WorldWideScience

Sample records for brain imaging techniques

  1. Brain Vascular Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Bàrbara Laviña

    2016-12-01

    Full Text Available Recent major improvements in a number of imaging techniques now allow for the study of the brain in ways that could not be considered previously. Researchers today have well-developed tools to specifically examine the dynamic nature of the blood vessels in the brain during development and adulthood; as well as to observe the vascular responses in disease situations in vivo. This review offers a concise summary and brief historical reference of different imaging techniques and how these tools can be applied to study the brain vasculature and the blood-brain barrier integrity in both healthy and disease states. Moreover, it offers an overview on available transgenic animal models to study vascular biology and a description of useful online brain atlases.

  2. Image processing techniques for quantification and assessment of brain MRI

    NARCIS (Netherlands)

    Kuijf, H.J.

    2013-01-01

    Magnetic resonance imaging (MRI) is a widely used technique to acquire digital images of the human brain. A variety of acquisition protocols is available to generate images in vivo and noninvasively, giving great opportunities to study the anatomy and physiology of the human brain. In my thesis,

  3. Unsupervised Neural Techniques Applied to MR Brain Image Segmentation

    Directory of Open Access Journals (Sweden)

    A. Ortiz

    2012-01-01

    Full Text Available The primary goal of brain image segmentation is to partition a given brain image into different regions representing anatomical structures. Magnetic resonance image (MRI segmentation is especially interesting, since accurate segmentation in white matter, grey matter and cerebrospinal fluid provides a way to identify many brain disorders such as dementia, schizophrenia or Alzheimer’s disease (AD. Then, image segmentation results in a very interesting tool for neuroanatomical analyses. In this paper we show three alternatives to MR brain image segmentation algorithms, with the Self-Organizing Map (SOM as the core of the algorithms. The procedures devised do not use any a priori knowledge about voxel class assignment, and results in fully-unsupervised methods for MRI segmentation, making it possible to automatically discover different tissue classes. Our algorithm has been tested using the images from the Internet Brain Image Repository (IBSR outperforming existing methods, providing values for the average overlap metric of 0.7 for the white and grey matter and 0.45 for the cerebrospinal fluid. Furthermore, it also provides good results for high-resolution MR images provided by the Nuclear Medicine Service of the “Virgen de las Nieves” Hospital (Granada, Spain.

  4. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    Science.gov (United States)

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  5. Emerging Techniques in Brain Tumor Imaging: What Radiologists Need to Know

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjae; Kim, Ho Sung [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of)

    2016-11-01

    Among the currently available brain tumor imaging, advanced MR imaging techniques, such as diffusion-weighted MR imaging and perfusion MR imaging, have been used for solving diagnostic challenges associated with conventional imaging and for monitoring the brain tumor treatment response. Further development of advanced MR imaging techniques and postprocessing methods may contribute to predicting the treatment response to a specific therapeutic regimen, particularly using multi-modality and multiparametric imaging. Over the next few years, new imaging techniques, such as amide proton transfer imaging, will be studied regarding their potential use in quantitative brain tumor imaging. In this review, the pathophysiologic considerations and clinical validations of these promising techniques are discussed in the context of brain tumor characterization and treatment response.

  6. Emerging techniques in brain tumor imaging: What radiologists need to know

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Jae; Kim, Ho Sung [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2016-09-15

    Among the currently available brain tumor imaging, advanced MR imaging techniques, such as diffusion-weighted MR imaging and perfusion MR imaging, have been used for solving diagnostic challenges associated with conventional imaging and for monitoring the brain tumor treatment response. Further development of advanced MR imaging techniques and postprocessing methods may contribute to predicting the treatment response to a specific therapeutic regimen, particularly using multi-modality and multiparametric imaging. Over the next few years, new imaging techniques, such as amide proton transfer imaging, will be studied regarding their potential use in quantitative brain tumor imaging. In this review, the pathophysiologic considerations and clinical validations of these promising techniques are discussed in the context of brain tumor characterization and treatment response.

  7. Visualizing the blind brain: brain imaging of visual field defects from early recovery to rehabilitation techniques

    Directory of Open Access Journals (Sweden)

    Marika eUrbanski

    2014-09-01

    Full Text Available Visual field defects (VFDs are one of the most common consequences observed after brain injury, especially after a stroke in the posterior cerebral artery territory. Less frequently, tumours, traumatic brain injury, brain surgery or demyelination can also determine various visual disabilities, from a decrease in visual acuity to cerebral blindness. VFD is a factor of bad functional prognosis as it compromises many daily life activities (e.g., obstacle avoidance, driving, and reading and therefore the patient’s quality of life. Spontaneous recovery seems to be limited and restricted to the first six months, with the best chance of improvement at one month. The possible mechanisms at work could be partly due to cortical reorganization in the visual areas (plasticity and/or partly to the use of intact alternative visual routes, first identified in animal studies and possibly underlying the phenomenon of blindsight. Despite processes of early recovery, which is rarely complete, and learning of compensatory strategies, the patient’s autonomy may still be compromised at more chronic stages. Therefore, various rehabilitation therapies based on neuroanatomical knowledge have been developed to improve VFDs. These use eye-movement training techniques (e.g., visual search, saccadic eye movements, reading training, visual field restitution (the Vision Restoration Therapy, VRT, or perceptual learning. In this review, we will focus on studies of human adults with acquired VFDs, which have used different imaging techniques (Positron Emission Tomography: PET, Diffusion Tensor Imaging: DTI, functional Magnetic Resonance Imaging: fMRI, MagnetoEncephalography: MEG or neurostimulation techniques (Transcranial Magnetic Stimulation: TMS; transcranial Direct Current Stimulation, tDCS to show brain activations in the course of spontaneous recovery or after specific rehabilitation techniques.

  8. A Technique for the Deidentification of Structural Brain MR Images

    Science.gov (United States)

    Bischoff-Grethe, Amanda; Ozyurt, I. Burak; Busa, Evelina; Quinn, Brian T.; Fennema-Notestine, Christine; Clark, Camellia P.; Morris, Shaunna; Bondi, Mark W.; Jernigan, Terry L.; Dale, Anders M.; Brown, Gregory G.; Fischl, Bruce

    2008-01-01

    Due to the increasing need for subject privacy, the ability to deidentify structural MR images so that they do not provide full facial detail is desirable. A program was developed that uses models of nonbrain structures for removing potentially identifying facial features. When a novel image is presented, the optimal linear transform is computed for the input volume (Fischl et al. [2002]: Neuron 33:341–355; Fischl et al. [2004]: Neuroimage 23 (Suppl 1):S69–S84). A brain mask is constructed by forming the union of all voxels with nonzero probability of being brain and then morphologically dilated. All voxels outside the mask with a nonzero probability of being a facial feature are set to 0. The algorithm was applied to 342 datasets that included two different T1-weighted pulse sequences and four different diagnoses (depressed, Alzheimer’s, and elderly and young control groups). Visual inspection showed none had brain tissue removed. In a detailed analysis of the impact of defacing on skull-stripping, 16 datasets were bias corrected with N3 (Sled et al. [1998]: IEEE Trans Med Imaging 17:87–97), defaced, and then skull-stripped using either a hybrid watershed algorithm (Ségonne et al. [2004]: Neuroimage 22:1060–1075, in FreeSurfer) or Brain Surface Extractor (Sandor and Leahy [1997]: IEEE Trans Med Imaging 16:41–54; Shattuck et al. [2001]: Neuroimage 13:856–876); defacing did not appreciably influence the outcome of skull-stripping. Results suggested that the automatic defacing algorithm is robust, efficiently removes nonbrain tissue, and does not unduly influence the outcome of the processing methods utilized; in some cases, skull-stripping was improved. Analyses support this algorithm as a viable method to allow data sharing with minimal data alteration within large-scale multisite projects. PMID:17295313

  9. Advanced techniques in magnetic resonance imaging of the brain in children with ADHD

    Energy Technology Data Exchange (ETDEWEB)

    Pastura, Giuseppe, E-mail: giuseppe.pastura@terra.com.b [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Pediatria; Mattos, Paulo [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Psiquiatria; Gasparetto, Emerson Leandro [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Radiologia; Araujo, Alexandra Prufer de Queiroz Campos [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Neuropediatria

    2011-04-15

    Attention deficit hyperactivity disorder (ADHD) affects about 5% of school-aged child. Previous published works using different techniques of magnetic resonance imaging (MRI) have demonstrated that there may be some differences between the brain of people with and without this condition. This review aims at providing neurologists, pediatricians and psychiatrists an update on the differences between the brain of children with and without ADHD using advanced techniques of magnetic resonance imaging such as diffusion tensor imaging, brain volumetry and cortical thickness, spectroscopy and functional MRI. Data was obtained by a comprehensive, non-systematic review of medical literature. The regions with a greater number of abnormalities are splenium of the corpus callosum, cingulated gyrus, caudate nucleus, cerebellum, striatum, frontal and temporal cortices. The brain regions where abnormalities are observed in studies of diffusion tensor, volumetry, spectroscopy and cortical thickness are the same involved in neurobiological theories of ADHD coming from studies with functional magnetic resonance imaging. (author)

  10. A technique for the deidentification of structural brain MR images

    DEFF Research Database (Denmark)

    Bischoff-Grethe, Amanda; Ozyurt, I Burak; Busa, Evelina

    2007-01-01

    is presented, the optimal linear transform is computed for the input volume (Fischl et al. [2002]: Neuron 33:341-355; Fischl et al. [2004]: Neuroimage 23 (Suppl 1):S69-S84). A brain mask is constructed by forming the union of all voxels with nonzero probability of being brain and then morphologically dilated...

  11. Magnetic resonance imaging acquisition techniques intended to decrease movement artefact in paediatric brain imaging: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Woodfield, Julie [University of Edinburgh, Child Life and Health, Edinburgh (United Kingdom); Kealey, Susan [Western General Hospital, Department of Neuroradiology, Edinburgh (United Kingdom)

    2015-08-15

    Attaining paediatric brain images of diagnostic quality can be difficult because of young age or neurological impairment. The use of anaesthesia to reduce movement in MRI increases clinical risk and cost, while CT, though faster, exposes children to potentially harmful ionising radiation. MRI acquisition techniques that aim to decrease movement artefact may allow diagnostic paediatric brain imaging without sedation or anaesthesia. We conducted a systematic review to establish the evidence base for ultra-fast sequences and sequences using oversampling of k-space in paediatric brain MR imaging. Techniques were assessed for imaging time, occurrence of movement artefact, the need for sedation, and either image quality or diagnostic accuracy. We identified 24 relevant studies. We found that ultra-fast techniques had shorter imaging acquisition times compared to standard MRI. Techniques using oversampling of k-space required equal or longer imaging times than standard MRI. Both ultra-fast sequences and those using oversampling of k-space reduced movement artefact compared with standard MRI in unsedated children. Assessment of overall diagnostic accuracy was difficult because of the heterogeneous patient populations, imaging indications, and reporting methods of the studies. In children with shunt-treated hydrocephalus there is evidence that ultra-fast MRI is sufficient for the assessment of ventricular size. (orig.)

  12. Imaging of the brain using the fast-spin-echo and gradient-spin-echo techniques

    Energy Technology Data Exchange (ETDEWEB)

    Umek, W.; Ba-Ssalamah, A.; Prokesch, R. [Department of Radiology, University of Vienna (Austria); Mallek, R.; Heimberger, K. [Division of Neuroradiology, University of Vienna (Austria); Hittmair, K. [Department of Radiology, University of Vienna (Austria)]|[Department of Radiology, AKH Linz (Austria)

    1998-03-27

    The aim of our study was to compare gradient-spin-echo (GRASE) to fast-spin-echo (FSE) sequences for fast T2-weighted MR imaging of the brain. Thirty-one patients with high-signal-intensity lesions on T2-weighted images were examined on a 1.5-T MR system. The FSE and GRASE sequences with identical sequence parameters were obtained and compared side by side. Image assessment criteria included lesion conspicuity, contrast between different types of normal tissue, and image artifacts. In addition, signal-to-noise, contrast-to-noise, and contrast ratios and were determined. The FSE technique demonstrated more lesions than GRASE and with generally better conspicuity. Smaller lesions in particular were better demonstrated on FSE because of lower image noise and slightly weaker image artifacts. Gray-white differentiation was better on FSE. Ferritin and hemosiderin depositions appeared darker on GRASE, which resulted in better contrast. Fatty tissue was less bright on GRASE. With current standard hardware equipment, the FSE technique seems preferable to GRASE for fast T2-weighted routine MR imaging of the brain. For the assessment of hemosiderin or ferritin depositions, GRASE might be considered. (orig.) With 3 figs., 4 tabs., 29 refs.

  13. MR Brain Image Segmentation: A Framework to Compare Different Clustering Techniques

    OpenAIRE

    Laura Caponetti; Giovanna Castellano; Vito Corsini

    2017-01-01

    In Magnetic Resonance (MR) brain image analysis, segmentation is commonly used for detecting, measuring and analyzing the main anatomical structures of the brain and eventually identifying pathological regions. Brain image segmentation is of fundamental importance since it helps clinicians and researchers to concentrate on specific regions of the brain in order to analyze them. However, segmentation of brain images is a difficult task due to high similarities and correlations of intensity amo...

  14. [Getting an insight into the brain - new optical clearing techniques and imaging using light-sheet microscope].

    Science.gov (United States)

    Pawłowska, Monika; Legutko, Diana; Stefaniuk, Marzena

    2017-01-01

    One of the biggest challenges in neuroscience is to understand how brain operates. For this, it would be the best to image the whole brain with at least cellular resolution, preserving the three-dimensional structure in order to capture the connections between different areas. Most currently available high-resolution imaging techniques are based on preparing thin brain sections that are next photographed one by one and subsequently bigger structures are reconstructed. These techniques are laborious and create artifacts. Recent optical clearing methods allow to obtain literally transparent brains that can be imaged using light-sheet microscope. The present review summarizes the most popular optical clearing techniques, describing their different mechanisms and comparing advantages and disadvantages of different approaches, and presents the principle of light-sheet microscopy and its use in imaging. Finally, it gives examples of application of optical tissue clearing and light-sheet imaging in neuroscience and beyond it.

  15. Robust biological parametric mapping: an improved technique for multimodal brain image analysis

    Science.gov (United States)

    Yang, Xue; Beason-Held, Lori; Resnick, Susan M.; Landman, Bennett A.

    2011-03-01

    Mapping the quantitative relationship between structure and function in the human brain is an important and challenging problem. Numerous volumetric, surface, region of interest and voxelwise image processing techniques have been developed to statistically assess potential correlations between imaging and non-imaging metrics. Recently, biological parametric mapping has extended the widely popular statistical parametric approach to enable application of the general linear model to multiple image modalities (both for regressors and regressands) along with scalar valued observations. This approach offers great promise for direct, voxelwise assessment of structural and functional relationships with multiple imaging modalities. However, as presented, the biological parametric mapping approach is not robust to outliers and may lead to invalid inferences (e.g., artifactual low p-values) due to slight mis-registration or variation in anatomy between subjects. To enable widespread application of this approach, we introduce robust regression and robust inference in the neuroimaging context of application of the general linear model. Through simulation and empirical studies, we demonstrate that our robust approach reduces sensitivity to outliers without substantial degradation in power. The robust approach and associated software package provides a reliable way to quantitatively assess voxelwise correlations between structural and functional neuroimaging modalities.

  16. P300 analysis techniques in cognitive impairment after brain injury : Comparison with neuropsychological and imaging data

    NARCIS (Netherlands)

    Elting, Jan Willem; Maurits, Natasha; van Weerden, Tom; Spikman, Joke; De Keyser, Jacques; van der Naalt, Joukje

    2008-01-01

    Primary objective: To compare P300 source analysis with conventional analysis in patients with cognitive impairment after brain injury. Methods and procedures: P300 results were compared with neuropsychological test data and imaging data in 21 healthy control subjects and 33 patients with brain

  17. Brain connectivity study of joint attention using frequency-domain optical imaging technique

    Science.gov (United States)

    Chaudhary, Ujwal; Zhu, Banghe; Godavarty, Anuradha

    2010-02-01

    Autism is a socio-communication brain development disorder. It is marked by degeneration in the ability to respond to joint attention skill task, from as early as 12 to 18 months of age. This trait is used to distinguish autistic from nonautistic populations. In this study, diffuse optical imaging is being used to study brain connectivity for the first time in response to joint attention experience in normal adults. The prefrontal region of the brain was non-invasively imaged using a frequency-domain based optical imager. The imaging studies were performed on 11 normal right-handed adults and optical measurements were acquired in response to joint-attention based video clips. While the intensity-based optical data provides information about the hemodynamic response of the underlying neural process, the time-dependent phase-based optical data has the potential to explicate the directional information on the activation of the brain. Thus brain connectivity studies are performed by computing covariance/correlations between spatial units using this frequency-domain based optical measurements. The preliminary results indicate that the extent of synchrony and directional variation in the pattern of activation varies in the left and right frontal cortex. The results have significant implication for research in neural pathways associated with autism that can be mapped using diffuse optical imaging tools in the future.

  18. THE STUDY OF THE BRAIN IN A PATIENT WITH TYPE 1 DIABETES MELLITUS USING TECHNIQUES OF MAGNETIC RESONANCE IMAGING

    Directory of Open Access Journals (Sweden)

    Yu. G. Samoylova

    2015-01-01

    Full Text Available Type 1 diabetes mellitus (T1DM is now widely distributed worldwide and in theRussian Federation, it is an important medical and social problem in connection with the development of serious, disabling complications. Some of these complications could make changes in the brain which are accompanied by cognitive impairments that decrease quality of life and worsening disease compensation. The diagnosis of these disorders to date, possible by using modern methods of magnetic resonance imaging, which describe not only the morphological changes of the brain, but also the metabolism of nervous tissue. The study of the brain, namely structural and metabolic manifestations of diabetes, is one of the priority problem of modern medical science.The aim of the study was to evaluate dynamics in the different techniques of magnetic resonance imaging in the diagnosis of brain changes in patients with T1DM.Research methods included physical examination, in accordance with the diagnostic algorithm of patients with T1DM, a neurologist consultation, an assessment of cognitive function, analysis of brain changes using standard magnetic resonance imaging and spectroscopy. Statistical processing was performed using software package R-system. This publication presents a clinical case of a patient with T1DM and severe cognitive impairments are associated with changes in the brain, diagnosed using standard magnetic resonance imaging and spectroscopy. The study shows the positive role of correction of carbohydrate metabolism in improving cognitive function in a patient with T1DM.In addition, the process analysis revealed the absence of dynamic changes in the brain of a patient with T1DM according to standard magnetic resonance imaging. This required the use of additional techniques – magnetic resonance spectroscopy, which revealed changes of metabolism in the thalamus N-acetyl aspartate, choline and creatinine.

  19. Automated brain tumor segmentation in magnetic resonance imaging based on sliding-window technique and symmetry analysis.

    Science.gov (United States)

    Lian, Yanyun; Song, Zhijian

    2014-01-01

    Brain tumor segmentation from magnetic resonance imaging (MRI) is an important step toward surgical planning, treatment planning, monitoring of therapy. However, manual tumor segmentation commonly used in clinic is time-consuming and challenging, and none of the existed automated methods are highly robust, reliable and efficient in clinic application. An accurate and automated tumor segmentation method has been developed for brain tumor segmentation that will provide reproducible and objective results close to manual segmentation results. Based on the symmetry of human brain, we employed sliding-window technique and correlation coefficient to locate the tumor position. At first, the image to be segmented was normalized, rotated, denoised, and bisected. Subsequently, through vertical and horizontal sliding-windows technique in turn, that is, two windows in the left and the right part of brain image moving simultaneously pixel by pixel in two parts of brain image, along with calculating of correlation coefficient of two windows, two windows with minimal correlation coefficient were obtained, and the window with bigger average gray value is the location of tumor and the pixel with biggest gray value is the locating point of tumor. At last, the segmentation threshold was decided by the average gray value of the pixels in the square with center at the locating point and 10 pixels of side length, and threshold segmentation and morphological operations were used to acquire the final tumor region. The method was evaluated on 3D FSPGR brain MR images of 10 patients. As a result, the average ratio of correct location was 93.4% for 575 slices containing tumor, the average Dice similarity coefficient was 0.77 for one scan, and the average time spent on one scan was 40 seconds. An fully automated, simple and efficient segmentation method for brain tumor is proposed and promising for future clinic use. Correlation coefficient is a new and effective feature for tumor location.

  20. Quantitative Analysis of Diffusion Weighted MR Images of Brain Tumor Using Signal Intensity Gradient Technique

    Directory of Open Access Journals (Sweden)

    S. S. Shanbhag

    2014-01-01

    Full Text Available The purpose of this study was to evaluate the role of diffusion weighted-magnetic resonance imaging (DW-MRI in the examination and classification of brain tumors, namely, glioma and meningioma. Our hypothesis was that as signal intensity variations on diffusion weighted (DW images depend on histology and cellularity of the tumor, analysing the signal intensity characteristics on DW images may allow differentiating between the tumor types. Towards this end the signal intensity variations on DW images of the entire tumor volume data of 20 subjects with glioma and 12 subjects with meningioma were investigated and quantified using signal intensity gradient (SIG parameter. The relative increase in the SIG values (RSIG for the subjects with glioma and meningioma was in the range of 10.08–28.36 times and 5.60–9.86 times, respectively, compared to their corresponding SIG values on the contralateral hemisphere. The RSIG values were significantly different between the subjects with glioma and meningioma (P<0.01, with no overlap between RSIG values across the two tumors. The results indicate that the quantitative changes in the RSIG values could be applied in the differential diagnosis of glioma and meningioma, and their adoption in clinical diagnosis and treatment could be helpful and informative.

  1. Dynamic multi-coil technique (DYNAMITE) shimming for echo-planar imaging of the human brain at 7 Tesla.

    Science.gov (United States)

    Juchem, Christoph; Umesh Rudrapatna, S; Nixon, Terence W; de Graaf, Robin A

    2015-01-15

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large-scale brain connectivity

  2. Dynamic Multi-Coil Technique (DYNAMITE) Shimming for Echo-Planar Imaging of the Human Brain at 7 Tesla

    Science.gov (United States)

    Juchem, Christoph; Rudrapatna, S. Umesh; Nixon, Terence W.; de Graaf, Robin A.

    2014-01-01

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (Juchem et al., J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13 Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8 mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3 mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large

  3. Functional Brain Imaging: A Comprehensive Survey

    CERN Document Server

    Sarraf, Saman

    2016-01-01

    Functional brain imaging allows measuring dynamic functionality in all brain regions. It is broadly used in clinical cognitive neuroscience as, well as in research. It will allow the observation of neural activities in the brain simultaneously. From the beginning when functional brain imaging was initiated by the mapping of brain functions proposed by phrenologists, many scientists were asking why we need to image brain functionality since we have already structural information. Simply, their important question was including a great answer. Functional information of the human brain would definitely complement structural information, helping to have a better understanding of what is happening in the brain. This paper, which could be useful to those who have an interest in functional brain imaging, such as engineers, will present a quick review of modalities used in functional brain imaging. We will concentrate on the most used techniques in functional imaging which are functional magnetic resonance imaging (fM...

  4. Pedunculopontine Nucleus Region Deep Brain Stimulation in Parkinson Disease: Surgical Techniques, Side Effects, and Postoperative Imaging

    NARCIS (Netherlands)

    Hamani, C.; Lozano, A.M.; Mazzone, P.A.; Moro, E.; Hutchison, W.; Silburn, P.A.; Zrinzo, L.; Alam, M.; Goetz, L.; Pereira, E.; Rughani, A.; Thevathasan, W.; Aziz, T.; Bloem, B.R.; Brown, P.; Chabardes, S.; Coyne, T.; Foote, K.; Garcia-Rill, E.; Hirsch, E.C.; Okun, M.S.; Krauss, J.K.

    2016-01-01

    The pedunculopontine nucleus (PPN) region has received considerable attention in clinical studies as a target for deep brain stimulation (DBS) in Parkinson disease. These studies have yielded variable results with an overall impression of improvement in falls and freezing in many but not all

  5. Comparison of iterative model, hybrid iterative, and filtered back projection reconstruction techniques in low-dose brain CT: impact of thin-slice imaging.

    Science.gov (United States)

    Nakaura, Takeshi; Iyama, Yuji; Kidoh, Masafumi; Yokoyama, Koichi; Oda, Seitaro; Tokuyasu, Shinichi; Harada, Kazunori; Yamashita, Yasuyuki

    2016-03-01

    The purpose of this study was to evaluate the utility of iterative model reconstruction (IMR) in brain CT especially with thin-slice images. This prospective study received institutional review board approval, and prior informed consent to participate was obtained from all patients. We enrolled 34 patients who underwent brain CT and reconstructed axial images with filtered back projection (FBP), hybrid iterative reconstruction (HIR) and IMR with 1 and 5 mm slice thicknesses. The CT number, image noise, contrast, and contrast noise ratio (CNR) between the thalamus and internal capsule, and the rate of increase of image noise in 1 and 5 mm thickness images between the reconstruction methods, were assessed. Two independent radiologists assessed image contrast, image noise, image sharpness, and overall image quality on a 4-point scale. The CNRs in 1 and 5 mm slice thickness were significantly higher with IMR (1.2 ± 0.6 and 2.2 ± 0.8, respectively) than with FBP (0.4 ± 0.3 and 1.0 ± 0.4, respectively) and HIR (0.5 ± 0.3 and 1.2 ± 0.4, respectively) (p reconstruction techniques. IMR offers significant noise reduction and higher contrast and CNR in brain CT, especially for thin-slice images, when compared to FBP and HIR.

  6. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...

  7. Novel techniques with multiphoton microscopy: Deep-brain imaging with microprisms, neurometabolism of epilepsy, and counterfeit paper money detection

    Science.gov (United States)

    Chia, Thomas H.

    Multiphoton microscopy is a laser-scanning fluorescence imaging method with extraordinary potential. We describe three innovative multiphoton microscopy techniques across various disciplines. Traditional in vivo fluorescence microscopy of the mammalian brain has a limited penetration depth (epilepsy. Results indicated significant changes in the neurometabolism of astrocytes and neuropil in the cell and dendritic layers of the hippocampus when compared to control tissue. Data obtained with NADH FLIM were subsequently interpreted based on the abnormal activity reported in epileptic tissue. Genuine U.S. Federal Reserve Notes have a consistent, two-component intrinsic fluorescence lifetime. This allows for detection of counterfeit paper money because of its significant differences in fluorescence lifetime when compared to genuine paper money. We used scanning multiphoton laser excitation to sample a ˜4 mm2 region from 54 genuine Reserve Notes. Three types of counterfeit samples were tested. Four out of the nine counterfeit samples fit to a one-component decay. Five out of nine counterfeit samples fit to a two-component model, but are identified as counterfeit due to significant deviations in the longer lifetime component compared to genuine bills.

  8. Live cell imaging techniques to study T cell trafficking across the blood-brain barrier in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Coisne Caroline

    2013-01-01

    Full Text Available Abstract Background The central nervous system (CNS is an immunologically privileged site to which access for circulating immune cells is tightly controlled by the endothelial blood–brain barrier (BBB located in CNS microvessels. Under physiological conditions immune cell migration across the BBB is low. However, in neuroinflammatory diseases such as multiple sclerosis, many immune cells can cross the BBB and cause neurological symptoms. Extravasation of circulating immune cells is a multi-step process that is regulated by the sequential interaction of different adhesion and signaling molecules on the immune cells and on the endothelium. The specialized barrier characteristics of the BBB, therefore, imply the existence of unique mechanisms for immune cell migration across the BBB. Methods and design An in vitro mouse BBB model maintaining physiological barrier characteristics in a flow chamber and combined with high magnification live cell imaging, has been established. This model enables the molecular mechanisms involved in the multi-step extravasation of T cells across the in vitro BBB, to be defined with high-throughput analyses. Subsequently these mechanisms have been verified in vivo using a limited number of experimental animals and a spinal cord window surgical technique. The window enables live observation of the dynamic interaction between T cells and spinal cord microvessels under physiological and pathological conditions using real time epifluorescence intravital imaging. These in vitro and in vivo live cell imaging methods have shown that the BBB endothelium possesses unique and specialized mechanisms involved in the multi-step T cell migration across this endothelial barrier under physiological flow. The initial T cell interaction with the endothelium is either mediated by T cell capture or by T cell rolling. Arrest follows, and then T cells polarize and especially CD4+ T cells crawl over long distances against the direction of

  9. Comparison of iterative model, hybrid iterative, and filtered back projection reconstruction techniques in low-dose brain CT: impact of thin-slice imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakaura, Takeshi; Iyama, Yuji; Kidoh, Masafumi; Yokoyama, Koichi [Amakusa Medical Center, Diagnostic Radiology, Amakusa, Kumamoto (Japan); Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Oda, Seitaro; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Tokuyasu, Shinichi [Philips Electronics, Kumamoto (Japan); Harada, Kazunori [Amakusa Medical Center, Department of Surgery, Kumamoto (Japan)

    2016-03-15

    The purpose of this study was to evaluate the utility of iterative model reconstruction (IMR) in brain CT especially with thin-slice images. This prospective study received institutional review board approval, and prior informed consent to participate was obtained from all patients. We enrolled 34 patients who underwent brain CT and reconstructed axial images with filtered back projection (FBP), hybrid iterative reconstruction (HIR) and IMR with 1 and 5 mm slice thicknesses. The CT number, image noise, contrast, and contrast noise ratio (CNR) between the thalamus and internal capsule, and the rate of increase of image noise in 1 and 5 mm thickness images between the reconstruction methods, were assessed. Two independent radiologists assessed image contrast, image noise, image sharpness, and overall image quality on a 4-point scale. The CNRs in 1 and 5 mm slice thickness were significantly higher with IMR (1.2 ± 0.6 and 2.2 ± 0.8, respectively) than with FBP (0.4 ± 0.3 and 1.0 ± 0.4, respectively) and HIR (0.5 ± 0.3 and 1.2 ± 0.4, respectively) (p < 0.01). The mean rate of increasing noise from 5 to 1 mm thickness images was significantly lower with IMR (1.7 ± 0.3) than with FBP (2.3 ± 0.3) and HIR (2.3 ± 0.4) (p < 0.01). There were no significant differences in qualitative analysis of unfamiliar image texture between the reconstruction techniques. IMR offers significant noise reduction and higher contrast and CNR in brain CT, especially for thin-slice images, when compared to FBP and HIR. (orig.)

  10. Brain Image Motion Correction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus

    2015-01-01

    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  11. Minireview of Stereoselective Brain Imaging

    DEFF Research Database (Denmark)

    Smith, Donald F.; Jakobsen, Steen

    2014-01-01

    Stereoselectivity is a fundamental principle in living systems. Stereoselectivity reflects the dependence of molecular processes on the spatial orientation of constituent atoms. Stereoselective processes govern many aspects of brain function and direct the course of many psychotropic drugs. Today......, modern imaging techniques such as SPECT and PET provide a means for studying stereoselective processes in the living brain. Chemists have prepared numerous radiolabelled stereoisomers for use in SPECT and PET in order to explore various molecular processes in the living brain of anesthetized laboratory...... animals and awake humans. The studies have demonstrated how many aspects of neurotransmission consist of crucial stereoselective events that can affect brain function in health and disease. Here, we present a brief account of those findings in hope of stimulating further interest in the vital topic....

  12. Brain hypoxia imaging

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ho Chun [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-04-15

    The measurement of pathologically low levels of tissue pO{sub 2} is an important diagnostic goal for determining the prognosis of many clinically important diseases including cardiovascular insufficiency, stroke and cancer. The target tissues nowadays have mostly been tumors or the myocardium, with less attention centered on the brain. Radiolabelled nitroimidazole or derivatives may be useful in identifying the hypoxic cells in cerebrovascular disease or traumatic brain injury, and hypoxic-ischemic encephalopathy. In acute stroke, the target of therapy is the severely hypoxic but salvageable tissue. {sup 18}F-MISO PET and {sup 99m}Tc-EC-metronidazole SPECT in patients with acute ischemic stroke identified hypoxic tissues and ischemic penumbra, and predicted its outcome. A study using {sup 123}I-IAZA in patient with closed head injury detected the hypoxic tissues after head injury. Up till now these radiopharmaceuticals have drawbacks due to its relatively low concentration with hypoxic tissues associated with/without low blood-brain barrier permeability and the necessity to wait a long time to achieve acceptable target to background ratios for imaging in acute ischemic stroke. It is needed to develop new hypoxic marker exhibiting more rapid localization in the hypoxic region in the brain. And then, the hypoxic brain imaging with imidazoles or non-imidazoles may be very useful in detecting the hypoxic tissues, determining therapeutic strategies and developing therapeutic drugs in several neurological disease, especially, in acute ischemic stroke.

  13. Brain Friendly Techniques: Mind Mapping

    Science.gov (United States)

    Goldberg, Cristine

    2004-01-01

    Mind Mapping can be called the Swiss Army Knife for the brain, a total visual thinking tool or a multi-handed thought catcher. Invented by Tony Buzan in the early 1970s and used by millions around the world, it is a method that can be a part of a techniques repertoire when teaching information literacy, planning, presenting, thinking, and so…

  14. Brain imaging and autism

    Energy Technology Data Exchange (ETDEWEB)

    Zilbovicius, M. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), INSERM CEA 0205, 91 - Orsay (France)

    2006-07-01

    Autism is a neuro-developmental disorder with a range of clinical presentations, from mild to severe, referred to as autism spectrum disorders (ASD). The most common clinical ASD sign is social interaction impairment, which is associated with verbal and non-verbal communication deficits and stereotyped and obsessive behaviors. Thanks to recent brain imaging studies, scientists are getting a better idea of the neural circuits involved in ASD. Indeed, functional brain imaging, such as positron emission tomography (PET), single positron emission tomograph y (SPECT) and functional MRI (fMRI) have opened a new perspective to study normal and pathological brain functions. Three independent studies have found anatomical and rest functional temporal abnormalities. These anomalies are localized in the superior temporal sulcus bilaterally which are critical for perception of key social stimuli. In addition, functional studies have shown hypo-activation of most areas implicated in social perception (face and voice perception) and social cognition (theory of mind). These data suggest an abnormal functioning of the social brain network. The understanding of such crucial abnormal mechanism may drive the elaboration of new and more adequate social re-educative strategies in autism. (author)

  15. Imaging the Addicted Brain: Alcohol.

    Science.gov (United States)

    Dupuy, M; Chanraud, S

    2016-01-01

    Alcohol use disorder (AUD) represents a major public health issue due to its prevalence and severe health consequences. It may affect several aspects of an individual's life including work and relationships, and it also increases risk for additional problems such as brain injury. The causes and outcomes of AUD are varied; thus, attempting to understand this complex phenomenon requires investigation from multiple perspectives. Magnetic resonance imaging (MRI) is a powerful means to investigate brain anatomical and functional alterations related to AUD. Recent advances in MRI methods allow better investigation of the alterations to structural and functional brain networks in AUD. Here, we focus on findings from studies using multiple MRI techniques, which converge to support the considerable vulnerability of frontal systems. Indeed, MRI studies provide evidence for a "disconnection syndrome" which could be involved in the poor behavioral control observed in AUD. © 2016 Elsevier Inc. All rights reserved.

  16. Scalp imaging techniques

    Science.gov (United States)

    Otberg, Nina; Shapiro, Jerry; Lui, Harvey; Wu, Wen-Yu; Alzolibani, Abdullateef; Kang, Hoon; Richter, Heike; Lademann, Jürgen

    2017-05-01

    Scalp imaging techniques are necessary tools for the trichological practice and for visualization of permeation, penetration and absorption processes into and through the scalp and for the research on drug delivery and toxicology. The present letter reviews different scalp imaging techniques and discusses their utility. Moreover, two different studies on scalp imaging techniques are presented in this letter: (1) scalp imaging with phototrichograms in combination with laser scanning microscopy, and (2) follicular measurements with cyanoacrylate surface replicas and light microscopy in combination with laser scanning microscopy. The experiments compare different methods for the determination of hair density on the scalp and different follicular measures. An average terminal hair density of 132 hairs cm-2 was found in 6 Caucasian volunteers and 135 hairs cm-2 in 6 Asian volunteers. The area of the follicular orifices accounts to 16.3% of the skin surface on average measured with laser scanning microscopy images. The potential volume of the follicular infundibulum was calculated based on the laser scanning measurements and is found to be 4.63 mm3 per cm2 skin on average. The experiments show that hair follicles are quantitatively relevant pathways and potential reservoirs for topically applied drugs and cosmetics.

  17. Contrast-enhanced T1-weighted fluid-attenuated inversion-recovery BLADE magnetic resonance imaging of the brain: an alternative to spin-echo technique for detection of brain lesions in the unsedated pediatric patient?

    Science.gov (United States)

    Alibek, Sedat; Adamietz, Boris; Cavallaro, Alexander; Stemmer, Alto; Anders, Katharina; Kramer, Manuel; Bautz, Werner; Staatz, Gundula

    2008-08-01

    We compared contrast-enhanced T1-weighted magnetic resonance (MR) imaging of the brain using different types of data acquisition techniques: periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER, BLADE) imaging versus standard k-space sampling (conventional spin-echo pulse sequence) in the unsedated pediatric patient with focus on artifact reduction, overall image quality, and lesion detectability. Forty-eight pediatric patients (aged 3 months to 18 years) were scanned with a clinical 1.5-T whole body MR scanner. Cross-sectional contrast-enhanced T1-weighted spin-echo sequence was compared to a T1-weighted dark-fluid fluid-attenuated inversion-recovery (FLAIR) BLADE sequence for qualitative and quantitative criteria (image artifacts, image quality, lesion detectability) by two experienced radiologists. Imaging protocols were matched for imaging parameters. Reader agreement was assessed using the exact Bowker test. BLADE images showed significantly less pulsation and motion artifacts than the standard T1-weighted spin-echo sequence scan. BLADE images showed statistically significant lower signal-to-noise ratio but higher contrast-to-noise ratios with superior gray-white matter contrast. All lesions were demonstrated on FLAIR BLADE imaging, and one false-positive lesion was visible in spin-echo sequence images. BLADE MR imaging at 1.5 T is applicable for central nervous system imaging of the unsedated pediatric patient, reduces motion and pulsation artifacts, and minimizes the need for sedation or general anesthesia without loss of relevant diagnostic information.

  18. Pediatric brain MRI. Pt. 1. Basic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Mai-Lan; Campeau, Norbert G.; Welker, Kirk M. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Ngo, Thang D. [Nemours Children' s Hospital, Department of Radiology, Orlando, FL (United States); Udayasankar, Unni K. [University of Arizona, Department of Radiology, Tucson, AZ (United States)

    2017-05-15

    Pediatric neuroimaging is a complex and specialized field that uses magnetic resonance (MR) imaging as the workhorse for diagnosis. Standard MR techniques used in adult neuroimaging are suboptimal for imaging in pediatrics because there are significant differences in the child's developing brain. These differences include size, myelination and sulcation. MR protocols need to be tailored to the specific indication and reviewed by the supervising radiologist in real time, and the specialized needs of this population require careful consideration of issues such as scan timing, sequence order, sedation, anesthesia and gadolinium administration. In part 1 of this review, we focus on basic protocol development and anatomical characterization. We provide multiple imaging examples optimized for evaluation of supratentorial and infratentorial brain, midline structures, head and neck, and intracranial vasculature. (orig.)

  19. Imaging brain development: the adolescent brain.

    Science.gov (United States)

    Blakemore, Sarah-Jayne

    2012-06-01

    The past 15 years have seen a rapid expansion in the number of studies using neuroimaging techniques to investigate maturational changes in the human brain. In this paper, I review MRI studies on structural changes in the developing brain, and fMRI studies on functional changes in the social brain during adolescence. Both MRI and fMRI studies point to adolescence as a period of continued neural development. In the final section, I discuss a number of areas of research that are just beginning and may be the subject of developmental neuroimaging in the next twenty years. Future studies might focus on complex questions including the development of functional connectivity; how gender and puberty influence adolescent brain development; the effects of genes, environment and culture on the adolescent brain; development of the atypical adolescent brain; and implications for policy of the study of the adolescent brain. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Brain imaging and schizophrenia. Imagerie cerebrale et schizophrenie

    Energy Technology Data Exchange (ETDEWEB)

    Martinot, J.L. (Hopital de Bicetre, 94 - Le Kremlin-Bicetre (FR)); Dao-Castellana, M.H. (CEA, 91 - Orsay (FR). Service Hospitalier Frederic Joliot)

    1991-03-01

    Brain structures and brain function have been investigated by the new brain imaging techniques for more than ten years. In Psychiatry, these techniques could afford a new understanding of mental diseases. In schizophrenic patients, CAT scanner and RMI pointed out statistically significant ventricular enlargments which are presently considered as evidence for abnormalities in brain maturation. Functional imaging techniques reported metabolic dysfunctions in the cortical associative areas which are probably linked to the cognitive features of schizophrenics.

  1. Brain tumor (image)

    Science.gov (United States)

    Brain tumors are classified depending on the exact site of the tumor, the type of tissue involved, benign ... tendencies of the tumor, and other factors. Primary brain tumors can arise from the brain cells, the meninges ( ...

  2. Psoriatic arthritis: imaging techniques

    Directory of Open Access Journals (Sweden)

    E. Lubrano

    2012-06-01

    Full Text Available Imaging techniques to assess psoriatic arthritis (PsA include radiography, ultrasonography (US, magnetic resonance imaging (MRI, computed tomography (CT and bone scintigraphy. The radiographic hallmark of PsA is the combination of destructive changes (joint erosions, tuft resorption, osteolysis with bone proliferation (including periarticular and shaft periostitis, ankylosis, spur formation and non-marginal syndesmophytes. US has an increasing important role in the evaluation of PsA. In fact, power Doppler US is useful mainly for its ability to assess musculoskeletal (joints, tendons, entheses and cutaneous (skin and nails involvement, to monitor efficacy of therapy and to guide steroid injections at the level of inflamed joints, tendon sheaths and entheses. MRI allows direct visualization of inflammation in peripheral and axial joints, and peripheral and axial entheses, and has dramatically improved the possibilities for early diagnosis and objective monitoring of the disease process in PsA. MRI has allowed explaining the relationships among enthesitis, synovitis and osteitis in PsA, supporting a SpA pattern of inflammation where enthesitis is the primary target of inflammation. CT has little role in assessment of peripheral joints, but it may be useful in assessing elements of spine disease. CT accuracy is similar to MRI in assessment of erosions in sacroiliac joint involvement, but CT is not as effective in detecting synovial inflammation. Bone scintigraphy lacks specificity and is now supplanted with US and MRI techniques.

  3. Brain's tumor image processing using shearlet transform

    Science.gov (United States)

    Cadena, Luis; Espinosa, Nikolai; Cadena, Franklin; Korneeva, Anna; Kruglyakov, Alexey; Legalov, Alexander; Romanenko, Alexey; Zotin, Alexander

    2017-09-01

    Brain tumor detection is well known research area for medical and computer scientists. In last decades there has been much research done on tumor detection, segmentation, and classification. Medical imaging plays a central role in the diagnosis of brain tumors and nowadays uses methods non-invasive, high-resolution techniques, especially magnetic resonance imaging and computed tomography scans. Edge detection is a fundamental tool in image processing, particularly in the areas of feature detection and feature extraction, which aim at identifying points in a digital image at which the image has discontinuities. Shearlets is the most successful frameworks for the efficient representation of multidimensional data, capturing edges and other anisotropic features which frequently dominate multidimensional phenomena. The paper proposes an improved brain tumor detection method by automatically detecting tumor location in MR images, its features are extracted by new shearlet transform.

  4. Advantages in functional imaging of the brain

    Directory of Open Access Journals (Sweden)

    Walter eMier

    2015-05-01

    Full Text Available As neuronal pathologies cause only minor morphological alterations, molecular imaging techniques are a prerequisite for the study of diseases of the brain. The development of molecular probes that specifically bind biochemical markers and the advances of instrumentation have revolutionized the possibilities to gain insight into the human brain organization and beyond this visualize structure-function and brain-behavior relationships. The review describes the development and current applications of functional brain imaging techniques with a focus on applications in psychiatry. A historical overview of the development of functional imaging is followed by the portrayal of the principles and applications of positron emission tomography (PET and functional magnetic resonance imaging (fMRI, two key molecular imaging techniques that have revolutionized the ability to image molecular processes in the brain. In the juxtaposition of PET and fMRI in hybrid PET/MRI scanners enhances the significance of both modalities for research in neurology and psychiatry and might pave the way for a new area of personalized medicine.

  5. Other imaging techniques.

    Science.gov (United States)

    Isard, H J

    1984-02-01

    Images of the breast can now be produced by five modalities: x-ray, heat, sound, light, and magnetism. X-ray mammography is generally accepted as the most accurate of these in the detection of breast cancer, and the standard by which the others are judged. Despite the obvious attraction of nonionizing techniques, the economic factor attendant on multiple studies requires consideration. Nuclear magnetic resonance (NMR) is currently being investigated in several clinics, but as yet there is no large series of documented cases. This report addresses itself to thermography, ultrasonography and diaphanography (transillumination). The unique characteristics of each and their respective roles in evaluation of the breast, particularly in the detection of breast cancer, will be discussed. When used in conjunction with mammography, potential advantages include: enhanced diagnostic accuracy, reduction of unnecessary surgery, and, in proven cases of breast cancer, prognostic capability. Thus far it has not been demonstrated that any of the nonionizing techniques can serve as a sole screening modality for breast cancer detection in asymptomatic women.

  6. Review of advanced imaging techniques

    OpenAIRE

    Yu Chen; Chia-Pin Liang; Yang Liu; Fischer, Andrew H.; Parwani, Anil V.; Liron Pantanowitz

    2012-01-01

    Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images ("optical biopsies") at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography) are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These...

  7. Modelling Brain Tissue using Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Dyrby, Tim Bjørn

    2008-01-01

    Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking...

  8. Hybrid ultrasound imaging techniques (fusion imaging).

    Science.gov (United States)

    Sandulescu, Daniela Larisa; Dumitrescu, Daniela; Rogoveanu, Ion; Saftoiu, Adrian

    2011-01-07

    Visualization of tumor angiogenesis can facilitate non-invasive evaluation of tumor vascular characteristics to supplement the conventional diagnostic imaging goals of depicting tumor location, size, and morphology. Hybrid imaging techniques combine anatomic [ultrasound, computed tomography (CT), and/or magnetic resonance imaging (MRI)] and molecular (single photon emission CT and positron emission tomography) imaging modalities. One example is real-time virtual sonography, which combines ultrasound (grayscale, colour Doppler, or dynamic contrast harmonic imaging) with contrast-enhanced CT/MRI. The benefits of fusion imaging include an increased diagnostic confidence, direct comparison of the lesions using different imaging modalities, more precise monitoring of interventional procedures, and reduced radiation exposure.

  9. Proton MRS imaging in pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Zarifi, Maria [Aghia Sophia Children' s Hospital, Department of Radiology, Athens (Greece); Tzika, A.A. [Harvard Medical School, Department of Surgery, Massachusetts General Hospital, Boston, MA (United States); Shriners Burn Hospital, Boston, MA (United States)

    2016-06-15

    Magnetic resonance (MR) techniques offer a noninvasive, non-irradiating yet sensitive approach to diagnosing and monitoring pediatric brain tumors. Proton MR spectroscopy (MRS), as an adjunct to MRI, is being more widely applied to monitor the metabolic aspects of brain cancer. In vivo MRS biomarkers represent a promising advance and may influence treatment choice at both initial diagnosis and follow-up, given the inherent difficulties of sequential biopsies to monitor therapeutic response. When combined with anatomical or other types of imaging, MRS provides unique information regarding biochemistry in inoperable brain tumors and can complement neuropathological data, guide biopsies and enhance insight into therapeutic options. The combination of noninvasively acquired prognostic information and the high-resolution anatomical imaging provided by conventional MRI is expected to surpass molecular analysis and DNA microarray gene profiling, both of which, although promising, depend on invasive biopsy. This review focuses on recent data in the field of MRS in children with brain tumors. (orig.)

  10. Role of Hybrid Brain Imaging in Neuropsychiatric Disorders.

    Science.gov (United States)

    Burhan, Amer M; Marlatt, Nicole M; Palaniyappan, Lena; Anazodo, Udunna C; Prato, Frank S

    2015-12-04

    This is a focused review of imaging literature to scope the utility of hybrid brain imaging in neuropsychiatric disorders. The review focuses on brain imaging modalities that utilize hybrid (fusion) techniques to characterize abnormal brain molecular signals in combination with structural and functional changes that have been observed in neuropsychiatric disorders. An overview of clinical hybrid brain imaging technologies for human use is followed by a selective review of the literature that conceptualizes the use of these technologies in understanding basic mechanisms of major neuropsychiatric disorders and their therapeutics. Neuronal network abnormalities are highlighted throughout this review to scope the utility of hybrid imaging as a potential biomarker for each disorder.

  11. Radar rainfall image repair techniques

    OpenAIRE

    Wesson, Stephen M.; Pegram, Geoffrey G. S.

    2004-01-01

    There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological echoes that influence radar data quality) on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing the images in both a computationally fast and accurate manner, and...

  12. Radar rainfall image repair techniques

    OpenAIRE

    Wesson, Stephen M.; Pegram, Geoffrey G. S.

    2004-01-01

    There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological echoes that influence radar data quality) on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing the images in both a computationally fast...

  13. Imaging biomarkers in primary brain tumours

    Energy Technology Data Exchange (ETDEWEB)

    Lopci, Egesta; Chiti, Arturo [Humanitas Clinical and Research Center, Nuclear Medicine Department, Rozzano, MI (Italy); Franzese, Ciro; Navarria, Pierina; Scorsetti, Marta [Humanitas Clinical and Research Center, Radiosurgery and Radiotherapy, Rozzano, MI (Italy); Grimaldi, Marco [Humanitas Clinical and Research Center, Radiology, Rozzano, MI (Italy); Zucali, Paolo Andrea; Simonelli, Matteo [Humanitas Clinical and Research Center, Medical Oncology, Rozzano, MI (Italy); Bello, Lorenzo [Humanitas Clinical and Research Center, Neurosurgery, Rozzano, MI (Italy)

    2015-04-01

    We are getting used to referring to instrumentally detectable biological features in medical language as ''imaging biomarkers''. These two terms combined reflect the evolution of medical imaging during recent decades, and conceptually comprise the principle of noninvasive detection of internal processes that can become targets for supplementary therapeutic strategies. These targets in oncology include those biological pathways that are associated with several tumour features including independence from growth and growth-inhibitory signals, avoidance of apoptosis and immune system control, unlimited potential for replication, self-sufficiency in vascular supply and neoangiogenesis, acquired tissue invasiveness and metastatic diffusion. Concerning brain tumours, there have been major improvements in neurosurgical techniques and radiotherapy planning, and developments of novel target drugs, thus increasing the need for reproducible, noninvasive, quantitative imaging biomarkers. However, in this context, conventional radiological criteria may be inappropriate to determine the best therapeutic option and subsequently to assess response to therapy. Integration of molecular imaging for the evaluation of brain tumours has for this reason become necessary, and an important role in this setting is played by imaging biomarkers in PET and MRI. In the current review, we describe most relevant techniques and biomarkers used for imaging primary brain tumours in clinical practice, and discuss potential future developments from the experimental context. (orig.)

  14. ELSI Priorities for Brain Imaging

    OpenAIRE

    Illes, Judy; De Vries, Raymond; Cho, Mildred K.; Schraedley-Desmond, Pam

    2006-01-01

    As one of the most compelling technologies for imaging the brain, functional MRI (fMRI) produces measurements and persuasive pictures of research subjects making cognitive judgments and even reasoning through difficult moral decisions. Even after centuries of studying the link between brain and behavior, this capability presents a number of novel significant questions. For example, what are the implications of biologizing human experience? How might neuroimaging disrupt the mysteries of human...

  15. Review of advanced imaging techniques.

    Science.gov (United States)

    Chen, Yu; Liang, Chia-Pin; Liu, Yang; Fischer, Andrew H; Parwani, Anil V; Pantanowitz, Liron

    2012-01-01

    Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images ("optical biopsies") at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography) are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy) and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy). This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques.

  16. Review of advanced imaging techniques

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2012-01-01

    Full Text Available Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images ("optical biopsies" at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy. This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques.

  17. Eye Redness Image Processing Techniques

    Science.gov (United States)

    Adnan, M. R. H. Mohd; Zain, Azlan Mohd; Haron, Habibollah; Alwee, Razana; Zulfaezal Che Azemin, Mohd; Osman Ibrahim, Ashraf

    2017-09-01

    The use of photographs for the assessment of ocular conditions has been suggested to further standardize clinical procedures. The selection of the photographs to be used as scale reference images was subjective. Numerous methods have been proposed to assign eye redness scores by computational methods. Image analysis techniques have been investigated over the last 20 years in an attempt to forgo subjective grading scales. Image segmentation is one of the most important and challenging problems in image processing. This paper briefly outlines the comprehensive of image processing and the implementation of image segmentation in eye redness.

  18. Statistical normalization techniques for magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Russell T. Shinohara

    2014-01-01

    Full Text Available While computed tomography and other imaging techniques are measured in absolute units with physical meaning, magnetic resonance images are expressed in arbitrary units that are difficult to interpret and differ between study visits and subjects. Much work in the image processing literature on intensity normalization has focused on histogram matching and other histogram mapping techniques, with little emphasis on normalizing images to have biologically interpretable units. Furthermore, there are no formalized principles or goals for the crucial comparability of image intensities within and across subjects. To address this, we propose a set of criteria necessary for the normalization of images. We further propose simple and robust biologically motivated normalization techniques for multisequence brain imaging that have the same interpretation across acquisitions and satisfy the proposed criteria. We compare the performance of different normalization methods in thousands of images of patients with Alzheimer's disease, hundreds of patients with multiple sclerosis, and hundreds of healthy subjects obtained in several different studies at dozens of imaging centers.

  19. Pediatric brain MRI. Pt. 2. Advanced techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Mai-Lan; Campeau, Norbert G.; Welker, Kirk M. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Ngo, Thang D. [Nemours Children' s Hospital, Department of Radiology, Orlando, FL (United States); Udayasankar, Unni K. [University of Arizona, Department of Radiology, Tucson, AZ (United States)

    2017-05-15

    Pediatric neuroimaging is a complex and specialized field that uses magnetic resonance (MR) imaging as the workhorse for diagnosis. MR protocols should be tailored to the specific indication and reviewed by the supervising radiologist in real time. Targeted advanced imaging sequences can be added to provide information regarding tissue microstructure, perfusion, metabolism and function. In part 2 of this review, we highlight the utility of advanced imaging techniques for superior evaluation of pediatric neurologic disease. We focus on the following techniques, with clinical examples: phase-contrast imaging, perfusion-weighted imaging, vessel wall imaging, diffusion tensor imaging, task-based functional MRI and MR spectroscopy. (orig.)

  20. Automated medical image segmentation techniques

    Directory of Open Access Journals (Sweden)

    Sharma Neeraj

    2010-01-01

    Full Text Available Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT and Magnetic resonance (MR imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits and limitations of methods currently available for segmentation of medical images.

  1. Brain Imaging Findings in Dyslexia

    Directory of Open Access Journals (Sweden)

    Ying-Fang Sun

    2010-04-01

    Full Text Available Dyslexia is a brain-based disorder that has been intensively studied in the Western world for more than a century because of its social burden. However, affected individuals in Chinese communities are neither recognized nor formally diagnosed. Previous studies have concentrated on the disadvantages of reading deficits, and few have addressed non-linguistic skills, which are included in the symptoms. In addition, certain dyslexics possess visual spatial talents that have usually been ignored. In this review, we discuss the available information regarding brain imaging studies of dyslexia based on studies in Caucasian subjects. Gray matter deficits have been demonstrated in dyslexics using structural magnetic resonance imaging. Reduced neural activities in the left temporal and left parietal cortices, and diffuse widespread activation patterns in the cerebellum could be detected using functional magnetic resonance imaging. Changes in lactate levels, N-acetylaspartate/choline-containing compounds and N-acetylaspartate/creatine ratios, and phosphomonoester peak area were detected in magnetic resonance spectroscopy studies. Lower fractional aniso tropy values in bilateral white matter tracts have been demonstrated by diffusion tensor imaging. Abnormal Broca's area activation was found using positron emission tomography imaging. Increased activities in the right frontal and temporal brain regions were detected using electroencephalography. Reduced hemispheric asymmetry and increased left inferior frontal activation were reported following magnetoencephalography. Although these imaging modalities are not currently diagnostic or prognostic, they are able to provide information on the causes of dyslexia beyond what was previously provided by behavioral or cognition studies.

  2. Electromagnetic imaging of dynamic brain activity

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J.; Leahy, R. [University of Southern California, Los Angeles, CA (United States). Dept. of Electrical Engineering; Lewis, P.; Lewine, J.; George, J. [Los Alamos National Lab., NM (United States); Singh, M. [University of Southern California, Los Angeles, CA (United States). Dept. of Radiology

    1991-12-31

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  3. IMAGING THE BRAIN AS SCHIZOPHRENIA DEVELOPS: DYNAMIC & GENETIC BRAIN MAPS.

    Science.gov (United States)

    Thompson, Paul; Rapoport, Judith L; Cannon, Tyrone D; Toga, Arthur W

    2002-01-01

    Schizophrenia is a chronic, debilitating psychiatric disorder that affects 0.2-2% of the population worldwide. Often striking without warning in the late teens or early twenties, its symptoms include auditory and visual hallucinations, psychotic outbreaks, bizarre or disordered thinking, depression and social withdrawal. To combat the disease, new antipsychotic drugs are emerging; these atypical neuroleptics target dopamine and serotonin pathways in the brain, offering increased therapeutic efficacy with fewer side effects. Despite their moderate success in controlling some patients' symptoms, little is known about the causes of schizophrenia, and what triggers the disease. Its peculiar age of onset raises key questions: What physical changes occur in the brain as a patient develops schizophrenia? Do these deficits spread in the brain, and can they be opposed? How do they relate to psychotic symptoms? As risk for the disease is genetically transmitted, do a patient's relatives exhibit similar brain changes? Recent advances in brain imaging and genetics provide exciting insight on these questions. Neuroimaging can now chart the emergence and progression of deficits in the brain, providing an exceptionally sharp scalpel to dissect the effects of genetic risk, environmental triggers, and susceptibility genes. Visualizing the dynamics of the disease, these techniques also offer new strategies to evaluate drugs that combat the unrelenting symptoms of schizophrenia.

  4. Optical Methods and Instrumentation in Brain Imaging and Therapy

    CERN Document Server

    2013-01-01

    This book provides a comprehensive up-to-date review of optical approaches used in brain imaging and therapy. It covers a variety of imaging techniques including diffuse optical imaging, laser speckle imaging, photoacoustic imaging and optical coherence tomography. A number of laser-based therapeutic approaches are reviewed, including photodynamic therapy, fluorescence guided resection and photothermal therapy. Fundamental principles and instrumentation are discussed for each imaging and therapeutic technique. Represents the first publication dedicated solely to optical diagnostics and therapeutics in the brain Provides a comprehensive review of the principles of each imaging/therapeutic modality Reviews the latest advances in instrumentation for optical diagnostics in the brain Discusses new optical-based therapeutic approaches for brain diseases

  5. Magnetic Resonance Imaging (MRI): Brain (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Magnetic Resonance Imaging (MRI): Brain KidsHealth / For Parents / Magnetic Resonance Imaging (MRI): Brain What's in this article? What It ...

  6. Brain Imaging in Alzheimer Disease

    Science.gov (United States)

    Johnson, Keith A.; Fox, Nick C.; Sperling, Reisa A.; Klunk, William E.

    2012-01-01

    Imaging has played a variety of roles in the study of Alzheimer disease (AD) over the past four decades. Initially, computed tomography (CT) and then magnetic resonance imaging (MRI) were used diagnostically to rule out other causes of dementia. More recently, a variety of imaging modalities including structural and functional MRI and positron emission tomography (PET) studies of cerebral metabolism with fluoro-deoxy-d-glucose (FDG) and amyloid tracers such as Pittsburgh Compound-B (PiB) have shown characteristic changes in the brains of patients with AD, and in prodromal and even presymptomatic states that can help rule-in the AD pathophysiological process. No one imaging modality can serve all purposes as each have unique strengths and weaknesses. These modalities and their particular utilities are discussed in this article. The challenge for the future will be to combine imaging biomarkers to most efficiently facilitate diagnosis, disease staging, and, most importantly, development of effective disease-modifying therapies. PMID:22474610

  7. Mechanism of Chronic Pain in Rodent Brain Imaging

    Science.gov (United States)

    Chang, Pei-Ching

    Chronic pain is a significant health problem that greatly impacts the quality of life of individuals and imparts high costs to society. Despite intense research effort in understanding of the mechanism of pain, chronic pain remains a clinical problem that has few effective therapies. The advent of human brain imaging research in recent years has changed the way that chronic pain is viewed. To further extend the use of human brain imaging techniques for better therapies, the adoption of imaging technique onto the animal pain models is essential, in which underlying brain mechanisms can be systematically studied using various combination of imaging and invasive techniques. The general goal of this thesis is to addresses how brain develops and maintains chronic pain in an animal model using fMRI. We demonstrate that nucleus accumbens, the central component of mesolimbic circuitry, is essential in development of chronic pain. To advance our imaging technique, we develop an innovative methodology to carry out fMRI in awake, conscious rat. Using this cutting-edge technique, we show that allodynia is assoicated with shift brain response toward neural circuits associated nucleus accumbens and prefrontal cortex that regulate affective and cognitive component of pain. Taken together, this thesis provides a deeper understanding of how brain mediates pain. It builds on the existing body of knowledge through maximizing the depth of insight into brain imaging of chronic pain.

  8. EDITORIAL: Imaging systems and techniques Imaging systems and techniques

    Science.gov (United States)

    Yang, Wuqiang; Giakos, George; Nikita, Konstantina; Pastorino, Matteo; Karras, Dimitrios

    2009-10-01

    The papers in this special issue focus on providing the state-of-the-art approaches and solutions to some of the most challenging imaging areas, such as the design, development, evaluation and applications of imaging systems, measuring techniques, image processing algorithms and instrumentation, with an ultimate aim of enhancing the measurement accuracy and image quality. This special issue explores the principles, engineering developments and applications of new imaging systems and techniques, and encourages broad discussion of imaging methodologies, shaping the future and identifying emerging trends. The multi-faceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment and technological evolution. There is an urgent need to address new problems, which tend to be either static but complex, or dynamic, e.g. rapidly evolving with time, with many unknowns, and to propose innovative solutions. For instance, the battles against cancer and terror, monitoring of space resources and enhanced awareness, management of natural resources and environmental monitoring are some of the areas that need to be addressed. The complexity of the involved imaging scenarios and demanding design parameters, e.g. speed, signal-to-noise ratio (SNR), specificity, contrast, spatial resolution, scatter rejection, complex background and harsh environments, necessitate the development of a multi-functional, scalable and efficient imaging suite of sensors, solutions driven by innovation, and operation on diverse detection and imaging principles. Efficient medical imaging techniques capable of providing physiological information at the molecular level present another important research area. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, and using high-resolution, high-selectivity nano-imaging methods, quantum dots, nanoparticles, biomarkers, nanostructures, nanosensors, micro-array imaging chips

  9. Introduction to machine learning for brain imaging.

    Science.gov (United States)

    Lemm, Steven; Blankertz, Benjamin; Dickhaus, Thorsten; Müller, Klaus-Robert

    2011-05-15

    Machine learning and pattern recognition algorithms have in the past years developed to become a working horse in brain imaging and the computational neurosciences, as they are instrumental for mining vast amounts of neural data of ever increasing measurement precision and detecting minuscule signals from an overwhelming noise floor. They provide the means to decode and characterize task relevant brain states and to distinguish them from non-informative brain signals. While undoubtedly this machinery has helped to gain novel biological insights, it also holds the danger of potential unintentional abuse. Ideally machine learning techniques should be usable for any non-expert, however, unfortunately they are typically not. Overfitting and other pitfalls may occur and lead to spurious and nonsensical interpretation. The goal of this review is therefore to provide an accessible and clear introduction to the strengths and also the inherent dangers of machine learning usage in the neurosciences. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Groupwise registration of MR brain images with tumors

    Science.gov (United States)

    Tang, Zhenyu; Wu, Yihong; Fan, Yong

    2017-09-01

    A novel groupwise image registration framework is developed for registering MR brain images with tumors. Our method iteratively estimates a normal-appearance counterpart for each tumor image to be registered and constructs a directed graph (digraph) of normal-appearance images to guide the groupwise image registration. Particularly, our method maps each tumor image to its normal appearance counterpart by identifying and inpainting brain tumor regions with intensity information estimated using a low-rank plus sparse matrix decomposition based image representation technique. The estimated normal-appearance images are groupwisely registered to a group center image guided by a digraph of images so that the total length of ‘image registration paths’ to be the minimum, and then the original tumor images are warped to the group center image using the resulting deformation fields. We have evaluated our method based on both simulated and real MR brain tumor images. The registration results were evaluated with overlap measures of corresponding brain regions and average entropy of image intensity information, and Wilcoxon signed rank tests were adopted to compare different methods with respect to their regional overlap measures. Compared with a groupwise image registration method that is applied to normal-appearance images estimated using the traditional low-rank plus sparse matrix decomposition based image inpainting, our method achieved higher image registration accuracy with statistical significance (p  =  7.02  ×  10-9).

  11. Fueling and Imaging Brain Activation

    Directory of Open Access Journals (Sweden)

    Gerald A Dienel

    2012-05-01

    Full Text Available Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models.

  12. Magnetic resonance imaging of the fetal brain.

    Science.gov (United States)

    Tee, L Mf; Kan, E Yl; Cheung, J Cy; Leung, W C

    2016-06-01

    This review covers the recent literature on fetal brain magnetic resonance imaging, with emphasis on techniques, advances, common indications, and safety. We conducted a search of MEDLINE for articles published after 2010. The search terms used were "(fetal OR foetal OR fetus OR foetus) AND (MR OR MRI OR [magnetic resonance]) AND (brain OR cerebral)". Consensus statements from major authorities were also included. As a result, 44 relevant articles were included and formed the basis of this review. One major challenge is fetal motion that is largely overcome by ultra-fast sequences. Currently, single-shot fast spin-echo T2-weighted imaging remains the mainstay for motion resistance and anatomical delineation. Recently, a snap-shot inversion recovery sequence has enabled robust T1-weighted images to be obtained, which is previously a challenge for standard gradient-echo acquisitions. Fetal diffusion-weighted imaging, diffusion tensor imaging, and magnetic resonance spectroscopy are also being developed. With multiplanar capabilities, superior contrast resolution and field of view, magnetic resonance imaging does not have the limitations of sonography, and can provide additional important information. Common indications include ventriculomegaly, callosum and posterior fossa abnormalities, and twin complications. There are safety concerns about magnetic resonance-induced heating and acoustic damage but current literature showed no conclusive evidence of deleterious fetal effects. The American College of Radiology guideline states that pregnant patients can be accepted to undergo magnetic resonance imaging at any stage of pregnancy if risk-benefit ratio to patients warrants that the study be performed. Magnetic resonance imaging of the fetal brain is a safe and powerful adjunct to sonography in prenatal diagnosis. It can provide additional information that aids clinical management, prognostication, and counselling.

  13. Anorectal anatomy and imaging techniques.

    Science.gov (United States)

    Solan, Patrick; Davis, Bradley

    2013-12-01

    The rectum and anus are two anatomically complex organs with diverse pathologies. This article reviews the basic anatomy of the rectum and anus. In addition, it addresses the current radiographic techniques used to evaluate these structures, specifically ultrasound, magnetic resonance imaging, and defecography. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Radar rainfall image repair techniques

    Directory of Open Access Journals (Sweden)

    Stephen M. Wesson

    2004-01-01

    Full Text Available There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological echoes that influence radar data quality on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing the images in both a computationally fast and accurate manner, and are nearest neighbour techniques of two sub-types: Individual Target and Border Tracing. The contaminated data is estimated through Kriging, considered the optimal technique for the spatial interpolation of Gaussian data, where the 'screening effect' that occurs with the Kriging weighting distribution around target points is exploited to ensure computational efficiency. Matrix rank reduction techniques in combination with Singular Value Decomposition (SVD are also suggested for finding an efficient solution to the Kriging Equations which can cope with near singular systems. Rainfall estimation at ground level from radar rainfall volume scan data is of interest and importance in earth bound applications such as hydrology and agriculture. As an extension of the above, Ordinary Kriging is applied to three-dimensional radar rainfall data to estimate rainfall rate at ground level. Keywords: ground clutter, data infilling, Ordinary Kriging, nearest neighbours, Singular Value Decomposition, border tracing, computation time, ground level rainfall estimation

  15. A dedicated neonatal brain imaging system

    Science.gov (United States)

    Winchman, Tobias; Padormo, Francesco; Teixeira, Rui; Wurie, Julia; Sharma, Maryanne; Fox, Matthew; Hutter, Jana; Cordero‐Grande, Lucilio; Price, Anthony N.; Allsop, Joanna; Bueno‐Conde, Jose; Tusor, Nora; Arichi, Tomoki; Edwards, A. D.; Rutherford, Mary A.; Counsell, Serena J.; Hajnal, Joseph V.

    2016-01-01

    Purpose The goal of the Developing Human Connectome Project is to acquire MRI in 1000 neonates to create a dynamic map of human brain connectivity during early development. High‐quality imaging in this cohort without sedation presents a number of technical and practical challenges. Methods We designed a neonatal brain imaging system (NBIS) consisting of a dedicated 32‐channel receive array coil and a positioning device that allows placement of the infant's head deep into the coil for maximum signal‐to‐noise ratio (SNR). Disturbance to the infant was minimized by using an MRI‐compatible trolley to prepare and transport the infant and by employing a slow ramp‐up and continuation of gradient noise during scanning. Scan repeats were minimized by using a restart capability for diffusion MRI and retrospective motion correction. We measured the 1) SNR gain, 2) number of infants with a completed scan protocol, and 3) number of anatomical images with no motion artifact using NBIS compared with using an adult 32‐channel head coil. Results The NBIS has 2.4 times the SNR of the adult coil and 90% protocol completion rate. Conclusion The NBIS allows advanced neonatal brain imaging techniques to be employed in neonatal brain imaging with high protocol completion rates. Magn Reson Med 78:794–804, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. PMID:27643791

  16. A dedicated neonatal brain imaging system.

    Science.gov (United States)

    Hughes, Emer J; Winchman, Tobias; Padormo, Francesco; Teixeira, Rui; Wurie, Julia; Sharma, Maryanne; Fox, Matthew; Hutter, Jana; Cordero-Grande, Lucilio; Price, Anthony N; Allsop, Joanna; Bueno-Conde, Jose; Tusor, Nora; Arichi, Tomoki; Edwards, A D; Rutherford, Mary A; Counsell, Serena J; Hajnal, Joseph V

    2017-08-01

    The goal of the Developing Human Connectome Project is to acquire MRI in 1000 neonates to create a dynamic map of human brain connectivity during early development. High-quality imaging in this cohort without sedation presents a number of technical and practical challenges. We designed a neonatal brain imaging system (NBIS) consisting of a dedicated 32-channel receive array coil and a positioning device that allows placement of the infant's head deep into the coil for maximum signal-to-noise ratio (SNR). Disturbance to the infant was minimized by using an MRI-compatible trolley to prepare and transport the infant and by employing a slow ramp-up and continuation of gradient noise during scanning. Scan repeats were minimized by using a restart capability for diffusion MRI and retrospective motion correction. We measured the 1) SNR gain, 2) number of infants with a completed scan protocol, and 3) number of anatomical images with no motion artifact using NBIS compared with using an adult 32-channel head coil. The NBIS has 2.4 times the SNR of the adult coil and 90% protocol completion rate. The NBIS allows advanced neonatal brain imaging techniques to be employed in neonatal brain imaging with high protocol completion rates. Magn Reson Med 78:794-804, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  17. Functional brain imaging; Funktionelle Hirnbildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Gizewski, E.R. [Medizinische Universitaet Innsbruck, Universitaetsklinik fuer Neuroradiologie, Innsbruck (Austria)

    2016-02-15

    Functional magnetic resonance imaging (fMRI) is a non-invasive method that has become one of the major tools for understanding human brain function and in recent years has also been developed for clinical applications. Changes in hemodynamic signals correspond to changes in neuronal activity with good spatial and temporal resolution in fMRI. Using high-field MR systems and increasingly dedicated statistics and postprocessing, activated brain areas can be detected and superimposed on anatomical images. Currently, fMRI data are often combined in multimodal imaging, e. g. with diffusion tensor imaging (DTI) sequences. This method is helping to further understand the physiology of cognitive brain processes and is also being used in a number of clinical applications. In addition to the blood oxygenation level-dependent (BOLD) signals, this article deals with the construction of fMRI investigations, selection of paradigms and evaluation in the clinical routine. Clinically, this method is mainly used in the planning of brain surgery, analyzing the location of brain tumors in relation to eloquent brain areas and the lateralization of language processing. As the BOLD signal is dependent on the strength of the magnetic field as well as other limitations, an overview of recent developments is given. Increases of magnetic field strength (7 T), available head coils and advances in MRI analytical methods have led to constant improvement in fMRI signals and experimental design. Especially the depiction of eloquent brain regions can be done easily and quickly and has become an essential part of presurgical planning. (orig.) [German] Mittlerweile ist die funktionelle MRT (fMRT) eine Methode, die nicht mehr nur in der neurowissenschaftlichen Routine verwendet wird. Die fMRT ermoeglicht die nichtinvasive Darstellung der Hirnaktivitaet in guter raeumlicher und zeitlicher Aufloesung unter Ausnutzung der Durchblutungsaenderung aufgrund der erhoehten Nervenzellaktivitaet. Unter

  18. Raman Imaging Techniques and Applications

    CERN Document Server

    2012-01-01

    Raman imaging has long been used to probe the chemical nature of a sample, providing information on molecular orientation, symmetry and structure with sub-micron spatial resolution. Recent technical developments have pushed the limits of micro-Raman microscopy, enabling the acquisition of Raman spectra with unprecedented speed, and opening a pathway to fast chemical imaging for many applications from material science and semiconductors to pharmaceutical drug development and cell biology, and even art and forensic science. The promise of tip-enhanced raman spectroscopy (TERS) and near-field techniques is pushing the envelope even further by breaking the limit of diffraction and enabling nano-Raman microscopy.

  19. [Brain imaging of first-episode psychosis].

    Science.gov (United States)

    Jardri, R

    2013-09-01

    In the last decades, schizophrenia has intensively been studied using various brain imaging techniques. However, several potential confounding factors limited their interpretation power (e.g. chronicity, the impact of antipsychotic medication). By considering psychosis as a continuum of changes starting from mild cognitive impairments to serious psychotic symptoms, it became possible to provide deeper insight in the neurobiological mechanisms underlying the onset of psychosis by focusing on at-risk individuals and first-episodes. Recent brain imaging meta-analyses of the first episode psychosis (FEP), noteworthy reported conjoint bilateral structural and functional differences at the level of the insula, the superior temporal gyrus and the medial frontal gyrus, encompassing the anterior cingulate cortex. In the present review, we thus provide an update of brain imaging studies of FEP with a particular emphasis on more recent anatomical, functional and molecular explorations. Specifically, we provide 1) a review of the common features observed in individuals with high risk for psychosis and changes characterizing the transition to psychosis, 2) a description of the environmental and drug factors influencing these abnormalities, 3) how these findings in FEP may differ from those observed in chronic individuals with schizophrenia, and 4) a short overview of new classification algorithms able to use MRI findings as valuable biomarkers to guide early detection in the prodromal phase of psychosis. Copyright © 2013 L’Encéphale. Published by Elsevier Masson SAS.. All rights reserved.

  20. MR imaging of the neonatal brain at 3 Tesla.

    Science.gov (United States)

    Rutherford, Mary; Malamateniou, Christina; Zeka, Julie; Counsell, Serena

    2004-01-01

    3 Telsa MR scanners are now becoming more widely available and 3 Telsa is likely to become the filed strength of choice for clinical imaging of the brain. The neonatal brain can be safely and successfully imaged at 3 Telsa. The improved signal to noise afforded by a higher field strength may be used to improve image quality or shorten acquisition times. This may be exploited for conventional T1 and T2 weighted imaging and also for advanced techniques such as diffusion tensor imaging, angiography and functional magnetic resonance studies.

  1. Susceptibility weighted imaging of the neonatal brain

    Energy Technology Data Exchange (ETDEWEB)

    Meoded, A.; Poretti, A. [Division of Pediatric Radiology and Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Northington, F.J. [Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Tekes, A.; Intrapiromkul, J. [Division of Pediatric Radiology and Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Huisman, T.A.G.M., E-mail: thuisma1@jhmi.edu [Division of Pediatric Radiology and Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD (United States)

    2012-08-15

    Susceptibility weighted imaging (SWI) is a well-established magnetic resonance technique, which is highly sensitive for blood, iron, and calcium depositions in the brain and has been implemented in the routine clinical use in both children and neonates. SWI in neonates might provide valuable additional diagnostic and prognostic information for a wide spectrum of neonatal neurological disorders. To date, there are few articles available on the application of SWI in neonatal neurological disorders. The purpose of this article is to illustrate and describe the characteristic SWI findings in various typical neonatal neurological disorders.

  2. MR fluid-attenuated inversion recovery imaging as routine brain T2-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Arakia, Yutaka; Ashikaga, Ryuichiro; Fujii, Koichi; Nishimura, Yasumasa; Ueda, Jun; Fujita, Norihiko

    1999-11-01

    We tried to investigate if magnetic resonance (MR) fluid-attenuated inversion recovery (FLAIR) imaging can be used as a routine brain screening examination instead of spin-echo T2-weighted imaging. Three hundred and ninety-four patients with clinically suspected brain diseases were randomly selected and examined with both brain MR FLAIR and T2-weighted imaging on the axial plane. These two imaging techniques were evaluated by two neuroradiologists as to which imaging was better for routine brain T2-weighted imaging. In 123 of 394 cases (31%), FLAIR imaging was superior to spin-echo T2-weighted imaging. Especially in cases with inflammatory diseases, traumatic diseases and demyelinating diseases, FLAIR imaging was particularly useful. Small lesions bordering cerebrospinal fluid (CSF) are often detected only by FLAIR imaging. In 259 cases (66%), including 147 normal cases (37%), they were equally evaluated. Only in 12 cases (3%) was conventional T2-weighted imaging superior to FLAIR imaging. Cerebrovascular lesions like cerebral aneurysm and Moyamoya disease could not be detected on FLAIR images because these structures were obscured by a low signal from the CSF. Also, because old infarctions tend to appear as low signal intensity on FLAIR images, the condition was sometimes hard to detect. Finally, FLAIR imaging could be used as routine brain T2-weighted imaging instead of conventional spin-echo T2-weighted imaging if these vascular lesions were watched.

  3. BEaST: brain extraction based on nonlocal segmentation technique

    NARCIS (Netherlands)

    Eskildsen, Simon F.; Coupé, Pierrick; Fonov, Vladimir; Manjón, José V.; Leung, Kelvin K.; Guizard, Nicolas; Wassef, Shafik N.; Østergaard, Lasse Riis; Collins, D. Louis; Saradha, A.; Abdi, Hervé; Abdulkadir, Ahmed; Acharya, Deepa; Achuthan, Anusha; Adluru, Nagesh; Aghajanian, Jania; Agrusti, Antonella; Agyemang, Alex; Ahdidan, Jamila; Ahmad, Duaa; Ahmed, Shiek; Aisen, Paul; Akhondi-Asl, Alireza; Aksu, Yaman; Alberca, Roman; Alcauter, Sarael; Alexander, Daniel; Alin, Aylin; Almeida, Fabio; Alvarez-Linera, Juan; Amlien, Inge; Anand, Shyam; Anderson, Dallas; Ang, Amma; Angersbach, Steve; Ansarian, Reza; Aoyama, Eiji; Appannah, Arti; Arfanakis, Konstantinos; Armor, Tom; Arrighi, Michael; Arumughababu, S. Vethanayaki; Arunagiri, Vidhya; Ashe-McNalley, Cody; Ashford, Wes; Le Page, Aurelie; Avants, Brian; Aviv, Richard; Awasthi, Sukrati; Ayache, Nicholas; Ayan-Oshodi, Mosun; Ayhan, Murat; Sumana, B. V.; Babic, Tomislav; Baek, Young; Bagepally, Bhavani; Baird, Geoffrey; Baker, John; Baker, Suzanne; Bakker, Arnold; Barbash, Shahar; Bard, Jonathan; Barker, Warren; Bartlett, Jonathan; Baruchin, Andrea; Battaglini, Iacopo; Bauer, Corinna; Bayley, Peter; Beck, Irene; Becker, James; Becker, J. Alex; Beckett, Laurel; Bednar, Martin; Bedner, Arkadiusz; Beg, Mirza Faisal; Bekris, Lynn; Belaroussi, Boubakeur; Belloch, Vicente; Belmokhtar, Nabil; Ben Ahmed, Olfa; Bender, J. Dennis; Benois-Pineau, Jenny; Bhaskar, Uday; Bienkowska, Katarzyna; Biffi, Alessandro; Bigler, Erin; Bilgic, Basar; Bishop, Courtney; Bittner, Daniel; Black, Sandra; Bloss, Cinnamon; Bocti, Christian; Bohorquez, Adriana; Bokde, Arun; Boone, John; Boppana, Madhu; Borrie, Michael; Bourgeat, Pierrick; Bouttout, Haroune; Bowes, Mike; Bowman, DuBois; Bowman, Gene; Bracard, Serge; Braskie, Meredith; Braunewell, Karl; Breitner, Joihn; Bresell, Anders; Brewer, James; Brickhouse, Michael; Brickman, Adam; Britschgi, Markus; Broadbent, Steve; Brogren, Jacob; Brunton, Simon; Buchsbaum, Monte; Buckley, Chris; Buerger, Katharina; Bunce, David; Burnham, Samantha; Burns, Jeffrey; Burton, David; Burzykowski, Tomasz; Butler, Tracy; Cabeza, Rafael; Caffery, Terrell; Cairns, Nigel; Callhoff, Johanna; Calvini, Piero; Carbotti, Angela; Carle, Adam; Carmasin, Jeremy; Carmichael, Owen; Carvalho, Janessa; Casabianca, Jodi; Casanova, Ramon; Casey, Anne; Cash, David; Cataldo, Rosella; Cedarbaum, Jesse; Cella, Massimo; Celsis, Pierre; Chakravarty, Mallar; Chang, Ih; Chao, Linda; Charil, Arnaud; Chang, Che-Wei; Chemali, Zeina; Chen, Kewei; Chen, Shuzhong; Chen, Rong; Chen, Qiang; Chen, Jung-Tai; Chen, Gang; Chen, Jake; Chen, Wei; Cheng, Wei-Chen; Cheng, Xi; Cherkas, Yauheniya; Chertkow, Howard; Cheung, Vinci; Cheung, Charlton; Chiang, Gloria; Chiao, Ping; chibane, Mouatez Billah; Chida, Noriko; Chin, Simon; Ching, Christopher; Chisholm, Jane; Cho, Claire; Cho, Youngsang; Choe, John; Choubey, Suresh; Chowbina, Sudhir; Christensen, Anette Luther; Ciocia, Gianluigi; Clark, David; Clark, Chris; Clarkson, Matt; Clerc, Stephanie; Clunie, David; Coen, Michael; Coimbra, Alexandre; Compton, David; Coppola, Giovanni; Coubard, Olivier; Coulin, Samuel; Cover, Keith S.; Crane, Paul; Crans, Gerald; Croop, Robert; Crowther, Daniel; Crum, William; Cui, Yue; Curry, Charles; Cutter, Gary; Da, Long; Daliri, Mohammad Reza; Damato, Vito Domenico; Darby, Eveleen; Darkner, Sune; Davatzikos, Christos; DavidPrakash, Bhaskaran; Davidson, Christopher; Davis, Melissa; de Bruijne, Marleen; de Meyer, Geert; de Nunzio, Giorgio; Decarli, Charles; Dechairo, Bryan; DeDuck, Kristina; Dehghan, Hossein; Delfino, Manuel; Della Rosa, Pasquale Anthony; Dellavedova, Luca; Delpassand, Ebrahim; Delrieu, Julien; DeOrchis, Vincent; Dépy Carron, Delphine; Desjardins, Benoit; deToledo-Morrell, Leyla; Devanand, Davangere; Devanarayan, Viswanath; Devier, Deidre; DeVous, Michael; Dgetluck, Nancy; Di, Jianing; Di, Xin; Diaz-Arrastia, Ramon; Dickerson, Bradford; Dickie, David Alexander; Dill, Vanderson; Ding, Xiaobo; Dinov, Ivo; Dobosh, Brian; Dobson, Howard; Dodge, Hiroko; Dolman, Andrew; Dolmo, Bess-Carolina; Donohue, Michael; Dore, Vincent; Dorflinger, Ernest; Dowling, Maritza; Dragicevic, Natasa; Dubal, Dena; Duchesne, Simon; Duff, Kevin; Dukart, Jürgen; Durazzo, Timothy; Dutta, Joyita; DWors, Robert; Earl, Nancy; Edula, Goutham; Elcoroaristizabal, Xabier; Emahazion, Tesfai; Endres, Christopher; Epstein, Noam; Ereshefsky, Larry; Eskildsen, Simon; Espinosa, Ana; Esposito, Mario; Ewers, Michael; Falcone, Guido; Fan, Yong; Fan, Jing; Fan, Lingzhong; Farahibozorg, Seyedehrezvan; Farb, Norman; Fardo, David; Farias, Sarah; Farnum, Michael; Farrer, Lindsay; Fatke, Bastian; Faux, Noel; Feldman, Howard; Feldman, Susan; Feldman, Betsy; Félix, Zandra; Fennema-Notestine, Christine; Fernandes, Michel; Fernandez, Elsa; Ferreira, Manuel Joao; Ferrer, Eugene; Fetterman, Bob; Figurski, Michal; Fillit, Howard; Finch, Stephen; Fiot, Jean-Baptiste; Flenniken, Derek; Fletcher, Evan; Flores, Christopher; Longmire, Crystal Flynn; Focke, Niels; Forman, Mark; Forsythe, Alan; Fox, Steven; Fox-Bosetti, Sabrina; Foxhall, Suzanne; Franko, Edit; Freeman, Roderick; Friedrich, Christoph M.; Friesenhahn, Michel; Frisoni, Giovanni; Fritzsche, Klaus; Fujimoto, Yoko; Fujiwara, Ken; Fullerton, Terence; Gaffour, Yacine; Galvin, Ben; Gamst, Anthony; Gao, Sujuan; Garg, Gaurav; Gaser, Christian; Gastineau, Edward; Gattaz, Wagner; Gaubert, Malo; Gauthier, Serge; Gavett, Brandon; Ge, Tian; Gemme, Gianluca; Geraci, Joseph; Gholipour, Farhad; Ghosh, Debashis; Ghosh, Satrajit; Gieschke, Ronald; Gill, Ryan; Gillespie, William; Gitelman, Darren; Gkontra, Xenia; Gleason, Carey; Glymour, M. Maria; Godbey, Michael; Gold, Brian; Goldberg, Terry; Goldman, Jennifer; Gonzalez-Beltran, Alejandra; Goodro, Robert; Gore, Chris; Gorriz, Juan Manuel; Goto, Masami; Grachev, Igor; Gradkowski, Wojciech; Grandey, Emily; Grasela, Thaddeus; Gray, Katherine; Greenberg, Barry; Greicius, Michael; Grill, Joshua; Gross, Alden; Gross, Alan; Grydeland, Håkon; Guignot, Isabelle; Guo, Qimiao; Guo, Linag-Hao; Guo, Hongbin; Gupta, Vinay; Guyot, Jennifer; Habeck, Christian; Habte, Frezghi; Haight, Thaddeus; Hajaj, Chen; Hajiesmaeili, Maryam; Hajjar, Ihab; Hammarstrom, Per; Hampel, Harald; Han, Duke; Han, Jian; Han, Zhaoying; Hanna, Yousef; Hao, Yongfu; Hardy, Peter; Harvey, Danielle; Hasan, Md Kamrul; Hayashi, Toshihiro; Haynes, John-Dylan; He, Huiguang; He, Yong; Head, Denise; Heckemann, Rolf; Heegaard, Niels; Heidebrink, Judith; Hellyer, Peter; Helwig, Michael; Henderson, David; Herholz, Karl; Herskovits, A. Zara; Hess, Christopher; Hildenbrand, Maike; Ming, Au Yeung Ho; Hobart, Jeremy; Hochstetler, Helen; Hofer, Scott; Hoffman, John; Holder, Daniel; Hollingworth, Paul; Holmes, Robin; Hong, Quan; Honigberg, Lee; Hope, Thomas; Hoppin, Jack; Hot, Pascal; Hou, Yangyang; Hsieh, Helen; Hsu, Ailing; Hu, Xiaochen; Hu, Mingxing; Hu, William; Hua, Wen-Yu; Huang, Shuai; Huang, Fude; Huang, Zihan; Huang, Chun-Jung; Huang, Chien-Chih; Huang, Juebin; Hubbard, Rebecca; Huentelman, Matthew; Huppertz, Hans-Jürgen; Hurko, Orest; Hurt, Stephen; Hutchins, Jim; Hwang, Scott; Hyun, JungMoon; Ifeachor, Emmanuel; Iglesias, Martina; Ikari, Yasuhiko; Ikonomidou, Vasiliki; Iman, Adjoudj; Imani, Farzin; Immermann, Fred; Inlow, Mark; Inoue, Lurdes; Insel, Philip; Irizarry, Michael; Ishibashi, Taro; Ishii, Kenji; Ismail, Sara; Ito, Kaori; Iturria-Medina, Yasser; Iwatsubo, Takeshi; Jacks, Adam; Jacobson, Mark; Jacqmin, Philippe; Jaffe, Carl; Jagust, William; Janousova, Eva; Jara, Hernan; Jasperse, Bas; Jedynak, Bruno; Jefferson, Angela; Jennings, J. Richard; Jenq, John; Jessen, Walter; Jia, Fucang; Jiang, Tianzi; Jiao, Yun; Jing, Huang; Johnson, Kent; Johnson, Sterling; Johnson, David K.; Johnson, Julene; Jones, Gareth; Jones, Mark; Jones, Richard; Joshi, Shantanu; Jouvent, Eric; Juengling, Freimut; Julin, Per; Junjie, Zhuo; Kabilan, Meena; Kadish, Bill; Kairui, Zhang; Kam, Hye Jin; Kamboh, M. Ilyas; Kamer, Angela; Kanakaraj, Sithara; Kanchev, Vladimir; Kaneko, Tomoki; Kaneta, Tomohiro; Kang, Hyunseok; Kang, Ju Hee; Kang, Jian; Karageorgiou, Elissaios; Karantzoulis, Stella; Karlawish, Jason; Katz, Elyse; Kaushik, Sandeep S.; Kauwe, John; Kawakami, Hirofumi; Kawashima, Shoji; Kaye, Edward; Kazemi, Samaneh; Ke, Han; Kelleher, Thomas; Kennedy, Richard; Keogh, Bart; Kerchner, Geoffrey; Kerr, Daniel; Keshava, Nirmal; Khalil, Iya; Khalil, Andre; Khondker, Zakaria; Kihara, Takeshi; Killeen, Neil; Killiany, Ron; Kim, Dajung; Kim, Hyoungkyu; Kim, Seongkyun; Kim, Jong Hun; Kim, Ana; Kim, Jung-Hyun; Kimberg, Daniel; Kimura, Tokunori; King, Richard; Kirby, Justin; Kirsch, Wolff; Klimas, Michael; Kline, Richard; Kling, Mitchel; Klopfenstein, Erin; Koen, Joshua; Koikkalainen, Juha; Kokomoor, Anders; Kong, Xiangnan; Koppel, Jeremy; Korolev, Igor; Kotran, Nickolas; Kowalczyk, Adam; Krahnke, Tillmann; Krams, Michael; Kuceyeski, Amy; Kuhl, Donald; Kumar, Vinod; Roy, P. Kumar; Kuo, Julie; Labrish, Catherine; Lai, Song; Lakatos, Anita; Lalonde, François; Lam, On Ki; Lampron, Antoine; Landau, Susan; Lane, Richard; Lane, Barton; Langbaum, Jessica; Langford, Dianne; Lanius, Vivian; Latella, Marco; Leahy, Richard; an Lee, Jong; Lee, Dongsoo; Lee, Noah; Lee, Sei; Lee, Doheon; Lee, Grace; Lefkimmiatis, Stamatis; Lemaitre, Herve; Lenfant, Pierre; Lenz, Robert; Leong, Josiah; Leoutsakos, Jeannie-Marie; Leung, Yuk Yee; Levey, Allan; Li, Rui; Li, Xiaodong; Li, Weidong; Li, Xiaobo; Li, Ming; Li, Lexin; Li, Jun; Li, Gang; Li, Quanzheng; Li, Yi; Li, Junning; Li, Jie; Li, Yue; Li, Shanshan; Liang, Kelvin; Liang, Kuchang; Liang, Peipeng; Liang, Lichen; Liao, Weiqi; Liaquat, Saad; Liberman, Gilad; Lin, Lan; Lin, Ai-Ling; Lin, Frank; Liu, Tao; Liu, Dazhong; Liu, Li; Liu, Honggang; Liu, Sidong; Liu, Tianming; Liu, Xiuwen; Liu, Sophia; Liu, Linda; Liu, Wei; Liu, Guodong; Liu, Yanping; Liu, Collins; Lo, Raymond; Lobanov, Victor; Lockhart, Andrew; Loewenstein, David; Logovinsky, Veronika; Long, Miaomiao; Long, Ziyi; Long, Xiaojing; Looi, Jeffrey; Lu, Huanxiang; Lu, Po-Haong; Lucena, Nathaniel; Lukas, Carsten; Lukic, Ana; Luo, Lei; Luo, Xiongjian; Luo, Xi; Lynch, John; Ma, Shen-Ming; Mackin, Scott; Mada, Marius; Madabhushi, Anant; Maglio, Silvio; Mahanta, Mohammad Shahin; Maikusa, Norihide; Maldjian, Joseph; Mandal, Indrajit; Manjon, Jose; Mantri, Ninad; Manzour, Amir; Marchewka, Artur; Marcus, Daniel; Margolin, Richard; Marrett, Sean; Marshall, Gad; Gonzalez, Alberto Martinez; Torteya, Antonio Martinez; Mather, Mara; Mathis, Chester; Mattei, Peter; Matthews, Dawn; McArdle, John; McCarroll, Steven; McEvoy, Linda; McGeown, William; McGinnis, Scott; McGonigle, John; McIntyre, John; McLaren, Donald; McQuail, Joseph; Meadowcroft, Mark; Meda, Shashwath; Melie-Garcia, Lester; Melrose, Rebecca; Mendelson, Alexander; Mendez, Mario; Menendez, Enrique; Meng, Meng; Meredith, Jere; Metti, Andrea; Meyer, Carsten; Mez, Jesse; Mickael, Guedj; Miftahof, Roustem; Mikula, Margit; Miller, Michael; Millikin, Colleen; Nintun, Mark; Mirza, Mubeena; Mistridis, Panagiota; Mitchell, Meghan; Mitsis, Effie; Mon, Anderson; Moore, Dana; Morabito, Francesco C.; Birgani, Parmida Moradi; Moratal, David; Morimoto, Bruce; Mormino, Elizabeth; Morris, Jill; Mortamet, Bénédicte; Moscato, Pablo; Mueller, Kathyrne; Mueller, Susanne; Mukherjee, Shubhabrata; Mulder, Emma; Mungas, Dan; Munir, Kamran; Murayama, Shigeo; Murphy, Michael; Myers, Amanda; Sairam, N.; Nagata, Ken; Nair, Anil; Nativio, Raffaella; Nazarparvar, Babak; Nazeri, Arash; Nejad, Leila; Nekooei, Sirous; Nettiksimmons, Jasmine; Neu, Scott; Ng, Yen-Bee; Nguyen, Nghi; Nichols, Thomas; Nicodemus, Kristin; Niecko, Timothy; Nielsen, Casper; Nishio, Tomoyuki; Nordstrom, Matthew; Noshad, Sina; Notomi, Keiji; Novak, Nic; Nutakki, Gopi Chand; O'Bryant, Sid; Obisesan, Thomas; Oh, Joonmi; Okonkwo, Ozioma; Olde Rikkert, Marcel; Oliveira, Ailton; Oliveira, João; Oliver, Ruth; Olmos, Salvador; Oltra, Javier; Ortner, Marion; Osadebey, Michael; Ostrowitzki, Susanne; Overholser, Rosanna; Anishiya, P.; Chitra, P. K. A.; Pa, Judy; Palanisamy, Preethi; Pan, Sarah; Pan, Zhifang; Pande, Yogesh; Pardo, Jose; Pardoe, Heath; Park, Sang hyun; Park, Sujin; Park, Lovingly; Park, Hyunjin; Park, Moon Ho; Parker, Christopher; Patel, Yogen; Patil, Amol; Patil, Manasi; Pawlak, Mikolaj; Payoux, Pierre; Pearson, Jim; Pell, Gaby; Peng, Yahong; Pennec, Xavier; Pepin, Jean louis; Pereira, Francisco; Perneczky, Robert; Petitti, Diana; Petrella, Jeffrey; Peyrat, Jean-Marc; Ngoc, Phuong Trinh Pham; Phillips, Justin; Phillips, Nicole; Pian, Wen-ting; Pierson, Ronald; Piovezan, Mauro; Pipitone, Jon; Pirraglia, Elizabeth; Planes, Xavi; Podhorski, Adam; Pollari, Mika; Pomara, Nunzio; Pontecorvo, Michael; Popov, Veljko; Poppenk, Jordan; Posner, Holly; Potkin, Steven; Potter, Guy; Potter, Elizabeth; Poulin, Stephane; Prastawa, Marcel; Prince, Jerry; Priya, Anandh; Pruessner, Jens; Qiu, Wendy; Qu, Annie; Qualls, Constance Dean; Quarg, Peter; Quinlan, Judith; Rabbia, Michael; Rajagovindan, Rajasimhan; Rajeesh, Rajeesh; Rallabandi, V. P. Subramanyam; Ramadubramani, Vanamamalai; Ramage, Amy; Ramirez, Alfredo; Randolph, Christopher; Rao, Anil; Rao, Hengyi; Rao, Divya; Raubertas, Richard; Ray, Debashis; Razak, Hana; Reed, Bruce; Reid, Andrew; Reilhac, Anthonin; Reiner, Peggy; Reinsberger, Claus; Restrepo, Lucas; Retico, Alessandra; Rhatigan, Lewis; Rhinn, Herve; Rhoades, Earl; Ribbens, Annemie; Richard, Edo; Richards, John; Richter, Mirco; Riddle, William; Ridgway, Gerard; Ries, Michele; Ringman, John; Rischall, Matt; Rizk-Jackson, Angela; Rizzi, Massimo; Robieson, Weining; Rodriguez, Laura; Rodriguez-Vieitez, Elena; Rogalski, Emily; Rogers, Elizabeth; Balderrama, Javier Rojas; Rokicki, Jaroslav; Romero, Klaus; Rorden, Chris; Rosand, Jonathan; Rosen, Ori; Rosenberg, Paul; Roubini, Eli; Rousseau, François; Rowe, Christopher; Rubin, Daniel; Rubright, Jonathan; Rucinski, Marek; Ruiz, Agustin; Rulseh, Aaron; Rusinek, Henry; Ryan, Laurie; Saad, Ahmed; Sabuncu, Mert; Sahuquillo, Juan; Said, Yasmine; Saito, Naomi; Sakata, Muneyuki; Salama, Mahetab; Salazar, Diego; Salter, Hugh; Saman, Sudad; Sanchez, Luciano; Sanders, Elizabeth; Sankar, Tejas; Santhamma, Sindhumol; Sarnel, Haldun; Sasaki, Toshiaki; Sasaya, Tenta; Sato, Hajime; Sattlecker, Martina; Saumier, Daniel; Savio, Alexandre; Saykin, Andrew; Scanlon, Blake; Scharre, Douglas; Schegerin, Marc; Schmand, Ben; Schmansky, Nick; Schmidt-Wilcke, Tobias; Schramm, Hauke; Schuerch, Markus; Schwartz, Craig; Schwartz, Eben; Schwarz, Adam; Schwarz, John; Selnes, Per; Sembritzki, Klaus; Senjem, Matthew; Sevigny, Jeffrey; Sfikas, Giorgos; Sghedoni, Roberto; Shah, Said Khalid; Shahbaba, Babak; Shams, Soheil; Shankle, William; Shattuck, David; Shaw, Leslie; Sheela, Jaba; Shen, Jie; Shen, Qi; Shen, Weijia; Shen, Qian; Shera, David; Sherman, John; Sherva, Richard; Shi, Jie; Shokouhi, Sepideh; Shukla, Vinay; Shulman, Joshua; Sideris, Konstantinos; Siegel, Rene; Silveira, Margarida; Silverman, Daniel; Sim, Ida; Simak, Alex; Simmons, Andy; Simoes, Rita; Simon, Adam; Simon, Melvin; Simpson, Ivor; Singh, Nikhil; Singh, Simer Preet; Sinha, Neelam; Siuciak, Judy; Sjögren, Niclas; Skinner, Jeannine; Smith, Michael; Smith, Charles; Smyth, Timothy; Snow, Sarah; Snyder, Peter; Soares, Holly; Soldan, Anja; Soldea, Octavian; Solomon, Alan; Solomon, Paul; Som, Subhojit; Song, Zhuang; Song, Shide; Sosova, Iveta; Soydemir, Melih; Spampinato, Maria Vittoria; Speier, William; Sperling, Reisa; Spiegel, Renãâ; Spies, Lothar; Springate, Beth; Staff, Roger; Steffener, Jason; Stern, Yaakov; Stokman, Harro; Straw, Jack; Stricker, Nikki; Stühler, Elisabeth; Styren, Scot; Subramanian, Vijayalakshmi; Suen, Summit; Sugishita, Morihiro; Sukkar, Rafid; Sun, Ying; Sun, Jia; Sun, Yu; Sundell, Karen; Suzuki, Akiyuki; Svetnik, Vladimir; Swan, Melanie; Symons, Sean; Szigeti, Kinga; Szoeke, Cassandra; Sørensen, Lauge; Genish, T.; Takahasi, Tetsuhiko; Takeuchi, Tomoko; Tanaka, Rie; Tanchi, Chaturaphat; Tancredi, Daniel; Tang, Qi; Tarnow, Eugen; Tartaglia, Maria Carmela; Tarver, Erika; Tassy, Dominique; Tauber, Clovis; Taylor-Reinwald, Lisa; Teipel, Stefan; Teng, Edmond; Terriza, Felipe; Thambisetty, Madhav; Thames, April; Thatavarti, Raja Sekhar; Thiele, Frank; Thomas, Ronald; Thomas, Benjamin; Thomas, Charlene; Thompson, Wesley; Thompson, Paul; Thornton-Wells, Tricia; Thorvaldsson, Valgeir; Thurfjell, Lennart; Tokuda, Takahiko; Toledo, Juan B.; Tölli, Tuomas; Toma, Ahmed; Tomita, Naoki; Toro, Roberto; Torrealdea, Patxi; Tosto, Giuseppe; Tosun, Duygu; Tousian, Mona; Toussaint, Paule; Toyoshiba, Hiroyoshi; Tractenberg, Rochelle E.; Triggs, Tyler; Trittschuh, Emily; Trojanowski, John; Trotta, Gabriele; Huu, Tram Truong; Truran, Diana; Tsanas, Athanasios; Tsang, Candy; Tufail, Ahsan; Tung, Joyce; Turken, And; Ueda, Yoji; Uematsu, Daisuke; Ullrich, Lauren; Venkataraju, Kannan Umadevi; Umar, Nisser; Ungar, Leo; Uzunbas, Gokhan; van de Nes, Joseph; van der Brug, Marcel; van der Lijn, Fedde; van Hecke, Wim; van Horn, John; van Leemput, Koen; van Train, Kenneth; Varkuti, Balint; Vasanawala, Minal; Veeraraghavan, Harini; Vemuri, Prashanthi; Verma, Manish; Videbaek, Charlotte; Vidoni, Eric; Villanueva-Meyer, Javier; Vinyes, Georgina; Visser, Pieter Jelle; Vitek, Michael; Vogel, Simon; Voineskos, Aristotle; Vos, Stephanie; Vounou, Maria; Wade, Sara; Walsh, Alexander; Wan, Hong; Wang, Tianyao; Wang, Yongmei Michelle; Wang, Wei; Wang, Angela; Wang, Song; Wang, Lubin; Wang, Li; Wang, Yaping; Wang, Li-San; Wang, Lei; Wang, Alex; Wang, Yu; Wang, Xu; Wang, Ze; Wang, Tiger; Ward, Michael; Ward, Andrew; Watanabe, Toshiyuki; Watson, David; Webb, David; Wefel, Jeffrey; Weiner, Michael; Westlye, Lars T.; Wheland, David; Whitcher, Brandon; White, Brooke; Whitlow, Christopher; Wilhelmsen, Kirk; Wilmot, Beth; Wilson, Lorraine; Wimsatt, Matt; Wingo, Thomas; Wirth, Miranka; Wishart, Heather; Wiste, Heather; Wolf, Henrike; Wolke, Ira; Wolz, Robin; Wong, Koon; Woo, Jongwook; Woo, Ellen; Woods, Lynn; Worth, Andrew; Wu, Yanjun; Wu, Liang; Wu, Ellen; Wyman, Bradley; Xiao, Guanghua; Xie, Sharon; Xu, Jun; Xu, Guofan; Xu, Steven; Xu, Shunbin; Xu, Ye; Xu, Yi-Zheng; Yamada, Tomoko; Yamashita, Fumio; Yan, Pingkun; Yan, Yunyi; Yang, Guang; Yang, Wenlu; Yang, Eric; Yang, Hyun Duk; Yang, Jinzhong; Yang, Chung-Yi; Yang, Zijiang; Yang, Edward; Yassa, Michael; Yavorsky, Christian; Ye, Byoung Seok; Ye, Liang; Ye, Jong; Yee, Laura; Ying, Song; Yokoyama, Takao; Young, Stewart; Young, Jonathan; Younhyun, Jung; Yu, Dongchuan; Yu, Shiwei; Yu, C. Q.; Yu, Peng; Yuan, Ying; Yuan, Guihong; Yuan, Kai; Yuen, Bob; Yushkevich, Paul; Zaborszky, Laszlo; Zagorodnov, Vitali; Zagorski, Michael; Zahodne, Laura; Zarei, Mojtaba; Zawadzki, Rezi; Zeitzer, Jamie; Zelinski, Elizabeth; Zeskind, Benjamin; Zhan, Shu; Zhang, Jing; Zhang, Lijun; Zhang, Zhiguo; Zhang, Linda; Zhang, Zhe; Zhang, Daoqiang; Zhang, Huixiong; Zhang, Xin; Zhang, Tianhao; Zhang, Ping; Zhao, Jim; Zhao, Qinying; Zhao, Peng; Zhen, Xiantong; Zhijun, Yao; Zhou, Luping; Zhou, Bin; Zhou, Yongxia; Zhou, Sheng; Zhu, Hongtu; Zhu, Wen; Zhu, Wanlin; Zhu, Xuyan; Ziegler, Gabriel; Zilka, Samantha; Zisserman, Andrew; Zito, Giancarlo; Zu, Chen; Zulfigar, Annam

    2012-01-01

    Brain extraction is an important step in the analysis of brain images. The variability in brain morphology and the difference in intensity characteristics due to imaging sequences make the development of a general purpose brain extraction algorithm challenging. To address this issue, we propose a

  4. Diffuse Optical Tomography for Brain Imaging: Theory

    Science.gov (United States)

    Yuan, Zhen; Jiang, Huabei

    Diffuse optical tomography (DOT) is a noninvasive, nonionizing, and inexpensive imaging technique that uses near-infrared light to probe tissue optical properties. Regional variations in oxy- and deoxy-hemoglobin concentrations as well as blood flow and oxygen consumption can be imaged by monitoring spatiotemporal variations in the absorption spectra. For brain imaging, this provides DOT unique abilities to directly measure the hemodynamic, metabolic, and neuronal responses to cells (neurons), and tissue and organ activations with high temporal resolution and good tissue penetration. DOT can be used as a stand-alone modality or can be integrated with other imaging modalities such as fMRI/MRI, PET/CT, and EEG/MEG in studying neurophysiology and pathology. This book chapter serves as an introduction to the basic theory and principles of DOT for neuroimaging. It covers the major aspects of advances in neural optical imaging including mathematics, physics, chemistry, reconstruction algorithm, instrumentation, image-guided spectroscopy, neurovascular and neurometabolic coupling, and clinical applications.

  5. A Unified Framework for Brain Segmentation in MR Images

    Directory of Open Access Journals (Sweden)

    S. Yazdani

    2015-01-01

    Full Text Available Brain MRI segmentation is an important issue for discovering the brain structure and diagnosis of subtle anatomical changes in different brain diseases. However, due to several artifacts brain tissue segmentation remains a challenging task. The aim of this paper is to improve the automatic segmentation of brain into gray matter, white matter, and cerebrospinal fluid in magnetic resonance images (MRI. We proposed an automatic hybrid image segmentation method that integrates the modified statistical expectation-maximization (EM method and the spatial information combined with support vector machine (SVM. The combined method has more accurate results than what can be achieved with its individual techniques that is demonstrated through experiments on both real data and simulated images. Experiments are carried out on both synthetic and real MRI. The results of proposed technique are evaluated against manual segmentation results and other methods based on real T1-weighted scans from Internet Brain Segmentation Repository (IBSR and simulated images from BrainWeb. The Kappa index is calculated to assess the performance of the proposed framework relative to the ground truth and expert segmentations. The results demonstrate that the proposed combined method has satisfactory results on both simulated MRI and real brain datasets.

  6. Issues and Problems in Brain Magnetic Resonance Imaging: An Overview

    Directory of Open Access Journals (Sweden)

    Novanto Yudistira

    2008-04-01

    Full Text Available There are many issues and problems in the brain magnetic resonance imaging (MRI area that haven’t solved or reached satisfying result yet. This paper presents an overview of the various issues and problems of the segmentation, correction, optimization, description and their application in MRI. The overview is started by describing the segmentation properties that are the most important and challenging in MRI brain manipulation. Then correction for reconstructing the brain MRI cortex, classification is utilized to classify the segmented brain image, and also review the uses of description is the great prospecting issue while some neurologist need the information resulted from brain imaging process including their potential problems from application applied by each technique. In each case, it is provided some general background information.

  7. Three-dimensional microtomographic imaging of human brain cortex

    CERN Document Server

    Mizutania, Ryuta; Uesugi, Kentaro; Ohyama, Masami; Takekoshi, Susumu; Osamura, R Yoshiyuki; Suzuki, Yoshio

    2016-01-01

    This paper describes an x-ray microtomographic technique for imaging the three-dimensional structure of the human cerebral cortex. Neurons in the brain constitute a neural circuit as a three-dimensional network. The brain tissue is composed of light elements that give little contrast in a hard x-ray transmission image. The contrast was enhanced by staining neural cells with metal compounds. The obtained structure revealed the microarchitecture of the gray and white matter regions of the frontal cortex, which is responsible for the higher brain functions.

  8. A Survey on Various Image Inpainting Techniques to Restore Image

    OpenAIRE

    Rajul Suthar,; Mr. Krunal R. Patel

    2014-01-01

    Image Inpainting or Image Restore is technique which is used to recover the damaged image and to fill the regions which are missing in original image in visually plausible way. Inpainting, the technique of modifying an image in an invisible form, it is art which is used from the early year. Applications of this technique include rebuilding of damaged photographs& films, removal of superimposed text, removal/replacement of unwanted objects, red eye correction, image coding. The...

  9. Imaging of Brain Connectivity in Dementia: Clinical Implications for Diagnosis of its Underlying Diseases

    NARCIS (Netherlands)

    R. Meijboom (Rozanna)

    2017-01-01

    markdownabstractIn this thesis we investigated the use of advanced magnetic resonance imaging (MRI) techniques in identifying subtle brain abnormalities, associating brain abnormalities with disease symptomatology, and improving early (differential) diagnosis in several diseases underlying dementia.

  10. Tooling Techniques Enhance Medical Imaging

    Science.gov (United States)

    2012-01-01

    mission. The manufacturing techniques developed to create the components have yielded innovations advancing medical imaging, transportation security, and even energy efficiency.

  11. Bayes Syndrome and Imaging Techniques.

    Science.gov (United States)

    Betancor, Ivan Hernandez; Izquierdo-Gomez, Maria Manuela; Niebla, Javier Garcia; Laynez-Cerdeña, Ignacio; Garcia-Gonzalez, Martin Jesus; Barragan-Acea, Antonio; Iribarren-Sarriá, Jose Luis; Jimenez-Rivera, Juan Jose; Lacalzada-Almeida, Juan

    2017-07-13

    Interatrial block (IAB) is due to disruption in the Bachmann region (BR). According to whether interatrial electrical conduction is delayed or completely blocked through the BR, it can be classified as IAB of first, second or third degree. On the surface electrocardiogram, a P wave ≥ 120 ms (partial IAB) is observed or associated to the prolongation of the P wave with a biphasic (positive / negative) morphology in the inferior leads (advanced IAB). Bayes syndrome is defined as an advanced IAB associated with atrial arrhythmia, more specifically atrial fibrillation. The purpose of this review is to describe the latest evidence about an entity considered an anatomical and electrical substrate with its own name, which may be a predictor of supraventricular arrhythmia and cardioembolic cerebrovascular accidents, as well as the role of new imaging techniques, such as echocardiographic strain and cardiac magnetic resonance imaging, in characterizing atrial alterations associated with this syndrome and generally in the study of anatomy and atrial function. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Structural Magnetic Resonance Imaging of the Adolescent Brain

    National Research Council Canada - National Science Library

    GIEDD, JAY N

    2004-01-01

    A bstract : Magnetic resonance imaging (MRI) provides accurate anatomical brain images without the use of ionizing radiation, allowing longitudinal studies of brain morphometry during adolescent development...

  13. Imaging brain microstructure with diffusion MRI

    DEFF Research Database (Denmark)

    Alexander, Daniel C; Dyrby, Tim B; Nilsson, Markus

    2018-01-01

    This article gives an overview of microstructure imaging of the brain with diffusion MRI and reviews the state of the art. The microstructure-imaging paradigm aims to estimate and map microscopic properties of tissue using a model that links these properties to the voxel scale MR signal. Imaging...

  14. Medical Ultrasonic Elasticity Imaging Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Mok Keun [Department of Electronics and Communications Engineering, Daejin University, Pocheon (Korea, Republic of)

    2012-10-15

    Breast and prostate tumors or cancers tend to be stiffer than the surrounding normal tissue. However, the difference in echogenicity between cancerous and normal tissues is not clearly distinguishable in ultrasound B-mode imaging. Thus, imaging the stiffness contrast between the two different tissue types helps to diagnose lesions quantitatively, and such a method of imaging the elasticity of human tissue is termed ultrasound elasticity imaging. Recently, elasticity imaging has become an effective complementary diagnostic modality along with ultrasound B-mode imaging. This paper presents various elasticity imaging methods that have been reported up to now and describes their characteristics and principles of operation.

  15. Exploring miniature insect brains using micro-CT scanning techniques

    National Research Council Canada - National Science Library

    Smith, Dylan B; Bernhardt, Galina; Raine, Nigel E; Abel, Richard L; Sykes, Dan; Ahmed, Farah; Pedroso, Inti; Gill, Richard J

    2016-01-01

    ...). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue free from trauma and in its natural stereo-geometry, and showcase our 3D reconstructions...

  16. New approaches in intelligent image analysis techniques, methodologies and applications

    CERN Document Server

    Nakamatsu, Kazumi

    2016-01-01

    This book presents an Introduction and 11 independent chapters, which are devoted to various new approaches of intelligent image processing and analysis. The book also presents new methods, algorithms and applied systems for intelligent image processing, on the following basic topics: Methods for Hierarchical Image Decomposition; Intelligent Digital Signal Processing and Feature Extraction; Data Clustering and Visualization via Echo State Networks; Clustering of Natural Images in Automatic Image Annotation Systems; Control System for Remote Sensing Image Processing; Tissue Segmentation of MR Brain Images Sequence; Kidney Cysts Segmentation in CT Images; Audio Visual Attention Models in Mobile Robots Navigation; Local Adaptive Image Processing; Learning Techniques for Intelligent Access Control; Resolution Improvement in Acoustic Maps. Each chapter is self-contained with its own references. Some of the chapters are devoted to the theoretical aspects while the others are presenting the practical aspects and the...

  17. Digital image registration by correlation techniques.

    Science.gov (United States)

    Popp, D. J.; Mccormack, D. S.; Lee, G. M.

    1972-01-01

    This study considers the translation problem associated with digital image registration and develops a means for comparing commonly used correlation techniques. Using suitably defined constraints, an optimum and four suboptimum registration techniques are defined and evaluated. A computational comparison is made and Gaussian image statistics are used to compare the selected techniques in terms of radial position location error.

  18. Imaging Techniques in Endodontics: An Overview

    Science.gov (United States)

    Deepak, B. S.; Subash, T. S.; Narmatha, V. J.; Anamika, T.; Snehil, T. K.; Nandini, D. B.

    2012-01-01

    This review provides an overview of the relevance of imaging techniques such as, computed tomography, cone beam computed tomography, and ultrasound, to endodontic practice. Many limitations of the conventional radiographic techniques have been overcome by the newer methods. Advantages and disadvantages of various imaging techniques in endodontic practice are also discussed. PMID:22530184

  19. Modern Trends in Imaging IX: Biophotonics Techniques for Structural and Functional Imaging, In Vivo

    Directory of Open Access Journals (Sweden)

    Yasaman Ardeshirpour

    2012-01-01

    Full Text Available In vivo optical imaging is being conducted in a variety of medical applications, including optical breast cancer imaging, functional brain imaging, endoscopy, exercise medicine, and monitoring the photodynamic therapy and progress of neoadjuvant chemotherapy. In the past three decades, in vivo diffuse optical breast cancer imaging has shown promising results in cancer detection, and monitoring the progress of neoadjuvant chemotherapy. The use of near infrared spectroscopy for functional brain imaging has been growing rapidly. In fluorescence imaging, the difference between autofluorescence of cancer lesions compared to normal tissues were used in endoscopy to distinguish malignant lesions from normal tissue or inflammation and in determining the boarders of cancer lesions in surgery. Recent advances in drugs targeting specific tumor receptors, such as AntiBodies (MAB, has created a new demand for developing non-invasive in vivo imaging techniques for detection of cancer biomarkers, and for monitoring their down regulations during therapy. Targeted treatments, combined with new imaging techniques, are expected to potentially result in new imaging and treatment paradigms in cancer therapy. Similar approaches can potentially be applied for the characterization of other disease-related biomarkers. In this chapter, we provide a review of diffuse optical and fluorescence imaging techniques with their application in functional brain imaging and cancer diagnosis.

  20. A Hybrid Technique for Medical Image Segmentation

    Directory of Open Access Journals (Sweden)

    Alamgir Nyma

    2012-01-01

    Full Text Available Medical image segmentation is an essential and challenging aspect in computer-aided diagnosis and also in pattern recognition research. This paper proposes a hybrid method for magnetic resonance (MR image segmentation. We first remove impulsive noise inherent in MR images by utilizing a vector median filter. Subsequently, Otsu thresholding is used as an initial coarse segmentation method that finds the homogeneous regions of the input image. Finally, an enhanced suppressed fuzzy c-means is used to partition brain MR images into multiple segments, which employs an optimal suppression factor for the perfect clustering in the given data set. To evaluate the robustness of the proposed approach in noisy environment, we add different types of noise and different amount of noise to T1-weighted brain MR images. Experimental results show that the proposed algorithm outperforms other FCM based algorithms in terms of segmentation accuracy for both noise-free and noise-inserted MR images.

  1. Magnetic resonance imaging techniques: fMRI, DWI, and PWI.

    Science.gov (United States)

    Holdsworth, Samantha J; Bammer, Roland

    2008-09-01

    Magnetic resonance imaging (MRI) is a noninvasive technique which can acquire important quantitative and anatomical information from an individual in any plane or volume at comparatively high resolution. Over the past several years, developments in scanner hardware and software have enabled the acquisition of fast MRI imaging, proving extremely useful in various clinical and research applications such as in brain mapping or functional MRI (fMRI), perfusion-weighted imaging (PWI), and diffusion-weighted imaging (DWI). These techniques have revolutionized the use of MRI in the clinics, providing great insight into physiologic mechanisms and pathologic conditions. Since these relatively new areas of MRI have relied on fast scanning techniques, they have only recently been widely introduced to clinical sites. As such, this review article is devoted to the technological aspects of these techniques, as well as their roles and limitations in neuroimaging applications.

  2. Imaging Brain Development: Benefiting from Individual Variability

    Directory of Open Access Journals (Sweden)

    Megha Sharda

    2015-01-01

    Full Text Available Human brain development is a complex process that evolves from early childhood to young adulthood. Major advances in brain imaging are increasingly being used to characterize the developing brain. These advances have further helped to elucidate the dynamic maturational processes that lead to the emergence of complex cognitive abilities in both typical and atypical development. However, conventional approaches involve categorical group comparison models and tend to disregard the role of widespread interindividual variability in brain development. This review highlights how this variability can inform our understanding of developmental processes. The latest studies in the field of brain development are reviewed, with a particular focus on the role of individual variability and the consequent heterogeneity in brain structural and functional development. This review also highlights how such heterogeneity might be utilized to inform our understanding of complex neuropsychiatric disorders and recommends the use of more dimensional approaches to study brain development.

  3. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping.

    Science.gov (United States)

    Studholme, Colin

    2011-08-15

    The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.

  4. Imaging retinotopic maps in the human brain

    Science.gov (United States)

    Wandell, Brian A.; Winawer, Jonathan

    2010-01-01

    A quarter-century ago visual neuroscientists had little information about the number and organization of retinotopic maps in human visual cortex. The advent of functional magnetic resonance imaging (MRI), a non-invasive, spatially-resolved technique for measuring brain activity, provided a wealth of data about human retinotopic maps. Just as there are differences amongst nonhuman primate maps, the human maps have their own unique properties. Many human maps can be measured reliably in individual subjects during experimental sessions lasting less than an hour. The efficiency of the measurements and the relatively large amplitude of functional MRI signals in visual cortex make it possible to develop quantitative models of functional responses within specific maps in individual subjects. During this last quarter century, there has also been significant progress in measuring properties of the human brain at a range of length and time scales, including white matter pathways, macroscopic properties of gray and white matter, and cellular and molecular tissue properties. We hope the next twenty-five years will see a great deal of work that aims to integrate these data by modeling the network of visual signals. We don’t know what such theories will look like, but the characterization of human retinotopic maps from the last twenty-five years is likely to be an important part of future ideas about visual computations. PMID:20692278

  5. Manganese accumulation in the brain: MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, A.; Nomiyama, K.; Takase, Y.; Nakazono, T.; Nojiri, J.; Kudo, S. [Saga Medical School, Department of Radiology, Saga (Japan); Noguchi, T. [Kyushu University, Department of Clinical Radiology, Graduate School of Medicine, Fukuoka (Japan)

    2007-09-15

    Manganese (Mn) accumulation in the brain is detected as symmetrical high signal intensity in the globus pallidi on T1-weighted MR images without an abnormal signal on T2-weighted images. In this review, we present several cases of Mn accumulation in the brain due to acquired or congenital diseases of the abdomen including hepatic cirrhosis with a portosystemic shunt, congenital biliary atresia, primary biliary cirrhosis, congenital intrahepatic portosystemic shunt without liver dysfunction, Rendu-Osler-Weber syndrome with a diffuse intrahepatic portosystemic shunt, and patent ductus venosus. Other causes of Mn accumulation in the brain are Mn overload from total parenteral nutrition and welding-related Mn intoxication. (orig.)

  6. Adaptive optical microscope for brain imaging in vivo

    Science.gov (United States)

    Wang, Kai

    2017-04-01

    The optical heterogeneity of biological tissue imposes a major limitation to acquire detailed structural and functional information deep in the biological specimens using conventional microscopes. To restore optimal imaging performance, we developed an adaptive optical microscope based on direct wavefront sensing technique. This microscope can reliably measure and correct biological samples induced aberration. We demonstrated its performance and application in structural and functional brain imaging in various animal models, including fruit fly, zebrafish and mouse.

  7. PET/MRI for Oncologic Brain Imaging

    DEFF Research Database (Denmark)

    Rausch, Ivo; Rischka, Lucas; Ladefoged, Claes N

    2017-01-01

    by Siemens Healthcare). As a reference, AC maps were derived from patient-specific CT images (CTref). PET data were reconstructed using standard settings after AC with all 4 AC methods. We report changes in diagnosis for all brain tumor patients and the following relative differences values (RDs...... of the whole brain and 10 anatomic regions segmented on MR images.Results:For brain tumor imaging (A and B), the standard PET-based diagnosis was not affected by any of the 3 MR-AC methods. For A, the average RDs of SUVmeanwere -10%, -4%, and -3% and of the VOIs 1%, 2%, and 7% for DIXON, UTE, and BD......, respectively.Conclusion:The diagnostic reading of PET/MR patients with brain tumors did not change with the chosen AC method. Quantitative accuracy of SUVs was clinically acceptable for UTE- and BD-AC for group A, whereas for group B BD was in accordance with CTref. Nevertheless, for the quantification...

  8. Nosologic imaging of the brain: segmentation and classification using MRI and MRSI.

    NARCIS (Netherlands)

    Luts, J.; Laudadio, T.; Idema, A.J.S.; Simonetti, A.W.; Heerschap, A.; Meulen, D. van der; Suykens, J.A.; Huffel, S. van

    2009-01-01

    A new technique is presented to create nosologic images of the brain based on magnetic resonance imaging (MRI) and magnetic resonance spectroscopic imaging (MRSI). A nosologic image summarizes the presence of different tissues and lesions in a single image by color coding each voxel or pixel

  9. Brain Imaging in Alzheimer Disease

    NARCIS (Netherlands)

    Johnson, K.A.; Fox, N.C.; Sperling, R.A.; Klunk, W.E.

    2012-01-01

    Imaging has played a variety of roles in the study of Alzheimer disease (AD) over the past four decades. Initially, computed tomography (CT) and then magnetic resonance imaging (MRI) were used diagnostically to rule out other causes of dementia. More recently, a variety of imaging modalities

  10. Registration of challenging pre-clinical brain images

    Science.gov (United States)

    Crum, William R.; Modo, Michel; Vernon, Anthony C.; Barker, Gareth J.; Williams, Steven C.R.

    2013-01-01

    The size and complexity of brain imaging studies in pre-clinical populations are increasing, and automated image analysis pipelines are urgently required. Pre-clinical populations can be subjected to controlled interventions (e.g., targeted lesions), which significantly change the appearance of the brain obtained by imaging. Existing systems for registration (the systematic alignment of scans into a consistent anatomical coordinate system), which assume image similarity to a reference scan, may fail when applied to these images. However, affine registration is a particularly vital pre-processing step for subsequent image analysis which is assumed to be an effective procedure in recent literature describing sophisticated techniques such as manifold learning. Therefore, in this paper, we present an affine registration solution that uses a graphical model of a population to decompose difficult pairwise registrations into a composition of steps using other members of the population. We developed this methodology in the context of a pre-clinical model of stroke in which large, variable hyper-intense lesions significantly impact registration performance. We tested this technique systematically in a simulated human population of brain tumour images before applying it to pre-clinical models of Parkinson's disease and stroke. PMID:23558335

  11. BRAIN IMAGING IN THE STUDY OF ALZHEIMER'S DISEASE

    Science.gov (United States)

    Reiman, Eric M.; Jagust, William J.

    2012-01-01

    Over the last 20 years, there has been extraordinary progress in brain imaging research and its application to the study of Alzheimer's disease (AD). Brain imaging researchers have contributed to the scientific understanding, early detection and tracking of AD. They have set the stage for imaging techniques to play growing roles in the clinical setting, the evaluation of disease-modifying treatments, and the identification of demonstrably effective prevention therapies. They have developed ground-breaking methods, including positron emission tomography (PET) ligands to measure fibrillar amyloid-β (Aβ) deposition, new magnetic resonance imaging (MRI) pulse sequences, and powerful image analysis techniques, to help in these endeavors. Additional work is needed to develop even more powerful imaging methods, to further clarify the relationship and time course of Aβ and other disease processes in the predisposition to AD, to establish the role of brain imaging methods in the clinical setting, and to provide the scientific means and regulatory approval pathway needed to evaluate the range of promising disease-modifying and prevention therapies as quickly as possible. Twenty years from now, AD may not yet be a distant memory, but the best is yet to come. PMID:22173295

  12. Adaptive Intuitionistic Fuzzy Enhancement of Brain Tumor MR Images.

    Science.gov (United States)

    Deng, He; Deng, Wankai; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-10-27

    Image enhancement techniques are able to improve the contrast and visual quality of magnetic resonance (MR) images. However, conventional methods cannot make up some deficiencies encountered by respective brain tumor MR imaging modes. In this paper, we propose an adaptive intuitionistic fuzzy sets-based scheme, called as AIFE, which takes information provided from different MR acquisitions and tries to enhance the normal and abnormal structural regions of the brain while displaying the enhanced results as a single image. The AIFE scheme firstly separates an input image into several sub images, then divides each sub image into object and background areas. After that, different novel fuzzification, hyperbolization and defuzzification operations are implemented on each object/background area, and finally an enhanced result is achieved via nonlinear fusion operators. The fuzzy implementations can be processed in parallel. Real data experiments demonstrate that the AIFE scheme is not only effectively useful to have information from images acquired with different MR sequences fused in a single image, but also has better enhancement performance when compared to conventional baseline algorithms. This indicates that the proposed AIFE scheme has potential for improving the detection and diagnosis of brain tumors.

  13. Adaptive Intuitionistic Fuzzy Enhancement of Brain Tumor MR Images

    Science.gov (United States)

    Deng, He; Deng, Wankai; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-10-01

    Image enhancement techniques are able to improve the contrast and visual quality of magnetic resonance (MR) images. However, conventional methods cannot make up some deficiencies encountered by respective brain tumor MR imaging modes. In this paper, we propose an adaptive intuitionistic fuzzy sets-based scheme, called as AIFE, which takes information provided from different MR acquisitions and tries to enhance the normal and abnormal structural regions of the brain while displaying the enhanced results as a single image. The AIFE scheme firstly separates an input image into several sub images, then divides each sub image into object and background areas. After that, different novel fuzzification, hyperbolization and defuzzification operations are implemented on each object/background area, and finally an enhanced result is achieved via nonlinear fusion operators. The fuzzy implementations can be processed in parallel. Real data experiments demonstrate that the AIFE scheme is not only effectively useful to have information from images acquired with different MR sequences fused in a single image, but also has better enhancement performance when compared to conventional baseline algorithms. This indicates that the proposed AIFE scheme has potential for improving the detection and diagnosis of brain tumors.

  14. Imaging Techniques for Diagnosis of Thoracic Aortic Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Wouter W. Jansen Klomp

    2016-01-01

    Full Text Available The most severe complications after cardiac surgery are neurological complications including stroke which is often caused by emboli merging from atherosclerosis in the ascending aorta to the brain. Information about the thoracic aorta is crucial in reducing the embolization risk for both surgical open and closed chest procedures such as transaortic heart valve implantation. Several techniques are available to screen the ascending aorta, for example, transesophageal echocardiography (TEE, epiaortic ultrasound, TEE A-view method, manual palpation, computed tomography, and magnetic resonance imaging. This paper provides a description of the advantages and disadvantages of these imaging techniques.

  15. Imaging Techniques for Diagnosis of Thoracic Aortic Atherosclerosis

    Science.gov (United States)

    Jansen Klomp, Wouter W.; Brandon Bravo Bruinsma, George J.; van 't Hof, Arnoud W.; Grandjean, Jan. G.; Nierich, Arno P.

    2016-01-01

    The most severe complications after cardiac surgery are neurological complications including stroke which is often caused by emboli merging from atherosclerosis in the ascending aorta to the brain. Information about the thoracic aorta is crucial in reducing the embolization risk for both surgical open and closed chest procedures such as transaortic heart valve implantation. Several techniques are available to screen the ascending aorta, for example, transesophageal echocardiography (TEE), epiaortic ultrasound, TEE A-view method, manual palpation, computed tomography, and magnetic resonance imaging. This paper provides a description of the advantages and disadvantages of these imaging techniques. PMID:26966580

  16. Brain magnetic resonance imaging findings in relapsing neuromyelitis optica.

    Science.gov (United States)

    Cabrera-Gómez, José A; Quevedo-Sotolongo, L; González-Quevedo, A; Lima, S; Real-González, Y; Cristófol-Corominas, M; Romero-García, K; Ugarte-Sánchez, C; Jordán-González, J; de la Nuez, J E González; Lahera, J García; Tellez, R; Pedroso-Ibañez, I; Roca, R Rodríguez; Cabrera-Núñez, A Y

    2007-03-01

    Some studies showed abnormalities in brain magnetic resonance imaging (MRI) of relapsing neuromyelitis optica (R-NMO) from 12 to 46%. These abnormalities are described as compatible/non-compatible with multiple sclerosis (MS). To describe the abnormal brain MRI lesions in R-NMO with imaging studies conducted with more sensitive white matter change techniques. Thirty patients with R-NMO were selected. All MRI brain studies were performed with a 1.5-T Siemens MRI system according to the Standardized MR Imaging Protocol for Multiple Sclerosis from the Consortium of MS Centers Consensus Guidelines. Brain MRI images were evaluated in 29 R-NMO cases because in one case the MRI images were not appropriate for the study. Of these 29 brain MRI studies, 19 cases (65.5%) had at least one or more lesions (1-57) and 10 were negative (34.4%). Brain MRI findings in 19 cases were characterized in T2/fluid-attenuated inversion-recovery (FLAIR) by the presence of subcortical/deep white matter lesions in 16 (84.2%) cases (1-50), most of them 3 mm, were observed in 4 (21.05%) cases without cerebellar involvement. T1 studies demonstrated absence of hypointense regions. Optic nerve enhancement was observed in 6/19 patients (31.5%). None of the brain MRI abnormalities observed were compatible with Barkhof et al. criteria of MS. This study, based on a Cuban patient population, with long duration of disease, good sample size and detailed characterization by MRI, demonstrated the brain MRI pattern of R-NMO patients, which is different from MS.

  17. Imaging brain microstructure with diffusion MRI: practicality and applications.

    Science.gov (United States)

    Alexander, Daniel C; Dyrby, Tim B; Nilsson, Markus; Zhang, Hui

    2017-11-29

    This article gives an overview of microstructure imaging of the brain with diffusion MRI and reviews the state of the art. The microstructure-imaging paradigm aims to estimate and map microscopic properties of tissue using a model that links these properties to the voxel scale MR signal. Imaging techniques of this type are just starting to make the transition from the technical research domain to wide application in biomedical studies. We focus here on the practicalities of both implementing such techniques and using them in applications. Specifically, the article summarizes the relevant aspects of brain microanatomy and the range of diffusion-weighted MR measurements that provide sensitivity to them. It then reviews the evolution of mathematical and computational models that relate the diffusion MR signal to brain tissue microstructure, as well as the expanding areas of application. Next we focus on practicalities of designing a working microstructure imaging technique: model selection, experiment design, parameter estimation, validation, and the pipeline of development of this class of technique. The article concludes with some future perspectives on opportunities in this topic and expectations on how the field will evolve in the short-to-medium term. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Brain imaging, genetics and emotion

    NARCIS (Netherlands)

    Aleman, Andre; Swart, Marte; van Rijn, Sophie

    This paper reviews the published evidence on genetically driven variation in neurotransmitter function and brain circuits involved in emotion. Several studies point to a role of the serotonin transporter promoter polymorphism in amygdala activation during emotion perception. We also discuss other

  19. Brain Basics

    Medline Plus

    Full Text Available ... imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies show that brain ... imaging technique that uses magnetic fields to take pictures of the brain's structure. mutation —A change in ...

  20. Filtering technique for image analysis

    NARCIS (Netherlands)

    Maggi, F.

    2003-01-01

    The measuring of the flocculation parameters is based on the analysis of the optical records obtained with the settling column. These records consist of images of aggregates or flocs grabbed with a digital camera. Flocs are lightened by means of a laser sheet coming from the side. The laser light is

  1. Control of brain metastases using frameless image-guided radiosurgery.

    Science.gov (United States)

    Chen, Joseph C T; Bugoci, Darlene M; Girvigian, Michael R; Miller, Michael J; Arellano, Alonso; Rahimian, Javad

    2009-12-01

    Radiosurgery is an important and well-accepted method in the management of brain metastases. Using conventional frame-based techniques, high lesional control rates are expected. The introduction of image-guided techniques allows for improved patient comfort and workflow. Some controversy exists as to the accuracy of imageguided techniques and consequently the impact they might have on control of brain metastases (as opposed to the level of control achieved with frame-based methods). The authors describe their initial 15-month experience with image-guided radiosurgery (IGRS) using Novalis with ExacTrac for management of brain metastases. The authors reviewed the cases of brain metastasis treated by means of IGRS in their tertiary regional radiation oncology service over a 15-month period. During the study period 54 patients (median age 57.9 years) harboring 108 metastases were treated with IGRS. The median time from cancer diagnosis to development of brain metastasis was 12 months (range 0-144 months). The median tumor volume was 0.98 cm(3) (range 0.03-19.07 cm(3)). The median prescribed dose was 18 Gy to the 80% isodose line (range 14-20 Gy). Lesions were followed with postradiosurgery MR imaging every 2-3 months following treatment. The median follow-up period was 9 months (range 0-20 months). Median actuarial survival was 8.6 months following IGRS. Eight patients with 18 lesions died within the first 2 months after the procedure, before scheduled follow-up imaging. Thus 90 lesions (in 46 patients) were followed up with imaging studies. Lesions that were unchanged or reduced in size were considered to be under control. The 6-month actuarial lesion control rate was 88%. Smaller lesions (Novalis with ExacTrac is equivalent to frame-based radiosurgery methods.

  2. Hybrid PET/MR Imaging and Brain Connectivity.

    Science.gov (United States)

    Aiello, Marco; Cavaliere, Carlo; Salvatore, Marco

    2016-01-01

    In recent years, brain connectivity is gaining ever-increasing interest from the interdisciplinary research community. The study of brain connectivity is characterized by a multifaceted approach providing both structural and functional evidence of the relationship between cerebral regions at different scales. Although magnetic resonance (MR) is the most established imaging modality for investigating connectivity in vivo, the recent advent of hybrid positron emission tomography (PET)/MR scanners paved the way for more comprehensive investigation of brain organization and physiology. Due to the high sensitivity and biochemical specificity of radiotracers, combining MR with PET imaging may enrich our ability to investigate connectivity by introducing the concept of metabolic connectivity and cometomics and promoting new insights on the physiological and molecular bases underlying high-level neural organization. This review aims to describe and summarize the main methods of analysis of brain connectivity employed in MR imaging and nuclear medicine. Moreover, it will discuss practical aspects and state-of-the-art techniques for exploiting hybrid PET/MR imaging to investigate the relationship of physiological processes and brain connectivity.

  3. Hybrid PET/MR Imaging and Brain Connectivity

    Directory of Open Access Journals (Sweden)

    Marco eAiello

    2016-03-01

    Full Text Available In recent years, brain connectivity is gaining ever-increasing interest from the interdisciplinary research community. The study of brain connectivity is characterized by a multifaceted approach providing both structural and functional evidence of the relationship between cerebral regions at different scales. Although magnetic resonance (MR is the most established imaging modality for investigating connectivity in vivo, the recent advent of hybrid positron emission tomography (PET/MR scanners paved the way for more comprehensive investigation of brain organization and physiology. Due to the high sensitivity and biochemical specificity of radiotracers, combining MR with PET imaging may enrich our ability to investigate connectivity by introducing the concept of metabolic connectivity and cometomics and promoting new insights on the physiological and molecular bases underlying high-level neural organization. This review aims to describe and summarize the main methods of analysis of brain connectivity employed in MR imaging and nuclear medicine. Moreover, it will discuss practical aspects and state-of-the-art techniques for exploiting hybrid PET/MR imaging to investigate the relationship of physiological processes and brain connectivity.

  4. Brain 'imaging' in the Renaissance.

    Science.gov (United States)

    Paluzzi, Alessandro; Belli, Antonio; Bain, Peter; Viva, Laura

    2007-12-01

    During the Renaissance, a period of 'rebirth' for humanities and science, new knowledge and speculation began to emerge about the function of the human body, replacing ancient religious and philosophical dogma. The brain must have been a fascinating mystery to a Renaissance artist, but some speculation existed at that time on the function of its parts. Here we show how revived interest in anatomy and life sciences may have influenced the figurative work of Italian and Flemish masters, such as Rafael, Michelangelo and David. We present a historical perspective on the artists and the period in which they lived, their fascination for human anatomy and its symbolic use in their art. Prior to the 16th century, knowledge of the brain was limited and influenced in a dogmatic way by the teachings of Galen(1) who, as we now know, conducted his anatomical studies not on humans but on animals.(2) Nemesus, Bishop of Emesa, in around the year 400 was one of the first to attribute mental faculties to the brain, specifically to the ventricles. He identified two anterior (lateral) ventricles, to which he assigned perception, a middle ventricle responsible for cognition and a posterior ventricle for memory.(2,3) After a long period of stasis in the Middle Ages, Renaissance scholars realized the importance of making direct observations on dissected cadavers. Between 1504 and 1507, Leonardo da Vinci conducted experiments to reveal the anatomy of the ventricular system in the brain. He injected hot wax through a tube thrust into the ventricular cavities of an ox and then scraped the overlying brain off, thus obtaining, in a simple but ingenious way, an accurate cast of the ventricles.(2,4) Leonardo shared the belief promoted by scholarly Christians that the ventricles were the abode of rational soul. We have several examples of hidden symbolism in Renaissance paintings, but the influence of phrenology and this rudimentary knowledge of neuroanatomy on artists of that period is under

  5. Topology-preserving tissue classification of magnetic resonance brain images.

    Science.gov (United States)

    Bazin, Pierre-Louis; Pham, Dzung L

    2007-04-01

    This paper presents a new framework for multiple object segmentation in medical images that respects the topological properties and relationships of structures as given by a template. The technique, known as topology-preserving, anatomy-driven segmentation (TOADS), combines advantages of statistical tissue classification, topology-preserving fast marching methods, and image registration to enforce object-level relationships with little constraint over the geometry. When applied to the problem of brain segmentation, it directly provides a cortical surface with spherical topology while segmenting the main cerebral structures. Validation on simulated and real images characterises the performance of the algorithm with regard to noise, inhomogeneities, and anatomical variations.

  6. History and evolution of brain tumor imaging: insights through radiology.

    Science.gov (United States)

    Castillo, Mauricio

    2014-11-01

    This review recounts the history of brain tumor diagnosis from antiquity to the present and, indirectly, the history of neuroradiology. Imaging of the brain has from the beginning held an enormous interest because of the inherent difficulty of this endeavor due to the presence of the skull. Because of this, most techniques when newly developed have always been used in neuroradiology and, although some have proved to be inappropriate for this purpose, many were easily incorporated into the specialty. The first major advance in modern neuroimaging was contrast agent-enhanced computed tomography, which permitted accurate anatomic localization of brain tumors and, by virtue of contrast enhancement, malignant ones. The most important advances in neuroimaging occurred with the development of magnetic resonance imaging and diffusion-weighted sequences that allowed an indirect estimation of tumor cellularity; this was further refined by the development of perfusion and permeability mapping. From its beginnings with indirect and purely anatomic imaging techniques, neuroradiology now uses a combination of anatomic and physiologic techniques that will play a critical role in biologic tumor imaging and radiologic genomics.

  7. Radionuclide brain imaging in acquired immunodeficiency syndrome (AIDS)

    Energy Technology Data Exchange (ETDEWEB)

    Costa, D.C.; Gacinovic, S.; Miller, R.F. [London University College Medical School, Middlesex Hospital, London (United Kingdom)

    1995-09-01

    Infection with the Human Immunodeficiency Virus type 1 (HIV-1) may produce a variety of central nervous system (CNS) symptoms and signs. CNS involvement in patients with the Acquired Immunodeficiency Syndrome (AIDS) includes AIDS dementia complex or HIV-1 associated cognitive/motor complex (widely known as HIV encephalopathy), progressive multifocal leucoencephalopathy (PML), opportunistic infections such as Toxoplasma gondii, TB, Cryptococcus and infiltration by non-Hodgkin`s B cell lymphoma. High resolution structural imaging investigations, either X-ray Computed Tomography (CT scan) or Magnetic Resonance Imaging (MRI) have contributed to the understanding and definition of cerebral damage caused by HIV encephalopathy. Atrophy and mainly high signal scattered white matter abnormalities are commonly seen with MRI. PML produces focal white matter high signal abnormalities due to multiple foci of demyelination. However, using structural imaging techniques there are no reliable parameters to distinguish focal lesions due to opportunistic infection (Toxoplasma gondii abscess) from neoplasm (lymphoma infiltration). It is studied the use of radionuclide brain imaging techniques in the investigation of HIV infected patients. Brain perfusion Single Photon Emission Tomography (SPET), neuroreceptor and Positron Emission Tomography (PET) studies are reviewed. Greater emphasis is put on the potential of some radiopharmaceuticals, considered to be brain tumour markers, to distinguish intracerebral lymphoma infiltration from Toxoplasma infection. SPET with {sup 201}Tl using quantification (tumour to non-tumour radioactivity ratios) appears a very promising technique to identify intracerebral lymphoma.

  8. Automatic segmentation of brain images: selection of region extraction methods

    Science.gov (United States)

    Gong, Leiguang; Kulikowski, Casimir A.; Mezrich, Reuben S.

    1991-07-01

    In automatically analyzing brain structures from a MR image, the choice of low level region extraction methods depends on the characteristics of both the target object and the surrounding anatomical structures in the image. The authors have experimented with local thresholding, global thresholding, and other techniques, using various types of MR images for extracting the major brian landmarks and different types of lesions. This paper describes specifically a local- binary thresholding method and a new global-multiple thresholding technique developed for MR image segmentation and analysis. The initial testing results on their segmentation performance are presented, followed by a comparative analysis of the two methods and their ability to extract different types of normal and abnormal brain structures -- the brain matter itself, tumors, regions of edema surrounding lesions, multiple sclerosis lesions, and the ventricles of the brain. The analysis and experimental results show that the global multiple thresholding techniques are more than adequate for extracting regions that correspond to the major brian structures, while local binary thresholding is helpful for more accurate delineation of small lesions such as those produced by MS, and for the precise refinement of lesion boundaries. The detection of other landmarks, such as the interhemispheric fissure, may require other techniques, such as line-fitting. These experiments have led to the formulation of a set of generic computer-based rules for selecting the appropriate segmentation packages for particular types of problems, based on which further development of an innovative knowledge- based, goal directed biomedical image analysis framework is being made. The system will carry out the selection automatically for a given specific analysis task.

  9. Molecular imaging of the brain. Using multi-quantum coherence and diagnostics of brain disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kaila, M.M. [New South Wales Univ., Sydney, NSW (Australia). School of Physics; Kaila, Rakhi [Univ. of New South Wales, Sydney (Australia). School of Medicine

    2013-11-01

    Explains the basics of the MRI and its use in the diagnostics and the treatment of the human brain disorders. Examines multi-quantum magnetic resonance imaging methods and the diagnostics of brain disorders. Covers how in a non-invasive manner one can diagnose diseases of the brain. This book examines multi-quantum magnetic resonance imaging methods and the diagnostics of brain disorders. It consists of two Parts. The part I is initially devoted towards the basic concepts of the conventional single quantum MRI techniques. It is supplemented by the basic knowledge required to understand multi-quantum MRI. Practical illustrations are included both on recent developments in conventional MRI and the MQ-MRI. This is to illustrate the connection between theoretical concepts and their scope in the clinical applications. The Part II initially sets out the basic details about quadrupole charge distribution present in certain nuclei and their importance about the functions they perform in our brain. Some simplified final mathematical expressions are included to illustrate facts about the basic concepts of the quantum level interactions between magnetic dipole and the electric quadrupole behavior of useful nuclei present in the brain. Selected practical illustrations, from research and clinical practices are included to illustrate the newly emerging ideas and techniques. The reader should note that the two parts of the book are written with no interdependence. One can read them quite independently.

  10. Image processing techniques for remote sensing data

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    interpretation and for processing of scene data for autonomous machine perception. The technique of digital image processing are used for' automatic character/pattern recognition, industrial robots for product assembly and inspection, military recognizance...

  11. CARS and non-linear microscopy imaging of brain tumors

    Science.gov (United States)

    Galli, Roberta; Uckermann, Ortrud; Tamosaityte, Sandra; Geiger, Kathrin; Schackert, Gabriele; Steiner, Gerald; Koch, Edmund; Kirsch, Matthias

    2013-06-01

    Nonlinear optical microscopy offers a series of techniques that have the potential to be applied in vivo, for intraoperative identification of tumor border and in situ pathology. By addressing the different content of lipids that characterize the tumors with respect to the normal brain tissue, CARS microscopy enables to discern primary and secondary brain tumors from healthy tissue. A study performed in mouse models shows that the reduction of the CARS signal is a reliable quantity to identify brain tumors, irrespective from the tumor type. Moreover it enables to identify tumor borders and infiltrations at a cellular resolution. Integration of CARS with autogenous TPEF and SHG adds morphological and compositional details about the tissue. Examples of multimodal CARS imaging of different human tumor biopsies demonstrate the ability of the technique to retrieve information useful for histopathological diagnosis.

  12. Terahertz Imaging Systems With Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Krozer, Viktor; Löffler, Torsten; Dall, Jørgen

    2010-01-01

    in this paper. An active system operation allows for a wide dynamic range, which is important for image quality. The described instruments employ a multichannel high-sensitivity heterodyne architecture and aperture filling techniques, with close to real-time image acquisition time. In the case of the photonic...... imaging system, mechanical scanning is completely obsolete. We show 2-D images of simulated 3-D image data for both systems. The reconstruction algorithms are suitable for 3-D real-time operation, only limited by mechanical scanning....

  13. A comparison of image inpainting techniques

    Science.gov (United States)

    Liu, Yaojie; Shu, Chang

    2015-03-01

    Image inpainting is an important research topic in the field of image processing. The objective of inpainting is to "guess" the lost information according to surrounding image information, which can be applied in old photo restoration, object removal and demosaicing. Based on the foundation of previous literature of image inpainting and image modeling, this paper provides an overview of the state-of-art image inpainting methods. This survey first covers mathematics models of inpainting and different kinds of image impairment. Then it goes to the main components of an image, the structure and the texture, and states how these inpainting models and algorithms deal with the two separately, using PDE's method, exemplar-based method and etc. Afterwards sparse-representation-based inpainting and related techniques are introduced. Experimental analysis will be presented to evaluate the relative merits of different algorithms, with the measure of Peak Signal to Noise Ratio (PSNR) as well as direct visual perception.

  14. Lung Cancer Detection Using Image Processing Techniques

    Directory of Open Access Journals (Sweden)

    Mokhled S. AL-TARAWNEH

    2012-08-01

    Full Text Available Recently, image processing techniques are widely used in several medical areas for image improvement in earlier detection and treatment stages, where the time factor is very important to discover the abnormality issues in target images, especially in various cancer tumours such as lung cancer, breast cancer, etc. Image quality and accuracy is the core factors of this research, image quality assessment as well as improvement are depending on the enhancement stage where low pre-processing techniques is used based on Gabor filter within Gaussian rules. Following the segmentation principles, an enhanced region of the object of interest that is used as a basic foundation of feature extraction is obtained. Relying on general features, a normality comparison is made. In this research, the main detected features for accurate images comparison are pixels percentage and mask-labelling.

  15. Brain imaging of affective disorders and schizophrenia.

    Science.gov (United States)

    Kishimoto, H; Yamada, K; Iseki, E; Kosaka, K; Okoshi, T

    1998-12-01

    We review recent findings in human brain imaging, for example, which brain areas are used during perception of colors, moving objects, human faces, facial expressions, sadness and happiness etc. One study used fluorine-18-labeled deoxyglucose positron emission tomography (PET) in patients with unipolar depression and bipolar depression, and found hypometabolism in the left anterolateral prefrontal cortex. Another study reported increased regional cerebral blood flow in the amygdala in familial pure depressive disease. Using 11C-glucose PET, we reported that the glutamic acid pool was reduced in cortical areas of the brain in patients with major depression. We also found that the thalamic and cingulate areas were hyperactive in drug-naive (never medicated) acute schizophrenics, while the associative frontal, parietal, temporal gyri were hypoactive in drug-naive chronic schizophrenics. Brain biochemical disturbances of schizophrenic patients involved glutamic acid, N-acetyl aspartic acid, phosphatidylcholine and sphingomyelin which are important chemical substances in the working brain. The areas of the thalamus and the cingulate which become hyperactive in acute schizophrenic patients are important brain areas for perception and communication. The association areas of the cortex which become disturbed in chronic schizophrenia are essential brain areas in human creativity (language, concepts, formation of cultures and societies) and exist only in human beings.

  16. Superresolution imaging: a survey of current techniques

    Science.gov (United States)

    Cristóbal, G.; Gil, E.; Šroubek, F.; Flusser, J.; Miravet, C.; Rodríguez, F. B.

    2008-08-01

    Imaging plays a key role in many diverse areas of application, such as astronomy, remote sensing, microscopy, and tomography. Owing to imperfections of measuring devices (e.g., optical degradations, limited size of sensors) and instability of the observed scene (e.g., object motion, media turbulence), acquired images can be indistinct, noisy, and may exhibit insuffcient spatial and temporal resolution. In particular, several external effects blur images. Techniques for recovering the original image include blind deconvolution (to remove blur) and superresolution (SR). The stability of these methods depends on having more than one image of the same frame. Differences between images are necessary to provide new information, but they can be almost unperceivable. State-of-the-art SR techniques achieve remarkable results in resolution enhancement by estimating the subpixel shifts between images, but they lack any apparatus for calculating the blurs. In this paper, after introducing a review of current SR techniques we describe two recently developed SR methods by the authors. First, we introduce a variational method that minimizes a regularized energy function with respect to the high resolution image and blurs. In this way we establish a unifying way to simultaneously estimate the blurs and the high resolution image. By estimating blurs we automatically estimate shifts with subpixel accuracy, which is inherent for good SR performance. Second, an innovative learning-based algorithm using a neural architecture for SR is described. Comparative experiments on real data illustrate the robustness and utilization of both methods.

  17. Multimodal Imaging Brain Connectivity Analysis (MIBCA toolbox

    Directory of Open Access Journals (Sweden)

    Andre Santos Ribeiro

    2015-07-01

    Full Text Available Aim. In recent years, connectivity studies using neuroimaging data have increased the understanding of the organization of large-scale structural and functional brain networks. However, data analysis is time consuming as rigorous procedures must be assured, from structuring data and pre-processing to modality specific data procedures. Until now, no single toolbox was able to perform such investigations on truly multimodal image data from beginning to end, including the combination of different connectivity analyses. Thus, we have developed the Multimodal Imaging Brain Connectivity Analysis (MIBCA toolbox with the goal of diminishing time waste in data processing and to allow an innovative and comprehensive approach to brain connectivity.Materials and Methods. The MIBCA toolbox is a fully automated all-in-one connectivity toolbox that offers pre-processing, connectivity and graph theoretical analyses of multimodal image data such as diffusion-weighted imaging, functional magnetic resonance imaging (fMRI and positron emission tomography (PET. It was developed in MATLAB environment and pipelines well-known neuroimaging softwares such as Freesurfer, SPM, FSL, and Diffusion Toolkit. It further implements routines for the construction of structural, functional and effective or combined connectivity matrices, as well as, routines for the extraction and calculation of imaging and graph-theory metrics, the latter using also functions from the Brain Connectivity Toolbox. Finally, the toolbox performs group statistical analysis and enables data visualization in the form of matrices, 3D brain graphs and connectograms. In this paper the MIBCA toolbox is presented by illustrating its capabilities using multimodal image data from a group of 35 healthy subjects (19–73 years old with volumetric T1-weighted, diffusion tensor imaging, and resting state fMRI data, and 10 subjets with 18F-Altanserin PET data also.Results. It was observed both a high inter

  18. Transport, monitoring, and successful brain MR imaging in unsedated neonates

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Amit M. [St. Louis Children' s Hospital at the Washington University School of Medicine, Department of Pediatrics and Newborn Medicine, St. Louis, MO (United States); St. Louis Children' s Hospital, Division of Newborn Medicine, St. Louis, MO (United States); Neil, Jeffrey J. [St. Louis Children' s Hospital at the Washington University School of Medicine, Department of Neurology, St. Louis, MO (United States); Mallinckrodt Institute of Radiology, St. Louis, MO (United States); McKinstry, Robert C. [Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Inder, Terrie E. [St. Louis Children' s Hospital at the Washington University School of Medicine, Department of Pediatrics and Newborn Medicine, St. Louis, MO (United States); St. Louis Children' s Hospital at the Washington University School of Medicine, Department of Neurology, St. Louis, MO (United States); Mallinckrodt Institute of Radiology, St. Louis, MO (United States)

    2008-03-15

    Neonatal cerebral MR imaging is a sensitive technique for evaluating brain injury in the term and preterm infant. In term encephalopathic infants, MR imaging reliably detects not only the pattern of brain injury but might also provide clues about the timing of injury. In premature infants, MR imaging has surpassed US in the detection of white matter injury, a common lesion in this population. Concerns remain about the safety and transport of sedated neonates for MR examination to radiology suites, which are usually located at a distance from neonatal intensive care units. We present our own institutional experience and guidelines used to optimize the performance of cerebral MR examinations in neonates without sedation or anesthesia. (orig.)

  19. 3D quantitative analysis of brain SPECT images

    Science.gov (United States)

    Loncaric, Sven; Ceskovic, Ivan; Petrovic, Ratimir; Loncaric, Srecko

    2001-07-01

    The main purpose of this work is to develop a computer-based technique for quantitative analysis of 3-D brain images obtained by single photon emission computed tomography (SPECT). In particular, the volume and location of ischemic lesion and penumbra is important for early diagnosis and treatment of infracted regions of the brain. SPECT imaging is typically used as diagnostic tool to assess the size and location of the ischemic lesion. The segmentation method presented in this paper utilizes a 3-D deformable model in order to determine size and location of the regions of interest. The evolution of the model is computed using a level-set implementation of the algorithm. In addition to 3-D deformable model the method utilizes edge detection and region growing for realization of a pre-processing. Initial experimental results have shown that the method is useful for SPECT image analysis.

  20. Brain Basics

    Medline Plus

    Full Text Available ... technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's ... resonance imaging (MRI) mdash;An imaging technique that uses magnetic fields to take pictures of the brain's ...

  1. Exploring miniature insect brains using micro-CT scanning techniques

    OpenAIRE

    Smith, Dylan B.; Galina Bernhardt; Nigel E. Raine; Abel, Richard L.; Dan Sykes; Farah Ahmed; Inti Pedroso; Gill, Richard J.

    2016-01-01

    The capacity to explore soft tissue structures in detail is important in understanding animal physiology and how this determines features such as movement, behaviour and the impact of trauma on regular function. Here we use advances in micro-computed tomography (micro-CT) technology to explore the brain of an important insect pollinator and model organism, the bumblebee (Bombus terrestris). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue ...

  2. Infectious diseases of the brain: imaging and differential diagnosis; Infektioese Hirnerkrankungen: Bildgebung und differenzialdiagnostische Aspekte

    Energy Technology Data Exchange (ETDEWEB)

    Haehnel, S.; Seitz, A. [Abt. Neuroradiologie, Neurologische Klinik, Universitaetsklinikum Heidelberg (Germany); Storch-Hagenlocher, B. [Abt. Neurologie, Neurologische Klinik, Universitaetsklinikum Heidelberg (Germany)

    2006-09-15

    Infectious diseases of the central nervous system have to be considered in differential diagnosis particularly in immunocompromised persons. Neuro-imaging, specifically advanced techniques such as diffusion weighted MRI and perfusion MRI contribute much to the differentiation of brain infections and for differentiating brain infections from other, for instance, neoplastic diseases. In this review we present the imaging criteria of the most important brains infections in adults and in pediatric patients and discuss differential diagnostic aspects in detail. (orig.)

  3. A comparison of sequential and spiral scanning techniques in brain CT.

    Science.gov (United States)

    Pace, Ivana; Zarb, Francis

    2015-01-01

    To evaluate and compare image quality and radiation dose of sequential computed tomography (CT) examinations of the brain and spiral CT examinations of the brain imaged on a GE HiSpeed NX/I Dual Slice 2CT scanner. A random sample of 40 patients referred for CT examination of the brain was selected and divided into 2 groups. Half of the patients were scanned using the sequential technique; the other half were scanned using the spiral technique. Radiation dose data—both the computed tomography dose index (CTDI) and the dose length product (DLP)—were recorded on a checklist at the end of each examination. Using the European Guidelines on Quality Criteria for Computed Tomography, 4 radiologists conducted a visual grading analysis and rated the level of visibility of 6 anatomical structures considered necessary to produce images of high quality. The mean CTDI(vol) and DLP values were statistically significantly higher (P vol): 22.06 mGy; DLP: 304.60 mGy • cm) than with the spiral scans (CTDI(vol): 14.94 mGy; DLP: 229.10 mGy • cm). The mean image quality rating scores for all criteria of the sequential scanning technique were statistically significantly higher (P <.05) in the visual grading analysis than those of the spiral scanning technique. In this local study, the sequential technique was preferred over the spiral technique for both overall image quality and differentiation between gray and white matter in brain CT scans. Other similar studies counter this finding. The radiation dose seen with the sequential CT scanning technique was significantly higher than that seen with the spiral CT scanning technique. However, image quality with the sequential technique was statistically significantly superior (P <.05).

  4. Semiautomatic brain morphometry from CT images

    Science.gov (United States)

    Soltanian-Zadeh, Hamid; Windham, Joe P.; Peck, Donald J.

    1994-05-01

    Fast, accurate, and reproducible volume estimation is vital to the diagnosis, treatment, and evaluation of many medical situations. We present the development and application of a semi-automatic method for estimating volumes of normal and abnormal brain tissues from computed tomography images. This method does not require manual drawing of the tissue boundaries. It is therefore expected to be faster and more reproducible than conventional methods. The steps of the new method are as follows. (1) The intracranial brain volume is segmented from the skull and background using thresholding and morphological operations. (2) The additive noise is suppressed (the image is restored) using a non-linear edge-preserving filter which preserves partial volume information on average. (3) The histogram of the resulting low-noise image is generated and the dominant peak is removed from it using a Gaussian model. (4) Minima and maxima of the resulting histogram are identified and using a minimum error criterion, the brain is segmented into the normal tissues (white matter and gray matter), cerebrospinal fluid, and lesions, if present. (5) Previous steps are repeated for each slice through the brain and the volume of each tissue type is estimated from the results. Details and significance of each step are explained. Experimental results using a simulation, a phantom, and selected clinical cases are presented.

  5. Visceral Afferent Pathways and Functional Brain Imaging

    Directory of Open Access Journals (Sweden)

    Stuart W.G. Derbyshire

    2003-01-01

    Full Text Available The application of functional imaging to study painful sensations has generated considerable interest regarding insight into brain dysfunction that may be responsible for functional pain such as that suffered in patients with irritable bowel syndrome (IBS. This review provides a brief introduction to the development of brain science as it relates to pain processing and a snapshot of recent functional imaging results with somatic and visceral pain. Particular emphasis is placed on current hypotheses regarding dysfunction of the brain-gut axis in IBS patients. There are clear and interpretable differences in brain activation following somatic as compared with visceral noxious sensation. Noxious visceral distension, particularly of the lower gastrointestinal tract, activates regions associated with unpleasant affect and autonomic responses. Noxious somatic sensation, in contrast, activates regions associated with cognition and skeletomotor responses. Differences between IBS patients and control subjects, however, were far less clear and interpretable. While this is in part due to the newness of this field, it also reflects weaknesses inherent within the current understanding of IBS. Future use of functional imaging to examine IBS and other functional disorders will be more likely to succeed by describing clear theoretical and clinical endpoints.

  6. Phase imaging in brain using SWIFT

    Science.gov (United States)

    Lehto, Lauri Juhani; Garwood, Michael; Gröhn, Olli; Corum, Curtis Andrew

    2015-03-01

    The majority of MRI phase imaging is based on gradient recalled echo (GRE) sequences. This work studies phase contrast behavior due to small off-resonance frequency offsets in brain using SWIFT, a FID-based sequence with nearly zero acquisition delay. 1D simulations and a phantom study were conducted to describe the behavior of phase accumulation in SWIFT. Imaging experiments of known brain phase contrast properties were conducted in a perfused rat brain comparing GRE and SWIFT. Additionally, a human brain sample was imaged. It is demonstrated how SWIFT phase is orientation dependent and correlates well with GRE, linking SWIFT phase to similar off-resonance sources as GRE. The acquisition time is shown to be analogous to TE for phase accumulation time. Using experiments with and without a magnetization transfer preparation, the likely effect of myelin water pool contribution is seen as a phase increase for all acquisition times. Due to the phase accumulation during acquisition, SWIFT phase contrast can be sensitized to small frequency differences between white and gray matter using low acquisition bandwidths.

  7. Ultrasonic Imaging Techniques for Breast Cancer Detection

    Science.gov (United States)

    Goulding, N. R.; Marquez, J. D.; Prewett, E. M.; Claytor, T. N.; Nadler, B. R.

    2008-02-01

    Improving the resolution and specificity of current ultrasonic imaging technology is needed to enhance its relevance to breast cancer detection. A novel ultrasonic imaging reconstruction method is described that exploits classical straight-ray migration. This novel method improves signal processing for better image resolution and uses novel staging hardware options using a pulse-echo approach. A breast phantom with various inclusions is imaged using the classical migration method and is compared to standard computed tomography (CT) scans. These innovative ultrasonic methods incorporate ultrasound data acquisition, beam profile characterization, and image reconstruction. For an ultrasonic frequency of 2.25 MHz, imaged inclusions of approximately 1 cm are resolved and identified. Better resolution is expected with minor modifications. Improved image quality and resolution enables earlier detection and more accurate diagnoses of tumors thus reducing the number of biopsies performed, increasing treatment options, and lowering remission percentages. Using these new techniques the inclusions in the phantom are resolved and compared to the results of standard methods. Refinement of this application using other imaging techniques such as time-reversal mirrors (TRM), synthetic aperture focusing technique (SAFT), decomposition of the time reversal operator (DORT), and factorization methods is also discussed.

  8. A comparison of signal processing techniques for Intrinsic Optical Signal imaging in mice.

    Science.gov (United States)

    Turley, Jordan A; Nilsson, Michael; Walker, Frederick Rohan; Johnson, Sarah J

    2015-01-01

    Intrinsic Optical Signal imaging is a technique which allows the visualisation and mapping of activity related changes within the brain with excellent spatial and temporal resolution. We analysed a variety of signal and image processing techniques applied to real mouse imaging data. The results were compared in an attempt to overcome the unique issues faced when performing the technique on mice and improve the understanding of post processing options available.

  9. Image fusion techniques in permanent seed implantation

    Directory of Open Access Journals (Sweden)

    Alfredo Polo

    2010-10-01

    Full Text Available Over the last twenty years major software and hardware developments in brachytherapy treatment planning, intraoperative navigation and dose delivery have been made. Image-guided brachytherapy has emerged as the ultimate conformal radiation therapy, allowing precise dose deposition on small volumes under direct image visualization. In thisprocess imaging plays a central role and novel imaging techniques are being developed (PET, MRI-MRS and power Doppler US imaging are among them, creating a new paradigm (dose-guided brachytherapy, where imaging is used to map the exact coordinates of the tumour cells, and to guide applicator insertion to the correct position. Each of these modalities has limitations providing all of the physical and geometric information required for the brachytherapy workflow.Therefore, image fusion can be used as a solution in order to take full advantage of the information from each modality in treatment planning, intraoperative navigation, dose delivery, verification and follow-up of interstitial irradiation.Image fusion, understood as the visualization of any morphological volume (i.e. US, CT, MRI together with an additional second morpholo gical volume (i.e. CT, MRI or functional dataset (functional MRI, SPECT, PET, is a well known method for treatment planning, verification and follow-up of interstitial irradiation. The term image fusion is used when multiple patient image datasets are registered and overlaid or merged to provide additional information. Fused images may be created from multiple images from the same imaging modality taken at different moments (multi-temporalapproach, or by combining information from multiple modalities. Quality means that the fused images should provide additional information to the brachythe rapy process (diagnosis and staging, treatment planning, intraoperative imaging, treatment delivery and follow-up that cannot be obtained in other ways. In this review I will focus on the role of

  10. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury

    Directory of Open Access Journals (Sweden)

    Quan Jiang

    2016-01-01

    Full Text Available Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance imaging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic.

  11. Magnetic resonance imaging in diffuse brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Hiroyuki; Yasuda, Kazuhiro; Mashiko, Kunihiro; Henmi, Hiroshi; Otsuka, Toshibumi; Kobayashi, Shiro; Nakazawa, Shozo (Nippon Medical School, Tokyo (Japan))

    1992-01-01

    Forty cases diagnosed as diffuse brain injury (DBI) were studied by magnetic resonance imaging (MRI) performed within 3 days after injury. These cases were divided into two groups, which were the concussion group and diffuse axonal injury (DAI) group established by Gennarelli. There were no findings on computerized tomography (CT) in the concussion group except for two cases which had a brain edema or subarachnoid hemorrhage. But on MRI, high intensity areas on T2 weighted imaging were demonstrated in the cerebral white matter in this group. Many lesions in this group were thought to be edemas of the cerebral white matter, because of the fact that on serial MRI, they were isointense. In mild types of DAI, the lesions on MRI were located only in the cerebral white matter, whereas, in the severe types of DAI, lesions were located in the basal ganglia, the corpus callosum, the dorsal part of the brain stem as well as in the cerebral white matter. As for CT findings, parenchymal lesions were not visualized especially in mild DAI. Our results suggested that the lesions in cerebral concussion were edemas in cerebral white matter. In mild DAI they were non-hemorrhagic contusion; and in severe DAI they were hemorrhagic contusions in the cerebral white matter, the basal ganglia, the corpus callosum or the dorsal part of the brain stem. (author).

  12. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging

    KAUST Repository

    Magistretti, Pierre J.

    2015-05-01

    The energy demands of the brain are high: they account for at least 20% of the body\\'s energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and pointat a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales. © 2015 Elsevier Inc.

  13. Cellular imaging electron tomography and related techniques

    CERN Document Server

    2018-01-01

    This book highlights important techniques for cellular imaging and covers the basics and applications of electron tomography and related techniques. In addition, it considers practical aspects and broadens the technological focus by incorporating techniques that are only now becoming accessible (e.g. block face imaging).  The first part of the book describes the electron microscopy 3D technique available to scientists around the world, allowing them to characterize organelles, cells and tissues. The major emphasis is on new technologies like scanning transmission electron microscopy (STEM) tomography, though the book also reviews some of the more proven technologies like electron tomography. In turn, the second part is dedicated to the reconstruction of data sets, signal improvement and interpretation.

  14. Retinal Image Simulation of Subjective Refraction Techniques.

    Science.gov (United States)

    Perches, Sara; Collados, M Victoria; Ares, Jorge

    2016-01-01

    Refraction techniques make it possible to determine the most appropriate sphero-cylindrical lens prescription to achieve the best possible visual quality. Among these techniques, subjective refraction (i.e., patient's response-guided refraction) is the most commonly used approach. In this context, this paper's main goal is to present a simulation software that implements in a virtual manner various subjective-refraction techniques--including Jackson's Cross-Cylinder test (JCC)--relying all on the observation of computer-generated retinal images. This software has also been used to evaluate visual quality when the JCC test is performed in multifocal-contact-lens wearers. The results reveal this software's usefulness to simulate the retinal image quality that a particular visual compensation provides. Moreover, it can help to gain a deeper insight and to improve existing refraction techniques and it can be used for simulated training.

  15. Exploring miniature insect brains using micro-CT scanning techniques.

    Science.gov (United States)

    Smith, Dylan B; Bernhardt, Galina; Raine, Nigel E; Abel, Richard L; Sykes, Dan; Ahmed, Farah; Pedroso, Inti; Gill, Richard J

    2016-02-24

    The capacity to explore soft tissue structures in detail is important in understanding animal physiology and how this determines features such as movement, behaviour and the impact of trauma on regular function. Here we use advances in micro-computed tomography (micro-CT) technology to explore the brain of an important insect pollinator and model organism, the bumblebee (Bombus terrestris). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue free from trauma and in its natural stereo-geometry, and showcase our 3D reconstructions and analyses of 19 individual brains at high resolution. Development of this protocol allows relatively rapid and cost effective brain reconstructions, making it an accessible methodology to the wider scientific community. The protocol describes the necessary steps for sample preparation, tissue staining, micro-CT scanning and 3D reconstruction, followed by a method for image analysis using the freeware SPIERS. These image analysis methods describe how to virtually extract key composite structures from the insect brain, and we demonstrate the application and precision of this method by calculating structural volumes and investigating the allometric relationships between bumblebee brain structures.

  16. Red flag imaging techniques in Barrett's esophagus.

    Science.gov (United States)

    Saxena, Payal; Canto, Marcia Irene

    2013-07-01

    The key to detection and treatment of early neoplasia in Barrett's esophagus (BE) is thorough and careful inspection of the Barrett's segment. The greatest role for red flag techniques is to help identify neoplastic lesions for targeted biopsy and therapy. High-definition white light endoscopy (HD-WLE) can potentially improve endoscopic imaging of BE compared with standard endoscopy, but little scientific evidence supports this. The addition of autofluorescence imaging to HD-WLE and narrow band imaging increases sensitivity and the false-positive rate without significantly improving overall detection of BE-related neoplasia. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. FCM Clustering Algorithms for Segmentation of Brain MR Images

    OpenAIRE

    Yogita K. Dubey; Mushrif, Milind M.

    2016-01-01

    The study of brain disorders requires accurate tissue segmentation of magnetic resonance (MR) brain images which is very important for detecting tumors, edema, and necrotic tissues. Segmentation of brain images, especially into three main tissue types: Cerebrospinal Fluid (CSF), Gray Matter (GM), and White Matter (WM), has important role in computer aided neurosurgery and diagnosis. Brain images mostly contain noise, intensity inhomogeneity, and weak boundaries. Therefore, accurate segmentati...

  18. Quantitative Techniques in PET-CT Imaging

    NARCIS (Netherlands)

    Basu, Sandip; Zaidi, Habib; Holm, Soren; Alavi, Abass

    The appearance of hybrid PET/CT scanners has made quantitative whole body scanning of radioactive tracers feasible. This paper deals with the novel concepts for assessing global organ function and disease activity based on combined functional (PET) and structural (CT or MR) imaging techniques, their

  19. Retinal Imaging Techniques for Diabetic Retinopathy Screening

    Science.gov (United States)

    Goh, James Kang Hao; Cheung, Carol Y.; Sim, Shaun Sebastian; Tan, Pok Chien; Tan, Gavin Siew Wei; Wong, Tien Yin

    2016-01-01

    Due to the increasing prevalence of diabetes mellitus, demand for diabetic retinopathy (DR) screening platforms is steeply increasing. Early detection and treatment of DR are key public health interventions that can greatly reduce the likelihood of vision loss. Current DR screening programs typically employ retinal fundus photography, which relies on skilled readers for manual DR assessment. However, this is labor-intensive and suffers from inconsistency across sites. Hence, there has been a recent proliferation of automated retinal image analysis software that may potentially alleviate this burden cost-effectively. Furthermore, current screening programs based on 2-dimensional fundus photography do not effectively screen for diabetic macular edema (DME). Optical coherence tomography is becoming increasingly recognized as the reference standard for DME assessment and can potentially provide a cost-effective solution for improving DME detection in large-scale DR screening programs. Current screening techniques are also unable to image the peripheral retina and require pharmacological pupil dilation; ultra-widefield imaging and confocal scanning laser ophthalmoscopy, which address these drawbacks, possess great potential. In this review, we summarize the current DR screening methods using various retinal imaging techniques, and also outline future possibilities. Advances in retinal imaging techniques can potentially transform the management of patients with diabetes, providing savings in health care costs and resources. PMID:26830491

  20. Quantifying structural alterations in Alzheimer's disease brains using quantitative phase imaging (Conference Presentation)

    Science.gov (United States)

    Lee, Moosung; Lee, Eeksung; Jung, JaeHwang; Yu, Hyeonseung; Kim, Kyoohyun; Yoon, Jonghee; Lee, Shinhwa; Jeong, Yong; Park, YongKeun

    2017-02-01

    Imaging brain tissues is an essential part of neuroscience because understanding brain structure provides relevant information about brain functions and alterations associated with diseases. Magnetic resonance imaging and positron emission tomography exemplify conventional brain imaging tools, but these techniques suffer from low spatial resolution around 100 μm. As a complementary method, histopathology has been utilized with the development of optical microscopy. The traditional method provides the structural information about biological tissues to cellular scales, but relies on labor-intensive staining procedures. With the advances of illumination sources, label-free imaging techniques based on nonlinear interactions, such as multiphoton excitations and Raman scattering, have been applied to molecule-specific histopathology. Nevertheless, these techniques provide limited qualitative information and require a pulsed laser, which is difficult to use for pathologists with no laser training. Here, we present a label-free optical imaging of mouse brain tissues for addressing structural alteration in Alzheimer's disease. To achieve the mesoscopic, unlabeled tissue images with high contrast and sub-micrometer lateral resolution, we employed holographic microscopy and an automated scanning platform. From the acquired hologram of the brain tissues, we could retrieve scattering coefficients and anisotropies according to the modified scattering-phase theorem. This label-free imaging technique enabled direct access to structural information throughout the tissues with a sub-micrometer lateral resolution and presented a unique means to investigate the structural changes in the optical properties of biological tissues.

  1. Molecular Imaging of the Brain Using Multi-Quantum Coherence and Diagnostics of Brain Disorders

    CERN Document Server

    Kaila, M M

    2013-01-01

    This book examines multi-quantum magnetic resonance imaging methods and the diagnostics of brain disorders. It consists of two Parts. The part I is initially devoted towards the basic concepts of the conventional single quantum MRI techniques. It is supplemented by the basic knowledge required to understand multi-quantum MRI. Practical illustrations are included both on recent developments in conventional MRI and the MQ-MRI. This is to illustrate the connection between theoretical concepts and their scope in the clinical applications. The Part II initially sets out the basic details about quadrupole charge distribution present in certain nuclei and their importance about the functions they perform in our brain. Some simplified final mathematical expressions are included to illustrate facts about the basic concepts of the quantum level interactions between magnetic dipole and the electric quadrupole behavior of useful nuclei present in the brain. Selected practical illustrations, from research and clinical pra...

  2. Development of integrated semiconductor optical sensors for functional brain imaging

    Science.gov (United States)

    Lee, Thomas T.

    Optical imaging of neural activity is a widely accepted technique for imaging brain function in the field of neuroscience research, and has been used to study the cerebral cortex in vivo for over two decades. Maps of brain activity are obtained by monitoring intensity changes in back-scattered light, called Intrinsic Optical Signals (IOS), that correspond to fluctuations in blood oxygenation and volume associated with neural activity. Current imaging systems typically employ bench-top equipment including lamps and CCD cameras to study animals using visible light. Such systems require the use of anesthetized or immobilized subjects with craniotomies, which imposes limitations on the behavioral range and duration of studies. The ultimate goal of this work is to overcome these limitations by developing a single-chip semiconductor sensor using arrays of sources and detectors operating at near-infrared (NIR) wavelengths. A single-chip implementation, combined with wireless telemetry, will eliminate the need for immobilization or anesthesia of subjects and allow in vivo studies of free behavior. NIR light offers additional advantages because it experiences less absorption in animal tissue than visible light, which allows for imaging through superficial tissues. This, in turn, reduces or eliminates the need for traumatic surgery and enables long-term brain-mapping studies in freely-behaving animals. This dissertation concentrates on key engineering challenges of implementing the sensor. This work shows the feasibility of using a GaAs-based array of vertical-cavity surface emitting lasers (VCSELs) and PIN photodiodes for IOS imaging. I begin with in-vivo studies of IOS imaging through the skull in mice, and use these results along with computer simulations to establish minimum performance requirements for light sources and detectors. I also evaluate the performance of a current commercial VCSEL for IOS imaging, and conclude with a proposed prototype sensor.

  3. A Jones matrix formalism for simulating three-dimensional polarized light imaging of brain tissue

    NARCIS (Netherlands)

    Menzel, M.; Michielsen, K.; De Raedt, H.; Reckfort, J.; Amunts, K.; Axer, M.

    2015-01-01

    The neuroimaging technique three-dimensional polarized light imaging (3D-PLI) provides a high-resolution reconstruction of nerve fibres in human post-mortem brains. The orientations of the fibres are derived from birefringence measurements of histological brain sections assuming that the nerve

  4. ADVANCED OPTICAL TECHNIQUES TO EXPLORE BRAIN STRUCTURE AND FUNCTION

    OpenAIRE

    Silvestri, L.; A. L. ALLEGRA MASCARO; Lotti, J.; Sacconi, L.; Pavone, F.S.

    2013-01-01

    Understanding brain structure and function, and the complex relationships between them, is one of the grand challenges of contemporary sciences. Thanks to their flexibility, optical techniques could be the key to explore this complex network. In this manuscript, we briefly review recent advancements in optical methods applied to three main issues: anatomy, plasticity and functionality. We describe novel implementations of light-sheet microscopy to resolve neuronal anatomy in whole fixed brain...

  5. Incorporating virtual reality graphics with brain imaging for assessment of sport-related concussions.

    Science.gov (United States)

    Slobounov, Semyon; Sebastianelli, Wayne; Newell, Karl M

    2011-01-01

    There is a growing concern that traditional neuropsychological (NP) testing tools are not sensitive to detecting residual brain dysfunctions in subjects suffering from mild traumatic brain injuries (MTBI). Moreover, most MTBI patients are asymptomatic based on anatomical brain imaging (CT, MRI), neurological examinations and patients' subjective reports within 10 days post-injury. Our ongoing research has documented that residual balance and visual-kinesthetic dysfunctions along with its underlying alterations of neural substrates may be detected in "asymptomatic subjects" by means of Virtual Reality (VR) graphics incorporated with brain imaging (EEG) techniques.

  6. Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in brain CT

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Qingguo, E-mail: renqg83@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Dewan, Sheilesh Kumar, E-mail: sheilesh_d1@hotmail.com [Department of Geriatrics, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Li, Ming, E-mail: minli77@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Li, Jianying, E-mail: Jianying.Li@med.ge.com [CT Imaging Research Center, GE Healthcare China, Beijing (China); Mao, Dingbiao, E-mail: maodingbiao74@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Wang, Zhenglei, E-mail: Williswang_doc@yahoo.com.cn [Department of Radiology, Shanghai Electricity Hospital, Shanghai 200050 (China); Hua, Yanqing, E-mail: cjr.huayanqing@vip.163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China)

    2012-10-15

    Purpose: To compare image quality and visualization of normal structures and lesions in brain computed tomography (CT) with adaptive statistical iterative reconstruction (ASIR) and filtered back projection (FBP) reconstruction techniques in different X-ray tube current–time products. Materials and methods: In this IRB-approved prospective study, forty patients (nineteen men, twenty-one women; mean age 69.5 ± 11.2 years) received brain scan at different tube current–time products (300 and 200 mAs) in 64-section multi-detector CT (GE, Discovery CT750 HD). Images were reconstructed with FBP and four levels of ASIR-FBP blending. Two radiologists (please note that our hospital is renowned for its geriatric medicine department, and these two radiologists are more experienced in chronic cerebral vascular disease than in neoplastic disease, so this research did not contain cerebral tumors but as a discussion) assessed all the reconstructed images for visibility of normal structures, lesion conspicuity, image contrast and diagnostic confidence in a blinded and randomized manner. Volume CT dose index (CTDI{sub vol}) and dose-length product (DLP) were recorded. All the data were analyzed by using SPSS 13.0 statistical analysis software. Results: There was no statistically significant difference between the image qualities at 200 mAs with 50% ASIR blending technique and 300 mAs with FBP technique (p > .05). While between the image qualities at 200 mAs with FBP and 300 mAs with FBP technique a statistically significant difference (p < .05) was found. Conclusion: ASIR provided same image quality and diagnostic ability in brain imaging with greater than 30% dose reduction compared with FBP reconstruction technique.

  7. Tablet surface characterisation by various imaging techniques

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Rantanen, Jukka; Yliruusi, Jouko

    2003-01-01

    The aim of this study was to characterise tablet surfaces using different imaging and roughness analytical techniques including optical microscopy, scanning electron microscopy (SEM), laser profilometry and atomic force microscopy (AFM). The test materials compressed were potassium chloride (KCl......) and sodium chloride (NaCl). It was found that all methods used suggested that the KCl tablets were smoother than the NaCl tablets and higher compression pressure made the tablets smoother. Imaging methods like optical microscopy and SEM can give useful information about the roughness of the sample surface...

  8. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging.

    Science.gov (United States)

    Ugurbil, Kamil

    2016-10-05

    When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a 'golden technique' that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Author(s).

  9. THz imaging techniques for nondestructive inspections

    Science.gov (United States)

    Kawase, Kodo; Shibuya, Takayuki; Hayashi, Shin'ichiro; Suizu, Koji

    2010-08-01

    We have suggested a wide range of real-life applications using novel terahertz imaging techniques. A high-resolution terahertz tomography has been demonstrated by ultra short terahertz pulses using optical fiber and a nonlinear organic crystal. We also describe a nondestructive inspection system that can monitor the soot distribution in a ceramic filter using millimeter-to-terahertz wave computed tomography. Further, we report on the thickness measurement of very thin films using high-sensitivity metal mesh filter. These techniques are directly applicable to the nondestructive testing in industries.

  10. The role of functional imaging techniques in the dementia

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Young Hoon [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    2004-06-01

    Evaluation of dementia in patients with early symptoms of cognitive decline is clinically challenging, but the need for early, accurate diagnosis has become more crucial, since several medication for the treatment of mild to moderate Alzheimer' disease are available. Many neurodegenerative diseases produce significant brain function alteration even when structural imaging (CT of MRI) reveal no specific abnormalities. The role of PET and SPECT brain imaging in the initial assessment and differential diagnosis of dementia is beginning to evolve rapidly and growing evidence indicates that appropriate incorporation of PET into the clinical work up can improve diagnostic and prognostic accuracy with respect to Alzheimer's disease, the most common cause of dementia in the geriatric population. In the fast few years, studies comparing neuropathologic examination with PET have established reliable and consistent accuracy for diagnostic evaluations using PET - accuracies substantially exceeding those of comparable studies of diagnostic value of SPECT or of both modalities assessed side by side, or of clinical evaluations done without nuclear imaging. This review deals the role of functional brian imaging techniques in the evaluation of dementias and the role of nuclear neuroimaging in the early detection and diagnosis of Alzheimer's disease.

  11. Brain Extraction from Normal and Pathological Images: A Joint PCA/Image-Reconstruction Approach

    OpenAIRE

    Han, Xu; Kwitt, Roland; Aylward, Stephen; Menze, Bjoern; Asturias, Alexander; Vespa, Paul; Horn, John; Niethammer, Marc

    2017-01-01

    Brain extraction from 3D medical images is a common pre-processing step. A variety of approaches exist, but they are frequently only designed to perform brain extraction from images without strong pathologies. Extracting the brain from images exhibiting strong pathologies, for example, the presence of a brain tumor or of a traumatic brain injury (TBI), is challenging. In such cases, tissue appearance may deviate from normal tissue appearance and hence violates algorithmic assumptions for stan...

  12. [Imaging techniques in modern trauma diagnostics].

    Science.gov (United States)

    Vogl, T J; Eichler, K; Marzi, I; Wutzler, S; Zacharowski, K; Frellessen, C

    2017-10-01

    Modern trauma room management requires interdisciplinary teamwork and synchronous communication between a team of anaesthesists, surgeons and radiologists. As the length of stay in the trauma room influences morbidity and mortality of a severely injured person, optimizing time is one of the main targets. With the direct involvement of modern imaging techniques the injuries caused by trauma should be detected within a very short period of time in order to enable a priority-orientated treatment. Radiology influences structure and process quality, management and development of trauma room algorithms regarding the use of imaging techniques. For the individual case interventional therapy methods can be added. Based on current data and on the Frankfurt experience the current diagnostic concepts of trauma diagnostics are presented.

  13. Cardiac Imaging Techniques for Physicians: Late Enhancement

    Science.gov (United States)

    Kellman, Peter; Arai, Andrew E.

    2012-01-01

    Late enhancement imaging is used to diagnose and characterize a wide range of ischemic and non-ischemic cardiomyopathies, and its use has become ubiquitous in the cardiac MR exam. As the use of late enhancement imaging has matured and the span of applications has widened, the demands on image quality have grown. The characterization of sub-endocardial MI now includes the accurate quantification of scar size, shape, and characterization of borders which have been shown to have prognostic significance. More diverse patterns of late enhancement including patchy, mid-wall, sub-epicardial, or diffuse enhancement are of interest in diagnosing non-ischemic cardiomyopathies. As clinicians are examining late enhancement images for more subtle indication of fibrosis, the demand for lower artifacts has increased. A range of new techniques have emerged to improve the speed and quality of late enhancement imaging including: methods for acquisition during free breathing, and fat water separated imaging for characterizing fibro-fatty infiltration and reduction of artifacts related to the presence of fat. Methods for quantification of T1 and extracellular volume fraction are emerging to tackle the issue of discriminating globally diffuse fibrosis from normal healthy tissue which is challenging using conventional late enhancement methods. The aim of this review will be to describe the current state of the art and to provide a guide to various clinical protocols that are commonly used. PMID:22903654

  14. A Review of Magnetic Resonance Imaging and Diffusion Tensor Imaging Findings in Mild Traumatic Brain Injury

    Science.gov (United States)

    Shenton, ME; Hamoda, HM; Schneiderman, JS; Bouix, S; Pasternak, O; Rathi, Y; M-A, Vu; Purohit, MP; Helmer, K; Koerte, I; Lin, AP; C-F, Westin; Kikinis, R; Kubicki, M; Stern, RA; Zafonte, R

    2013-01-01

    Mild traumatic brain injury (mTBI), also referred to as concussion, remains a controversial diagnosis because the brain often appears quite normal on conventional computed tomography (CT) and magnetic resonance imaging (MRI) scans. Such conventional tools, however, do not adequately depict brain injury in mTBI because they are not sensitive to detecting diffuse axonal injuries (DAI), also described as traumatic axonal injuries (TAI), the major brain injuries in mTBI. Furthermore, for the 15 to 30% of those diagnosed with mTBI on the basis of cognitive and clinical symptoms, i.e., the “miserable minority,” the cognitive and physical symptoms do not resolve following the first three months post-injury. Instead, they persist, and in some cases lead to long-term disability. The explanation given for these chronic symptoms, i.e., postconcussive syndrome, particularly in cases where there is no discernible radiological evidence for brain injury, has led some to posit a psychogenic origin. Such attributions are made all the easier since both post-traumatic stress disorder (PTSD) and depression are frequently co-morbid with mTBI. The challenge is thus to use neuroimaging tools that are sensitive to DAI/TAI, such as diffusion tensor imaging (DTI), in order to detect brain injuries in mTBI. Of note here, recent advances in neuroimaging techniques, such as DTI, make it possible to characterize better extant brain abnormalities in mTBI. These advances may lead to the development of biomarkers of injury, as well as to staging of reorganization and reversal of white matter changes following injury, and to the ability to track and to characterize changes in brain injury over time. Such tools will likely be used in future research to evaluate treatment efficacy, given their enhanced sensitivity to alterations in the brain. In this article we review the incidence of mTBI and the importance of characterizing this patient population using objective radiological measures. Evidence

  15. A general technique for interstudy registration of multifunction and multimodality images

    Energy Technology Data Exchange (ETDEWEB)

    Lin, K.P.; Huang, S.C.; Bacter, L.R.; Phelps, M.E. (Univ. of California, Los Angeles, CA (United States). School of Medicine)

    1994-12-01

    A technique that can register anatomic/structural brain images (e.g., MRI) with various functional images (e.g., PET-FDG and PET-FDOPA) of the same subject has been developed. The procedure of this technique includes the following steps: (1) segmentation of MRI brain images into gray matter (GM), white matter (WM), cerebral spinal fluid (CSF), and, muscle (MS) components, (2) assignment of appropriate radio-tracer concentrations to various components depending on the kind of functional image that is being registered, (3) generation of simulated functional images to have a spatial resolution that is comparable to that of the measured ones, (4) alignment of the measured functional images to the simulated ones that are based on MRI images. A self-organization clustering method is used to segment the MRI images. The image alignment is based on the criterion of least squares of the pixel-by-pixel differences between the two sets of images that are being matched and on the Powell's algorithm for minimization. The technique was applied successfully for registering the MRI, PET-FDG, and PET-FDOPA images. This technique offers a general solution to the registration of structural images to functional images and to the registration of different functional images of markedly different distributions.

  16. Advanced imaging techniques in pediatric body MRI

    Energy Technology Data Exchange (ETDEWEB)

    Courtier, Jesse [UCSF Benioff Children' s Hospital, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Rao, Anil G. [Medical University of South Carolina, Department of Radiology, Charleston, SC (United States); Anupindi, Sudha A. [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2017-05-15

    While there are many challenges specific to pediatric abdomino-pelvic MRI, many recent advances are addressing these challenges. It is therefore essential for radiologists to be familiar with the latest advances in MR imaging. Laudable efforts have also recently been implemented in many centers to improve the overall experience of pediatric patients, including the use of dedicated radiology child life specialists, MRI video goggles, and improved MR suite environments. These efforts have allowed a larger number of children to be scanned while awake, with fewer studies being done under sedation or anesthesia; this has resulted in additional challenges from patient motion and difficulties with breath-holding and tolerating longer scan times. In this review, we highlight common challenges faced in imaging the pediatric abdomen and pelvis and discuss the application of the newest techniques to address these challenges. Additionally, we highlight the newest advances in quantified imaging techniques, specifically in MR liver iron quantification. The techniques described in this review are all commercially available and can be readily implemented. (orig.)

  17. A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions

    OpenAIRE

    Shiee, Navid; Bazin, Pierre-Louis; Ozturk, Arzu; Reich, Daniel S.; Calabresi, Peter A.; Pham, Dzung L.

    2009-01-01

    We describe a new fully automatic method for the segmentation of brain images that contain multiple sclerosis white matter lesions. Multichannel magnetic resonance images are used to delineate multiple sclerosis lesions while segmenting the brain into its major structures. The method is an atlas-based segmentation technique employing a topological atlas as well as a statistical atlas. An advantage of this approach is that all segmented structures are topologically constrained, thereby allowin...

  18. Permutation coding technique for image recognition systems.

    Science.gov (United States)

    Kussul, Ernst M; Baidyk, Tatiana N; Wunsch, Donald C; Makeyev, Oleksandr; Martín, Anabel

    2006-11-01

    A feature extractor and neural classifier for image recognition systems are proposed. The proposed feature extractor is based on the concept of random local descriptors (RLDs). It is followed by the encoder that is based on the permutation coding technique that allows to take into account not only detected features but also the position of each feature on the image and to make the recognition process invariant to small displacements. The combination of RLDs and permutation coding permits us to obtain a sufficiently general description of the image to be recognized. The code generated by the encoder is used as an input data for the neural classifier. Different types of images were used to test the proposed image recognition system. It was tested in the handwritten digit recognition problem, the face recognition problem, and the microobject shape recognition problem. The results of testing are very promising. The error rate for the Modified National Institute of Standards and Technology (MNIST) database is 0.44% and for the Olivetti Research Laboratory (ORL) database it is 0.1%.

  19. Compact and mobile high resolution PET brain imager

    Science.gov (United States)

    Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA

    2011-02-08

    A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage.

  20. Probabilistic image: a concise image representation technique for multiple parameters

    Energy Technology Data Exchange (ETDEWEB)

    Wu, L.C.; Yeh, S.H.; Liu, R.S. (Veterans General Hospital, Taiwan; National Yang-Mills Medical Coll., Taipei, Taiwan); Chen, Z. (National Chiao Tung Univ., Hsinchu, Taiwan)

    1984-09-01

    In scintiscanning studies, an attempt has been made to use multiple parametric information to evaluate functional abnormalities in human organs, using the probabilistic domain instead of the parametric domain to present single or multiple parameters in one image. The construction of such a probabilistic image (PBI) has been illustrated from a /sup 99/Tcsup(m)-HIDA study in 32 normal subjects and in 20 patients with intrahepatic lithiasis. The results show that this technique shows the functional abnormalities in a structural format with a good contrast and probabilistic sense.

  1. Special feature on imaging systems and techniques

    Science.gov (United States)

    Yang, Wuqiang; Giakos, George

    2013-07-01

    The IEEE International Conference on Imaging Systems and Techniques (IST'2012) was held in Manchester, UK, on 16-17 July 2012. The participants came from 26 countries or regions: Austria, Brazil, Canada, China, Denmark, France, Germany, Greece, India, Iran, Iraq, Italy, Japan, Korea, Latvia, Malaysia, Norway, Poland, Portugal, Sweden, Switzerland, Taiwan, Tunisia, UAE, UK and USA. The technical program of the conference consisted of a series of scientific and technical sessions, exploring physical principles, engineering and applications of new imaging systems and techniques, as reflected by the diversity of the submitted papers. Following a rigorous review process, a total of 123 papers were accepted, and they were organized into 30 oral presentation sessions and a poster session. In addition, six invited keynotes were arranged. The conference not only provided the participants with a unique opportunity to exchange ideas and disseminate research outcomes but also paved a way to establish global collaboration. Following the IST'2012, a total of 55 papers, which were technically extended substantially from their versions in the conference proceeding, were submitted as regular papers to this special feature of Measurement Science and Technology . Following a rigorous reviewing process, 25 papers have been finally accepted for publication in this special feature and they are organized into three categories: (1) industrial tomography, (2) imaging systems and techniques and (3) image processing. These papers not only present the latest developments in the field of imaging systems and techniques but also offer potential solutions to existing problems. We hope that this special feature provides a good reference for researchers who are active in the field and will serve as a catalyst to trigger further research. It has been our great pleasure to be the guest editors of this special feature. We would like to thank the authors for their contributions, without which it would

  2. Advanced Imaging Techniques for Multiphase Flows Analysis

    Science.gov (United States)

    Amoresano, A.; Langella, G.; Di Santo, M.; Iodice, P.

    2017-08-01

    Advanced numerical techniques, such as fuzzy logic and neural networks have been applied in this work to digital images acquired on two applications, a centrifugal pump and a stationary spray in order to define, in a stochastic way, the gas-liquid interface evolution. Starting from the numeric matrix representing the image it is possible to characterize geometrical parameters and the time evolution of the jet. The algorithm used works with the fuzzy logic concept to binarize the chromatist of the pixels, depending them, by using the difference of the light scattering for the gas and the liquid phase.. Starting from a primary fixed threshold, the applied technique, can select the ‘gas’ pixel from the ‘liquid’ pixel and so it is possible define the first most probably boundary lines of the spray. Acquiring continuously the images, fixing a frame rate, a most fine threshold can be select and, at the limit, the most probably geometrical parameters of the jet can be detected.

  3. FCM Clustering Algorithms for Segmentation of Brain MR Images

    Directory of Open Access Journals (Sweden)

    Yogita K. Dubey

    2016-01-01

    Full Text Available The study of brain disorders requires accurate tissue segmentation of magnetic resonance (MR brain images which is very important for detecting tumors, edema, and necrotic tissues. Segmentation of brain images, especially into three main tissue types: Cerebrospinal Fluid (CSF, Gray Matter (GM, and White Matter (WM, has important role in computer aided neurosurgery and diagnosis. Brain images mostly contain noise, intensity inhomogeneity, and weak boundaries. Therefore, accurate segmentation of brain images is still a challenging area of research. This paper presents a review of fuzzy c-means (FCM clustering algorithms for the segmentation of brain MR images. The review covers the detailed analysis of FCM based algorithms with intensity inhomogeneity correction and noise robustness. Different methods for the modification of standard fuzzy objective function with updating of membership and cluster centroid are also discussed.

  4. Multi-technique imaging of sarcoidosis

    Energy Technology Data Exchange (ETDEWEB)

    Balan, A. [Department of Clinical Radiology, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Hoey, E.T.D. [Department of Clinical Radiology, Heartlands Hospital, Bordesley Green, Birmingham (United Kingdom); Sheerin, F. [Department of Neuroradiology, The John Radcliffe, Headington, Oxford (United Kingdom); Lakkaraju, A. [Department of Clinical Radiology, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Chowdhury, F.U., E-mail: fahmid.chowdhury@leedsth.nhs.u [Department of Clinical Radiology, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom)

    2010-09-15

    Sarcoidosis is a multisystem granulomatous disorder of unknown aetiology. The diagnosis is suggested on the basis of wide ranging clinical and radiological manifestations, and is supported by the histological demonstration of non-caseating granulomas in affected tissues. This review highlights the multisystem radiological features of the disease across a variety of imaging methods including multidetector computed tomography (CT), magnetic resonance imaging (MRI) as well as functional radionuclide techniques, particularly 2-[{sup 18}F]-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography/computed tomography (PET/CT). It is important for the radiologist to be aware of the varied radiological manifestations of sarcoidosis in order to recognize and suggest the diagnosis in the appropriate clinical setting.

  5. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging

    Science.gov (United States)

    2016-01-01

    When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a ‘golden technique’ that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574313

  6. Methods and considerations for longitudinal structural brain imaging analysis across development

    Directory of Open Access Journals (Sweden)

    Kathryn L. Mills

    2014-07-01

    Full Text Available Magnetic resonance imaging (MRI has allowed the unprecedented capability to measure the human brain in vivo. This technique has paved the way for longitudinal studies exploring brain changes across the entire life span. Results from these studies have given us a glimpse into the remarkably extended and multifaceted development of our brain, converging with evidence from anatomical and histological studies. Ever-evolving techniques and analytical methods provide new avenues to explore and questions to consider, requiring researchers to balance excitement with caution. This review addresses what MRI studies of structural brain development in children and adolescents typically measure and how. We focus on measurements of brain morphometry (e.g., volume, cortical thickness, surface area, folding patterns, as well as measurements derived from diffusion tensor imaging (DTI. By integrating finding from multiple longitudinal investigations, we give an update on current knowledge of structural brain development and how it relates to other aspects of biological development and possible underlying physiological mechanisms. Further, we review and discuss current strategies in image processing, analysis techniques and modeling of brain development. We hope this review will aid current and future longitudinal investigations of brain development, as well as evoke a discussion amongst researchers regarding best practices.

  7. Novel Metal Artifact Reduction Techniques with Use of Slice-Encoding Metal Artifact Correction and View-Angle Tilting MR Imaging for Improved Visualization of Brain Tissue near Intracranial Aneurysm Clips.

    Science.gov (United States)

    Friedrich, B; Wostrack, M; Ringel, F; Ryang, Y-M; Förschler, A; Waldt, S; Zimmer, C; Nittka, M; Preibisch, C

    2016-03-01

    The MR image quality after intracranial aneurysm clipping is often impaired because of artifacts induced by metal implants. The purpose of the present study was to evaluate the benefit of a new WARP sequence with slice-encoding metal artifact correction (SEMAC) and view-angle tilting (VAT) MR imaging as novel artifact reduction techniques. A new WARP TSE (a work-in-progress software package provided by Siemens Healthcare) sequence was implemented for cranial applications based on a turbo spin echo (TSE) sequence. T1- and T2-weighted images with standard and WARP TSE sequences were acquired from 6 patients with 11 clipping sites, and the images were compared based on artifact size and general image quality. T2- and T1-weighted WARP TSE sequences resulted in a highly significant reduction of metal artifacts compared with standard sequences (T2w- WARP TSE: 89.8 ± 1.4 %; T1w- WARP TSE: 84.9 ± 2.9 %; p < 0.001) without a substantial loss of image quality. The use of a new WARP TSE sequence after aneurysm clipping is highly beneficial for increasing the diagnostic MR image quality due to a striking reduction of metal artifacts.

  8. Novel imaging technique for birefringent materials

    CERN Document Server

    Lewis, J G

    1998-01-01

    less than 40 seconds. Retardation and orientation changes of less than 1nm and 1 deg, respectively, can be resolved with a spatial resolution close to that of a conventional polarizing microscope image. A wide variety of optically anisotropic materials have been examined to demonstrate both the quantitative and qualitative nature of this new sensitive polarization microscopy technique. Preliminary measurements have shown that when the system is extended to use two or more wavelengths it is also capable of directly extracting information about the order of the phase difference. Many transparent materials including crystals, polymers, biological tissues and textile fibres are birefringent or optically anisotropic, i.e. the refractive index varies with the direction of vibration of light. Birefringent measurements are important as they provide information about the underlying structure of a material. In general, the most sensitive techniques for measuring birefringence are those that modulate the polarization st...

  9. Residual Deconvolutional Networks for Brain Electron Microscopy Image Segmentation.

    Science.gov (United States)

    Fakhry, Ahmed; Zeng, Tao; Ji, Shuiwang

    2017-02-01

    Accurate reconstruction of anatomical connections between neurons in the brain using electron microscopy (EM) images is considered to be the gold standard for circuit mapping. A key step in obtaining the reconstruction is the ability to automatically segment neurons with a precision close to human-level performance. Despite the recent technical advances in EM image segmentation, most of them rely on hand-crafted features to some extent that are specific to the data, limiting their ability to generalize. Here, we propose a simple yet powerful technique for EM image segmentation that is trained end-to-end and does not rely on prior knowledge of the data. Our proposed residual deconvolutional network consists of two information pathways that capture full-resolution features and contextual information, respectively. We showed that the proposed model is very effective in achieving the conflicting goals in dense output prediction; namely preserving full-resolution predictions and including sufficient contextual information. We applied our method to the ongoing open challenge of 3D neurite segmentation in EM images. Our method achieved one of the top results on this open challenge. We demonstrated the generality of our technique by evaluating it on the 2D neurite segmentation challenge dataset where consistently high performance was obtained. We thus expect our method to generalize well to other dense output prediction problems.

  10. Pattern Recognition in NeuroImaging: What can machine learning classifiers bring to the analysis of functional brain imaging?

    OpenAIRE

    Schrouff, Jessica

    2013-01-01

    The study of the brain development and functioning raises many question that are tracked using neuroimaging techniques such as positron emission tomography or (functional) magnetic resonance imaging. During the last decades, various techniques have been developed to analyse neuroimaging data. These techniques brought valuable insight on neuroscientific questions, but encounter limitations which make them unsuitable to tackle more complex problems. More recently, machine learning based models,...

  11. Diffusion MRI of the neonate brain: acquisition, processing and analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pannek, Kerstin [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, School of Medicine, Brisbane (Australia); University of Queensland, Centre for Advanced Imaging, Brisbane (Australia); Guzzetta, Andrea [IRCCS Stella Maris, Department of Developmental Neuroscience, Calambrone Pisa (Italy); Colditz, Paul B. [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, Perinatal Research Centre, Brisbane (Australia); Rose, Stephen E. [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, Centre for Advanced Imaging, Brisbane (Australia); University of Queensland Centre for Clinical Research, Royal Brisbane and Women' s Hospital, Brisbane (Australia)

    2012-10-15

    Diffusion MRI (dMRI) is a popular noninvasive imaging modality for the investigation of the neonate brain. It enables the assessment of white matter integrity, and is particularly suited for studying white matter maturation in the preterm and term neonate brain. Diffusion tractography allows the delineation of white matter pathways and assessment of connectivity in vivo. In this review, we address the challenges of performing and analysing neonate dMRI. Of particular importance in dMRI analysis is adequate data preprocessing to reduce image distortions inherent to the acquisition technique, as well as artefacts caused by head movement. We present a summary of techniques that should be used in the preprocessing of neonate dMRI data, and demonstrate the effect of these important correction steps. Furthermore, we give an overview of available analysis techniques, ranging from voxel-based analysis of anisotropy metrics including tract-based spatial statistics (TBSS) to recently developed methods of statistical analysis addressing issues of resolving complex white matter architecture. We highlight the importance of resolving crossing fibres for tractography and outline several tractography-based techniques, including connectivity-based segmentation, the connectome and tractography mapping. These techniques provide powerful tools for the investigation of brain development and maturation. (orig.)

  12. Diffusion MRI of the neonate brain: acquisition, processing and analysis techniques.

    Science.gov (United States)

    Pannek, Kerstin; Guzzetta, Andrea; Colditz, Paul B; Rose, Stephen E

    2012-10-01

    Diffusion MRI (dMRI) is a popular noninvasive imaging modality for the investigation of the neonate brain. It enables the assessment of white matter integrity, and is particularly suited for studying white matter maturation in the preterm and term neonate brain. Diffusion tractography allows the delineation of white matter pathways and assessment of connectivity in vivo. In this review, we address the challenges of performing and analysing neonate dMRI. Of particular importance in dMRI analysis is adequate data preprocessing to reduce image distortions inherent to the acquisition technique, as well as artefacts caused by head movement. We present a summary of techniques that should be used in the preprocessing of neonate dMRI data, and demonstrate the effect of these important correction steps. Furthermore, we give an overview of available analysis techniques, ranging from voxel-based analysis of anisotropy metrics including tract-based spatial statistics (TBSS) to recently developed methods of statistical analysis addressing issues of resolving complex white matter architecture. We highlight the importance of resolving crossing fibres for tractography and outline several tractography-based techniques, including connectivity-based segmentation, the connectome and tractography mapping. These techniques provide powerful tools for the investigation of brain development and maturation.

  13. Cluster imaging of multi-brain networks (CIMBN: a general framework for hyperscanning and modeling a group of interacting brains

    Directory of Open Access Journals (Sweden)

    Lian eDuan

    2015-07-01

    Full Text Available Studying the neural basis of human social interactions is a key topic in the field of social neuroscience. Brain imaging studies in this field usually focus on the neural correlates of the social interactions between two participants. However, as the participant number further increases, even by a small amount, great difficulties raise. One challenge is how to concurrently scan all the interacting brains with high ecological validity, especially for a large number of participants. The other challenge is how to effectively model the complex group interaction behaviors emerging from the intricate neural information exchange among a group of socially organized people. Confronting these challenges, we propose a new approach called Cluster Imaging of Multi-brain Networks (CIMBN. CIMBN consists of two parts. The first part is a cluster imaging technique with high ecological validity based on multiple functional near-infrared spectroscopy (fNIRS systems. Using this technique, we can easily extend the simultaneous imaging capacity of social neuroscience studies up to dozens of participants. The second part of CIMBN is a multi-brain network (MBN modeling method based on graph theory. By taking each brain as a network node and the relationship between any two brains as a network edge, one can construct a network model for a group of interacting brains. The emergent group social behaviors can then be studied using the network’s properties, such as its topological structure and information exchange efficiency. Although there is still much work to do, as a general framework for hyperscanning and modeling a group of interacting brains, CIMBN can provide new insights into the neural correlates of group social interactions, and advance social neuroscience and social psychology.

  14. heuristically improved bayesian segmentation of brain mr images

    African Journals Online (AJOL)

    INTRODUCTION. Image segmentation is the process of dividing an image into its constituent non-overlapping components (Khayati, Vafadust et al. 2008; Wang ... analysis. Automatic segmentation of brain MR Images into its main tissues remains an inextricable problem in domain of medical image processing. First of all ...

  15. Functional connectivity of the rodent brain using optical imaging

    Science.gov (United States)

    Guevara Codina, Edgar

    The aim of this thesis is to apply functional connectivity in a variety of animal models, using several optical imaging modalities. Even at rest, the brain shows high metabolic activity: the correlation in slow spontaneous fluctuations identifies remotely connected areas of the brain; hence the term "functional connectivity". Ongoing changes in spontaneous activity may provide insight into the neural processing that takes most of the brain metabolic activity, and so may provide a vast source of disease related changes. Brain hemodynamics may be modified during disease and affect resting-state activity. The thesis aims to better understand these changes in functional connectivity due to disease, using functional optical imaging. The optical imaging techniques explored in the first two contributions of this thesis are Optical Imaging of Intrinsic Signals and Laser Speckle Contrast Imaging, together they can estimate the metabolic rate of oxygen consumption, that closely parallels neural activity. They both have adequate spatial and temporal resolution and are well adapted to image the convexity of the mouse cortex. In the last article, a depth-sensitive modality called photoacoustic tomography was used in the newborn rat. Optical coherence tomography and laminar optical tomography were also part of the array of imaging techniques developed and applied in other collaborations. The first article of this work shows the changes in functional connectivity in an acute murine model of epileptiform activity. Homologous correlations are both increased and decreased with a small dependence on seizure duration. These changes suggest a potential decoupling between the hemodynamic parameters in resting-state networks, underlining the importance to investigate epileptic networks with several independent hemodynamic measures. The second study examines a novel murine model of arterial stiffness: the unilateral calcification of the right carotid. Seed-based connectivity analysis

  16. Advanced Pediatric Brain Imaging Research and Training Program

    Science.gov (United States)

    2017-10-01

    Award Number: W81XWH-11-2-0198 TITLE: Advanced Pediatric Brain Imaging Research and Training Program PRINCIPAL INVESTIGATOR: Catherine...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Advanced Pediatric Brain Imaging Research and Training Program 5b. GRANT NUMBER W81XWH-11-2-0198 5c. PROGRAM ...13. SUPPLEMENTARY NOTES 14. ABSTRACT The focus of our BRAIN training program over the past year of the project is to successfully convert the

  17. Whole-brain dynamic CT angiography and perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orrison, W.W. [CHW Nevada Imaging Company, Nevada Imaging Centers, Spring Valley, Las Vegas, NV (United States); College of Osteopathic Medicine, Touro University Nevada, Henderson, NV (United States); Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Department of Medical Education, University of Nevada School of Medicine, Reno, NV (United States); Snyder, K.V.; Hopkins, L.N. [Department of Neurosurgery, Millard Fillmore Gates Circle Hospital, Buffalo, NY (United States); Roach, C.J. [School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States); Ringdahl, E.N. [Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV (United States); Nazir, R. [Shifa International Hospital, Islamabad (Pakistan); Hanson, E.H., E-mail: eric.hanson@amigenics.co [College of Osteopathic Medicine, Touro University Nevada, Henderson, NV (United States); Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States)

    2011-06-15

    The availability of whole brain computed tomography (CT) perfusion has expanded the opportunities for analysing the haemodynamic parameters associated with varied neurological conditions. Examples demonstrating the clinical utility of whole-brain CT perfusion imaging in selected acute and chronic ischaemic arterial neurovascular conditions are presented. Whole-brain CT perfusion enables the detection and focused haemodynamic analyses of acute and chronic arterial conditions in the central nervous system without the limitation of partial anatomical coverage of the brain.

  18. Auto-context Convolutional Neural Network (Auto-Net) for Brain Extraction in Magnetic Resonance Imaging.

    Science.gov (United States)

    Salehi, Seyed Sadegh Mohseni; Erdogmus, Deniz; Gholipour, Ali

    2017-06-28

    Brain extraction or whole brain segmentation is an important first step in many of the neuroimage analysis pipelines. The accuracy and robustness of brain extraction, therefore, is crucial for the accuracy of the entire brain analysis process. State-of-the-art brain extraction techniques rely heavily on the accuracy of alignment or registration between brain atlases and query brain anatomy, and/or make assumptions about the image geometry; therefore have limited success when these assumptions do not hold or image registration fails. With the aim of designing an accurate, learning-based, geometry-independent and registration-free brain extraction tool in this study, we present a technique based on an auto-context convolutional neural network (CNN), in which intrinsic local and global image features are learned through 2D patches of different window sizes. We consider two different architectures: 1) a voxelwise approach based on three parallel 2D convolutional pathways for three different directions (axial, coronal, and sagittal) that implicitly learn 3D image information without the need for computationally expensive 3D convolutions, and 2) a fully convolutional network based on the U-net architecture. Posterior probability maps generated by the networks are used iteratively as context information along with the original image patches to learn the local shape and connectedness of the brain to extract it from non-brain tissue. The brain extraction results we have obtained from our CNNs are superior to the recently reported results in the literature on two publicly available benchmark datasets, namely LPBA40 and OASIS, in which we obtained Dice overlap coefficients of 97.73% and 97.62%, respectively. Significant improvement was achieved via our auto-context algorithm. Furthermore, we evaluated the performance of our algorithm in the challenging problem of extracting arbitrarily-oriented fetal brains in reconstructed fetal brain magnetic resonance imaging (MRI

  19. Brain Basics

    Medline Plus

    Full Text Available ... her feelings. Brain Research Modern research tools and techniques are giving scientists a more detailed understanding of ... other. magnetic resonance imaging (MRI) mdash;An imaging technique that uses magnetic fields to take pictures of ...

  20. Magnetic resonance elastography (MRE) of the human brain: technique, findings and clinical applications

    Science.gov (United States)

    Hiscox, Lucy V.; Johnson, Curtis L.; Barnhill, Eric; McGarry, Matt D. J.; Huston 3rd, John; van Beek, Edwin J. R.; Starr, John M.; Roberts, Neil

    2016-12-01

    Neurological disorders are one of the most important public health concerns in developed countries. Established brain imaging techniques such as magnetic resonance imaging (MRI) and x-ray computerised tomography (CT) have been essential in the identification and diagnosis of a wide range of disorders, although usually are insufficient in sensitivity for detecting subtle pathological alterations to the brain prior to the onset of clinical symptoms—at a time when prognosis for treatment is more favourable. The mechanical properties of biological tissue provide information related to the strength and integrity of the cellular microstructure. In recent years, mechanical properties of the brain have been visualised and measured non-invasively with magnetic resonance elastography (MRE), a particularly sensitive medical imaging technique that may increase the potential for early diagnosis. This review begins with an introduction to the various methods used for the acquisition and analysis of MRE data. A systematic literature search is then conducted to identify studies that have specifically utilised MRE to investigate the human brain. Through the conversion of MRE-derived measurements to shear stiffness (kPa) and, where possible, the loss tangent (rad), a summary of results for global brain tissue and grey and white matter across studies is provided for healthy participants, as potential baseline values to be used in future clinical investigations. In addition, the extent to which MRE has revealed significant alterations to the brain in patients with neurological disorders is assessed and discussed in terms of known pathophysiology. The review concludes by predicting the trends for future MRE research and applications in neuroscience.

  1. Brain MR image segmentation using NAMS in pseudo-color.

    Science.gov (United States)

    Li, Hua; Chen, Chuanbo; Fang, Shaohong; Zhao, Shengrong

    2017-12-01

    Image segmentation plays a crucial role in various biomedical applications. In general, the segmentation of brain Magnetic Resonance (MR) images is mainly used to represent the image with several homogeneous regions instead of pixels for surgical analyzing and planning. This paper proposes a new approach for segmenting MR brain images by using pseudo-color based segmentation with Non-symmetry and Anti-packing Model with Squares (NAMS). First of all, the NAMS model is presented. The model can represent the image with sub-patterns to keep the image content and largely reduce the data redundancy. Second, the key idea is proposed that convert the original gray-scale brain MR image into a pseudo-colored image and then segment the pseudo-colored image with NAMS model. The pseudo-colored image can enhance the color contrast in different tissues in brain MR images, which can improve the precision of segmentation as well as directly visual perceptional distinction. Experimental results indicate that compared with other brain MR image segmentation methods, the proposed NAMS based pseudo-color segmentation method performs more excellent in not only segmenting precisely but also saving storage.

  2. Dual microelectrode technique for deep brain stereotactic surgery in humans.

    Science.gov (United States)

    Levy, Ron; Lozano, Andres M; Hutchison, William D; Dostrovsky, Jonathan O

    2007-04-01

    To improve functional stereotactic microelectrode localization of small deep brain structures by developing and evaluating a recording system with two closely separated independently controlled microelectrodes. Data were obtained from 52 patients using this dual microelectrode technique and 38 patients using the standard single microelectrode technique for subthalamic nucleus localization in patients with Parkinson's disease. There was a decrease in the incidence of noncontributory trajectories, defined as a single penetration made by the pair of closely spaced parallel microelectrodes, owing to microelectrode failure (from 7.2% to functional neurosurgery.

  3. Novel Nanotechnologies for Brain Cancer Therapeutics and Imaging.

    Science.gov (United States)

    Ferroni, Letizia; Gardin, Chiara; Della Puppa, Alessandro; Sivolella, Stefano; Brunello, Giulia; Scienza, Renato; Bressan, Eriberto; D'Avella, Domenico; Zavan, Barbara

    2015-11-01

    Despite progress in surgery, radiotherapy, and in chemotherapy, an effective curative treatment of brain cancer, specifically malignant gliomas, does not yet exist. The efficacy of current anti-cancer strategies in brain tumors is limited by the lack of specific therapies against malignant cells. Besides, the delivery of the drugs to brain tumors is limited by the presence of the blood-brain barrier. Nanotechnology today offers a unique opportunity to develop more effective brain cancer imaging and therapeutics. In particular, the development of nanocarriers that can be conjugated with several functional molecules including tumor-specific ligands, anticancer drugs, and imaging probes, can provide new devices which are able to overcome the difficulties of the classical strategies. Nanotechnology-based approaches hold great promise for revolutionizing brain cancer medical treatments, imaging, and diagnosis.

  4. Techniques calm fear of imaging machine

    Energy Technology Data Exchange (ETDEWEB)

    Van Pelt, D.

    1990-04-02

    Magnetic resonance imaging has become a valuable tool in diagnosing diseases, and the imaging devices are now used as often as 2 million times a year in the United States. But as many as 10 percent of patients advised to undergo the procedure cannot because they become overwhelmed with claustrophobialike fear triggered by having to lie motionless in the machine's tunnel-like cylinder for about 45 minutes. To counteract this fear, several hospitals now practice various techniques to help reduce the feelings of confinement. One popular method is to give a patient special eyeglasses that allow him to look beyond his feet and see the tunnel opening. Other glasses use mirrors to direct the patient's vision out the back of the unit to large wilderness photographs or murals that simulate a sense of spaciousness. Even a basic item like a set of headphones that plays music can often distract a patient, and technicians frequently hold a patient's hand or foot during the procedure. Another trick is to invite family members and friends to remain with the patient during the scan to provide company and reassurance.

  5. Imaging structural and functional brain networks in temporal lobe epilepsy

    Science.gov (United States)

    Bernhardt, Boris C.; Hong, SeokJun; Bernasconi, Andrea; Bernasconi, Neda

    2013-01-01

    Early imaging studies in temporal lobe epilepsy (TLE) focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing the topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy. PMID:24098281

  6. Postnatal brain development: Structural imaging of dynamic neurodevelopmental processes

    Science.gov (United States)

    Jernigan, Terry L.; Baaré, William F. C.; Stiles, Joan; Madsen, Kathrine Skak

    2013-01-01

    After birth, there is striking biological and functional development of the brain’s fiber tracts as well as remodeling of cortical and subcortical structures. Behavioral development in children involves a complex and dynamic set of genetically guided processes by which neural structures interact constantly with the environment. This is a protracted process, beginning in the third week of gestation and continuing into early adulthood. Reviewed here are studies using structural imaging techniques, with a special focus on diffusion weighted imaging, describing age-related brain maturational changes in children and adolescents, as well as studies that link these changes to behavioral differences. Finally, we discuss evidence for effects on the brain of several factors that may play a role in mediating these brain–behavior associations in children, including genetic variation, behavioral interventions, and hormonal variation associated with puberty. At present longitudinal studies are few, and we do not yet know how variability in individual trajectories of biological development in specific neural systems map onto similar variability in behavioral trajectories. PMID:21489384

  7. Advanced Pediatric Brain Imaging Research Program

    Science.gov (United States)

    2016-10-01

    system, by creating and implementing methods for converting the existing in-classroom educational BRAIN seminars into self-directed online learning...confirm that online multimedia learning provides a highly engaging educational method to teaching complex subject matter on brain development, brain injury...Ongoing Visual Enhancements to BRAIN We continue to create, improve upon and implement multimedia objects (e.g. graphics, audio, animations ) throughout

  8. Functional Brain Imaging Synthesis Based on Image Decomposition and Kernel Modeling: Application to Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Francisco J. Martinez-Murcia

    2017-11-01

    Full Text Available The rise of neuroimaging in research and clinical practice, together with the development of new machine learning techniques has strongly encouraged the Computer Aided Diagnosis (CAD of different diseases and disorders. However, these algorithms are often tested in proprietary datasets to which the access is limited and, therefore, a direct comparison between CAD procedures is not possible. Furthermore, the sample size is often small for developing accurate machine learning methods. Multi-center initiatives are currently a very useful, although limited, tool in the recruitment of large populations and standardization of CAD evaluation. Conversely, we propose a brain image synthesis procedure intended to generate a new image set that share characteristics with an original one. Our system focuses on nuclear imaging modalities such as PET or SPECT brain images. We analyze the dataset by applying PCA to the original dataset, and then model the distribution of samples in the projected eigenbrain space using a Probability Density Function (PDF estimator. Once the model has been built, we can generate new coordinates on the eigenbrain space belonging to the same class, which can be then projected back to the image space. The system has been evaluated on different functional neuroimaging datasets assessing the: resemblance of the synthetic images with the original ones, the differences between them, their generalization ability and the independence of the synthetic dataset with respect to the original. The synthetic images maintain the differences between groups found at the original dataset, with no significant differences when comparing them to real-world samples. Furthermore, they featured a similar performance and generalization capability to that of the original dataset. These results prove that these images are suitable for standardizing the evaluation of CAD pipelines, and providing data augmentation in machine learning systems -e.g. in deep

  9. Smartphones as pocketable labs: visions for mobile brain imaging and neurofeedback.

    Science.gov (United States)

    Stopczynski, Arkadiusz; Stahlhut, Carsten; Petersen, Michael Kai; Larsen, Jakob Eg; Jensen, Camilla Falk; Ivanova, Marieta Georgieva; Andersen, Tobias S; Hansen, Lars Kai

    2014-01-01

    Mobile brain imaging solutions, such as the Smartphone Brain Scanner, which combines low cost wireless EEG sensors with open source software for real-time neuroimaging, may transform neuroscience experimental paradigms. Normally subject to the physical constraints in labs, neuroscience experimental paradigms can be transformed into dynamic environments allowing for the capturing of brain signals in everyday contexts. Using smartphones or tablets to access text or images may enable experimental design capable of tracing emotional responses when shopping or consuming media, incorporating sensorimotor responses reflecting our actions into brain machine interfaces, and facilitating neurofeedback training over extended periods. Even though the quality of consumer neuroheadsets is still lower than laboratory equipment and susceptible to environmental noise, we show that mobile neuroimaging solutions, like the Smartphone Brain Scanner, complemented by 3D reconstruction or source separation techniques may support a range of neuroimaging applications and thus become a valuable addition to high-end neuroimaging solutions. © 2013.

  10. Appropriate Contrast Enhancement Measures for Brain and Breast Cancer Images.

    Science.gov (United States)

    Gupta, Suneet; Porwal, Rabins

    2016-01-01

    Medical imaging systems often produce images that require enhancement, such as improving the image contrast as they are poor in contrast. Therefore, they must be enhanced before they are examined by medical professionals. This is necessary for proper diagnosis and subsequent treatment. We do have various enhancement algorithms which enhance the medical images to different extents. We also have various quantitative metrics or measures which evaluate the quality of an image. This paper suggests the most appropriate measures for two of the medical images, namely, brain cancer images and breast cancer images.

  11. Appropriate Contrast Enhancement Measures for Brain and Breast Cancer Images

    Directory of Open Access Journals (Sweden)

    Suneet Gupta

    2016-01-01

    Full Text Available Medical imaging systems often produce images that require enhancement, such as improving the image contrast as they are poor in contrast. Therefore, they must be enhanced before they are examined by medical professionals. This is necessary for proper diagnosis and subsequent treatment. We do have various enhancement algorithms which enhance the medical images to different extents. We also have various quantitative metrics or measures which evaluate the quality of an image. This paper suggests the most appropriate measures for two of the medical images, namely, brain cancer images and breast cancer images.

  12. Fuzzy object models for newborn brain MR image segmentation

    Science.gov (United States)

    Kobashi, Syoji; Udupa, Jayaram K.

    2013-03-01

    Newborn brain MR image segmentation is a challenging problem because of variety of size, shape and MR signal although it is the fundamental study for quantitative radiology in brain MR images. Because of the large difference between the adult brain and the newborn brain, it is difficult to directly apply the conventional methods for the newborn brain. Inspired by the original fuzzy object model introduced by Udupa et al. at SPIE Medical Imaging 2011, called fuzzy shape object model (FSOM) here, this paper introduces fuzzy intensity object model (FIOM), and proposes a new image segmentation method which combines the FSOM and FIOM into fuzzy connected (FC) image segmentation. The fuzzy object models are built from training datasets in which the cerebral parenchyma is delineated by experts. After registering FSOM with the evaluating image, the proposed method roughly recognizes the cerebral parenchyma region based on a prior knowledge of location, shape, and the MR signal given by the registered FSOM and FIOM. Then, FC image segmentation delineates the cerebral parenchyma using the fuzzy object models. The proposed method has been evaluated using 9 newborn brain MR images using the leave-one-out strategy. The revised age was between -1 and 2 months. Quantitative evaluation using false positive volume fraction (FPVF) and false negative volume fraction (FNVF) has been conducted. Using the evaluation data, a FPVF of 0.75% and FNVF of 3.75% were achieved. More data collection and testing are underway.

  13. Brain MRI tumor image fusion combined with Shearlet and wavelet

    Science.gov (United States)

    Zhang, Changjiang; Fang, Mingchao

    2017-11-01

    In order to extract the effective information in different modalities of the tumor region in brain Magnetic resonance imaging (MRI) images, we propose a brain MRI tumor image fusion method combined with Shearlet and wavelet transform. First, the source images are transformed into Shearlet domain and wavelet domain. Second, the low frequency component of Shearlet domain is fused by Laplace pyramid decomposition. Then the low-frequency fusion image is obtained through inverse Shearlet transform. Third, the high frequency subimages in wavelet domain are fused. Then the high-frequency fusion image is obtained through inverse wavelet transform. Finally, the low-frequency fusion image and high-frequency fusion image are summated to get the final fusion image. Through experiments conducted on 10 brain MRI tumor images, the result shown that the proposed fusion algorithm has the best fusion effect in the evaluation indexes of spatial frequency, edge strength and average gradient. The main spatial frequency of 10 images is 29.22, and the mean edge strength and average gradient is 103.77 and 10.42. Compared with different fusion methods, we find that the proposed method effectively fuses the information of multimodal brain MRI tumor images and improves the clarity of the tumor area well.

  14. Meta-analysis of functional brain imaging in specific phobia.

    Science.gov (United States)

    Ipser, Jonathan C; Singh, Leesha; Stein, Dan J

    2013-07-01

    Although specific phobia is a prevalent anxiety disorder, evidence regarding its underlying functional neuroanatomy is inconsistent. A meta-analysis was undertaken to identify brain regions that were consistently responsive to phobic stimuli, and to characterize changes in brain activation following cognitive behavioral therapy (CBT). We searched the PubMed, SCOPUS and PsycINFO databases to identify positron emission tomography and functional magnetic resonance imaging studies comparing brain activation in specific phobia patients and healthy controls. Two raters independently extracted study data from all the eligible studies, and pooled coordinates from these studies using activation likelihood estimation, a quantitative meta-analytic technique. Resulting statistical parametric maps were compared between patients and healthy controls, in response to phobic versus fear-evoking stimuli, and before and after therapy. Thirteen studies were included, comprising 327 participants. Regions that were consistently activated in response to phobic stimuli included the left insula, amygdala, and globus pallidus. Compared to healthy controls, phobic subjects had increased activation in response to phobic stimuli in the left amygdala/globus pallidus, left insula, right thalamus (pulvinar), and cerebellum. Following exposure-based therapy widespread deactivation was observed in the right frontal cortex, limbic cortex, basal ganglia and cerebellum, with increased activation detected in the thalamus. Exposure to phobia-specific stimuli elicits brain activation that is consistent with current understandings of the neuroanatomy of fear conditioning and extinction. There is evidence that the effects of CBT in specific phobia may be mediated through the same underlying neurocircuitry. © 2013 The Authors. Psychiatry and Clinical Neurosciences © 2013 Japanese Society of Psychiatry and Neurology.

  15. Dentomaxillofacial imaging with computed-radiography techniques: a preliminary study

    Science.gov (United States)

    Shaw, Chris C.; Kapa, Stanley F.; Furkart, Audrey J.; Gur, David

    1993-09-01

    A preliminary study was conducted to investigate the feasibility of using high resolution computed radiography techniques for dentomaxillofacial imaging. Storage phosphors were cut into various sizes and used with an experimental laser scanning reader for three different imaging procedures: intraoral, cephalometric and panoramic. Both phantom and patient images were obtained for comparing the computed radiography technique with the conventional screen/film or dental film techniques. It has been found that current computed radiography techniques are largely adequate for cephalometric and panoramic imaging but need further improvement on their spatial resolution capability for intraoral imaging. In this paper, the methods of applying the computer radiography techniques to dentomaxillofacial imaging are described and discussed. Images of phantoms, resolution bar patterns and patients are presented and compared. Issues on image quality and cost are discussed.

  16. Classification of CT brain images based on deep learning networks.

    Science.gov (United States)

    Gao, Xiaohong W; Hui, Rui; Tian, Zengmin

    2017-01-01

    While computerised tomography (CT) may have been the first imaging tool to study human brain, it has not yet been implemented into clinical decision making process for diagnosis of Alzheimer's disease (AD). On the other hand, with the nature of being prevalent, inexpensive and non-invasive, CT does present diagnostic features of AD to a great extent. This study explores the significance and impact on the application of the burgeoning deep learning techniques to the task of classification of CT brain images, in particular utilising convolutional neural network (CNN), aiming at providing supplementary information for the early diagnosis of Alzheimer's disease. Towards this end, three categories of CT images (N = 285) are clustered into three groups, which are AD, lesion (e.g. tumour) and normal ageing. In addition, considering the characteristics of this collection with larger thickness along the direction of depth (z) (~3-5 mm), an advanced CNN architecture is established integrating both 2D and 3D CNN networks. The fusion of the two CNN networks is subsequently coordinated based on the average of Softmax scores obtained from both networks consolidating 2D images along spatial axial directions and 3D segmented blocks respectively. As a result, the classification accuracy rates rendered by this elaborated CNN architecture are 85.2%, 80% and 95.3% for classes of AD, lesion and normal respectively with an average of 87.6%. Additionally, this improved CNN network appears to outperform the others when in comparison with 2D version only of CNN network as well as a number of state of the art hand-crafted approaches. As a result, these approaches deliver accuracy rates in percentage of 86.3, 85.6 ± 1.10, 86.3 ± 1.04, 85.2 ± 1.60, 83.1 ± 0.35 for 2D CNN, 2D SIFT, 2D KAZE, 3D SIFT and 3D KAZE respectively. The two major contributions of the paper constitute a new 3-D approach while applying deep learning technique to extract signature information

  17. Potential new approaches for the development of brain imaging agents for single-photon applications

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, F.F. Jr.; Srivastava, P.C.

    1984-01-01

    This paper describes new strategies for the brain-specific delivery of radionuclides that can be used to evaluate regional cerebral perfusion by single photon imaging techniques. A description of several examples of interesting new strategies that have recently been reported is presented. A new approach at this institution for the brain-specific delivery of radioiodinated iodophenylalkyl-substituted dihyronicotinamide systems is described which shows good brain uptake and retention in preliminary studies in rats. Following transport into the brain these agents appear to undergo facile intracerebral oxidation to the quaternized analogues which do not recross the intact blood-brain barrier and so are effectively trapped in the brain. 49 refs., 9 figs., 1 tab.

  18. An automated and simple method for brain MR image extraction

    Directory of Open Access Journals (Sweden)

    Zhu Zixin

    2011-09-01

    Full Text Available Abstract Background The extraction of brain tissue from magnetic resonance head images, is an important image processing step for the analyses of neuroimage data. The authors have developed an automated and simple brain extraction method using an improved geometric active contour model. Methods The method uses an improved geometric active contour model which can not only solve the boundary leakage problem but also is less sensitive to intensity inhomogeneity. The method defines the initial function as a binary level set function to improve computational efficiency. The method is applied to both our data and Internet brain MR data provided by the Internet Brain Segmentation Repository. Results The results obtained from our method are compared with manual segmentation results using multiple indices. In addition, the method is compared to two popular methods, Brain extraction tool and Model-based Level Set. Conclusions The proposed method can provide automated and accurate brain extraction result with high efficiency.

  19. The addicted brain: imaging neurological complications of recreational drug abuse.

    Science.gov (United States)

    Montoya-Filardi, A; Mazón, M

    Recreational drug abuse represents a serious public health problem. Neuroimaging traditionally played a secondary role in this scenario, where it was limited to detecting acute vascular events. However, thanks to advances in knowledge about disease and in morphological and functional imaging techniques, radiologists have now become very important in the diagnosis of acute and chronic neurological complications of recreational drug abuse. The main complications are neurovascular disease, infection, toxicometabolic disorders, and brain atrophy. The nonspecific symptoms and denial of abuse make the radiologist's involvement fundamental in the management of these patients. Neuroimaging makes it possible to detect early changes and to suggest an etiological diagnosis in cases with specific patterns of involvement. We aim to describe the pattern of abuse and the pathophysiological mechanisms of the drugs with the greatest neurological repercussions as well as to illustrate the depiction of the acute and chronic cerebral complications on conventional and functional imaging techniques. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Functional Imaging of Dolphin Brain Metabolism and Blood Flow

    National Research Council Canada - National Science Library

    Ridgway, Sam; Finneran, James; Carder, Don; Keogh, Mandy; Van Bonn, William; Smith, Cynthia; Scadeng, Miriam; Dubowitz, David; Mattrey, Robert; Hoh, Carl

    2006-01-01

    This report documents the first use of magnetic resonance images (MRls) of living dolphins to register functional brain scans, allowing for the exploration of potential mechanisms of unihemispheric sleep...

  1. Blood-Brain Barrier Imaging in Human Neuropathologies

    Science.gov (United States)

    Veksler, Ronel; Shelef, Ilan; Friedman, Alon

    2014-01-01

    The blood–brain barrier (BBB) is essential for normal function of the brain, and its role in many brain pathologies has been the focus of numerous studies during the last decades. Dysfunction of the BBB is not only being shown in numerous brain diseases, but animal studies have indicated that it plays a direct key role in the genesis of neurovascular dysfunction and associated neurodegeneration. As such evidence accumulates, the need for robust and clinically applicable methods for minimally invasive assessment of BBB integrity is becoming urgent. This review provides an introduction to BBB imaging methods in the clinical scenario. First, imaging modalities are reviewed, with a focus on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). We then proceed to review image analysis methods, including quantitative and semi-quantitative methods. The advantages and limitations of each approach are discussed, and future directions and questions are highlighted. PMID:25453223

  2. Imaging of brain tumors with histological correlations. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Drevelegas, Antonios (ed.)

    2011-07-01

    This volume provides a deeper understanding of the diagnosis of brain tumors by correlating radiographic imaging features with the underlying pathological abnormalities. All modern imaging modalities are used to complete a diagnostic overview of brain tumors with emphasis on recent advances in diagnostic neuroradiology. High-quality illustrations depicting common and uncommon imaging characteristics of a wide range of brain tumors are presented and analysed, drawing attention to the ways in which these characteristics reflect different aspects of pathology. Important theoretical considerations are also discussed. Since the first edition, chapters have been revised and updated and new material has been added, including detailed information on the clinical application of functional MRI and diffusion tensor imaging. Radiologists and other clinicians interested in the current diagnostic approach to brain tumors will find this book to be an invaluable and enlightening clinical tool. (orig.)

  3. Functional Imaging of Dolphin Brain Metabolism and Blood Flow

    National Research Council Canada - National Science Library

    Ridgway, Sam; Finneran, James; Carder, Don; Keogh, Mandy; Van Bonn, William; Smith, Cynthia; Scadeng, Miriam; Dubowitz, David; Mattrey, Robert; Hoh, Carl

    2006-01-01

    .... Diazepam has been shown to induce unihemispheric slow waves (USW), therefore we used functional imaging of dolphins with and without diazepam to observe hemispheric differences in brain metabolism and blood flow...

  4. Multichannel optical brain imaging to separate cerebral vascular, tissue metabolic, and neuronal effects of cocaine

    Science.gov (United States)

    Ren, Hugang; Luo, Zhongchi; Yuan, Zhijia; Pan, Yingtian; Du, Congwu

    2012-02-01

    Characterization of cerebral hemodynamic and oxygenation metabolic changes, as well neuronal function is of great importance to study of brain functions and the relevant brain disorders such as drug addiction. Compared with other neuroimaging modalities, optical imaging techniques have the potential for high spatiotemporal resolution and dissection of the changes in cerebral blood flow (CBF), blood volume (CBV), and hemoglobing oxygenation and intracellular Ca ([Ca2+]i), which serves as markers of vascular function, tissue metabolism and neuronal activity, respectively. Recently, we developed a multiwavelength imaging system and integrated it into a surgical microscope. Three LEDs of λ1=530nm, λ2=570nm and λ3=630nm were used for exciting [Ca2+]i fluorescence labeled by Rhod2 (AM) and sensitizing total hemoglobin (i.e., CBV), and deoxygenated-hemoglobin, whereas one LD of λ1=830nm was used for laser speckle imaging to form a CBF mapping of the brain. These light sources were time-sharing for illumination on the brain and synchronized with the exposure of CCD camera for multichannel images of the brain. Our animal studies indicated that this optical approach enabled simultaneous mapping of cocaine-induced changes in CBF, CBV and oxygenated- and deoxygenated hemoglobin as well as [Ca2+]i in the cortical brain. Its high spatiotemporal resolution (30μm, 10Hz) and large field of view (4x5 mm2) are advanced as a neuroimaging tool for brain functional study.

  5. Structural brain imaging in diabetes : A methodological perspective

    NARCIS (Netherlands)

    Jongen, Cynthia; Biessels, Geert Jan

    2008-01-01

    Brain imaging provides information on brain anatomy and function and progression of cerebral abnormalities can be monitored. This may provide insight into the aetiology of diabetes related cerebral disorders. This paper focuses on the methods for the assessment of white matter hyperintensities and

  6. A Review of Imaging Techniques for Plant Phenotyping

    Science.gov (United States)

    Li, Lei; Zhang, Qin; Huang, Danfeng

    2014-01-01

    Given the rapid development of plant genomic technologies, a lack of access to plant phenotyping capabilities limits our ability to dissect the genetics of quantitative traits. Effective, high-throughput phenotyping platforms have recently been developed to solve this problem. In high-throughput phenotyping platforms, a variety of imaging methodologies are being used to collect data for quantitative studies of complex traits related to the growth, yield and adaptation to biotic or abiotic stress (disease, insects, drought and salinity). These imaging techniques include visible imaging (machine vision), imaging spectroscopy (multispectral and hyperspectral remote sensing), thermal infrared imaging, fluorescence imaging, 3D imaging and tomographic imaging (MRT, PET and CT). This paper presents a brief review on these imaging techniques and their applications in plant phenotyping. The features used to apply these imaging techniques to plant phenotyping are described and discussed in this review. PMID:25347588

  7. A Review of Imaging Techniques for Plant Phenotyping

    Directory of Open Access Journals (Sweden)

    Lei Li

    2014-10-01

    Full Text Available Given the rapid development of plant genomic technologies, a lack of access to plant phenotyping capabilities limits our ability to dissect the genetics of quantitative traits. Effective, high-throughput phenotyping platforms have recently been developed to solve this problem. In high-throughput phenotyping platforms, a variety of imaging methodologies are being used to collect data for quantitative studies of complex traits related to the growth, yield and adaptation to biotic or abiotic stress (disease, insects, drought and salinity. These imaging techniques include visible imaging (machine vision, imaging spectroscopy (multispectral and hyperspectral remote sensing, thermal infrared imaging, fluorescence imaging, 3D imaging and tomographic imaging (MRT, PET and CT. This paper presents a brief review on these imaging techniques and their applications in plant phenotyping. The features used to apply these imaging techniques to plant phenotyping are described and discussed in this review.

  8. Multi circular-cavity surface coil for magnetic resonance imaging of monkey's brain at 4 Tesla

    Science.gov (United States)

    Osorio, A. I.; Solis-Najera, S. E.; Vázquez, F.; Wang, R. L.; Tomasi, D.; Rodriguez, A. O.

    2014-11-01

    Animal models in medical research has been used to study humans diseases for several decades. The use of different imaging techniques together with different animal models offers a great advantage due to the possibility to study some human pathologies without the necessity of chirurgical intervention. The employ of magnetic resonance imaging for the acquisition of anatomical and functional images is an excellent tool because its noninvasive nature. Dedicated coils to perform magnetic resonance imaging experiments are obligatory due to the improvement on the signal-to-noise ratio and reduced specific absorption ratio. A specifically designed surface coil for magnetic resonance imaging of monkey's brain is proposed based on the multi circular-slot coil. Numerical simulations of the magnetic and electric fields were also performed using the Finite Integration Method to solve Maxwell's equations for this particular coil design and, to study the behavior of various vector magnetic field configurations and specific absorption ratio. Monkey's brain images were then acquired with a research-dedicated magnetic resonance imaging system at 4T, to evaluate the anatomical images with conventional imaging sequences. This coil showed good quality images of a monkey's brain and full compatibility with standard pulse sequences implemented in research-dedicated imager.

  9. Brain imaging in the context of food perception and eating.

    Science.gov (United States)

    Hollmann, Maurice; Pleger, Burkhard; Villringer, Arno; Horstmann, Annette

    2013-02-01

    Eating behavior depends heavily on brain function. In recent years, brain imaging has proved to be a powerful tool to elucidate brain function and brain structure in the context of eating. In this review, we summarize recent findings in the fast growing body of literature in the field and provide an overview of technical aspects as well as the basic brain mechanisms identified with imaging. Furthermore, we highlight findings linking neural processing of eating-related stimuli with obesity. The consumption of food is based on a complex interplay between homeostatic and hedonic mechanisms. Several hormones influence brain activity to regulate food intake and interact with the brain's reward circuitry, which is partly mediated by dopamine signaling. Additionally, it was shown that food stimuli trigger cognitive control mechanisms that incorporate internal goals into food choice. The brain mechanisms observed in this context are strongly influenced by genetic factors, sex and personality traits. Overall, a complex picture arises from brain-imaging findings, because a multitude of factors influence human food choice. Although several key mechanisms have been identified, there is no comprehensive model that is able to explain the behavioral observations to date. Especially a careful characterization of patients according to genotypes and phenotypes could help to better understand the current and future findings in neuroimaging studies.

  10. Simultaneous QSM and metabolic imaging of the brain using SPICE.

    Science.gov (United States)

    Peng, Xi; Lam, Fan; Li, Yudu; Clifford, Bryan; Liang, Zhi-Pei

    2018-01-01

    To map brain metabolites and tissue magnetic susceptibility simultaneously using a single three-dimensional 1 H-MRSI acquisition without water suppression. The proposed technique builds on a subspace imaging method called spectroscopic imaging by exploiting spatiospectral correlation (SPICE), which enables ultrashort echo time (TE)/short pulse repetition time (TR) acquisitions for 1 H-MRSI without water suppression. This data acquisition scheme simultaneously captures both the spectral information of brain metabolites and the phase information of the water signals that is directly related to tissue magnetic susceptibility variations. In extending this scheme for simultaneous QSM and metabolic imaging, we increase k-space coverage by using dual density sparse sampling and ramp sampling to achieve spatial resolution often required by QSM, while maintaining a reasonable signal-to-noise ratio (SNR) for the spatiospectral data used for metabolite mapping. In data processing, we obtain high-quality QSM from the unsuppressed water signals by taking advantage of the larger number of echoes acquired and any available anatomical priors; metabolite spatiospectral distributions are reconstructed using a union-of-subspaces model. In vivo experimental results demonstrate that the proposed method can produce susceptibility maps at a resolution higher than 1.8 × 1.8 × 2.4 mm3 along with metabolite spatiospectral distributions at a nominal spatial resolution of 2.4 × 2.4 × 2.4 mm3 from a single 7-min MRSI scan. The estimated susceptibility values are consistent with those obtained using the conventional QSM method with 3D multi-echo gradient echo acquisitions. This article reports a new capability for simultaneous susceptibility mapping and metabolic imaging of the brain from a single 1 H-MRSI scan, which has potential for a wide range of applications. Magn Reson Med 79:13-21, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017

  11. Advanced Pediatric Brain Imaging Research and Training Program

    Science.gov (United States)

    2013-10-01

    as an official Department of the Army position , policy or decision unless so designated by other documentation. REPORT DOCUMENTATION PAGE Form...Imaging biomarkers of outcome in the developing preterm brain. Lancet Neurol. 2009 Nov;8(11):1042-55. Epub 2009 Sep 30. 4. Mathur AM, Neil JJ, Inder...TE.Understanding brain injury and neurodevelopmental disabilities in the preterm infant: the evolving role of advanced magnetic resonance imaging.Semin

  12. Basal ganglia infarction demonstrated by radionuclide brain imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E.E.; Schacht, R.A.; Domstad, P.A.; DeLand, F.H.

    1982-11-01

    Four cases of basal ganglia infarction demonstrated by radionuclide brain imaging are presented. Bilateral basal ganglia infarctions in two patients were probably related to methanol intoxication and meningoencephalitis, and unilateral basal ganglia infarctions in two other patients were presumably due to cerebral atherosclerosis and/or hypertension. Various causes and mechanisms of basal ganglia infarction as well as positive findings of radionuclide brain imaging are briefly reviewed.

  13. Diagnosing Autism Spectrum Disorder through Brain Functional Magnetic Resonance Imaging

    Science.gov (United States)

    2016-03-01

    Diagnosing Autism Spectrum Disorder through Brain Functional Magnetic Resonance Imaging THESIS MARCH 2016 Kyle A. Palko, Second Lieutenant, USAF AFIT...declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENC-MS-16-M-123 DIAGNOSING AUTISM SPECTRUM...PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENC-MS-16-M-123 DIAGNOSING AUTISM SPECTRUM DISORDER THROUGH BRAIN FUNCTIONAL MAGNETIC RESONANCE IMAGING Kyle

  14. Digital image processing techniques in archaeology

    Digital Repository Service at National Institute of Oceanography (India)

    Santanam, K.; Vaithiyanathan, R.; Tripati, S.

    Digital image processing involves the manipulation and interpretation of digital images with the aid of a computer. This form of remote sensing actually began in the 1960's with a limited number of researchers analysing multispectral scanner data...

  15. The Potential of Using Brain Images for Authentication

    Directory of Open Access Journals (Sweden)

    Fanglin Chen

    2014-01-01

    Full Text Available Biometric recognition (also known as biometrics refers to the automated recognition of individuals based on their biological or behavioral traits. Examples of biometric traits include fingerprint, palmprint, iris, and face. The brain is the most important and complex organ in the human body. Can it be used as a biometric trait? In this study, we analyze the uniqueness of the brain and try to use the brain for identity authentication. The proposed brain-based verification system operates in two stages: gray matter extraction and gray matter matching. A modified brain segmentation algorithm is implemented for extracting gray matter from an input brain image. Then, an alignment-based matching algorithm is developed for brain matching. Experimental results on two data sets show that the proposed brain recognition system meets the high accuracy requirement of identity authentication. Though currently the acquisition of the brain is still time consuming and expensive, brain images are highly unique and have the potential possibility for authentication in view of pattern recognition.

  16. Enhancement of SAR images using fuzzy shrinkage technique in ...

    Indian Academy of Sciences (India)

    Speckle degrades the features in the image and reduces the ability of a human observer to resolve fine detail, hence despeckling is very much required for SAR images. This paper presents speckle noise reduction in SAR images using a combination of curvelet and fuzzy logic technique to restore speckle-affected images.

  17. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments

    Science.gov (United States)

    Gorgolewski, Krzysztof J.; Auer, Tibor; Calhoun, Vince D.; Craddock, R. Cameron; Das, Samir; Duff, Eugene P.; Flandin, Guillaume; Ghosh, Satrajit S.; Glatard, Tristan; Halchenko, Yaroslav O.; Handwerker, Daniel A.; Hanke, Michael; Keator, David; Li, Xiangrui; Michael, Zachary; Maumet, Camille; Nichols, B. Nolan; Nichols, Thomas E.; Pellman, John; Poline, Jean-Baptiste; Rokem, Ariel; Schaefer, Gunnar; Sochat, Vanessa; Triplett, William; Turner, Jessica A.; Varoquaux, Gaël; Poldrack, Russell A.

    2016-01-01

    The development of magnetic resonance imaging (MRI) techniques has defined modern neuroimaging. Since its inception, tens of thousands of studies using techniques such as functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research, there has been no widely adopted standard for organizing and describing the data collected in an imaging experiment. This renders sharing and reusing data (within or between labs) difficult if not impossible and unnecessarily complicates the application of automatic pipelines and quality assurance protocols. To solve this problem, we have developed the Brain Imaging Data Structure (BIDS), a standard for organizing and describing MRI datasets. The BIDS standard uses file formats compatible with existing software, unifies the majority of practices already common in the field, and captures the metadata necessary for most common data processing operations. PMID:27326542

  18. Effects of tissue fixation on coherent anti-Stokes Raman scattering images of brain

    Science.gov (United States)

    Galli, Roberta; Uckermann, Ortrud; Koch, Edmund; Schackert, Gabriele; Kirsch, Matthias; Steiner, Gerald

    2014-07-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is an emerging multiphoton technique for the label-free histopathology of the central nervous system, by imaging the lipid content within the tissue. In order to apply the technique on standard histology sections, it is important to know the effects of tissue fixation on the CARS image. Here, we report the effects of two common fixation methods, namely with formalin and methanol-acetone, on mouse brain and human glioblastoma tissue. The variations induced by fixation on the CARS contrast and intensity were compared and interpreted using Raman microspectroscopy. The results show that, whenever unfixed cryosections cannot be used, fixation with formalin constitutes an alternative which does not deteriorate substantially the contrast generated by the different brain structures in the CARS image. Fixation with methanol-acetone strongly modifies the tissue lipid content and is therefore incompatible with the CARS imaging.

  19. Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging.

    Science.gov (United States)

    Anbeek, Petronella; Vincken, Koen L; Groenendaal, Floris; Koeman, Annemieke; van Osch, Matthias J P; van der Grond, Jeroen

    2008-02-01

    A fully automated method has been developed for segmentation of four different structures in the neonatal brain: white matter (WM), central gray matter (CEGM), cortical gray matter (COGM), and cerebrospinal fluid (CSF). The segmentation algorithm is based on information from T2-weighted (T2-w) and inversion recovery (IR) scans. The method uses a K nearest neighbor (KNN) classification technique with features derived from spatial information and voxel intensities. Probabilistic segmentations of each tissue type were generated. By applying thresholds on these probability maps, binary segmentations were obtained. These final segmentations were evaluated by comparison with a gold standard. The sensitivity, specificity, and Dice similarity index (SI) were calculated for quantitative validation of the results. High sensitivity and specificity with respect to the gold standard were reached: sensitivity >0.82 and specificity >0.9 for all tissue types. Tissue volumes were calculated from the binary and probabilistic segmentations. The probabilistic segmentation volumes of all tissue types accurately estimated the gold standard volumes. The KNN approach offers valuable ways for neonatal brain segmentation. The probabilistic outcomes provide a useful tool for accurate volume measurements. The described method is based on routine diagnostic magnetic resonance imaging (MRI) and is suitable for large population studies.

  20. Hypnosis and imaging of the living human brain.

    Science.gov (United States)

    Landry, Mathieu; Raz, Amir

    2015-01-01

    Over more than two decades, studies using imaging techniques of the living human brain have begun to explore the neural correlates of hypnosis. The collective findings provide a gripping, albeit preliminary, account of the underlying neurobiological mechanisms involved in hypnotic phenomena. While substantial advances lend support to different hypotheses pertaining to hypnotic modulation of attention, control, and monitoring processes, the complex interactions among the many mediating variables largely hinder our ability to isolate robust commonalities across studies. The present account presents a critical integrative synthesis of neuroimaging studies targeting hypnosis as a function of suggestion. Specifically, hypnotic induction without task-specific suggestion is examined, as well as suggestions concerning sensation and perception, memory, and ideomotor response. The importance of carefully designed experiments is highlighted to better tease apart the neural correlates that subserve hypnotic phenomena. Moreover, converging findings intimate that hypnotic suggestions seem to induce specific neural patterns. These observations propose that suggestions may have the ability to target focal brain networks. Drawing on evidence spanning several technological modalities, neuroimaging studies of hypnosis pave the road to a more scientific understanding of a dramatic, yet largely evasive, domain of human behavior.

  1. A Document Imaging Technique for Implementing Electronic Loan Approval Process

    National Research Council Canada - National Science Library

    J. Manikandan; C.S. Celin; V.M. Gayathri

    2015-01-01

    ...), research fields, crime investigation fields and military fields. In this paper, we proposed a document image processing technique, for establishing electronic loan approval process (E-LAP) [2...

  2. Nuclear medicine imaging technique in the erectile dysfunction evaluation: a mini-review

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Camila Godinho; Moura, Regina; Neves, Rosane de Figueiredo [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Biologia Roberto Alcantara Gomes. Lab. de Radiofarmacia Experimental]. E-mail: cacagr@yahoo.com.br; Spinosa, Jean Pierre [Hopital de Zone, Morges (Switzerland). Dept. of Gynecology and Obstetrics; Bernardo-Filho, Mario [Instituto Nacional do Cancer, Rio de Janeiro, RJ (Brazil). Coordenadoria de Pesquisa

    2007-09-15

    Functional imaging with positron emission tomography and single photon emission computed tomography is capable of visualizing subtle changes in physiological function in vivo. Erectile dysfunction (ED) diminishes quality of life for affected men and their partners. Identification of neural substrates may provide information regarding the pathophysiology of types of sexual dysfunction originating in the brain. The aim of this work is to verify the approaches of the nuclear medicine techniques in the evaluation of the erectile function/dysfunction. A search using the words ED and nuclear medicine, ED and scintigraphy, ED and SPECT and ED and PET was done in the PubMed. The number of citations in each subject was determined. Neuroimaging techniques offer insight into brain regions involved in sexual arousal and inhibition. To tackle problems such as hyposexual disorders or ED caused by brain disorders, it is crucial to understand how the human brain controls sexual arousal and penile erection. (author)

  3. Application of digital image processing techniques to astronomical imagery 1977

    Science.gov (United States)

    Lorre, J. J.; Lynn, D. J.

    1978-01-01

    Nine specific techniques of combination of techniques developed for applying digital image processing technology to existing astronomical imagery are described. Photoproducts are included to illustrate the results of each of these investigations.

  4. Medical image compression using block-based transform coding techniques

    Science.gov (United States)

    De Neve, Peter; Philips, Wilfried R.; Van Overloop, Jeroen; Lemahieu, Ignace L.

    1996-09-01

    The JPEG lossy compression technique in medical imagery has several disadvantages (at higher compression ratios), mainly due to block-distortion. We therefore investigated two methods, the lapped orthogonal transform (LOT) and the DCT/DST coder, for the use on medical image data. These techniques are block-based but they reduce the block- distortion by spreading it out over the entire image. These compression techniques were applied on four different types of medical images (MRI image, x-ray image, angiogram and CT- scan). They were then compared with results from JPEG and variable block size DCT coders. At a first stage, we determined the optimal block size for each image and for each technique. It was found that for a specific image, the optimal block size was independent of the different transform coders. For the x-ray image, the CT-scan and the angiogram an optimal block size of 32 by 32 was found, while for the MRI image the optimal block size was 16 by 16. Afterwards, for all images the rate-distortion curves of the different techniques were calculated, using the optimal block size. The overall conclusion from our experiments is that the LOT is the best transform among the ones being investigated for compressing medical images of many different kinds. However, JPEG should be used for very high image qualities, as it then requires almost the same bit rate as the LOT and as it requires fewer computations than the LOT technique.

  5. Brain tumor classification of microscopy images using deep residual learning

    Science.gov (United States)

    Ishikawa, Yota; Washiya, Kiyotada; Aoki, Kota; Nagahashi, Hiroshi

    2016-12-01

    The crisis rate of brain tumor is about one point four in ten thousands. In general, cytotechnologists take charge of cytologic diagnosis. However, the number of cytotechnologists who can diagnose brain tumors is not sufficient, because of the necessity of highly specialized skill. Computer-Aided Diagnosis by computational image analysis may dissolve the shortage of experts and support objective pathological examinations. Our purpose is to support a diagnosis from a microscopy image of brain cortex and to identify brain tumor by medical image processing. In this study, we analyze Astrocytes that is a type of glia cell of central nerve system. It is not easy for an expert to discriminate brain tumor correctly since the difference between astrocytes and low grade astrocytoma (tumors formed from Astrocyte) is very slight. In this study, we present a novel method to segment cell regions robustly using BING objectness estimation and to classify brain tumors using deep convolutional neural networks (CNNs) constructed by deep residual learning. BING is a fast object detection method and we use pretrained BING model to detect brain cells. After that, we apply a sequence of post-processing like Voronoi diagram, binarization, watershed transform to obtain fine segmentation. For classification using CNNs, a usual way of data argumentation is applied to brain cells database. Experimental results showed 98.5% accuracy of classification and 98.2% accuracy of segmentation.

  6. Whole brain imaging with Serial Two-Photon Tomography

    Directory of Open Access Journals (Sweden)

    Stephen P Amato

    2016-03-01

    Full Text Available Imaging entire mouse brains at submicron resolution has historically been a challenging undertaking and largely confined to the province of dedicated atlasing initiatives. The has limited systematic investigations into important areas of neuroscience, such as neural circuits, brain mapping and neurodegeneration. In this paper, we describe in detail Serial Two-Photon (STP tomography, a robust, reliable method for imaging entire brains with histological detail. We provide examples of how the basic methodology can be extended to other imaging modalities, such as optical coherence tomography, in order to provide unique contrast mechanisms. Furthermore we provide a survey of the research that STP tomography has enabled in the field of neuroscience, provide examples of how this technology enables quantitative whole brain studies, and discuss the current limitations of STP tomography-based approaches

  7. Brain SPECT imaging in temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Krausz, Y.; Yaffe, S.; Atlan, H. (Hadassah Univ. Hospital, Jerusalem (Israel). Dept. of Medical Biophysics and Nuclear Medicine); Cohen, D. (Hadassah Univ. Hospital, Jerusalem (Israel). Dept. of Radiology); Konstantini, S. (Hadassah Univ. Hospital, Jerusalem (Israel). Dept. of Neurosurgery); Meiner, Z. (Hadassah Univ. Hospital, Jerusalem (Israel). Dept. of Neurology)

    1991-06-01

    Temporal lobe epilepsy is diagnosed by clinical symptoms and signs and by localization of an epileptogenic focus. A brain SPECT study of two patients with temporal lobe epilepsy, using {sup 99m}Tc-HMPAO, was used to demonstrate a perfusion abnormality in the temporal lobe, while brain CT and MRI were non-contributory. The electroencephalogram, though abnormal, did not localize the diseased area. The potential role of the SPECT study in diagnosis and localization of temporal lobe epilepsy is discussed. (orig.).

  8. Smartphones as pocketable labs: Visions for mobile brain imaging and neurofeedback

    DEFF Research Database (Denmark)

    Stopczynski, Arkadiusz; Stahlhut, Carsten; Petersen, Michael Kai

    2014-01-01

    Mobile brain imaging solutions, such as the Smartphone Brain Scanner, which combines low cost wireless EEG sensors with open source software for real-time neuroimaging, may transform neuroscience experimental paradigms. Normally subject to the physical constraints in labs, neuroscience experimental...... paradigms can be transformed into dynamic environments allowing for the capturing of brain signals in everyday contexts. Using smartphones or tablets to access text or images may enable experimental design capable of tracing emotional responses when shopping or consuming media, incorporating sensorimotor...... the Smartphone Brain Scanner, complemented by 3D reconstruction or source separation techniques may support a range of neuroimaging applications and thus become a valuable addition to high-end neuroimaging solutions....

  9. Integrated semiconductor optical sensors for chronic, minimally-invasive imaging of brain function.

    Science.gov (United States)

    Lee, Thomas T; Levi, Ofer; Cang, Jianhua; Kaneko, Megumi; Stryker, Michael P; Smith, Stephen J; Shenoy, Krishna V; Harris, James S

    2006-01-01

    Intrinsic optical signal (IOS) imaging is a widely accepted technique for imaging brain activity. We propose an integrated device consisting of interleaved arrays of gallium arsenide (GaAs) based semiconductor light sources and detectors operating at telecommunications wavelengths in the near-infrared. Such a device will allow for long-term, minimally invasive monitoring of neural activity in freely behaving subjects, and will enable the use of structured illumination patterns to improve system performance. In this work we describe the proposed system and show that near-infrared IOS imaging at wavelengths compatible with semiconductor devices can produce physiologically significant images in mice, even through skull.

  10. CLEAN Technique to Classify and Detect Objects in Subsurface Imaging

    Directory of Open Access Journals (Sweden)

    E. Karpat

    2012-01-01

    Full Text Available An image domain CLEAN technique, for nondestructive and noncontacting subsurface imaging, is discussed. Recently introduced finite-difference time-domain- (FDTD- based virtual tool, GrGPR, is used to create imaging scenarios and to generate synthetic scattering data through synthetic aperture (SAR type scanning. Matlab-based imaging algorithms are used to process recorded FDTD data. The location and the geometry of the targets are obtained by image domain CLEAN technique which is extracting scattering centers from the SAR image. The effectiveness of the algorithm is tested in simulated data.

  11. Application of digital imaging techniques to flare monitoring

    Science.gov (United States)

    Rodrigues, Shaun J.; Yan, Yong

    2011-08-01

    This paper presents a technique for detecting and monitoring flares in harsh industrial environments with the use of an imaging sensor combined with digital image processing. Flare images are captured via an imaging fibre and analysed to detect the flare's presence and region of interest. The flare characteristics are then determined using various image processing algorithms. A prototype system is designed, constructed and evaluated on a purpose built laboratory scale flare test rig. Results indicate that the imaging based technique has potential for the detection, monitoring and analysis of flares amidst various background conditions in the chemical and oil industries for plant safety, pollution prevention and control.

  12. Extraction of Wavelet Based Features for Classification of T2-Weighted MRI Brain Images

    OpenAIRE

    Ms. Yogita K.Dubey; Mushrif, Milind M.

    2012-01-01

    Extraction of discriminate features is very important task in classification algorithms. This paper presents technique for extraction cosine modulated feature for classification of the T2-weighted MRI images of human brain. Better discrimination and low design implementation complexity of the cosine-modulated wavelets has been effectively utilized to give better features and more accurate classification results. The proposed technique consists of two stages, namely, feature extraction, ...

  13. A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions.

    Science.gov (United States)

    Shiee, Navid; Bazin, Pierre-Louis; Ozturk, Arzu; Reich, Daniel S; Calabresi, Peter A; Pham, Dzung L

    2010-01-15

    We describe a new fully automatic method for the segmentation of brain images that contain multiple sclerosis white matter lesions. Multichannel magnetic resonance images are used to delineate multiple sclerosis lesions while segmenting the brain into its major structures. The method is an atlas-based segmentation technique employing a topological atlas as well as a statistical atlas. An advantage of this approach is that all segmented structures are topologically constrained, thereby allowing subsequent processing such as cortical unfolding or diffeomorphic shape analysis techniques. Evaluation with both simulated and real data sets demonstrates that the method has an accuracy competitive with state-of-the-art MS lesion segmentation methods, while simultaneously segmenting the whole brain.

  14. The traveling heads: multicenter brain imaging at 7 Tesla

    NARCIS (Netherlands)

    Voelker, M.N.; Kraff, O.; Kraff, O.; Brenner, D.; Wollrab, A.; Weinberger, O.; Berger, M.C.; Robinson, S.; Bogner, W.; Wiggins, C.; Trampel, R.; Stöcker, T.; Niendorf, T.; Quick, H.H.; Norris, David Gordon; Ladd, M.E.; Speck, O.

    2016-01-01

    Objective This study evaluates the inter-site and intra-site reproducibility of 7 Tesla brain imaging and compares it to literature values for other field strengths. Materials and methods The same two subjects were imaged at eight different 7 T sites. MP2RAGE, TSE, TOF, SWI, EPI as well as B1 and B0

  15. Imaging brain tumor proliferative activity with [I-124]iododeoxyuridine

    NARCIS (Netherlands)

    Blasberg, RG; Roelcke, U; Weinreich, R; Beattie, B; von Ammon, K; Yonekawa, Y; Landolt, H; Guenther, [No Value; Crompton, NEA; Vontobel, P; Missimer, J; Maguire, RP; Koziorowski, J; Knust, EJ; Finn, RD; Leenders, KL

    2000-01-01

    Iododeoxyuridine (IUdR) uptake and retention was imaged by positron emission tomography (PET) at 0-48 min and 24 h after administration of 28.0-64.4 MBq (0.76-1.74 mCi) of [I-124]IUdR in 20 patients with brain tumors, including meningiomas and gliomas, The PET images were directly compared with

  16. heuristically improved bayesian segmentation of brain mr images

    African Journals Online (AJOL)

    Therefore, finding automatic methods for segmenting images appears to be mandatory (Kumar and. Arthanariee 2014; Rajchl, Baxter et al. 2014; Valverde, Oliver et al. 2014). Nowadays, Magnetic Resonance Imaging (MRI) is a prevalent way of realizing human brain and mostly is utilized in diagnostics and therapeutics.

  17. A numerical model for the study of photoacoustic imaging of brain tumours

    CERN Document Server

    Firouzi, Kamyar

    2015-01-01

    Photoacoustic imaging has shown great promise for medical imaging, where optical energy absorption by blood haemoglobin is used as the contrast mechanism. A numerical method was developed for the in-silico assessment of the photoacoustic image reconstruction of the brain. Image segmentation techniques were used to prepare a digital phantom from MR images. Light transport through brain tissue was modelled using a Finite Element approach. The resulting acoustic pressure was then estimated by pulsed photoacoustics considerations. The forward acoustic wave propagation was modelled by the linearized coupled first order wave equations and solved by an acoustic k-space method. Since skull bone is an elastic solid and strongly attenuates ultrasound (due to both scattering and absorption), a k-space method was developed for elastic media. To model scattering effects, a new approach was applied based on propagation in random media. In addition, absorption effects were incorporated using a power law. Finally, the acoust...

  18. Dynamic time warping-based averaging framework for functional near-infrared spectroscopy brain imaging studies

    Science.gov (United States)

    Zhu, Li; Najafizadeh, Laleh

    2017-06-01

    We investigate the problem related to the averaging procedure in functional near-infrared spectroscopy (fNIRS) brain imaging studies. Typically, to reduce noise and to empower the signal strength associated with task-induced activities, recorded signals (e.g., in response to repeated stimuli or from a group of individuals) are averaged through a point-by-point conventional averaging technique. However, due to the existence of variable latencies in recorded activities, the use of the conventional averaging technique can lead to inaccuracies and loss of information in the averaged signal, which may result in inaccurate conclusions about the functionality of the brain. To improve the averaging accuracy in the presence of variable latencies, we present an averaging framework that employs dynamic time warping (DTW) to account for the temporal variation in the alignment of fNIRS signals to be averaged. As a proof of concept, we focus on the problem of localizing task-induced active brain regions. The framework is extensively tested on experimental data (obtained from both block design and event-related design experiments) as well as on simulated data. In all cases, it is shown that the DTW-based averaging technique outperforms the conventional-based averaging technique in estimating the location of task-induced active regions in the brain, suggesting that such advanced averaging methods should be employed in fNIRS brain imaging studies.

  19. Applications of nanotechnology to imaging and therapy of brain tumors.

    Science.gov (United States)

    Mohs, Aaron M; Provenzale, James M

    2010-08-01

    In the past decade, numerous advances in the understanding of brain tumor physiology, tumor imaging, and tumor therapy have been attained. In some cases, these advances have resulted from refinements of pre-existing technologies (eg, improvements of contrast-enhanced magnetic resonance imaging). In other instances, advances have resulted from development of novel technologies. The development of nanomedicine (ie, applications of nanotechnology to the field of medicine) is an example of the latter. In this review, the authors explain the principles that underlay nanoparticle design and function as well as the means by which nanoparticles can be used for imaging and therapy of brain tumors. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Functional photoacoustic imaging to observe regional brain activation induced by cocaine hydrochloride

    Science.gov (United States)

    Jo, Janggun; Yang, Xinmai

    2011-09-01

    Photoacoustic microscopy (PAM) was used to detect small animal brain activation in response to drug abuse. Cocaine hydrochloride in saline solution was injected into the blood stream of Sprague Dawley rats through tail veins. The rat brain functional change in response to the injection of drug was then monitored by the PAM technique. Images in the coronal view of the rat brain at the locations of 1.2 and 3.4 mm posterior to bregma were obtained. The resulted photoacoustic (PA) images showed the regional changes in the blood volume. Additionally, the regional changes in blood oxygenation were also presented. The results demonstrated that PA imaging is capable of monitoring regional hemodynamic changes induced by drug abuse.

  1. Imaging liver and brain glycogen metabolism at the nanometer scale.

    Science.gov (United States)

    Takado, Yuhei; Knott, Graham; Humbel, Bruno M; Escrig, Stéphane; Masoodi, Mojgan; Meibom, Anders; Comment, Arnaud

    2015-01-01

    In mammals, glycogen synthesis and degradation are dynamic processes regulating blood and cerebral glucose-levels within a well-defined physiological range. Despite the essential role of glycogen in hepatic and cerebral metabolism, its spatiotemporal distribution at the molecular and cellular level is unclear. By correlating electron microscopy and ultra-high resolution ion microprobe (NanoSIMS) imaging of tissue from fasted mice injected with (13)C-labeled glucose, we demonstrate that liver glycogenesis initiates in the hepatocyte perinuclear region before spreading toward the cell membrane. In the mouse brain, we observe that (13)C is inhomogeneously incorporated into astrocytic glycogen at a rate ~25 times slower than in the liver, in agreement with prior bulk studies. This experiment, using temporally resolved, nanometer-scale imaging of glycogen synthesis and degradation, provides greater insight into glucose metabolism in mammalian organs and shows how this technique can be used to explore biochemical pathways in healthy and diseased states. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Development of image and information management system for Korean standard brain

    Science.gov (United States)

    Chung, Soon Cheol; Choi, Do Young; Tack, Gye Rae; Sohn, Jin Hun

    2004-04-01

    The purpose of this study is to establish a reference for image acquisition for completing a standard brain for diverse Korean population, and to develop database management system that saves and manages acquired brain images and personal information of subjects. 3D MP-RAGE (Magnetization Prepared Rapid Gradient Echo) technique which has excellent Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR) as well as reduces image acquisition time was selected for anatomical image acquisition, and parameter values were obtained for the optimal image acquisition. Using these standards, image data of 121 young adults (early twenties) were obtained and stored in the system. System was designed to obtain, save, and manage not only anatomical image data but also subjects' basic demographic factors, medical history, handedness inventory, state-trait anxiety inventory, A-type personality inventory, self-assessment depression inventory, mini-mental state examination, intelligence test, and results of personality test via a survey questionnaire. Additionally this system was designed to have functions of saving, inserting, deleting, searching, and printing image data and personal information of subjects, and to have accessibility to them as well as automatic connection setup with ODBC. This newly developed system may have major contribution to the completion of a standard brain for diverse Korean population since it can save and manage their image data and personal information.

  3. Diagnostic confirmation of mild traumatic brain injury by diffusion tensor imaging: a case report

    Directory of Open Access Journals (Sweden)

    Krishna Ranga

    2012-02-01

    Full Text Available Abstract Introduction Traumatic brain injury is a form of acquired brain injury that results from sudden trauma to the head. Specifically, mild traumatic brain injury is a clinical diagnosis that can have significant effects on an individual's life, yet is difficult to identify through traditional imaging techniques. Case presentation This is the case of a 68-year-old previously healthy African American woman who was involved in a motor vehicle accident that resulted in significant head trauma. After the accident, she experienced symptoms indicative of mild traumatic brain injury and sought a neurological consultation when her symptoms did not subside. She was initially evaluated with a neurological examination, psychological evaluation, acute concussion evaluation and a third-party memory test using software from CNS Vital Signs for neurocognitive function. A diagnosis of post-concussion syndrome was suggested. Diffusion tensor imaging revealed decreased fractional anisotropy in the region immediately adjacent to both lateral ventricles, which was used to confirm the diagnosis. Fractional anisotropy is a scalar value between zero and one that describes the degree of anisotropy of a diffusion process. These results are indicative of post-traumatic gliosis and are undetectable by magnetic resonance imaging. Our patient was treated with cognitive therapy. Conclusion Minor traumatic brain injury is a common injury with variable clinical presentation. The system of diagnosis used in this case found a significant relationship between the clinical assessment and imaging results. This would not have been possible using traditional imaging techniques and highlights the benefits of using diffusion tensor imaging in the sub-acute assessment of minor traumatic brain injury.

  4. Image guided constitutive modeling of the silicone brain phantom

    Science.gov (United States)

    Puzrin, Alexander; Skrinjar, Oskar; Ozan, Cem; Kim, Sihyun; Mukundan, Srinivasan

    2005-04-01

    The goal of this work is to develop reliable constitutive models of the mechanical behavior of the in-vivo human brain tissue for applications in neurosurgery. We propose to define the mechanical properties of the brain tissue in-vivo, by taking the global MR or CT images of a brain response to ventriculostomy - the relief of the elevated intracranial pressure. 3D image analysis translates these images into displacement fields, which by using inverse analysis allow for the constitutive models of the brain tissue to be developed. We term this approach Image Guided Constitutive Modeling (IGCM). The presented paper demonstrates performance of the IGCM in the controlled environment: on the silicone brain phantoms closely simulating the in-vivo brain geometry, mechanical properties and boundary conditions. The phantom of the left hemisphere of human brain was cast using silicon gel. An inflatable rubber membrane was placed inside the phantom to model the lateral ventricle. The experiments were carried out in a specially designed setup in a CT scanner with submillimeter isotropic voxels. The non-communicative hydrocephalus and ventriculostomy were simulated by consequently inflating and deflating the internal rubber membrane. The obtained images were analyzed to derive displacement fields, meshed, and incorporated into ABAQUS. The subsequent Inverse Finite Element Analysis (based on Levenberg-Marquardt algorithm) allowed for optimization of the parameters of the Mooney-Rivlin non-linear elastic model for the phantom material. The calculated mechanical properties were consistent with those obtained from the element tests, providing justification for the future application of the IGCM to in-vivo brain tissue.

  5. Unconventional techniques of fundus imaging: A review

    Directory of Open Access Journals (Sweden)

    Mahesh P Shanmugam

    2015-01-01

    Full Text Available The methods of fundus examination include direct and indirect ophthalmoscopy and imaging with a fundus camera are an essential part of ophthalmic practice. The usage of unconventional equipment such as a hand-held video camera, smartphone, and a nasal endoscope allows one to image the fundus with advantages and some disadvantages. The advantages of these instruments are the cost-effectiveness, ultra portability and ability to obtain images in a remote setting and share the same electronically. These instruments, however, are unlikely to replace the fundus camera but then would always be an additional arsenal in an ophthalmologist's armamentarium.

  6. Incidental ferumoxytol artifacts in clinical brain MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bowser, Bruce A.; Campeau, Norbert G.; Carr, Carrie M.; Diehn, Felix E.; McDonald, Jennifer S.; Miller, Gary M.; Kaufmann, Timothy J. [Mayo Clinic, Department of Radiology, Rochester, MN (United States)

    2016-11-15

    Ferumoxytol (Feraheme) is a parenteral therapy approved for treatment of iron deficiency anemia. The product insert for ferumoxytol states that it may affect the diagnostic ability of MRI for up to 3 months. However, the expected effects may not be commonly recognized among clinical neuroradiologists. Our purpose is to describe the artifacts we have seen at our institution during routine clinical practice. We reviewed the patients at our institution that had brain MRI performed within 90 days of receiving intravenous ferumoxytol. The imaging was reviewed for specific findings, including diffusion-weighted imaging vascular susceptibility artifact, gradient-echo echo-planar T2*-weighted vascular susceptibility artifact, SWI/SWAN vascular susceptibility artifact, hypointense vascular signal on T2-weighted images, pre-gadolinium contrast vascular enhancement on magnetization-prepared rapid acquisition gradient echo (MPRAGE) imaging, and effects on post-gadolinium contrast T1 imaging. Multiple artifacts were observed in patients having a brain MRI within 3 days of receiving intravenous ferumoxytol. These included susceptibility artifact on DWI, GRE, and SWAN/SWI imaging, pre-gadolinium contrast increased vascular signal on MPRAGE imaging, and decreased expected enhancement on post-gadolinium contrast T1-weighted imaging. Ferumoxytol can create imaging artifacts which complicate clinical interpretation when brain MRI is performed within 3 days of administration. Recognition of the constellation of artifacts produced by ferumoxytol is important in order to obviate additional unnecessary examinations and mitigate errors in interpretation. (orig.)

  7. Techniques in Iterative Proton CT Image Reconstruction

    CERN Document Server

    Penfold, Scott

    2015-01-01

    This is a review paper on some of the physics, modeling, and iterative algorithms in proton computed tomography (pCT) image reconstruction. The primary challenge in pCT image reconstruction lies in the degraded spatial resolution resulting from multiple Coulomb scattering within the imaged object. Analytical models such as the most likely path (MLP) have been proposed to predict the scattered trajectory from measurements of individual proton location and direction before and after the object. Iterative algorithms provide a flexible tool with which to incorporate these models into image reconstruction. The modeling leads to a large and sparse linear system of equations that can efficiently be solved by projection methods-based iterative algorithms. Such algorithms perform projections of the iterates onto the hyperlanes that are represented by the linear equations of the system. They perform these projections in possibly various algorithmic structures, such as block-iterative projections (BIP), string-averaging...

  8. VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images.

    Science.gov (United States)

    Chen, Hao; Dou, Qi; Yu, Lequan; Qin, Jing; Heng, Pheng-Ann

    2017-04-23

    Segmentation of key brain tissues from 3D medical images is of great significance for brain disease diagnosis, progression assessment and monitoring of neurologic conditions. While manual segmentation is time-consuming, laborious, and subjective, automated segmentation is quite challenging due to the complicated anatomical environment of brain and the large variations of brain tissues. We propose a novel voxelwise residual network (VoxResNet) with a set of effective training schemes to cope with this challenging problem. The main merit of residual learning is that it can alleviate the degradation problem when training a deep network so that the performance gains achieved by increasing the network depth can be fully leveraged. With this technique, our VoxResNet is built with 25 layers, and hence can generate more representative features to deal with the large variations of brain tissues than its rivals using hand-crafted features or shallower networks. In order to effectively train such a deep network with limited training data for brain segmentation, we seamlessly integrate multi-modality and multi-level contextual information into our network, so that the complementary information of different modalities can be harnessed and features of different scales can be exploited. Furthermore, an auto-context version of the VoxResNet is proposed by combining the low-level image appearance features, implicit shape information, and high-level context together for further improving the segmentation performance. Extensive experiments on the well-known benchmark (i.e., MRBrainS) of brain segmentation from 3D magnetic resonance (MR) images corroborated the efficacy of the proposed VoxResNet. Our method achieved the first place in the challenge out of 37 competitors including several state-of-the-art brain segmentation methods. Our method is inherently general and can be readily applied as a powerful tool to many brain-related studies, where accurate segmentation of brain

  9. Red blood cell image enhancement techniques for cells with ...

    African Journals Online (AJOL)

    quality or challenging conditions of the images such as poor illumination of blood smear and most importantly overlapping RBC. The algorithm comprises of two RBC segmentation that can be selected based on the image quality, circle mask technique and grayscale blood smear image processing. Detail explanations ...

  10. Millimeter-wave Imaging Systems with Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Löffler, Torsten; Krozer, Viktor; Zhurbenko, Vitaliy

    2010-01-01

    The paper describes development of a millimetre-wave imaging system using multi-element aperture filling techniques [1]. Such imaging systems are increasingly demonstrated for security applications and in particular standoff imaging of persons and bonding flaw and defect detection [2]. The major...

  11. Advanced MR brain imaging in preterm infants

    NARCIS (Netherlands)

    Bruine, Francisca Teresa de

    2013-01-01

    The aim of the thesis is to investigate the diagnostic value of MRI performed around term equivalent age in evaluating brain injury and predicting neurodevelopmental outcome at two years corrected age in very preterm infants with a gestational age of less than 32 weeks. MRI is a powerful tool to

  12. Label-free imaging of brain and brain tumor specimens with combined two-photon excited fluorescence and second harmonic generation microscopy

    Science.gov (United States)

    Jiang, Liwei; Wang, Xingfu; Wu, Zanyi; Du, Huiping; Wang, Shu; Li, Lianhuang; Fang, Na; Lin, Peihua; Chen, Jianxin; Kang, Dezhi; Zhuo, Shuangmu

    2017-10-01

    Label-free imaging techniques are gaining acceptance within the medical imaging field, including brain imaging, because they have the potential to be applied to intraoperative in situ identifications of pathological conditions. In this paper, we describe the use of two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) microscopy in combination for the label-free detection of brain and brain tumor specimens; gliomas. Two independently detecting channels were chosen to subsequently collect TPEF/SHG signals from the specimen to increase TPEF/SHG image contrasts. Our results indicate that the combined TPEF/SHG microscopic techniques can provide similar rat brain structural information and produce a similar resolution like conventional H&E staining in neuropathology; including meninges, cerebral cortex, white-matter structure corpus callosum, choroid plexus, hippocampus, striatum, and cerebellar cortex. It can simultaneously detect infiltrating human brain tumor cells, the extracellular matrix collagen fiber of connective stroma within brain vessels and collagen depostion in tumor microenvironments. The nuclear-to-cytoplasmic ratio and collagen content can be extracted as quantitative indicators for differentiating brain gliomas from healthy brain tissues. With the development of two-photon fiberscopes and microendoscope probes and their clinical applications, the combined TPEF and SHG microcopy may become an important multimodal, nonlinear optical imaging approach for real-time intraoperative histological diagnostics of residual brain tumors. These occur in various brain regions during ongoing surgeries through the method of simultaneously identifying tumor cells, and the change of tumor microenvironments, without the need for the removal biopsies and without the need for tissue labelling or fluorescent markers.

  13. Cross contrast multi-channel image registration using image synthesis for MR brain images.

    Science.gov (United States)

    Chen, Min; Carass, Aaron; Jog, Amod; Lee, Junghoon; Roy, Snehashis; Prince, Jerry L

    2017-02-01

    Multi-modal deformable registration is important for many medical image analysis tasks such as atlas alignment, image fusion, and distortion correction. Whereas a conventional method would register images with different modalities using modality independent features or information theoretic metrics such as mutual information, this paper presents a new framework that addresses the problem using a two-channel registration algorithm capable of using mono-modal similarity measures such as sum of squared differences or cross-correlation. To make it possible to use these same-modality measures, image synthesis is used to create proxy images for the opposite modality as well as intensity-normalized images from each of the two available images. The new deformable registration framework was evaluated by performing intra-subject deformation recovery, intra-subject boundary alignment, and inter-subject label transfer experiments using multi-contrast magnetic resonance brain imaging data. Three different multi-channel registration algorithms were evaluated, revealing that the framework is robust to the multi-channel deformable registration algorithm that is used. With a single exception, all results demonstrated improvements when compared against single channel registrations using the same algorithm with mutual information. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Use of automated image registration to generate mean brain SPECT image of Alzheimer`s patients

    Energy Technology Data Exchange (ETDEWEB)

    Imran, M.B.; Kawashima, Ryuta [Tohoku Univ., Sendai (Japan). Inst. of Development, Aging and Cancer; Awata, Shuichi [and others

    1998-06-01

    The purpose of this study was to compute and compare the group mean HMPAO brain SPECT images of patients with senile dementia of Alzheimer`s type (SDAT) and age matched control subjects after transformation of the individual images to a standard size and shape. Ten patients with Alzheimer`s disease (age 71.6{+-}5.0 yr) and ten age matched normal subjects (age 71.0{+-}6.1 yr) participated in this study. Tc-99m HMPAO brain SPECT and X-ray CT scans were acquired for each subject. SPECT images were normalized to an average activity of 100 counts/pixel. Individual brain images were transformed to a standard size and shape with the help of Automated Image Registration (AIR). Realigned brain SPECT images of both groups were used to generate mean and standard deviation images by arithmetic operations on voxel based numerical values. Mean images of both groups were compared by applying the unpaired t-test on a voxel by voxel basis to generate three dimensional T-maps. X-ray CT images of individual subjects were evaluated by means of a computer program for brain atrophy. A significant decrease in relative radioisotope (RI) uptake was present in the bilateral superior and inferior parietal lobules (p<0.05), bilateral inferior temporal gyri, and the bilateral superior and middle frontal gyri (p<0.001). The mean brain atrophy indices for patients and normal subjects were 0.853{+-}0.042 and 0.933{+-}0.017 respectively, the difference being statistically significant (p<0.001). The use of a brain image standardization procedure increases the accuracy of voxel based group comparisons. Thus, intersubject averaging enhances the capacity for detection of abnormalities in functional brain images by minimizing the influence of individual variation. (author)

  15. Techniques and software architectures for medical visualisation and image processing

    OpenAIRE

    Botha, C.P.

    2005-01-01

    This thesis presents a flexible software platform for medical visualisation and image processing, a technique for the segmentation of the shoulder skeleton from CT data and three techniques that make contributions to the field of direct volume rendering. Our primary goal was to investigate the use of visualisation techniques to assist the shoulder replacement process. This motivated the need for a flexible environment within which to test and develop new visualisation and also image processin...

  16. Biomarkers for Musculoskeletal Pain Conditions: Use of Brain Imaging and Machine Learning.

    Science.gov (United States)

    Boissoneault, Jeff; Sevel, Landrew; Letzen, Janelle; Robinson, Michael; Staud, Roland

    2017-01-01

    Chronic musculoskeletal pain condition often shows poor correlations between tissue abnormalities and clinical pain. Therefore, classification of pain conditions like chronic low back pain, osteoarthritis, and fibromyalgia depends mostly on self report and less on objective findings like X-ray or magnetic resonance imaging (MRI) changes. However, recent advances in structural and functional brain imaging have identified brain abnormalities in chronic pain conditions that can be used for illness classification. Because the analysis of complex and multivariate brain imaging data is challenging, machine learning techniques have been increasingly utilized for this purpose. The goal of machine learning is to train specific classifiers to best identify variables of interest on brain MRIs (i.e., biomarkers). This report describes classification techniques capable of separating MRI-based brain biomarkers of chronic pain patients from healthy controls with high accuracy (70-92%) using machine learning, as well as critical scientific, practical, and ethical considerations related to their potential clinical application. Although self-report remains the gold standard for pain assessment, machine learning may aid in the classification of chronic pain disorders like chronic back pain and fibromyalgia as well as provide mechanistic information regarding their neural correlates.

  17. Imaging human brain cyto- and myelo-architecture with quantitative OCT (Conference Presentation)

    Science.gov (United States)

    Boas, David A.; Wang, Hui; Konukoglu, Ender; Fischl, Bruce; Sakadzic, Sava; Magnain, Caroline V.

    2017-02-01

    No current imaging technology allows us to directly and without significant distortion visualize the microscopic and defining anatomical features of the human brain. Ex vivo histological techniques can yield exquisite planar images, but the cutting, mounting and staining that are required components of this type of imaging induce distortions that are different for each slice, introducing cross-slice differences that prohibit true 3D analysis. We are overcoming this issue by utilizing Optical Coherence Tomography (OCT) with the goal to image whole human brain cytoarchitectural and laminar properties with potentially 3.5 µm resolution in block-face without the need for exogenous staining. From the intrinsic scattering contrast of the brain tissue, OCT gives us images that are comparable to Nissl stains, but without the distortions introduced in standard histology as the OCT images are acquired from the block face prior to slicing and thus without the need for subsequent staining and mounting. We have shown that laminar and cytoarchitectural properties of the brain can be characterized with OCT just as well as with Nissl staining. We will present our recent advances to improve the axial resolution while maintaining contrast; improvements afforded by speckle reduction procedures; and efforts to obtain quantitative maps of the optical scattering coefficient, an intrinsic property of the tissue.

  18. Brain magnetic resonance imaging in adults with asthma.

    Science.gov (United States)

    Parker, J; Wolansky, L J; Khatry, D; Geba, G P; Molfino, N A

    2011-01-01

    In individuals with asthma, potential central nervous system changes can occur as a consequence of their asthma or therapy. Clinical trials of anti-asthmatic therapies might benefit from using magnetic resonance imaging (MRI) to assess potential brain abnormalities. As part of the clinical safety evaluation of a monoclonal antibody directed against interleukin-9 for the treatment of asthma, we assessed whether brain MRI is an appropriate screening tool to evaluate potential neurotoxicity. Brain MRIs were conducted as part of a prespecified safety evaluation in adults aged 19 to 47 years with mild to moderate asthma treated with either the investigational monoclonal antibody or placebo. An independent neuroradiologist performed a blinded review of brain MRI scans obtained at baseline before dosing and day 28 after dosing from two separate clinical studies. Fifteen brain MRI abnormalities were noted in 13 of 21 subjects with asthma (62%). Nonspecific deep white matter hyperintensities (24%), perivascular space (24%), and abnormal anatomic findings (14%) were noted either at baseline or follow-up. Only 8 of 21 subjects (38%) with asthma had normal brain MRI results. The high rate of incidental brain MRI findings suggests that these abnormalities are relatively common in patients with asthma. Thus, brain MRI may not be an appropriate screening tool to evaluate potential neurotoxicity in subjects during routine clinical studies without a baseline examination. Due to artifacts simulating lesions, an experienced radiologist should interpret all brain MRI results. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Segmentation of Striatal Brain Structures from High Resolution PET Images

    Directory of Open Access Journals (Sweden)

    Ricardo J. P. C. Farinha

    2009-01-01

    Full Text Available We propose and evaluate an automatic segmentation method for extracting striatal brain structures (caudate, putamen, and ventral striatum from parametric C11-raclopride positron emission tomography (PET brain images. We focus on the images acquired using a novel brain dedicated high-resolution (HRRT PET scanner. The segmentation method first extracts the striatum using a deformable surface model and then divides the striatum into its substructures based on a graph partitioning algorithm. The weighted kernel k-means algorithm is used to partition the graph describing the voxel affinities within the striatum into the desired number of clusters. The method was experimentally validated with synthetic and real image data. The experiments showed that our method was able to automatically extract caudate, ventral striatum, and putamen from the images. Moreover, the putamen could be subdivided into anterior and posterior parts. An automatic method for the extraction of striatal structures from high-resolution PET images allows for inexpensive and reproducible extraction of the quantitative information from these images necessary in brain research and drug development.

  20. Brain magnetic resonance imaging of infants exposed prenatally to buprenorphine

    Energy Technology Data Exchange (ETDEWEB)

    Kahila, H.; Kivitie-Kallio, S.; Halmesmaki, E.; Valanne, L.; Autti, T. [Dept. of Obstetrics and Gynecology, Dept. of Pediatrics, and Helsinki Medical Imaging Center, Helsinki Univ. Central Hospital (Finland)

    2007-02-15

    Purpose: To evaluate the brains of newborns exposed to buprenorphine prenatally. Material and Methods: Seven neonates followed up antenatally in connection with their mothers' buprenorphine replacement therapy underwent 1.5T magnetic resonance imaging (MRI) of the brain before the age of 2 months. The infants were born to heavy drug abusers. Four mothers were hepatitis C positive, and all were HIV negative. All mothers smoked tobacco and used benzodiazepines. All pregnancies were full term, and no perinatal asphyxia occurred. All but one neonate had abstinence syndrome and needed morphine replacement therapy. Results: Neither structural abnormalities nor abnormalities in signal intensity were recorded. Conclusion: Buprenorphine replacement therapy does not seem to cause any major structural abnormalities of the brain, and it may prevent known hypoxic-ischemic brain changes resulting from uncontrolled drug abuse. Longitudinal studies are needed to assess possible abnormalities in the brain maturation process.

  1. Normal feline brain: clinical anatomy using magnetic resonance imaging.

    Science.gov (United States)

    Mogicato, G; Conchou, F; Layssol-Lamour, C; Raharison, F; Sautet, J

    2012-04-01

    The purpose of this study was to provide a clinical anatomy atlas of the feline brain using magnetic resonance imaging (MRI). Brains of twelve normal cats were imaged using a 1.5 T magnetic resonance unit and an inversion/recovery sequence (T1). Fourteen relevant MRI sections were chosen in transverse, dorsal, median and sagittal planes. Anatomic structures were identified and labelled using anatomical texts and Nomina Anatomica Veterinaria, sectioned specimen heads, and previously published articles. The MRI sections were stained according to the major embryological and anatomical subdivisions of the brain. The relevant anatomical structures seen on MRI will assist clinicians to better understand MR images and to relate this neuro-anatomy to clinical signs. © 2011 Blackwell Verlag GmbH.

  2. Full Parallax Integral 3D Display and Image Processing Techniques

    Directory of Open Access Journals (Sweden)

    Byung-Gook Lee

    2015-02-01

    Full Text Available Purpose – Full parallax integral 3D display is one of the promising future displays that provide different perspectives according to viewing direction. In this paper, the authors review the recent integral 3D display and image processing techniques for improving the performance, such as viewing resolution, viewing angle, etc.Design/methodology/approach – Firstly, to improve the viewing resolution of 3D images in the integral imaging display with lenslet array, the authors present 3D integral imaging display with focused mode using the time-multiplexed display. Compared with the original integral imaging with focused mode, the authors use the electrical masks and the corresponding elemental image set. In this system, the authors can generate the resolution-improved 3D images with the n×n pixels from each lenslet by using n×n time-multiplexed display. Secondly, a new image processing technique related to the elemental image generation for 3D scenes is presented. With the information provided by the Kinect device, the array of elemental images for an integral imaging display is generated.Findings – From their first work, the authors improved the resolution of 3D images by using the time-multiplexing technique through the demonstration of the 24 inch integral imaging system. Authors’ method can be applied to a practical application. Next, the proposed method with the Kinect device can gain a competitive advantage over other methods for the capture of integral images of big 3D scenes. The main advantage of fusing the Kinect and the integral imaging concepts is the acquisition speed, and the small amount of handled data.Originality / Value – In this paper, the authors review their recent methods related to integral 3D display and image processing technique.Research type – general review.

  3. Image Retrieval and Re-Ranking Techniques - A Survey

    OpenAIRE

    Mayuri D. Joshi; Revati M. Deshmukh; Kalashree N.Hemke; Ashwini Bhake; Rakhi Wajgi

    2014-01-01

    There is a huge amount of research work focusing on the searching, retrieval and re-ranking of images in the image database. The diverse and scattered work in this domain needs to be collected and organized for easy and quick reference. Relating to the above context, this paper gives a brief overview of various image retrieval and re-ranking techniques. Starting with the introduction to existing system the paper proceeds through the core architecture of image harvesti...

  4. Imaging in anatomy: a comparison of imaging techniques in embalmed human cadavers

    Science.gov (United States)

    2013-01-01

    Background A large variety of imaging techniques is an integral part of modern medicine. Introducing radiological imaging techniques into the dissection course serves as a basis for improved learning of anatomy and multidisciplinary learning in pre-clinical medical education. Methods Four different imaging techniques (ultrasound, radiography, computed tomography, and magnetic resonance imaging) were performed in embalmed human body donors to analyse possibilities and limitations of the respective techniques in this peculiar setting. Results The quality of ultrasound and radiography images was poor, images of computed tomography and magnetic resonance imaging were of good quality. Conclusion Computed tomography and magnetic resonance imaging have a superior image quality in comparison to ultrasound and radiography and offer suitable methods for imaging embalmed human cadavers as a valuable addition to the dissection course. PMID:24156510

  5. Dynamic Multi-Coil Technique (DYNAMITE) Shimming of the Rat Brain at 11.7 Tesla

    Science.gov (United States)

    Juchem, Christoph; Herman, Peter; Sanganahalli, Basavaraju G.; Brown, Peter B.; McIntyre, Scott; Nixon, Terence W.; Green, Dan; Hyder, Fahmeed; de Graaf, Robin A.

    2014-01-01

    The in vivo rat model is a workhorse in neuroscience research, preclinical studies and drug development. A repertoire of MR tools has been developed for its investigation, however, high levels of B0 magnetic field homogeneity are required for meaningful results. The homogenization of magnetic fields in the rat brain, i.e. shimming, is a difficult task due to a multitude of complex, susceptibility-induced field distortions. Conventional shimming with spherical harmonic (SH) functions is capable of compensating shallow field distortions in limited areas, e.g. in the cortex, but performs poorly in difficult-to-shim subcortical structures or for the entire brain. Based on the recently introduced multi-coil approach for magnetic field modeling, the DYNAmic Multi-coIl TEchnique (DYNAMITE) is introduced for magnetic field shimming of the in vivo rat brain and its benefits for gradient-echo echo-planar imaging (EPI) are demonstrated. An integrated multi-coil/radio-frequency (MC/RF) system comprising 48 individual localized DC coils for B0 shimming and a surface transceive RF coil has been developed that allows MR investigations of the anesthetized rat brain in vivo. DYNAMITE shimming with this MC/RF setup is shown to reduce the B0 standard deviation to a third of that achieved with current shim technology employing static first through third order SH shapes. The EPI signal over the rat brain increased by 31% and a 24% gain in usable EPI voxels could be realized. DYNAMITE shimming is expected to critically benefit a wide range of preclinical and neuroscientific MR research. Improved magnetic field homogeneity, along with the achievable large brain coverage of this method will be crucial when signal pathways, cortical circuitry or the brain’s default network are studied. Along with the efficiency gains of MC-based shimming compared to SH approaches demonstrated recently, DYNAMITE shimming has the potential to replace conventional SH shim systems in small bore animal

  6. Brain Basics

    Medline Plus

    Full Text Available ... such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies ... imaging (MRI) mdash;An imaging technique that uses magnetic fields to take pictures of the brain's structure. mutation — ...

  7. Imaging Monoamine Oxidase in the Human Brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  8. On the Image Watermarking Techniques Applications, Properties ...

    African Journals Online (AJOL)

    Abstract:With the coming and the expansion of the World Wide Web an increased amount of digital information, such as documents, images audio and video ... for copyright protection and a considerable interest in methods for inserting in a multimedia document a visible, or preferably invisible, mark to identify the owner.

  9. Effect of glucose level on brain FDG-PET images

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Young; Lee, Yong Ki; Ahn, Sung Min [Dept. of Radiological Science, Gachon University, Seongnam (Korea, Republic of)

    2017-06-15

    In addition to tumors, normal tissues, such as the brain and myocardium can intake {sup 18}F-FDG, and the amount of {sup 18}F-FDG intake by normal tissues can be altered by the surrounding environment. Therefore, a process is necessary during which the contrasts of the tumor and normal tissues can be enhanced. Thus, this study examines the effects of glucose levels on FDG PET images of brain tissues, which features high glucose activity at all times, in small animals. Micro PET scan was performed on fourteen mice after injecting {sup 18}F-FDG. The images were compared in relation to fasting. The findings showed that the mean SUV value w as 0 .84 higher in fasted mice than in non-fasted mice. During observation, the images from non-fasted mice showed high accumulation in organs other than the brain with increased surrounding noise. In addition, compared to the non-fasted mice, the fasted mice showed higher early intake and curve increase. The findings of this study suggest that fasting is important in assessing brain functions in brain PET using {sup 18}F-FDG. Additional studies to investigate whether caffeine levels and other preprocessing items have an impact on the acquired images would contribute to reducing radiation exposure in patients.

  10. Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains.

    Directory of Open Access Journals (Sweden)

    Martin K Schwarz

    Full Text Available In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain.

  11. RF inhomogeneity compensation in structural brain imaging

    National Research Council Canada - National Science Library

    Deichmann, R; Good, C.D; Turner, R

    2002-01-01

    .... It is shown experimentally that images acquired with the compensation pulse may be segmented without using intensity correction algorithms during data postprocessing. Magn Reson Med 47:398–402, 2002. © 2002 Wiley‐Liss, Inc.

  12. Increased self-diffusion of brain water in hydrocephalus measured by MR imaging

    DEFF Research Database (Denmark)

    Gideon, P; Thomsen, C; Gjerris, F

    1994-01-01

    We used MR imaging to measure the apparent brain water self-diffusion in 5 patients with normal pressure hydrocephalus (NPH), in 2 patients with high pressure hydrocephalus (HPH), and in 8 age-matched controls. In all patients with NPH significant elevations of the apparent diffusion coefficients...... brain water fraction. For further studies of brain water diffusion in hydrocephalus patients, echo-planar imaging techniques with imaging times of a few seconds may be valuable.......We used MR imaging to measure the apparent brain water self-diffusion in 5 patients with normal pressure hydrocephalus (NPH), in 2 patients with high pressure hydrocephalus (HPH), and in 8 age-matched controls. In all patients with NPH significant elevations of the apparent diffusion coefficients...... (ADC) of brain water were found within periventricular white matter, in the corpus callosum, in the internal capsule, within cortical gray matter, and in cerebrospinal fluid, whereas normal ADCs were found within the basal ganglia. In 2 patients with HPH elevated ADCs were found most prominently within...

  13. Jet-images: computer vision inspired techniques for jet tagging

    Energy Technology Data Exchange (ETDEWEB)

    Cogan, Josh; Kagan, Michael; Strauss, Emanuel; Schwarztman, Ariel [SLAC National Accelerator Laboratory,Menlo Park, CA 94028 (United States)

    2015-02-18

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon-initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  14. Effect of Enhancement Technique on Nonuniform and Uniform Ultrasound Images

    Directory of Open Access Journals (Sweden)

    Parveen Lehana

    2015-01-01

    Full Text Available The absence of adequate scientific resources in the area of medical sciences sometimes leads to improper diagnosis of diseases and hence the treatments of such diseases are affected badly. However, with the advancement of technology, the complicacy of various malfunctions inside the human body reduces. Ultrasound imaging is one of the biomedical scanning techniques that let the pathologist make comment reasonably and accurately on the disease or irregularity seen in the scan while low imaging quality lets the diagnosis go wrong. Even a little distortion can route the pathologist away from the main cause of the disease. In this research work, the enhancement of dark ultrasound images has been done. An algorithm is developed using enhancement technique for nonuniform and uniform dark images. Finally, we compared the quality of the processed and unprocessed images. Both ETNUD and mean and median filtering techniques were used for image analysis.

  15. Towards Automatic Image Segmentation Using Optimised Region Growing Technique

    Science.gov (United States)

    Alazab, Mamoun; Islam, Mofakharul; Venkatraman, Sitalakshmi

    Image analysis is being adopted extensively in many applications such as digital forensics, medical treatment, industrial inspection, etc. primarily for diagnostic purposes. Hence, there is a growing interest among researches in developing new segmentation techniques to aid the diagnosis process. Manual segmentation of images is labour intensive, extremely time consuming and prone to human errors and hence an automated real-time technique is warranted in such applications. There is no universally applicable automated segmentation technique that will work for all images as the image segmentation is quite complex and unique depending upon the domain application. Hence, to fill the gap, this paper presents an efficient segmentation algorithm that can segment a digital image of interest into a more meaningful arrangement of regions and objects. Our algorithm combines region growing approach with optimised elimination of false boundaries to arrive at more meaningful segments automatically. We demonstrate this using X-ray teeth images that were taken for real-life dental diagnosis.

  16. Recovering depth from focus using iterative image estimation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Vitria, J.; Llacer, J.

    1993-09-01

    In this report we examine the possibility of using linear and nonlinear image estimation techniques to build a depth map of a three dimensional scene from a sequence of partially focused images. In particular, the techniques proposed to solve the problem of construction of a depth map are: (1) linear methods based on regularization procedures and (2) nonlinear methods based on statistical modeling. In the first case, we have implemented a matrix-oriented method to recover the point spread function (PSF) of a sequence of partially defocused images. In the second case, the chosen method has been a procedure based on image estimation by means of the EM algorithm, a well known technique in image reconstruction in medical applications. This method has been generalized to deal with optically defocused image sequences.

  17. Topographic localization of brain activation in diffuse optical imaging using spherical wavelets

    Science.gov (United States)

    Abdelnour, F.; Schmidt, B.; Huppert, T. J.

    2009-10-01

    Diffuse optical imaging is a non-invasive technique that uses near-infrared light to measure changes in brain activity through an array of sensors placed on the surface of the head. Compared to functional MRI, optical imaging has the advantage of being portable while offering the ability to record functional changes in both oxy- and deoxy-hemoglobin within the brain at a high temporal resolution. However, the reconstruction of accurate spatial images of brain activity from optical measurements represents an ill-posed and underdetermined problem that requires regularization. These reconstructions benefit from incorporating prior information about the underlying spatial structure and function of the brain. In this work, we describe a novel image reconstruction approach which uses surface-based wavelets derived from structural MRI to incorporate high-resolution anatomical and structural prior information about the brain. This surface-based approach is used to approximate brain activation patterns through the reconstruction and presentation of topographical (two-dimensional) maps of brain activation directly onto the folded surface of the cortex. The set of wavelet coefficients is directly estimated by a truncated singular-value decomposition based pseudo-inversion of the wavelet projection of the optical forward model. We use a reconstruction metric based on Shannon entropy which quantifies the sparse loading of the wavelet coefficients and is used to determine the optimal truncation and regularization of this inverse model. In this work, examples of the performance of this model are illustrated for several cases of numerical simulation and experimental data with comparison to functional magnetic resonance imaging.

  18. Functional photoacoustic tomography for neonatal brain imaging: developments and challenges

    Science.gov (United States)

    Hariri, Ali; Tavakoli, Emytis; Adabi, Saba; Gelovani, Juri; Avanaki, Mohammad R. N.

    2017-03-01

    Transfontanelle ultrasound imaging (TFUSI) is a routine diagnostic brain imaging method in infants who are born prematurely, whose skull bones have not completely fused together and have openings between them, so-called fontanelles. Open fontanelles in neonates provide acoustic windows, allowing the ultrasound beam to freely pass through. TFUSI is used to rule out neurological complications of premature birth including subarachnoid hemorrhage (SAH), intraventricular (IVH), subependimal (SEPH), subdural (SDH) or intracerebral (ICH) hemorrhages, as well as hypoxic brain injuries. TFUSI is widely used in the clinic owing to its low cost, safety, accessibility, and noninvasive nature. Nevertheless, the accuracy of TFUSI is limited. To address several limitations of current clinical imaging modalities, we develop a novel transfontanelle photoacoustic imaging (TFPAI) probe, which, for the first time, should allow for non-invasive structural and functional imaging of the infant brain. In this study, we test the feasibility of TFPAI for detection of experimentally-induced intra ventricular and Intraparenchymal hemorrhage phantoms in a sheep model with a surgically-induced cranial window which will serve as a model of neonatal fontanelle. This study is towards using the probe we develop for bedside monitoring of neonates with various disease conditions and complications affecting brain perfusion and oxygenation, including apnea, asphyxia, as well as for detection of various types of intracranial hemorrhages (SAH, IVH, SEPH, SDH, ICH).

  19. Synchrotron radiation imaging is a powerful tool to image brain microvasculature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Mengqi; Sun, Danni; Xie, Yuanyuan; Xia, Jian; Long, Hongyu; Hu, Kai; Xiao, Bo, E-mail: csuxiaobo123456@163.com [Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Peng, Guanyun [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2014-03-15

    Synchrotron radiation (SR) imaging is a powerful experimental tool for micrometer-scale imaging of microcirculation in vivo. This review discusses recent methodological advances and findings from morphological investigations of cerebral vascular networks during several neurovascular pathologies. In particular, it describes recent developments in SR microangiography for real-time assessment of the brain microvasculature under various pathological conditions in small animal models. It also covers studies that employed SR-based phase-contrast imaging to acquire 3D brain images and provide detailed maps of brain vasculature. In addition, a brief introduction of SR technology and current limitations of SR sources are described in this review. In the near future, SR imaging could transform into a common and informative imaging modality to resolve subtle details of cerebrovascular function.

  20. Image and video compression fundamentals, techniques, and applications

    CERN Document Server

    Joshi, Madhuri A; Dandawate, Yogesh H; Joshi, Kalyani R; Metkar, Shilpa P

    2014-01-01

    Image and video signals require large transmission bandwidth and storage, leading to high costs. The data must be compressed without a loss or with a small loss of quality. Thus, efficient image and video compression algorithms play a significant role in the storage and transmission of data.Image and Video Compression: Fundamentals, Techniques, and Applications explains the major techniques for image and video compression and demonstrates their practical implementation using MATLAB® programs. Designed for students, researchers, and practicing engineers, the book presents both basic principles

  1. A review of imaging techniques for systems biology

    Directory of Open Access Journals (Sweden)

    Po Ming J

    2008-08-01

    Full Text Available Abstract This paper presents a review of imaging techniques and of their utility in system biology. During the last decade systems biology has matured into a distinct field and imaging has been increasingly used to enable the interplay of experimental and theoretical biology. In this review, we describe and compare the roles of microscopy, ultrasound, CT (Computed Tomography, MRI (Magnetic Resonance Imaging, PET (Positron Emission Tomography, and molecular probes such as quantum dots and nanoshells in systems biology. As a unified application area among these different imaging techniques, examples in cancer targeting are highlighted.

  2. Brain Volume Estimation Enhancement by Morphological Image Processing Tools

    Directory of Open Access Journals (Sweden)

    Zeinali R.

    2017-12-01

    Full Text Available Background: Volume estimation of brain is important for many neurological applications. It is necessary in measuring brain growth and changes in brain in normal/ abnormal patients. Thus, accurate brain volume measurement is very important. Magnetic resonance imaging (MRI is the method of choice for volume quantification due to excellent levels of image resolution and between-tissue contrast. Stereology method is a good method for estimating volume but it requires to segment enough MRI slices and have a good resolution. In this study, it is desired to enhance stereology method for volume estimation of brain using less MRI slices with less resolution. Methods: In this study, a program for calculating volume using stereology method has been introduced. After morphologic method, dilation was applied and the stereology method enhanced. For the evaluation of this method, we used T1-wighted MR images from digital phantom in BrainWeb which had ground truth. Results: The volume of 20 normal brain extracted from BrainWeb, was calculated. The volumes of white matter, gray matter and cerebrospinal fluid with given dimension were estimated correctly. Volume calculation from Stereology method in different cases was made. In three cases, Root Mean Square Error (RMSE was measured. Case I with T=5, d=5, Case II with T=10, D=10 and Case III with T=20, d=20 (T=slice thickness, d=resolution as stereology parameters. By comparing these results of two methods, it is obvious that RMSE values for our proposed method are smaller than Stereology method. Conclusion: Using morphological operation, dilation allows to enhance the estimation volume method, Stereology. In the case with less MRI slices and less test points, this method works much better compared to Stereology method.

  3. The need for improved brain lesion segmentation techniques for children with cerebral palsy: A review.

    Science.gov (United States)

    Pagnozzi, Alex M; Gal, Yaniv; Boyd, Roslyn N; Fiori, Simona; Fripp, Jurgen; Rose, Stephen; Dowson, Nicholas

    2015-12-01

    Cerebral palsy (CP) describes a group of permanent disorders of posture and movement caused by disturbances in the developing brain. Accurate diagnosis and prognosis, in terms of motor type and severity, is difficult to obtain due to the heterogeneous appearance of brain injury and large anatomical distortions commonly observed in children with CP. There is a need to optimise treatment strategies for individual patients in order to lead to lifelong improvements in function and capabilities. Magnetic resonance imaging (MRI) is critical to non-invasively visualizing brain lesions, and is currently used to assist the diagnosis and qualitative classification in CP patients. Although such qualitative approaches under-utilise available data, the quantification of MRIs is not automated and therefore not widely performed in clinical assessment. Automated brain lesion segmentation techniques are necessary to provide valid and reproducible quantifications of injury. Such techniques have been used to study other neurological disorders, however the technical challenges unique to CP mean that existing algorithms require modification to be sufficiently reliable, and therefore have not been widely applied to MRIs of children with CP. In this paper, we present a review of a subset of available brain injury segmentation approaches that could be applied to CP, including the detection of cortical malformations, white and grey matter lesions and ventricular enlargement. Following a discussion of strengths and weaknesses, we suggest areas of future research in applying segmentation techniques to the MRI of children with CP. Specifically, we identify atlas-based priors to be ineffective in regions of substantial malformations, instead propose relying on adaptive, spatially consistent algorithms, with fast initialisation mechanisms to provide additional robustness to injury. We also identify several cortical shape parameters that could be used to identify cortical injury, and shape

  4. The imaging of HIV-related brain disease : clinical: imaging

    African Journals Online (AJOL)

    Furthermore, a correlation between declining cognitive function and the loss of ... and highly active antiretroviral therapy (HAART) is an important aspect of managing these conditions effec- tively.2 In ... sult in damage to white matter tracts in the brain.6 Once damage is established and related cognitive disorders ensue, the ...

  5. Histopathological Image Analysis Using Image Processing Techniques: An Overview

    OpenAIRE

    A. D. Belsare; M.M. Mushrif

    2012-01-01

    This paper reviews computer assisted histopathology image analysis for cancer detection and classification. Histopathology refers to the examination of invasive or less invasive biopsy sample by a pathologist under microscope for locating, analyzing and classifying most of the diseases like cancer. The analysis of histoapthological image is done manually by the pathologist to detect disease which leads to subjective diagnosis of sample and varies with level of expertise of examine...

  6. A Comparison of X-Ray Image Segmentation Techniques

    Directory of Open Access Journals (Sweden)

    STOLOJESCU-CRISAN, C.

    2013-08-01

    Full Text Available Image segmentation operation has a great importance in most medical imaging applications, by extracting anatomical structures from medical images. There are many image segmentation techniques available in the literature, each of them having advantages and disadvantages. The extraction of bone contours from X-ray images has received a considerable amount of attention in the literature recently, because they represent a vital step in the computer analysis of this kind of images. The aim of X-ray segmentation is to subdivide the image in various portions, so that it can help doctors during the study of the bone structure, for the detection of fractures in bones, or for planning the treatment before surgery. The goal of this paper is to review the most important image segmentation methods starting from a data base composed by real X-ray images. We will discuss the principle and the mathematical model for each method, highlighting the strengths and weaknesses.

  7. Employing image processing techniques for cancer detection using microarray images.

    Science.gov (United States)

    Dehghan Khalilabad, Nastaran; Hassanpour, Hamid

    2017-02-01

    Microarray technology is a powerful genomic tool for simultaneously studying and analyzing the behavior of thousands of genes. The analysis of images obtained from this technology plays a critical role in the detection and treatment of diseases. The aim of the current study is to develop an automated system for analyzing data from microarray images in order to detect cancerous cases. The proposed system consists of three main phases, namely image processing, data mining, and the detection of the disease. The image processing phase performs operations such as refining image rotation, gridding (locating genes) and extracting raw data from images the data mining includes normalizing the extracted data and selecting the more effective genes. Finally, via the extracted data, cancerous cell is recognized. To evaluate the performance of the proposed system, microarray database is employed which includes Breast cancer, Myeloid Leukemia and Lymphomas from the Stanford Microarray Database. The results indicate that the proposed system is able to identify the type of cancer from the data set with an accuracy of 95.45%, 94.11%, and 100%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Fiber optic fluorescence microscopy for functional brain imaging in awake, mobile mice

    Science.gov (United States)

    Cha, Jaepyeong; Paukert, Martin; Bergles, Dwight E.; Kang, Jin U.

    2014-03-01

    Fiber-optic based optical imaging is an emerging technique for studying brain activity in live animals. Here, we introduce a novel fluorescence fiber-optic microendoscopy approach to minimal invasively detect neural activities in a live mouse brain . The system uses a flexible endoscopic probe composed of a multi-core coherent fiber-bundle terminated with an approximately 1500-micron working distance objective lens. The fiber-optic neural interface is mounted on a 4-mm2 cranial window enabling visualization of glial calcium transients from the same brain region for weeks. We evaluated the system performance through in vivo imaging of GCaMP3 fluorescence in transgenic headrestrained mice during locomotion.

  9. "Relative CIR": an image enhancement and visualization technique

    Science.gov (United States)

    Fleming, Michael D.

    1993-01-01

    Many techniques exist to spectrally and spatially enhance digital multispectral scanner data. One technique enhances an image while keeping the colors as they would appear in a color-infrared (CIR) image. This "relative CIR" technique generates an image that is both spectrally and spatially enhanced, while displaying a maximum range of colors. The technique enables an interpreter to visualize either spectral or land cover classes by their relative CIR characteristics. A relative CIR image is generated by developed spectral statistics for each class in the classifications and then, using a nonparametric approach for spectral enhancement, the means of the classes for each band are ranked. A 3 by 3 pixel smoothing filter is applied to the classification for spatial enhancement and the classes are mapped to the representative rank for each band. Practical applications of the technique include displaying an image classification product as a CIR image that was not derived directly from a spectral image, visualizing how a land cover classification would look as a CIR image, and displaying a spectral classification or intermediate product that will be used to label spectral classes.

  10. Segmentation and representation of lesions in MRI brain images

    Science.gov (United States)

    Tao, Yi; Grosky, William I.; Zamorano, Lucia J.; Jiang, Zhaowei; Gong, JianXing

    1999-05-01

    In this paper, we address the NSPS (a Neurological Surgery Planning System developed at the Neurological Surgery Department of Wayne State University) approaches for segmenting and representing lesions in MRI brain images. Initially, the 2D segmentation algorithm requires the input of a seed (an individual pixel or a small region) and a threshold to control the formation of a lesion region. The 3D segmentation algorithm requires the input of a seed, along with the threshold computed automatically from the corresponding three sample thresholds of lesion regions in sagittal, coronal, and axial views, to form a lesion volume. Then, a novel method is developed to represent the segmented lesion regions with feature point histograms, obtained by discretizing and counting the angles produced from the resulting Delaunay triangulation of a set of feature points which characterize the shape of the lesion region. The proposed shape representation technique is translation, scale, and rotation independent. Through various experiment results, we demonstrate the efficacy of the NSPS methodologies. Finally, based on the lesion representation scheme, we present a prototype system architecture for neurological surgery training. The implemented system will work in a Web-based environment, allowing neurosurgeons to query and browse various patients-related medical records in an effective and efficient way.

  11. Technique development for photoacoustic imaging guided interventions

    Science.gov (United States)

    Cheng, Qian; Zhang, Haonan; Yuan, Jie; Feng, Ting; Xu, Guan; Wang, Xueding

    2015-03-01

    Laser-induced thermotherapy (LITT), i.e. tissue destruction induced by a local increase of temperature by means of laser light energy transmission, has been frequently used for minimally invasive treatments of various diseases such as benign thyroid nodules and liver cancer. The emerging photoacoustic (PA) imaging, when integrated with ultrasound (US), could contribute to LITT procedure. PA can enable a good visualization of percutaneous apparatus deep inside tissue and, therefore, can offer accurate guidance of the optical fibers to the target tissue. Our initial experiment demonstrated that, by picking the strong photoacoustic signals generated at the tips of optical fibers as a needle, the trajectory and position of the fibers could be visualized clearly using a commercial available US unit. When working the conventional US Bscan mode, the fibers disappeared when the angle between the fibers and the probe surface was larger than 60 degree; while working on the new PA mode, the fibers could be visualized without any problem even when the angle between the fibers and the probe surface was larger than 75 degree. Moreover, with PA imaging function integrated, the optical fibers positioned into the target tissue, besides delivering optical energy for thermotherapy, can also be used to generate PA signals for on-line evaluation of LITT. Powered by our recently developed PA physio-chemical analysis, PA measurements from the tissue can provide a direct and accurate feedback of the tissue responses to laser ablation, including the changes in not only chemical compositions but also histological microstructures. The initial experiment on the rat liver model has demonstrated the excellent sensitivity of PA imaging to the changes in tissue temperature rise and tissue status (from native to coagulated) when the tissue is treated in vivo with LITT.

  12. Brain imaging of pain: state of the art

    Directory of Open Access Journals (Sweden)

    Morton DL

    2016-09-01

    Full Text Available Debbie L Morton, Javin S Sandhu, Anthony KP Jones Human Pain Research Group, Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK Abstract: Pain is a complex sensory and emotional experience that is heavily influenced by prior experience and expectations of pain. Before the development of noninvasive human brain imaging, our grasp of the brain’s role in pain processing was limited to data from postmortem studies, direct recording of brain activity, patient experience and stimulation during neurosurgical procedures, and animal models of pain. Advances made in neuroimaging have bridged the gap between brain activity and the subjective experience of pain and allowed us to better understand the changes in the brain that are associated with both acute and chronic pain. Additionally, cognitive influences on pain such as attention, anticipation, and fear can now be directly observed, allowing for the interpretation of the neural basis of the psychological modulation of pain. The use of functional brain imaging to measure changes in endogenous neurochemistry has increased our understanding of how states of increased resilience and vulnerability to pain are maintained. Keywords: fMRI, PET, EEG, arthritis, fibromyalgia

  13. Direct imaging of neural currents using ultra-low field magnetic resonance techniques

    Science.gov (United States)

    Volegov, Petr L [Los Alamos, NM; Matlashov, Andrei N [Los Alamos, NM; Mosher, John C [Los Alamos, NM; Espy, Michelle A [Los Alamos, NM; Kraus, Jr., Robert H.

    2009-08-11

    Using resonant interactions to directly and tomographically image neural activity in the human brain using magnetic resonance imaging (MRI) techniques at ultra-low field (ULF), the present inventors have established an approach that is sensitive to magnetic field distributions local to the spin population in cortex at the Larmor frequency of the measurement field. Because the Larmor frequency can be readily manipulated (through varying B.sub.m), one can also envision using ULF-DNI to image the frequency distribution of the local fields in cortex. Such information, taken together with simultaneous acquisition of MEG and ULF-NMR signals, enables non-invasive exploration of the correlation between local fields induced by neural activity in cortex and more `distant` measures of brain activity such as MEG and EEG.

  14. Brain tumor segmentation using holistically nested neural networks in MRI images.

    Science.gov (United States)

    Zhuge, Ying; Krauze, Andra V; Ning, Holly; Cheng, Jason Y; Arora, Barbara C; Camphausen, Kevin; Miller, Robert W

    2017-10-01

    Gliomas are rapidly progressive, neurologically devastating, largely fatal brain tumors. Magnetic resonance imaging (MRI) is a widely used technique employed in the diagnosis and management of gliomas in clinical practice. MRI is also the standard imaging modality used to delineate the brain tumor target as part of treatment planning for the administration of radiation therapy. Despite more than 20 yr of research and development, computational brain tumor segmentation in MRI images remains a challenging task. We are presenting a novel method of automatic image segmentation based on holistically nested neural networks that could be employed for brain tumor segmentation of MRI images. Two preprocessing techniques were applied to MRI images. The N4ITK method was employed for correction of bias field distortion. A novel landmark-based intensity normalization method was developed so that tissue types have a similar intensity scale in images of different subjects for the same MRI protocol. The holistically nested neural networks (HNN), which extend from the convolutional neural networks (CNN) with a deep supervision through an additional weighted-fusion output layer, was trained to learn the multiscale and multilevel hierarchical appearance representation of the brain tumor in MRI images and was subsequently applied to produce a prediction map of the brain tumor on test images. Finally, the brain tumor was obtained through an optimum thresholding on the prediction map. The proposed method was evaluated on both the Multimodal Brain Tumor Image Segmentation (BRATS) Benchmark 2013 training datasets, and clinical data from our institute. A dice similarity coefficient (DSC) and sensitivity of 0.78 and 0.81 were achieved on 20 BRATS 2013 training datasets with high-grade gliomas (HGG), based on a two-fold cross-validation. The HNN model built on the BRATS 2013 training data was applied to ten clinical datasets with HGG from a locally developed database. DSC and sensitivity of

  15. Segmentation techniques for extracting humans from thermal images

    CSIR Research Space (South Africa)

    Dickens, JS

    2011-11-01

    Full Text Available A pedestrian detection system for underground mine vehicles is being developed that requires the segmentation of people from thermal images in underground mine tunnels. A number of thresholding techniques are outlined and their performance on a...

  16. Imaging the premature brain: ultrasound or MRI?

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Linda S. de; Benders, Manon J.N.L.; Groenendaal, Floris [UMC Utrecht, Department of Neonatology, Wilhelmina Children' s Hospital, PO Box 85090, Utrecht (Netherlands)

    2013-09-15

    Neuroimaging of preterm infants has become part of routine clinical care, but the question is often raised on how often cranial ultrasound should be done and whether every high risk preterm infant should at least have one MRI during the neonatal period. An increasing number of centres perform an MRI either at discharge or around term equivalent age, and a few centres have access to a magnet in or adjacent to the neonatal intensive care unit and are doing sequential MRIs. In this review, we try to discuss when best to perform these two neuroimaging techniques and the additional information each technique may provide. (orig.)

  17. Brain imaging and the effects of caffeine and nicotine.

    Science.gov (United States)

    Dager, S R; Friedman, S D

    2000-12-01

    Caffeine and nicotine are the most common psychostimulant drugs used worldwide. Structural neuroimaging findings associated with caffeine and nicotine consumption are limited and primarily reflect the putative relationship between smoking and white matter hyperintensities (WMH), a finding that warrants further appraisal of its clinical implications. The application of newer brain imaging modalities that measure subtle haemodynamic changes or tissue-based chemistry in order to better elucidate brain functional processes, including mechanisms underlying addiction to nicotine and caffeine and the brain functional consequences, provide intriguing findings. Potential influences of caffeine and nicotine on the functional contrast, or metabolic response, to neural activation also necessitates the careful appraisal of the effects that these commonly used drugs may have on the results of functional imaging.

  18. New imaging techniques: principles, limitations and the question of cost

    Energy Technology Data Exchange (ETDEWEB)

    Marsault, C.; Heran, F.; Brugieres, P.; Le Bras, F.; Castrec-Carpo, A.

    1989-03-01

    The new imaging techniques modify the diagnostic, or even sometimes therapeutic, decision lines. Their efficiency is much greater than that of the old techniques, while pretium doloris and side-effects are considerably reduced. Such advances are not without a major disadvantage: the ever increasing cost of imaging explorations. Radiological guidance (with conventional radiology, ultrasounds and computerized tomography) facilitates percutaneous procedures for diagnostic (biopsy) or therapeutic purposes (emptying of abscesses, chemonucleolysis of herniated lumbar disc, etc.).

  19. Brain imaging in myotonic dystrophy type 1: A systematic review

    NARCIS (Netherlands)

    Okkersen, K.; Monckton, D.G.; Le, N.; Tuladhar, A.M.; Raaphorst, J.; Engelen, B.G.M. van

    2017-01-01

    OBJECTIVE: To systematically review brain imaging studies in myotonic dystrophy type 1 (DM1). METHODS: We searched Embase (index period 1974-2016) and MEDLINE (index period 1946-2016) for studies in patients with DM1 using MRI, magnetic resonance spectroscopy (MRS), functional MRI (fMRI), CT,

  20. Brain imaging in patients with freezing of gait

    NARCIS (Netherlands)

    Bartels, Anna L.; Leenders, Klaus L.

    2008-01-01

    Freezing of gait (FOG) is a disabling gait disturbance with unknown cerebral pathophysiology. In this review, we discuss the functional brain imaging Studies that address gait physiology and pathophysiology of FOG. Radiotracer metabolic studies show basal ganglia-cortical circuitry involvement in

  1. Reliability and Accuracy of Brain Volume Measurement on MR Imaging

    DEFF Research Database (Denmark)

    Yamagchii, Kechiro; Lassen, Anders; Ring, Poul

    1998-01-01

    Yamaguchi, K., Lassen, A. And Ring, P. Reliability and Accuracy of Brain Volume Measurement on MR Imaging. Abstract at ESMRMB98 European Society for Magnetic Resonance in Medicine and Biology, Geneva, Sept 17-20, 1998 Danish Research Center for Magnetic Resonance, Hvidovre University Hospital...

  2. Brain connectomics imaging in schizophrenia study

    Science.gov (United States)

    Tseng, Wen-Yih Isaac; Chen, Yu-Jen; Hsu, Yung-Chin

    2017-04-01

    Schizophrenia is a debilitating mental disorder of which the biological underpinning is still unclear. Increasing evidence in neuroscience has indicated that schizophrenia arises from abnormal connections within or between networks, hence called dysconnectvity syndrome. Recently, we established an automatic method to analyze integrity of the white matter tracts over the whole brain based on diffusion MRI data, named tract-based automatic analysis (TBAA), and used this method to study white matter connection in patients with schizophrenia. We found that alteration of tract integrity is hereditary and inherent; it is found in siblings and in patients in the early phase of disease. Moreover, patients with good treatment outcome and those with poor outcome show distinctly different patterns of alterations, suggesting that these two groups of patients might be distinguishable based on the difference in tract alteration. In summary, the altered tracts revealed by TBAA might become potential biomarkers or trait markers for schizophrenia.

  3. Brain imaging. Direct diagnosis in radiology

    Energy Technology Data Exchange (ETDEWEB)

    Sartor, K.; Haehnel, S. [Heidelberg Univ. Medical Center (Germany). Dept. of Neurology; Kress, B. [Hospital Nordwest, Frankfurt am Main (Germany). Dept. of Radiology and Neuroradiology

    2008-07-01

    The book covers CT findings, MRI findings, the modality of diagnostic technique selection, and clinical aspects (typical presentation, treatment options, course and prognosis) within the following chapters: trauma, inflammation, aneurysms, vascular malformations, stroke, tumors, cysts, meninges, ventricles and cisterns, leukocephalopathies, congenital malformations, artifacts in MRI and postoperative changes.

  4. Non-invasive brain stimulation techniques for chronic pain.

    Science.gov (United States)

    O'Connell, Neil E; Wand, Benedict M; Marston, Louise; Spencer, Sally; Desouza, Lorraine H

    2014-04-11

    This is an updated version of the original Cochrane review published in 2010, Issue 9. Non-invasive brain stimulation techniques aim to induce an electrical stimulation of the brain in an attempt to reduce chronic pain by directly altering brain activity. They include repetitive transcranial magnetic stimulation (rTMS), cranial electrotherapy stimulation (CES), transcranial direct current stimulation (tDCS) and reduced impedance non-invasive cortical electrostimulation (RINCE). To evaluate the efficacy of non-invasive brain stimulation techniques in chronic pain. We searched CENTRAL (2013, Issue 6), MEDLINE, EMBASE, CINAHL, PsycINFO, LILACS and clinical trials registers. The original search for the review was run in November 2009 and searched all databases from their inception. To identify studies for inclusion in this update we searched from 2009 to July 2013. Randomised and quasi-randomised studies of rTMS, CES, tDCS or RINCE if they employed a sham stimulation control group, recruited patients over the age of 18 with pain of three months duration or more and measured pain as a primary outcome. Two authors independently extracted and verified data. Where possible we entered data into meta-analyses. We excluded studies judged as being at high risk of bias from the analysis. We used the GRADE system to summarise the quality of evidence for core comparisons. We included an additional 23 trials (involving 773 participants randomised) in this update, making a total of 56 trials in the review (involving 1710 participants randomised). This update included a total of 30 rTMS studies, 11 CES, 14 tDCS and one study of RINCE(the original review included 19 rTMS, eight CES and six tDCS studies). We judged only three studies as being at low risk of bias across all criteria.Meta-analysis of studies of rTMS (involving 528 participants) demonstrated significant heterogeneity. Pre-specified subgroup analyses suggest that low-frequency stimulation is ineffective (low

  5. Dynamic pelvic floor imaging: MRI techniques and imaging parameters.

    Science.gov (United States)

    Reiner, Caecilia S; Weishaupt, Dominik

    2013-10-01

    Magnetic resonance imaging (MRI) is an excellent tool to understand the complex anatomy of the pelvic floor and to assess pelvic floor disorders. MRI enables static and dynamic imaging of the pelvic floor. Using static T2-weighted sequences the morphology of the pelvic floor can be visualized in great detail. A rapid half-Fourier T2-weighted, balanced steady state free precession, or gradient-recalled echo sequence are used to obtain sagittal images while the patient is at rest, during pelvic squeeze, during pelvic strain and to document the evacuation process. On these images the radiologist identifies the pubococcygeal line (PCL) (which represents the level of the pelvic floor). In normal findings, the base of the anterior and the middle compartment are above the PCL at rest, and the pelvic floor elevates during contraction. During straining the pelvic floor muscles should relax and the pelvic floor descends normally less than 3 cm below the PCL. Pelvic floor MRI based on the static and dynamic MRI sequences allows for the detection and characterization of a vast array of morphologic and functional pelvic floor disorders. In this review, we focus on technical aspects of static and dynamic pelvic floor MRI.

  6. Enhancement of SAR images using fuzzy shrinkage technique in ...

    Indian Academy of Sciences (India)

    Shivakumara Swamy Puranik Math

    2017-08-03

    Aug 3, 2017 ... combination of curvelet and fuzzy logic technique to restore speckle-affected images. This method overcomes the limitation of discontinuity in hard threshold and permanent deviation in soft threshold. First, it decomposes noise image into different frequency scales using curvelet transform, and then applies ...

  7. An improved technique for the prediction of optimal image resolution ...

    African Journals Online (AJOL)

    user

    2010-10-04

    Oct 4, 2010 ... two simultaneous equations of values of image noise index (INI) and degradation level Index (LDI), a robust technique for predicting optimal image resolution for the mapping of savannah ecosystems was developed. ..... of aerial photography, Landsat TM and SPOT satellite imagery. Int. J. Remote Sens.

  8. The current role of imaging techniques in faecal incontinence

    Energy Technology Data Exchange (ETDEWEB)

    Terra, M.P.; Stoker, J. [University of Amsterdam, Department of Radiology, G1-229, Academic Medical Center, Amsterdam (Netherlands)

    2006-08-15

    Faecal incontinence is a common multifactorial disorder. Major causes of faecal incontinence are related to vaginal delivery and prior anorectal surgery. In addition to medical history and physical examination, several anorectal functional tests and imaging techniques can be used to assess the underlying pathophysiology and to guide treatment planning in faecal incontinent patients. Anorectal functional tests provide functional information, but the potential strength comes from combining test results. Imaging techniques, including defecography, endoanal sonography, and magnetic resonance (MR) imaging, provide structural information about the anorectal region with a direct clinical impact. The major role of imaging techniques in faecal incontinence is visualising the structural and functional integrity of the anal sphincter complex. Both two-dimensional endoanal sonography and endoanal MR imaging are accurate tools to depict anal sphincter defects. The major advantage of endoanal MR imaging is the accurate demonstration of external anal sphincter atrophy. Recent studies have suggested that external phased array MR imaging and three-dimensional endoanal sonography are also valuable tools in the diagnostic work up of faecal incontinence. Decisions about the preferred technique will mainly be determined by availability and local expertise. This article demonstrates the current role of tests, predominantly imaging tests, in the diagnostic work up of faecal incontinence. (orig.)

  9. CATEGORICAL IMAGE COMPONENTS IN THE FORMING SYSTEM OF A MARKETING TECHNIQUES MANAGER’S IMAGE CULTURE

    Directory of Open Access Journals (Sweden)

    Anna Borisovna Cherednyakova

    2015-08-01

    Full Text Available Based on the understanding of the image culture formation of managers of marketing techniques, as a representative of the social and communication interaction of public structures, categorical apparatus of image culture with an emphasis on the etymology of the image, as an integral component of image culture was analyzed. Categorical components of the image are presented from the standpoint of image culture, as personal new formation, an integral part of the professional activity of the marketing techniques manager: object-communicative categorical component, subject-activity categorical component of image, personality-oriented categorical component, value-acmeological categorical component of image.The aim is to identify and justify the image categorical components as a component of image culture of the marketing techniques manager.Method and methodology of work – a general scientific research approach reflecting scientific apparatus of research.Results. Categorical components of the image, as an image culture component of manager of marketing techniques were defined.Practical implication of the results. The theoretical part of «Imageology» course, special course «Image culture of manager of marketing techniques», the theoretical and methodological study and the formation of image culture.

  10. A Novel Technique for Prealignment in Multimodality Medical Image Registration

    OpenAIRE

    Wu Zhou; Lijuan Zhang; Yaoqin Xie; Changhong Liang

    2014-01-01

    Image pair is often aligned initially based on a rigid or affine transformation before a deformable registration method is applied in medical image registration. Inappropriate initial registration may compromise the registration speed or impede the convergence of the optimization algorithm. In this work, a novel technique was proposed for prealignment in both monomodality and multimodality image registration based on statistical correlation of gradient information. A simple and robust algorit...

  11. Comparison of brain perfusion SPECT abnormalities with anatomical imaging in mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Majid Asadi

    2007-02-01

    Full Text Available Background: Trauma is the most common cause of morbidity and mortality in industrialized countries and also in Iran. Anatomical imaging (AI CT and MRI is helpful in the diagnosis of acute traumatic complications however it is not efficient in the diagnosis of disabling injury syndrome. In contrast, brain perfusion SPECT (Single Photon Emission Computed Tomography can be more useful for evaluation of microvascular structure. This study was designed to compare these two diagnostic methods. Methods: A total of 50 patients who had been suffering from traumatic brain injury for more than 1 year, and were followed as mild traumatic brain injury group according to “the Brain Injury Interdisciplinary Special Interest Group of the Ameri can Congress of Rehabilitation Medicine” criteria, were examined by brain perfusion SPECT and AI. The common anatomical classification of the lobes of brain was used. Results: The male to female ratio was 3:2. The mean age was 32.32±11.8 years and mean post-traumatic time was 1.48±0.65 years. The most common symptoms were headache (60%, agusia (36% and anosmia (32%. Among 400 examined brain lobes in this study, brain perfusion SPECT revealed remarkable abnormality in 76 lobes (19%, but AI determined abnormalities in 38 lobes (9.5% therefore, SPECT was twice sensitive than AI in mild traumatic brain injury (P<0.001. The correlation between SPECT and AI findings was 84%. SPECT was more sensitive than AI in demonstrating brain abnormalities in frontal lobe it was more obvious in the male group however, there was no significant difference between more and less than 30 years old groups. Conclusion: According to the findings of this study, we recommend using brain perfusion SPECT for all patients with chronic complications of head trauma, particularly those who have signs and symptoms of hypofrontalism, even though with some abnormalities in AI.

  12. Slip interface imaging based on MR‐elastography preoperatively predicts meningioma–brain adhesion

    OpenAIRE

    Yin, Ziying; Hughes, Joshua D.; Glaser, Kevin J.; Manduca, Armando; Van Gompel, Jamie; Link, Michael J.; Romano, Anthony; Ehman, Richard L.; Huston, John

    2017-01-01

    Purpose To investigate the ability of slip interface imaging (SII), a recently developed magnetic resonance elastography (MRE)‐based technique, to predict the degree of meningioma–brain adhesion, using findings at surgery as the reference standard. Materials and Methods With Institutional Review Board approval and written informed consent, 25 patients with meningiomas >2.5 cm in maximal diameter underwent preoperative SII assessment. Intracranial shear motions were introduced using a soft, pi...

  13. Magnetic resonance imaging based noninvasive measurements of brain hemodynamics in neonates

    DEFF Research Database (Denmark)

    De Vis, Jill B; Alderliesten, Thomas; Hendrikse, Jeroen

    2016-01-01

    Perinatal disturbances of brain hemodynamics can have a detrimental effect on the brain's parenchyma with consequently adverse neurodevelopmental outcome. Noninvasive, reliable tools to evaluate the neonate's brain hemodynamics are scarce. Advances in magnetic resonance imaging have provided new...

  14. Brain imaging before primary lung cancer resection: a controversial topic.

    Science.gov (United States)

    Hudson, Zoe; Internullo, Eveline; Edey, Anthony; Laurence, Isabel; Bianchi, Davide; Addeo, Alfredo

    2017-01-01

    International and national recommendations for brain imaging in patients planned to undergo potentially curative resection of non-small-cell lung cancer (NSCLC) are variably implemented throughout the United Kingdom [Hudson BJ, Crawford MB, and Curtin J et al (2015) Brain imaging in lung cancer patients without symptoms of brain metastases: a national survey of current practice in England Clin Radiol https://doi.org/10.1016/j.crad.2015.02.007]. However, the recommendations are not based on high-quality evidence and do not take into account cost implications and local resources. Our aim was to determine local practice based on historic outcomes in this patient cohort. This retrospective study took place in a regional thoracic surgical centre in the United Kingdom. Pathology records for all patients who had undergone lung resection with curative intent during the time period January 2012-December 2014 were analysed in October 2015. Electronic pathology and radiology reports were accessed for each patient and data collected about their histological findings, TNM stage, resection margins, and the presence of brain metastases on either pre-operative or post-operative imaging. From the dates given on imaging, we calculated the number of days post-resection that the brain metastases were detected. 585 patients were identified who had undergone resection of their lung cancer. Of these, 471 had accessible electronic radiology records to assess for the radiological evidence of brain metastases. When their electronic records were evaluated, 25/471 (5.3%) patients had radiological evidence of brain metastasis. Of these, five patients had been diagnosed with a brain metastasis at initial presentation and had undergone primary resection of the brain metastasis followed by resection of the lung primary. One patient had been diagnosed with both a primary lung and a primary bowel adenocarcinoma; on review of the case, it was felt that the brain metastasis was more likely to have

  15. A Potential Magnetic Resonance Imaging Technique Based on Chemical Exchange Saturation Transfer for In Vivo γ-Aminobutyric Acid Imaging.

    Directory of Open Access Journals (Sweden)

    Gen Yan

    Full Text Available We developed a novel magnetic resonance imaging (MRI technique based on chemical exchange saturation transfer (CEST for GABA imaging and investigated the concentration-dependent CEST effect ofGABA in a rat model of brain tumor with blood-brain barrier (BBB disruption.All MRI studies were performed using a 7.0-T Agilent MRI scanner. Z-spectra for GABA were acquired at 7.0 T, 37°C, and a pH of 7.0 using varying B1 amplitudes. CEST images of phantoms with different concentrations of GABA solutions (pH, 7.0 and other metabolites (glutamine, myoinositol, creatinine, and choline were collected to investigate the concentration-dependent CEST effect of GABA and the potential contribution from other brain metabolites. CEST maps for GABA in rat brains with tumors were collected at baseline and 50 min, 1.5 h, and 2.0 h after the injection of GABA solution.The CEST effect of GABA was observed at approximately 2.75 parts per million(ppm downfield from bulk water, and this effect increased with an increase in the B1 amplitude and remained steady after the B1 amplitude reached 6.0 μT (255 Hz. The CEST effect of GABA was proportional to the GABA concentration in vitro. CEST imaging of GABA in a rat brain with a tumor and compromised BBB showed a gradual increase in the CEST effect after GABA injection.The findings of this study demonstrate the feasibility and potential of CEST MRI with the optimal B1 amplitude, which exhibits excellent spatial and temporal resolutions, to map changes in GABA.

  16. Image evaluation of HIV encephalopathy: a multimodal approach using quantitative MR techniques

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Paulo T.C.; Escorsi-Rosset, Sara [University of Sao Paulo, Radiology Section, Internal Medicine Department, Ribeirao Preto School of Medicine, Sao Paulo (Brazil); Cervi, Maria C. [University of Sao Paulo, Department of Pediatrics, Ribeirao Preto School of Medicine, Sao Paulo (Brazil); Santos, Antonio Carlos [University of Sao Paulo, Radiology Section, Internal Medicine Department, Ribeirao Preto School of Medicine, Sao Paulo (Brazil); Hospital das Clinicas da FMRP-USP, Ribeirao Preto, SP (Brazil)

    2011-11-15

    A multimodal approach of the human immunodeficiency virus (HIV) encephalopathy using quantitative magnetic resonance (MR) techniques can demonstrate brain changes not detectable only with conventional magnetic resonance imaging (MRI). The aim of this study was to compare conventional MRI and MR quantitative techniques, such as magnetic resonance spectroscopy (MRS) and relaxometry and to determine whether quantitative techniques are more sensitive than conventional imaging for brain changes caused by HIV infection. We studied prospectively nine HIV positive children (mean age 6 years, from 5 to 8 years old) and nine controls (mean age 7.3 years; from 3 to 10 years), using MRS and relaxometry. Examinations were carried on 1.5-T equipment. HIV-positive patients presented with only minor findings and all control patients had normal conventional MR findings. MRS findings showed an increase in choline to creatine (CHO/CRE) ratios bilaterally in both frontal gray and white matter, in the left parietal white matter, and in total CHO/CRE ratio. In contrast, N-acetylaspartate to creatine (NAA/CRE) ratios did not present with any significant difference between both groups. Relaxometry showed significant bilateral abnormalities, with lengthening of the relaxation time in HIV positive in many regions. Conventional MRI is not sensitive for early brain changes caused by HIV infection. Quantitative techniques such as MRS and relaxometry appear as valuable tools in the diagnosis of these early changes. Therefore, a multimodal quantitative study can be useful in demonstrating and understanding the physiopathology of the disease. (orig.)

  17. Spectral unmixing techniques for optoacoustic imaging of tissue pathophysiology.

    Science.gov (United States)

    Tzoumas, Stratis; Ntziachristos, Vasilis

    2017-11-28

    A key feature of optoacoustic imaging is the ability to illuminate tissue at multiple wavelengths and therefore record images with a spectral dimension. While optoacoustic images at single wavelengths reveal morphological features, in analogy to ultrasound imaging or X-ray imaging, spectral imaging concedes sensing of intrinsic chromophores and externally administered agents that can reveal physiological, cellular and subcellular functions. Nevertheless, identification of spectral moieties within images obtained at multiple wavelengths requires spectral unmixing techniques, which present a unique mathematical problem given the three-dimensional nature of the optoacoustic images. Herein we discuss progress with spectral unmixing techniques developed for multispectral optoacoustic tomography. We explain how different techniques are required for accurate sensing of intrinsic tissue chromophores such as oxygenated and deoxygenated haemoglobin versus extrinsically administered photo-absorbing agents and nanoparticles. Finally, we review recent developments that allow accurate quantification of blood oxygen saturation (sO2) by transforming and solving the sO2 estimation problem from the spatial to the spectral domain.This article is part of the themed issue 'Challenges for chemistry in molecular imaging'. © 2017 The Author(s).

  18. Spectral unmixing techniques for optoacoustic imaging of tissue pathophysiology

    Science.gov (United States)

    Tzoumas, Stratis; Ntziachristos, Vasilis

    2017-10-01

    A key feature of optoacoustic imaging is the ability to illuminate tissue at multiple wavelengths and therefore record images with a spectral dimension. While optoacoustic images at single wavelengths reveal morphological features, in analogy to ultrasound imaging or X-ray imaging, spectral imaging concedes sensing of intrinsic chromophores and externally administered agents that can reveal physiological, cellular and subcellular functions. Nevertheless, identification of spectral moieties within images obtained at multiple wavelengths requires spectral unmixing techniques, which present a unique mathematical problem given the three-dimensional nature of the optoacoustic images. Herein we discuss progress with spectral unmixing techniques developed for multispectral optoacoustic tomography. We explain how different techniques are required for accurate sensing of intrinsic tissue chromophores such as oxygenated and deoxygenated haemoglobin versus extrinsically administered photo-absorbing agents and nanoparticles. Finally, we review recent developments that allow accurate quantification of blood oxygen saturation (sO2) by transforming and solving the sO2 estimation problem from the spatial to the spectral domain. This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.

  19. VR interaction techniques for medical imaging applications.

    Science.gov (United States)

    Krapichler, C; Haubner, M; Engelbrecht, R; Englmeier, K H

    1998-04-01

    Methods of virtual reality (VR) offer new ways of human-computer interaction. Medicine is predestined to benefit from this new technology in many ways. Virtual environments can support physicians in their work, alleviate communication between specialists from different fields or be established in educational and training applications. For the field of visualization and analysis of three-dimensional anatomical images (e.g. CT or MRI scans), an application is introduced which expedites recognition of spatial coherencies and the exploration and manipulation of the 3D data. To avoid long periods of learning and accustoming and to facilitate work in such an environment, a powerful human-oriented interface is required allowing interactions similar to the real world and utilization of our natural experiences. This paper shows the use of eye tracking parameters for a level-of-detail algorithm and the integration of a glove-based hand gesture recognition into the virtual environment as an essential component of the human-machine interface. Furthermore, virtual bronchoscopy and virtual angioscopy are presented as examples for the use of the virtual environment.

  20. Muscle perfusion and metabolic heterogeneity: insights from noninvasive imaging techniques

    DEFF Research Database (Denmark)

    Kalliokoski, Kari K; Scheede-Bergdahl, Celena; Kjaer, Michael

    2006-01-01

    Recent developments in noninvasive imaging techniques have enabled the study of local changes in perfusion and metabolism in skeletal muscle as well as patterns of heterogeneity in these variables in humans. In this review, the principles of these techniques along with some recent findings...

  1. Application of digital image processing techniques to astronomical imagery 1978

    Science.gov (United States)

    Lorre, J. J.

    1978-01-01

    Techniques for using image processing in astronomy are identified and developed for the following: (1) geometric and radiometric decalibration of vidicon-acquired spectra, (2) automatic identification and segregation of stars from galaxies; and (3) display of multiband radio maps in compact and meaningful formats. Examples are presented of these techniques applied to a variety of objects.

  2. Techniques and software architectures for medical visualisation and image processing

    NARCIS (Netherlands)

    Botha, C.P.

    2005-01-01

    This thesis presents a flexible software platform for medical visualisation and image processing, a technique for the segmentation of the shoulder skeleton from CT data and three techniques that make contributions to the field of direct volume rendering. Our primary goal was to investigate the use

  3. A Comparison of Speckle Reduction Techniques in Medical Ultrasound Imaging

    Directory of Open Access Journals (Sweden)

    Cristina STOLOJESCU-CRISAN

    2015-06-01

    Full Text Available Speckle noise is a multiplicative noise that degrades the visual evaluation in ultrasound imaging. In addition, it limits the efficient application of intelligent image processing algorithms, such as segmentation techniques. Thus, speckle noise reduction is considered an essential pre-processing step. The objective of this paper is to carry out a comparative evaluation of speckle filtering techniques, based on two image quality evaluation metrics, the Peak Signal to Noise Ratio (PSNR, and the Structural SIMilarity (SSIM index, and visual evaluation.

  4. Amide Proton Transfer (APT) MR imaging and Magnetization Transfer (MT) MR imaging of pediatric brain development

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hong; Kang, Huiying; Peng, Yun [Beijing Children' s Hospital, Capital Medical University, Imaging Center, Department of Radiology, Beijing (China); Zhao, Xuna [Philips Healthcare, Beijing (China); Jiang, Shanshan; Zhang, Yi; Zhou, Jinyuan [Johns Hopkins University, Division of MR Research, Department of Radiology, Baltimore, MD (United States)

    2016-10-15

    To quantify the brain maturation process during childhood using combined amide proton transfer (APT) and conventional magnetization transfer (MT) imaging at 3 Tesla. Eighty-two neurodevelopmentally normal children (44 males and 38 females; age range, 2-190 months) were imaged using an APT/MT imaging protocol with multiple saturation frequency offsets. The APT-weighted (APTW) and MT ratio (MTR) signals were quantitatively analyzed in multiple brain areas. Age-related changes in MTR and APTW were evaluated with a non-linear regression analysis. The APTW signals followed a decreasing exponential curve with age in all brain regions measured (R{sup 2} = 0.7-0.8 for the corpus callosum, frontal and occipital white matter, and centrum semiovale). The most significant changes appeared within the first year. At maturation, larger decreases in APTW and lower APTW values were found in the white matter. On the contrary, the MTR signals followed an increasing exponential curve with age in the same brain regions measured, with the most significant changes appearing within the initial 2 years. There was an inverse correlation between the MTR and APTW signal intensities during brain maturation. Together with MT imaging, protein-based APT imaging can provide additional information in assessing brain myelination in the paediatric population. (orig.)

  5. Imaging separation of neuronal from vascular effects of cocaine on rat cortical brain in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Z.; Du, C.; Yuan, Z.; Luo, Z.; Volkow, N.D.; Pan, Y.; Du, C.

    2010-09-08

    MRI techniques to study brain function assume coupling between neuronal activity, metabolism and flow. However, recent evidence of physiological uncoupling between neuronal and cerebrovascular events highlights the need for methods to simultaneously measure these three properties. We report a multimodality optical approach that integrates dual-wavelength laser speckle imaging (measures changes in blood flow, blood volume and hemoglobin oxygenation), digital-frequency-ramping optical coherence tomography (images quantitative 3D vascular network) and Rhod2 fluorescence (images intracellular calcium for measure of neuronal activity) at high spatiotemporal resolutions (30 {micro}m, 10 Hz) and over a large field of view (3 x 5 mm{sup 2}). We apply it to assess cocaine's effects in rat cortical brain and show an immediate decrease 3.5 {+-} 0.9 min, phase (1) in the oxygen content of hemoglobin and the cerebral blood flow followed by an overshoot 7.1 {+-} 0.2 min, phase (2) lasting over 20 min whereas Ca{sup 2+} increased immediately (peaked at t = 4.1 {+-} 0.4 min) and remained elevated. This enabled us to identify a delay (2.9 {+-} 0.5 min) between peak neuronal and vascular responses in phase 2. The ability of this multimodality optical approach for simultaneous imaging at high spatiotemporal resolutions permits us to distinguish the vascular versus cellular changes of the brain, thus complimenting other neuroimaging modalities for brain functional studies (e. g., PET, fMRI).

  6. Automatic segmentation of brain infarction in diffusion-weighted MR images

    Science.gov (United States)

    Li, Wu; Tian, Jie

    2003-05-01

    It is important to detect the site and size of infarction volume in stroke patients. An automatic method for segmenting brain infarction lesion from diffusion weighted magnetic resonance (MR) images of patients has been developed. The method uses an integrated approach which employs image processing techniques based on anisotropic filters and atlas-based registration techniques. It is a multi-stage process, involving first images preprocessing, then global and local registration between the anatomical brain atlas and the patient, and finally segmentation of infarction volume based on region splitting and merging and multi-scale adaptive statistical classification. The proposed multi-scale adaptive statistical classification model takes into account spatial, intensity gradient, and contextual information of the anatomical brain atlas and the patient. Application of the method to diffusion weighted imaging (DWI) scans of twenty patients with clinically determined infarction was carried out. It shows that the method got a satisfied segmentation even in the presence of radio frequency (RF) inhomogeneities. The results were compared with lesion delineations by human experts, showing the identification of infarction lesion with accuracy and reproducibility.

  7. Comparison of GRASE and turbo spin echo sequences in brain MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Youk; Lee, Young Joon; Eun, Choong Ki; Jeon, Young Seup; Kim, Ig Dae; Cha, Seong Sook [Inje Univ., Pusan (Korea, Republic of). Coll. of Medicine

    1998-04-01

    The purpose of this study was to evaluate the utility of GRASE images of the brain, which combine gradient echo-EPI and turbo spin echo, and to compare the results with those of the turbo spin echo (TSE) technique. We analyzed and compared brain MR images obtained in 25 patients between October, 1996 and January, 1997, both TSE and GRASE techniques. Diagnosis was normal (n=5), infarct or ischemia (n=10), intracerebral hemorrhage (n=6), and neoplasm (n=4). TSE and GRASE MR images were obtained using a 1.5 T Gyroscan ACS-NT (Philips, Netherlands). For qualitative assessment, overall image quality, discrimination between cortical gray-white matter and basal ganglia-white matter, lesion conspicuity, and MR artifact were evaluated using a subjective grading system ranging from 1 to 5 (1=TSE better than GRASE, 5=GRASE better than TSE). For quantitative assessment, signal-to-noise ratios (SNRs) were calculated for cortical gray matter, white matter, basal ganglia, and lesions, and contrast-to-noise ratios (CNRs) were calculated for cortical gray-white matter, basal ganglia-white matter and lesions-white matter. We measured image acquisition time and RF specific absorption rate (SAR) on TSE and GRASE. With regard to MR artifact, GRASE is more sensitive than TSE, but as regards image quality and lesion distinction, the two modalities show no distinct difference. Since GRASE is superior to TSE for the detection of hemosiderin, and image acquisition time is three times shorter using GRASE, GRASE might usefully be applied during the evaluation by MR imaging of certain brain conditions. (author). 17 refs., 3 tabs., 5 figs.

  8. Molecular Genetics Techniques to Develop New Treatments for Brain Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Jacob; Fathallan-Shaykh, Hassan

    2006-09-22

    The objectives of this report are: (1) to devise novel molecular gene therapies for malignant brain tumors, (2) advance our understanding of the immune system in the central nervous system; and (3) apply genomics to find molecular probes to diagnose brain tumors, predict prognosis, biological behavior and their response to treatment.

  9. Design and analysis of physical phantom experiments for serial SPECT brain tumor imaging

    Science.gov (United States)

    Lange, Nicholas; O'Tuama, L. A.; Treves, S. T.

    1992-12-01

    The purpose of this paper is to identify several important issues in the statistical analysis of serial images of active brain tumors and to offer some approaches and methods to help resolve them. Current serial brain tumor imaging is very strong on data acquisition and display yet appears weak on data analysis and inference. To help bridge the gap between certain theoretical mathematical methods for medical imaging developed over the past several decades and actual clinical practice, we describe a new physical phantom that we have designed and built for our research. We also offer some extensions of several relevant tools and principles from statistical science to the analysis of our serial medical images. Among the tools we discuss are the physical phantom itself, a simple experimental design, methods that help to separate image registration and object deformation effects, and some simple paired t-test ideas for comparison of differences in spatial point processes generated from pixelwise events in serial images. We identify several sources of extraneous variation between paired images and propose a few simple methods to control or eliminate them. Replicated experiments with our physical phantom can be used to study the properties of these methods under controlled and known conditions. Several actual patient and simulated serial SPECT images help to motivate and illustrate our techniques.

  10. Measurement and correction of microscopic head motion during magnetic resonance imaging of the brain.

    Directory of Open Access Journals (Sweden)

    Julian Maclaren

    Full Text Available Magnetic resonance imaging (MRI is a widely used method for non-invasive study of the structure and function of the human brain. Increasing magnetic field strengths enable higher resolution imaging; however, long scan times and high motion sensitivity mean that image quality is often limited by the involuntary motion of the subject. Prospective motion correction is a technique that addresses this problem by tracking head motion and continuously updating the imaging pulse sequence, locking the imaging volume position and orientation relative to the moving brain. The accuracy and precision of current MR-compatible tracking systems and navigator methods allows the quantification and correction of large-scale motion, but not the correction of very small involuntary movements in six degrees of freedom. In this work, we present an MR-compatible tracking system comprising a single camera and a single 15 mm marker that provides tracking precision in the order of 10 m and 0.01 degrees. We show preliminary results, which indicate that when used for prospective motion correction, the system enables improvement in image quality at both 3 T and 7 T, even in experienced and cooperative subjects trained to remain motionless during imaging. We also report direct observation and quantification of the mechanical ballistocardiogram (BCG during simultaneous MR imaging. This is particularly apparent in the head-feet direction, with a peak-to-peak displacement of 140 m.

  11. Imaging techniques applied to characterize bitumen and bituminous emulsions.

    Science.gov (United States)

    Rodríguez-Valverde, M A; Ramón-Torregrosa, P; Páez-Dueñas, A; Cabrerizo-Vílchez, M A; Hidalgo-Alvarez, R

    2008-01-15

    The purpose of this article is to present some important advances in the imaging techniques currently used in the characterization of bitumen and bituminous emulsions. Bitumen exhibits some properties, such as a black colour and a reflecting surface at rest, which permit the use of optical techniques to study the macroscopic behaviour of asphalt mixes in the cold mix technology based on emulsion use. Imaging techniques allow monitoring in situ the bitumen thermal sensitivity as well as the complex phenomenon of emulsion breaking. Evaporation-driven breaking was evaluated from the shape of evaporating emulsion drops deposited onto non-porous and hydrophobic substrates. To describe the breaking kinetics, top-view images of a drying emulsion drop placed on an aggregate sheet were acquired and processed properly. We can conclude that computer-aided image analysis in road pavement engineering can elucidate the mechanism of breaking and curing of bituminous emulsion.

  12. Optimization of image reconstruction conditions with phantoms for brain FDG and amyloid PET imaging

    National Research Council Canada - National Science Library

    Akamatsu, Go; Ikari, Yasuhiko; Nishio, Tomoyuki; Nishida, Hiroyuki; Ohnishi, Akihito; Aita, Kazuki; Sasaki, Masahiro; Sasaki, Masayuki; Senda, Michio

    2016-01-01

    The purpose of this study was to optimize image reconstruction conditions for brain 18F-FDG, 11C-PiB, 18F-florbetapir and 18F-flutemetamol PET imaging with Discovery-690 PET/CT for diagnosis and research on Alzheimer’s disease (AD...

  13. Vascular image registration techniques: A living review.

    Science.gov (United States)

    Matl, Stefan; Brosig, Richard; Baust, Maximilian; Navab, Nassir; Demirci, Stefanie

    2017-01-01

    Registration of vascular structures is crucial for preoperative planning, intraoperative navigation, and follow-up assessment. Typical applications include, but are not limited to, Trans-catheter Aortic Valve Implantation and monitoring of tumor vasculature or aneurysm growth. In order to achieve the aforementioned goals, a large number of various registration algorithms has been developed. With this review paper we provide a comprehensive overview over the plethora of existing techniques with a particular focus on the suitable classification criteria such as the involved modalities of the employed optimization methods. However, we wish to go beyond a static literature review which is naturally doomed to be outdated after a certain period of time due to the research progress. We augment this review paper with an extendable and interactive database in order to obtain a living review whose currency goes beyond the one of a printed paper. All papers in this database are labeled with one or multiple tags according to 13 carefully defined categories. The classification of all entries can then be visualized as one or multiple trees which are presented via a web-based interactive app (http://livingreview.in.tum.de) allowing the user to choose a unique perspective for literature review. In addition, the user can search the underlying database for specific tags or publications related to vessel registration. Many applications of this framework are conceivable, including the use for getting a general overview on the topic or the utilization by physicians for deciding about the best-suited algorithm for a specific application. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Coordinate-based versus structural approaches to brain image analysis.

    Science.gov (United States)

    Mangin, J-F; Rivière, D; Coulon, O; Poupon, C; Cachia, A; Cointepas, Y; Poline, J-B; Le Bihan, D; Régis, J; Papadopoulos-Orfanos, D

    2004-02-01

    A basic issue in neurosciences is to look for possible relationships between brain architecture and cognitive models. The lack of architectural information in magnetic resonance images, however, has led the neuroimaging community to develop brain mapping strategies based on various coordinate systems without accurate architectural content. Therefore, the relationships between architectural and functional brain organizations are difficult to study when analyzing neuroimaging experiments. This paper advocates that the design of new brain image analysis methods inspired by the structural strategies often used in computer vision may provide better ways to address these relationships. The key point underlying this new framework is the conversion of the raw images into structural representations before analysis. These representations are made up of data-driven elementary features like activated clusters, cortical folds or fiber bundles. Two classes of methods are introduced. Inference of structural models via matching across a set of individuals is described first. This inference problem is illustrated by the group analysis of functional statistical parametric maps (SPMs). Then, the matching of new individual data with a priori known structural models is described, using the recognition of the cortical sulci as a prototypical example.

  15. Fetal magnetic resonance imaging (MRI) of ischemic brain injury.

    Science.gov (United States)

    de Laveaucoupet, J; Audibert, F; Guis, F; Rambaud, C; Suarez, B; Boithias-Guérot, C; Musset, D

    2001-09-01

    The aim of the present study was to demonstrate the usefulness of fetal magnetic resonance imaging (MRI) in ischemic brain injury. We report seven cases of fetal brain ischemia prenatally suspected on ultrasound (US) and confirmed by fetal MRI. Sonographic abnormalities included ventricular dilatation (n=3), microcephaly (n=1), twin pregnancy with in utero death of a twin and suspected cerebral lesion in the surviving co-twin (n=3). MRI was performed with a 1.0 T unit using half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequences between 28 and 35 weeks of gestation. US and MRI images were compared with pathologic findings or postnatal imaging. MRI diagnosed hydranencephaly (n=1), porencephaly (n=2), multicystic encephalomalacia (n=2), unilateral capsular ischemia (n=1), corpus callosum and cerebral atrophy (n=1). In comparison with US, visualization of fetal brain anomalies was superior with MRI. The present cases demonstrate that MRI is a valuable complementary means of investigation when a brain pathology is discovered or suspected during prenatal US. Copyright 2001 John Wiley & Sons, Ltd.

  16. A Blind High-Capacity Wavelet-Based Steganography Technique for Hiding Images into other Images

    Directory of Open Access Journals (Sweden)

    HAMAD, S.

    2014-05-01

    Full Text Available The flourishing field of Steganography is providing effective techniques to hide data into different types of digital media. In this paper, a novel technique is proposed to hide large amounts of image data into true colored images. The proposed method employs wavelet transforms to decompose images in a way similar to the Human Visual System (HVS for more secure and effective data hiding. The designed model can blindly extract the embedded message without the need to refer to the original cover image. Experimental results showed that the proposed method outperformed all of the existing techniques not only imperceptibility but also in terms of capacity. In fact, the proposed technique showed an outstanding performance on hiding a secret image whose size equals 100% of the cover image while maintaining excellent visual quality of the resultant stego-images.

  17. Imaging of aromatase distribution in rat and rhesus monkey brains with [{sup 11}C]vorozole

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kayo [Division of Pharmacology, Department of Neuroscience, Uppsala University, Uppsala SE-75124 (Sweden); Uppsala Imanet, Uppsala SE-75109 (Sweden)]. E-mail: kayo.takahashi@uppsala.imanet.se; Bergstroem, Mats [Uppsala Imanet, Uppsala SE-75109 (Sweden); Department of Pharmaceutical Biosciences, Uppsala University, Uppsala SE-75124 (Sweden); Fraendberg, Pernilla [Uppsala Imanet, Uppsala SE-75109 (Sweden); Vesstroem, Eva-Lotta [Uppsala Imanet, Uppsala SE-75109 (Sweden); Watanabe, Yasuyoshi [Department of Physiology, Osaka City University Graduate School of Medicine, Osaka 545-8585 (Japan); Langstroem, Bengt [Uppsala Imanet, Uppsala SE-75109 (Sweden)

    2006-07-15

    Aromatase is an enzyme that converts androgens to estrogens and may play a role in mood and mental status. The aim of this study was to demonstrate that brain aromatase distribution could be evaluated with a novel positron emission tomography (PET) tracer [{sup 11}C]vorozole. Vorozole is a nonsteroidal aromatase inhibitor that reversibly binds to the heme domain of aromatase. In vitro experiments in rat brain, using frozen section autoradiography, illustrated specific binding in the medial amygdala (MA), the bed nucleus of stria terminalis (BST) and the preoptic area (POA) of male rat brain. Specific binding in female rat brain was found in the MA and the BST; however, the signals were lower than those of males. The K {sub d} of [{sup 11}C]vorozole binding to aromatase in MA was determined to be 0.60{+-}0.06 nM by Scatchard plot analysis using homogenates. An in vivo PET study in female rhesus monkey brain demonstrated the uptake of [{sup 11}C]vorozole in the amygdala, where the uptake was blocked by the presence of excess amounts of unlabeled vorozole. Thus, this tracer has a high affinity for brain aromatase and could have a potential for in vivo aromatase imaging. This technique might enable the investigation of human brain aromatase in healthy and diseased persons.

  18. Supervised learning technique for the automated identification of white matter hyperintensities in traumatic brain injury.

    Science.gov (United States)

    Stone, James R; Wilde, Elisabeth A; Taylor, Brian A; Tate, David F; Levin, Harvey; Bigler, Erin D; Scheibel, Randall S; Newsome, Mary R; Mayer, Andrew R; Abildskov, Tracy; Black, Garrett M; Lennon, Michael J; York, Gerald E; Agarwal, Rajan; DeVillasante, Jorge; Ritter, John L; Walker, Peter B; Ahlers, Stephen T; Tustison, Nicholas J

    2016-01-01

    White matter hyperintensities (WMHs) are foci of abnormal signal intensity in white matter regions seen with magnetic resonance imaging (MRI). WMHs are associated with normal ageing and have shown prognostic value in neurological conditions such as traumatic brain injury (TBI). The impracticality of manually quantifying these lesions limits their clinical utility and motivates the utilization of machine learning techniques for automated segmentation workflows. This study develops a concatenated random forest framework with image features for segmenting WMHs in a TBI cohort. The framework is built upon the Advanced Normalization Tools (ANTs) and ANTsR toolkits. MR (3D FLAIR, T2- and T1-weighted) images from 24 service members and veterans scanned in the Chronic Effects of Neurotrauma Consortium's (CENC) observational study were acquired. Manual annotations were employed for both training and evaluation using a leave-one-out strategy. Performance measures include sensitivity, positive predictive value, [Formula: see text] score and relative volume difference. Final average results were: sensitivity = 0.68 ± 0.38, positive predictive value = 0.51 ± 0.40, [Formula: see text] = 0.52 ± 0.36, relative volume difference = 43 ± 26%. In addition, three lesion size ranges are selected to illustrate the variation in performance with lesion size. Paired with correlative outcome data, supervised learning methods may allow for identification of imaging features predictive of diagnosis and prognosis in individual TBI patients.

  19. Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique.

    Science.gov (United States)

    Besharati Tabrizi, Leila; Mahvash, Mehran

    2015-07-01

    An augmented reality system has been developed for image-guided neurosurgery to project images with regions of interest onto the patient's head, skull, or brain surface in real time. The aim of this study was to evaluate system accuracy and to perform the first intraoperative application. Images of segmented brain tumors in different localizations and sizes were created in 10 cases and were projected to a head phantom using a video projector. Registration was performed using 5 fiducial markers. After each registration, the distance of the 5 fiducial markers from the visualized tumor borders was measured on the virtual image and on the phantom. The difference was considered a projection error. Moreover, the image projection technique was intraoperatively applied in 5 patients and was compared with a standard navigation system. Augmented reality visualization of the tumors succeeded in all cases. The mean time for registration was 3.8 minutes (range 2-7 minutes). The mean projection error was 0.8 ± 0.25 mm. There were no significant differences in accuracy according to the localization and size of the tumor. Clinical feasibility and reliability of the augmented reality system could be proved intraoperatively in 5 patients (projection error 1.2 ± 0.54 mm). The augmented reality system is accurate and reliable for the intraoperative projection of images to the head, skull, and brain surface. The ergonomic advantage of this technique improves the planning of neurosurgical procedures and enables the surgeon to use direct visualization for image-guided neurosurgery.

  20. Reduction in radiation dose with reconstruction technique in the brain perfusion CT

    Science.gov (United States)

    Kim, H. J.; Lee, H. K.; Song, H.; Ju, M. S.; Dong, K. R.; Chung, W. K.; Cho, M. S.; Cho, J. H.

    2011-12-01

    The principal objective of this study was to verify the utility of the reconstruction imaging technique in the brain perfusion computed tomography (PCT) scan by assessing reductions in the radiation dose and analyzing the generated images. The setting used for image acquisition had a detector coverage of 40 mm, a helical thickness of 0.625 mm, a helical shuttle mode scan type and a rotation time of 0.5 s as the image parameters used for the brain PCT scan. Additionally, a phantom experiment and an animal experiment were carried out. In the phantom and animal experiments, noise was measured in the scanning with the tube voltage fixed at 80 kVp (kilovolt peak) and the level of the adaptive statistical iterative reconstruction (ASIR) was changed from 0% to 100% at 10% intervals. The standard deviation of the CT coefficient was measured three times to calculate the mean value. In the phantom and animal experiments, the absorbed dose was measured 10 times under the same conditions as the ones for noise measurement before the mean value was calculated. In the animal experiment, pencil-type and CT-dedicated ionization chambers were inserted into the central portion of pig heads for measurement. In the phantom study, as the level of the ASIR changed from 0% to 100% under identical scanning conditions, the noise value and dose were proportionally reduced. In our animal experiment, the noise value was lowest when the ASIR level was 50%, unlike in the phantom study. The dose was reduced as in the phantom study.

  1. Lupus anticoagulant: correlation with magnetic resonance imaging of brain lesions.

    Science.gov (United States)

    Molad, Y; Sidi, Y; Gornish, M; Lerner, M; Pinkhas, J; Weinberger, A

    1992-04-01

    Brain magnetic resonance imaging (MRI) was performed in 21 patients with systemic lupus erythematosus (SLE) with and without lupus anticoagulant (LAC), one lupus-like patient and 5 patients with primary antiphospholipid antibody syndrome. Thirteen patients had white matter focal brain lesions on MRI, 10 of whom had LAC (p = 0.03). We found no correlation between these lesions and neurologic manifestations, nor any clinical or serologic indices of activity of SLE. Our MRI lesions were similar to those described in multiple sclerosis and may indicate a similar pathologic process.

  2. Toward real-time tumor margin identification in image-guided robotic brain tumor resection

    Science.gov (United States)

    Hu, Danying; Jiang, Yang; Belykh, Evgenii; Gong, Yuanzheng; Preul, Mark C.; Hannaford, Blake; Seibel, Eric J.

    2017-03-01

    For patients with malignant brain tumors (glioblastomas), a safe maximal resection of tumor is critical for an increased survival rate. However, complete resection of the cancer is hard to achieve due to the invasive nature of these tumors, where the margins of the tumors become blurred from frank tumor to more normal brain tissue, but in which single cells or clusters of malignant cells may have invaded. Recent developments in fluorescence imaging techniques have shown great potential for improved surgical outcomes by providing surgeons intraoperative contrast-enhanced visual information of tumor in neurosurgery. The current near-infrared (NIR) fluorophores, such as indocyanine green (ICG), cyanine5.5 (Cy5.5), 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX), are showing clinical potential to be useful in targeting and guiding resections of such tumors. Real-time tumor margin identification in NIR imaging could be helpful to both surgeons and patients by reducing the operation time and space required by other imaging modalities such as intraoperative MRI, and has the potential to integrate with robotically assisted surgery. In this paper, a segmentation method based on the Chan-Vese model was developed for identifying the tumor boundaries in an ex-vivo mouse brain from relatively noisy fluorescence images acquired by a multimodal scanning fiber endoscope (mmSFE). Tumor contours were achieved iteratively by minimizing an energy function formed by a level set function and the segmentation model. Quantitative segmentation metrics based on tumor-to-background (T/B) ratio were evaluated. Results demonstrated feasibility in detecting the brain tumor margins at quasi-real-time and has the potential to yield improved precision brain tumor resection techniques or even robotic interventions in the future.

  3. Imaging of laboratory magnetospheric plasmas using coherence imaging technique

    Science.gov (United States)

    Nishiura, Masaki; Takahashi, Noriki; Yoshida, Zensho; Nakamura, Kaori; Kawazura, Yohei; Kenmochi, Naoki; Nakatsuka, Masataka; Sugata, Tetsuya; Katsura, Shotaro; Howard, John

    2017-10-01

    The ring trap 1 (RT-1) device creates a laboratory magnetosphere for the studies on plasma physics and advanced nuclear fusion. A levitated superconducting coil produces magnetic dipole fields that realize a high beta plasma confinement that is motivated by self-organized plasmas in planetary magnetospheres. The electron cyclotron resonance heating (ECRH) with 8.2 GHz and 50 kW produces the plasmas with hot electrons in a few ten keV range. The electrons contribute to the local electron beta that exceeded 1 in RT-1. For the ion heating, ion cyclotron range of frequencies (ICRF) heating with 2-4 MHz and 10 kW has been performed in RT-1. The radial profile of ion temperature by a spectroscopic measurement indicates the signature of ion heating. In the holistic point of view, a coherence imaging system has been implemented for imaging the entire ion dynamics in the laboratory magnetosphere. The diagnostic system and obtained results will be presented.

  4. Chest trauma in children: current imaging guidelines and techniques.

    LENUS (Irish Health Repository)

    Moore, Michael A

    2011-09-01

    Given the heterogeneous nature of pediatric chest trauma, the optimal imaging approach is tailored to the specific patient. Chest radiography remains the most important imaging modality for initial triage. The decision to perform a chest computed tomography scan should be based on the nature of the trauma, the child\\'s clinical condition, and the initial radiographic findings, taking the age-related pretest probabilities of serious injury into account. The principles of as low as reasonably achievable and Image Gently should be followed. The epidemiology and pathophysiology, imaging techniques, characteristic findings, and evidence-based algorithms for pediatric chest trauma are discussed.

  5. An image morphing technique based on optimal mass preserving mapping.

    Science.gov (United States)

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2007-06-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L(2) mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods.

  6. Digital signal processing techniques and applications in radar image processing

    CERN Document Server

    Wang, Bu-Chin

    2008-01-01

    A self-contained approach to DSP techniques and applications in radar imagingThe processing of radar images, in general, consists of three major fields: Digital Signal Processing (DSP); antenna and radar operation; and algorithms used to process the radar images. This book brings together material from these different areas to allow readers to gain a thorough understanding of how radar images are processed.The book is divided into three main parts and covers:* DSP principles and signal characteristics in both analog and digital domains, advanced signal sampling, and

  7. Time of flight diffraction imaging for double-probe technique.

    Science.gov (United States)

    Chang, Young-Fo; Hsieh, Cheng-I

    2002-06-01

    Due to rapid progress in microelectronics and computer technologies, the system evolving from analog to digital, and a programmable and flexible synthetic aperture focusing technique (SAFT) for the single-probe pulse-echo imaging technique of ultrasonic nondestructive testing (NDT) becomes feasible. The double-probe reflection technique usually is used to detect the nonhorizontal flaws in the ultrasonic NDT. Because there is an offset between the transmitter and receiver, the position and size of the flaw cannot be directly read from the image. Therefore, a digital signal processing (DSP) imaging method is proposed to process the ultrasonic image obtained by double-probe reflection technique. In the imaging, the signal is redistributed on an ellipsoid with the transmitter and receiver positions as focuses, and the traveltime sum for the echo from the ellipsoid to the focuses as the traveltime of signal. After redistributing all the signals, the useful signals can be constructively added in some point in which the reflected point is; otherwise, the signals will be destructively added. Therefore, the image resolution of the flaw can be improved and the position and size of the flaw can be estimated directly from the processed image. Based on the experimental results, the steep flaw (45 degrees) cannot be detected by the pulse echo technique but can be detected by the double-probe method, and the double-probe B-scan image of 30 degrees tilted crack is clearer than the pulse echo B-scan image. However, the flaw image departs from its true position greatly. After processing, the steep flaw image can be moved to its true position. When the flaws are not greater than the probe largely, the sizes of the flaws are difficult to be discriminated in both pulse echo and double-probe B-scan images. In the processed double-probe B-scan image, the size of the flaws can be estimated successfully, and the images of the flaws are close to their true shape.

  8. Bacterial brain abscesses: prognostic value of an imaging severity index

    Energy Technology Data Exchange (ETDEWEB)

    Demir, M.K. [Department of Radiology, Trakya University School of Medicine, Edirne (Turkey)]. E-mail: demirkemal@superonline.com; Hakan, T. [Department of Neurosurgery, Haydarpasa Numune Education and Research Hospital, Istanbul (Turkey); Kilicoglu, G. [Department of Radiology, Haydarpasa Numune Education and Research Hospital, Istanbul (Turkey); Ceran, N. [Department of Infectious Disease, Haydarpasa Numune Education and Research Hospital, Istanbul (Turkey); Berkman, M.Z. [Department of Neurosurgery, Haydarpasa Numune Education and Research Hospital, Istanbul (Turkey); Erdem, I. [Department of Infectious Disease, Haydarpasa Numune Education and Research Hospital, Istanbul (Turkey); Goektas, P. [Department of Infectious Disease, Haydarpasa Numune Education and Research Hospital, Istanbul (Turkey)

    2007-06-15

    Aim: To assess the correlation between imaging findings [computed tomography (CT) or magnetic resonance imaging (MRI)] and neurological status before and after the treatment of bacterial brain abscesses. Materials and methods: CT and MRI images of 96 patients with brain abscesses were retrospectively evaluated in terms of the number, location and size of lesions, and the presence and extent of perilesional oedema and midline shift. An imaging severity index (ISI) based on these different radiological parameters was calculated. Initial Glasgow Coma Scale (GCS) scores and ISI were assessed and the prognostic value of these two indices was calculated. The Pearson correlation test, Mann-Whitney test, Chi-square test, receiver-operating characteristic (ROC) analysis, together with comparison of ROC analyses and Fisher's exact test were used. Results: There was a negative correlation between ISI and the initial GCS values: ISI increased as the GCS score decreased, indicating an inverse relationship (r = -0.51, p < 0.0001). There was a significant difference between the ISI and GCS scores of patients with an adverse event compared with patients with good recovery. Outcome was significantly worse in patients with initial ISI over the calculated cut-off values of 8 points or GCS scores under the cut-off value of 13 points. Conclusion: ISI is a useful prognostic indicator for bacterial brain abscess patients and correlates strongly with the patient outcome for all parameters studied. ISI score had a better prognostic value than GCS.

  9. Brain surface maps from 3-D medical images

    Science.gov (United States)

    Lu, Jiuhuai; Hansen, Eric W.; Gazzaniga, Michael S.

    1991-06-01

    The anatomic and functional localization of brain lesions for neurologic diagnosis and brain surgery is facilitated by labeling the cortical surface in 3D images. This paper presents a method which extracts cortical contours from magnetic resonance (MR) image series and then produces a planar surface map which preserves important anatomic features. The resultant map may be used for manual anatomic localization as well as for further automatic labeling. Outer contours are determined on MR cross-sectional images by following the clear boundaries between gray matter and cerebral-spinal fluid, skipping over sulci. Carrying this contour below the surface by shrinking it along its normal produces an inner contour that alternately intercepts gray matter (sulci) and white matter along its length. This procedure is applied to every section in the set, and the image (grayscale) values along the inner contours are radially projected and interpolated onto a semi-cylindrical surface with axis normal to the slices and large enough to cover the whole brain. A planar map of the cortical surface results by flattening this cylindrical surface. The projection from inner contour to cylindrical surface is unique in the sense that different points on the inner contour correspond to different points on the cylindrical surface. As the outer contours are readily obtained by automatic segmentation, cortical maps can be made directly from an MR series.

  10. Automatic segmentation of MR brain images in multiple sclerosis patients

    Science.gov (United States)

    Avula, Ramesh T. V.; Erickson, Bradley J.

    1996-04-01

    A totally automatic scheme for segmenting brain from extracranial tissues and to classify all intracranial voxels as CSF, gray matter (GM), white matter (WM), or abnormality such as multiple sclerosis (MS) lesions is presented in this paper. It is observed that in MR head images, if a tissue's intensity values are normalized, its relationship to the other tissues is essentially constant for a given type of image. Based on this approach, the subcutaneous fat surrounding the head is normalized to classify other tissues. Spatially registered 3 mm MR head image slices of T1 weighted, fast spin echo [dual echo T2 weighted and proton density (PD) weighted images] and fast fluid attenuated inversion recovery (FLAIR) sequences are used for segmentation. Subcutaneous fat surrounding the skull was identified based on intensity thresholding from T1 weighted images. A multiparametric space map was developed for CSF, GM and WM by normalizing each tissue with respect to the mean value of corresponding subcutaneous fat on each pulse sequence. To reduce the low frequency noise without blurring the fine morphological high frequency details an anisotropic diffusion filter was applied to all images before segmentation. An initial slice by slice classification was followed by morphological operations to delete any brides connecting extracranial segments. Finally 3-dimensional region growing of the segmented brain extracts GM, WM and pathology. The algorithm was tested on sequential scans of 10 patients with MS lesions. For well registered sequences, tissues and pathology have been accurately classified. This procedure does not require user input or image training data sets, and shows promise for automatic classification of brain and pathology.

  11. Brain surface motion imaging to predict adhesions between meningiomas and the brain surface

    Energy Technology Data Exchange (ETDEWEB)

    Taoka, Toshiaki; Yamatani, Yuya; Akashi, Toshiaki; Miyasaka, Toshiteru; Emura, Tomoko; Kichikawa, Kimihiko [Nara Medical University, Department of Radiology, Nara (Japan); Yamada, Syuichi; Nakase, Hiroyuki [Nara Medical University, Department of Neurosurgery, Nara (Japan)

    2010-11-15

    ''Brain surface motion imaging'' (BSMI) is the subtraction of pulse-gated, 3D, heavily T2-weighted image of two different phases of cerebrospinal fluid (CSF) pulsation, which enables the assessment of the dynamics of brain surface pulsatile motion. The purpose of this study was to evaluate the feasibility of this imaging method for providing presurgical information about adhesions between meningiomas and the brain surface. Eighteen cases with surgically resected meningioma in whom BSMI was presurgically obtained were studied. BSMI consisted of two sets of pulse-gated, 3D, heavily T2-weighted, fast spin echo scans. Images of the systolic phase and the diastolic phase were obtained, and subtraction was performed with 3D motion correction. We analyzed the presence of band-like texture surrounding the tumor and judged the degree of motion discrepancy as ''total,'' ''partial,'' or ''none.'' The correlation between BSMI and surgical findings was evaluated. For cases with partial adhesions, agreements in the locations of the adhesions were also evaluated. On presurgical BSMI, no motion discrepancy was seen in eight cases, partial in six cases, and total in four cases. These presurgical predictions about adhesions and surgical findings agreed in 13 cases (72.2%). The locations of adhesions agreed in five of six cases with partial adhesions. In the current study, BSMI could predict brain and meningioma adhesions correctly in 72.2% of cases, and adhesion location could also be predicted. This imaging method appears to provide presurgical information about brain/meningioma adhesions. (orig.)

  12. MR to CT registration of brains using image synthesis

    Science.gov (United States)

    Roy, Snehashis; Carass, Aaron; Jog, Amod; Prince, Jerry L.; Lee, Junghoon

    2014-03-01

    Computed tomography (CT) is the preferred imaging modality for patient dose calculation for radiation therapy. Magnetic resonance (MR) imaging (MRI) is used along with CT to identify brain structures due to its superior soft tissue contrast. Registration of MR and CT is necessary for accurate delineation of the tumor and other structures, and is critical in radiotherapy planning. Mutual information (MI) or its variants are typically used as a similarity metric to register MRI to CT. However, unlike CT, MRI intensity does not have an accepted calibrated intensity scale. Therefore, MI-based MR-CT registration may vary from scan to scan as MI depends on the joint histogram of the images. In this paper, we propose a fully automatic framework for MR-CT registration by synthesizing a synthetic CT image from MRI using a co-registered pair of MR and CT images as an atlas. Patches of the subject MRI are matched to the atlas and the synthetic CT patches are estimated in a probabilistic framework. The synthetic CT is registered to the original CT using a deformable registration and the computed deformation is applied to the MRI. In contrast to most existing methods, we do not need any manual intervention such as picking landmarks or regions of interests. The proposed method was validated on ten brain cancer patient cases, showing 25% improvement in MI and correlation between MR and CT images after registration compared to state-of-the-art registration methods.

  13. MR to CT Registration of Brains using Image Synthesis.

    Science.gov (United States)

    Roy, Snehashis; Carass, Aaron; Jog, Amod; Prince, Jerry L; Lee, Junghoon

    2014-03-21

    Computed tomography (CT) is the standard imaging modality for patient dose calculation for radiation therapy. Magnetic resonance (MR) imaging (MRI) is used along with CT to identify brain structures due to its superior soft tissue contrast. Registration of MR and CT is necessary for accurate delineation of the tumor and other structures, and is critical in radiotherapy planning. Mutual information (MI) or its variants are typically used as a similarity metric to register MRI to CT. However, unlike CT, MRI intensity does not have an accepted calibrated intensity scale. Therefore, MI-based MR-CT registration may vary from scan to scan as MI depends on the joint histogram of the images. In this paper, we propose a fully automatic framework for MR-CT registration by synthesizing a synthetic CT image from MRI using a co-registered pair of MR and CT images as an atlas. Patches of the subject MRI are matched to the atlas and the synthetic CT patches are estimated in a probabilistic framework. The synthetic CT is registered to the original CT using a deformable registration and the computed deformation is applied to the MRI. In contrast to most existing methods, we do not need any manual intervention such as picking landmarks or regions of interests. The proposed method was validated on ten brain cancer patient cases, showing 25% improvement in MI and correlation between MR and CT images after registration compared to state-of-the-art registration methods.

  14. Recommendations to improve imaging and analysis of brain lesion load and atrophy in longitudinal studies of multiple sclerosis

    DEFF Research Database (Denmark)

    Vrenken, H; Jenkinson, M; Horsfield, M A

    2013-01-01

    Focal lesions and brain atrophy are the most extensively studied aspects of multiple sclerosis (MS), but the image acquisition and analysis techniques used can be further improved, especially those for studying within-patient changes of lesion load and atrophy longitudinally. Improved accuracy...... resonance image analysis methods for assessing brain lesion load and atrophy, this paper makes recommendations to improve these measures for longitudinal studies of MS. Briefly, they are (1) images should be acquired using 3D pulse sequences, with near-isotropic spatial resolution and multiple image...... contrasts to allow more comprehensive analyses of lesion load and atrophy, across timepoints. Image artifacts need special attention given their effects on image analysis results. (2) Automated image segmentation methods integrating the assessment of lesion load and atrophy are desirable. (3) A standard...

  15. A Document Imaging Technique for Implementing Electronic Loan Approval Process

    Directory of Open Access Journals (Sweden)

    J. Manikandan

    2015-04-01

    Full Text Available The image processing is one of the leading technologies of computer applications. Image processing is a type of signal processing, the input for image processor is an image or video frame and the output will be an image or subset of image [1]. Computer graphics and computer vision process uses an image processing techniques. Image processing systems are used in various environments like medical fields, computer-aided design (CAD, research fields, crime investigation fields and military fields. In this paper, we proposed a document image processing technique, for establishing electronic loan approval process (E-LAP [2]. Loan approval process has been tedious process, the E-LAP system attempts to reduce the complexity of loan approval process. Customers have to login to fill the loan application form online with all details and submit the form. The loan department then processes the submitted form and then sends an acknowledgement mail via the E-LAP to the requested customer with the details about list of documents required for the loan approval process [3]. The approaching customer can upload the scanned copies of all required documents. All this interaction between customer and bank take place using an E-LAP system.

  16. Quantitative Magnetization Transfer Imaging as a Biomarker for Effects of Systemic Inflammation on the Brain.

    Science.gov (United States)

    Harrison, Neil A; Cooper, Ella; Dowell, Nicholas G; Keramida, Georgia; Voon, Valerie; Critchley, Hugo D; Cercignani, Mara

    2015-07-01

    Systemic inflammation impairs brain function and is increasingly implicated in the etiology of common mental illnesses, particularly depression and Alzheimer's disease. Immunotherapies selectively targeting proinflammatory cytokines demonstrate efficacy in a subset of patients with depression. However, efforts to identify patients most vulnerable to the central effects of inflammation are hindered by insensitivity of conventional structural magnetic resonance imaging. We used quantitative magnetization transfer (qMT) imaging, a magnetic resonance imaging technique that enables quantification of changes in brain macromolecular density, together with experimentally induced inflammation to investigate effects of systemic inflammatory challenge on human brain microstructure. Imaging with qMT was performed in 20 healthy participants after typhoid vaccination and saline control injection. An additional 20 participants underwent fluorodeoxyglucose positron emission tomography following the same inflammatory challenge. The qMT data demonstrated that inflammation induced a rapid change in brain microstructure, reflected in increased magnetization exchange from free (water) to macromolecular-bound protons, within a discrete region of insular cortex implicated in representing internal physiologic states including inflammation. The functional significance of this change in insular microstructure was demonstrated by correlation with inflammation-induced fatigue and fluorodeoxyglucose positron emission tomography imaging, which revealed increased resting glucose metabolism within this region following the same inflammatory challenge. Together these observations highlight a novel structural biomarker of the central physiologic and behavioral effects of mild systemic inflammation. The widespread clinical availability of magnetic resonance imaging supports the viability of qMT imaging as a clinical biomarker in trials of immunotherapeutics, both to identify patients vulnerable to

  17. Functional brain imaging: an evidence-based analysis.

    Science.gov (United States)

    2006-01-01

    The objective of this analysis is to review a spectrum of functional brain imaging technologies to identify whether there are any imaging modalities that are more effective than others for various brain pathology conditions. This evidence-based analysis reviews magnetoencephalography (MEG), magnetic resonance spectroscopy (MRS), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI) for the diagnosis or surgical management of the following conditions: Alzheimer's disease (AD), brain tumours, epilepsy, multiple sclerosis (MS), and Parkinson's disease (PD). TARGET POPULATION AND CONDITION Alzheimer's disease is a progressive, degenerative, neurologic condition characterized by cognitive impairment and memory loss. The Canadian Study on Health and Aging estimated that there will be 97,000 incident cases (about 60,000 women) of dementia (including AD) in Canada in 2006. In Ontario, there will be an estimated 950 new cases and 580 deaths due to brain cancer in 2006. Treatments for brain tumours include surgery and radiation therapy. However, one of the limitations of radiation therapy is that it damages tissue though necrosis and scarring. Computed tomography (CT) and magnetic resonance imaging (MRI) may not distinguish between radiation effects and resistant tissue, creating a potential role for functional brain imaging. Epilepsy is a chronic disorder that provokes repetitive seizures. In Ontario, the rate of epilepsy is estimated to be 5 cases per 1,000 people. Most people with epilepsy are effectively managed with drug therapy; but about 50% do not respond to drug therapy. Surgical resection of the seizure foci may be considered in these patients, and functional brain imaging may play a role in localizing the seizure foci. Multiple sclerosis is a progressive, inflammatory, demyelinating disease of the central nervous system (CNS). The cause of MS is unknown; however, it is thought to be due to a combination of etiologies, including

  18. Pattern recognition software and techniques for biological image analysis.

    Directory of Open Access Journals (Sweden)

    Lior Shamir

    2010-11-01

    Full Text Available The increasing prevalence of automated image acquisition systems is enabling new types of microscopy experiments that generate large image datasets. However, there is a perceived lack of robust image analysis systems required to process these diverse datasets. Most automated image analysis systems are tailored for specific types of microscopy, contrast methods, probes, and even cell types. This imposes significant constraints on experimental design, limiting their application to the narrow set of imaging methods for which they were designed. One of the approaches to address these limitations is pattern recognition, which was originally developed for remote sensing, and is increasingly being applied to the biology domain. This approach relies on training a computer to recognize patterns in images rather than developing algorithms or tuning parameters for specific image processing tasks. The generality of this approach promises to enable data mining in extensive image repositories, and provide objective and quantitative imaging assays for routine use. Here, we provide a brief overview of the technologies behind pattern recognition and its use in computer vision for biological and biomedical imaging. We list available software tools that can be used by biologists and suggest practical experimental considerations to make the best use of pattern recognition techniques for imaging assays.

  19. Rock type discrimination techniques using Landsat and Seasat image data

    Science.gov (United States)

    Blom, R.; Abrams, M.; Conrad, C.

    1981-01-01

    Results of a sedimentary rock type discrimination project using Seasat radar and Landsat multispectral image data of the San Rafael Swell, in eastern Utah, are presented, which has the goal of determining the potential contribution of radar image data to Landsat image data for rock type discrimination, particularly when the images are coregistered. The procedure employs several images processing techniques using the Landsat and Seasat data independently, and then both data sets are coregistered. The images are evaluated according to the ease with which contacts can be located and rock units (not just stratigraphically adjacent ones) separated. Results show that of the Landsat images evaluated, the image using a supervised classification scheme is the best for sedimentary rock type discrimination. Of less value, in decreasing order, are color ratio composites, principal components, and the standard color composite. In addition, for rock type discrimination, the black and white Seasat image is less useful than any of the Landsat color images by itself. However, it is found that the incorporation of the surface textural measures made from the Seasat image provides a considerable and worthwhile improvement in rock type discrimination.

  20. Cylindrical millimeter-wave imaging technique for concealed weapon detection

    Science.gov (United States)

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.

    1998-03-01

    A novel cylindrical millimeter-wave imaging technique has been developed at the Pacific Northwest National Laboratory for the detection of metallic and non-metallic concealed weapons. This technique uses a vertical array of millimeter- wave antennas which is mechanically swept around a person in a cylindrical fashion. The wideband millimeter-wave data is mathematically reconstructed into a series of high- resolution images of the person being screened. Clothing is relatively transparent to millimeter-wave illumination,whereas the human body and concealed items are reflective at millimeter wavelengths. Differences in shape and reflectivity are revealed in the images and allow a human operator to detect and identify concealed weapons. A full 360 degree scan is necessary to fully inspect a person for concealed items. The millimeter-wave images can be formed into a video animation sequence in which the person appears to rotate in front of a fixed illumination source.This is s convenient method for presenting the 3D image data for analysis. This work has been fully sponsored by the FAA. An engineering prototype based on the cylindrical imaging technique is presently under development. The FAA is currently opposed to presenting the image data directly to the operator due to personal privacy concerns. A computer automated system is desired to address this problem by eliminating operator viewing of the imagery.

  1. A novel technique of serial biopsy in mouse brain tumour models.

    Directory of Open Access Journals (Sweden)

    Sasha Rogers

    Full Text Available Biopsy is often used to investigate brain tumour-specific abnormalities so that treatments can be appropriately tailored. Dacomitinib (PF-00299804 is a tyrosine kinase inhibitor (TKI, which is predicted to only be effective in cancers where the targets of this drug (EGFR, ERBB2, ERBB4 are abnormally active. Here we describe a method by which serial biopsy can be used to validate response to dacomitinib treatment in vivo using a mouse glioblastoma model. In order to determine the feasibility of conducting serial brain biopsies in mouse models with minimal morbidity, and if successful, investigate whether this can facilitate evaluation of chemotherapeutic response, an orthotopic model of glioblastoma was used. Immunodeficient mice received cortical implants of the human glioblastoma cell line, U87MG, modified to express the constitutively-active EGFR mutant, EGFRvIII, GFP and luciferase. Tumour growth was monitored using bioluminescence imaging. Upon attainment of a moderate tumour size, free-hand biopsy was performed on a subgroup of animals. Animal monitoring using a neurological severity score (NSS showed that all mice survived the procedure with minimal perioperative morbidity and recovered to similar levels as controls over a period of five days. The technique was used to evaluate dacomitinib-mediated inhibition of EGFRvIII two hours after drug administration. We show that serial tissue samples can be obtained, that the samples retain histological features of the tumour, and are of sufficient quality to determine response to treatment. This approach represents a significant advance in murine brain surgery that may be applicable to other brain tumour models. Importantly, the methodology has the potential to accelerate the preclinical in vivo drug screening process.

  2. Data-driven forward model inference for EEG brain imaging

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Hauberg, Søren; Hansen, Lars Kai

    2016-01-01

    Electroencephalography (EEG) is a flexible and accessible tool with excellent temporal resolution but with a spatial resolution hampered by volume conduction. Reconstruction of the cortical sources of measured EEG activity partly alleviates this problem and effectively turns EEG into a brain......-of-concept study, we show that, even when anatomical knowledge is unavailable, a suitable forward model can be estimated directly from the EEG. We propose a data-driven approach that provides a low-dimensional parametrization of head geometry and compartment conductivities, built using a corpus of forward models....... Combined with only a recorded EEG signal, we are able to estimate both the brain sources and a person-specific forward model by optimizing this parametrization. We thus not only solve an inverse problem, but also optimize over its specification. Our work demonstrates that personalized EEG brain imaging...

  3. Reconstructing flaw image using dataset of full matrix capture technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Hun; Kim, Yong Sik; Lee, Jeong Seok [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    A conventional phased array ultrasonic system offers the ability to steer an ultrasonic beam by applying independent time delays of individual elements in the array and produce an ultrasonic image. In contrast, full matrix capture (FMC) is a data acquisition process that collects a complete matrix of A-scans from every possible independent transmit-receive combination in a phased array transducer and makes it possible to reconstruct various images that cannot be produced by conventional phased array with the post processing as well as images equivalent to a conventional phased array image. In this paper, a basic algorithm based on the LLL mode total focusing method (TFM) that can image crack type flaws is described. And this technique was applied to reconstruct flaw images from the FMC dataset obtained from the experiments and ultrasonic simulation.

  4. Co-analysis of brain structure and function using fMRI and diffusion-weighted imaging.

    Science.gov (United States)

    Phillips, Jeffrey S; Greenberg, Adam S; Pyles, John A; Pathak, Sudhir K; Behrmann, Marlene; Schneider, Walter; Tarr, Michael J

    2012-11-08

    The study of complex computational systems is facilitated by network maps, such as circuit diagrams. Such mapping is particularly informative when studying the brain, as the functional role that a brain area fulfills may be largely defined by its connections to other brain areas. In this report, we describe a novel, non-invasive approach for relating brain structure and function using magnetic resonance imaging (MRI). This approach, a combination of structural imaging of long-range fiber connections and functional imaging data, is illustrated in two distinct cognitive domains, visual attention and face perception. Structural imaging is performed with diffusion-weighted imaging (DWI) and fiber tractography, which track the diffusion of water molecules along white-matter fiber tracts in the brain (Figure 1). By visualizing these fiber tracts, we are able to investigate the long-range connective architecture of the brain. The results compare favorably with one of the most widely-used techniques in DWI, diffusion tensor imaging (DTI). DTI is unable to resolve complex configurations of fiber tracts, limiting its utility for constructing detailed, anatomically-informed models of brain function. In contrast, our analyses reproduce known neuroanatomy with precision and accuracy. This advantage is partly due to data acquisition procedures: while many DTI protocols measure diffusion in a small number of directions (e.g., 6 or 12), we employ a diffusion spectrum imaging (DSI)(1, 2) protocol which assesses diffusion in 257 directions and at a range of magnetic gradient strengths. Moreover, DSI data allow us to use more sophisticated methods for reconstructing acquired data. In two experiments (visual attention and face perception), tractography reveals that co-active areas of the human brain are anatomically connected, supporting extant hypotheses that they form functional networks. DWI allows us to create a "circuit diagram" and reproduce it on an individual-subject basis

  5. Decoding post-stroke motor function from structural brain imaging

    Directory of Open Access Journals (Sweden)

    Jane M. Rondina

    2016-01-01

    Full Text Available Clinical research based on neuroimaging data has benefited from machine learning methods, which have the ability to provide individualized predictions and to account for the interaction among units of information in the brain. Application of machine learning in structural imaging to investigate diseases that involve brain injury presents an additional challenge, especially in conditions like stroke, due to the high variability across patients regarding characteristics of the lesions. Extracting data from anatomical images in a way that translates brain damage information into features to be used as input to learning algorithms is still an open question. One of the most common approaches to capture regional information from brain injury is to obtain the lesion load per region (i.e. the proportion of voxels in anatomical structures that are considered to be damaged. However, no systematic evaluation has yet been performed to compare this approach with using patterns of voxels (i.e. considering each voxel as a single feature. In this paper we compared both approaches applying Gaussian Process Regression to decode motor scores in 50 chronic stroke patients based solely on data derived from structural MRI. For both approaches we compared different ways to delimit anatomical areas: regions of interest from an anatomical atlas, the corticospinal tract, a mask obtained from fMRI analysis with a motor task in healthy controls and regions selected using lesion-symptom mapping. Our analysis showed that extracting features through patterns of voxels that represent lesion probability produced better results than quantifying the lesion load per region. In particular, from the different ways to delimit anatomical areas compared, the best performance was obtained with a combination of a range of cortical and subcortical motor areas as well as the corticospinal tract. These results will inform the appropriate methodology for predicting long term motor outcomes

  6. The application of tDCS in psychiatric disorders: a brain imaging view

    Directory of Open Access Journals (Sweden)

    Chris Baeken

    2016-03-01

    Full Text Available Background: Transcranial direct current stimulation (tDCS is a non-invasive, non-convulsive technique for modulating brain function. In contrast to other non-invasive brain stimulation techniques, where costs, clinical applicability, and availability limit their large-scale use in clinical practices, the low-cost, portable, and easy-to-use tDCS devices may overcome these restrictions. Objective: Despite numerous clinical applications in large numbers of patients suffering from psychiatric disorders, it is not quite clear how tDCS influences the mentally affected human brain. In order to decipher potential neural mechanisms of action of tDCS in patients with psychiatric conditions, we focused on the combination of tDCS with neuroimaging techniques. Design: We propose a contemporary overview on the currently available neurophysiological and neuroimaging data where tDCS has been used as a research or treatment tool in patients with psychiatric disorders. Results: Over a reasonably short period of time, tDCS has been broadly used as a research tool to examine neuronal processes in the healthy brain. tDCS has also commonly been applied as a treatment application in a variety of mental disorders, with to date no straightforward clinical outcome and not always accompanied by brain imaging techniques. Conclusion: tDCS, as do other neuromodulation devices, clearly affects the underlying neuronal processes. However, research on these mechanisms in psychiatric patients is rather limited. A better comprehension of how tDCS modulates brain function will help us to define optimal parameters of stimulation in each indication and may result in the detection of biomarkers in favor of clinical response.

  7. Diffusion tensor MR imaging in neurofibromatosis type 1: expanding the knowledge of microstructural brain abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz-Filho, Jose R.L.; Muniz, Marcos P.; Souza, Antonio S. [Medical School in Sao Jose do Rio Preto (FAMERP), Radiology Department, Sao Paulo (Brazil); Rocha, Antonio J. da [School Medical Sciences of the Santa Casa de Sao Paulo, Radiology Department, Sao Paulo (Brazil); Goloni-Bertollo, Eny M.; Pavarino-Bertelli, Erika C. [Center of Research and attendace in Neurofibromatosis (CEPAN) of Medical School in Sao Jose do Rio Preto (FAMERP), Sao Paulo (Brazil)

    2012-04-15

    Neurofibromatosis type 1 (NF1) is a hereditary disease with a dominant autosomal pattern. In children and adolescents, it is frequently associated with the appearance of T2-weighted hyperintensities in the brain's white matter. MRI with diffusion tensor imaging (DTI) is used to detect white matter abnormalities by measuring fractional anisotropy (FA). This study employed DTI to evaluate the relationship between FA patterns and the findings of T2 sequences, with the aim of improving our understanding of anatomical changes and microstructural brain abnormalities in individuals with NF1. Forty-four individuals with NF1 and 20 control subjects were evaluated. The comparative analysis of FA between NF1 and control groups was based on four predetermined anatomical regions of the brain hemispheres (basal ganglia, cerebellum, pons, thalamus) and related the presence or absence of T2-weighted hyperintensities in the brain, which are called unidentified bright objects (UBOs). The FA values between the groups demonstrated statistically significant differences (P {<=} 0.05) for the cerebellum and thalamus in patients with NF1, independent of the occurrence of UBOs. Diffusion tensor MR imaging confirms the influence of UBOs in the decrease of FA values in this series of patients with NF1. Additionally, this technique allows the characterization of microstructural abnormalities even in some brain regions that appear normal in conventional MR sequences. (orig.)

  8. Mass spectrometry imaging of rat brain lipid profile changes over time following traumatic brain injury.

    Science.gov (United States)

    Roux, Aurelie; Muller, Ludovic; Jackson, Shelley N; Post, Jeremy; Baldwin, Katherine; Hoffer, Barry; Balaban, Carey D; Barbacci, Damon; Schultz, J Albert; Gouty, Shawn; Cox, Brian M; Woods, Amina S

    2016-10-15

    Mild traumatic brain injury (TBI) is a common public health issue that may contribute to chronic degenerative disorders. Membrane lipids play a key role in tissue responses to injury, both as cell signals and as components of membrane structure and cell signaling. This study demonstrates the ability of high resolution mass spectrometry imaging (MSI) to assess sequences of responses of lipid species in a rat controlled cortical impact model for concussion. A matrix of implanted silver nanoparticles was implanted superficially in brain sections for matrix-assisted laser desorption (MALDI) imaging of 50μm diameter microdomains across unfixed cryostat sections of rat brain. Ion-mobility time-of-flight MS was used to analyze and map changes over time in brain lipid composition in a rats after Controlled Cortical Impact (CCI) TBI. Brain MS images showed changes in sphingolipids near the CCI site, including increased ceramides and decreased sphingomyelins, accompanied by changes in glycerophospholipids and cholesterol derivatives. The kinetics differed for each lipid class; for example ceramides increased as early as 1 day after the injury whereas other lipids changes occurred between 3 and 7 days post injury. Silver nanoparticles MALDI matrix is a sensitive new tool for revealing previously undetectable cellular injury response and remodeling in neural, glial and vascular structure of the brain. Lipid biochemical and structural changes after TBI could help highlighting molecules that can be used to determine the severity of such injuries as well as to evaluate the efficacy of potential treatments. Copyright © 2016. Published by Elsevier B.V.

  9. Spatial Angular Compounding Technique for H-Scan Ultrasound Imaging.

    Science.gov (United States)

    Khairalseed, Mawia; Xiong, Fangyuan; Kim, Jung-Whan; Mattrey, Robert F; Parker, Kevin J; Hoyt, Kenneth

    2017-10-11

    H-Scan is a new ultrasound imaging technique that relies on matching a model of pulse-echo formation to the mathematics of a class of Gaussian-weighted Hermite polynomials. This technique may be beneficial in the measurement of relative scatterer sizes and in cancer therapy, particularly for early response to drug treatment. Because current H-scan techniques use focused ultrasound data acquisitions, spatial resolution degrades away from the focal region and inherently affects relative scatterer size estimation. Although the resolution of ultrasound plane wave imaging can be inferior to that of traditional focused ultrasound approaches, the former exhibits a homogeneous spatial resolution throughout the image plane. The purpose of this study was to implement H-scan using plane wave imaging and investigate the impact of spatial angular compounding on H-scan image quality. Parallel convolution filters using two different Gaussian-weighted Hermite polynomials that describe ultrasound scattering events are applied to the radiofrequency data. The H-scan processing is done on each radiofrequency image plane before averaging to get the angular compounded image. The relative strength from each convolution is color-coded to represent relative scatterer size. Given results from a series of phantom materials, H-scan imaging with spatial angular compounding more accurately reflects the true scatterer size caused by reductions in the system point spread function and improved signal-to-noise ratio. Preliminary in vivo H-scan imaging of tumor-bearing animals suggests this modality may be useful for monitoring early response to chemotherapeutic treatment. Overall, H-scan imaging using ultrasound plane waves and spatial angular compounding is a promising approach for visualizing the relative size and distribution of acoustic scattering sources. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  10. Dataset of magnetic resonance images of nonepileptic subjects and temporal lobe epilepsy patients for validation of hippocampal segmentation techniques.

    Science.gov (United States)

    Jafari-Khouzani, Kourosh; Elisevich, Kost V; Patel, Suresh; Soltanian-Zadeh, Hamid

    2011-12-01

    The hippocampus has become the focus of research in several neurodegenerative disorders. Automatic segmentation of this structure from magnetic resonance (MR) imaging scans of the brain facilitates this work. Segmentation techniques must be evaluated using a dataset of MR images with accurate hippocampal outlines generated manually. Manual segmentation is not a trivial task. Lack of a unique segmentation protocol and poor image quality are only two factors that have confounded the consistency required for comparative study. We have developed a publicly available dataset of T1-weighted (T1W) MR images of epileptic and nonepileptic subjects along with their hippocampal outlines to provide a means of evaluation of segmentation techniques. This dataset contains 50 T1W MR images, 40 epileptic and ten nonepileptic. All images were manually segmented by a widely used protocol. Twenty five images were selected for training and were provided with hippocampal labels. Twenty five other images were provided without labels for testing algorithms. The users are allowed to evaluate their generated labels for the test images using 11 segmentation similarity metrics. Using this dataset, we evaluated two segmentation algorithms, Brain Parser and Classifier Fusion and Labeling (CFL), trained by the training set. For Brain Parser, an average Dice coefficient of 0.64 was obtained with the testing set. For CFL, this value was 0.75. Such findings indicate a need for further improvement of segmentation algorithms in order to enhance reliability.

  11. DATASET OF MAGNETIC RESONANCE IMAGES OF NONEPILEPTIC SUBJECTS AND TEMPORAL LOBE EPILEPSY PATIENTS FOR VALIDATION OF HIPPOCAMPAL SEGMENTATION TECHNIQUES

    Science.gov (United States)

    Jafari-Khouzani, Kourosh; Elisevich, Kost V.; Patel, Suresh; Soltanian-Zadeh, Hamid

    2013-01-01

    Summary The hippocampus has become the focus of research in several neurodegenerative disorders. Automatic segmentation of this structure from magnetic resonance (MR) imaging scans of the brain facilitates this work. Segmentation techniques must be evaluated using a dataset of MR images with accurate hippocampal outlines generated manually. Manual segmentation is not a trivial task. Lack of a unique segmentation protocol and poor image quality are only two factors that have confounded the consistency required for comparative study. We have developed a publicly available dataset of T1-weighted (T1W) MR images of epileptic and nonepileptic subjects along with their hippocampal outlines to provide a means of evaluation of segmentation techniques. This dataset contains 50 T1W MR images, 40 epileptic and 10 nonepileptic. All images were manually segmented by a widely used protocol. Twenty five images were selected for training and were provided with hippocampal labels. Twenty five other images were provided without labels for testing algorithms. The users are allowed to evaluate their generated labels for the test images using 11 segmentation similarity metrics. Using this dataset, we evaluated two segmentation algorithms, Brain Parser and Classifier Fusion and Labeling (CFL), trained by the training set. For Brain Parser, an average Dice coefficient of 0.64 was obtained with the testing set. For CFL, this value was 0.75. Such findings indicate a need for further improvement of segmentation algorithms in order to enhance reliability. PMID:21286946

  12. Label-free volumetric optical imaging of intact murine brains

    Science.gov (United States)

    Ren, Jian; Choi, Heejin; Chung, Kwanghun; Bouma, Brett E.

    2017-04-01

    A central effort of today’s neuroscience is to study the brain’s ’wiring diagram’. The nervous system is believed to be a network of neurons interacting with each other through synaptic connection between axons and dendrites, therefore the neuronal connectivity map not only depicts the underlying anatomy, but also has important behavioral implications. Different approaches have been utilized to decipher neuronal circuits, including electron microscopy (EM) and light microscopy (LM). However, these approaches typically demand extensive sectioning and reconstruction for a brain sample. Recently, tissue clearing methods have enabled the investigation of a fully assembled biological system with greatly improved light penetration. Yet, most of these implementations, still require either genetic or exogenous contrast labeling for light microscopy. Here we demonstrate a high-speed approach, termed as Clearing Assisted Scattering Tomography (CAST), where intact brains can be imaged at optical resolution without labeling by leveraging tissue clearing and the scattering contrast of optical frequency domain imaging (OFDI).

  13. Imaging cerebral tryptophan metabolism in brain tumor-associated depression.

    Science.gov (United States)

    Bosnyák, Edit; Kamson, David O; Behen, Michael E; Barger, Geoffrey R; Mittal, Sandeep; Juhász, Csaba

    2015-12-01

    Depression in patients with brain tumors is associated with impaired quality of life and shorter survival. Altered metabolism of tryptophan to serotonin and kynurenine metabolites may play a role in tumor-associated depression. Our recent studies with alpha[(11)C]methyl-L-tryptophan (AMT)-PET in brain tumor patients indicated abnormal tryptophan metabolism not only in the tumor mass but also in normal-appearing contralateral brain. In the present study, we explored if tryptophan metabolism in such brain regions is associated with depression. Twenty-one patients (mean age: 57 years) with a brain tumor (10 meningiomas, 8 gliomas, and 3 brain metastases) underwent AMT-PET scanning. MRI and AMT-PET images were co-registered, and AMT kinetic parameters, including volume of distribution (VD', an estimate of net tryptophan transport) and K (unidirectional uptake, related to tryptophan metabolism), were measured in the tumor mass and in unaffected cortical and subcortical regions contralateral to the tumor. Depression scores (based on the Beck Depression Inventory-II [BDI-II]) were correlated with tumor size, grade, type, and AMT-PET variables. The mean BDI-II score was 12 ± 10 (range: 2-33); clinical levels of depression were identified in seven patients (33 %). High BDI-II scores were most strongly associated with high thalamic AMT K values both in the whole group (Spearman's rho = 0.63, p = 0.004) and in the subgroup of 18 primary brain tumors (r = 0.68, p = 0.004). Frontal and striatal VD' values were higher in the depressed subgroup than in non-depressed patients (p Tumor size, grade, and tumor type were not related to depression scores. Abnormalities of tryptophan transport and metabolism in the thalamus, striatum, and frontal cortex, measured by PET, are associated with depression in patients with brain tumor. These changes may indicate an imbalance between the serotonin and kynurenine pathways and serve as a molecular imaging marker of

  14. Telematics techniques for image based diagnosis, therapy planning and monitoring.

    Science.gov (United States)

    Bidaut, L M; Scherrer, J R

    1998-01-01

    This paper is intended to describe and illustrate some of the actual use of telematics related techniques together with modern biomedical imaging capabilities for helping in diagnosis, as well as for the planning and monitoring of therapy. To this end, most current imaging modalities are initially introduced. Then it is shown how telematics related techniques are necessary to improve the outcome of current image-based protocols. Such techniques allow data, means, or competencies--which may intrinsically be of a complementary nature or distributed at many different locations--to be integrated together and transcend the simple sum of individual expectations. Examples of actual implementations are given in the fields of radio-oncology, neurosurgery and orthopedics. To conclude, the papers and posters presented in the corresponding session of the MIE'97 symposium are summarized to provide further telematics references for the reader.

  15. Imaging of the hip and bony pelvis. Techniques and applications

    Energy Technology Data Exchange (ETDEWEB)

    Davies, A.M. [Royal Orthopaedic Hospital, Birmingham (United Kingdom). MRI Centre; Johnson, K.J. [Princess of Wales Birmingham Children' s Hospital (United Kingdom); Whitehouse, R.W. (eds.) [Manchester Royal Infirmary (United Kingdom). Dept. of Clinical Radiology

    2006-07-01

    This is a comprehensive textbook on imaging of the bony pelvis and hip joint that provides a detailed description of the techniques and imaging findings relevant to this complex anatomical region. In the first part of the book, the various techniques and procedures employed for imaging the pelvis and hip are discussed in detail. The second part of the book documents the application of these techniques to the diverse clinical problems and diseases encountered. Among the many topics addressed are congenital and developmental disorders including developmental dysplasia of the hip, irritable hip and septic arthritis, Perthes' disease and avascular necrosis, slipped upper femoral epiphysis, bony and soft tissue trauma, arthritis, tumours and hip prostheses. Each chapter is written by an acknowledged expert in the field, and a wealth of illustrative material is included. This book will be of great value to musculoskeletal and general radiologists, orthopaedic surgeons and rheumatologists. (orig.)

  16. Electricity and Magnetism: Insights into the brain from multimodal imaging.

    Science.gov (United States)

    Cohen, M S

    2009-11-01

    The windows into brain function given us by the instruments of neuroimaging each are murky and their view is limited. Simultaneous collection of data from multiple modalities offers the potential to overcome the weaknesses of any tool alone. We argue that the combination of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) offers observations - and hypothesis testing - not possible using either single instrument. Because of their safety profiles and their non-invasive natures, EEG fMRI are among the best available devices for the study of human brain. These methods are complementary. EEG is fast, operating in a time domain comparable to single unit activity, but its localizing power is poor and the field of view is limited. While fMRI has the highest spatial resolution of any noninvasive imaging method and can reveal multiple centers of brain activity implicated in cognitive tasks, it is very slow compared to mental activity and is a poor choice for studying rapidly evolving processes. Here, we address theoretical models of the coupling between EEG and fMRI signals based on cellular physiology and energetics and argue that both tools observe principally synaptic activity. We discuss the technical problems of mutual interference then present several models of brain rhythms for which the joint EEG and fMRI observations provide significant evidence.

  17. PET/SPECT imaging: From carotid vulnerability to brain viability

    Energy Technology Data Exchange (ETDEWEB)

    Meerwaldt, Robbert [Department of Surgery, Isala Clinics, Zwolle (Netherlands); Slart, Riemer H.J.A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands); Dam, Gooitzen M. van [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands); Luijckx, Gert-Jan [Department of Neurology, University Medical Center Groningen, Groningen (Netherlands); Tio, Rene A. [Department of Cardiology, University Medical Center Groningen, Groningen (Netherlands); Zeebregts, Clark J. [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands)], E-mail: czeebregts@hotmail.com

    2010-04-15

    Background: Current key issues in ischemic stroke are related to carotid plaque vulnerability, brain viability, and timing of intervention. The treatment of ischemic stroke has evolved into urgent active interventions, as 'time is brain'. Functional imaging such as positron emission tomography (PET)/single photon emission computed tomography (SPECT) could improve selection of patients with a vulnerable plaque and evaluation of brain viability in ischemic stroke. Objective: To describe the current applications of PET and SPECT as a diagnostic tool in relation to ischemic stroke. Methods: A literature search using PubMed identified articles. Manual cross-referencing was also performed. Results: Several papers, all observational studies, identified PET/SPECT to be used as a tool to monitor systemic atheroma modifying treatment and to select high-risk patients for surgery regardless of the degree of luminal stenosis in carotid lesions. Furthermore, PET/SPECT is able to quantify the penumbra region during ischemic stroke and in this way may identify those patients who may benefit from timely intervention. Discussion: Functional imaging modalities such as PET/SPECT may become important tools for risk-assessment and evaluation of treatment strategies in carotid plaque vulnerability and brain viability. Prospective clinical studies are needed to evaluate the diagnostic accuracy of PET/SPECT.

  18. A Nested Phosphorus and Proton Coil Array for Brain Magnetic Resonance Imaging and Spectroscopy

    Science.gov (United States)

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Parasoglou, Prodromos

    2015-01-01

    A dual-nuclei radiofrequency coil array was constructed for phosphorus and proton magnetic resonance imaging and spectroscopy of the human brain at 7 Tesla. An eight-channel transceive degenerate birdcage phosphorus module was implemented to provide whole-brain coverage and significant sensitivity improvement over a standard dual-tuned loop coil. A nested eight-channel proton module provided adequate sensitivity for anatomical localization without substantially sacrificing performance on the phosphorus module. The developed array enabled phosphorus spectroscopy, a saturation transfer technique to calculate the global creatine kinase forward reaction rate, and single-metabolite whole-brain imaging with 1.4 cm nominal isotropic resolution in 15 min (2.3 cm actual resolution), while additionally enabling 1 mm isotropic proton imaging. This study demonstrates that a multi-channel array can be utilized for phosphorus and proton applications with improved coverage and/or sensitivity over traditional single-channel coils. The efficient multi-channel coil array, time-efficient pulse sequences, and the enhanced signal strength available at ultra-high fields can be combined to allow volumetric assessment of the brain and could provide new insights into the underlying energy metabolism impairment in several neurodegenerative conditions, such as Alzheimer’s and Parkinson’s diseases, as well as mental disorders such as schizophrenia. PMID:26375209

  19. Imaging Nicotine in Rat Brain Tissue by Use of Nanospray Desorption Electrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lanekoff, Ingela T.; Thomas, Mathew; Carson, James P.; Smith, Jordan N.; Timchalk, Charles; Laskin, Julia

    2013-01-15

    Imaging mass spectrometry offers simultaneous detection of drugs, drug metabolites and endogenous substances in a single experiment. This is important when evaluating effects of a drug on a complex organ system such as the brain, where there is a need to understand how regional drug distribution impacts function. Nicotine is an addictive drug and its action in the brain is of high interest. Here we use nanospray desorption electrospray ionization, nano-DESI, imaging to discover the localization of nicotine in rat brain tissue after in vivo administration of nicotine. Nano-DESI is a new ambient technique that enables spatially-resolved analysis of tissue samples without special sample pretreatment. We demonstrate high sensitivity of nano-DESI imaging that enables detection of only 0.7 fmole nicotine per pixel in the complex brain matrix. Furthermore, by adding deuterated nicotine to the solvent, we examined how matrix effects, ion suppression, and normalization affect the observed nicotine distribution. Finally, we provide preliminary results suggesting that nicotine localizes to the hippocampal substructure called dentate gyrus.

  20. A human visual based binarization technique for histological images

    Science.gov (United States)

    Shreyas, Kamath K. M.; Rajendran, Rahul; Panetta, Karen; Agaian, Sos

    2017-05-01

    In the field of vision-based systems for object detection and classification, thresholding is a key pre-processing step. Thresholding is a well-known technique for image segmentation. Segmentation of medical images, such as Computed Axial Tomography (CAT), Magnetic Resonance Imaging (MRI), X-Ray, Phase Contrast Microscopy, and Histological images, present problems like high variability in terms of the human anatomy and variation in modalities. Recent advances made in computer-aided diagnosis of histological images help facilitate detection and classification of diseases. Since most pathology diagnosis depends on the expertise and ability of the pathologist, there is clearly a need for an automated assessment system. Histological images are stained to a specific color to differentiate each component in the tissue. Segmentation and analysis of such images is problematic, as they present high variability in terms of color and cell clusters. This paper presents an adaptive thresholding technique that aims at segmenting cell structures from Haematoxylin and Eosin stained images. The thresholded result can further be used by pathologists to perform effective diagnosis. The effectiveness of the proposed method is analyzed by visually comparing the results to the state of art thresholding methods such as Otsu, Niblack, Sauvola, Bernsen, and Wolf. Computer simulations demonstrate the efficiency of the proposed method in segmenting critical information.

  1. Improving face image extraction by using deep learning technique

    Science.gov (United States)

    Xue, Zhiyun; Antani, Sameer; Long, L. R.; Demner-Fushman, Dina; Thoma, George R.

    2016-03-01

    The National Library of Medicine (NLM) has made a collection of over a 1.2 million research articles containing 3.2 million figure images searchable using the Open-iSM multimodal (text+image) search engine. Many images are visible light photographs, some of which are images containing faces ("face images"). Some of these face images are acquired in unconstrained settings, while others are studio photos. To extract the face regions in the images, we first applied one of the most widely-used face detectors, a pre-trained Viola-Jones detector implemented in Matlab and OpenCV. The Viola-Jones detector was trained for unconstrained face image detection, but the results for the NLM database included many false positives, which resulted in a very low precision. To improve this performance, we applied a deep learning technique, which reduced the number of false positives and as a result, the detection precision was improved significantly. (For example, the classification accuracy for identifying whether the face regions output by this Viola- Jones detector are true positives or not in a test set is about 96%.) By combining these two techniques (Viola-Jones and deep learning) we were able to increase the system precision considerably, while avoiding the need to manually construct a large training set by manual delineation of the face regions.

  2. Image processing techniques in 3-D foot shape measurement system

    Science.gov (United States)

    Liu, Guozhong; Li, Ping; Wang, Boxiong; Shi, Hui; Luo, Xiuzhi

    2008-10-01

    The 3-D foot-shape measurement system based on laser-line-scanning principle was designed and 3-D foot-shape measurements without blind areas and the automatic extraction of foot-parameters were achieved. The paper is focused on the study of the system structure and principle and image processing techniques. The key techniques related to the image processing for 3-D foot shape measurement system include laser stripe extraction, laser stripe coordinate transformation from CCD cameras image coordinates system to laser plane coordinates system, laser stripe assembly of eight CCD cameras and eliminating of image noise and disturbance. 3-D foot shape measurement makes it possible to realize custom-made shoe-making and shows great prosperity in shoe design, foot orthopaedic treatment, shoe size standardization and establishment of a feet database for consumers.

  3. The Center for Integrated Molecular Brain Imaging (Cimbi) database

    DEFF Research Database (Denmark)

    Knudsen, Gitte M.; Jensen, Peter S.; Erritzoe, David

    2016-01-01

    We here describe a multimodality neuroimaging containing data from healthy volunteers and patients, acquired within the Lundbeck Foundation Center for Integrated Molecular Brain Imaging (Cimbi) in Copenhagen, Denmark. The data is of particular relevance for neurobiological research questions rela...... currently contains blood and in some instances saliva samples from about 500 healthy volunteers and 300 patients with e.g., major depression, dementia, substance abuse, obesity, and impulsive aggression. Data continue to be added to the Cimbi database and biobank....

  4. PANDA: a pipeline toolbox for analyzing brain diffusion images

    Directory of Open Access Journals (Sweden)

    Zaixu eCui

    2013-02-01

    Full Text Available Diffusion magnetic resonance imaging (dMRI is widely used in both scientific research and clinical practice in in-vivo studies of the human brain. While a number of post-processing packages have been developed, fully automated processing of dMRI datasets remains challenging. Here, we developed a MATLAB toolbox named Pipeline for Analyzing braiN Diffusion imAges (PANDA for fully automated processing of brain diffusion images. The processing modules of a few established packages, including FMRIB Software Library (FSL, Pipeline System for Octave and Matlab (PSOM, Diffusion Toolkit and MRIcron, were employed in PANDA. Using any number of raw dMRI datasets from different subjects, in either DICOM or NIfTI format, PANDA can automatically perform a series of steps to process DICOM/NIfTI to diffusion metrics (e.g., FA and MD that are ready for statistical analysis at the voxel-level, the atlas-level and the Tract-Based Spatial Statistics (TBSS-level and can finish the construction of anatomical brain networks for all subjects. In particular, PANDA can process different subjects in parallel, using multiple cores either in a single computer or in a distributed computing environment, thus greatly reducing the time cost when dealing with a large number of datasets. In addition, PANDA has a friendly graphical user interface (GUI, allowing the user to be interactive and to adjust the input/output settings, as well as the processing parameters. As an open-source package, PANDA is freely available at http://www.nitrc.org/projects/panda/. This novel toolbox is expected to substantially simplify the image processing of dMRI datasets and facilitate human structural connectome studies.

  5. PANDA: a pipeline toolbox for analyzing brain diffusion images.

    Science.gov (United States)

    Cui, Zaixu; Zhong, Suyu; Xu, Pengfei; He, Yong; Gong, Gaolang

    2013-01-01

    Diffusion magnetic resonance imaging (dMRI) is widely used in both scientific research and clinical practice in in-vivo studies of the human brain. While a number of post-processing packages have been developed, fully automated processing of dMRI datasets remains challenging. Here, we developed a MATLAB toolbox named "Pipeline for Analyzing braiN Diffusion imAges" (PANDA) for fully automated processing of brain diffusion images. The processing modules of a few established packages, including FMRIB Software Library (FSL), Pipeline System for Octave and Matlab (PSOM), Diffusion Toolkit and MRIcron, were employed in PANDA. Using any number of raw dMRI datasets from different subjects, in either DICOM or NIfTI format, PANDA can automatically perform a series of steps to process DICOM/NIfTI to diffusion metrics [e.g., fractional anisotropy (FA) and mean diffusivity (MD)] that are ready for statistical analysis at the voxel-level, the atlas-level and the Tract-Based Spatial Statistics (TBSS)-level and can finish the construction of anatomical brain networks for all subjects. In particular, PANDA can process different subjects in parallel, using multiple cores either in a single computer or in a distributed computing environment, thus greatly reducing the time cost when dealing with a large number of datasets. In addition, PANDA has a friendly graphical user interface (GUI), allowing the user to be interactive and to adjust the input/output settings, as well as the processing parameters. As an open-source package, PANDA is freely available at http://www.nitrc.org/projects/panda/. This novel toolbox is expected to substantially simplify the image processing of dMRI datasets and facilitate human structural connectome studies.

  6. Elderly depression diagnostic of diabetic patients by brain tissue pulsatility imaging

    Science.gov (United States)

    Hachemi, Mélouka Elkateb; Remeniéras, Jean-pierre; Desmidt, Thomas; Camus, Vincent; Tranquart, François

    2010-01-01

    Pulsatile motion of brain parenchyma results from cardiac and breathing cycles and consists in a rapid displacement in systole, with slow diastolic recovery. Based on the vascular depression concept and recent studies where a correlation was found between cerebral haemodynamics and depression in the elderly, we emitted the hypothesis that tissue brain motion due to perfusion is correlated to elderly depression associated with cardiovascular risk factors. Tissue Pulsatlity Imaging (TPI) is a new ultrasound technique developed firstly at the University of Washington to assess the brain tissue motion. We used TPI technique to measure the brain displacement of two groups of elderly patients with diabetes as a vascular risk factor. The first group is composed of 11 depressed diabetic patients. The second group is composed of 12 diabetic patients without depressive symptoms. Transcranial acquisitions were performed with a 1.8 MHz ultrasound phased array probe through the right temporal bone window. The acquisition of six cardiac cycles was realized on each patient with a frame rate of 23 frames/s. Displacements estimation was performed by off-line analysis. A significant decrease in brain pulsatility was observed in the group of depressed patients compared to the group of non depressed patients. Mean displacement magnitude was about 44±7 μm in the first group and 68±13 μm in the second group.

  7. Nonrigid brain MR image registration using uniform spherical region descriptor.

    Science.gov (United States)

    Liao, Shu; Chung, Albert C S

    2012-01-01

    There are two main issues that make nonrigid image registration a challenging task. First, voxel intensity similarity may not be necessarily equivalent to anatomical similarity in the image correspondence searching process. Second, during the imaging process, some interferences such as unexpected rotations of input volumes and monotonic gray-level bias fields can adversely affect the registration quality. In this paper, a new feature-based nonrigid image registration method is proposed. The proposed method is based on a new type of image feature, namely, uniform spherical region descriptor (USRD), as signatures for each voxel. The USRD is rotation and monotonic gray-level transformation invariant and can be efficiently calculated. The registration process is therefore formulated as a feature matching problem. The USRD feature is integrated with the Markov random field labeling framework in which energy function is defined for registration. The energy function is then optimized by the α-expansion algorithm. The proposed method has been compared with five state-of-the-art registration approaches on both the simulated and real 3-D databases obtained from the BrainWeb and Internet Brain Segmentation Repository, respectively. Experimental results demonstrate that the proposed method can achieve high registration accuracy and reliable robustness behavior.

  8. Contrast enhancement by combining T1- and T2-weighted structural brain MR Images.

    Science.gov (United States)

    Misaki, Masaya; Savitz, Jonathan; Zotev, Vadim; Phillips, Raquel; Yuan, Han; Young, Kymberly D; Drevets, Wayne C; Bodurka, Jerzy

    2015-12-01

    In order to more precisely differentiate cerebral structures in neuroimaging studies, a novel technique for enhancing the tissue contrast based on a combination of T1-weighted (T1w) and T2-weighted (T2w) MRI images was developed. The combined image (CI) was calculated as CI = (T1w - sT2w)/(T1w + sT2w), where sT2w is the scaled T2-weighted image. The scaling factor was calculated to adjust the gray- matter (GM) voxel intensities in the T2w image so that their median value equaled that of the GM voxel intensities in the T1w image. The image intensity homogeneity within a tissue and the discriminability between tissues in the CI versus the separate T1w and T2w images were evaluated using the segmentation by the FMRIB Software Library (FSL) and FreeSurfer (Athinoula A. Martinos Center for Biomedical Imaging at Massachusetts General Hospital, Boston, MA) software. The combined image significantly improved homogeneity in the white matter (WM) and GM compared to the T1w images alone. The discriminability between WM and GM also improved significantly by applying the CI approach. Significant enhancements to the homogeneity and discriminability also were achieved in most subcortical nuclei tested, with the exception of the amygdala and the thalamus. The tissue discriminability enhancement offered by the CI potentially enables more accurate neuromorphometric analyses of brain structures. © 2014 Wiley Periodicals, Inc.

  9. A Wavefield Imaging Technique for Delamination Detection in Composite Structures

    Science.gov (United States)

    2010-08-01

    ABSTRACT In this study, a 1D scanning laser vibrometer and imaging techniques are utilized to detect hidden...delamination in multi-layer composites. First, Lamb waves are excited by a surface-mounted piezoelectric wafer transducer and the corresponding out...of-plane velocities are measured by a scanning laser vibrometer . Second, wave field images are constructed from the scanned velocity signals, and the

  10. A Novel Watermarking Technique for Tampering Detection in Digital Images

    OpenAIRE

    Yang, Chen-Kuei

    2004-01-01

    A novel fragile watermarking technique is proposed for hiding logo information into an image by tuning block pixels based on a bitmap parity checking approach. A secure key and a random number generator are used to hide the logo information in a secret, undetectable, and unambiguous way. The characteristics of the mean gray value and the bitmap in a block are exploited for performing the embedding work efficiently and for hiding a logo into an image imperceptibly. The logo can be extracted wi...

  11. Assessment of banana fruit maturity by image processing technique

    OpenAIRE

    Surya Prabha, D.; J. Satheesh Kumar

    2013-01-01

    Maturity stage of fresh banana fruit is an important factor that affects the fruit quality during ripening and marketability after ripening. The ability to identify maturity of fresh banana fruit will be a great support for farmers to optimize harvesting phase which helps to avoid harvesting either under-matured or over-matured banana. This study attempted to use image processing technique to detect the maturity stage of fresh banana fruit by its color and size value of their images precisely...

  12. Imaging synaptic density in the living human brain.

    Science.gov (United States)

    Finnema, Sjoerd J; Nabulsi, Nabeel B; Eid, Tore; Detyniecki, Kamil; Lin, Shu-Fei; Chen, Ming-Kai; Dhaher, Roni; Matuskey, David; Baum, Evan; Holden, Daniel; Spencer, Dennis D; Mercier, Joël; Hannestad, Jonas; Huang, Yiyun; Carson, Richard E

    2016-07-20

    Chemical synapses are the predominant neuron-to-neuron contact in the central nervous system. Presynaptic boutons of neurons contain hundreds of vesicles filled with neurotransmitters, the diffusible signaling chemicals. Changes in the number of synapses are associated with numerous brain disorders, including Alzheimer's disease and epilepsy. However, all current approaches for measuring synaptic density in humans require brain tissue from autopsy or surgical resection. We report the use of the synaptic vesicle glycoprotein 2A (SV2A) radioligand [(11)C]UCB-J combined with positron emission tomography (PET) to quantify synaptic density in the living human brain. Validation studies in a baboon confirmed that SV2A is an alternative synaptic density marker to synaptophysin. First-in-human PET studies demonstrated that [(11)C]UCB-J had excellent imaging properties. Finally, we confirmed that PET imaging of SV2A was sensitive to synaptic loss in patients with temporal lobe epilepsy. Thus, [(11)C]UCB-J PET imaging is a promising approach for in vivo quantification of synaptic density with several potential applications in diagnosis and therapeutic monitoring of neurological and psychiatric disorders. Copyright © 2016, American Association for the Advancement of Science.

  13. Brain vascular image enhancement based on gradient adjust with split Bregman

    Science.gov (United States)

    Liang, Xiao; Dong, Di; Hui, Hui; Zhang, Liwen; Fang, Mengjie; Tian, Jie

    2016-04-01

    Light Sheet Microscopy is a high-resolution fluorescence microscopic technique which enables to observe the mouse brain vascular network clearly with immunostaining. However, micro-vessels are stained with few fluorescence antibodies and their signals are much weaker than large vessels, which make micro-vessels unclear in LSM images. In this work, we developed a vascular image enhancement method to enhance micro-vessel details which should be useful for vessel statistics analysis. Since gradient describes the edge information of the vessel, the main idea of our method is to increase the gradient values of the enhanced image to improve the micro-vessels contrast. Our method contained two steps: 1) calculate the gradient image of LSM image, and then amplify high gradient values of the original image to enhance the vessel edge and suppress low gradient values to remove noises. Then we formulated a new L1-norm regularization optimization problem to find an image with the expected gradient while keeping the main structure information of the original image. 2) The split Bregman iteration method was used to deal with the L1-norm regularization problem and generate the final enhanced image. The main advantage of the split Bregman method is that it has both fast convergence and low memory cost. In order to verify the effectiveness of our method, we applied our method to a series of mouse brain vascular images acquired from a commercial LSM system in our lab. The experimental results showed that our method could greatly enhance micro-vessel edges which were unclear in the original images.

  14. A novel data processing technique for image reconstruction of penumbral imaging

    Science.gov (United States)

    Xie, Hongwei; Li, Hongyun; Xu, Zeping; Song, Guzhou; Zhang, Faqiang; Zhou, Lin

    2011-06-01

    CT image reconstruction technique was applied to the data processing of the penumbral imaging. Compared with other traditional processing techniques for penumbral coded pinhole image such as Wiener, Lucy-Richardson and blind technique, this approach is brand new. In this method, the coded aperture processing method was used for the first time independent to the point spread function of the image diagnostic system. In this way, the technical obstacles was overcome in the traditional coded pinhole image processing caused by the uncertainty of point spread function of the image diagnostic system. Then based on the theoretical study, the simulation of penumbral imaging and image reconstruction was carried out to provide fairly good results. While in the visible light experiment, the point source of light was used to irradiate a 5mm×5mm object after diffuse scattering and volume scattering. The penumbral imaging was made with aperture size of ~20mm. Finally, the CT image reconstruction technique was used for image reconstruction to provide a fairly good reconstruction result.

  15. Enhanced techniques for asymmetry quantification in brain imagery

    Science.gov (United States)

    Liu, Xin; Imielinska, Celina; Rosiene, Joel; Connolly, E. S.; D'Ambrosio, Anthony L.

    2006-03-01

    We present an automated generic methodology for symmetry identification and asymmetry quantification, novel method of identifying and delineation of brain pathology by analyzing the opposing sides of the brain utilizing of inherent left-right symmetry in the brain. After symmetry axis has been detected, we apply non-parametric statistical tests operating on the pairs of samples to identify initial seeds points which is defined defined as the pixels where the most statistically significant difference appears. Local region growing is performed on the difference map, from where the seeds are aggregating until it captures all 8-way connected high signals from the difference map. We illustrate the capability of our method with examples ranging from tumors in patient MR data to animal stroke data. The validation results on Rat stroke data have shown that this approach has promise to achieve high precision and full automation in segmenting lesions in reflectional symmetrical objects.

  16. Application of Ultrasonic Techniques for Brain Injury Diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Kasili, P.M.; Mobley, J.; Norton, S.J.; Vo-Dinh, T.

    1999-09-19

    In this work, we evaluate methods for detecting brain injury using ultrasound. We have used simulations of ultrasonic fields in the head to model the phase distortion of the skull. In addition we present experimental data from the crania of large animals. The experimental data help us understand and evaluate the performance of different transducers in acquiring the backscatter data from the brain through the skull. Both the simulations and acquired data illustrate the superiority of lower-frequency (<= 1 MHz) ultrasonic fields for transcranial acquisition of signals from inside the brain. Additionally, the experimental work shows that the higher-frequency (5 MHz) ultrasound can also be useful in acquiring clean nearfield data to help detect the position of the inner boundary of the skull.

  17. Image analysis techniques for the study of turbulent flows

    Directory of Open Access Journals (Sweden)

    Ferrari Simone

    2017-01-01

    Full Text Available In this paper, a brief review of Digital Image Analysis techniques employed in Fluid Mechanics for the study of turbulent flows is given. Particularly the focus is on the techniques developed by the research teams the Author worked in, that can be considered relatively “low cost” techniques. Digital Image Analysis techniques have the advantage, when compared to the traditional techniques employing physical point probes, to be non-intrusive and quasi-continuous in space, as every pixel on the camera sensor works as a single probe: consequently, they allow to obtain two-dimensional or three-dimensional fields of the measured quantity in less time. Traditionally, the disadvantages are related to the frequency of acquisition, but modern high-speed cameras are typically able to acquire at frequencies from the order of 1 KHz to the order of 1 MHz. Digital Image Analysis techniques can be employed to measure concentration, temperature, position, displacement, velocity, acceleration and pressure fields with similar equipment and setups, and can be consequently considered as a flexible and powerful tool for measurements on turbulent flows.

  18. Modern Micro and Nanoparticle-Based Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Jozef Kaiser

    2012-11-01

    Full Text Available The requirements for early diagnostics as well as effective treatment of insidious diseases such as cancer constantly increase the pressure on development of efficient and reliable methods for targeted drug/gene delivery as well as imaging of the treatment success/failure. One of the most recent approaches covering both the drug delivery as well as the imaging aspects is benefitting from the unique properties of nanomaterials. Therefore a new field called nanomedicine is attracting continuously growing attention. Nanoparticles, including fluorescent semiconductor nanocrystals (quantum dots and magnetic nanoparticles, have proven their excellent properties for in vivo imaging techniques in a number of modalities such as magnetic resonance and fluorescence imaging, respectively. In this article, we review the main properties and applications of nanoparticles in various in vitro imaging techniques, including microscopy and/or laser breakdown spectroscopy and in vivo methods such as magnetic resonance imaging and/or fluorescence-based imaging. Moreover the advantages of the drug delivery performed by nanocarriers such as iron oxides, gold, biodegradable polymers, dendrimers, lipid based carriers such as liposomes or micelles are also highlighted.

  19. Microscopic Image Photography Techniques of the Past, Present, and Future.

    Science.gov (United States)

    Morrison, Annie O; Gardner, Jerad M

    2015-12-01

    The field of pathology is driven by microscopic images. Educational activities for trainees and practicing pathologists alike are conducted through exposure to images of a variety of pathologic entities in textbooks, publications, online tutorials, national and international conferences, and interdepartmental conferences. During the past century and a half, photographic technology has progressed from primitive and bulky, glass-lantern projector slides to static and/or whole slide digital-image formats that can now be transferred around the world in a matter of moments via the Internet. To provide a historic and technologic overview of the evolution of microscopic-image photographic tools and techniques. Primary historic methods of microscopic image capture were delineated through interviews conducted with senior staff members in the Emory University Department of Pathology. Searches for the historic image-capturing methods were conducted using the Google search engine. Google Scholar and PubMed databases were used to research methods of digital photography, whole slide scanning, and smart phone cameras for microscopic image capture in a pathology practice setting. Although film-based cameras dominated for much of the time, the rise of digital cameras outside of pathology generated a shift toward digital-image capturing methods, including mounted digital cameras and whole slide digital-slide scanning. Digital image capture techniques have ushered in new applications for slide sharing and second-opinion consultations of unusual or difficult cases in pathology. With their recent surge in popularity, we suspect that smart phone cameras are poised to become a widespread, cost-effective method for pathology image acquisition.

  20. Recommendations to improve imaging and analysis of brain lesion load and atrophy in longitudinal studies of multiple sclerosis

    NARCIS (Netherlands)

    Vrenken, H.; Jenkinson, M.; Horsfield, M.A.; Battaglini, M.; van Schijndel, R.A.; Rostrup, E.; Geurts, J.J.G.; Fisher, E.; Zijdenbos, A.; Ashburner, J.; Miller, D. H.; Filippi, M.; Fazekas, F.; Rovaris, M.; Rovira, A.; Barkhof, F.; De Stefano, N.

    2013-01-01

    Focal lesions and brain atrophy are the most extensively studied aspects of multiple sclerosis (MS), but the image acquisition and analysis techniques used can be further improved, especially those for studying within-patient changes of lesion load and atrophy longitudinally. Improved accuracy and

  1. Automated delineation of stroke lesions using brain CT images

    Directory of Open Access Journals (Sweden)

    Céline R. Gillebert

    2014-01-01

    Full Text Available Computed tomographic (CT images are widely used for the identification of abnormal brain tissue following infarct and hemorrhage in stroke. Manual lesion delineation is currently the standard approach, but is both time-consuming and operator-dependent. To address these issues, we present a method that can automatically delineate infarct and hemorrhage in stroke CT images. The key elements of this method are the accurate normalization of CT images from stroke patients into template space and the subsequent voxelwise comparison with a group of control CT images for defining areas with hypo- or hyper-intense signals. Our validation, using simulated and actual lesions, shows that our approach is effective in reconstructing lesions resulting from both infarct and hemorrhage and yields lesion maps spatially consistent with those produced manually by expert operators. A limitation is that, relative to manual delineation, there is reduced sensitivity of the automated method in regions close to the ventricles and the brain contours. However, the automated method presents a number of benefits in terms of offering significant time savings and the elimination of the inter-operator differences inherent to manual tracing approaches. These factors are relevant for the creation of large-scale lesion databases for neuropsychological research. The automated delineation of stroke lesions from CT scans may also enable longitudinal studies to quantify changes in damaged tissue in an objective and reproducible manner.

  2. Advanced magnetic resonance imaging techniques for patients with hemifacial spasm.

    Science.gov (United States)

    Port, John D

    2002-01-01

    To review the underlying causes, diagnostic issues, and treatment of hemifacial spasm, with emphasis on advanced MRI techniques. Brief technical note. High-resolution T1- and T2-weighted spin-echo and/or gradient echo imaging of the posterior fossa should be performed with the use of intravenous gadolinium for maximum contrast between CSF, vessel, and nerve. Magnetic resonance angiography is often useful, and new state-of-the-art sequences provide more detail. As MRI techniques improve, diagnosis and treatment of patients with hemifacial spasm will become easier. Ophthalmologists should be aware of these new magnetic resonance techniques.

  3. Novel strategies of Raman imaging for brain tumor research.

    Science.gov (United States)

    Anna, Imiela; Bartosz, Polis; Lech, Polis; Halina, Abramczyk

    2017-10-17

    Raman diagnostics and imaging have been shown to be an effective tool for the analysis and discrimination of human brain tumors from normal structures. Raman spectroscopic methods have potential to be applied in clinical practice as they allow for identification of tumor margins during surgery. In this study, we investigate medulloblastoma (grade IV WHO) (n= 5), low-grade astrocytoma (grades I-II WHO) (n =4), ependymoma (n=3) and metastatic brain tumors (n= 1) and the tissue from the negative margins used as normal controls. We compare a high grade medulloblastoma, low grade astrocytoma and non-tumor samples from human central nervous system (CNS) tissue. Based on the properties of the Raman vibrational features and Raman images we provide a real-time feedback method that is label-free to monitor tumor metabolism that reveals reprogramming of biosynthesis of lipids, proteins, DNA and RNA. Our results indicate marked metabolic differences between low and high grade brain tumors. We discuss molecular mechanisms causing these metabolic changes, particularly lipid alterations in malignant medulloblastoma and low grade gliomas that may shed light on the mechanisms driving tumor recurrence thereby revealing new approaches for the treatment of malignant glioma. We have found that the high-grade tumors of central nervous system (medulloblastoma) exhibit enhanced level of β-sheet conformation and down-regulated level of α-helix conformation when comparing against normal tissue. We have found that almost all tumors studied in the paper have increased Raman signals of nucleic acids. This increase can be interpreted as increased DNA/RNA turnover in brain tumors. We have shown that the ratio of Raman intensities I 2930 /I 2845 at 2930 and 2845 cm -1 is a good source of information on the ratio of lipid and protein contents. We have found that the ratio reflects the different lipid and protein contents of cancerous brain tissue compared to the non-tumor tissue. We found that

  4. Analysis of spatio-temporal brain imaging patterns by Hidden Markov Models and serial MRI images.

    Science.gov (United States)

    Wang, Ying; Resnick, Susan M; Davatzikos, Christos

    2014-09-01

    Brain changes due to development and maturation, normal aging, or degenerative disease are continuous, gradual, and variable across individuals. To quantify the individual progression of brain changes, we propose a spatio-temporal methodology based on Hidden Markov Models (HMM), and apply it on four-dimensional structural brain magnetic resonance imaging series of older individuals. First, regional brain features are extracted in order to reduce image dimensionality. This process is guided by the objective of the study or the specific imaging patterns whose progression is of interest, for example, the evaluation of Alzheimer-like patterns of brain change in normal individuals. These regional features are used in conjunction with HMMs, which aim to measure the dynamic association between brain structure changes and progressive stages of disease over time. A bagging framework is used to obtain models with good generalization capability, since in practice the number of serial scans is limited. An application of the proposed methodology was to detect individuals with the risk of developing MCI, and therefore it was tested on modeling the progression of brain atrophy patterns in older adults. With HMM models, the state-transition paths corresponding to longitudinal brain changes were constructed from two completely independent datasets, the Alzheimer Disease Neuroimaging Initiative and the Baltimore Longitudinal Study of Aging. The statistical analysis of HMM-state paths among the normal, progressive MCI, and MCI groups indicates that, HMM-state index 1 is likely to be a predictor of the conversion from cognitively normal to MCI, potentially many years before clinical symptoms become measurable. Copyright © 2014 Wiley Periodicals, Inc.

  5. Differentiation of Brain Damage Among Low IQ Subjects with Three Projective Techniques

    Science.gov (United States)

    Wagner, Edwin E.; And Others

    1978-01-01

    The Rorschach, Hand, and Bender-Gestalt tests discriminated slightly between low IQ subjects classified as brain damaged or not. Substantial discrimination was observed between the same subjects classified by intelligence level. Brain impairment may underlie most or all retardation. The efficacy of projective techniques for diagnosing organicity…

  6. Feminist Pedagogy, Body Image, and the Dance Technique Class

    Science.gov (United States)

    Barr, Sherrie; Oliver, Wendy

    2016-01-01

    This paper investigates the evolution of feminist consciousness in dance technique class as related to body image, the myth of the perfect body, and the development of feminist pedagogy. Western concert dance forms have often been taught in a manner where imitating the teacher is primary in the learning process. In this traditional scenario,…

  7. A novel image inpainting technique based on median diffusion

    Indian Academy of Sciences (India)

    /fulltext/sadh/038/04/0621-0644 ... In this study, we present a simple, yet unexplored (digital) image inpainting technique using median filter, one of the most popular nonlinear (order statistics) filters. The median is maximum likelihood estimate ...

  8. Juvenile chronic arthritis and imaging: comparison of different techniques

    Directory of Open Access Journals (Sweden)

    C. Cervini

    2011-09-01

    Full Text Available Objective: The aim of this study was to compare imaging findings obtained with different techniques in a patient with juvenile chronic arthritis. Methods: The patient was a 12 years-old child with a 7-months history of arthritis of the first metatarsophalangeal joint of the right foot. The involved area was explored with the following imaging techniques: X-ray, technetium bone scintigraphy, magnetic resonance, gray-scale and power-Doppler ultrasonography. Results: No abnormalities were detected with conventional X-ray. Scintigraphy showed an abnormal uptake of the radionuclide in the first metatarsophalangeal joint of the right foot. Magnetic resonance without contrast revealed clearly evident features of an active process of synovitis. Ultrasonography was able to detect the presence of joint effusion, synovial proliferation, bone erosion of the first metatarsal head. Power-Doppler examination revealed evident signs of soft tissue hyperemia. Conclusions: Comparative assessment of different imaging techniques in this patient with recent-onset juvenile chronic arthritis indicates that high resolution ultrasonography provides the most detailed evaluation of the joint involvement with respect to the other imaging techniques.

  9. Transportation informatics : advanced image processing techniques automated pavement distress evaluation.

    Science.gov (United States)

    2010-01-01

    The current project, funded by MIOH-UTC for the period 1/1/2009- 4/30/2010, is concerned : with the development of the framework for a transportation facility inspection system using : advanced image processing techniques. The focus of this study is ...

  10. Recent Advances in Techniques for Hyperspectral Image Processing

    Science.gov (United States)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; hide

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  11. An Image Inpainting Technique Based on the Fast Marching Method

    NARCIS (Netherlands)

    Telea, Alexandru

    2004-01-01

    Digital inpainting provides a means for reconstruction of small damaged portions of an image. Although the inpainting basics are straightforward, most inpainting techniques published in the literature are complex to understand and implement. We present here a new algorithm for digital inpainting

  12. A study of correlation technique on pyramid processed images

    Indian Academy of Sciences (India)

    A straightforward approach that uses standard, digital, multi-band, filtering techniques would require complex high-speed circuitry. Typically, the lower spatial frequency bands would be unnecessarily maintained at the original image sample density. This redundant information is a waste of both memory storage and.

  13. Classification of Architectural Heritage Images Using Deep Learning Techniques

    Directory of Open Access Journals (Sweden)

    Jose Llamas

    2017-09-01

    Full Text Available The classification of the images taken during the measurement of an architectural asset is an essential task within the digital documentation of cultural heritage. A large number of images are usually handled, so their classification is a tedious task (and therefore prone to errors and habitually consumes a lot of time. The availability of automatic techniques to facilitate these sorting tasks would improve an important part of the digital documentation process. In addition, a correct classification of the available images allows better management and more efficient searches through specific terms, thus helping in the tasks of studying and interpreting the heritage asset in question. The main objective of this article is the application of techniques based on deep learning for the classification of images of architectural heritage, specifically through the use of convolutional neural networks. For this, the utility of training these networks from scratch or only fine tuning pre-trained networks is evaluated. All this has been applied to classifying elements of interest in images of buildings with architectural heritage value. As no datasets of this type, suitable for network training, have been located, a new dataset has been created and made available to the public. Promising results have been obtained in terms of accuracy and it is considered that the application of these techniques can contribute significantly to the digital documentation of architectural heritage.

  14. Optical design for LED dental lighting with imaging optic technique

    Science.gov (United States)

    Kwon, Young-Hoon; Bae, Seung-Chul; Lim, Hae-Ryong; Jang, Ja-Soon

    2011-10-01

    We did a research as follows. First of all, selected optimum LEDs and mixed it for higher CRI, target CCT and illuminance. The following step is optical module design. Light directional characteristics of dental lighting must be concentrated to illuminate a part. Because This part is oral cavity, The feature of illumination pattern is rectangular. For uniformity of illuminance and clearer pattern boundary at reference distance, we designed it as direct type (no use reflector) by imaging optic technique. First, Image is rectangular feature, so object must be the same feature with magnification in general imaging optics. But the emitting surface feature of LED (1W grade) is square or circular generally. For that reason, made object as rectangular source with rectangular lightguide. This optical component was designed for higher efficiency by illumination optic technique. Next, we designed optical lenses based on imaging optic technique for image object feature using Code V. set to high NA for light efficiency in this design. Fundamentally, Finally, This product is luminaire so illumination simulation and result analysis were executed by LightTools as illumination design software.

  15. Characterization of burns using hyperspectral imaging technique - a preliminary study.

    Science.gov (United States)

    Calin, Mihaela Antonina; Parasca, Sorin Viorel; Savastru, Roxana; Manea, Dragos

    2015-02-01

    Surgical burn treatment depends on accurate estimation of burn depth. Many methods have been used to asses burns, but none has gained wide acceptance. Hyperspectral imaging technique has recently entered the medical research field with encouraging results. In this paper we present a preliminary study (case presentation) that aims to point out the value of this optical method in burn wound characterization and to set up future lines of investigation. A hyperspectral image of a leg and foot with partial thickness burns was obtained in the fifth postburn day. The image was analyzed using linear spectral unmixing model as a tool for mapping the investigated areas. The article gives details on the mathematical bases of the interpretation model and correlations with clinical examination pointing out the advantages of hyperspectral imaging technique. While the results were encouraging, further more extended and better founded studies are being prepared before recognizing hyperspectral imaging technique as an applicable method of burn wound assessment. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  16. Wearable Brain Imaging with Multi-Modal Physiological Recording.

    Science.gov (United States)

    Strangman, Gary E; Ivkovic, Vladimir; Zhang, Quan

    2017-07-13

    The brain is a central component of cognitive and physical human performance. Measures including functional brain activation, cerebral perfusion, cerebral oxygenation, evoked electrical responses, and resting hemodynamic and electrical activity are all related to, or can predict health status or performance decrements. However, measuring brain physiology typically requires large, stationary machines that are not suitable for mobile or self-monitoring. Moreover, when individuals are ambulatory, systemic physiological fluctuations-e.g., in heart rate, blood pressure, skin perfusion and more-can interfere with non-invasive brain measurements. In efforts to address the physiological monitoring and performance assessment needs for astronauts during spaceflight, we have developed easy-to-use, wearable prototypes- NINscan, for near-infrared scanning-that can collect synchronized multi-modal physiology data, including hemodynamic deep-tissue imaging (including brain and muscles), electroencephalography, electrocardiography, electromyography, electrooculography, accelerometry, gyroscopy, pressure, respiration and temperature measurements. Given their self-contained and portable nature, these devices can be deployed in a much broader range of settings-including austere environments-thereby enabling a wider range of novel medical and research physiology applications. We review these, including high-altitude assessments, self-deployable multi-modal e.g., (polysomnographic) recordings in remote or low-resource environments, fluid shifts in variable-gravity or spaceflight analog environments, intra-cranial brain motion during high-impact sports, and long-duration monitoring for clinical symptom-capture in various clinical conditions. In addition to further enhancing sensitivity and miniaturization, advanced computational algorithms could help support real-time feedback and alerts regarding performance and health. Copyright © 2017, Journal of Applied Physiology.

  17. Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques.

    Science.gov (United States)

    Macyszyn, Luke; Akbari, Hamed; Pisapia, Jared M; Da, Xiao; Attiah, Mark; Pigrish, Vadim; Bi, Yingtao; Pal, Sharmistha; Davuluri, Ramana V; Roccograndi, Laura; Dahmane, Nadia; Martinez-Lage, Maria; Biros, George; Wolf, Ronald L; Bilello, Michel; O'Rourke, Donald M; Davatzikos, Christos

    2016-03-01

    MRI characteristics of brain gliomas have been used to predict clinical outcome and molecular tumor characteristics. However, previously reported imaging biomarkers have not been sufficiently accurate or reproducible to enter routine clinical practice and often rely on relatively simple MRI measures. The current study leverages advanced image analysis and machine learning algorithms to identify complex and reproducible imaging patterns predictive of overall survival and molecular subtype in glioblastoma (GB). One hundred five patients with GB were first used to extract approximately 60 diverse features from preoperative multiparametric MRIs. These imaging features were used by a machine learning algorithm to derive imaging predictors of patient survival and molecular subtype. Cross-validation ensured generalizability of these predictors to new patients. Subsequently, the predictors were evaluated in a prospective cohort of 29 new patients. Survival curves yielded a hazard ratio of 10.64 for predicted long versus short survivors. The overall, 3-way (long/medium/short survival) accuracy in the prospective cohort approached 80%. Classification of patients into the 4 molecular subtypes of GB achieved 76% accuracy. By employing machine learning techniques, we were able to demonstrate that imaging patterns are highly predictive of patient survival. Additionally, we found that GB subtypes have distinctive imaging phenotypes. These results reveal that when imaging markers related to infiltration, cell density, microvascularity, and blood-brain barrier compromise are integrated via advanced pattern analysis methods, they form very accurate predictive biomarkers. These predictive markers used solely preoperative images, hence they can significantly augment diagnosis and treatment of GB patients. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. First in vivo traumatic brain injury imaging via magnetic particle imaging

    Science.gov (United States)

    Orendorff, Ryan; Peck, Austin J.; Zheng, Bo; Shirazi, Shawn N.; Ferguson, R. Matthew; Khandhar, Amit P.; Kemp, Scott J.; Goodwill, Patrick; Krishnan, Kannan M.; Brooks, George A.; Kaufer, Daniela; Conolly, Steven

    2017-05-01

    Emergency room visits due to traumatic brain injury (TBI) is common, but classifying the severity of the injury remains an open challenge. Some subjective methods such as the Glasgow Coma Scale attempt to classify traumatic brain injuries, as well as some imaging based modalities such as computed tomography and magnetic resonance imaging. However, to date it is still difficult to detect and monitor mild to moderate injuries. In this report, we demonstrate that the magnetic particle imaging (MPI) modality can be applied to imaging TBI events with excellent contrast. MPI can monitor injected iron nanoparticles over long time scales without signal loss, allowing researchers and clinicians to monitor the change in blood pools as the wound heals.

  19. Pet Imaging Of The Chemistry Of The Brain

    Science.gov (United States)

    Wagner, Henry N., Jr.

    1986-06-01

    Advances in neurobiology today are as important as the advances in atomic physics at the turn of the century and molecular genetics in the 1950's. Positron-emission tomography is participating in these advances by making it possible for the first time to measure the chemistry of the living human brain in health and disease and to relate the changes at the molecular level to the functioning of the human mind. The amount of data generated requires modern data processing, display, and archiving capabilities. To achieve maximum benefit from the PET imaging and the derived quantitative measurements, the data must be combined with information, usually of a structural nature, from other imaging modalities, chiefly computed tomography and magnetic resonance imaging.

  20. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    DEFF Research Database (Denmark)

    Menze, Bjoern H.; Jakab, Andras; Bauer, Stefan

    2015-01-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low......- and high-grade glioma patients – manually annotated by up to four raters – and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74...... a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing...

  1. [Attaching importance to molecular imaging techniques and promoting precision diagnosis in burns].

    Science.gov (United States)

    Yu, Y M; Peng, X

    2017-08-20

    The explosive growth and advancement of computer science in recent decades have prompted the rapid development and wide applications of imaging techniques in life science, which have brought about revolutionary changes in modern medicine. Nowadays, it is possible to visualize multiple physiological and disease processes, precisely and non-invasively, in a living human body. Modern medicine has even started"reading the mind", to diagnose psychology, behavior and degenerative disorders of human brain. The border between the organic and inorganic diseases in old dogma is disappearing because imaging techniques have"visualized"the neurological and tissue changes of inorganic disorders. Severe burn injury is associated with very complicated pathological processes, which are always at the borderline between life and death. Complete recovery of patients with severe burn injury, if possible, may take years of time. Hence, a real-time monitoring of the disease process is of pivotal importance in early recognition and prevention of life-threatening complications and in assessing the therapeutic efficacy for a less-eventful recovery. Here we review and introduce some potential applications of modern imaging techniques in burn care and research, which may benefit burn patients. Some techniques are still in their early or pre-clinical stage and some are mature techniques in other fields of medicine, which are potentially applicable in burn diagnosis and treatment through our research. We intend to bring your interest to this field which may eventually lead to new revenues improving our clinical work on burn victims.

  2. Adaptive differential correspondence imaging based on sorting technique

    Directory of Open Access Journals (Sweden)

    Heng Wu

    2017-04-01

    Full Text Available We develop an adaptive differential correspondence imaging (CI method using a sorting technique. Different from the conventional CI schemes, the bucket detector signals (BDS are first processed by a differential technique, and then sorted in a descending (or ascending order. Subsequently, according to the front and last several frames of the sorted BDS, the positive and negative subsets (PNS are created by selecting the relative frames from the reference detector signals. Finally, the object image is recovered from the PNS. Besides, an adaptive method based on two-step iteration is designed to select the optimum number of frames. To verify the proposed method, a single-detector computational ghost imaging (GI setup is constructed. We experimentally and numerically compare the performance of the proposed method with different GI algorithms. The results show that our method can improve the reconstruction quality and reduce the computation cost by using fewer measurement data.

  3. Simulated driving and brain imaging: combining behavior, brain activity, and virtual reality.

    Science.gov (United States)

    Carvalho, Kara N; Pearlson, Godfrey D; Astur, Robert S; Calhoun, Vince D

    2006-01-01

    Virtual reality in the form of simulated driving is a useful tool for studying the brain. Various clinical questions can be addressed, including both the role of alcohol as a modulator of brain function and regional brain activation related to elements of driving. We reviewed a study of the neural correlates of alcohol intoxication through the use of a simulated-driving paradigm and wished to demonstrate the utility of recording continuous-driving behavior through a new study using a programmable driving simulator developed at our center. Functional magnetic resonance imaging data was collected from subjects while operating a driving simulator. Independent component analysis (ICA) was used to analyze the data. Specific brain regions modulated by alcohol, and relationships between behavior, brain function, and alcohol blood levels were examined with aggregate behavioral measures. Fifteen driving epochs taken from two subjects while also recording continuously recorded driving variables were analyzed with ICA. Preliminary findings reveal that four independent components correlate with various aspects of behavior. An increase in braking while driving was found to increase activation in motor areas, while cerebellar areas showed signal increases during steering maintenance, yet signal decreases during steering changes. Additional components and significant findings are further outlined. In summary, continuous behavioral variables conjoined with ICA may offer new insight into the neural correlates of complex human behavior.

  4. Connecting combat-related mild traumatic brain injury with posttraumatic stress disorder symptoms through brain imaging.

    Science.gov (United States)

    Costanzo, Michelle E; Chou, Yi-Yu; Leaman, Suzanne; Pham, Dzung L; Keyser, David; Nathan, Dominic E; Coughlin, Mary; Rapp, Paul; Roy, Michael J

    2014-08-08

    Mild traumatic brain injury (mTBI) and posttraumatic stress disorder (PTSD) may share common symptom and neuropsychological profiles in military service members (SMs) following deployment; while a connection between the two conditions is plausible, the relationship between them has been difficult to discern. The intent of this report is to enhance our understanding of the relationship between findings on structural and functional brain imaging and symptoms of PTSD. Within a cohort of SMs who did not meet criteria for PTSD but were willing to complete a comprehensive assessment within 2 months of their return from combat deployment, we conducted a nested case-control analysis comparing those with combat-related mTBI to age/gender-matched controls with diffusion tensor imaging, resting state functional magnetic resonance imaging and a range of psychological measures. We report degraded white matter integrity in those with a history of combat mTBI, and a positive correlation between the white matter microstructure and default mode network (DMN) connectivity. Higher clinician-administered and self-reported subthreshold PTSD symptoms were reported in those with combat mTBI. Our findings offer a potential mechanism through which mTBI may alter brain function, and in turn, contribute to PTSD symptoms. Published by Elsevier Ireland Ltd.

  5. Template Matching of Colored Image Based on Quaternion Fourier Transform and Image Pyramid Techniques

    Directory of Open Access Journals (Sweden)

    M.I. KHALIL

    2016-04-01

    Full Text Available Template matching method is one of the most significant object recognition techniques and it has many applications in the field of digital signal processing and image processing and it is the base for object tracking in computer vision field. The traditional template matching by correlation is performed between gray template image w and the candidate gray image f where the template’s position is to be determined in the candidate image. This task can be achieved by measuring the similarity between the template image and the candidate image to identify and localize the existence of object instances within an image. When applying this method to colored image, the image must be converted to a gray one or decomposed to its RGB components to be processed separately. The current paper aims to apply the template matching technique to colored images via generating the quaternion Fourier transforms of both the template and candidate colored image and hence performing the cross-correlation between those transforms. Moreover, this approach is improved by representing both the image and template as pyramid multi-resolution format to reduce the time of processing. The proposed algorithm is implemented and applied to different images and templates using Matlab functions.

  6. Imaging and machine learning techniques for diagnosis of Alzheimer's disease.

    Science.gov (United States)

    Mirzaei, Golrokh; Adeli, Anahita; Adeli, Hojjat

    2016-12-01

    Alzheimer's disease (AD) is a common health problem in elderly people. There has been considerable research toward the diagnosis and early detection of this disease in the past decade. The sensitivity of biomarkers and the accuracy of the detection techniques have been defined to be the key to an accurate diagnosis. This paper presents a state-of-the-art review of the research performed on the diagnosis of AD based on imaging and machine learning techniques. Different segmentation and machine learning techniques used for the diagnosis of AD are reviewed including thresholding, supervised and unsupervised learning, probabilistic techniques, Atlas-based approaches, and fusion of different image modalities. More recent and powerful classification techniques such as the enhanced probabilistic neural network of Ahmadlou and Adeli should be investigated with the goal of improving the diagnosis accuracy. A combination of different image modalities can help improve the diagnosis accuracy rate. Research is needed on the combination of modalities to discover multi-modal biomarkers.

  7. Detection of Cracks in Concrete Structure Using Microwave Imaging Technique

    Directory of Open Access Journals (Sweden)

    E. A. Jiya

    2016-01-01

    Full Text Available Cracks in concrete or cement based materials present a great threat to any civil structures; they are very dangerous and have caused a lot of destruction and damage. Even small cracks that look insignificant can grow and may eventually lead to severe structural failure. Besides manual inspection that is ineffective and time-consuming, several nondestructive evaluation techniques have been used for crack detection such as ultrasonic technique, vibration technique, and strain-based technique; however, some of the sensors used are either too large in size or limited in resolution. A high resolution microwave imaging technique with ultrawideband signal for crack detection in concrete structures is proposed. A combination of the delay-and-sum beamformer with full-view mounted antennas constitutes the image reconstruction algorithm. Various anomaly scenarios in cement bricks were simulated using FDTD, constructed, and measured in the lab. The reconstructed images showed a high similarity between the simulation and the experiment with a resolution of λ/14 which enables a detection of cracks as small as 5 mm in size.

  8. A comparison of spotlight synthetic aperture radar image formation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Knittle, C.D.; Doren, N.E.; Jakowatz, C.V.

    1996-10-01

    Spotlight synthetic aperture radar images can be formed from the complex phase history data using two main techniques: (1) polar-to-cartesian interpolation followed by two-dimensional inverse Fourier transform (2DFFT), and (2) convolution backprojection (CBP). CBP has been widely used to reconstruct medical images in computer aided tomography, and only recently has been applied to form synthetic aperture radar imagery. It is alleged that CBP yields higher quality images because (1) all the Fourier data are used and (2) the polar formatted data is used directly to form a 2D Cartesian image and therefore 2D interpolation is not required. This report compares the quality of images formed by CBP and several modified versions of the 2DFFT method. We show from an image quality point of view that CBP is equivalent to first windowing the phase history data and then interpolating to an exscribed rectangle. From a mathematical perspective, we should expect this conclusion since the same Fourier data are used to form the SAR image. We next address the issue of parallel implementation of each algorithm. We dispute previous claims that CBP is more readily parallelizable than the 2DFFT method. Our conclusions are supported by comparing execution times between massively parallel implementations of both algorithms, showing that both experience similar decreases in computation time, but that CBP takes significantly longer to form an image.

  9. Dense deformation field estimation for atlas-based segmentation of pathological MR brain images.

    Science.gov (United States)

    Bach Cuadra, M; De Craene, M; Duay, V; Macq, B; Pollo, C; Thiran, J-Ph

    2006-12-01

    Atlas registration is a recognized paradigm for the automatic segmentation of normal MR brain images. Unfortunately, atlas-based segmentation has been of limited use in presence of large space-occupying lesions. In fact, brain deformations induced by such lesions are added to normal anatomical variability and they may dramatically shift and deform anatomically or functionally important brain structures. In this work, we chose to focus on the problem of inter-subject registration of MR images with large tumors, inducing a significant shift of surrounding anatomical structures. First, a brief survey of the existing methods that have been proposed to deal with this problem is presented. This introduces the discussion about the requirements and desirable properties that we consider necessary to be fulfilled by a registration method in this context: To have a dense and smooth deformation field and a model of lesion growth, to model different deformability for some structures, to introduce more prior knowledge, and to use voxel-based features with a similarity measure robust to intensity differences. In a second part of this work, we propose a new approach that overcomes some of the main limitations of the existing techniques while complying with most of the desired requirements above. Our algorithm combines the mathematical framework for computing a variational flow proposed by Hermosillo et al. [G. Hermosillo, C. Chefd'Hotel, O. Faugeras, A variational approach to multi-modal image matching, Tech. Rep., INRIA (February 2001).] with the radial lesion growth pattern presented by Bach et al. [M. Bach Cuadra, C. Pollo, A. Bardera, O. Cuisenaire, J.-G. Villemure, J.-Ph. Thiran, Atlas-based segmentation of pathological MR brain images using a model of lesion growth, IEEE Trans. Med. Imag. 23 (10) (2004) 1301-1314.]. Results on patients with a meningioma are visually assessed and compared to those obtained with the most similar method from the state-of-the-art.

  10. Diffusion Tensor Imaging Of the Brain in Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Jo Ann V. Antenor-Dorsey

    2014-10-01

    Full Text Available Individuals with Type 1 diabetes mellitus (T1DM are required to carefully manage their insulin dosing, dietary intake, and activity levels in order to maintain optimal blood sugar levels. Over time, exposure to hyperglycaemia is known to cause significant damage to the peripheral nervous system, but its impact on the central nervous system has been less well studied. Researchers have begun to explore the cumulative impact of commonly experienced blood glucose fluctuations on brain structure and function in patient populations. To date, these studies have typically used magnetic resonance imaging to measure regional grey and white matter volumes across the brain. However, newer methods, such as diffusion tensor imaging (DTI can measure the microstructural properties of white matter, which can be more sensitive to neurological effects than standard volumetric measures. Studies are beginning to use DTI to understand the impact of T1DM on white matter structure in the human brain. This work, its implications, future directions, and important caveats, are the focus of this review.

  11. Image reconstruction technique using projection data from neutron tomography system

    Directory of Open Access Journals (Sweden)

    Waleed Abd el Bar

    2015-12-01

    Full Text Available Neutron tomography is a very powerful technique for nondestructive evaluation of heavy industrial components as well as for soft hydrogenous materials enclosed in heavy metals which are usually difficult to image using X-rays. Due to the properties of the image acquisition system, the projection images are distorted by several artifacts, and these reduce the quality of the reconstruction. In order to eliminate these harmful effects the projection images should be corrected before reconstruction. This paper gives a description of a filter back projection (FBP technique, which is used for reconstruction of projected data obtained from transmission measurements by neutron tomography system We demonstrated the use of spatial Discrete Fourier Transform (DFT and the 2D Inverse DFT in the formulation of the method, and outlined the theory of reconstruction of a 2D neutron image from a sequence of 1D projections taken at different angles between 0 and π in MATLAB environment. Projections are generated by applying the Radon transform to the original image at different angles.

  12. Appropriate electromagnetic techniques for imaging geothermal fracture zones

    Energy Technology Data Exchange (ETDEWEB)

    Groom, R.; Walker, P. [PetRos EiKon Incorporated, Ontario (Canada)

    1996-05-01

    Electromagnetic surface detection of fracture zones has often been approached by using the magnetotelluric method. This technique suffers greatly from the quantity and scale of the conductive inhomogeneities lying above the fracture zones. Additionally, it suffers from the inherent inability to focus the source on the target. There are no such source focusing capabilities in magnetotellurics. Accordingly, the quantity of magnetotelluric data required to resolve targets in such complex conditions can make the technique inefficient and insufficient from a cost perspective. When attempting to reveal a subsurface structure and image it, the basic physical responses at hand must be kept in mind, and the appropriate source must be utilized, which most effectively illuminates the target. A further advantage to controlled sources is that imaging techniques may be used to accentuate the response due to knowledge and control of the source.

  13. The clinical utility of brain SPECT imaging in process addictions.

    Science.gov (United States)

    Amen, Daniel G; Willeumier, Kristen; Johnson, Robert

    2012-01-01

    Brain SPECT imaging is a nuclear medicine study that uses isotopes bound to neurospecific pharmaceuticals to evaluate regional cerebral blood flow (rCBF) and indirectly metabolic activity. With current available technology and knowledge SPECT has the potential to add important clinical information to benefit patient care in many different areas of a substance abuse practice, including in the area of process addictions. This article explores the ways brain SPECT has the potential to be useful to clinicians in helping to understand and direct treatment for complex cases of obesity and sexual addictions. Areas where SPECT can add value include helping clinicians ask betterquestions, helping them in making more complete diagnoses, evaluating underlying brain systems pathology, decreasing stigma and increasing compliance, and visualizing effectiveness via follow-up evaluations. In particular, SPECT can help in identifying and assessing the issue of brain trauma and toxicity in process addictions, which may be significant contributing factors in treatment failure. Three illustrative case histories will be given.

  14. Functional brain imaging in the dementias: role in early detection, differential diagnosis, and longitudinal studies

    Energy Technology Data Exchange (ETDEWEB)

    Devous, M.D. Sr. [Nuclear Medicine Center and Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX (United States)

    2002-12-01

    This review considers the role of functional brain imaging techniques in the dementias. The substantial assistance that especially single-photon emission tomography and positron emission tomography can play in the initial diagnosis of dementia and in the differential diagnosis of the specific dementing disorder is discussed. These techniques alone essentially match the sensitivity and specificity of clinical diagnoses in distinguishing Alzheimer's dementia (AD) from age-matched controls, from frontal lobe dementia and vascular dementia, and even from Lewy body dementia. Newer analytic techniques such as voxel-based correlational analyses and discriminant function analyses enhance the power of such differential diagnoses. Functional brain imaging techniques can also significantly assist in patient screening for clinical trials. The correlation of the observed deficits with specific patterns of cognitive abnormalities permits enhanced patient management and treatment planning and improved longitudinal assessment of outcome. It is also noteworthy that the classic abnormalities of temporoparietal and posterior cingulate hypoperfusion or hypometabolism appear to be present prior to symptom onset. These abnormalities predict progression to AD in the presence of the earliest of symptoms, and are present even in cognitively normal but at-risk subjects, with a severity proportional to the risk status. Even greater predictive ability for progression to AD is obtained by combining measures of perfusion or metabolism with risk factors, tau protein levels, hippocampal N-Acetyl aspartate concentrations, or hippocampal volume measures. (orig.)

  15. Imaging of brain oxygenation with magnetic resonance imaging: A validation with positron emission tomography in the healthy and tumoural brain.

    Science.gov (United States)

    Valable, Samuel; Corroyer-Dulmont, Aurélien; Chakhoyan, Ararat; Durand, Lucile; Toutain, Jérôme; Divoux, Didier; Barré, Louisa; MacKenzie, Eric T; Petit, Edwige; Bernaudin, Myriam; Touzani, Omar; Barbier, Emmanuel L

    2017-07-01

    The partial pressure in oxygen remains challenging to map in the brain. Two main strategies exist to obtain surrogate measures of tissue oxygenation: the tissue saturation studied by magnetic resonance imaging (S t O 2 -MRI) and the identification of hypoxia by a positron emission tomography (PET) biomarker with 3-[ 18 F]fluoro-1-(2-nitro-1-imidazolyl)-2-propanol ([ 18 F]-FMISO) as the leading radiopharmaceutical. Nonetheless, a formal validation of S t O 2 -MRI against FMISO-PET has not been performed. The objective of our studies was to compare the two approaches in (a) the normal rat brain when the rats were submitted to hypoxemia; (b) animals implanted with four tumour types differentiated by their oxygenation. Rats were submitted to normoxic and hypoxemic conditions. For the brain tumour experiments, U87-MG, U251-MG, 9L and C6 glioma cells were orthotopically inoculated in rats. For both experiments, S t O 2 -MRI and [ 18 F]-FMISO PET were performed sequentially. Under hypoxemia conditions, S t O 2 -MRI revealed a decrease in oxygen saturation in the brain. Nonetheless, [ 18 F]-FMISO PET, pimonidazole immunohistochemistry and molecular biology were insensitive to hypoxia. Within the context of tumours, S t O 2 -MRI was able to detect hypoxia in the hypoxic models, mimicking [ 18 F]-FMISO PET with high sensitivity/specificity. Altogether, our data clearly support that, in brain pathologies, S t O 2 -MRI could be a robust and specific imaging biomarker to assess hypoxia.

  16. Semi-automatic Epileptic Hot Spot Detection in ECD brain SPECT images

    Science.gov (United States)

    Papp, Laszlo; Zuhayra, Maaz; Henze, Eberhard

    A method is proposed to process ECD brain SPECT images representing epileptic hot spots inside the brain. For validation 35 ictal —interictal patient image data were processed. The images were registered by a normalized mutual information method, then the separation of the suspicious and normal brain areas were performed by two threshold-based segmentations. Normalization between the images was performed by local normal brain mean values. Based on the validation made by two medical physicians, minimal human intervention in the segmentation parameters was necessary to detect all epileptic spots and minimize the number of false spots inside the brain.

  17. Intraoperative fluorescence imaging for personalized brain tumor resection: Current state and future directions

    Directory of Open Access Journals (Sweden)

    Evgenii Belykh

    2016-10-01

    Full Text Available Introduction: Fluorescence-guided surgery is one of the rapidly emerging methods of surgical theranostics. In this review, we summarize current fluorescence techniques used in neurosurgical practice for brain tumor patients, as well as future applications of recent laboratory and translational studies.Methods: Review of the literature.Results: A wide spectrum of fluorophores that have been tested for brain surgery is reviewed. Beginning with a fluorescein sodium application in 1948 by Moore, fluorescence guided brain tumor surgery is either routinely applied in some centers or is under active study in clinical trials. Besides the trinity of commonly used drugs (fluorescein sodium, 5-ALA and ICG, less studied fluorescent stains, such as tetracyclines, cancer-selective alkylphosphocholine analogs, cresyl violet, acridine orange, and acriflavine can be used for rapid tumor detection and pathological tissue examination. Other emerging agents such as activity-based probes and targeted molecular probes that can provide biomolecular specificity for surgical visualization and treatment are reviewed. Furthermore, we review available engineering and optical solutions for fluorescent surgical visualization. Instruments for fluorescent-guided surgery are divided into wide-field imaging systems and hand-held probes. Recent advancements in quantitative fluorescence-guided surgery are discussed.Conclusion: We are standing on the doorstep of the era of marker-assisted tumor management. Innovations in the fields of surgical optics, computer image analysis, and molecular bioengineering are advancing fluorescence-guided tumor resection paradigms, leading to cell-level approaches to visualization and resection of brain tumors.

  18. Image encryption using a synchronous permutation-diffusion technique

    Science.gov (United States)

    Enayatifar, Rasul; Abdullah, Abdul Hanan; Isnin, Ismail Fauzi; Altameem, Ayman; Lee, Malrey

    2017-03-01

    In the past decade, the interest on digital images security has been increased among scientists. A synchronous permutation and diffusion technique is designed in order to protect gray-level image content while sending it through internet. To implement the proposed method, two-dimensional plain-image is converted to one dimension. Afterward, in order to reduce the sending process time, permutation and diffusion steps for any pixel are performed in the same time. The permutation step uses chaotic map and deoxyribonucleic acid (DNA) to permute a pixel, while diffusion employs DNA sequence and DNA operator to encrypt the pixel. Experimental results and extensive security analyses have been conducted to demonstrate the feasibility and validity of this proposed image encryption method.

  19. A Robust Time Efficient Watermarking Technique for Stereo Images

    Directory of Open Access Journals (Sweden)

    M. A. Abdou

    2015-01-01

    Full Text Available Stereoscopic and multiview imaging techniques are used for reproducing a natural or real world scene. However, the fact that more information is displayed requires supporting technologies to ensure the storage and transmission of the sequences. Beyond these supports comes watermarking as a desirable alternative solution for copyright protection of stereo images and videos. This paper introduces a watermarking method applied to stereo images in wavelet domain. This method uses a particle swarm optimization (PSO evolutionary computation method. The aim is to solve computational complexity problems as well as satisfy an execution time that complies with normal PCs or smart phones processors. Robustness against image attacks is tested, and results are shown.

  20. Quantitative Image Analysis Techniques with High-Speed Schlieren Photography

    Science.gov (United States)

    Pollard, Victoria J.; Herron, Andrew J.

    2017-01-01

    Optical flow visualization techniques such as schlieren and shadowgraph photography are essential to understanding fluid flow when interpreting acquired wind tunnel test data. Output of the standard implementations of these visualization techniques in test facilities are often limited only to qualitative interpretation of the resulting images. Although various quantitative optical techniques have been developed, these techniques often require special equipment or are focused on obtaining very precise and accurate data about the visualized flow. These systems are not practical in small, production wind tunnel test facilities. However, high-speed photography capability has become a common upgrade to many test facilities in order to better capture images of unsteady flow phenomena such as oscillating shocks and flow separation. This paper describes novel techniques utilized by the authors to analyze captured high-speed schlieren and shadowgraph imagery from wind tunnel testing for quantification of observed unsteady flow frequency content. Such techniques have applications in parametric geometry studies and in small facilities where more specialized equipment may not be available.

  1. Meat quality evaluation by hyperspectral imaging technique: an overview.

    Science.gov (United States)

    Elmasry, Gamal; Barbin, Douglas F; Sun, Da-Wen; Allen, Paul

    2012-01-01

    During the last two decades, a number of methods have been developed to objectively measure meat quality attributes. Hyperspectral imaging technique as one of these methods has been regarded as a smart and promising analytical tool for analyses conducted in research and industries. Recently there has been a renewed interest in using hyperspectral imaging in quality evaluation of different food products. The main inducement for developing the hyperspectral imaging system is to integrate both spectroscopy and imaging techniques in one system to make direct identification of different components and their spatial distribution in the tested product. By combining spatial and spectral details together, hyperspectral imaging has proved to be a promising technology for objective meat quality evaluation. The literature presented in this paper clearly reveals that hyperspectral imaging approaches have a huge potential for gaining rapid information about the chemical structure and related physical properties of all types of meat. In addition to its ability for effectively quantifying and characterizing quality attributes of some important visual features of meat such as color, quality grade, marbling, maturity, and texture, it is able to measure multiple chemical constituents simultaneously without monotonous sample preparation. Although this technology has not yet been sufficiently exploited in meat process and quality assessment, its potential is promising. Developing a quality evaluation system based on hyperspectral imaging technology to assess the meat quality parameters and to ensure its authentication would bring economical benefits to the meat industry by increasing consumer confidence in the quality of the meat products. This paper provides a detailed overview of the recently developed approaches and latest research efforts exerted in hyperspectral imaging technology developed for evaluating the quality of different meat products and the possibility of its widespread

  2. Level set method coupled with Energy Image features for brain MR image segmentation.

    Science.gov (United States)

    Punga, Mirela Visan; Gaurav, Rahul; Moraru, Luminita

    2014-06-01

    Up until now, the noise and intensity inhomogeneity are considered one of the major drawbacks in the field of brain magnetic resonance (MR) image segmentation. This paper introduces the energy image feature approach for intensity inhomogeneity correction. Our approach of segmentation takes the advantage of image features and preserves the advantages of the level set methods in region-based active contours framework. The energy image feature represents a new image obtained from the original image when the pixels' values are replaced by local energy values computed in the 3×3 mask size. The performance and utility of the energy image features were tested and compared through two different variants of level set methods: one as the encompassed local and global intensity fitting method and the other as the selective binary and Gaussian filtering regularized level set method. The reported results demonstrate the flexibility of the energy image feature to adapt to level set segmentation framework and to perform the challenging task of brain lesion segmentation in a rather robust way.

  3. Features of magnetic resonance imaging brain in eclampsia: clinicoradiologic correlation

    Directory of Open Access Journals (Sweden)

    Mubarak F

    2012-08-01

    Full Text Available Fatima Mubarak, Muhammad Idris, Quratulain HadiDepartment of Radiology, Aga Khan University Hospital, Karachi, PakistanObjective: Eclampsia is a gestational hypertensive condition that typically occurs after 20 weeks of pregnancy and is characterized by hypertension, peripheral edema, proteinuria, and seizures. Magnetic resonance imaging (MRI plays a vital role in the diagnosis and management of these patients, so it is essential to describe features of the brain MRI in these cases.Methods: MRI was performed on eleven consecutive patients with eclampsia. All patients underwent follow-up neurologic examinations until all symptoms resolved. Nine of those eleven patients underwent follow-up MRI. The clinical signs and symptoms were correlated with findings on initial and follow-up MRI.Results: MRI typically demonstrated bilateral hyperintense lesions on T2-weighted images and hypointense lesions on T1-weighted images without diffusion restriction. MRI abnormalities are most commonly located in the distribution of the posterior cerebral circulation mainly in occipital and parietal lobes, and are associated with visual disturbances and dizziness. Almost all lesions seen at MRI in patients with eclampsia were reversible in our series of patients.Conclusion: Involvement of the parietal and occipital lobes is common in patients with eclampsia, and the signal abnormalities on MRI are reversible if recognized and treated early.Keywords: pregnancy, seizures, hypertension, brain, MRI findings, reversible

  4. Evaluation of electrode position in deep brain stimulation by image fusion (MRI and CT)

    Energy Technology Data Exchange (ETDEWEB)

    Barnaure, I.; Lovblad, K.O.; Vargas, M.I. [Geneva University Hospital, Department of Neuroradiology, Geneva 14 (Switzerland); Pollak, P.; Horvath, J.; Boex, C.; Burkhard, P. [Geneva University Hospital, Department of Neurology, Geneva (Switzerland); Momjian, S. [Geneva University Hospital, Department of Neurosurgery, Geneva (Switzerland); Remuinan, J. [Geneva University Hospital, Department of Radiology, Geneva (Switzerland)

    2015-09-15

    Imaging has an essential role in the evaluation of correct positioning of electrodes implanted for deep brain stimulation (DBS). Although MRI offers superior anatomic visualization of target sites, there are safety concerns in patients with implanted material; imaging guidelines are inconsistent and vary. The fusion of postoperative CT with preoperative MRI images can be an alternative for the assessment of electrode positioning. The purpose of this study was to assess the accuracy of measurements realized on fused images (acquired without a stereotactic frame) using a manufacturer-provided software. Data from 23 Parkinson's disease patients who underwent bilateral electrode placement for subthalamic nucleus (STN) DBS were acquired. Preoperative high-resolution T2-weighted sequences at 3 T, and postoperative CT series were fused using a commercially available software. Electrode tip position was measured on the obtained images in three directions (in relation to the midline, the AC-PC line and an AC-PC line orthogonal, respectively) and assessed in relation to measures realized on postoperative 3D T1 images acquired at 1.5 T. Mean differences between measures carried out on fused images and on postoperative MRI lay between 0.17 and 0.97 mm. Fusion of CT and MRI images provides a safe and fast technique for postoperative assessment of electrode position in DBS. (orig.)

  5. Wavelet-based image registration technique for high-resolution remote sensing images

    Science.gov (United States)

    Hong, Gang; Zhang, Yun

    2008-12-01

    Image registration is the process of geometrically aligning one image to another image of the same scene taken from different viewpoints at different times or by different sensors. It is an important image processing procedure in remote sensing and has been studied by remote sensing image processing professionals for several decades. Nevertheless, it is still difficult to find an accurate, robust, and automatic image registration method, and most existing image registration methods are designed for a particular application. High-resolution remote sensing images have made it more convenient for professionals to study the Earth; however, they also create new challenges when traditional processing methods are used. In terms of image registration, a number of problems exist in the registration of high-resolution images: (1) the increased relief displacements, introduced by increasing the spatial resolution and lowering the altitude of the sensors, cause obvious geometric distortion in local areas where elevation variation exists; (2) precisely locating control points in high-resolution images is not as simple as in moderate-resolution images; (3) a large number of control points are required for a precise registration, which is a tedious and time-consuming process; and (4) high data volume often affects the processing speed in the image registration. Thus, the demand for an image registration approach that can reduce the above problems is growing. This study proposes a new image registration technique, which is based on the combination of feature-based matching (FBM) and area-based matching (ABM). A wavelet-based feature extraction technique and a normalized cross-correlation matching and relaxation-based image matching techniques are employed in this new method. Two pairs of data sets, one pair of IKONOS panchromatic images from different times and the other pair of images consisting of an IKONOS panchromatic image and a QuickBird multispectral image, are used to

  6. Segmentation of brain tumor images using in vivo spectroscopy, relaxometry and diffusometry by magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Martin L, M. [Universidad Central de Venezuela, A.P. 47586, Caracas 1041-A (Venezuela)

    2006-07-01

    A new methodology is developed for the segmentation of brain tumor images using information obtained by different magnetic resonance techniques such as in vivo spectroscopy, relaxometry and diffusometry. In vivo spectroscopy is used as a sort of virtual biopsy to characterize the different tissue types present in the lesion (active tumor, necrotic tissue or edema and normal or non-affected tissue). Due to the fact that in vivo spectroscopy information lacks the spatial resolution for treatment considerations, this information has to be combined or fused with images obtained by relaxometry and diffusometry with excellent spatial resolution. Some segmentation schemes are presented and discussed, using the high spatial resolution techniques individually or combined. The results show that segmentation done in this way is highly reliable for the application of future therapies such as radiosurgery or radiotherapy. (Author)

  7. Using human brain imaging studies as a guide towards animal models of schizophrenia

    Science.gov (United States)

    BOLKAN, Scott S.; DE CARVALHO, Fernanda D.; KELLENDONK, Christoph

    2015-01-01

    Schizophrenia is a heterogeneous and poorly understood mental disorder that is presently defined solely by its behavioral symptoms. Advances in genetic, epidemiological and brain imaging techniques in the past half century, however, have significantly advanced our understanding of the underlying biology of the disorder. In spite of these advances clinical research remains limited in its power to establish the causal relationships that link etiology with pathophysiology and symptoms. In this context, animal models provide an important tool for causally testing hypotheses about biological processes postulated to be disrupted in the disorder. While animal models can exploit a variety of entry points towards the study of schizophrenia, here we describe an approach that seeks to closely approximate functional alterations observed with brain imaging techniques in patients. By modeling these intermediate pathophysiological alterations in animals, this approach offers an opportunity to (1) tightly link a single functional brain abnormality with its behavioral consequences, and (2) to determine whether a single pathophysiology can causally produce alterations in other brain areas that have been described in patients. In this review we first summarize a selection of well-replicated biological abnormalities described in the schizophrenia literature. We then provide examples of animal models that were studied in the context of patient imaging findings describing enhanced striatal dopamine D2 receptor function, alterations in thalamo-prefrontal circuit function, and metabolic hyperfunction of the hippocampus. Lastly, we discuss the implications of findings from these animal models for our present understanding of schizophrenia, and consider key unanswered questions for future research in animal models and human patients. PMID:26037801

  8. Applicability of three-dimensional imaging techniques in fetal medicine

    Energy Technology Data Exchange (ETDEWEB)

    Werner Junior, Heron; Daltro, Pedro; Gasparetto, Emerson Leandro, E-mail: heronwerner@hotmail.com [Clinica de Diagnostico Por Imagem (CDPI), Rio de Janeiro, RJ (Brazil); Santos, Jorge Lopes dos; Belmonte, Simone; Ribeiro, Gerson [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil); Marchiori, Edson [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2016-09-15

    Objective: To generate physical models of fetuses from images obtained with three-dimensional ultrasound (3D-US), magnetic resonance imaging (MRI), and, occasionally, computed tomography (CT), in order to guide additive manufacturing technology. Materials and Methods: We used 3D-US images of 31 pregnant women, including 5 who were carrying twins. If abnormalities were detected by 3D-US, both MRI and in some cases CT scans were then immediately performed. The images were then exported to a workstation in DICOM format. A single observer performed slice-by-slice manual segmentation using a digital high resolution screen. Virtual 3D models were obtained from software that converts medical images into numerical models. Those models were then generated in physical form through the use of additive manufacturing techniques. Results: Physical models based upon 3D-US, MRI, and CT images were successfully generated. The postnatal appearance of either the aborted fetus or the neonate closely resembled the physical models, particularly in cases of malformations. Conclusion: The combined use of 3D-US, MRI, and CT could help improve our understanding of fetal anatomy. These three screening modalities can be used for educational purposes and as tools to enable parents to visualize their unborn baby. The images can be segmented and then applied, separately or jointly, in order to construct virtual and physical 3D models. (author)

  9. Target detection and recognition techniques of line imaging ladar sensor

    Science.gov (United States)

    Sun, Zhi-hui; Deng, Jia-hao; Yan, Xiao-wei

    2009-07-01

    A line imaging ladar sensor using linear diode laser array and linear avalanche photodiode (APD) array is developed for precise terminal guidance and intelligent proximity fuzing applications. The detection principle of line imaging ladar is discussed in detail, and design method of the line imaging ladar sensor system is given. Taking military tank target as example, simulated tank height and intensity images are obtained by the line imaging ladar simulation system. The subsystems of line imaging ladar sensor including transmitter and receiver are designed. Multi-pulse coherent algorithm and correlation detection method are adopted to improve the SNR of echo and to estimate time-of-flight, respectively. Experiment results show that the power SNR can be improved by N (number of coherent average) times and the maximum range error is 0.25 m. A few of joint transform correlation (JTC) techniques are discussed to improve noncooperative target recognition capability in height image with complex background. Simulation results show that binary JTC, non-zero-order modified fringe-adjusted JTC and non-zero-order amplitude-modulated JTC can improve the target recognition performance effectively.

  10. Deep into the Brain: Artificial Intelligence in Stroke Imaging.

    Science.gov (United States)

    Lee, Eun-Jae; Kim, Yong-Hwan; Kim, Namkug; Kang, Dong-Wha

    2017-09-01

    Artificial intelligence (AI), a computer system aiming to mimic human intelligence, is gaining increasing interest and is being incorporated into many fields, including medicine. Stroke medicine is one such area of application of AI, for improving the accuracy of diagnosis and the quality of patient care. For stroke management, adequate analysis of stroke imaging is crucial. Recently, AI techniques have been applied to decipher the data from stroke imaging and have demonstrated some promising results. In the very near future, such AI techniques may play a pivotal role in determining the therapeutic methods and predicting the prognosis for stroke patients in an individualized manner. In this review, we offer a glimpse at the use of AI in stroke imaging, specifically focusing on its technical principles, clinical application, and future perspectives.

  11. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... the same effect. A very irregular heartbeat may affect the quality of images obtained using techniques that ... Brain Tumor Treatment Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain Tumors Images related to ...

  12. Field in field technique in two-dimensional planning for whole brain irradiation; Tecnica field in field em planejamentos bidimensionais para irradiacao de cerebro total

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A.L.S.; Campos, T.P.R., E-mail: radioterapia.andre@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Departamento de Engenharia Nuclear

    2016-11-01

    Radiotherapy is the most used clinical method used for brain metastases treatment, the most frequent secondary tumors provided by breast, lung and melanomas as primary origin. The protocols often use high daily doses and, depending on the irradiation technique there is high probability of complications in health tissues. In order to minimize adverse effects, it is important the dosimetric analysis of three-dimensional radiotherapy planning through tomographic images or, concerning to the 2D simulations, by the application of techniques that optimize dose distribution by increasing the homogeneity. The study aimed to compare the 2D and 3D conformal planning for total brain irradiation in a individual equivalent situation and evaluate the progress of these planning applying the field in field technique. The methodology consisted of simulating a two-dimensional planning, reproduce it on a set of tomographic images and compare it with the conformal plan for two fields and four fields (field in field). The results showed no significant difference between 2D and 3D planning for whole brain irradiation, and the field in field technique significantly improved the dose distribution in brain volume compared with two fields for the proposal situation. As conclusion, the two-dimensional plane for the four fields described was viable for whole brain irradiation in the treatment of brain metastases at the proposal situation. (author)

  13. Fast high resolution whole brain T2* weighted imaging using echo planar imaging at 7T.

    Science.gov (United States)

    Zwanenburg, Jaco J M; Versluis, Maarten J; Luijten, Peter R; Petridou, Natalia

    2011-06-15

    Magnetic susceptibility based (T(2)* weighted) contrast in MRI at high magnetic field strength is of great value in research on brain structure and cortical architecture, but its use is hampered by the low signal-to-noise ratio (SNR) efficiency of the conventional spoiled gradient echo sequence (GRE) leading to long scan times even for a limited number of slices. In this work, we show that high resolution (0.5mm isotropic) T(2)* weighted images of the whole brain can be obtained in 6min by utilizing the high SNR efficiency of echo-planar imaging (EPI). A volumetric (3D) EPI protocol is presented and compared to conventional 3D GRE images acquired with the same resolution, amount of T(2)* weighting, and imaging duration. Spatial coverage in 3D EPI was increased by a factor of 4.5 compared to 3D GRE, while also the SNR was increased by a factor of 2. Image contrast for both magnitude and phase between gray and white matter was similar for both sequences, with enhanced conspicuity of anatomic details in the 3D EPI images due to the increased SNR. Even at 7T, image blurring and distortion is limited if the EPI train length remains short (not longer than the T(2)* of the imaged tissue). 3D EPI provides steps (speed, whole brain coverage, and high isotropic resolution) that are necessary to utilize the benefits of high field MRI in research that employs T(2)* weighted imaging. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Comparison of sonochemiluminescence images using image analysis techniques and identification of acoustic pressure fields via simulation.

    Science.gov (United States)

    Tiong, T Joyce; Chandesa, Tissa; Yap, Yeow Hong

    2017-05-01

    One common method to determine the existence of cavitational activity in power ultrasonics systems is by capturing images of sonoluminescence (SL) or sonochemiluminescence (SCL) in a dark environment. Conventionally, the light emitted from SL or SCL was detected based on the number of photons. Though this method is effective, it could not identify the sonochemical zones of an ultrasonic systems. SL/SCL images, on the other hand, enable identification of 'active' sonochemical zones. However, these images often provide just qualitative data as the harvesting of light intensity data from the images is tedious and require high resolution images. In this work, we propose a new image analysis technique using pseudo-colouring images to quantify the SCL zones based on the intensities of the SCL images and followed by comparison of the active SCL zones with COMSOL simulated acoustic pressure zones. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Imaging experimental cerebral malaria in vivo: significant role of ischemic brain edema.

    Science.gov (United States)

    Penet, Marie-France; Viola, Angèle; Confort-Gouny, Sylviane; Le Fur, Yann; Duhamel, Guillaume; Kober, Frank; Ibarrola, Danielle; Izquierdo, Marguerite; Coltel, Nicolas; Gharib, Bouchra; Grau, Georges E; Cozzone, Patrick J

    2005-08-10

    The first in vivo magnetic resonance study of experimental cerebral malaria is presented. Cerebral involvement is a lethal complication of malaria. To explore the brain of susceptible mice infected with Plasmodium berghei ANKA, multimodal magnetic resonance techniques were applied (imaging, diffusion, perfusion, angiography, spectroscopy). They reveal vascular damage including blood-brain barrier disruption and hemorrhages attributable to inflammatory processes. We provide the first in vivo demonstration for blood-brain barrier breakdown in cerebral malaria. Major edema formation as well as reduced brain perfusion was detected and is accompanied by an ischemic metabolic profile with reduction of high-energy phosphates and elevated brain lactate. In addition, angiography supplies compelling evidence for major hemodynamics dysfunction. Actually, edema further worsens ischemia by compressing cerebral arteries, which subsequently leads to a collapse of the blood flow that ultimately represents the cause of death. These findings demonstrate the coexistence of inflammatory and ischemic lesions and prove the preponderant role of edema in the fatal outcome of experimental cerebral malaria. They improve our understanding of the pathogenesis of cerebral malaria and may provide the necessary noninvasive surrogate markers for quantitative monitoring of treatment.

  16. Assessment of banana fruit maturity by image processing technique.

    Science.gov (United States)

    Surya Prabha, D; Satheesh Kumar, J

    2015-03-01

    Maturity stage of fresh banana fruit is an important factor that affects the fruit quality during ripening and marketability after ripening. The ability to identify maturity of fresh banana fruit will be a great support for farmers to optimize harvesting phase which helps to avoid harvesting either under-matured or over-matured banana. This study attempted to use image processing technique to detect the maturity stage of fresh banana fruit by its color and size value of their images precisely. A total of 120 images comprising 40 images from each stage such as under-mature, mature and over-mature were used for developing algorithm and accuracy prediction. The mean color intensity from histogram; area, perimeter, major axis length and minor axis length from the size values, were extracted from the calibration images. Analysis of variance between each maturity stage on these features indicated that the mean color intensity and area features were more significant in predicting the maturity of banana fruit. Hence, two classifier algorithms namely, mean color intensity algorithm and area algorithm were developed and their accuracy on maturity detection was assessed. The mean color intensity algorithm showed 99.1 % accuracy in classifying the banana fruit maturity. The area algorithm classified the under-mature fruit at 85 % accuracy. Hence the maturity assessment technique proposed in this paper could be used commercially to develop a field based complete automatic detection system to take decision on the right time of harvest by the banana growers.

  17. Framingham coronary heart disease risk score can be predicted from structural brain images in elderly subjects.

    Directory of Open Access Journals (Sweden)

    Jane Maryam Rondina

    2014-12-01

    Full Text Available Recent literature has presented evidence that cardiovascular risk factors (CVRF play an important role on cognitive performance in elderly individuals, both those who are asymptomatic and those who suffer from symptoms of neurodegenerative disorders. Findings from studies applying neuroimaging methods have increasingly reinforced such notion. Studies addressing the impact of CVRF on brain anatomy changes have gained increasing importance, as recent papers have reported gray matter loss predominantly in regions traditionally affected in Alzheimer’s disease (AD and vascular dementia in the presence of a high degree of cardiovascular risk. In the present paper, we explore the association between CVRF and brain changes using pattern recognition techniques applied to structural MRI and the Framingham score (a composite measure of cardiovascular risk largely used in epidemiological studies in a sample of healthy elderly individuals. We aim to answer the following questions: Is it possible to decode (i.e., to learn information regarding cardiovascular risk from structural brain images enabling individual predictions? Among clinical measures comprising the Framingham score, are there particular risk factors that stand as more predictable from patterns of brain changes? Our main findings are threefold: i we verified that structural changes in spatially distributed patterns in the brain enable statistically significant prediction of Framingham scores. This result is still significant when controlling for the presence of the APOE 4 allele (an important genetic risk factor for both AD and cardiovascular disease. ii When considering each risk factor singly, we found different levels of correlation between real and predicted factors; however, single factors were not significantly predictable from brain images when considering APOE4 allele presence as covariate. iii We found important gender differences, and the possible causes of that finding are discussed.

  18. Amide proton transfer imaging in clinics: Basic concepts and current and future use in brain tumors and stoke

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Jahng, Geon Ho [Dept. of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Jeong, Ha Kyu [Philips Korea, Seoul (Korea, Republic of)

    2016-12-15

    Amide proton transfer (APT) imaging is gaining attention as a relatively new in vivo molecular imaging technique that has higher sensitivity and spatial resolution than magnetic resonance spectroscopy imaging. APT imaging is a subset of the chemical exchange saturation transfer mechanism, which can offer unique image contrast by selectively saturating protons in target molecules that get exchanged with protons in bulk water. In this review, we describe the basic concepts of APT imaging, particularly with regard to the benefit in clinics from the current literature. Clinical applications of APT imaging are described from two perspectives: in the diagnosis and monitoring of the treatment response in brain glioma by reflecting endogenous mobile proteins and peptides, and in the potential for stroke imaging with respect to tissue acidity.

  19. Imaging of inflammation by PET, conventional scintigraphy, and other imaging techniques.

    NARCIS (Netherlands)

    Gotthardt, M.; Bleeker-Rovers, C.P.; Boerman, O.C.; Oyen, W.J.G.

    2010-01-01

    Nuclear medicine imaging procedures play an important role in the assessment of inflammatory diseases. With the advent of 3-dimensional anatomic imaging, there has been a tendency to replace traditional planar scintigraphy by CT or MRI. Furthermore, scintigraphic techniques may have to be combined

  20. Imaging of Inflammation by PET, Conventional Scintigraphy, and Other Imaging Techniques

    NARCIS (Netherlands)

    Gotthardt, M.; Bleeker-Rovers, C.P.; Boerman, O.C.; Oyen, W.J.G.

    2013-01-01

    Nuclear medicine imaging procedures play an important role in the assessment of inflammatory diseases. With the advent of 3-dimensional anatomic imaging, there has been a tendency to replace traditional planar scintigraphy by CT or MRI. Furthermore, scintigraphic techniques may have to be combined

  1. Scene correction (precision techniques) of ERTS sensor data using digital image processing techniques

    Science.gov (United States)

    Bernstein, R.

    1974-01-01

    Techniques have been developed, implemented, and evaluated to process ERTS Return Beam Vidicon (RBV) and Multispectral Scanner (MSS) sensor data using digital image processing techniques. The RBV radiometry has been corrected to remove shading effects, and the MSS geometry and radiometry have been corrected to remove internal and external radiometric and geometric errors. The results achieved show that geometric mappin