECT images of patients with senile dementia of Alzheimer's type (SDAT) and age matched control subjects after transformation of the individual images to a standard size and shape. Ten patients with Alzheimer's disease (age 71.6±5.0 yr) and ten age matched normal subjects (age 71.0±6.1 yr) participated in this study. Tc-99m HMPAO brain SPECT and X-ray CT scans were acquired for each subject. SPECT images were normalized to an average activity of 100 counts/pixel. Individual brain images were transformed to a standard size and shape with the help of Automated Image Registration (AIR). Realigned brain SPECT images of both groups were used to generate mean and standard deviation images by arithmetic operations on voxel based numerical values. Mean images of both groups were compared by applying the unpaired t-test on a voxel by voxel basis to generate three dimensional T-maps. X-ray CT images of individual subjects were evaluated by means of a computer program for brain atrophy. A significant decrease in relative radioisotope (RI) uptake was present in the bilateral superior and inferior parietal lobules (p<0.05), bilateral inferior temporal gyri, and the bilateral superior and middle frontal gyri (p<0.001). The mean brain atrophy indices for patients and normal subjects were 0.853±0.042 and 0.933±0.017 respectively, the difference being statistically significant (p<0.001). The use of a brain image standardization procedure increases the accuracy of voxel based group comparisons. Thus, intersubject averaging enhances the capacity for detection of abnormalities in functional brain images by minimizing the influence of individual variation. (author)

  15. The Brain Fingerprinting Through Digital Electroencephalography Signal Technique

    Directory of Open Access Journals (Sweden)

    Dinesh Chandra Jain,

    2011-03-01

    Full Text Available A brain computer interaction has been developed to record the brain signal / electric activity through Digital Electroencephalography. The Brain Fingerprinting is a advanced computer-based technology to etermine the falsely accused innocent suspects of a crime accurately and scientifically by measuring brain-wave responses to crime-relevant words or pictures presented on a computer screen. By using lectroencephalography to ascertain the presence or absence of information into human brain.

  16. Optical imaging of neural and hemodynamic brain activity

    Science.gov (United States)

    Schei, Jennifer Lynn

    Optical imaging technologies can be used to record neural and hemodynamic activity. Neural activity elicits physiological changes that alter the optical tissue properties. Specifically, changes in polarized light are concomitant with neural depolarization. We measured polarization changes from an isolated lobster nerve during action potential propagation using both reflected and transmitted light. In transmission mode, polarization changes were largest throughout the center of the nerve, suggesting that most of the optical signal arose from the inner nerve bundle. In reflection mode, polarization changes were largest near the edges, suggesting that most of the optical signal arose from the outer sheath. To overcome irregular cell orientation found in the brain, we measured polarization changes from a nerve tied in a knot. Our results show that neural activation produces polarization changes that can be imaged even without regular cell orientations. Neural activation expends energy resources and elicits metabolic delivery through blood vessel dilation, increasing blood flow and volume. We used spectroscopic imaging techniques combined with electrophysiological measurements to record evoked neural and hemodynamic responses from the auditory cortex of the rat. By using implantable optics, we measured responses across natural wake and sleep states, as well as responses following different amounts of sleep deprivation. During quiet sleep, evoked metabolic responses were larger compared to wake, perhaps because blood vessels were more compliant. When animals were sleep deprived, evoked hemodynamic responses were smaller following longer periods of deprivation. These results suggest that prolonged neural activity through sleep deprivation may diminish vascular compliance as indicated by the blunted vascular response. Subsequent sleep may allow vessels to relax, restoring their ability to deliver blood. These results also suggest that severe sleep deprivation or chronic

  17. Survey of Despeckling Techniques for Medical Ultrasound Images

    OpenAIRE

    Jappreet Kaur; Jasdeep Kaur; Manpreet Kaur

    2011-01-01

    Ultrasound imaging is the most commonly used imaging system in medical field. Main problem related to this imaging technique is introduction of speckle noise, thus making the image unclear. The success of ultrasonic examination depends on the image quality which is usually retarded due to speckle noise. There have been several techniques for effective suppression of speckle noise present in ultrasound images. This paper presents a review of some significant work carried out for despeckling ...

  18. Brain Imaging, Forward Inference, and Theories of Reasoning

    Directory of Open Access Journals (Sweden)

    Evan eHeit

    2015-01-01

    Full Text Available This review focuses on the issue of how neuroimaging studies address theoretical accounts of reasoning, through the lens of the method of forward inference (Henson, 2005, 2006. After theories of deductive and inductive reasoning are briefly presented, the method of forward inference for distinguishing between psychological theories based on brain imaging evidence is critically reviewed. Brain imaging studies of reasoning, comparing deductive and inductive arguments, comparing meaningful versus non-meaningful material, investigating hemispheric localization, and comparing conditional and relational arguments, are assessed in light of the method of forward inference. Finally, conclusions are drawn with regard to future research opportunities.

  19. Brain imaging, forward inference, and theories of reasoning.

    Science.gov (United States)

    Heit, Evan

    2014-01-01

    This review focuses on the issue of how neuroimaging studies address theoretical accounts of reasoning, through the lens of the method of forward inference (Henson, 2005, 2006). After theories of deductive and inductive reasoning are briefly presented, the method of forward inference for distinguishing between psychological theories based on brain imaging evidence is critically reviewed. Brain imaging studies of reasoning, comparing deductive and inductive arguments, comparing meaningful versus non-meaningful material, investigating hemispheric localization, and comparing conditional and relational arguments, are assessed in light of the method of forward inference. Finally, conclusions are drawn with regard to future research opportunities. PMID:25620926

  20. Physiological basis and image processing in functional magnetic resonance imaging: Neuronal and motor activity in brain

    Directory of Open Access Journals (Sweden)

    Sharma Rakesh

    2004-05-01

    Full Text Available Abstract Functional magnetic resonance imaging (fMRI is recently developing as imaging modality used for mapping hemodynamics of neuronal and motor event related tissue blood oxygen level dependence (BOLD in terms of brain activation. Image processing is performed by segmentation and registration methods. Segmentation algorithms provide brain surface-based analysis, automated anatomical labeling of cortical fields in magnetic resonance data sets based on oxygen metabolic state. Registration algorithms provide geometric features using two or more imaging modalities to assure clinically useful neuronal and motor information of brain activation. This review article summarizes the physiological basis of fMRI signal, its origin, contrast enhancement, physical factors, anatomical labeling by segmentation, registration approaches with examples of visual and motor activity in brain. Latest developments are reviewed for clinical applications of fMRI along with other different neurophysiological and imaging modalities.

  1. NMR imaging of the brain: initial impressions

    International Nuclear Information System (INIS)

    An NMR imaging system designed and built by Thorn-EMI Ltd was installed at Hammersmith Hospital in March 1981. In the first year of operation 180 patients and 40 volunteers have had cranial examinations and initial impressions bases on this experience are presented. Patients with a wide variety of neurological diseases have been studied to provide a basis for diagnostic interpretation, to define distinctive features, and to evaluate different types of scanning sequences. NMR imaging appears to be of considerable value in neurological diagnosis and has a number of advantages over CT. The detailed evaluation of NMR imaging will require much more work but the initial results are very promising

  2. 99Tcm-Neurolite brain SPECT imaging as an outcome predictor after brain trauma: initial experience

    International Nuclear Information System (INIS)

    Full text: The aim of this study was to use semi-quantitative 99Tcm-ethylene cysteine dimer (Neurolite) cerebral blood flow (CBF) SPET brain imaging to assess its role in predicting outcome after brain trauma. Twelve adult patients (9 males, 3 females) who sustained moderate to severe brain trauma were studied by CBF/SPET within 4 weeks of the injury (scan A) and again after 1 year (scan B). Clinical assessment was also performed at these times and included extensive neuropsychometric testing. Patients received 800-850 MBq 99Tcm-Neurolite intravenously, and were imaged using a triple-headed gamma camera with LEUHR fan beam collimators. Processing, filtering, reconstruction and data set selection were identical for scans A and B. Semi-quantitative analysis was performed using 25 regions of interest in the cerebral cortex and deep structures in 2 coronal, 2 sagittal and 3 oblique planes. Normalized mean counts per pixel for the whole brain, and regional brain ratios were calculated. Scans A and B were compared and correlated to the clinical outcome data. Two patients with minimal CBF abnormalities made full recoveries. The remaining 10 had moderate to severe focal CBF defects, which showed no significant improvement at 12 months. Of these patients, 2 had moderate disability, 3 had severe to moderate disability and 2 had severe disability at 12 months. Patients with persisting focal abnormal CBF showed persisting neurological deficits. Neurolite brain CBF imaging is a useful method of predicting outcome after moderate to severe head injury

  3. Mr imaging and mr spectroscopy of brain metastases by mr perfusion

    International Nuclear Information System (INIS)

    In follow-up examinations of irradiated brain metastases conventional contrast-enhanced morphological MR imaging is often unable to distinguish between transient radiation effects, radionecrosis, and tumor recurrence. To evaluate changes of relative cerebral blood flow (rCBF) in irradiated brain metastases arterial spin-labeling techniques (ASL) were applied and compared to the outcome of 1H MR spectroscopy and spectroscopic imaging (1H MRS, SI). Patients and methods In 2 patients follow-up examinations of irradiated brain metastases were performed on a 1.5-T tomograph (average single dose: 20 Gy/80% isodose). Relative CBF values of gray matter (GM), white matter (WM), and metastases (Met) were measured by means of the ASL techniques ITS-FAIR and Q2TIPS. 1H MRS was performed with PRESS 1500/135. In both patients with initially hyperperfused metastases (Met/GM >1) the reduction of rCBF after stereotactic radiosurgery indicated response to treatment - even if the contrast-enhancing region increased - while increasing rCBF values indicated tumor progression. The findings were confirmed by 1H MRS, SI and subsequent follow-up. The ASL techniques ITS-FAIR and Q2TIPS are able to monitor changes of rCBF in irradiated brain metastases. The two cases imply a possible role for ASL-MR perfusion imaging and 1H MR spectroscopy in differentiating radiation effects from tumor progression. (orig.)

  4. Unbiased Group-Wise Image Registration: Applications in Brain Fiber Tract Atlas Construction and Functional Connectivity Analysis

    OpenAIRE

    Geng, Xiujuan; Gu, Hong; Shin, Wanyong; Ross, Thomas J.; Yang, Yihong

    2010-01-01

    We propose an unbiased implicit-reference group-wise (IRG) image registration method and demonstrate its applications in the construction of a brain white matter fiber tract atlas and the analysis of resting-state functional MRI (fMRI) connectivity. Most image registration techniques pairwise align images to a selected reference image and group analyses are performed in the reference space, which may produce bias. The proposed method jointly estimates transformations, with an elastic deformat...

  5. Wearable 3-D Photoacoustic Tomography for Functional Brain Imaging in Behaving Rats.

    Science.gov (United States)

    Tang, Jianbo; Coleman, Jason E; Dai, Xianjin; Jiang, Huabei

    2016-01-01

    Understanding the relationship between brain function and behavior remains a major challenge in neuroscience. Photoacoustic tomography (PAT) is an emerging technique that allows for noninvasive in vivo brain imaging at micrometer-millisecond spatiotemporal resolution. In this article, a novel, miniaturized 3D wearable PAT (3D-wPAT) technique is described for brain imaging in behaving rats. 3D-wPAT has three layers of fully functional acoustic transducer arrays. Phantom imaging experiments revealed that the in-plane X-Y spatial resolutions were ~200 μm for each acoustic detection layer. The functional imaging capacity of 3D-wPAT was demonstrated by mapping the cerebral oxygen saturation via multi-wavelength irradiation in behaving hyperoxic rats. In addition, we demonstrated that 3D-wPAT could be used for monitoring sensory stimulus-evoked responses in behaving rats by measuring hemodynamic responses in the primary visual cortex during visual stimulation. Together, these results show the potential of 3D-wPAT for brain study in behaving rodents. PMID:27146026

  6. Functional imaging of the brain with18F-fluorodeoxyglucose

    International Nuclear Information System (INIS)

    A techniques is reported by which it is possible to determine which regions of the human brain become functionally active in response to a specific stimulus. The method utilizes 18F-2-fluoro-2-deoxyglucose ([18F]-FDG) administered as a bolus. [18F]-FDG is used as a tracer for the exchange of glucose between plasma and brain and its phosphorylation. The subject is then scanned during administration of a physiologic stimulus by position emission tomography and the three-dimensional distribution of 18F activity in the brain determined

  7. Performance Analysis of Noise Reduction Technologies in Brain MRI Image

    Directory of Open Access Journals (Sweden)

    Sheela.V.K

    2016-02-01

    Full Text Available Rapid advancement in icon-based analysis for the treatment of diseases which are affected on internal organs of human body drives medical imaging processing into an important technique among various methods of psychoanalysis. Among all the available imaging modalities magnetic resonance imaging techniques are extensively used for the analysis and discussion of diseases in soft tissue. MRI image provides insight into the anatomical structure within the body. Accuracy of the construction of the target within the body depends upon the overall imaging process. The quality of MRI image determines the effectiveness in feature extraction, analysis, recognition and quantitative measurements. The primary factors which decrease the visibility of the structure are blurring effect and noises. This leads to the need of removal of noise from MRI images as a function of the preprocessing technique in image processing; usually noise filters are employed for this function. In this paper analyzes the operation of different noise filters.

  8. SENSE (sensitivity encoding) for diffusion tensor imaging of the brain

    International Nuclear Information System (INIS)

    The sensitivity encoding (SENSE) technique is increasingly being used with clinical MRI scanners. The object of this study is to compare the normative human data and image quality of the diffusion tensor imaging (DTI) with sensitivity encoding (SENSE) and standard single-shot EPI techniques. 16 normal volunteers underwent single-shot echo-planar DTI with both standard and SENSE sequences using a 1.5 T Philips Intera MR scanner (TR/TE=6755/74 or 5871/66 ms, echo train length 127 or 67, NEX=3, matrix= 128 x 128, FOV=220 x 220 mm, slice thickness=4 mm, b value=600 s/mm2, six orthogonal diffusion gradients). The diffusion tensor-encoded MR images were transferred to a PC workstation and analyzed using in-house software. The fractional anisotropy (FA) and apparent diffusion coefficient (ADC) maps were calculated. The presence of artifacts (ghost susceptibility, eddy current) was graded with a two- or three-point scale. The ADC and FA values were measured in the major white matter tract and gray matter nuclei. The signal-to-noise ratio was also measured. Fisher's exact test and the Mann-Whitney test were used for the statistical analysis. With SENSE, the acquisition time was reduced from 2 min 57 sec to 1 min 22 sec for DTI. Susceptibility artifacts (around the brain stem and temporal base) and eddy current artifacts were significantly reduced on the SENSE DTI as compared with those on the standard DTI (p<0.05). No ghost artifacts were observed on the SENSE DTI, whereas such artifacts were observed in 14 cases (87.5%) on the standard DTI. The ADC value was not significantly different between the SENSE DTI and the standard DTI, whereas the FA values in the cerebral cortex and white matter were significantly higher on the SENSE DTI than on the standard DTI (p<0.05). The signal-to-noise ratio was 8.44 on the standard DTI and 11.40 on the standard DTI. The use of SENSE DTI significantly reduces the geometric distortion caused by artifacts, shortens the acquisition time, and

  9. PET imaging of MRP1 function in the living brain: method development and future perspectives.

    Science.gov (United States)

    Okamura, T; Kikuchi, T; Irie, T

    2010-01-01

    Multidrug resistance-associated protein 1 (MRP1) functions as a primary active transporter utilizing energy from ATP hydrolysis. In the central nervous system (CNS), MRP1 plays an important role in limiting the permeation of xenobiotic and endogenous substrates across the blood-brain and blood-cerebrospinal fluid barriers, and across brain parenchymal cells. While MRP1 contributes to minimizing the neurotoxic effects of drugs, it may also restrict the distribution of drugs for the treatment of CNS diseases. Moreover, neurodegenerative disease may be associated with abnormal expression of efflux transporters in the brain. Noninvasive measurement of MRP1 function will therefore be useful for directly evaluating the effect of modulators on enhancing the penetration of drugs into the brain and for examining the pathophysiological role of MRP1 in the brain. Positron emission tomography (PET) is a powerful molecular imaging technique. While several PET probes have been proposed for imaging function of the efflux transporter P-glycoprotein, few reports discuss the probes for imaging MRP1 function in the brain. Ideally, brain radioactivity should consist of a single radioactive compound that is selectively transported by the efflux transporter of interest, without other efflux routes. However, most PET probes for MRP1 or P-glycoprotein are eliminated by both a transporter and simple diffusion, resulting in inaccurate measurement of pump function. This review addresses a new strategy to avoid this problem, and suggests the design of a PET probe based on this strategy, particularly for MRP1 imaging. Several published reports on imaging MRP1 function with PET are also discussed. PMID:20645911

  10. Obsessive-compulsive disorder: advances in brain imaging

    International Nuclear Information System (INIS)

    In the past twenty years functional brain imaging has advanced to the point of tackling the differential diagnosis, prognosis and therapeutic response in Neurology and Psychiatry. Psychiatric disorders were rendered 'functional' a century ago; however nowadays they can be seen by means of brain imaging. Functional images in positron emission tomography (PET) and single photon emission tomography (NEUROSPET) show in non-invasive fashion the state of brain functioning. PET does this assessing glucose metabolism and NEUROSPET by putting cerebral blood flow in images. Prevalence of OCD is clearly low (2 to 3%), but comorbidity with depression, psychoses, bipolar disorder and schizophrenia is high. Furthermore, it is not infrequent with autism, attention disorder, tichotillomany, borderline personality disorders, in pathological compulsive spending, sexual compulsion and in pathological gambling, in tics, and in Gilles de la Tourette disorder, NEUROSPET and PET show hypoperfusion in both frontal lobes, in their prefrontal dorsolateral aspects, in their inferior zone and premotor cortex, with hyperperfusion in the posterior cingulum and hypoperfusion in basal ganglia (caudate nucleus). Cummings states that hyperactivity of the limbic system might be involved in OCD. Thus, brain imaging in OCD is a diagnostic aid, allows us to see clinical imagenological evolution and therapeutic response and, possibly, it is useful predict therapeutic response (Au)

  11. 3T MR imaging of the brain.

    Science.gov (United States)

    DeLano, Mark C; Fisher, Charles

    2006-02-01

    The advent of very high field clinical scanners that operate at 3T is taking structural and functional imaging to new levels and is reinvigorating clinical spectroscopy, fMR imaging, and noncontrast-enhanced methods of MRA. Most of the challenges that are related to 3T imaging have been addressed to facilitate routine clinical imaging. An awareness of the complexities that underlie the solutions to these challenges is important to the continued improvements to the 3T platform so that its maximal potential can be reached. The development of the multichannel-head coils and the improvement in the design of body coils, concurrently with the development of multichannel capabilities that enable parallel imaging, have benefited all field platforms. Perhaps the added value of parallel imaging has been greatest at 3T where the additional signal can be exploited. The definition of very high field is a moving target, and may be well on its way to 7.0 T, although in terms of the current clinical state of the art, 3T is our current reference. PMID:16530636

  12. Image Fusion Technique for Impulse Noise Removal in Digital Images using Empirical Mode Decomposition

    OpenAIRE

    A. Ramarao; Ch. Satyanandareddy; Sateesh, G.

    2012-01-01

    This paper introduces the concept of image fusion technique for impulse noise reduction in digital images. Image fusion is the process of combining two or more images into a single image while retaining the important features of each image. Multiple image fusion is an important technique used in military, remote sensing and medical applications. The images captured by two different sensors undergo filtering using vector median or spatial median filter based on the noise density in the image. ...

  13. Use of imaging techniques in radiation oncology

    International Nuclear Information System (INIS)

    Imaging techniques are used in radiation oncology for: disease diagnosis, tumor localization and staging, treatment simulation, treatment planning, clinical dosimetry displays, treatment verification and patient follow up. In industrialized countries, up to the 1970's, conventional radiology was used for diagnosis, simulation and planning. Gamma cameras helped tumor staging by detecting metastases. In the 1970's, simulators were developed for exclusive use in radiation oncology departments. Clinical dosimetry displays consisted mainly in axial dose distributions. Treatment verification was done placing films in the radiation beam with the patient under treatment. In the 1980's, 2-D imaging was replaced by 3-D displays with the incorporation of computerized tomography (CT) scanners, and in the 1990's of magnetic resonance imagers (MRI). Ultrasound units, briefly used in the 1960's for treatment planning purposes, were found again useful, mainly for brachytherapy dosimetry. Digital portal imagers allowed accurate treatment field verification. Treatment planning systems incorporated the capability of 'inverse planning', i.e. once the desired dose distribution is decided, the field size, gantry, collimator and couch angles, etc, can be automatically selected. At the end of the millennium, image fusion permitted excellent anatomical display of tumors and adjacent sensitive structures. The 2000's are seeing a change from anatomical to functional imaging with the advent of MRI units capable of spectroscopy at 3 Tesla and positron emission tomography (PET) units. In 2001 combined CT/PET units appeared in RT departments. In 2002, fusion of CT, MRI and PET images became available. Molecular imaging is being developed. The situation in developing countries is quite different. To start with, cancer incidence is different in developing and in industrialized countries. In addition, the health services pattern is different: Cancer treatment is mostly done in public institutions

  14. Assessment of tumors of the lung apex by imaging techniques

    International Nuclear Information System (INIS)

    The purpose of this study was to analyze the value of MR in the preoperative staging of tumors of the lung apex and detection of local invasion of adjacent structures to determine its influence on the therapeutic approach. We obtained plain X-ray images in two planes, as well as CT and Mr images, in 12 patients with Pan coast tumor in whom there was surgical (n=8) or clinical (n=4) evidence of invasion. The objective was to assess local infiltration of brain stem and chest wall soft tissue, enveloping of the subclavian artery, substantial involvement of the brachial plexus and destruction of the vertebral body. In our series, MR was superior to the other imaging techniques in predicting the involvement of the structures surrounding the tumor. In conclusion, MR should be performed in a patient diagnosed by plain radiography as having an apical tumors to assess local tumor extension, while CT should be done to detect mediastinal lymph node involvement and distant metastases. 19 refs

  15. Multiphoton Imaging of Ultrasound Bioeffects in the Murine Brain

    Science.gov (United States)

    Raymond, Scott; Skoch, Jesse; Bacskai, Brian; Hynynen, Kullervo

    2006-05-01

    The purpose of this study was to demonstrate the feasibility of multiphoton imaging in the murine brain during exposure to ultrasound. Our experimental setup coupled ultrasound through the ventral surface of the mouse while allowing imaging through a cranial window from the dorsal surface. Field attenuation was estimated by scanning the field after insertion of a freshly sacrificed mouse; beam profile and peak position were preserved, suggesting adequate targeting for imaging experiments. C57 mice were imaged with a Biorad multiphoton microscope while being exposed to ultrasound (f = 1.029 MHz, peak pressure ˜ 200 kPa, average power ˜ 0.18 W) with IV injection of Optison. We observed strong vasoconstriction coincident with US and Optison, as well as permeabilization of the blood-brain barrier.

  16. MR imaging of brain metastases. Pt. 1

    International Nuclear Information System (INIS)

    Sensitifity and specificity of plain T2-WI and Gd-DTPA enhanced T1-WI were compared by evaluating MR exams of 30 patients with brain metastases. Large lesions with high signal on T2-WI always enhanced (43/43) when a structure (perifocal edema, tumor tissue, centralnecrosis) was found. Large lesions nearly always enhanced (53/55) even if no such structure was found. 65% of small unstructured white matter lesions with high signal on T2-WI, which are generally considered vascular, did not enhance. Surprisingly, 35% did enhance. Demonstration of blood brain barrier disturbance in these lesions suggested a metastatic origin. In 3 patients with multiple metastases, Gd-DTPA enhanced T1-WI disclosed more than 140 lesions not seen on T2-WI. All of them were located in or adjacent to grey matter. Our results indicate that enhanced T1-WI should be obtained even if T1-WI are normal or show only small white matter lesions. (orig.)

  17. Impact of metal artefacts due to EEG electrodes in brain PET/CT imaging

    International Nuclear Information System (INIS)

    The goal of this study is to investigate the impact of electroencephalogram (EEG) electrodes on the visual quality and quantification of 18F-FDG PET images in neurological PET/CT examinations. For this purpose, the scans of 20 epilepsy patients with EEG monitoring were used. The CT data were reconstructed with filtered backprojection (FBP) and with a metal artefact reduction (MAR) algorithm. Both data sets were used for CT-based attenuation correction (AC) of the PET data. Also, a calculated AC (CALC) technique was considered. A volume of interest (VOI)-based analysis and a voxel-based quantitative analysis were performed to compare the different AC methods. Images were also evaluated visually by two observers. It was shown with simulations and phantom measurements that from the considered AC methods, the MAR-AC can be used as the reference in this setting. The visual assessment of PET images showed local hot spots outside the brain corresponding to the locations of the electrodes when using FBP-AC. In the brain, no abnormalities were observed. The quantitative analysis showed a very good correlation between PET-FBP-AC and PET-MAR-AC, with a statistically significant positive bias in the PET-FBP-AC images of about 5-7% in most brain voxels. There was also good correlation between PET-CALC-AC and PET-MAR-AC, but in the PET-CALC-AC images, regions with both a significant positive and negative bias were observed. EEG electrodes give rise to local hot spots outside the brain and a positive quantification bias in the brain. However, when diagnosis is made by mere visual assessment, the presence of EEG electrodes does not seem to alter the diagnosis. When quantification is performed, the bias becomes an issue especially when comparing brain images with and without EEG monitoring

  18. MR to CT Registration of Brains using Image Synthesis

    OpenAIRE

    Roy, Snehashis; Carass, Aaron; Jog, Amod; Prince, Jerry L.; Lee, Junghoon

    2014-01-01

    Computed tomography (CT) is the standard imaging modality for patient dose calculation for radiation therapy. Magnetic resonance (MR) imaging (MRI) is used along with CT to identify brain structures due to its superior soft tissue contrast. Registration of MR and CT is necessary for accurate delineation of the tumor and other structures, and is critical in radiotherapy planning. Mutual information (MI) or its variants are typically used as a similarity metric to register MRI to CT. However, u...

  19. Biochemical imaging of the human brain in development and disease

    International Nuclear Information System (INIS)

    The authors used positron emission tomography (PET) to image cerebral glucose metabolism in more than 140 children aged 5 days to 15 years. Twenty-nine children were studied during normal development and the remainder because of infantile spasm, seizure, Lennox-Gastaut syndrome, or cerebral palsy. This exhibit demonstrates the temporal course of normal function (metabolic) development of the brain, and compares the relative value of PET, MR imaging, and x-ray CT in abnormal cases

  20. Application of iterative image reconstruction to functional brain mapping

    International Nuclear Information System (INIS)

    Full text: The advantage of the iterative image reconstruction algorithms, such as the maximum likelihood expectation maximisation (ML-EM) algorithm in providing improved image signal-to-noise ratio (SNR)in the low count positron emission tomography (PET) studies makes it a suitable image reconstruction algorithm for PET functional brain mapping. The ML-EM algorithm improves the sensitivity and specificity of functional brain imaging compared to images reconstructed using the filtered back projection (FBP) algorithm. We optimised the ML-EM algorithm for maximum sensitivity with no loss of specificity (compared to the FBP algorithm) as a function of iteration number and t-value probability threshold. A receiver operating characteristic (ROC) for analysing a simulated 3D activation study was determined for each ML-EM iteration up to the twenty first iteration. At four ML-EM iterations and using a 0.05 t-value probability threshold, the ML-EM images identified the signal regions with 41% increased sensitivity and 6% decreased specificity compared to FBP images. Results for a human auditory stimulus activation study are also presented and discussed. In conclusion, the images reconstructed at four ML-EM iterations demonstrate improved statistical properties compared to images reconstructed using FBP algorithm

  1. Nuclear medicine imaging technique in the erectile dysfunction evaluation: a mini-review

    International Nuclear Information System (INIS)

    Functional imaging with positron emission tomography and single photon emission computed tomography is capable of visualizing subtle changes in physiological function in vivo. Erectile dysfunction (ED) diminishes quality of life for affected men and their partners. Identification of neural substrates may provide information regarding the pathophysiology of types of sexual dysfunction originating in the brain. The aim of this work is to verify the approaches of the nuclear medicine techniques in the evaluation of the erectile function/dysfunction. A search using the words ED and nuclear medicine, ED and scintigraphy, ED and SPECT and ED and PET was done in the PubMed. The number of citations in each subject was determined. Neuroimaging techniques offer insight into brain regions involved in sexual arousal and inhibition. To tackle problems such as hyposexual disorders or ED caused by brain disorders, it is crucial to understand how the human brain controls sexual arousal and penile erection. (author)

  2. Nuclear medicine imaging technique in the erectile dysfunction evaluation: a mini-review

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Camila Godinho; Moura, Regina; Neves, Rosane de Figueiredo [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Biologia Roberto Alcantara Gomes. Lab. de Radiofarmacia Experimental]. E-mail: cacagr@yahoo.com.br; Spinosa, Jean Pierre [Hopital de Zone, Morges (Switzerland). Dept. of Gynecology and Obstetrics; Bernardo-Filho, Mario [Instituto Nacional do Cancer, Rio de Janeiro, RJ (Brazil). Coordenadoria de Pesquisa

    2007-09-15

    Functional imaging with positron emission tomography and single photon emission computed tomography is capable of visualizing subtle changes in physiological function in vivo. Erectile dysfunction (ED) diminishes quality of life for affected men and their partners. Identification of neural substrates may provide information regarding the pathophysiology of types of sexual dysfunction originating in the brain. The aim of this work is to verify the approaches of the nuclear medicine techniques in the evaluation of the erectile function/dysfunction. A search using the words ED and nuclear medicine, ED and scintigraphy, ED and SPECT and ED and PET was done in the PubMed. The number of citations in each subject was determined. Neuroimaging techniques offer insight into brain regions involved in sexual arousal and inhibition. To tackle problems such as hyposexual disorders or ED caused by brain disorders, it is crucial to understand how the human brain controls sexual arousal and penile erection. (author)

  3. Detection of acute cerebral infarction by dual echo subtraction technique in MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Kengo; Nishimaru, Eiji; Yukutomo, Takeharu [Hiroshima City Hospital (Japan); Ishida, Takayuki [Hiroshima International Univ., Kurose (Japan). Faculty of Health Sciences

    2003-05-01

    The purpose of this study was to develop an image enhancement technique to detect acute cerebral infarct regions in brain MR images. Transverse relaxation times for abnormal changes tend to be longer than those for normal tissues. In order to obtain MR images with two different echo times, we employed the fast spin echo sequence. We then employed the image subtraction technique using two T{sub 2}-weighted images to enhance acute cerebral infarct regions. As a result, the areas of acute cerebral infarct regions were enhanced as regions of higher signal than normal regions of brain tissue. Further, high signal areas in dual echo subtraction images corresponded to cerebral infarct regions of high signal areas in diffusion weighted images (DWI). We found that the image subtraction technique is useful to enhance very subtle regions of acute cerebral infarction in MR images. Because we employ the difference between transverse relaxation times for normal and abnormal tissues, which does not depend on the strength of the magnetic field, the dual echo subtraction method can be used in many hospitals. (author)

  4. Techniques for a selective encryption of uncompressed and compressed images

    OpenAIRE

    Van Droogenbroeck, Marc; Benedett, Raphaël

    2002-01-01

    This paper describes several techniques to encrypt uncompressed and compressed images. We first present the aims of image encryption. In the usual ways to encryption, all the information is encrypted. But this is not mandatory. In this paper we follow the principles of a technique initially proposed by MAPLES et al. [1] and encrypt only a part of the image content in order to be able to visualize the encrypted images, although not with full precision. This concept leads to techniques that can...

  5. Wavelet Thresholding Techniques in Despeckling of Medical Ultrasound Images

    OpenAIRE

    R. Vanithamani; G. Umamaheswari

    2014-01-01

    This paper presents a review of wavelet thresholding techniques for despeckling of medical ultrasound images. An ultrasound image is first transformed into wavelet domain and then the wavelet coefficients are processed by different wavelet thresholding techniques. The denoised image is obtained by taking the inverse wavelet transform of the modified wavelet coefficients. The performance of the techniques reviewed in this paper is evaluated using the image quality assessment parameters such...

  6. Interpolation Technique in Computed Tomography Image Visualisation(Short Communication)

    OpenAIRE

    Asha Tripathi; P. K. Khatri; G. L. Baheti; K. C. Songara

    2002-01-01

    An interpolation technique has been developed for generation of enlarged dataset from a limited one-dimesional acquired dataset for improving the image quality in quick-scan tomography. The effectiveness of the technique has been tested using data acquired from the first-generation. The CT images generated using this technique have been compared with the CT images generated from the acquired dataset for the same number of projections. The image quality has been improved on account of (...

  7. Pediatric imaging: Current and emerging techniques

    OpenAIRE

    Shenoy-Bhangle A; Nimkin K; Gee M

    2010-01-01

    Imaging has always been an important component of the clinical evaluation of pediatric patients. Rapid technological advances in imaging are making noninvasive evaluation of a wide range of pediatric diseases possible. Ultrasound and magnetic resonance imaging (MRI) are two imaging modalities that do not involve ionizing radiation and are preferred imaging modalities in the pediatric population. Computed tomography (CT) remains the imaging modality with the highest increase in utilization in ...

  8. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    DEFF Research Database (Denmark)

    Menze, Bjoern H.; Jakab, Andras; Bauer, Stefan;

    2015-01-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- a...

  9. Apparatus and method for motion tracking in brain imaging

    DEFF Research Database (Denmark)

    2013-01-01

    Disclosed is apparatus and method for motion tracking of a subject in medical brain imaging. The method comprises providing a light projector and a first camera; projecting a first pattern sequence (S1) onto a surface region of the subject with the light projector, wherein the subject is positioned...

  10. CLEAN Technique to Classify and Detect Objects in Subsurface Imaging

    OpenAIRE

    Karpat, E.

    2012-01-01

    An image domain CLEAN technique, for nondestructive and noncontacting subsurface imaging, is discussed. Recently introduced finite-difference time-domain- (FDTD-) based virtual tool, GrGPR, is used to create imaging scenarios and to generate synthetic scattering data through synthetic aperture (SAR) type scanning. Matlab-based imaging algorithms are used to process recorded FDTD data. The location and the geometry of the targets are obtained by image domain CLEAN technique which is extracting...

  11. Development of imaging techniques for fast neutron radiography in Japan

    CERN Document Server

    Fujine, S; Yoshii, K; Kamata, M; Tamaki, M; Ohkubo, K; Ikeda, Y; Kobayashi, H

    1999-01-01

    Neutron radiography with fast neutron beams (FNR) has been studied at the fast neutron source reactor 'YAYOI' of the University of Tokyo since 1986. Imaging techniques for FNR have been developed for CR-39 track-etch detector, electronic imaging system (television method), direct film method, imaging plate and also fast and thermal neutron concurrent imaging method. The review of FNR imaging techniques and some applications are reported in this paper.

  12. Development of imaging techniques for fast neutron radiography in Japan

    International Nuclear Information System (INIS)

    Neutron radiography with fast neutron beams (FNR) has been studied at the fast neutron source reactor 'YAYOI' of the University of Tokyo since 1986. Imaging techniques for FNR have been developed for CR-39 track-etch detector, electronic imaging system (television method), direct film method, imaging plate and also fast and thermal neutron concurrent imaging method. The review of FNR imaging techniques and some applications are reported in this paper

  13. Review Article: An Overview of Image Compression Techniques

    Directory of Open Access Journals (Sweden)

    M. Marimuthu

    2012-12-01

    Full Text Available To store an image, large quantities of digital data are required. Due to limited bandwidth, image must be compressed before transmission. However, image compression reduces the image fidelity, when an image is compressed at low bitrates. Hence, the compressed images suffer from block artifacts. To meet this, several compression schemes have been developed in image processing. This study presents an overview of compression techniques for image applications. It covers the lossy and lossless compression algorithm used for still image and other applications. The focus of this article is based on the overview of VLSI DCT architecture for image compression. Further, this new approach may provide better results.

  14. Simultaneous algebraic reconstruction technique based on guided image filtering.

    Science.gov (United States)

    Ji, Dongjiang; Qu, Gangrong; Liu, Baodong

    2016-07-11

    The challenge of computed tomography is to reconstruct high-quality images from few-view projections. Using a prior guidance image, guided image filtering smoothes images while preserving edge features. The prior guidance image can be incorporated into the image reconstruction process to improve image quality. We propose a new simultaneous algebraic reconstruction technique based on guided image filtering. Specifically, the prior guidance image is updated in the image reconstruction process, merging information iteratively. To validate the algorithm practicality and efficiency, experiments were performed with numerical phantom projection data and real projection data. The results demonstrate that the proposed method is effective and efficient for nondestructive testing and rock mechanics. PMID:27410859

  15. Imaging the premature brain: ultrasound or MRI?

    International Nuclear Information System (INIS)

    Neuroimaging of preterm infants has become part of routine clinical care, but the question is often raised on how often cranial ultrasound should be done and whether every high risk preterm infant should at least have one MRI during the neonatal period. An increasing number of centres perform an MRI either at discharge or around term equivalent age, and a few centres have access to a magnet in or adjacent to the neonatal intensive care unit and are doing sequential MRIs. In this review, we try to discuss when best to perform these two neuroimaging techniques and the additional information each technique may provide. (orig.)

  16. Imaging the premature brain: ultrasound or MRI?

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Linda S. de; Benders, Manon J.N.L.; Groenendaal, Floris [UMC Utrecht, Department of Neonatology, Wilhelmina Children' s Hospital, PO Box 85090, Utrecht (Netherlands)

    2013-09-15

    Neuroimaging of preterm infants has become part of routine clinical care, but the question is often raised on how often cranial ultrasound should be done and whether every high risk preterm infant should at least have one MRI during the neonatal period. An increasing number of centres perform an MRI either at discharge or around term equivalent age, and a few centres have access to a magnet in or adjacent to the neonatal intensive care unit and are doing sequential MRIs. In this review, we try to discuss when best to perform these two neuroimaging techniques and the additional information each technique may provide. (orig.)

  17. Mapping drug distribution in brain tissue using liquid extraction surface analysis mass spectrometry imaging.

    Science.gov (United States)

    Swales, John G; Tucker, James W; Spreadborough, Michael J; Iverson, Suzanne L; Clench, Malcolm R; Webborn, Peter J H; Goodwin, Richard J A

    2015-10-01

    Liquid extraction surface analysis mass spectrometry (LESA-MS) is a surface sampling technique that incorporates liquid extraction from the surface of tissue sections with nanoelectrospray mass spectrometry. Traditional tissue analysis techniques usually require homogenization of the sample prior to analysis via high-performance liquid chromatography mass spectrometry (HPLC-MS), but an intrinsic weakness of this is a loss of all spatial information and the inability of the technique to distinguish between actual tissue penetration and response caused by residual blood contamination. LESA-MS, in contrast, has the ability to spatially resolve drug distributions and has historically been used to profile discrete spots on the surface of tissue sections. Here, we use the technique as a mass spectrometry imaging (MSI) tool, extracting points at 1 mm spatial resolution across tissue sections to build an image of xenobiotic and endogenous compound distribution to assess drug blood-brain barrier penetration into brain tissue. A selection of penetrant and "nonpenetrant" drugs were dosed to rats via oral and intravenous administration. Whole brains were snap-frozen at necropsy and were subsequently sectioned prior to analysis by matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and LESA-MSI. MALDI-MSI, as expected, was shown to effectively map the distribution of brain penetrative compounds but lacked sufficient sensitivity when compounds were marginally penetrative. LESA-MSI was used to effectively map the distribution of these poorly penetrative compounds, highlighting its value as a complementary technique to MALDI-MSI. The technique also showed benefits when compared to traditional homogenization, particularly for drugs that were considered nonpenetrant by homogenization but were shown to have a measurable penetration using LESA-MSI. PMID:26350423

  18. Faster permutation inference in brain imaging.

    OpenAIRE

    Winkler, AM; Ridgway, GR; Douaud, G; Nichols, TE; Smith, SM

    2016-01-01

    Permutation tests are increasingly being used as a reliable method for inference in neuroimaging analysis. However, they are computationally intensive. For small, non-imaging datasets, recomputing a model thousands of times is seldom a problem, but for large, complex models this can be prohibitively slow, even with the availability of inexpensive computing power. Here we exploit properties of statistics used with the general linear model (GLM) and their distributions to obtain accelerations i...

  19. Intracranial Hemorrhage Annotation for CT Brain Images

    OpenAIRE

    Tong Hau Lee; Mohammad Faizal Ahmad Fauzi; Su-Cheng Haw

    2011-01-01

    In this paper, we created a decision-making model to detect intracranial hemorrhage and adopted Expectation Maximization(EM) segmentation to segment the Computed Tomography (CT) images. In this work, basically intracranial hemorrhage is classified into two main types which are intra-axial hemorrhage and extra-axial hemorrhage. In order to ease classification, contrast enhancement is adopted to finetune the contrast of the hemorrhage. After that, k-means is applied to group the potential and s...

  20. Brain imaging. Direct diagnosis in radiology

    International Nuclear Information System (INIS)

    The book covers CT findings, MRI findings, the modality of diagnostic technique selection, and clinical aspects (typical presentation, treatment options, course and prognosis) within the following chapters: trauma, inflammation, aneurysms, vascular malformations, stroke, tumors, cysts, meninges, ventricles and cisterns, leukocephalopathies, congenital malformations, artifacts in MRI and postoperative changes

  1. Automatic intra-modality brain image registration method

    International Nuclear Information System (INIS)

    Full text: Registration of 3D images of brain of the same or different subjects has potential importance in clinical diagnosis, treatment planning and neurological research. The broad aim of our work is to produce an automatic and robust intra-modality, brain image registration algorithm for intra-subject and inter-subject studies. Our algorithm is composed of two stages. Initial alignment is achieved by finding the values of nine transformation parameters (representing translation, rotation and scale) that minimise the nonoverlapping regions of the head. This is achieved by minimisation of the sum of the exclusive OR of two binary head images, produced using the head extraction procedure described by Ardekani et al. (J Comput Assist Tomogr, 19:613-623, 1995). The initial alignment successfully determines the scale parameters and gross translation and rotation parameters. Fine alignment uses an objective function described for inter-modality registration in Ardekani et al. (ibid.). The algorithm segments one of the images to be aligned into a set of connected components using K-means clustering. Registration is achieved by minimising the K-means variance of the segmentation induced in the other image. Similarity of images of the same modality makes the method attractive for intra-modality registration. A 3D MR image, with voxel dimensions, 2x2x6 mm, was misaligned. The registered image shows visually accurate registration. The average displacement of a pixel from its correct location was measured to be 3.3 mm. The algorithm was tested on intra-subject MR images and was found to produce good qualitative results. Using the data available, the algorithm produced promising qualitative results in intra-subject registration. Further work is necessary in its application to intersubject registration, due to large variability in brain structure between subjects. Clinical evaluation of the algorithm for selected applications is required

  2. Image Mosaic Techniques OptimizationUsing Wavelet

    Institute of Scientific and Technical Information of China (English)

    ZHOUAn-qi; CUILi

    2014-01-01

    This essay concentrates on two key procedures of image mosaic——image registration and imagefusion.Becauseof the character of geometric transformation invariance of edge points, wecalculate the angle difference of the direction vector ofedge points in different images anddraw an angle difference histogramto adjust the rotationproblem. Through this way, algorithm based on gray information is expandedandcan be used in images withdisplacementand rotation. Inthe term of image fusion, wavelet multi-scale analysis is used to fuse spliced images. In order to choose the best method of imagefusion,weevaluate the results of different methods of image fusion by cross entropy.

  3. Framework for the construction of a Monte Carlo simulated brain PET–MR image database

    International Nuclear Information System (INIS)

    Simultaneous PET–MR acquisition reduces the possibility of registration mismatch between the two modalities. This facilitates the application of techniques, either during reconstruction or post-reconstruction, that aim to improve the PET resolution by utilising structural information provided by MR. However, in order to validate such methods for brain PET–MR studies it is desirable to evaluate the performance using data where the ground truth is known. In this work, we present a framework for the production of datasets where simulations of both the PET and MR, based on real data, are generated such that reconstruction and post-reconstruction approaches can be fairly compared. -- Highlights: • A framework for simulating realistic brain PET–MR images is proposed. • The imaging data created is formed from real acquisitions. • Partial volume correction techniques can be fairly compared using this framework

  4. Molecular Imaging of Tumors Using a Quantitative T1 Mapping Technique via Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Kelsey Herrmann

    2015-07-01

    Full Text Available Magnetic resonance imaging (MRI of glioblastoma multiforme (GBM with molecular imaging agents would allow for the specific localization of brain tumors. Prior studies using T1-weighted MR imaging demonstrated that the SBK2-Tris-(Gd-DOTA3 molecular imaging agent labeled heterotopic xenograft models of brain tumors more intensely than non-specific contrast agents using conventional T1-weighted imaging techniques. In this study, we used a dynamic quantitative T1 mapping strategy to more objectively compare intra-tumoral retention of the SBK2-Tris-(Gd-DOTA3 agent over time in comparison to non-targeted control agents. Our results demonstrate that the targeted SBK2-Tris-(Gd-DOTA3 agent, a scrambled-Tris-(Gd-DOTA3 control agent, and the non-specific clinical contrast agent Optimark™ all enhanced flank tumors of human glioma cells with similar maximal changes on T1 mapping. However, the retention of the agents differs. The non-specific agents show significant recovery within 20 min by an increase in T1 while the specific agent SBK2-Tris-(Gd-DOTA3 is retained in the tumors and shows little recovery over 60 min. The retention effect is demonstrated by percent change in T1 values and slope calculations as well as by calculations of gadolinium concentration in tumor compared to muscle. Quantitative T1 mapping demonstrates the superior binding and retention in tumors of the SBK2-Tris-(Gd-DOTA3 agent over time compared to the non-specific contrast agent currently in clinical use.

  5. Brain imaging of mild cognitive impairment and Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Changhao Yin; Siou Li; Weina Zhao; Jiachun Feng

    2013-01-01

    The rapidly increasing prevalence of cognitive impairment and Alzheimer's disease has the potential to create a major worldwide healthcare crisis. Structural MRI studies in patients with Alzheimer's disease and mild cognitive impairment are currently attracting considerable interest. It is extremely important to study early structural and metabolic changes, such as those in the hippocampus, entorhinal cortex, and gray matter structures in the medial temporal lobe, to allow the early detection of mild cognitive impairment and Alzheimer's disease. The microstructural integrity of white matter can be studied with diffusion tensor imaging. Increased mean diffusivity and decreased fractional anisotropy are found in subjects with white matter damage. Functional imaging studies with positron emission tomography tracer compounds enable detection of amyloid plaques in the living brain in patients with Alzheimer's disease. In this review, we will focus on key findings from brain imaging studies in mild cognitive impairment and Alzheimer's disease, including structural brain changes studied with MRI and white matter changes seen with diffusion tensor imaging, and other specific imaging methodologies will also be discussed.

  6. The Statistical methods of Pixel-Based Image Fusion Techniques

    CERN Document Server

    Al-Wassai, Firouz Abdullah; Al-Zaky, Ali A

    2011-01-01

    There are many image fusion methods that can be used to produce high-resolution mutlispectral images from a high-resolution panchromatic (PAN) image and low-resolution multispectral (MS) of remote sensed images. This paper attempts to undertake the study of image fusion techniques with different Statistical techniques for image fusion as Local Mean Matching (LMM), Local Mean and Variance Matching (LMVM), Regression variable substitution (RVS), Local Correlation Modeling (LCM) and they are compared with one another so as to choose the best technique, that can be applied on multi-resolution satellite images. This paper also devotes to concentrate on the analytical techniques for evaluating the quality of image fusion (F) by using various methods including Standard Deviation (SD), Entropy(En), Correlation Coefficient (CC), Signal-to Noise Ratio (SNR), Normalization Root Mean Square Error (NRMSE) and Deviation Index (DI) to estimate the quality and degree of information improvement of a fused image quantitatively...

  7. Image Interpolation Using Kriging Technique for Spatial Data

    OpenAIRE

    Jassim, Firas Ajil; Altaany, Fawzi Hasan

    2013-01-01

    Image interpolation has been used spaciously by customary interpolation techniques. Recently, Kriging technique has been widely implemented in simulation area and geostatistics for prediction. In this article, Kriging technique was used instead of the classical interpolation methods to predict the unknown points in the digital image array. The efficiency of the proposed technique was proven using the PSNR and compared with the traditional interpolation techniques. The results showed that Krig...

  8. Imaging of aromatase distribution in rat and rhesus monkey brains with [{sup 11}C]vorozole

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kayo [Division of Pharmacology, Department of Neuroscience, Uppsala University, Uppsala SE-75124 (Sweden); Uppsala Imanet, Uppsala SE-75109 (Sweden)]. E-mail: kayo.takahashi@uppsala.imanet.se; Bergstroem, Mats [Uppsala Imanet, Uppsala SE-75109 (Sweden); Department of Pharmaceutical Biosciences, Uppsala University, Uppsala SE-75124 (Sweden); Fraendberg, Pernilla [Uppsala Imanet, Uppsala SE-75109 (Sweden); Vesstroem, Eva-Lotta [Uppsala Imanet, Uppsala SE-75109 (Sweden); Watanabe, Yasuyoshi [Department of Physiology, Osaka City University Graduate School of Medicine, Osaka 545-8585 (Japan); Langstroem, Bengt [Uppsala Imanet, Uppsala SE-75109 (Sweden)

    2006-07-15

    Aromatase is an enzyme that converts androgens to estrogens and may play a role in mood and mental status. The aim of this study was to demonstrate that brain aromatase distribution could be evaluated with a novel positron emission tomography (PET) tracer [{sup 11}C]vorozole. Vorozole is a nonsteroidal aromatase inhibitor that reversibly binds to the heme domain of aromatase. In vitro experiments in rat brain, using frozen section autoradiography, illustrated specific binding in the medial amygdala (MA), the bed nucleus of stria terminalis (BST) and the preoptic area (POA) of male rat brain. Specific binding in female rat brain was found in the MA and the BST; however, the signals were lower than those of males. The K {sub d} of [{sup 11}C]vorozole binding to aromatase in MA was determined to be 0.60{+-}0.06 nM by Scatchard plot analysis using homogenates. An in vivo PET study in female rhesus monkey brain demonstrated the uptake of [{sup 11}C]vorozole in the amygdala, where the uptake was blocked by the presence of excess amounts of unlabeled vorozole. Thus, this tracer has a high affinity for brain aromatase and could have a potential for in vivo aromatase imaging. This technique might enable the investigation of human brain aromatase in healthy and diseased persons.

  9. Imaging of aromatase distribution in rat and rhesus monkey brains with [11C]vorozole

    International Nuclear Information System (INIS)

    Aromatase is an enzyme that converts androgens to estrogens and may play a role in mood and mental status. The aim of this study was to demonstrate that brain aromatase distribution could be evaluated with a novel positron emission tomography (PET) tracer [11C]vorozole. Vorozole is a nonsteroidal aromatase inhibitor that reversibly binds to the heme domain of aromatase. In vitro experiments in rat brain, using frozen section autoradiography, illustrated specific binding in the medial amygdala (MA), the bed nucleus of stria terminalis (BST) and the preoptic area (POA) of male rat brain. Specific binding in female rat brain was found in the MA and the BST; however, the signals were lower than those of males. The K d of [11C]vorozole binding to aromatase in MA was determined to be 0.60±0.06 nM by Scatchard plot analysis using homogenates. An in vivo PET study in female rhesus monkey brain demonstrated the uptake of [11C]vorozole in the amygdala, where the uptake was blocked by the presence of excess amounts of unlabeled vorozole. Thus, this tracer has a high affinity for brain aromatase and could have a potential for in vivo aromatase imaging. This technique might enable the investigation of human brain aromatase in healthy and diseased persons

  10. Analysis and simulation of brain signal data by EEG signal processing technique using MATLAB

    Directory of Open Access Journals (Sweden)

    Sasikumar Gurumurthy

    2013-06-01

    Full Text Available EEG is brain signal processing technique that allows gaining the understanding of the complex inner mechanisms of the brain and abnormal brain waves have shown to be associated with particular brain disorders. The analysis of brain waves plays an important role in diagnosis of different brain disorders. MATLAB provides an interactive graphic user interface (GUI allowing users to flexiblyand interactively process their high-density EEG dataset and other brain signal data different techniques such as independent component analysis (ICA and/or time/frequency analysis (TFA, as well as standard averaging methods. We will be showing different brain signals by comparing, analysing and simulating datasets which is already loaded in the MATLAB software to process the EEG signals.

  11. A new versatile clearing method for brain imaging

    Science.gov (United States)

    Costantini, Irene; Di Giovanna, Antonino Paolo; Allegra Mascaro, Anna Letizia; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Sacconi, Leonardo; Pavone, Francesco S.

    2015-03-01

    Light scattering inside biological tissue is a limitation for large volumes imaging with microscopic resolution. Based on refractive index matching, different approaches have been developed to reduce scattering in fixed tissue. High refractive index organic solvents and water-based optical clearing agents, such as Sca/e, SeeDB and CUBIC have been used for optical clearing of entire mouse brain. Although these methods guarantee high transparency and preservation of the fluorescence, though present other non-negligible limitations. Tissue transformation by CLARITY allows high transparency, whole brain immunolabelling and structural and molecular preservation. This method however requires a highly expensive refractive index matching solution limiting practical applicability to large volumes. In this work we investigate the effectiveness of a water-soluble clearing agent, the 2,2'-thiodiethanol (TDE) to clear mouse and human brain. TDE does not quench the fluorescence signal, is compatible with immunostaining and does not introduce any deformation at sub-cellular level. The not viscous nature of the TDE make it a suitable agent to perform brain slicing during serial two-photon (STP) tomography. In fact, by improving penetration depth it reduces tissue slicing, decreasing the acquisition time and cutting artefacts. TDE can also be used as a refractive index medium for CLARITY. The potential of this method has been explored by imaging blocks of dysplastic human brain transformed with CLARITY, immunostained and cleared with the TDE. This clearing approach significantly expands the application of single and two-photon imaging, providing a new useful method for quantitative morphological analysis of structure in mouse and human brain.

  12. Reversible acute methotrexate leukoencephalopathy: atypical brain MR imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Ziereisen, France; Damry, Nash; Christophe, Catherine [Queen Fabiola Children' s University Hospital, Department of Radiology, Brussels (Belgium); Dan, Bernard [Queen Fabiola Children' s University Hospital, Department of Neurology, Brussels (Belgium); Azzi, Nadira; Ferster, Alina [Queen Fabiola Children' s University Hospital, Department of Paediatrics, Brussels (Belgium)

    2006-03-15

    Unusual acute symptomatic and reversible early-delayed leukoencephalopathy has been reported to be induced by methotrexate (MTX). We aimed to identify the occurrence of such atypical MTX neurotoxicity in children and document its MR presentation. We retrospectively reviewed the clinical findings and brain MRI obtained in 90 children treated with MTX for acute lymphoblastic leukaemia or non-B malignant non-Hodgkin lymphoma. All 90 patients had normal brain imaging before treatment. In these patients, brain imaging was performed after treatment completion and/or relapse and/or occurrence of neurological symptoms. Of the 90 patients, 15 (16.7%) showed signs of MTX neurotoxicity on brain MRI, 9 (10%) were asymptomatic, and 6 (6.7%) showed signs of acute leukoencephalopathy. On the routine brain MRI performed at the end of treatment, all asymptomatic patients had classical MR findings of reversible MTX neurotoxicity, such as abnormal high-intensity areas localized in the deep periventricular white matter on T2-weighted images. In contrast, the six symptomatic patients had atypical brain MRI characterized by T2 high-intensity areas in the supratentorial cortex and subcortical white matter (n=6), cerebellar cortex and white matter (n=4), deep periventricular white matter (n=2) and thalamus (n=1). MR normalization occurred later than clinical recovery in these six patients. In addition to mostly asymptomatic classical MTX neurotoxicity, MTX may induce severe but reversible unusual leukoencephalopathy. It is important to recognize this clinicoradiological presentation in the differential diagnosis of acute neurological deterioration in children treated with MTX. (orig.)

  13. Functional magnetic resonance imaging of intrinsic brain networks for translational drug discovery

    OpenAIRE

    Smucny, Jason; Wylie, Korey P.; Tregellas, Jason R.

    2014-01-01

    Developing translational biomarkers is a priority for psychiatry research. Task-independent functional brain imaging is a relatively novel technique that allows examination of the brain’s intrinsic networks, defined as functionally and (often) structurally connected populations of neurons whose properties reflect fundamental neurobiological organizational principles of the central nervous system. The ability to study the activity and organization of these networks has opened a promising new a...

  14. A review of equine renal imaging techniques

    International Nuclear Information System (INIS)

    Radiography has a limited role in the evaluation of the kidneys in foals and adult horses. Ultrasonography is the current method of choice for structural evaluation of the kidneys in horses as it provides additional information to standard serum chemistry and urinalysis evaluation. A variety of structural abnormalities have been identified in diseased equine kidneys with the use of ultrasound. Ultrasound guided renal biopsy is the preferred method for performing renal biopsy in the horse. The use of Duplex Doppler ultrasound may allow for the characterization of regional hemodynamics of the equine kidney, but is currently an untapped method for evaluation of equine renal hemodynamics. Radionuclide methods including scintigraphy and quantitative renal function measurement can be used to provide further information about equine renal function. Scintigraphy can provide structural and possibly functional information. Quantitative methods using radiopharmaceuticals can provide precise measurement of glomerular filtration rate and effective renal blood flow. This method is especially helpful in identifying acute renal failure and in guiding response to treatment. All equine renal imaging techniques should be a supplement to the physical examination and standard laboratory tests. Additional diagnostic aids such as urinary tract endoscopy should also be considered in horses with hematuria, hydroureter, and suspected calculi. Taken together, all these modalities provide a thorough evaluation of the equine renal system and provide a basis for the clinician to select treatment options and provide prognostic information to the owner

  15. New imaging techniques in myocardial perfusion SPECT

    International Nuclear Information System (INIS)

    Gated myocardial SPECT and attenuation correction gave birth to new insights into the pathophysiology of ischemic myocardial perfusion and function in clinical routine practice. Gated myocardial Tc-99m-compound SPECT improved diagnostic accuracy of coronary artery disease and enabled us to observe motion and thickening of myocardial walls as well as myocardial perfusion at the same time. Quantitative and qualitative assessment of myocardial performance and perfusion let us to understand the myocardial physiology in ischemia and infarction. In every patient who underwent gated perfusion SPECT, we will find ejection fraction, left ventricular volumes and regional wall motion. There are hopes to use gated Tl-201 SPECT for the same purpose and to use gated SPECT for evaluation of wall motion and thickening at stress or immediate post-stress. Attenuation correction could improve diagnostic accuracy mainly by increasing normalcy ratio or performance of non-expert physicians Both gated methods and attenuation correction improved specificity of non-expert physicians in diagnosing patients with moderate pretest likelihood. New imaging techniques will fill the desire of cardiologists to examine function and perfusion, and possibly metabolism in their clinical routine practice

  16. Imaging separation of neuronal from vascular effects of cocaine on rat cortical brain in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Z.; Du, C.; Yuan, Z.; Luo, Z.; Volkow, N.D.; Pan, Y.; Du, C.

    2010-09-08

    MRI techniques to study brain function assume coupling between neuronal activity, metabolism and flow. However, recent evidence of physiological uncoupling between neuronal and cerebrovascular events highlights the need for methods to simultaneously measure these three properties. We report a multimodality optical approach that integrates dual-wavelength laser speckle imaging (measures changes in blood flow, blood volume and hemoglobin oxygenation), digital-frequency-ramping optical coherence tomography (images quantitative 3D vascular network) and Rhod2 fluorescence (images intracellular calcium for measure of neuronal activity) at high spatiotemporal resolutions (30 {micro}m, 10 Hz) and over a large field of view (3 x 5 mm{sup 2}). We apply it to assess cocaine's effects in rat cortical brain and show an immediate decrease 3.5 {+-} 0.9 min, phase (1) in the oxygen content of hemoglobin and the cerebral blood flow followed by an overshoot 7.1 {+-} 0.2 min, phase (2) lasting over 20 min whereas Ca{sup 2+} increased immediately (peaked at t = 4.1 {+-} 0.4 min) and remained elevated. This enabled us to identify a delay (2.9 {+-} 0.5 min) between peak neuronal and vascular responses in phase 2. The ability of this multimodality optical approach for simultaneous imaging at high spatiotemporal resolutions permits us to distinguish the vascular versus cellular changes of the brain, thus complimenting other neuroimaging modalities for brain functional studies (e. g., PET, fMRI).

  17. Imaging separation of neuronal from vascular effects of cocaine on rat cortical brain in vivo

    International Nuclear Information System (INIS)

    MRI techniques to study brain function assume coupling between neuronal activity, metabolism and flow. However, recent evidence of physiological uncoupling between neuronal and cerebrovascular events highlights the need for methods to simultaneously measure these three properties. We report a multimodality optical approach that integrates dual-wavelength laser speckle imaging (measures changes in blood flow, blood volume and hemoglobin oxygenation), digital-frequency-ramping optical coherence tomography (images quantitative 3D vascular network) and Rhod2 fluorescence (images intracellular calcium for measure of neuronal activity) at high spatiotemporal resolutions (30 (micro)m, 10 Hz) and over a large field of view (3 x 5 mm2). We apply it to assess cocaine's effects in rat cortical brain and show an immediate decrease 3.5 ± 0.9 min, phase (1) in the oxygen content of hemoglobin and the cerebral blood flow followed by an overshoot 7.1 ± 0.2 min, phase (2) lasting over 20 min whereas Ca2+ increased immediately (peaked at t = 4.1 ± 0.4 min) and remained elevated. This enabled us to identify a delay (2.9 ± 0.5 min) between peak neuronal and vascular responses in phase 2. The ability of this multimodality optical approach for simultaneous imaging at high spatiotemporal resolutions permits us to distinguish the vascular versus cellular changes of the brain, thus complimenting other neuroimaging modalities for brain functional studies (e. g., PET, fMRI).

  18. A Review of Imaging Techniques for Plant Phenotyping

    Directory of Open Access Journals (Sweden)

    Lei Li

    2014-10-01

    Full Text Available Given the rapid development of plant genomic technologies, a lack of access to plant phenotyping capabilities limits our ability to dissect the genetics of quantitative traits. Effective, high-throughput phenotyping platforms have recently been developed to solve this problem. In high-throughput phenotyping platforms, a variety of imaging methodologies are being used to collect data for quantitative studies of complex traits related to the growth, yield and adaptation to biotic or abiotic stress (disease, insects, drought and salinity. These imaging techniques include visible imaging (machine vision, imaging spectroscopy (multispectral and hyperspectral remote sensing, thermal infrared imaging, fluorescence imaging, 3D imaging and tomographic imaging (MRT, PET and CT. This paper presents a brief review on these imaging techniques and their applications in plant phenotyping. The features used to apply these imaging techniques to plant phenotyping are described and discussed in this review.

  19. A review of imaging techniques for plant phenotyping.

    Science.gov (United States)

    Li, Lei; Zhang, Qin; Huang, Danfeng

    2014-01-01

    Given the rapid development of plant genomic technologies, a lack of access to plant phenotyping capabilities limits our ability to dissect the genetics of quantitative traits. Effective, high-throughput phenotyping platforms have recently been developed to solve this problem. In high-throughput phenotyping platforms, a variety of imaging methodologies are being used to collect data for quantitative studies of complex traits related to the growth, yield and adaptation to biotic or abiotic stress (disease, insects, drought and salinity). These imaging techniques include visible imaging (machine vision), imaging spectroscopy (multispectral and hyperspectral remote sensing), thermal infrared imaging, fluorescence imaging, 3D imaging and tomographic imaging (MRT, PET and CT). This paper presents a brief review on these imaging techniques and their applications in plant phenotyping. The features used to apply these imaging techniques to plant phenotyping are described and discussed in this review. PMID:25347588

  20. Imaging of the brain in the HIV-positive child

    International Nuclear Information System (INIS)

    The prevalence of human immune-deficiency virus (HIV) infection around the world, coupled with increasing population movement, make it likely that many physicians will treat HIV-infected patients. New treatment protocols for the specific manifestations of acquired immune-deficiency syndrome (AIDS) make distinguishing the different neurological diseases of great importance. The pattern of disease in children differs from those of adults both in its distribution and etiology. This article encapsulates the salient aspects relating to the imaging of the brain in HIV-positive children, paying particular attention to recent advances and the different features of the various pathological conditions affecting the HIV-infected brain in children. (orig.)

  1. A Novel Histogram Based Robust Image Registration Technique

    OpenAIRE

    Karthikeyan, V.

    2014-01-01

    In this paper, a method for Automatic Image Registration (AIR) through histogram is proposed. Automatic image registration is one of the crucial steps in the analysis of remotely sensed data. A new acquired image must be transformed, using image registration techniques, to match the orientation and scale of previous related images. This new approach combines several segmentations of the pair of images to be registered. A relaxation parameter on the histogram modes delineation is introduced. I...

  2. Advanced techniques in medical image segmentation of the liver

    OpenAIRE

    López Mir, Fernando

    2016-01-01

    [EN] Image segmentation is, along with multimodal and monomodal registration, the operation with the greatest applicability in medical image processing. There are many operations and filters, as much as applications and cases, where the segmentation of an organic tissue is the first step. The case of liver segmentation in radiological images is, after the brain, that on which the highest number of scientific publications can be found. This is due, on the one hand, to the need to continue inno...

  3. Radiopharmaceuticals for single-photon emission computed tomography brain imaging.

    Science.gov (United States)

    Kung, Hank F; Kung, Mei-Ping; Choi, Seok Rye

    2003-01-01

    In the past 10 years, significant progress on the development of new brain-imaging agents for single-photon emission computed tomography has been made. Most of the new radiopharmaceuticals are designed to bind specific neurotransmitter receptor or transporter sites in the central nervous system. Most of the site-specific brain radiopharmaceuticals are labeled with (123)I. Results from imaging of benzodiazepine (gamma-aminobutyric acid) receptors by [(123)I]iomazenil are useful in identifying epileptic seizure foci and changes of this receptor in psychiatric disorders. Imaging of dopamine D2/D3 receptors ([(123)I]iodobenzamide and [(123)I]epidepride) and transporters [(123)I]CIT (2-beta-carboxymethoxy-3-beta(4-iodophenyl)tropane) and [(123)I]FP-beta-CIT (N-propyl-2-beta-carboxymethoxy-3-beta(4-iodophenyl)-nortropane has proven to be a simple but powerful tool for differential diagnosis of Parkinson's and other neurodegenerative diseases. A (99m)Tc-labeled agent, [(99m)Tc]TRODAT (technetium, 2-[[2-[[[3-(4-chlorophenyl)-8-methyl-8-azabicyclo [3,2,1]oct-2-yl]methyl](2-mercaptoethyl)amino]ethyl]amino] ethanethiolato(3-)]oxo-[1R-(exo-exo)]-), for imaging dopamine transporters in the brain has been successfully applied in the diagnosis of Parkinson's disease. Despite the fact that (123)I radiopharmaceuticals have been widely used in Japan and in Europe, clinical application of (123)I-labeled brain radiopharmaceuticals in the United States is limited because of the difficulties in supplying such agents. Development of (99m)Tc agents will likely extend the application of site-specific brain radiopharmaceuticals for routine applications in aiding the diagnosis and monitoring treatments of various neurologic and psychiatric disorders. PMID:12605353

  4. Digital image processing techniques in archaeology

    Digital Repository Service at National Institute of Oceanography (India)

    Santanam, K.; Vaithiyanathan, R.; Tripati, S.

    Digital image processing involves the manipulation and interpretation of digital images with the aid of a computer. This form of remote sensing actually began in the 1960's with a limited number of researchers analysing multispectral scanner data...

  5. Survey On Image Texture Classification Techniques

    OpenAIRE

    Vishal Sharad Thakare

    2013-01-01

    Recent advances in digital imaging technology, computational speed, storage capacity and networking have made it possible to capture, manipulate, store, and transmit images at interactive speeds with equipment available at every home or business. As a result, images have become a dominant part of information exchange. They are used for entertainment, education, commerce, medicine, science, and other applications. The rapid accumulation of large collections of digital images has created the ne...

  6. Functional imaging techniques for evaluation of sarcomas

    OpenAIRE

    Hicks, Rodney J.

    2005-01-01

    Sarcomas are often characterised by significant histopathologic heterogeneity, both between and within tumours. This heterogeneity reflects physiologic, biochemical and genetic processes that are amenable to characterisation by functional imaging. Although anatomically based imaging modalities such as plain radiography, X-ray computed tomography (CT) and magnetic resonance imaging (MRI) remain the primary diagnostic modalities for staging sarcomas, nuclear medicine approaches including gamma ...

  7. Technique for producing cardiac radionuclide motion images

    International Nuclear Information System (INIS)

    Sequential frames of different portions of the cardiac cycle are gated into a minicomputer by using an EKG signal recorded onto digital tape simultaneously with imaging information. Serial display of these frames on the computer oscilloscope or projection of 35-mm half frames of these images provides a cardiac motion image with information content adequate for qualitatively assessing cardiac motion. (U.S.)

  8. Terahertz Imaging Systems With Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Krozer, Viktor; Löffler, Torsten; Dall, Jørgen;

    2010-01-01

    This paper presents the research and development of two terahertz imaging systems based on photonic and electronic principles, respectively. As part of this study, a survey of ongoing research in the field of terahertz imaging is provided focusing on security applications. Existing terahertz imag...

  9. Brain activation study during urine withhold by 99Tcm-HMPAO SPECT brain imaging

    International Nuclear Information System (INIS)

    Objective: Lose of urinary continence control is related with the pathological process of many brain damages. The aim of this study was to identify cerebral activation areas during withholding urine in healthy subjects with cerebral perfusion agent [99Tcm-hexamethylpropylene amine oxime (HMPAO)]. Methods: Fifteen right-handed healthy male volunteers (age ranged 24 to 45 years old) was recruited. All had two brain perfusion SPECT scans (15 volunteers with 30 scans). One was at resting state with empty bladder and the other was at urine withholding state with full bladder. The images were analyzed by neurological statistical image analysis software (NEUROSTAT) and was displayed on Z-score images at a significance threshold of P<0.05 with correction for multiple comparisons. Results: As compared with resting, the urine withholding state showed a significant increase cerebral perfusion in bilateral inferior frontal gyri, the right superior and middle temporal gyri, with the most significant in the right inferior frontal gyms. Conclusions: Although the control of urinary continence in healthy men was associated with bilateral inferior frontal gyri and the right superior and middle temporal gyri, the results showed that the right inferior frontal gyms might also be important. Moreover, the combination of brain perfusion SPECT and NEUROSTAT was a rather easy method for further understanding the mechanism of urinary control in brain and could be popularized as a research tool for clinical use. (authors)

  10. Bacterial brain abscesses: prognostic value of an imaging severity index

    International Nuclear Information System (INIS)

    Aim: To assess the correlation between imaging findings [computed tomography (CT) or magnetic resonance imaging (MRI)] and neurological status before and after the treatment of bacterial brain abscesses. Materials and methods: CT and MRI images of 96 patients with brain abscesses were retrospectively evaluated in terms of the number, location and size of lesions, and the presence and extent of perilesional oedema and midline shift. An imaging severity index (ISI) based on these different radiological parameters was calculated. Initial Glasgow Coma Scale (GCS) scores and ISI were assessed and the prognostic value of these two indices was calculated. The Pearson correlation test, Mann-Whitney test, Chi-square test, receiver-operating characteristic (ROC) analysis, together with comparison of ROC analyses and Fisher's exact test were used. Results: There was a negative correlation between ISI and the initial GCS values: ISI increased as the GCS score decreased, indicating an inverse relationship (r = -0.51, p < 0.0001). There was a significant difference between the ISI and GCS scores of patients with an adverse event compared with patients with good recovery. Outcome was significantly worse in patients with initial ISI over the calculated cut-off values of 8 points or GCS scores under the cut-off value of 13 points. Conclusion: ISI is a useful prognostic indicator for bacterial brain abscess patients and correlates strongly with the patient outcome for all parameters studied. ISI score had a better prognostic value than GCS

  11. A Fast Method for the Segmentation of Synaptic Junctions and Mitochondria in Serial Electron Microscopic Images of the Brain

    OpenAIRE

    Márquez Neila, Pablo; Baumela, Luis; González-Soriano, Juncal; Rodríguez, Jose-Rodrigo; DeFelipe, Javier; Merchán-Pérez, Ángel

    2016-01-01

    Recent electron microscopy (EM) imaging techniques permit the automatic acquisition of a large number of serial sections from brain samples. Manual segmentation of these images is tedious, time-consuming and requires a high degree of user expertise. Therefore, there is considerable interest in developing automatic segmentation methods. However, currently available methods are computationally demanding in terms of computer time and memory usage, and to work properly many of them require image ...

  12. Survey of image-based representations and compression techniques

    OpenAIRE

    Shum, HY; Kang, SB; Chan, SC

    2003-01-01

    In this paper, we survey the techniques for image-based rendering (IBR) and for compressing image-based representations. Unlike traditional three-dimensional (3-D) computer graphics, in which 3-D geometry of the scene is known, IBR techniques render novel views directly from input images. IBR techniques can be classified into three categories according to how much geometric information is used: rendering without geometry, rendering with implicit geometry (i.e., correspondence), and rendering ...

  13. Computer aided detection of tumor and edema in brain FLAIR magnetic resonance image using ANN

    Science.gov (United States)

    Pradhan, Nandita; Sinha, A. K.

    2008-03-01

    This paper presents an efficient region based segmentation technique for detecting pathological tissues (Tumor & Edema) of brain using fluid attenuated inversion recovery (FLAIR) magnetic resonance (MR) images. This work segments FLAIR brain images for normal and pathological tissues based on statistical features and wavelet transform coefficients using k-means algorithm. The image is divided into small blocks of 4×4 pixels. The k-means algorithm is used to cluster the image based on the feature vectors of blocks forming different classes representing different regions in the whole image. With the knowledge of the feature vectors of different segmented regions, supervised technique is used to train Artificial Neural Network using fuzzy back propagation algorithm (FBPA). Segmentation for detecting healthy tissues and tumors has been reported by several researchers by using conventional MRI sequences like T1, T2 and PD weighted sequences. This work successfully presents segmentation of healthy and pathological tissues (both Tumors and Edema) using FLAIR images. At the end pseudo coloring of segmented and classified regions are done for better human visualization.

  14. Fingerprint Image Enhancement By Develop Mehtre Technique

    Directory of Open Access Journals (Sweden)

    Mustafa Salah Khalefa

    2011-12-01

    Full Text Available Fingerprint identification is one of the most reliable biometrics technologies. There are manyapplications of fingerprint recognition such as voting, ecommerce, bank, virtual banks and military.Fingerprint image enhancement is an essential preprocessing step in extract minutiae from the inputfingerprint images. In this paper, we propose an image enhancement method by developing Mehtermethod for directional image. The enhancement is done by added the Block Filtering, HistogramEqualization and High-Pass Filtering. We have evaluated the performance of the enhancement imagemethod by tested it with 100 fingerprint images. Experimental results show the enhancement methodimproves the recognition more accuracy.

  15. Brain perfusion imaging in amyotrophic lateral sclerosis with dementia

    International Nuclear Information System (INIS)

    Single photon emission computed tomography (SPECT) studies have been applied for evaluation of regional cerebral blood flow (rCBF) in various neurodegenerative disorders including amyotrophic lateral sclerosis (ALS) and ALS with dementia (ALS-D). Brain perfusion SPECT using statistical image analysis is useful for accurate and objective diagnosis to evaluate slight decreases in rCBF, even in cases difficult to assess by visual inspection. We have used statistical parametric mapping (SPM), three-dimensional stereotactic surface projection (3D-SSP), easy Z-score imaging system (eZIS) as statistical image analyses. ALS-D cases, even if a case manifests minimal mentality change, showed obvious rCBF reduction in the bilateral prefrontal area with some irregularity and laterality of its decrease. This abnormality was clear in ALS-D compared with classic ALS. Our study has demonstrated that brain perfusion SPECT imaging using statistical image analyses is quite useful as an adjunct to presume the existence of dementia in ALS, even if ALS patients have trouble in verbal or manual communication of the language because of progressive bulbar symptoms and muscle weakness. Thus, for ALS patients with any subtle signs and symptoms suggesting dementia, we recommend a SPECT study with use of statistical image analyses. (author)

  16. Optimization of Butterworth filter for brain SPECT imaging

    International Nuclear Information System (INIS)

    A method has been described to optimize the cutoff frequency of the Butterworth filter for brain SPECT imaging. Since a computer simulation study has demonstrated that separation between an object signal and the random noise in projection images in a spatial-frequency domain is influenced by the total number of counts, the cutoff frequency of the Butterworth filter should be optimized for individual subjects according to total counts in a study. To reveal the relationship between the optimal cutoff frequencies and total counts in brain SPECT study, we used a normal volunteer and 99mTc hexamethyl-propyleneamine oxime (HMPAO) to obtain projection sets with different total counts. High quality images were created from a projection set with an acquisition time of 300-seconds per projection. The filter was optimized by calculating mean square errors from high quality images visually inspecting filtered reconstructed images. Dependence between total counts and optimal cutoff frequencies was clearly demonstrated in a nomogram. Using this nomogram, the optimal cutoff frequency for each study can be estimated from total counts, maximizing visual image quality. The results suggest that the cutoff frequency of Butterworth filter should be determined by referring to total counts in each study. (author)

  17. Imaging techniques in signal transduction IHC.

    Science.gov (United States)

    Sedgewick, Jerry

    2011-01-01

    Augmentation of digital images is almost always a necessity in order to obtain a reproduction that matches the appearance of the original. However, that augmentation can mislead if it is done incorrectly and not within reasonable limits. When procedures are in place for ensuring that originals are archived, and image manipulation steps are reported, scientists not only follow good laboratory practices, but also avoid ethical issues associated with postprocessing and protect their labs from any future allegations of scientific misconduct. Also, when procedures are in place for correct acquisition of images, the extent of postprocessing is minimized or eliminated. These procedures include color balancing (for brighfield images), keeping tonal values within the dynamic range of the detector, frame averaging to eliminate noise (typically in fluorescence imaging), use of the highest bit depth when a choice is available, flatfield correction, and archiving of the image in a nonlossy format (not JPEG).When postprocessing is necessary, the commonly used applications for correction include Photoshop, and ImageJ, but a free program (GIMP) can also be used. Corrections to images include scaling the bit depth to higher and lower ranges, removing color casts from brightfield images, setting brightness and contrast, reducing color noise, reducing "grainy" noise, conversion of pure colors to grayscale, conversion of grayscale to colors typically used in fluorescence imaging, correction of uneven illumination and flatfield correction, blending color images (fluorescence), and extending the depth of focus. These corrections are explained in step-by-step procedures in the chapter that follows. PMID:21370028

  18. Data-driven forward model inference for EEG brain imaging

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Hauberg, Søren; Hansen, Lars Kai

    2016-01-01

    Electroencephalography (EEG) is a flexible and accessible tool with excellent temporal resolution but with a spatial resolution hampered by volume conduction. Reconstruction of the cortical sources of measured EEG activity partly alleviates this problem and effectively turns EEG into a brain......-of-concept study, we show that, even when anatomical knowledge is unavailable, a suitable forward model can be estimated directly from the EEG. We propose a data-driven approach that provides a low-dimensional parametrization of head geometry and compartment conductivities, built using a corpus of forward models....... Combined with only a recorded EEG signal, we are able to estimate both the brain sources and a person-specific forward model by optimizing this parametrization. We thus not only solve an inverse problem, but also optimize over its specification. Our work demonstrates that personalized EEG brain imaging...

  19. CT images in brain metastases of the primary lung cancer

    International Nuclear Information System (INIS)

    Computed tomography (CT) of the brain was carried out in 366 patients with lung cancer in order to evaluate brain metastases. Suggestive evidences of metastases such as low density or contrast enhancement were observed in 65 cases (18%), although 26% of the metastatic cases revealed no signs or symptoms of neurological disorders. These facts emphasize that brain CT should be conducted in all patients with lung cancer, irrespective of signs and symptoms. A solitary lesion was noted in 37 out of 65 metastatic cases. More than 80% of the metastatic lesions were demonstrated as iso-density on plain CT films and were enhanced by intravenous injection of contrast medium. Although CT images of metastatic lesions reveal certain characteristic appearances according to the histologic type of the primary cancer, perifocal low density and central cavitation were observed independent of histologic type. (author)

  20. Molecular Genetics Techniques to Develop New Treatments for Brain Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Jacob; Fathallan-Shaykh, Hassan

    2006-09-22

    The objectives of this report are: (1) to devise novel molecular gene therapies for malignant brain tumors, (2) advance our understanding of the immune system in the central nervous system; and (3) apply genomics to find molecular probes to diagnose brain tumors, predict prognosis, biological behavior and their response to treatment.

  1. The technique of Cerenkov ring image detection

    International Nuclear Information System (INIS)

    Charged particles with an energy between 2 GeV and 25 GeV can be identified in the DELPHI barrel RICH detector by using the technique of Cerenkov ring image detection. The method of identification is based on a determination of the Cerenkov angle by measuring the positions of the emitted Cerenkov photons to high precision in a photon detector. The resolution in the photon that can be obtained depends mainly on the chromatic dispersion in the radiators and on the resolution in the photon detector is used in the barrel RICH in combination with two radiators. The photon detector consists of 48 drift tubes, constructed from quarz plates, each equipped with a wire chamber at the end. The drift gas with which the tubes are filled contains a small admixture of TMAE vapour from which the Cerenkov photons can liberate photoelectrons. It is shown in this thesis that an efficient photon detection and an accurate localization of the photon conversion points is possible. The spatial resolution of the photon detector is determind by the resolution of the wire chambe, the accuracy of the drift measurement, the distortions in the paths of the drifting electrons. The resolution of the wire chamber has been measured to be 0.8 mm in the x- and 1.7 mm in the y-coordinate. The error in the z-coordinate introduced by the drift time measurement is 0.2 mm. The distortions in the paths of the drifting electrons have been measured both in the x and y-direction. The longitudinal and transverse diffusion coefficients have been measured as a function of the field strength for two different drift gas mixtures. (author). 96 refs.; 61 figs.; 11 tabs

  2. Wavelet Thresholding Techniques in Despeckling of Medical Ultrasound Images

    Directory of Open Access Journals (Sweden)

    R.Vanithamani

    2014-01-01

    Full Text Available This paper presents a review of wavelet thresholding techniques for despeckling of medical ultrasound images. An ultrasound image is first transformed into wavelet domain and then the wavelet coefficients are processed by different wavelet thresholding techniques. The denoised image is obtained by taking the inverse wavelet transform of the modified wavelet coefficients. The performance of the techniques reviewed in this paper is evaluated using the image quality assessment parameters such as Peak Signal to Noise Ratio (PSNR, Edge Preservation Index (EPI and Correlation Coefficient (CoC.The practical implementation of this work is to determine the effective wavelet thresholding technique that compromises between edge preservation and noise suppression.

  3. A content-based image retrieval method for optical colonoscopy images based on image recognition techniques

    Science.gov (United States)

    Nosato, Hirokazu; Sakanashi, Hidenori; Takahashi, Eiichi; Murakawa, Masahiro

    2015-03-01

    This paper proposes a content-based image retrieval method for optical colonoscopy images that can find images similar to ones being diagnosed. Optical colonoscopy is a method of direct observation for colons and rectums to diagnose bowel diseases. It is the most common procedure for screening, surveillance and treatment. However, diagnostic accuracy for intractable inflammatory bowel diseases, such as ulcerative colitis (UC), is highly dependent on the experience and knowledge of the medical doctor, because there is considerable variety in the appearances of colonic mucosa within inflammations with UC. In order to solve this issue, this paper proposes a content-based image retrieval method based on image recognition techniques. The proposed retrieval method can find similar images from a database of images diagnosed as UC, and can potentially furnish the medical records associated with the retrieved images to assist the UC diagnosis. Within the proposed method, color histogram features and higher order local auto-correlation (HLAC) features are adopted to represent the color information and geometrical information of optical colonoscopy images, respectively. Moreover, considering various characteristics of UC colonoscopy images, such as vascular patterns and the roughness of the colonic mucosa, we also propose an image enhancement method to highlight the appearances of colonic mucosa in UC. In an experiment using 161 UC images from 32 patients, we demonstrate that our method improves the accuracy of retrieving similar UC images.

  4. Brain size and brain organization of the whale shark, Rhincodon typus, using magnetic resonance imaging.

    Science.gov (United States)

    Yopak, Kara E; Frank, Lawrence R

    2009-01-01

    Very little is known about the brain organization of the suction filter feeder, Rhincodon typus, and how it compares to other orectolobiforms in light of its specialization as a plankton-feeder. Brain size and overall brain organization was assessed in two specimens of R. typus in relation to both phylogeny and ecology, using magnetic resonance imaging (MRI). In comparison to over 60 other chondrichthyan species, R. typus demonstrated a relatively small brain for its body size (expressed in terms of encephalization quotients and residuals), similar to the lamniforms Carcharodon carcharias, Cetorhinus maximus, and Carcharias taurus. R. typus possessed a relatively small telencephalon with some development of the dorsal pallium, which was suggestive of moderate social behavior, in addition to a relatively large diencephalon and a relatively reduced mesencephalon. The most notable characteristic of the brain of Rhincodon was a large and highly foliated cerebellum, one of the largest cerebellums within the chondrichthyan clade. Early development of the brain was qualitatively assessed using an in situ MRI scan of the brain and chondrocranium of a neonate specimen of R. typus. There was evidence that folding of the cerebellar corpus appeared in early development, although the depth and number of folds might vary ontogenetically in this species. Hierarchical cluster analysis and multidimensional scaling ordinations showed evidence of convergent evolution with the basking shark, Cetorhinus maximus, another large-bodied filter feeding elasmobranch, supporting the claim that organization of the brain is more similar in species with analogous but independently evolved lifestyles than those that share taxonomic classification. PMID:19729899

  5. Study of Associated α Particle Imaging Technique for Explosives Detection

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The explosive detecting technique about neutron mainly include the thermal neutron analysis (TNA), the fast neutron analysis (FNA), the pulse fast and thermal neutron analysis (PFTNA) and the associated α particle imaging technique about fast neutron (API).

  6. Image characterization by fractal descriptors in variational mode decomposition domain: Application to brain magnetic resonance

    Science.gov (United States)

    Lahmiri, Salim

    2016-08-01

    The main purpose of this work is to explore the usefulness of fractal descriptors estimated in multi-resolution domains to characterize biomedical digital image texture. In this regard, three multi-resolution techniques are considered: the well-known discrete wavelet transform (DWT) and the empirical mode decomposition (EMD), and; the newly introduced; variational mode decomposition mode (VMD). The original image is decomposed by the DWT, EMD, and VMD into different scales. Then, Fourier spectrum based fractal descriptors is estimated at specific scales and directions to characterize the image. The support vector machine (SVM) was used to perform supervised classification. The empirical study was applied to the problem of distinguishing between normal and abnormal brain magnetic resonance images (MRI) affected with Alzheimer disease (AD). Our results demonstrate that fractal descriptors estimated in VMD domain outperform those estimated in DWT and EMD domains; and also those directly estimated from the original image.

  7. Through Skull Fluorescence Imaging of the Brain in a New Near-Infrared Window

    CERN Document Server

    Hong, Guosong; Chang, Junlei; Antaris, Alexander L; Chen, Changxin; Zhang, Bo; Zhao, Su; Atochin, Dmitriy N; Huang, Paul L; Andreasson, Katrin I; Kuo, Calvin J; Dai, Hongjie

    2014-01-01

    To date, brain imaging has largely relied on X-ray computed tomography and magnetic resonance angiography with limited spatial resolution and long scanning times. Fluorescence-based brain imaging in the visible and traditional near-infrared regions (400-900 nm) is an alternative but currently requires craniotomy, cranial windows and skull thinning techniques, and the penetration depth is limited to 1-2 mm due to light scattering. Here, we report through-scalp and through-skull fluorescence imaging of mouse cerebral vasculature without craniotomy utilizing the intrinsic photoluminescence of single-walled carbon nanotubes in the 1.3-1.4 micrometre near-infrared window. Reduced photon scattering in this spectral region allows fluorescence imaging reaching a depth of >2 mm in mouse brain with sub-10 micrometre resolution. An imaging rate of ~5.3 frames/s allows for dynamic recording of blood perfusion in the cerebral vessels with sufficient temporal resolution, providing real-time assessment of blood flow anomaly...

  8. An Enhanced Approach for Medical Brain Image Enhancement

    Directory of Open Access Journals (Sweden)

    J. Umamaheswari

    2012-01-01

    Full Text Available Problem statement: One of the most common degradations in medical images is their poor contrast quality and noise. The DICOM image consists of speckle (multiplicative noise. While the image is enhanced, the multiplicative noise present in the image is also enhanced. Approach: This study describes the hybrid method to improve the image quality of Digital Imaging and Communications in Medicine (DICOM images. The idea of image enhancement technique is to improve the quality of an image for early diagnosis. Then followed by a noise reduction using speckle reduction anisotropic filter. This suggests the use of contrast enhancement methods as an attempt to modify the intensity distribution of the image and to reduce the multiplicative noise. Results: In this research study, a new approach for DICOM image is done by applying contrast stretching and anisotropic diffusion where denoising of multiplicative noise is carried out and the level of contrast is improved. The quality of the image is enhanced and noise free for DICOM image analysis. The effectiveness of hybrid method is proved by quantitative approach. Conclusion and Recommendation: The performance of the proposed study is compared with the existing traditional algorithm and real time medical diagnosis image."

  9. Study of functional brain imaging for bilingual language cognition

    International Nuclear Information System (INIS)

    Bilingual and multilingual brain studies of language recognition is an interdisciplinary subject which needs to identify different levels involved in the neural representation of languages, such as neuroanatomical, neurofunctional, biochemical, psychological and linguistic levels. Furthermore, specific factor's such as age, manner of acquisition and environmental factors seem to affect the neural representation. Functional brain imaging, such as PET, SPECT and functional MRI can explore the neurolinguistics representation of bilingualism in the brain in subjects, and elucidate the neuronal mechanisms of bilingual language processing. Functional imaging methods show differences in the pattern of cerebral activation associated with a second language compared with the subject's native language. It shows that verbal memory processing in two unrelated languages is mediated by a common neural system with some distinct cortical areas. The different patterns of activation differ according to the language used. It also could be ascribed either to age of acquisition or to proficiency level. And attained proficiency is more important than age of acquisition as a determinant of the cortical representation of the second language. The study used PET and SPECT shows that sign and spoken language seem to be localized in the same brain areas, and elicit similar regional cerebral blood flow patterns. But for sign language perception, the functional anatomy overlaps that of language processing contain both auditory and visual components. And the sign language is dependent on spatial information too. (authors)

  10. PET/SPECT imaging: From carotid vulnerability to brain viability

    Energy Technology Data Exchange (ETDEWEB)

    Meerwaldt, Robbert [Department of Surgery, Isala Clinics, Zwolle (Netherlands); Slart, Riemer H.J.A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands); Dam, Gooitzen M. van [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands); Luijckx, Gert-Jan [Department of Neurology, University Medical Center Groningen, Groningen (Netherlands); Tio, Rene A. [Department of Cardiology, University Medical Center Groningen, Groningen (Netherlands); Zeebregts, Clark J. [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands)], E-mail: czeebregts@hotmail.com

    2010-04-15

    Background: Current key issues in ischemic stroke are related to carotid plaque vulnerability, brain viability, and timing of intervention. The treatment of ischemic stroke has evolved into urgent active interventions, as 'time is brain'. Functional imaging such as positron emission tomography (PET)/single photon emission computed tomography (SPECT) could improve selection of patients with a vulnerable plaque and evaluation of brain viability in ischemic stroke. Objective: To describe the current applications of PET and SPECT as a diagnostic tool in relation to ischemic stroke. Methods: A literature search using PubMed identified articles. Manual cross-referencing was also performed. Results: Several papers, all observational studies, identified PET/SPECT to be used as a tool to monitor systemic atheroma modifying treatment and to select high-risk patients for surgery regardless of the degree of luminal stenosis in carotid lesions. Furthermore, PET/SPECT is able to quantify the penumbra region during ischemic stroke and in this way may identify those patients who may benefit from timely intervention. Discussion: Functional imaging modalities such as PET/SPECT may become important tools for risk-assessment and evaluation of treatment strategies in carotid plaque vulnerability and brain viability. Prospective clinical studies are needed to evaluate the diagnostic accuracy of PET/SPECT.

  11. PET/SPECT imaging: From carotid vulnerability to brain viability

    International Nuclear Information System (INIS)

    Background: Current key issues in ischemic stroke are related to carotid plaque vulnerability, brain viability, and timing of intervention. The treatment of ischemic stroke has evolved into urgent active interventions, as 'time is brain'. Functional imaging such as positron emission tomography (PET)/single photon emission computed tomography (SPECT) could improve selection of patients with a vulnerable plaque and evaluation of brain viability in ischemic stroke. Objective: To describe the current applications of PET and SPECT as a diagnostic tool in relation to ischemic stroke. Methods: A literature search using PubMed identified articles. Manual cross-referencing was also performed. Results: Several papers, all observational studies, identified PET/SPECT to be used as a tool to monitor systemic atheroma modifying treatment and to select high-risk patients for surgery regardless of the degree of luminal stenosis in carotid lesions. Furthermore, PET/SPECT is able to quantify the penumbra region during ischemic stroke and in this way may identify those patients who may benefit from timely intervention. Discussion: Functional imaging modalities such as PET/SPECT may become important tools for risk-assessment and evaluation of treatment strategies in carotid plaque vulnerability and brain viability. Prospective clinical studies are needed to evaluate the diagnostic accuracy of PET/SPECT.

  12. The image of a brain stroke in a computed tomograph

    International Nuclear Information System (INIS)

    On the basis of 100 findings from patients who suffered brain strokes and by the use of 1500 ensured stroke images it was tested whether or not the stroke-predilection typologie outlined by Zuelch is based on a coincidental summation of individual cases. The radio-computed tomography with the possibility of evaluation of non-lethal cases proved itself as a suited method for confirmation or repudiation of this stroke theory. By means of the consistently achieved association of the frontal, respectively horizontal sectional image for the typology it could be proven and - with the exception of a few rather seldom types - also demonstrated that the basic and predilection types of brain stroke repeated themselves in their pattern. In individual cases a specification of lower types could also be undertaken. (orig./TRV)

  13. WAVELET STATISTICAL TEXTURE FEATURES WITH ORTHOGONAL OPERATORS TUMOUR CLASSIFICATION IN MAGNETIC RESONANCE IMAGING BRAIN

    Directory of Open Access Journals (Sweden)

    R. Meenakshi

    2013-01-01

    Full Text Available Tumors medically also called neoplasms are an abnormal mass of tissue resulting from uncontrolled proliferation or division of cells occurring in the human body. If such growth is located in the brain then it is called as brain tumor. Identification of such tumors is a major challenge in the field of medical science. Early identification of tumors prove to be critical as serious consequences can be averted. Its threat level depends on a combination of various factors like the type of tumor, its location, its size and its developmental stage. Tumor can occur in any part of the body. Magnetic Resonance Imaging (MRI technique is mainly used for analyzing the brain, as the images produced are of high precision and applicability. The main objective of this study is to classify the brain MRI dataset for the existence or non existence of tumors. The proposed method uses Two Dimensional Discrete Wavelet Transform (2D-DWT for pre-processing and further classification with orthogonal operators and SVM. The usage of 2D-DWT for pre-processing improves the classification accuracy by 2% when compared to the existing classification techniques.

  14. In vivo bioimpedance measurement of healthy and ischaemic rat brain: implications for stroke imaging using electrical impedance tomography.

    OpenAIRE

    Dowrick, T.; Blochet, C.; Holder, D

    2015-01-01

    In order to facilitate the imaging of haemorrhagic and ischaemic stroke using frequency difference electrical impedance tomography (EIT), impedance measurements of normal and ischaemic brain, and clotted blood during haemorrhage, were gathered using a four-terminal technique in an in vivo animal model, a first for ischaemic measurements. Differences of 5-10% in impedance were seen between the frequency spectrums of healthy and ischaemic brain, over the frequency range 0-3 kHz, while the spect...

  15. Unconventional techniques of fundus imaging: A review

    OpenAIRE

    Mahesh P Shanmugam; Divyansh Kailash Chandra Mishra; R. Rajesh; Madhukumar, R

    2015-01-01

    The methods of fundus examination include direct and indirect ophthalmoscopy and imaging with a fundus camera are an essential part of ophthalmic practice. The usage of unconventional equipment such as a hand-held video camera, smartphone, and a nasal endoscope allows one to image the fundus with advantages and some disadvantages. The advantages of these instruments are the cost-effectiveness, ultra portability and ability to obtain images in a remote setting and share the same electronically...

  16. Novel Imaging Techniques in Acute Kidney Injury

    OpenAIRE

    Kalantarinia, Kambiz

    2009-01-01

    Imaging of the kidneys can provide valuable information in the work up and management of acute kidney injury. Several different imaging modalities are used to gather information on anatomy of the kidney, to rule out obstruction, differentiate acute kidney injury (AKI) and chronic kidney disease and to obtain information on renal blood flow and GFR. Ultrasound is the most widely used imaging modality used in the initial work up of AKI. The utility of contrast enhanced computerized tomography a...

  17. Characteristics of meningioma scintigraphy with multiple brain imaging agents

    International Nuclear Information System (INIS)

    Purpose: To clarify the characteristics of meningioma scintigraphy with multiple brain imaging agents and to evaluate their roles in diagnosis of meningiomas. Methods: Blood flow, 99mTc-ECD, 99mTc-DTPA, and/or 99mTc-MIBI brain imagings were performed in 21 patients with meningiomas (3 malignant, 18 benign) proved by surgery and pathology. CT/MRI examinations were also made within one month. Characteristics of meningioma images were analyzed and uptake ratios were calculated. Results: In 16 of 20 patients, increased radioactivity during the arterial phase in the blood flow image was seen. Concave round or oval defects with smooth contour in the cerebral cortex were observed in 17 of 19 patients with 99mTc-ECD, depression of frontoparietal cortex was found in one case and no abnormality in the other. A homogeneous accumulation of radioactivity in area corresponding to the defect in 99mTc-ECD image was found in 17/17 patients with 99mTc-DTPA and in 14/14 patients with 99mTc-MIBI study. No correlation was found between uptake ratios of the three tracers, but 99mTc-ECD uptake ratio was significantly lower in malignant meningioma than in benign one. Conclusions: The combined use of 99mTc-ECD and 99mTc-DTPA and/or 99mTc-MIBI brain imaging is useful in making the diagnosis of meningiomas. Whether the 99mTc-ECD uptake ratio will be valuable to differentiate malignant from benign meningioma needs further studies

  18. A new antigen retrieval technique for human brain tissue.

    Directory of Open Access Journals (Sweden)

    Raúl Alelú-Paz

    Full Text Available Immunohistochemical staining of tissues is a powerful tool used to delineate the presence or absence of an antigen. During the last 30 years, antigen visualization in human brain tissue has been significantly limited by the masking effect of fixatives. In the present study, we have used a new method for antigen retrieval in formalin-fixed human brain tissue and examined the effectiveness of this protocol to reveal masked antigens in tissues with both short and long formalin fixation times. This new method, which is based on the use of citraconic acid, has not been previously utilized in brain tissue although it has been employed in various other tissues such as tonsil, ovary, skin, lymph node, stomach, breast, colon, lung and thymus. Thus, we reported here a novel method to carry out immunohistochemical studies in free-floating human brain sections. Since fixation of brain tissue specimens in formaldehyde is a commonly method used in brain banks, this new antigen retrieval method could facilitate immunohistochemical studies of brains with prolonged formalin fixation times.

  19. The application of tDCS in psychiatric disorders: a brain imaging view

    Science.gov (United States)

    Baeken, Chris; Brunelin, Jerome; Duprat, Romain; Vanderhasselt, Marie-Anne

    2016-01-01

    Background Transcranial direct current stimulation (tDCS) is a non-invasive, non-convulsive technique for modulating brain function. In contrast to other non-invasive brain stimulation techniques, where costs, clinical applicability, and availability limit their large-scale use in clinical practices, the low-cost, portable, and easy-to-use tDCS devices may overcome these restrictions. Objective Despite numerous clinical applications in large numbers of patients suffering from psychiatric disorders, it is not quite clear how tDCS influences the mentally affected human brain. In order to decipher potential neural mechanisms of action of tDCS in patients with psychiatric conditions, we focused on the combination of tDCS with neuroimaging techniques. Design We propose a contemporary overview on the currently available neurophysiological and neuroimaging data where tDCS has been used as a research or treatment tool in patients with psychiatric disorders. Results Over a reasonably short period of time, tDCS has been broadly used as a research tool to examine neuronal processes in the healthy brain. tDCS has also commonly been applied as a treatment application in a variety of mental disorders, with to date no straightforward clinical outcome and not always accompanied by brain imaging techniques. Conclusion tDCS, as do other neuromodulation devices, clearly affects the underlying neuronal processes. However, research on these mechanisms in psychiatric patients is rather limited. A better comprehension of how tDCS modulates brain function will help us to define optimal parameters of stimulation in each indication and may result in the detection of biomarkers in favor of clinical response. PMID:26993785

  20. The application of tDCS in psychiatric disorders: a brain imaging view

    Directory of Open Access Journals (Sweden)

    Chris Baeken

    2016-03-01

    Full Text Available Background: Transcranial direct current stimulation (tDCS is a non-invasive, non-convulsive technique for modulating brain function. In contrast to other non-invasive brain stimulation techniques, where costs, clinical applicability, and availability limit their large-scale use in clinical practices, the low-cost, portable, and easy-to-use tDCS devices may overcome these restrictions. Objective: Despite numerous clinical applications in large numbers of patients suffering from psychiatric disorders, it is not quite clear how tDCS influences the mentally affected human brain. In order to decipher potential neural mechanisms of action of tDCS in patients with psychiatric conditions, we focused on the combination of tDCS with neuroimaging techniques. Design: We propose a contemporary overview on the currently available neurophysiological and neuroimaging data where tDCS has been used as a research or treatment tool in patients with psychiatric disorders. Results: Over a reasonably short period of time, tDCS has been broadly used as a research tool to examine neuronal processes in the healthy brain. tDCS has also commonly been applied as a treatment application in a variety of mental disorders, with to date no straightforward clinical outcome and not always accompanied by brain imaging techniques. Conclusion: tDCS, as do other neuromodulation devices, clearly affects the underlying neuronal processes. However, research on these mechanisms in psychiatric patients is rather limited. A better comprehension of how tDCS modulates brain function will help us to define optimal parameters of stimulation in each indication and may result in the detection of biomarkers in favor of clinical response.