WorldWideScience

Sample records for brain imaging techniques

  1. Image Processing Technique for Brain Abnormality Detection

    Directory of Open Access Journals (Sweden)

    Ashraf Anwar

    2013-02-01

    Full Text Available Medical imaging is expensive and very much sophisticated because of proprietary software and expert personalities. This paper introduces an inexpensive, user friendly general-purpose image processing tool and visualization program specifically designed in MATLAB to detect much of the brain disorders as early as possible. The application provides clinical and quantitative analysis of medical images. Minute structural difference of brain gradually results in major disorders such as schizophrenia, Epilepsy, inherited speech and language disorder, Alzheimer's dementia etc. Here the main focusing is given to diagnose the disease related to the brain and its psychic nature (Alzheimer’s disease.

  2. Unsupervised Neural Techniques Applied to MR Brain Image Segmentation

    Directory of Open Access Journals (Sweden)

    A. Ortiz

    2012-01-01

    Full Text Available The primary goal of brain image segmentation is to partition a given brain image into different regions representing anatomical structures. Magnetic resonance image (MRI segmentation is especially interesting, since accurate segmentation in white matter, grey matter and cerebrospinal fluid provides a way to identify many brain disorders such as dementia, schizophrenia or Alzheimer’s disease (AD. Then, image segmentation results in a very interesting tool for neuroanatomical analyses. In this paper we show three alternatives to MR brain image segmentation algorithms, with the Self-Organizing Map (SOM as the core of the algorithms. The procedures devised do not use any a priori knowledge about voxel class assignment, and results in fully-unsupervised methods for MRI segmentation, making it possible to automatically discover different tissue classes. Our algorithm has been tested using the images from the Internet Brain Image Repository (IBSR outperforming existing methods, providing values for the average overlap metric of 0.7 for the white and grey matter and 0.45 for the cerebrospinal fluid. Furthermore, it also provides good results for high-resolution MR images provided by the Nuclear Medicine Service of the “Virgen de las Nieves” Hospital (Granada, Spain.

  3. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    Science.gov (United States)

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  4. Visualizing the blind brain: brain imaging of visual field defects from early recovery to rehabilitation techniques.

    Science.gov (United States)

    Urbanski, Marika; Coubard, Olivier A; Bourlon, Clémence

    2014-01-01

    Visual field defects (VFDs) are one of the most common consequences observed after brain injury, especially after a stroke in the posterior cerebral artery territory. Less frequently, tumors, traumatic brain injury, brain surgery or demyelination can also determine various visual disabilities, from a decrease in visual acuity to cerebral blindness. Visual field defects is a factor of bad functional prognosis as it compromises many daily life activities (e.g., obstacle avoidance, driving, and reading) and therefore the patient's quality of life. Spontaneous recovery seems to be limited and restricted to the first 6 months, with the best chance of improvement at 1 month. The possible mechanisms at work could be partly due to cortical reorganization in the visual areas (plasticity) and/or partly to the use of intact alternative visual routes, first identified in animal studies and possibly underlying the phenomenon of blindsight. Despite processes of early recovery, which is rarely complete, and learning of compensatory strategies, the patient's autonomy may still be compromised at more chronic stages. Therefore, various rehabilitation therapies based on neuroanatomical knowledge have been developed to improve VFDs. These use eye-movement training techniques (e.g., visual search, saccadic eye movements), reading training, visual field restitution (the Vision Restoration Therapy, VRT), or perceptual learning. In this review, we will focus on studies of human adults with acquired VFDs, which have used different imaging techniques (Positron Emission Tomography, PET; Diffusion Tensor Imaging, DTI; functional Magnetic Resonance Imaging, fMRI; Magneto Encephalography, MEG) or neurostimulation techniques (Transcranial Magnetic Stimulation, TMS; transcranial Direct Current Stimulation, tDCS) to show brain activations in the course of spontaneous recovery or after specific rehabilitation techniques.

  5. Visualizing the blind brain: brain imaging of visual field defects from early recovery to rehabilitation techniques

    Directory of Open Access Journals (Sweden)

    Marika eUrbanski

    2014-09-01

    Full Text Available Visual field defects (VFDs are one of the most common consequences observed after brain injury, especially after a stroke in the posterior cerebral artery territory. Less frequently, tumours, traumatic brain injury, brain surgery or demyelination can also determine various visual disabilities, from a decrease in visual acuity to cerebral blindness. VFD is a factor of bad functional prognosis as it compromises many daily life activities (e.g., obstacle avoidance, driving, and reading and therefore the patient’s quality of life. Spontaneous recovery seems to be limited and restricted to the first six months, with the best chance of improvement at one month. The possible mechanisms at work could be partly due to cortical reorganization in the visual areas (plasticity and/or partly to the use of intact alternative visual routes, first identified in animal studies and possibly underlying the phenomenon of blindsight. Despite processes of early recovery, which is rarely complete, and learning of compensatory strategies, the patient’s autonomy may still be compromised at more chronic stages. Therefore, various rehabilitation therapies based on neuroanatomical knowledge have been developed to improve VFDs. These use eye-movement training techniques (e.g., visual search, saccadic eye movements, reading training, visual field restitution (the Vision Restoration Therapy, VRT, or perceptual learning. In this review, we will focus on studies of human adults with acquired VFDs, which have used different imaging techniques (Positron Emission Tomography: PET, Diffusion Tensor Imaging: DTI, functional Magnetic Resonance Imaging: fMRI, MagnetoEncephalography: MEG or neurostimulation techniques (Transcranial Magnetic Stimulation: TMS; transcranial Direct Current Stimulation, tDCS to show brain activations in the course of spontaneous recovery or after specific rehabilitation techniques.

  6. An Improved Image Mining Technique For Brain Tumour Classification Using Efficient Classifier

    CERN Document Server

    Rajendran, P

    2010-01-01

    An improved image mining technique for brain tumor classification using pruned association rule with MARI algorithm is presented in this paper. The method proposed makes use of association rule mining technique to classify the CT scan brain images into three categories namely normal, benign and malign. It combines the low level features extracted from images and high level knowledge from specialists. The developed algorithm can assist the physicians for efficient classification with multiple keywords per image to improve the accuracy. The experimental result on prediagnosed database of brain images showed 96 percent and 93 percent sensitivity and accuracy respectively.

  7. Advanced techniques in magnetic resonance imaging of the brain in children with ADHD

    Energy Technology Data Exchange (ETDEWEB)

    Pastura, Giuseppe, E-mail: giuseppe.pastura@terra.com.b [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Pediatria; Mattos, Paulo [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Psiquiatria; Gasparetto, Emerson Leandro [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Radiologia; Araujo, Alexandra Prufer de Queiroz Campos [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Neuropediatria

    2011-04-15

    Attention deficit hyperactivity disorder (ADHD) affects about 5% of school-aged child. Previous published works using different techniques of magnetic resonance imaging (MRI) have demonstrated that there may be some differences between the brain of people with and without this condition. This review aims at providing neurologists, pediatricians and psychiatrists an update on the differences between the brain of children with and without ADHD using advanced techniques of magnetic resonance imaging such as diffusion tensor imaging, brain volumetry and cortical thickness, spectroscopy and functional MRI. Data was obtained by a comprehensive, non-systematic review of medical literature. The regions with a greater number of abnormalities are splenium of the corpus callosum, cingulated gyrus, caudate nucleus, cerebellum, striatum, frontal and temporal cortices. The brain regions where abnormalities are observed in studies of diffusion tensor, volumetry, spectroscopy and cortical thickness are the same involved in neurobiological theories of ADHD coming from studies with functional magnetic resonance imaging. (author)

  8. A Review of Fully Automated Techniques for Brain Tumor Detection From MR Images

    Directory of Open Access Journals (Sweden)

    Anjum Hayat Gondal

    2013-02-01

    Full Text Available Radiologists use medical images to diagnose diseases precisely. However, identification of brain tumor from medical images is still a critical and complicated job for a radiologist. Brain tumor identification form magnetic resonance imaging (MRI consists of several stages. Segmentation is known to be an essential step in medical imaging classification and analysis. Performing the brain MR images segmentation manually is a difficult task as there are several challenges associated with it. Radiologist and medical experts spend plenty of time for manually segmenting brain MR images, and this is a non-repeatable task. In view of this, an automatic segmentation of brain MR images is needed to correctly segment White Matter (WM, Gray Matter (GM and Cerebrospinal Fluid (CSF tissues of brain in a shorter span of time. The accurate segmentation is crucial as otherwise the wrong identification of disease can lead to severe consequences. Taking into account the aforesaid challenges, this research is focused towards highlighting the strengths and limitations of the earlier proposed segmentation techniques discussed in the contemporary literature. Besides summarizing the literature, the paper also provides a critical evaluation of the surveyed literature which reveals new facets of research. However, articulating a new technique is beyond the scope of this paper.

  9. A technique for the deidentification of structural brain MR images

    DEFF Research Database (Denmark)

    Bischoff-Grethe, Amanda; Ozyurt, I Burak; Busa, Evelina;

    2007-01-01

    Due to the increasing need for subject privacy, the ability to deidentify structural MR images so that they do not provide full facial detail is desirable. A program was developed that uses models of nonbrain structures for removing potentially identifying facial features. When a novel image is p...

  10. Magnetic resonance imaging acquisition techniques intended to decrease movement artefact in paediatric brain imaging: a systematic review.

    Science.gov (United States)

    Woodfield, Julie; Kealey, Susan

    2015-08-01

    Attaining paediatric brain images of diagnostic quality can be difficult because of young age or neurological impairment. The use of anaesthesia to reduce movement in MRI increases clinical risk and cost, while CT, though faster, exposes children to potentially harmful ionising radiation. MRI acquisition techniques that aim to decrease movement artefact may allow diagnostic paediatric brain imaging without sedation or anaesthesia. We conducted a systematic review to establish the evidence base for ultra-fast sequences and sequences using oversampling of k-space in paediatric brain MR imaging. Techniques were assessed for imaging time, occurrence of movement artefact, the need for sedation, and either image quality or diagnostic accuracy. We identified 24 relevant studies. We found that ultra-fast techniques had shorter imaging acquisition times compared to standard MRI. Techniques using oversampling of k-space required equal or longer imaging times than standard MRI. Both ultra-fast sequences and those using oversampling of k-space reduced movement artefact compared with standard MRI in unsedated children. Assessment of overall diagnostic accuracy was difficult because of the heterogeneous patient populations, imaging indications, and reporting methods of the studies. In children with shunt-treated hydrocephalus there is evidence that ultra-fast MRI is sufficient for the assessment of ventricular size.

  11. Magnetic resonance imaging acquisition techniques intended to decrease movement artefact in paediatric brain imaging: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Woodfield, Julie [University of Edinburgh, Child Life and Health, Edinburgh (United Kingdom); Kealey, Susan [Western General Hospital, Department of Neuroradiology, Edinburgh (United Kingdom)

    2015-08-15

    Attaining paediatric brain images of diagnostic quality can be difficult because of young age or neurological impairment. The use of anaesthesia to reduce movement in MRI increases clinical risk and cost, while CT, though faster, exposes children to potentially harmful ionising radiation. MRI acquisition techniques that aim to decrease movement artefact may allow diagnostic paediatric brain imaging without sedation or anaesthesia. We conducted a systematic review to establish the evidence base for ultra-fast sequences and sequences using oversampling of k-space in paediatric brain MR imaging. Techniques were assessed for imaging time, occurrence of movement artefact, the need for sedation, and either image quality or diagnostic accuracy. We identified 24 relevant studies. We found that ultra-fast techniques had shorter imaging acquisition times compared to standard MRI. Techniques using oversampling of k-space required equal or longer imaging times than standard MRI. Both ultra-fast sequences and those using oversampling of k-space reduced movement artefact compared with standard MRI in unsedated children. Assessment of overall diagnostic accuracy was difficult because of the heterogeneous patient populations, imaging indications, and reporting methods of the studies. In children with shunt-treated hydrocephalus there is evidence that ultra-fast MRI is sufficient for the assessment of ventricular size. (orig.)

  12. A HYBRID APPROACH BASED SEGMENTATION TECHNIQUE FOR BRAIN TUMOR IN MRI IMAGES

    Directory of Open Access Journals (Sweden)

    D. Anithadevi

    2016-02-01

    Full Text Available Automatic image segmentation becomes very crucial for tumor detection in medical image processing. Manual and semi automatic segmentation techniques require more time and knowledge. However these drawbacks had overcome by automatic segmentation still there needs to develop more appropriate techniques for medical image segmentation. Therefore, we proposed hybrid approach based image segmentation using the combined features of region growing and threshold segmentation technique. It is followed by pre-processing stage to provide an accurate brain tumor extraction by the help of Magnetic Resonance Imaging (MRI. If the tumor has holes in it, the region growing segmentation algorithm can’t reveal but the proposed hybrid segmentation technique can be achieved and the result as well improved. Hence the result used to made assessment with the various performance measures as DICE, Jaccard similarity, accuracy, sensitivity and specificity. These similarity measures have been extensively used for evaluation with the ground truth of each processed image and its results are compared and analyzed.

  13. Imaging evidence and recommendations for traumatic brain injury: conventional neuroimaging techniques.

    Science.gov (United States)

    Wintermark, Max; Sanelli, Pina C; Anzai, Yoshimi; Tsiouris, A John; Whitlow, Christopher T

    2015-02-01

    Imaging plays an essential role in identifying intracranial injury in patients with traumatic brain injury (TBI). The goals of imaging include (1) detecting injuries that may require immediate surgical or procedural intervention, (2) detecting injuries that may benefit from early medical therapy or vigilant neurologic supervision, and (3) determining the prognosis of patients to tailor rehabilitative therapy or help with family counseling and discharge planning. In this article, the authors perform a review of the evidence on the utility of various imaging techniques in patients presenting with TBI to provide guidance for evidence-based, clinical imaging protocols. The intent of this article is to suggest practical imaging recommendations for patients presenting with TBI across different practice settings and to simultaneously provide the rationale and background evidence supporting their use. These recommendations should ultimately assist referring physicians faced with the task of ordering appropriate imaging tests in particular patients with TBI for whom they are providing care. These recommendations should also help radiologists advise their clinical colleagues on appropriate imaging utilization for patients with TBI.

  14. Robust biological parametric mapping: an improved technique for multimodal brain image analysis

    Science.gov (United States)

    Yang, Xue; Beason-Held, Lori; Resnick, Susan M.; Landman, Bennett A.

    2011-03-01

    Mapping the quantitative relationship between structure and function in the human brain is an important and challenging problem. Numerous volumetric, surface, region of interest and voxelwise image processing techniques have been developed to statistically assess potential correlations between imaging and non-imaging metrics. Recently, biological parametric mapping has extended the widely popular statistical parametric approach to enable application of the general linear model to multiple image modalities (both for regressors and regressands) along with scalar valued observations. This approach offers great promise for direct, voxelwise assessment of structural and functional relationships with multiple imaging modalities. However, as presented, the biological parametric mapping approach is not robust to outliers and may lead to invalid inferences (e.g., artifactual low p-values) due to slight mis-registration or variation in anatomy between subjects. To enable widespread application of this approach, we introduce robust regression and robust inference in the neuroimaging context of application of the general linear model. Through simulation and empirical studies, we demonstrate that our robust approach reduces sensitivity to outliers without substantial degradation in power. The robust approach and associated software package provides a reliable way to quantitatively assess voxelwise correlations between structural and functional neuroimaging modalities.

  15. Human brain imaging

    International Nuclear Information System (INIS)

    Just as there have been dramatic advances in the molecular biology of the human brain in recent years, there also have been remarkable advances in brain imaging. This paper reports on the development and broad application of microscopic imaging techniques which include the autoradiographic localization of receptors and the measurement of glucose utilization by autoradiography. These approaches provide great sensitivity and excellent anatomical resolution in exploring brain organization and function. The first noninvasive external imaging of receptor distributions in the living human brain was achieved by positron emission tomography (PET) scanning. Developments, techniques and applications continue to progress. Magnetic resonance imaging (MRI) is also becoming important. Its initial clinical applications were in examining the structure and anatomy of the brain. However, more recent uses, such as MRI spectroscopy, indicate the feasibility of exploring biochemical pathways in the brain, the metabolism of drugs in the brain, and also of examining some of these procedures at an anatomical resolution which is substantially greater than that obtainable by PET scanning. The issues will be discussed in greater detail

  16. Image analysis of intracranial high perfusion lesion by whole brain one-stop imaging technique with 320 detector rows CT

    Directory of Open Access Journals (Sweden)

    Fei-zhou DU

    2014-03-01

    Full Text Available Objective  The perfusion and vascular architecture features were investigated and evaluated by use of one-stop imaging technique with 320 rows CT for exploring the clinical value of one-stop imaging technique in the diagnosis of intracranial lesions. Methods  The perfusion parameters and vascular architecture of intracranial high perfusion lesions of 52 patients were collected in General Hospital of Chengdu Command from Oct. 2010 to Apr. 2013, who were examined by one-stop imaging technique with 320 rows CT, were retrospectively analyzed. The perfusion values of normal contralateral cerebral tissue were used as control to analyze the perfusion and vascular architecture features of injured parts. Results  Of the 52 patients, there were 16 cases of subacute cerebral infarction, 9 cases of arteriovenous malformation, 7 cases of hemangioma, 12 cases of meningioma, and 8 cases of glioma. All the patients showed elevated CBV and/or CBF and different changes in mean transit time (MTT, time to peak (TTP and delay time (Delay. In the cases of subacute cerebral infarction, the parameters of MTT, TTP and Delay increased. In the cases of arteriovenous malformation, all the parameters decreased. In the cases of hemangioma, the MTT decreased, while TTP and Delay increased. In the cases of glioma, the TTP and Delay increased, while the change of MTT varied. Meanwhile, abnormality of vascular structures was found in all the cases by CT angiography. Conclusion  With whole brain perfusion and one-stop vascular imaging with 320 rows CT, the perfusion characteristics of intracranial lesions can be revealed completely, including blood supply and microcirculation changes in the lesions, and it may be of benefit in guiding the clinical diagnosis and treatment. DOI: 10.11855/j.issn.0577-7402.2014.03.10

  17. The Contribution of Novel Brain Imaging Techniques to Understanding the Neurobiology of Mental Retardation and Developmental Disabilities

    Science.gov (United States)

    Gothelf, Doron; Furfaro, Joyce A.; Penniman, Lauren C.; Glover, Gary H.; Reiss, Allan L.

    2005-01-01

    Studying the biological mechanisms underlying mental retardation and developmental disabilities (MR/DD) is a very complex task. This is due to the wide heterogeneity of etiologies and pathways that lead to MR/DD. Breakthroughs in genetics and molecular biology and the development of sophisticated brain imaging techniques during the last decades…

  18. Detecting brain tumor in computed tomography images using Markov random fields and fuzzy C-means clustering techniques

    Science.gov (United States)

    Abdulbaqi, Hayder Saad; Jafri, Mohd Zubir Mat; Omar, Ahmad Fairuz; Mustafa, Iskandar Shahrim Bin; Abood, Loay Kadom

    2015-04-01

    Brain tumors, are an abnormal growth of tissues in the brain. They may arise in people of any age. They must be detected early, diagnosed accurately, monitored carefully, and treated effectively in order to optimize patient outcomes regarding both survival and quality of life. Manual segmentation of brain tumors from CT scan images is a challenging and time consuming task. Size and location accurate detection of brain tumor plays a vital role in the successful diagnosis and treatment of tumors. Brain tumor detection is considered a challenging mission in medical image processing. The aim of this paper is to introduce a scheme for tumor detection in CT scan images using two different techniques Hidden Markov Random Fields (HMRF) and Fuzzy C-means (FCM). The proposed method has been developed in this research in order to construct hybrid method between (HMRF) and threshold. These methods have been applied on 4 different patient data sets. The result of comparison among these methods shows that the proposed method gives good results for brain tissue detection, and is more robust and effective compared with (FCM) techniques.

  19. Detecting brain tumor in computed tomography images using Markov random fields and fuzzy C-means clustering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Abdulbaqi, Hayder Saad [School of Physics, Universiti Sains Malaysia, 11700, Penang (Malaysia); Department of Physics, College of Education, University of Al-Qadisiya, Al-Qadisiya (Iraq); Jafri, Mohd Zubir Mat; Omar, Ahmad Fairuz; Mustafa, Iskandar Shahrim Bin [School of Physics, Universiti Sains Malaysia, 11700, Penang (Malaysia); Abood, Loay Kadom [Department of Computer Science, College of Science, University of Baghdad, Baghdad (Iraq)

    2015-04-24

    Brain tumors, are an abnormal growth of tissues in the brain. They may arise in people of any age. They must be detected early, diagnosed accurately, monitored carefully, and treated effectively in order to optimize patient outcomes regarding both survival and quality of life. Manual segmentation of brain tumors from CT scan images is a challenging and time consuming task. Size and location accurate detection of brain tumor plays a vital role in the successful diagnosis and treatment of tumors. Brain tumor detection is considered a challenging mission in medical image processing. The aim of this paper is to introduce a scheme for tumor detection in CT scan images using two different techniques Hidden Markov Random Fields (HMRF) and Fuzzy C-means (FCM). The proposed method has been developed in this research in order to construct hybrid method between (HMRF) and threshold. These methods have been applied on 4 different patient data sets. The result of comparison among these methods shows that the proposed method gives good results for brain tissue detection, and is more robust and effective compared with (FCM) techniques.

  20. THE STUDY OF THE BRAIN IN A PATIENT WITH TYPE 1 DIABETES MELLITUS USING TECHNIQUES OF MAGNETIC RESONANCE IMAGING

    Directory of Open Access Journals (Sweden)

    Yu. G. Samoylova

    2015-12-01

    Full Text Available Type 1 diabetes mellitus (T1DM is now widely distributed worldwide and in theRussian Federation, it is an important medical and social problem in connection with the development of serious, disabling complications. Some of these complications could make changes in the brain which are accompanied by cognitive impairments that decrease quality of life and worsening disease compensation. The diagnosis of these disorders to date, possible by using modern methods of magnetic resonance imaging, which describe not only the morphological changes of the brain, but also the metabolism of nervous tissue. The study of the brain, namely structural and metabolic manifestations of diabetes, is one of the priority problem of modern medical science.The aim of the study was to evaluate dynamics in the different techniques of magnetic resonance imaging in the diagnosis of brain changes in patients with T1DM.Research methods included physical examination, in accordance with the diagnostic algorithm of patients with T1DM, a neurologist consultation, an assessment of cognitive function, analysis of brain changes using standard magnetic resonance imaging and spectroscopy. Statistical processing was performed using software package R-system. This publication presents a clinical case of a patient with T1DM and severe cognitive impairments are associated with changes in the brain, diagnosed using standard magnetic resonance imaging and spectroscopy. The study shows the positive role of correction of carbohydrate metabolism in improving cognitive function in a patient with T1DM.In addition, the process analysis revealed the absence of dynamic changes in the brain of a patient with T1DM according to standard magnetic resonance imaging. This required the use of additional techniques – magnetic resonance spectroscopy, which revealed changes of metabolism in the thalamus N-acetyl aspartate, choline and creatinine.

  1. MRI brain imaging.

    Science.gov (United States)

    Skinner, Sarah

    2013-11-01

    General practitioners (GPs) are expected to be allowed to request MRI scans for adults for selected clinically appropriate indications from November 2013 as part of the expansion of Medicare-funded MRI services announced by the Federal Government in 2011. This article aims to give a brief overview of MRI brain imaging relevant to GPs, which will facilitate explanation of scan findings and management planning with their patients. Basic imaging techniques, common findings and terminology are presented using some illustrative case examples.

  2. Automated brain tumor segmentation in magnetic resonance imaging based on sliding-window technique and symmetry analysis

    Institute of Scientific and Technical Information of China (English)

    Lian Yanyun; Song Zhijian

    2014-01-01

    Background Brain tumor segmentation from magnetic resonance imaging (MRI) is an important step toward surgical planning,treatment planning,monitoring of therapy.However,manual tumor segmentation commonly used in clinic is time-consuming and challenging,and none of the existed automated methods are highly robust,reliable and efficient in clinic application.An accurate and automated tumor segmentation method has been developed for brain tumor segmentation that will provide reproducible and objective results close to manual segmentation results.Methods Based on the symmetry of human brain,we employed sliding-window technique and correlation coefficient to locate the tumor position.At first,the image to be segmented was normalized,rotated,denoised,and bisected.Subsequently,through vertical and horizontal sliding-windows technique in turn,that is,two windows in the left and the right part of brain image moving simultaneously pixel by pixel in two parts of brain image,along with calculating of correlation coefficient of two windows,two windows with minimal correlation coefficient were obtained,and the window with bigger average gray value is the location of tumor and the pixel with biggest gray value is the locating point of tumor.At last,the segmentation threshold was decided by the average gray value of the pixels in the square with center at the locating point and 10 pixels of side length,and threshold segmentation and morphological operations were used to acquire the final tumor region.Results The method was evaluated on 3D FSPGR brain MR images of 10 patients.As a result,the average ratio of correct location was 93.4% for 575 slices containing tumor,the average Dice similarity coefficient was 0.77 for one scan,and the average time spent on one scan was 40 seconds.Conclusions An fully automated,simple and efficient segmentation method for brain tumor is proposed and promising for future clinic use.Correlation coefficient is a new and effective feature for tumor

  3. Quantitative Analysis of Diffusion Weighted MR Images of Brain Tumor Using Signal Intensity Gradient Technique

    Directory of Open Access Journals (Sweden)

    S. S. Shanbhag

    2014-01-01

    Full Text Available The purpose of this study was to evaluate the role of diffusion weighted-magnetic resonance imaging (DW-MRI in the examination and classification of brain tumors, namely, glioma and meningioma. Our hypothesis was that as signal intensity variations on diffusion weighted (DW images depend on histology and cellularity of the tumor, analysing the signal intensity characteristics on DW images may allow differentiating between the tumor types. Towards this end the signal intensity variations on DW images of the entire tumor volume data of 20 subjects with glioma and 12 subjects with meningioma were investigated and quantified using signal intensity gradient (SIG parameter. The relative increase in the SIG values (RSIG for the subjects with glioma and meningioma was in the range of 10.08–28.36 times and 5.60–9.86 times, respectively, compared to their corresponding SIG values on the contralateral hemisphere. The RSIG values were significantly different between the subjects with glioma and meningioma (P<0.01, with no overlap between RSIG values across the two tumors. The results indicate that the quantitative changes in the RSIG values could be applied in the differential diagnosis of glioma and meningioma, and their adoption in clinical diagnosis and treatment could be helpful and informative.

  4. Imaging the Addicted Human Brain

    OpenAIRE

    Fowler, Joanna S.; Volkow, Nora D.; Kassed, Cheryl A; Chang, Linda

    2007-01-01

    Modern imaging techniques enable researchers to observe drug actions and consequences as they occur and persist in the brains of abusing and addicted individuals. This article presents the five most commonly used techniques, explains how each produces images, and describes how researchers interpret them. The authors give examples of key findings illustrating how each technique has extended and deepened our knowledge of the neurobiological bases of drug abuse and addiction, and they address po...

  5. Functional Brain Imaging: A Comprehensive Survey

    CERN Document Server

    Sarraf, Saman

    2016-01-01

    Functional brain imaging allows measuring dynamic functionality in all brain regions. It is broadly used in clinical cognitive neuroscience as, well as in research. It will allow the observation of neural activities in the brain simultaneously. From the beginning when functional brain imaging was initiated by the mapping of brain functions proposed by phrenologists, many scientists were asking why we need to image brain functionality since we have already structural information. Simply, their important question was including a great answer. Functional information of the human brain would definitely complement structural information, helping to have a better understanding of what is happening in the brain. This paper, which could be useful to those who have an interest in functional brain imaging, such as engineers, will present a quick review of modalities used in functional brain imaging. We will concentrate on the most used techniques in functional imaging which are functional magnetic resonance imaging (fM...

  6. Future perspectives in imaging human brain function: A theoretical analysis of techniques that could be used to image neuronal firing in the human brain

    International Nuclear Information System (INIS)

    There have been enormous advances in the applications of computerised tomography since its inception just over a decade ago, and, as may be seen in many of the other presentations in this symposium, imaging techniques such as PET and NMR can be used to give three dimensional images of various types of metabolic activity. However, attempts to use these techniques to produce images of neuronal functional activity in the sense of neuronal discharge rate have proved to be more difficult, largely because the only parameters that can be measured at present are metabolic, and these have an uncertain relation to the underlying neuronal electrical activity. There appears to be a linear relationship between metabolic activity and the rate of neuronal discharge for lower rates of discharge but it is non-linear over the whole range, and only applies to the steady state. For clinical and neurophysiological applications, it would be very useful to have an imaging device that could produce images of neuronal electrical activity directly, with a high temporal resolution of the order of the action potential, so that individual spikes could be distinguished. This paper is a summary of recent theoretical work which represents an attempt to determine whether such a device could be constructed in the forseeable future. The results are based on an extensive review of the literature and recalculation of data where appropriate. The conclusions are, perhaps surprisingly, positive, and two techniques are put forward as suitable candidates. However, the work is naturally speculative, and is intended more as a basis for discussion with respect to directions for future research than as a statement of certain fact

  7. Functional Brain Imaging

    Directory of Open Access Journals (Sweden)

    K. Vessal

    2005-08-01

    Full Text Available Introduction & Background: The historical evolution of concepts of the mind has had a tremendous impact on human civilization. Aside from Smith’s surgical papyrus, there exists practically no documentation down to the era of Hippocrates. While in Corpus, the seat of all sensations is put in the brain, there is an amazing regression, for many centuries thereafter notably influenced by Aristotle, to displace it to the heart. This erroneous diversion promulgated in De Anima with minor corrections by Galen, has per-petuated to our time when we say, for example, that we love something with our very hearts or “knowing by heart” when we mean to memorize something. Avicenna challenged many of Aristotle’s ideas in El-monnafs (psychology section of Al Shafa, paving the road for the later European Renaissance. Cartesian choice of pineal body as the seat of soul in the first half of the 7th century was a fundamental departure from brain-soul dichotomy. It was followed by Gall’s pseudo-science, phrenology, as the first attempt of brain mapping in ascribing “mental faculties” to the speculative “organs” of the brain. Brain mapping through Functional Brain Imaging has flourished ex-tensively in the past decades -starting from PET with later substitution by fMRI- as robust tools for interro-gating mysteries of the brain. With a surprising pace of development, Functional Brain Imaging heralds a welcome adjunct to the science of radiology in ex-ploring mind and human behavior. Given the multi-tude of appropriate MRI machines operating across the country, attention to this aspect of imaging can invigorate research in radiology and boost generation of knowledge in this rapidly growing field. Recent advances in MRI fast imaging, fMRI, as well as clini-cal and spectroscopic imaging with present clinical application and future trends are discussed.

  8. Live cell imaging techniques to study T cell trafficking across the blood-brain barrier in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Coisne Caroline

    2013-01-01

    Full Text Available Abstract Background The central nervous system (CNS is an immunologically privileged site to which access for circulating immune cells is tightly controlled by the endothelial blood–brain barrier (BBB located in CNS microvessels. Under physiological conditions immune cell migration across the BBB is low. However, in neuroinflammatory diseases such as multiple sclerosis, many immune cells can cross the BBB and cause neurological symptoms. Extravasation of circulating immune cells is a multi-step process that is regulated by the sequential interaction of different adhesion and signaling molecules on the immune cells and on the endothelium. The specialized barrier characteristics of the BBB, therefore, imply the existence of unique mechanisms for immune cell migration across the BBB. Methods and design An in vitro mouse BBB model maintaining physiological barrier characteristics in a flow chamber and combined with high magnification live cell imaging, has been established. This model enables the molecular mechanisms involved in the multi-step extravasation of T cells across the in vitro BBB, to be defined with high-throughput analyses. Subsequently these mechanisms have been verified in vivo using a limited number of experimental animals and a spinal cord window surgical technique. The window enables live observation of the dynamic interaction between T cells and spinal cord microvessels under physiological and pathological conditions using real time epifluorescence intravital imaging. These in vitro and in vivo live cell imaging methods have shown that the BBB endothelium possesses unique and specialized mechanisms involved in the multi-step T cell migration across this endothelial barrier under physiological flow. The initial T cell interaction with the endothelium is either mediated by T cell capture or by T cell rolling. Arrest follows, and then T cells polarize and especially CD4+ T cells crawl over long distances against the direction of

  9. Brain Image Motion Correction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus;

    2015-01-01

    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  10. Functional brain imaging

    International Nuclear Information System (INIS)

    Functional magnetic resonance imaging (fMRI) is a non-invasive method that has become one of the major tools for understanding human brain function and in recent years has also been developed for clinical applications. Changes in hemodynamic signals correspond to changes in neuronal activity with good spatial and temporal resolution in fMRI. Using high-field MR systems and increasingly dedicated statistics and postprocessing, activated brain areas can be detected and superimposed on anatomical images. Currently, fMRI data are often combined in multimodal imaging, e. g. with diffusion tensor imaging (DTI) sequences. This method is helping to further understand the physiology of cognitive brain processes and is also being used in a number of clinical applications. In addition to the blood oxygenation level-dependent (BOLD) signals, this article deals with the construction of fMRI investigations, selection of paradigms and evaluation in the clinical routine. Clinically, this method is mainly used in the planning of brain surgery, analyzing the location of brain tumors in relation to eloquent brain areas and the lateralization of language processing. As the BOLD signal is dependent on the strength of the magnetic field as well as other limitations, an overview of recent developments is given. Increases of magnetic field strength (7 T), available head coils and advances in MRI analytical methods have led to constant improvement in fMRI signals and experimental design. Especially the depiction of eloquent brain regions can be done easily and quickly and has become an essential part of presurgical planning. (orig.)

  11. Classification of Medical Brain Images

    Institute of Scientific and Technical Information of China (English)

    Pan Haiwei(潘海为); Li Jianzhong; Zhang Wei

    2003-01-01

    Since brain tumors endanger people's living quality and even their lives, the accuracy of classification becomes more important. Conventional classifying techniques are used to deal with those datasets with characters and numbers. It is difficult, however, to apply them to datasets that include brain images and medical history (alphanumeric data), especially to guarantee the accuracy. For these datasets, this paper combines the knowledge of medical field and improves the traditional decision tree. The new classification algorithm with the direction of the medical knowledge not only adds the interaction with the doctors, but also enhances the quality of classification. The algorithm has been used on real brain CT images and a precious rule has been gained from the experiments. This paper shows that the algorithm works well for real CT data.

  12. Minireview of Stereoselective Brain Imaging

    DEFF Research Database (Denmark)

    Smith, Donald F.; Jakobsen, Steen

    2014-01-01

    Stereoselectivity is a fundamental principle in living systems. Stereoselectivity reflects the dependence of molecular processes on the spatial orientation of constituent atoms. Stereoselective processes govern many aspects of brain function and direct the course of many psychotropic drugs. Today......, modern imaging techniques such as SPECT and PET provide a means for studying stereoselective processes in the living brain. Chemists have prepared numerous radiolabelled stereoisomers for use in SPECT and PET in order to explore various molecular processes in the living brain of anesthetized laboratory...... animals and awake humans. The studies have demonstrated how many aspects of neurotransmission consist of crucial stereoselective events that can affect brain function in health and disease. Here, we present a brief account of those findings in hope of stimulating further interest in the vital topic....

  13. Comparison of iterative model, hybrid iterative, and filtered back projection reconstruction techniques in low-dose brain CT: impact of thin-slice imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakaura, Takeshi; Iyama, Yuji; Kidoh, Masafumi; Yokoyama, Koichi [Amakusa Medical Center, Diagnostic Radiology, Amakusa, Kumamoto (Japan); Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Oda, Seitaro; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Tokuyasu, Shinichi [Philips Electronics, Kumamoto (Japan); Harada, Kazunori [Amakusa Medical Center, Department of Surgery, Kumamoto (Japan)

    2016-03-15

    The purpose of this study was to evaluate the utility of iterative model reconstruction (IMR) in brain CT especially with thin-slice images. This prospective study received institutional review board approval, and prior informed consent to participate was obtained from all patients. We enrolled 34 patients who underwent brain CT and reconstructed axial images with filtered back projection (FBP), hybrid iterative reconstruction (HIR) and IMR with 1 and 5 mm slice thicknesses. The CT number, image noise, contrast, and contrast noise ratio (CNR) between the thalamus and internal capsule, and the rate of increase of image noise in 1 and 5 mm thickness images between the reconstruction methods, were assessed. Two independent radiologists assessed image contrast, image noise, image sharpness, and overall image quality on a 4-point scale. The CNRs in 1 and 5 mm slice thickness were significantly higher with IMR (1.2 ± 0.6 and 2.2 ± 0.8, respectively) than with FBP (0.4 ± 0.3 and 1.0 ± 0.4, respectively) and HIR (0.5 ± 0.3 and 1.2 ± 0.4, respectively) (p < 0.01). The mean rate of increasing noise from 5 to 1 mm thickness images was significantly lower with IMR (1.7 ± 0.3) than with FBP (2.3 ± 0.3) and HIR (2.3 ± 0.4) (p < 0.01). There were no significant differences in qualitative analysis of unfamiliar image texture between the reconstruction techniques. IMR offers significant noise reduction and higher contrast and CNR in brain CT, especially for thin-slice images, when compared to FBP and HIR. (orig.)

  14. Comparison of iterative model, hybrid iterative, and filtered back projection reconstruction techniques in low-dose brain CT: impact of thin-slice imaging

    International Nuclear Information System (INIS)

    The purpose of this study was to evaluate the utility of iterative model reconstruction (IMR) in brain CT especially with thin-slice images. This prospective study received institutional review board approval, and prior informed consent to participate was obtained from all patients. We enrolled 34 patients who underwent brain CT and reconstructed axial images with filtered back projection (FBP), hybrid iterative reconstruction (HIR) and IMR with 1 and 5 mm slice thicknesses. The CT number, image noise, contrast, and contrast noise ratio (CNR) between the thalamus and internal capsule, and the rate of increase of image noise in 1 and 5 mm thickness images between the reconstruction methods, were assessed. Two independent radiologists assessed image contrast, image noise, image sharpness, and overall image quality on a 4-point scale. The CNRs in 1 and 5 mm slice thickness were significantly higher with IMR (1.2 ± 0.6 and 2.2 ± 0.8, respectively) than with FBP (0.4 ± 0.3 and 1.0 ± 0.4, respectively) and HIR (0.5 ± 0.3 and 1.2 ± 0.4, respectively) (p < 0.01). The mean rate of increasing noise from 5 to 1 mm thickness images was significantly lower with IMR (1.7 ± 0.3) than with FBP (2.3 ± 0.3) and HIR (2.3 ± 0.4) (p < 0.01). There were no significant differences in qualitative analysis of unfamiliar image texture between the reconstruction techniques. IMR offers significant noise reduction and higher contrast and CNR in brain CT, especially for thin-slice images, when compared to FBP and HIR. (orig.)

  15. THE STUDY OF THE BRAIN IN A PATIENT WITH TYPE 1 DIABETES MELLITUS USING TECHNIQUES OF MAGNETIC RESONANCE IMAGING

    OpenAIRE

    Yu. G. Samoylova; N. G. Zhukova; M. V. Matveyeva; M. A. Rotkank; O. S. Tonkikh

    2015-01-01

    Type 1 diabetes mellitus (T1DM) is now widely distributed worldwide and in theRussian Federation, it is an important medical and social problem in connection with the development of serious, disabling complications. Some of these complications could make changes in the brain which are accompanied by cognitive impairments that decrease quality of life and worsening disease compensation. The diagnosis of these disorders to date, possible by using modern methods of magnetic resonance imaging, wh...

  16. Brain hypoxia imaging

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ho Chun [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-04-15

    The measurement of pathologically low levels of tissue pO{sub 2} is an important diagnostic goal for determining the prognosis of many clinically important diseases including cardiovascular insufficiency, stroke and cancer. The target tissues nowadays have mostly been tumors or the myocardium, with less attention centered on the brain. Radiolabelled nitroimidazole or derivatives may be useful in identifying the hypoxic cells in cerebrovascular disease or traumatic brain injury, and hypoxic-ischemic encephalopathy. In acute stroke, the target of therapy is the severely hypoxic but salvageable tissue. {sup 18}F-MISO PET and {sup 99m}Tc-EC-metronidazole SPECT in patients with acute ischemic stroke identified hypoxic tissues and ischemic penumbra, and predicted its outcome. A study using {sup 123}I-IAZA in patient with closed head injury detected the hypoxic tissues after head injury. Up till now these radiopharmaceuticals have drawbacks due to its relatively low concentration with hypoxic tissues associated with/without low blood-brain barrier permeability and the necessity to wait a long time to achieve acceptable target to background ratios for imaging in acute ischemic stroke. It is needed to develop new hypoxic marker exhibiting more rapid localization in the hypoxic region in the brain. And then, the hypoxic brain imaging with imidazoles or non-imidazoles may be very useful in detecting the hypoxic tissues, determining therapeutic strategies and developing therapeutic drugs in several neurological disease, especially, in acute ischemic stroke.

  17. Electromagnetic brain imaging

    International Nuclear Information System (INIS)

    Present imaging methods of cerebral neuro-activity like brain functional MRI and positron emission tomography (PET) secondarily measure only average activities within a time of the second-order (low time-resolution). In contrast, the electromagnetic brain imaging (EMBI) directly measures the faint magnetic field (10-12-10-13 T) yielded by the cerebral activity with use of multiple arrayed sensors equipped on the head surface within a time of sub-millisecond order (high time-resolution). The sensor array technology to find the signal source from the measured data is common in wide areas like signal procession for radar, sonar, and epicenter detection by seismic wave. For estimating and reconstructing the active region in the brain in EMBI, the efficient method must be developed and this paper describes the direct and inverse problems concerned in signal and image processions of EMBI. The direct problem involves the cerebral magnetic field/lead field matrix and inverse problem for reconstruction of signal source, the MUSIC (multiple signal classification) algorithm, GLRT (generalized likelihood ratio test) scan, and adaptive beamformer. As an example, given are results of magnetic intensity changes (unit, fT) in the somatosensory cortex vs time (msec) measured by 160 sensors and of images reconstructed from EMBI and MRI during electric muscle afferent input from the hand. The real-time imaging is thus possible with EMBI and extremely, the EMBI image, the real-time cerebral signals, can inversely operate a machine, of which application directs toward the brain/machine interface development. (R.T.)

  18. Permeability imaging in pediatric brain tumors

    OpenAIRE

    Lam, Sandi; Lin, Yimo; Warnke, Peter C.

    2014-01-01

    While traditional computed tomography (CT) and magnetic resonance (MR) imaging illustrate the structural morphology of brain pathology, newer, dynamic imaging techniques are able to show the movement of contrast throughout the brain parenchyma and across the blood-brain barrier (BBB). These data, in combination with pharmacokinetic models, can be used to investigate BBB permeability, which has wide-ranging applications in the diagnosis and management of central nervous system (CNS) tumors in ...

  19. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...

  20. Brain Image Representation and Rendering: A Survey

    Directory of Open Access Journals (Sweden)

    Mudassar Raza

    2012-09-01

    Full Text Available Brain image representation and rendering processes are basically used for evaluation, development and investigation consent experimental examination and formation of brain images of a variety of modalities that includes the major brain types like MEG, EEG, PET, MRI, CT or microscopy. So, there is a need to conduct a study to review the existing work in this area. This paper provides a review of different existing techniques and methods regarding the brain image representation and rendering. Image Rendering is the method of generating an image by means of a model, through computer programs. The basic purpose of brain image representation and rendering processes is to analyze the brain images precisely in order to effectively diagnose and examine the diseases and problems. The basic objective of this study is to evaluate and discuss different techniques and approaches proposed in order to handle different brain imaging types. The paper provides a short overview of different methods, in the form of advantages and limitations, presented in the prospect of brain image representation and rendering along with their sub categories proposed by different authors.

  1. Brain imaging and autism

    Energy Technology Data Exchange (ETDEWEB)

    Zilbovicius, M. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), INSERM CEA 0205, 91 - Orsay (France)

    2006-07-01

    Autism is a neuro-developmental disorder with a range of clinical presentations, from mild to severe, referred to as autism spectrum disorders (ASD). The most common clinical ASD sign is social interaction impairment, which is associated with verbal and non-verbal communication deficits and stereotyped and obsessive behaviors. Thanks to recent brain imaging studies, scientists are getting a better idea of the neural circuits involved in ASD. Indeed, functional brain imaging, such as positron emission tomography (PET), single positron emission tomograph y (SPECT) and functional MRI (fMRI) have opened a new perspective to study normal and pathological brain functions. Three independent studies have found anatomical and rest functional temporal abnormalities. These anomalies are localized in the superior temporal sulcus bilaterally which are critical for perception of key social stimuli. In addition, functional studies have shown hypo-activation of most areas implicated in social perception (face and voice perception) and social cognition (theory of mind). These data suggest an abnormal functioning of the social brain network. The understanding of such crucial abnormal mechanism may drive the elaboration of new and more adequate social re-educative strategies in autism. (author)

  2. Brain imaging and autism

    International Nuclear Information System (INIS)

    Autism is a neuro-developmental disorder with a range of clinical presentations, from mild to severe, referred to as autism spectrum disorders (ASD). The most common clinical ASD sign is social interaction impairment, which is associated with verbal and non-verbal communication deficits and stereotyped and obsessive behaviors. Thanks to recent brain imaging studies, scientists are getting a better idea of the neural circuits involved in ASD. Indeed, functional brain imaging, such as positron emission tomography (PET), single positron emission tomograph y (SPECT) and functional MRI (fMRI) have opened a new perspective to study normal and pathological brain functions. Three independent studies have found anatomical and rest functional temporal abnormalities. These anomalies are localized in the superior temporal sulcus bilaterally which are critical for perception of key social stimuli. In addition, functional studies have shown hypo-activation of most areas implicated in social perception (face and voice perception) and social cognition (theory of mind). These data suggest an abnormal functioning of the social brain network. The understanding of such crucial abnormal mechanism may drive the elaboration of new and more adequate social re-educative strategies in autism. (author)

  3. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...... various requirements to be fulfilled in the design of an imaging system for breast cancer detection and some strategies to overcome these limitations....

  4. Imaging brain plasticity after trauma

    OpenAIRE

    Kou, Zhifeng; Iraji, Armin

    2014-01-01

    The brain is highly plastic after stroke or epilepsy; however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrated both structural reorganization as well as functional compensation by the recruitment of other brain regions. ...

  5. Brain Friendly Techniques: Mind Mapping

    Science.gov (United States)

    Goldberg, Cristine

    2004-01-01

    Mind Mapping can be called the Swiss Army Knife for the brain, a total visual thinking tool or a multi-handed thought catcher. Invented by Tony Buzan in the early 1970s and used by millions around the world, it is a method that can be a part of a techniques repertoire when teaching information literacy, planning, presenting, thinking, and so…

  6. Suitability of helical multislice acquisition technique for routine unenhanced brain CT: an image quality study using a 16-row detector configuration

    International Nuclear Information System (INIS)

    Subjective and objective image quality (IQ) criteria, radiation doses, and acquisition times were compared using incremental monoslice, incremental multislice, and helical multislice acquisition techniques for routine unenhanced brain computed tomography (CT). Twenty-four patients were examined by two techniques in the same imaging session using a 16-row CT system equipped with 0.75-width detectors. Contiguous ''native'' 3-mm-thick slices were reconstructed for all acquisitions from four detectors for each slice (4 x 0.75 mm), with one channel available per detector. Two protocols were tailored to compare: (1) one-slice vs four-slice incremental images; (2) incremental vs helical four-slice images. Two trained observers independently scored 12 subjective items of IQ. Preference for the technique was assessed by one-tailed t test and the interobserver variation by two-tailed t test. The two observers gave very close IQ scores for the three techniques without significant interobserver variations. Measured IQ parameters failed to reveal any difference between techniques, and an approximate half radiation dose reduction was obtained by using the full 16-row configuration. Acquisition times were cumulatively shortened by using the multislice and the helical modality. (orig.)

  7. MRI Brain Image Segmentation based on Thresholding

    Directory of Open Access Journals (Sweden)

    G. Evelin Sujji, Y.V.S. Lakshmi, G. Wiselin Jiji

    2013-03-01

    Full Text Available Medical Image processing is one of the mostchallenging topics in research field. The mainobjective of image segmentation is to extract variousfeatures of the image that are used foranalysing,interpretation and understanding of images.Medical Resonance Image plays a major role inMedical diagnostics. Image processing in MRI ofbrain is highlyessential due to accurate detection ofthe type of brain abnormality which can reduce thechance of fatal result. This paper outlines anefficient image segmentation technique that candistinguish the pathological tissues such asedemaandtumourfrom thenormal tissues such as WhiteMatter(WM,GreyMatter(GM, andCerebrospinal Fluid(CSF. Thresholding is simplerand most commonly used techniques in imagesegmentation. This technique can be used to detectthe contour of thetumourin brain.

  8. Brain imaging in type 2 diabetes.

    Science.gov (United States)

    Brundel, Manon; Kappelle, L Jaap; Biessels, Geert Jan

    2014-12-01

    Type 2 diabetes mellitus (T2DM) is associated with cognitive dysfunction and dementia. Brain imaging may provide important clues about underlying processes. This review focuses on the relationship between T2DM and brain abnormalities assessed with different imaging techniques: both structural and functional magnetic resonance imaging (MRI), including diffusion tensor imaging and magnetic resonance spectroscopy, as well as positron emission tomography and single-photon emission computed tomography. Compared to people without diabetes, people with T2DM show slightly more global brain atrophy, which increases gradually over time compared with normal aging. Moreover, vascular lesions are seen more often, particularly lacunar infarcts. The association between T2DM and white matter hyperintensities and microbleeds is less clear. T2DM has been related to diminished cerebral blood flow and cerebrovascular reactivity, particularly in more advanced disease. Diffusion tensor imaging is a promising technique with respect to subtle white matter involvement. Thus, brain imaging studies show that T2DM is associated with both degenerative and vascular brain damage, which develops slowly over the course of many years. The challenge for future studies will be to further unravel the etiology of brain damage in T2DM, and to identify subgroups of patients that will develop distinct progressive brain damage and cognitive decline.

  9. Deep brain stimulation: new techniques.

    Science.gov (United States)

    Hariz, Marwan

    2014-01-01

    The technology of the hardware used in deep brain stimulation (DBS), and the mode of delivering the stimulation have not significantly evolved since the start of the modern era of DBS 25 years ago. However, new technology is now being developed along several avenues. New features of the implantable pulse generator (IPG) allow fractionation of the electric current into variable proportions between different contacts of the multi-polar lead. Another design consists in leads that allow selective current steering from directionally placed electrode contacts that would deliver the stimulation in a specific direction or even create a directional shaped electric field that would conform to the anatomy of the brain target aimed at, avoiding adjacent structures, and thus avoiding side effects. Closed loop adaptive stimulation technologies are being developed, allowing a tracking of the pathological local field potential of the brain target, and delivering automatically the stimulation to suppress the pathological activity as soon as it is detected and for as long as needed. This feature may contribute to a DBS therapy "on demand", instead of continuously. Finally, advances in imaging technology are providing "new" brain targets, and increasingly allowing DBS to be performed accurately while avoiding the risks of microelectrode recording. PMID:24262179

  10. New developments in the imaging of brains

    International Nuclear Information System (INIS)

    A review is given for the imaging techniques of brains. Separate paragraphs are devoted to echography, computerized tomography and magnetic resonance imaging. Special attention is payed to new developments such as magnetic resonance spectroscopy used for metabolic processes. (R.B.) 11 refs

  11. Advantages in functional imaging of the brain

    Directory of Open Access Journals (Sweden)

    Walter eMier

    2015-05-01

    Full Text Available As neuronal pathologies cause only minor morphological alterations, molecular imaging techniques are a prerequisite for the study of diseases of the brain. The development of molecular probes that specifically bind biochemical markers and the advances of instrumentation have revolutionized the possibilities to gain insight into the human brain organization and beyond this visualize structure-function and brain-behavior relationships. The review describes the development and current applications of functional brain imaging techniques with a focus on applications in psychiatry. A historical overview of the development of functional imaging is followed by the portrayal of the principles and applications of positron emission tomography (PET and functional magnetic resonance imaging (fMRI, two key molecular imaging techniques that have revolutionized the ability to image molecular processes in the brain. In the juxtaposition of PET and fMRI in hybrid PET/MRI scanners enhances the significance of both modalities for research in neurology and psychiatry and might pave the way for a new area of personalized medicine.

  12. Imaging brain plasticity after trauma

    Institute of Scientific and Technical Information of China (English)

    Zhifeng Kou; Armin Iraji

    2014-01-01

    The brain is highly plastic after stroke or epilepsy;however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrat-ed both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the ifeld is still short of proper means on how to guide the choice of TBI rehabilitation or treat-ment plan to promote brain plasticity. The authors also point out the new direction of brain plas-ticity investigation.

  13. Imaging brain plasticity after trauma

    Science.gov (United States)

    Kou, Zhifeng; Iraji, Armin

    2014-01-01

    The brain is highly plastic after stroke or epilepsy; however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrated both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the field is still short of proper means on how to guide the choice of TBI rehabilitation or treatment plan to promote brain plasticity. The authors also point out the new direction of brain plasticity investigation. PMID:25206874

  14. Analysis of Dynamic Brain Imaging Data

    CERN Document Server

    Mitra, P

    1998-01-01

    Modern imaging techniques for probing brain function, including functional Magnetic Resonance Imaging, intrinsic and extrinsic contrast optical imaging, and magnetoencephalography, generate large data sets with complex content. In this paper we develop appropriate techniques of analysis and visualization of such imaging data, in order to separate the signal from the noise, as well as to characterize the signal. The techniques developed fall into the general category of multivariate time series analysis, and in particular we extensively use the multitaper framework of spectral analysis. We develop specific protocols for the analysis of fMRI, optical imaging and MEG data, and illustrate the techniques by applications to real data sets generated by these imaging modalities. In general, the analysis protocols involve two distinct stages: `noise' characterization and suppression, and `signal' characterization and visualization. An important general conclusion of our study is the utility of a frequency-based repres...

  15. NIH Conference. Brain imaging: aging and dementia

    International Nuclear Information System (INIS)

    The brain imaging techniques of positron emission tomography using [18F]-fluoro-2-deoxy-D-glucose, and computed tomography, together with neuropsychological tests, were used to examine overall brain function and anatomy in three study populations: healthy men at different ages, patients with presumptive Alzheimer's disease, and adults with Down's syndrome. Brain glucose use did not differ with age, whereas an age-related decrement in gray matter volume was found on computed tomographic assessment in healthy subjects. Memory deficits were found to precede significant reductions in brain glucose utilization in mild to moderate Alzheimer's dementia. Furthermore, differences between language and visuoconstructive impairments in patients with mild to moderate Alzheimer's disease were related to hemispheric asymmetry of brain metabolism. Brain glucose utilization was found to be significantly elevated in young adults with Down's syndrome, compared with controls. The importance of establishing strict criteria for selecting control subjects and patients is explained in relation to the findings

  16. Survey on Denoising Techniques in Medical Images

    Directory of Open Access Journals (Sweden)

    Ravi Mohan

    2013-07-01

    Full Text Available Denoising of Medical Images is challenging problems for researchers noise is not only effect the quality of image but it Creates a major change in calculation of medical field. The Medical Images normally have a problem of high level components of noises. There are different techniques for producing medical images such as Magnetic Resonance Imaging(MRI, X-ray, Computed Tomography and Ultrasound, during this process noise is added that decreases the image quality and image analysis. Image denoising is an important task in image processing, use of wavelet transform improves the quality of an image and reduces noise level. Noise is an inherent property of medical imaging, and it generally tends to reduce the image resolution and contrast, thereby reducing the diagnostic value of this imaging modality there is an emergent attentiveness in using multi-resolution Wavelet filters in a variety of medical imaging applications. We Have review recent wavelet based denoising techniques for medical ultrasound, magnetic resonance images, and some tomography imaging techniques like Positron Emission tomography and Computer tomography imaging and discuss some of their potential applications in the clinical investigations of the brain. The paper deals with the use of wavelet transform for signal and image de-noising employing a selected method of thresholding of appropriate decomposition coefficients

  17. Proton MRS imaging in pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Zarifi, Maria [Aghia Sophia Children' s Hospital, Department of Radiology, Athens (Greece); Tzika, A.A. [Harvard Medical School, Department of Surgery, Massachusetts General Hospital, Boston, MA (United States); Shriners Burn Hospital, Boston, MA (United States)

    2016-06-15

    Magnetic resonance (MR) techniques offer a noninvasive, non-irradiating yet sensitive approach to diagnosing and monitoring pediatric brain tumors. Proton MR spectroscopy (MRS), as an adjunct to MRI, is being more widely applied to monitor the metabolic aspects of brain cancer. In vivo MRS biomarkers represent a promising advance and may influence treatment choice at both initial diagnosis and follow-up, given the inherent difficulties of sequential biopsies to monitor therapeutic response. When combined with anatomical or other types of imaging, MRS provides unique information regarding biochemistry in inoperable brain tumors and can complement neuropathological data, guide biopsies and enhance insight into therapeutic options. The combination of noninvasively acquired prognostic information and the high-resolution anatomical imaging provided by conventional MRI is expected to surpass molecular analysis and DNA microarray gene profiling, both of which, although promising, depend on invasive biopsy. This review focuses on recent data in the field of MRS in children with brain tumors. (orig.)

  18. Functional brain imaging - baric and clinical questions

    International Nuclear Information System (INIS)

    The advancing biological knowledge of disease processes plays a central part in the progress of modern psychiatry. An essential contribution comes from the functional and structural brain imaging techniques (CT, MRI, SPECT, PET). Their application is important for biological oriented research in psychiatry and there is also a growing relevance in clinical aspects. This development is taken into account by recent diagnostic classification systems in psychiatry. The capabilities and limitations of functional brain imaging in the context of research and clinic will be presented and discussed by examples and own investigations. (orig.)

  19. Psoriatic arthritis: imaging techniques

    Directory of Open Access Journals (Sweden)

    E. Lubrano

    2012-06-01

    Full Text Available Imaging techniques to assess psoriatic arthritis (PsA include radiography, ultrasonography (US, magnetic resonance imaging (MRI, computed tomography (CT and bone scintigraphy. The radiographic hallmark of PsA is the combination of destructive changes (joint erosions, tuft resorption, osteolysis with bone proliferation (including periarticular and shaft periostitis, ankylosis, spur formation and non-marginal syndesmophytes. US has an increasing important role in the evaluation of PsA. In fact, power Doppler US is useful mainly for its ability to assess musculoskeletal (joints, tendons, entheses and cutaneous (skin and nails involvement, to monitor efficacy of therapy and to guide steroid injections at the level of inflamed joints, tendon sheaths and entheses. MRI allows direct visualization of inflammation in peripheral and axial joints, and peripheral and axial entheses, and has dramatically improved the possibilities for early diagnosis and objective monitoring of the disease process in PsA. MRI has allowed explaining the relationships among enthesitis, synovitis and osteitis in PsA, supporting a SpA pattern of inflammation where enthesitis is the primary target of inflammation. CT has little role in assessment of peripheral joints, but it may be useful in assessing elements of spine disease. CT accuracy is similar to MRI in assessment of erosions in sacroiliac joint involvement, but CT is not as effective in detecting synovial inflammation. Bone scintigraphy lacks specificity and is now supplanted with US and MRI techniques.

  20. Imaging biomarkers in primary brain tumours

    Energy Technology Data Exchange (ETDEWEB)

    Lopci, Egesta; Chiti, Arturo [Humanitas Clinical and Research Center, Nuclear Medicine Department, Rozzano, MI (Italy); Franzese, Ciro; Navarria, Pierina; Scorsetti, Marta [Humanitas Clinical and Research Center, Radiosurgery and Radiotherapy, Rozzano, MI (Italy); Grimaldi, Marco [Humanitas Clinical and Research Center, Radiology, Rozzano, MI (Italy); Zucali, Paolo Andrea; Simonelli, Matteo [Humanitas Clinical and Research Center, Medical Oncology, Rozzano, MI (Italy); Bello, Lorenzo [Humanitas Clinical and Research Center, Neurosurgery, Rozzano, MI (Italy)

    2015-04-01

    We are getting used to referring to instrumentally detectable biological features in medical language as ''imaging biomarkers''. These two terms combined reflect the evolution of medical imaging during recent decades, and conceptually comprise the principle of noninvasive detection of internal processes that can become targets for supplementary therapeutic strategies. These targets in oncology include those biological pathways that are associated with several tumour features including independence from growth and growth-inhibitory signals, avoidance of apoptosis and immune system control, unlimited potential for replication, self-sufficiency in vascular supply and neoangiogenesis, acquired tissue invasiveness and metastatic diffusion. Concerning brain tumours, there have been major improvements in neurosurgical techniques and radiotherapy planning, and developments of novel target drugs, thus increasing the need for reproducible, noninvasive, quantitative imaging biomarkers. However, in this context, conventional radiological criteria may be inappropriate to determine the best therapeutic option and subsequently to assess response to therapy. Integration of molecular imaging for the evaluation of brain tumours has for this reason become necessary, and an important role in this setting is played by imaging biomarkers in PET and MRI. In the current review, we describe most relevant techniques and biomarkers used for imaging primary brain tumours in clinical practice, and discuss potential future developments from the experimental context. (orig.)

  1. Imaging biomarkers in primary brain tumours

    International Nuclear Information System (INIS)

    We are getting used to referring to instrumentally detectable biological features in medical language as ''imaging biomarkers''. These two terms combined reflect the evolution of medical imaging during recent decades, and conceptually comprise the principle of noninvasive detection of internal processes that can become targets for supplementary therapeutic strategies. These targets in oncology include those biological pathways that are associated with several tumour features including independence from growth and growth-inhibitory signals, avoidance of apoptosis and immune system control, unlimited potential for replication, self-sufficiency in vascular supply and neoangiogenesis, acquired tissue invasiveness and metastatic diffusion. Concerning brain tumours, there have been major improvements in neurosurgical techniques and radiotherapy planning, and developments of novel target drugs, thus increasing the need for reproducible, noninvasive, quantitative imaging biomarkers. However, in this context, conventional radiological criteria may be inappropriate to determine the best therapeutic option and subsequently to assess response to therapy. Integration of molecular imaging for the evaluation of brain tumours has for this reason become necessary, and an important role in this setting is played by imaging biomarkers in PET and MRI. In the current review, we describe most relevant techniques and biomarkers used for imaging primary brain tumours in clinical practice, and discuss potential future developments from the experimental context. (orig.)

  2. IMAGE ENHANCEMENT USING IMAGE FUSION AND IMAGE PROCESSING TECHNIQUES

    OpenAIRE

    Arjun Nelikanti

    2015-01-01

    Principle objective of Image enhancement is to process an image so that result is more suitable than original image for specific application. Digital image enhancement techniques provide a multitude of choices for improving the visual quality of images. Appropriate choice of such techniques is greatly influenced by the imaging modality, task at hand and viewing conditions. This paper will provide a combination of two concepts, image fusion by DWT and digital image processing techniques. The e...

  3. Modelling Brain Tissue using Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Dyrby, Tim Bjørn

    2008-01-01

    Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking...... be used. Within a two year period, no statistical inter- or intra-brain difference in the diffusion coefficient was found in perfusion fixated minipig brains. However, a decreasing tendency in the diffusion coefficient was found at the last time points about 24 months post mortem and might be explained...... experiment. This includes the selection of independent anatomical data to be used to derive a gold standard, the selection of a gyrated animal model in place of the human brain, objective selection of the seed region to initiate, and a waypoint region to constrain the tractography results....

  4. IMAGING THE BRAIN AS SCHIZOPHRENIA DEVELOPS: DYNAMIC & GENETIC BRAIN MAPS.

    Science.gov (United States)

    Thompson, Paul; Rapoport, Judith L; Cannon, Tyrone D; Toga, Arthur W

    2002-01-01

    Schizophrenia is a chronic, debilitating psychiatric disorder that affects 0.2-2% of the population worldwide. Often striking without warning in the late teens or early twenties, its symptoms include auditory and visual hallucinations, psychotic outbreaks, bizarre or disordered thinking, depression and social withdrawal. To combat the disease, new antipsychotic drugs are emerging; these atypical neuroleptics target dopamine and serotonin pathways in the brain, offering increased therapeutic efficacy with fewer side effects. Despite their moderate success in controlling some patients' symptoms, little is known about the causes of schizophrenia, and what triggers the disease. Its peculiar age of onset raises key questions: What physical changes occur in the brain as a patient develops schizophrenia? Do these deficits spread in the brain, and can they be opposed? How do they relate to psychotic symptoms? As risk for the disease is genetically transmitted, do a patient's relatives exhibit similar brain changes? Recent advances in brain imaging and genetics provide exciting insight on these questions. Neuroimaging can now chart the emergence and progression of deficits in the brain, providing an exceptionally sharp scalpel to dissect the effects of genetic risk, environmental triggers, and susceptibility genes. Visualizing the dynamics of the disease, these techniques also offer new strategies to evaluate drugs that combat the unrelenting symptoms of schizophrenia.

  5. Optimized Discretization Schemes For Brain Images

    Directory of Open Access Journals (Sweden)

    USHA RANI.N,

    2011-02-01

    Full Text Available In medical image processing active contour method is the important technique in segmenting human organs. Geometric deformable curves known as levelsets are widely used in segmenting medical images. In this modeling , evolution of the curve is described by the basic lagrange pde expressed as a function of space and time. This pde can be solved either using continuous functions or discrete numerical methods.This paper deals with the application of numerical methods like finite diffefence and TVd-RK methods for brain scans. The stability and accuracy of these methods are also discussed. This paper also deals with the more accurate higher order non-linear interpolation techniques like ENO and WENO in reconstructing the brain scans like CT,MRI,PET and SPECT is considered.

  6. Diversity imaging techniques in lidar

    Science.gov (United States)

    Schultz, K. I.

    1992-01-01

    Diversity imaging techniques have been successfully employed in conventional microwave range-Doppler imaging radars to obtain high resolution images of both natural and man-made targets. These techniques allow microwave radars to achieve image resolution which would otherwise require excessively large antennas. Recent advances in coherent laser radar techniques and signal processing have led to the development of range-Doppler imaging laser radars. While much of the theory and signal processing techniques used in microwave radars can be brought to bear on laser radars, the significant difference in wavelength results in issues peculiar to laser radar systems. Both the fundamental concepts and specific applications of diversity imaging techniques applied to laser radar imaging systems will be discussed. Angle, frequency, and bistatic angle degrees of freedom can be employed in a coherent laser radar imaging system to achieve image resolution which exceeds the traditional Rayleigh criterion associated with the receive aperture. In diversity imaging, angle and frequency degrees of freedom can be used to synthesize an effective aperture providing range and Doppler target information. The ability to vary the bistatic angle provides an additional means of synthesizing an effective aperture. Both simulated and experimentally obtained laser radar images of spinning and/or tumbling objects utilizing both angular and frequency diversity will be presented. In coherent laser radar systems, image quality can be dominated by laser speckle effects. In particular, the signal-to-noise ratio (SNR) of a coherent laser radar image is at most unity in the presence of fully developed speckle. Diversity techniques can be utilized to improve the image SNR; simple incoherent averaging of images utilizing temporal and polarization degrees of freedom can significantly improve image SNR. Both the SNR and image resolution (as defined by the synthetic aperture) contribute to image quality. The

  7. Modelling Brain Tissue using Magnetic Resonance Imaging

    OpenAIRE

    Dyrby, Tim Bjørn; Hansen, Lars Kai

    2008-01-01

    Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking models then use the directions of greatest diffusion as estimates of white matter fibre orientation. Several fibre tracking algorithms have emerged in the last few years that provide reproducible visu...

  8. Optical Methods and Instrumentation in Brain Imaging and Therapy

    CERN Document Server

    2013-01-01

    This book provides a comprehensive up-to-date review of optical approaches used in brain imaging and therapy. It covers a variety of imaging techniques including diffuse optical imaging, laser speckle imaging, photoacoustic imaging and optical coherence tomography. A number of laser-based therapeutic approaches are reviewed, including photodynamic therapy, fluorescence guided resection and photothermal therapy. Fundamental principles and instrumentation are discussed for each imaging and therapeutic technique. Represents the first publication dedicated solely to optical diagnostics and therapeutics in the brain Provides a comprehensive review of the principles of each imaging/therapeutic modality Reviews the latest advances in instrumentation for optical diagnostics in the brain Discusses new optical-based therapeutic approaches for brain diseases

  9. Imaging of brain activity by positron emission tomography

    International Nuclear Information System (INIS)

    Brain function is associated with regional energy metabolism and blood flow increase. Such brain activity is visualized by using external scintigraphy. Positron emission tomography (PET) is the currently available most superior technique, allowing three-dimensional imaging of subtle blood flow. In this article, imaging methods and application of PET are discussed in terms of the following items: (1) measurement of cerebral glucose consumption, (2) PET in persons with visual impairment, (3) association between brain function and regional cerebral blood flow, (4) measurement of cerebral blood flow, (5) method for decreasing noise in PET imaging, (6) anatomic standardization of PET images, and (7) speech load and regional cerebral activity images. (N.K.)

  10. Brain Imaging in Alzheimer Disease

    Science.gov (United States)

    Johnson, Keith A.; Fox, Nick C.; Sperling, Reisa A.; Klunk, William E.

    2012-01-01

    Imaging has played a variety of roles in the study of Alzheimer disease (AD) over the past four decades. Initially, computed tomography (CT) and then magnetic resonance imaging (MRI) were used diagnostically to rule out other causes of dementia. More recently, a variety of imaging modalities including structural and functional MRI and positron emission tomography (PET) studies of cerebral metabolism with fluoro-deoxy-d-glucose (FDG) and amyloid tracers such as Pittsburgh Compound-B (PiB) have shown characteristic changes in the brains of patients with AD, and in prodromal and even presymptomatic states that can help rule-in the AD pathophysiological process. No one imaging modality can serve all purposes as each have unique strengths and weaknesses. These modalities and their particular utilities are discussed in this article. The challenge for the future will be to combine imaging biomarkers to most efficiently facilitate diagnosis, disease staging, and, most importantly, development of effective disease-modifying therapies. PMID:22474610

  11. Simultaneous multislice (SMS) imaging techniques

    OpenAIRE

    Barth, Markus; Breuer, Felix; Koopmans, Peter J.; Norris, David G.; Poser, Benedikt A.

    2015-01-01

    Simultaneous multislice imaging (SMS) using parallel image reconstruction has rapidly advanced to become a major imaging technique. The primary benefit is an acceleration in data acquisition that is equal to the number of simultaneously excited slices. Unlike in‐plane parallel imaging this can have only a marginal intrinsic signal‐to‐noise ratio penalty, and the full acceleration is attainable at fixed echo time, as is required for many echo planar imaging applications. Furthermore, for some ...

  12. Fast optical imaging of human brain function

    Directory of Open Access Journals (Sweden)

    Gabriele Gratton

    2010-06-01

    Full Text Available Great advancements in brain imaging during the last few decades have opened a large number of new possibilities for neuroscientists. The most dominant methodologies (electrophysiological and magnetic resonance-based methods emphasize temporal and spatial information, respectively. However, theorizing about brain function has recently emphasized the importance of rapid (within 100 ms or so interactions between different elements of complex neuronal networks. Fast optical imaging, and in particular the event-related optical signal (EROS, a technology that has emerged over the last 15 years may provide descriptions of localized (to sub-cm level brain activity with a temporal resolution of less than 100 ms. The main limitations of EROS are its limited penetration, which allows us to image cortical structures not deeper than 3 cm from the surface of the head, and its low signal-to-noise ratio. Advantages include the fact that EROS is compatible with most other imaging methods, including electrophysiological, magnetic resonance, and trans-cranial magnetic stimulation techniques, with which can be recorded concurrently. In this paper we present a summary of the research that has been conducted so far on fast optical imaging, including evidence for the possibility of recording neuronal signals with this method, the properties of the signals, and various examples of applications to the study of human cognitive neuroscience. Extant issues, controversies, and possible future developments are also discussed.

  13. Mechanism of Chronic Pain in Rodent Brain Imaging

    Science.gov (United States)

    Chang, Pei-Ching

    Chronic pain is a significant health problem that greatly impacts the quality of life of individuals and imparts high costs to society. Despite intense research effort in understanding of the mechanism of pain, chronic pain remains a clinical problem that has few effective therapies. The advent of human brain imaging research in recent years has changed the way that chronic pain is viewed. To further extend the use of human brain imaging techniques for better therapies, the adoption of imaging technique onto the animal pain models is essential, in which underlying brain mechanisms can be systematically studied using various combination of imaging and invasive techniques. The general goal of this thesis is to addresses how brain develops and maintains chronic pain in an animal model using fMRI. We demonstrate that nucleus accumbens, the central component of mesolimbic circuitry, is essential in development of chronic pain. To advance our imaging technique, we develop an innovative methodology to carry out fMRI in awake, conscious rat. Using this cutting-edge technique, we show that allodynia is assoicated with shift brain response toward neural circuits associated nucleus accumbens and prefrontal cortex that regulate affective and cognitive component of pain. Taken together, this thesis provides a deeper understanding of how brain mediates pain. It builds on the existing body of knowledge through maximizing the depth of insight into brain imaging of chronic pain.

  14. Fueling and imaging brain activation

    Directory of Open Access Journals (Sweden)

    Gerald A Dienel

    2012-07-01

    Full Text Available Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models.

  15. Functional brain imaging studies on specificity of meridian and acupoints

    Institute of Scientific and Technical Information of China (English)

    Xuezhi Li; Xuguang Liu; Fanrong Liang

    2008-01-01

    At present,the specificity of meridians and acupoints has been studied using functional brain imaging techniques from many standpoints.including meridians,acupoints,and sham acupoints,as well as different meridians and acupoints,coordination of acupoints,and factors influencing meridian and acupoint specificity.Preliminary experimental data have demonstrated that acupuncture at meridians and acupoints is specific with regard to brain neural information.However,research findings are contradictory,which may be related to brain functional complexity,resolution of functional brain imaging techniques,and experimental design.Future studies should further improve study method,and should strictly control experimental conditions to better analyze experimental data and acquire more beneficial data.Because of its many advantages.the functional brain imaging technique is a promising method for studying meridian and acupoint specificity.

  16. Statistical normalization techniques for magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Russell T. Shinohara

    2014-01-01

    Full Text Available While computed tomography and other imaging techniques are measured in absolute units with physical meaning, magnetic resonance images are expressed in arbitrary units that are difficult to interpret and differ between study visits and subjects. Much work in the image processing literature on intensity normalization has focused on histogram matching and other histogram mapping techniques, with little emphasis on normalizing images to have biologically interpretable units. Furthermore, there are no formalized principles or goals for the crucial comparability of image intensities within and across subjects. To address this, we propose a set of criteria necessary for the normalization of images. We further propose simple and robust biologically motivated normalization techniques for multisequence brain imaging that have the same interpretation across acquisitions and satisfy the proposed criteria. We compare the performance of different normalization methods in thousands of images of patients with Alzheimer's disease, hundreds of patients with multiple sclerosis, and hundreds of healthy subjects obtained in several different studies at dozens of imaging centers.

  17. Automated medical image segmentation techniques

    OpenAIRE

    Sharma Neeraj; Aggarwal Lalit

    2010-01-01

    Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT) and Magnetic resonance (MR) imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits ...

  18. NMR imaging technique

    International Nuclear Information System (INIS)

    This invention provides a method that can be adapted to existing NMR tomographic scanners of producing spectra of any given point in the image of the specimen slice, the intensity distribution of a selected resonance within an area of the image of the specimen slice, or an entire NMR spectrum of the given area. The method comprises acquiring n projections of the specimen slice, where n is greater than 1. Each of the projections is then shifted by Δ f for the point (the frequency offset of the signal arising from the point, from the true chemical shift)

  19. Review of advanced imaging techniques

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2012-01-01

    Full Text Available Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images ("optical biopsies" at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy. This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques.

  20. EDITORIAL: Imaging Systems and Techniques Imaging Systems and Techniques

    Science.gov (United States)

    Giakos, George; Yang, Wuqiang; Petrou, M.; Nikita, K. S.; Pastorino, M.; Amanatiadis, A.; Zentai, G.

    2011-10-01

    This special feature on Imaging Systems and Techniques comprises 27 technical papers, covering essential facets in imaging systems and techniques both in theory and applications, from research groups spanning three different continents. It mainly contains peer-reviewed articles from the IEEE International Conference on Imaging Systems and Techniques (IST 2011), held in Thessaloniki, Greece, as well a number of articles relevant to the scope of this issue. The multifaceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment, and the technological revolution; there is an urgent need to address and propose dynamic and innovative solutions to problems that tend to be either complex and static or rapidly evolving with a lot of unknowns. For instance, exploration of the engineering and physical principles of new imaging systems and techniques for medical applications, remote sensing, monitoring of space resources and enhanced awareness, exploration and management of natural resources, and environmental monitoring, are some of the areas that need to be addressed with urgency. Similarly, the development of efficient medical imaging techniques capable of providing physiological information at the molecular level is another important area of research. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, using high resolution and high selectivity nanoimaging techniques, can play an important role in the diagnosis and treatment of cancer, as well as provide efficient drug-delivery imaging solutions for disease treatment with increased sensitivity and specificity. On the other hand, technical advances in the development of efficient digital imaging systems and techniques and tomographic devices operating on electric impedance tomography, computed tomography, single-photon emission and positron emission tomography detection principles are anticipated to have a significant impact on a

  1. Functional brain imaging; Funktionelle Hirnbildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Gizewski, E.R. [Medizinische Universitaet Innsbruck, Universitaetsklinik fuer Neuroradiologie, Innsbruck (Austria)

    2016-02-15

    Functional magnetic resonance imaging (fMRI) is a non-invasive method that has become one of the major tools for understanding human brain function and in recent years has also been developed for clinical applications. Changes in hemodynamic signals correspond to changes in neuronal activity with good spatial and temporal resolution in fMRI. Using high-field MR systems and increasingly dedicated statistics and postprocessing, activated brain areas can be detected and superimposed on anatomical images. Currently, fMRI data are often combined in multimodal imaging, e. g. with diffusion tensor imaging (DTI) sequences. This method is helping to further understand the physiology of cognitive brain processes and is also being used in a number of clinical applications. In addition to the blood oxygenation level-dependent (BOLD) signals, this article deals with the construction of fMRI investigations, selection of paradigms and evaluation in the clinical routine. Clinically, this method is mainly used in the planning of brain surgery, analyzing the location of brain tumors in relation to eloquent brain areas and the lateralization of language processing. As the BOLD signal is dependent on the strength of the magnetic field as well as other limitations, an overview of recent developments is given. Increases of magnetic field strength (7 T), available head coils and advances in MRI analytical methods have led to constant improvement in fMRI signals and experimental design. Especially the depiction of eloquent brain regions can be done easily and quickly and has become an essential part of presurgical planning. (orig.) [German] Mittlerweile ist die funktionelle MRT (fMRT) eine Methode, die nicht mehr nur in der neurowissenschaftlichen Routine verwendet wird. Die fMRT ermoeglicht die nichtinvasive Darstellung der Hirnaktivitaet in guter raeumlicher und zeitlicher Aufloesung unter Ausnutzung der Durchblutungsaenderung aufgrund der erhoehten Nervenzellaktivitaet. Unter

  2. Hybrid ultrasound imaging techniques(fusion imaging)

    Institute of Scientific and Technical Information of China (English)

    Daniela Larisa Sandulescu; Daniela Dumitrescu; Ion Rogoveanu; Adrian Saftoiu

    2011-01-01

    Visualization of tumor angiogenesis can facilitate noninvasive evaluation of tumor vascular characteristics to supplement the conventional diagnostic imaging goals of depicting tumor location,size,and morphology.Hybrid imaging techniques combine anatomic [ultrasound,computed tomography(CT),and/or magnetic resonance imaging(MRI)] and molecular(single photon emission CT and positron emission tomography)imaging modalities.One example is real-time virtual sonography,which combines ultrasound(grayscale,colour Doppler,or dynamic contrast harmonic imaging)with contrast-enhanced CT/MRI.The benefits of fusion imaging include an increased diagnostic confidence,direct comparison of the lesions using different imaging modalities,more precise monitoring of interventional procedures,and reduced radiation exposure.

  3. Quantitative imaging of brain chemistry

    International Nuclear Information System (INIS)

    We can now measure how chemicals affect different regions of the human brain. One area involves the study of drugs - in-vivo neuro-pharmacology; another involves the study of toxic chemical effects - in vivo neurotoxicology. The authors approach is to label drugs with positron-emitting radioactive tracers - chiefly carbon-11 with a half-life of 20 minutes and fluorine-18 with a half-life of 110 minutes. The labeled drugs are injected intravenously and a positron emission tomography (PET) scanner is used to map out the distribution of the radioactivity within the brain from the moment of injection until about 90 minutes later. Mathematical models are used to calculate receptor concentrations and the affinity of the receptors for the injected radioactive tracer. By means of PET scanning, they look at cross sections or visual slices throughout the human brain, obtaining computer-generated images in any plane. The authors are investigating the functions of specific drugs or specific receptors, as well as looking at the metabolic activity in different parts of the brain as revealed in glucose metabolism. For example, the authors are studying opiate receptors in patients with a variety of conditions: those who suffer from chronic pain, those who are congenitally insensitive to pain and drug addicts. They are studying patients with schizophrenia, tardive dyskinesia, Parkinson's disease, Huntington's disease, depressed patients and sex-offenders. They are relating the state of the neurotransmitter/neuroreceptor systems to behavior. In essence, they believe that they can now examine in living human beings what relates the structure of the brain to the function of the mind that is chemistry

  4. Nuclear magnetic resonance imaging in brain tumors

    International Nuclear Information System (INIS)

    Full text: Magnetic resonance imaging (MRI) is a non-invasive imaging method based on the detecting signal from hydrogen nuclei of water molecules and fat. Performances of MRI are continuously increasing, and its domains of investigation of the human body are growing in both morphological and functional study. MRI also allows It also performing advanced management of tumours especially in the brain, by combining anatomical information (morphological MRI), functional (diffusion, perfusion and BOLD contrast) and metabolic (tissue composition in magnetic resonance spectroscopy (MRS)). The MRI techniques have an important role in cancerology. These techniques allow essential information for the diagnosis and answering therapist's questions before, during or after the treatment. The MR allows clarifying the localization of expanding processes, the differential diagnosis between brain tumour and a lesion confined by another structural aspect, the diagnosis of the tumoral aspect of a lesion, the histological ranking in case of glial tumour and the extension of its localization as well as the therapeutic follow-up (pre-therapeutic and post-therapeutics assessments). A better combination between the morphological, functional and metabolic studies, as well as integrating new technical developments, especially while using a multichannel bird cage coils the 3T magnet and suitable computing software, would allow significant improvements of the exploration strategies and management of brain tumors.

  5. Simultaneous multislice (SMS) imaging techniques.

    Science.gov (United States)

    Barth, Markus; Breuer, Felix; Koopmans, Peter J; Norris, David G; Poser, Benedikt A

    2016-01-01

    Simultaneous multislice imaging (SMS) using parallel image reconstruction has rapidly advanced to become a major imaging technique. The primary benefit is an acceleration in data acquisition that is equal to the number of simultaneously excited slices. Unlike in-plane parallel imaging this can have only a marginal intrinsic signal-to-noise ratio penalty, and the full acceleration is attainable at fixed echo time, as is required for many echo planar imaging applications. Furthermore, for some implementations SMS techniques can reduce radiofrequency (RF) power deposition. In this review the current state of the art of SMS imaging is presented. In the Introduction, a historical overview is given of the history of SMS excitation in MRI. The following section on RF pulses gives both the theoretical background and practical application. The section on encoding and reconstruction shows how the collapsed multislice images can be disentangled by means of the transmitter pulse phase, gradient pulses, and most importantly using multichannel receiver coils. The relationship between classic parallel imaging techniques and SMS reconstruction methods is explored. The subsequent section describes the practical implementation, including the acquisition of reference data, and slice cross-talk. Published applications of SMS imaging are then reviewed, and the article concludes with an outlook and perspective of SMS imaging. PMID:26308571

  6. Study on Image Steganography Techniques

    Directory of Open Access Journals (Sweden)

    C.Gayathri

    2013-04-01

    Full Text Available Steganography is a secret Communication to hide the secret Data. It is an invisible communication that hides data like text, image, and audio, video etc .The secret message is inserted into the image files. The image files can use stego-key to hide the data and the resultant image is called as stego-image. This is most important for the internet users to share their secret data in an efficient manner. Steganography plays an important role in defence. Various steganographic techniques areanalyzed and its pros and cons are highlighted in this paper.

  7. Advances in brain imaging of neuropathic pain

    Institute of Scientific and Technical Information of China (English)

    CHEN Fu-yong; TAO Wei; LI Yong-jie

    2008-01-01

    Objective To review the literature on the use of brain imaging,including functional magnetic resonance imaging(fMRI), positron emission tomography(PET),magnetic resonance spectroscopy(MRS)and voxel-based morphometry(VBM)in investigation of the activity in diverse brain regions that creates and modulates chronic neuropathic pain. Data sources English literatures from January 1,2000 to July 31,2007 that examined human brain activity in chronic neuropathic pain were accessed through MEDLINE/CD ROM,using PET,fMRI,VBM,MRS and receptor binding. Study selection Published articles about the application of fMRI,PET,VBM,MRS and chronic neuropathic pain were selected. Data extraction Data were mainly extracted from 40 representative articles as the research basis. Results The PET studies suggested that spontaneous neuropathic pain is associated with changes in thalamic activity. Both PET and fMRI have been used to investigate the substrate of allodynia.The VBM demonstrated that brain structural changes are involved in chronic neuropathic pain,which is not seen in a matched control group.However,the results obtained had a large variety,which may be due to different pain etiology,pain distribution,lesion tomography,symptoms and stimulation procedures. Conclusions Application of the techniques of brain imaging plays a very important role in the study of structural and functional reorganization In patients with neuropathic pain.However,a unique"pain matrix" has not been defined.Future studies should be conducted using a prospective longitudinal research design,which would guarantee the control for many confounding factors.

  8. Atypical pyogenic brain abscess evaluation by diffusion-weighted imaging: diagnosis with multimodality MR imaging.

    Science.gov (United States)

    Ozbayrak, Mustafa; Ulus, Ozden Sila; Berkman, Mehmet Zafer; Kocagoz, Sesin; Karaarslan, Ercan

    2015-10-01

    Whether a brain abscess is apparent by imaging depends on the stage of the abscess at the time of imaging, as well as the etiology of the infection. Because conventional magnetic resonance imaging (MRI) is limited in its ability to distinguish brain abscesses from necrotic tumors, advanced techniques are required. The management of these two disease entities differs and can potentially affect the clinical outcome. We report a case having atypical imaging features of a pyogenic brain abscess on advanced MRI, in particular, on diffusion-weighted and perfusion imaging, in a patient with osteosarcoma undergoing chemotherapy.

  9. Brain imaging in lung cancer patients without symptoms of brain metastases: a national survey of current practice in England

    International Nuclear Information System (INIS)

    Aim: To determine current practice regarding brain imaging for newly diagnosed lung cancer patients without symptoms of brain metastases. Materials and methods: A survey questionnaire was sent by e-mail to all the lung cancer lead clinicians in England currently on the National Cancer Intelligence Network database. The survey asked whether brain imaging was used in new lung cancer patients without symptoms or signs to suggest brain metastases; and if so, which patient subgroups were imaged according to cell type, stage of disease, and intention to treat, and which techniques were used to image these patients. Responses were received between February and May 2014. Results: Fifty-nine of 154 centres replied to the survey (38%). Thirty of the 59 centres (51%) did not image the brain in these patients. Twenty-nine of the 59 (49%) centres imaged the brain in at least certain subgroups. Of those centres that did image the brain 21 (72%) used CT as the first-line imaging technique and six (20%) used MRI. Twenty-five of 59 (42%) centres stated that the 2011 NICE guidelines had led to a change in their practice. Conclusion: There is wide variation in practice regarding brain imaging in this patient group in England, with no brain imaging at all in approximately half of centres and a spectrum of imaging in the other half. When the brain is imaged, CT is the technique most commonly used. The 2011 NICE guidelines have led to some change in practice but not to national uniformity. - Highlights: • Ascertain current practice in brain imaging for staging asymptomatic lung cancer patients. • Survey questionnaire sent to all the lung cancer lead clinicians in England. • Wide variation in practice with regard to brain imaging in this patient group. • No brain imaging at all in approximately half of centres and a spectrum of imaging in the other half • The 2011 NICE guidelines have led to some change in practice but not to national uniformity

  10. A Primer on Brain Imaging in Developmental Psychopathology: What Is It Good For?

    Science.gov (United States)

    Pine, Daniel S.

    2006-01-01

    This primer introduces a Special Section on brain imaging, which includes a commentary and 10 data papers presenting applications of brain imaging to questions on developmental psychopathology. This primer serves two purposes. First, the article summarizes the strength and weaknesses of various brain-imaging techniques typically employed in…

  11. Role of Hybrid Brain Imaging in Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Amer M. Burhan

    2015-12-01

    Full Text Available This is a focused review of imaging literature to scope the utility of hybrid brain imaging in neuropsychiatric disorders. The review focuses on brain imaging modalities that utilize hybrid (fusion techniques to characterize abnormal brain molecular signals in combination with structural and functional changes that have been observed in neuropsychiatric disorders. An overview of clinical hybrid brain imaging technologies for human use is followed by a selective review of the literature that conceptualizes the use of these technologies in understanding basic mechanisms of major neuropsychiatric disorders and their therapeutics. Neuronal network abnormalities are highlighted throughout this review to scope the utility of hybrid imaging as a potential biomarker for each disorder.

  12. Automated in situ brain imaging for mapping the Drosophila connectome.

    Science.gov (United States)

    Lin, Chi-Wen; Lin, Hsuan-Wen; Chiu, Mei-Tzu; Shih, Yung-Hsin; Wang, Ting-Yuan; Chang, Hsiu-Ming; Chiang, Ann-Shyn

    2015-01-01

    Mapping the connectome, a wiring diagram of the entire brain, requires large-scale imaging of numerous single neurons with diverse morphology. It is a formidable challenge to reassemble these neurons into a virtual brain and correlate their structural networks with neuronal activities, which are measured in different experiments to analyze the informational flow in the brain. Here, we report an in situ brain imaging technique called Fly Head Array Slice Tomography (FHAST), which permits the reconstruction of structural and functional data to generate an integrative connectome in Drosophila. Using FHAST, the head capsules of an array of flies can be opened with a single vibratome sectioning to expose the brains, replacing the painstaking and inconsistent brain dissection process. FHAST can reveal in situ brain neuroanatomy with minimal distortion to neuronal morphology and maintain intact neuronal connections to peripheral sensory organs. Most importantly, it enables the automated 3D imaging of 100 intact fly brains in each experiment. The established head model with in situ brain neuroanatomy allows functional data to be accurately registered and associated with 3D images of single neurons. These integrative data can then be shared, searched, visualized, and analyzed for understanding how brain-wide activities in different neurons within the same circuit function together to control complex behaviors.

  13. In vivo calcium imaging of the aging and diseased brain

    Energy Technology Data Exchange (ETDEWEB)

    Eichhoff, Gerhard; Busche, Marc A.; Garaschuk, Olga [Technical University of Munich, Institute of Neuroscience, Munich (Germany)

    2008-03-15

    Over the last decade, in vivo calcium imaging became a powerful tool for studying brain function. With the use of two-photon microscopy and modern labelling techniques, it allows functional studies of individual living cells, their processes and their interactions within neuronal networks. In vivo calcium imaging is even more important for studying the aged brain, which is hard to investigate in situ due to the fragility of neuronal tissue. In this article, we give a brief overview of the techniques applicable to image aged rodent brain at cellular resolution. We use multicolor imaging to visualize specific cell types (neurons, astrocytes, microglia) as well as the autofluorescence of the ''aging pigment'' lipofuscin. Further, we illustrate an approach for simultaneous imaging of cortical cells and senile plaques in mouse models of Alzheimer's disease. (orig.)

  14. A Novel Approach for MRI Brain Images Segmentation

    Directory of Open Access Journals (Sweden)

    Abo-Eleneen Z. A

    2013-03-01

    Full Text Available Segmentation of brain from magnetic resonance (MR images has important applications in neuroimaging, in particular it facilitates in extracting different brain tissues such as cerebrospinal fluids, white matter and gray matter. That helps in determining the volume of the tissues in three-dimensional brain MR images, which yields in analyzing many neural disorders such as epilepsy and Alzheimer disease. The Fisher information is a measure of the fluctuations in the observations. In a sense, the Fisher information of an image specifies the quality of the image. In this paper, we developed a new thresholding method using the Fisher information measure and intensity contrast to segment medical images. It is the weighted sum of the Fisher information measure and intensity contrast between the object and background. This technique is a powerful method for noisy image segmentation. The method applied on a normal MR brain images and a glioma MR brain images. Experimental results show that the use of the Fisher information effectively segmented MR brain images.

  15. Imaging of cerebritis, encephalitis, and brain abscess.

    Science.gov (United States)

    Rath, Tanya J; Hughes, Marion; Arabi, Mohammad; Shah, Gaurang V

    2012-11-01

    Imaging plays an important role in the diagnosis and treatment of brain abscess, pyogenic infection, and encephalitis. The role of CT and MRI in the diagnosis and management of pyogenic brain abscess and its complications is reviewed. The imaging appearances of several common and select uncommon infectious encephalitides are reviewed. Common causes of encephalitis in immunocompromised patients, and their imaging appearances, are also discussed. When combined with CSF, serologic studies and patient history, imaging findings can suggest the cause of encephalitis. PMID:23122258

  16. Diffuse Optical Tomography for Brain Imaging: Theory

    Science.gov (United States)

    Yuan, Zhen; Jiang, Huabei

    Diffuse optical tomography (DOT) is a noninvasive, nonionizing, and inexpensive imaging technique that uses near-infrared light to probe tissue optical properties. Regional variations in oxy- and deoxy-hemoglobin concentrations as well as blood flow and oxygen consumption can be imaged by monitoring spatiotemporal variations in the absorption spectra. For brain imaging, this provides DOT unique abilities to directly measure the hemodynamic, metabolic, and neuronal responses to cells (neurons), and tissue and organ activations with high temporal resolution and good tissue penetration. DOT can be used as a stand-alone modality or can be integrated with other imaging modalities such as fMRI/MRI, PET/CT, and EEG/MEG in studying neurophysiology and pathology. This book chapter serves as an introduction to the basic theory and principles of DOT for neuroimaging. It covers the major aspects of advances in neural optical imaging including mathematics, physics, chemistry, reconstruction algorithm, instrumentation, image-guided spectroscopy, neurovascular and neurometabolic coupling, and clinical applications.

  17. AN ANN BASED BRAIN ABNORMALITY DETECTION USING MR IMAGES

    Directory of Open Access Journals (Sweden)

    K.V. Kulhalli

    2013-02-01

    Full Text Available The Main purpose of this paper is to design, implement and evaluate a strong automatic diagnostic system that increases the accuracy of tumor diagnosis in brain using MR images. This presented work classifies the brain tissues as normal or abnormal automatically, using computer vision. This saves lot of radiologist time to carryout monotonous repeated job. The acquired MR images are processed using image preprocessing techniques. The preprocessed images are then segmented, and the various features are extracted. The extracted features are fed to the artificial neural network as input that trains the network using error back propagation algorithm for correct decision making.

  18. Neurolight -astonishing advances in brain imaging.

    Science.gov (United States)

    Rojczyk-Gołębiewska, Ewa; Pałasz, Artur; Worthington, John J; Markowski, Grzegorz; Wiaderkiewicz, Ryszard

    2015-02-01

    In recent years, significant advances in basic neuroanatomical studies have taken place. Moreover, such classical, clinically-oriented human brain imaging methods such as MRI, PET and DTI have been applied to small laboratory animals allowing improvement in current experimental neuroscience. Contemporary structural neurobiology also uses various technologies based on fluorescent proteins. One of these is optogenetics, which integrates physics, genetics and bioengineering to enable temporal precise control of electrical activity of specific neurons. Another important challenge in the field is the accurate imaging of complicated neural networks. To address this problem, three-dimensional reconstruction techniques and retrograde labeling with modified viruses has been developed. However, a revolutionary step was the invention of the "Brainbow" system, utilizing gene constructs including the sequences of fluorescent proteins and the usage of Cre recombinase to create dozens of colour combinations, enabling visualization of neurons and their connections in extremely high resolution. Furthermore, the newly- introduced CLARITY method should make it possible to visualize three-dimensionally the structure of translucent brain tissue using the hydrogel polymeric network. This original technique is a big advance in neuroscience creating novel viewpoints completely different than standard glass slide immunostaining.

  19. Lesion detection in magnetic resonance brain images by hyperspectral imaging algorithms

    Science.gov (United States)

    Xue, Bai; Wang, Lin; Li, Hsiao-Chi; Chen, Hsian Min; Chang, Chein-I.

    2016-05-01

    Magnetic Resonance (MR) images can be considered as multispectral images so that MR imaging can be processed by multispectral imaging techniques such as maximum likelihood classification. Unfortunately, most multispectral imaging techniques are not particularly designed for target detection. On the other hand, hyperspectral imaging is primarily developed to address subpixel detection, mixed pixel classification for which multispectral imaging is generally not effective. This paper takes advantages of hyperspectral imaging techniques to develop target detection algorithms to find lesions in MR brain images. Since MR images are collected by only three image sequences, T1, T2 and PD, if a hyperspectral imaging technique is used to process MR images it suffers from the issue of insufficient dimensionality. To address this issue, two approaches to nonlinear dimensionality expansion are proposed, nonlinear correlation expansion and nonlinear band ratio expansion. Once dimensionality is expanded hyperspectral imaging algorithms are readily applied. The hyperspectral detection algorithm to be investigated for lesion detection in MR brain is the well-known subpixel target detection algorithm, called Constrained Energy Minimization (CEM). In order to demonstrate the effectiveness of proposed CEM in lesion detection, synthetic images provided by BrainWeb are used for experiments.

  20. Identifying brain neoplasms using dye-enhanced multimodal confocal imaging

    Science.gov (United States)

    Wirth, Dennis; Snuderl, Matija; Sheth, Sameer; Kwon, Churl-Su; Frosch, Matthew P.; Curry, William; Yaroslavsky, Anna N.

    2012-02-01

    Brain tumors cause significant morbidity and mortality even when benign. Completeness of resection of brain tumors improves quality of life and survival; however, that is often difficult to accomplish. The goal of this study was to evaluate the feasibility of using multimodal confocal imaging for intraoperative detection of brain neoplasms. We have imaged different types of benign and malignant, primary and metastatic brain tumors. We correlated optical images with histopathology and evaluated the possibility of interpreting confocal images in a manner similar to pathology. Surgical specimens were briefly stained in 0.05 mg/ml aqueous solution of methylene blue (MB) and imaged using a multimodal confocal microscope. Reflectance and fluorescence signals of MB were excited at 642 nm. Fluorescence emission of MB was registered between 670 and 710 nm. After imaging, tissues were processed for hematoxylin and eosin (H&E) histopathology. The results of comparison demonstrate good correlation between fluorescence images and histopathology. Reflectance images provide information about morphology and vascularity of the specimens, complementary to that provided by fluorescence images. Multimodal confocal imaging has the potential to aid in the intraoperative detection of microscopic deposits of brain neoplasms. The application of this technique may improve completeness of resection and increase patient survival.

  1. A versatile new technique to clear mouse and human brain

    Science.gov (United States)

    Costantini, Irene; Di Giovanna, Antonino Paolo; Allegra Mascaro, Anna Letizia; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Sacconi, Leonardo; Pavone, Francesco S.

    2015-07-01

    Large volumes imaging with microscopic resolution is limited by light scattering. In the last few years based on refractive index matching, different clearing approaches have been developed. Organic solvents and water-based optical clearing agents have been used for optical clearing of entire mouse brain. Although these methods guarantee high transparency and preservation of the fluorescence, though present other non-negligible limitations. Tissue transformation by CLARITY allows high transparency, whole brain immunolabelling and structural and molecular preservation. This method however requires a highly expensive refractive index matching solution limiting practical applicability. In this work we investigate the effectiveness of a water-soluble clearing agent, the 2,2'-thiodiethanol (TDE) to clear mouse and human brain. TDE does not quench the fluorescence signal, is compatible with immunostaining and does not introduce any deformation at sub-cellular level. The not viscous nature of the TDE make it a suitable agent to perform brain slicing during serial two-photon (STP) tomography. In fact, by improving penetration depth it reduces tissue slicing, decreasing the acquisition time and cutting artefacts. TDE can also be used as a refractive index medium for CLARITY. The potential of this method has been explored by imaging a whole transgenic mouse brain with the light sheet microscope. Moreover we apply this technique also on blocks of dysplastic human brain tissue transformed with CLARITY and labeled with different antibody. This clearing approach significantly expands the application of single and two-photon imaging, providing a new useful method for quantitative morphological analysis of structure in mouse and human brain.

  2. Three-dimensional microtomographic imaging of human brain cortex

    CERN Document Server

    Mizutania, Ryuta; Uesugi, Kentaro; Ohyama, Masami; Takekoshi, Susumu; Osamura, R Yoshiyuki; Suzuki, Yoshio

    2016-01-01

    This paper describes an x-ray microtomographic technique for imaging the three-dimensional structure of the human cerebral cortex. Neurons in the brain constitute a neural circuit as a three-dimensional network. The brain tissue is composed of light elements that give little contrast in a hard x-ray transmission image. The contrast was enhanced by staining neural cells with metal compounds. The obtained structure revealed the microarchitecture of the gray and white matter regions of the frontal cortex, which is responsible for the higher brain functions.

  3. Linking brain imaging signals to visual perception.

    Science.gov (United States)

    Welchman, Andrew E; Kourtzi, Zoe

    2013-11-01

    The rapid advances in brain imaging technology over the past 20 years are affording new insights into cortical processing hierarchies in the human brain. These new data provide a complementary front in seeking to understand the links between perceptual and physiological states. Here we review some of the challenges associated with incorporating brain imaging data into such "linking hypotheses," highlighting some of the considerations needed in brain imaging data acquisition and analysis. We discuss work that has sought to link human brain imaging signals to existing electrophysiological data and opened up new opportunities in studying the neural basis of complex perceptual judgments. We consider a range of approaches when using human functional magnetic resonance imaging to identify brain circuits whose activity changes in a similar manner to perceptual judgments and illustrate these approaches by discussing work that has studied the neural basis of 3D perception and perceptual learning. Finally, we describe approaches that have sought to understand the information content of brain imaging data using machine learning and work that has integrated multimodal data to overcome the limitations associated with individual brain imaging approaches. Together these approaches provide an important route in seeking to understand the links between physiological and psychological states.

  4. Understanding Diffusion MR Imaging Techniques: From Scalar Diffusion-weighted Imaging to Diffusion Tensor Imaging and Beyond

    OpenAIRE

    Hagmann, P.; Jonasson, L.; Maeder, P; Thiran, Jean-Philippe; Wedeen, V.; Meuli, R

    2006-01-01

    The complex structural organization of the white matter of the brain can be depicted in vivo in great detail with advanced diffusion magnetic resonance (MR) imaging schemes. Diffusion MR imaging techniques are increasingly varied, from the simplest and most commonly used technique —the mapping of apparent diffusion coefficient values— to the more complex, such as diffusion tensor imaging, q-ball imaging, diffusion spectrum imaging, and tractography. The type of structural information obtained...

  5. MR image-guided portal verification for brain treatment field

    International Nuclear Information System (INIS)

    Purpose: To investigate a method for the generation of digitally reconstructed radiographs directly from MR images (DRR-MRI) to guide a computerized portal verification procedure. Methods and Materials: Several major steps were developed to perform an MR image-guided portal verification procedure. Initially, a wavelet-based multiresolution adaptive thresholding method was used to segment the skin slice-by-slice in MR brain axial images. Some selected anatomical structures, such as target volume and critical organs, were then manually identified and were reassigned to relatively higher intensities. Interslice information was interpolated with a directional method to achieve comparable display resolution in three dimensions. Next, a ray-tracing method was used to generate a DRR-MRI image at the planned treatment position, and the ray tracing was simply performed on summation of voxels along the ray. The skin and its relative positions were also projected to the DRR-MRI and were used to guide the search of similar features in the portal image. A Canny edge detector was used to enhance the brain contour in both portal and simulation images. The skin in the brain portal image was then extracted using a knowledge-based searching technique. Finally, a Chamfer matching technique was used to correlate features between DRR-MRI and portal image. Results: The MR image-guided portal verification method was evaluated using a brain phantom case and a clinical patient case. Both DRR-CT and DRR-MRI were generated using CT and MR phantom images with the same beam orientation and then compared. The matching result indicated that the maximum deviation of internal structures was less than 1 mm. The segmented results for brain MR slice images indicated that a wavelet-based image segmentation technique provided a reasonable estimation for the brain skin. For the clinical patient case with a given portal field, the MR image-guided verification method provided an excellent match between

  6. Brain imaging studies of sleep disorder

    International Nuclear Information System (INIS)

    Brain imaging studies of narcolepsy (NA)/cataplexy (CA), a typical sleep disorder, are summarized together with techniques of functional and structural imaging means. single photon emission CT (SPECT) is based on the distribution of tracers labeled by single photon emitters like 99mTc and 123I for seeing the blood flow and receptors. PET using positron emitters like 15O and 18F for blood flow and for glucose metabolism, respectively, is of higher resolution and more quantitative than SPECT. Functional MRI (fMRI) depicts the cerebral activity through signal difference by blood oxygenation level dependence (BOLD) effect, and MR spectroscopy (MRS) depicts and quantifies biomaterials through the difference of their nuclear chemical shifts in the magnetic field. Morphologic imaging studies involve the measurement of the volume of the region of interest by comparison with the reference region such as the whole brain volume. Voxel-based morphometry (VBM) has changed to its more advanced surface-based analysis (SBA) of T1-enhanced image. Diffusion tensor imaging (DTI) is based on the tissue water diffusion. Functional SPECT/PET studies have suggested the decrease of blood flow and metabolic activity in the hypothalamus (HT) and other related regions at the conscious resting state, and locally increased blood flow in cingulate gyrus (CG) and amygdaloid complex (AC) at affective CA/PA seizure. fMRI has suggested the hypoactivity of HT and hyperactivity of AC at the seizure. VBM-based studies have not given the consistent results, but DTI studies have suggested an important participation of AC at the seizure. (T.T.)

  7. SU-E-J-39: Comparison of PTV Margins Determined by In-Room Stereoscopic Image Guidance and by On-Board Cone Beam Computed Tomography Technique for Brain Radiotherapy Patients

    International Nuclear Information System (INIS)

    Purpose: Stereoscopic in room kV image guidance is a faster tool in daily monitoring of patient positioning. Our centre, for the first time in the world, has integrated such a solution from BrainLAB (ExacTrac) with Elekta's volumetric cone beam computed tomography (XVI). Using van Herk's formula, we compared the planning target volume (PTV) margins calculated by both these systems for patients treated with brain radiotherapy. Methods: For a total of 24 patients who received partial or whole brain radiotherapy, verification images were acquired for 524 treatment sessions by XVI and for 334 sessions by ExacTrac out of the total 547 sessions. Systematic and random errors were calculated in cranio-caudal, lateral and antero-posterior directions for both techniques. PTV margins were then determined using van Herk formula. Results: In the cranio-caudal direction, systematic error, random error and the calculated PTV margin were found to be 0.13 cm, 0.12 cm and 0.41 cm with XVI and 0.14 cm, 0.13 cm and 0.44 cm with ExacTrac. The corresponding values in lateral direction were 0.13 cm 0.1 cm and 0.4 cm with XVI and 0.13 cm, 0.12 cm and 0.42 cm with ExacTrac imaging. The same parameters for antero-posterior were for 0.1 cm, 0.11 cm and 0.34 cm with XVI and 0.13 cm, 0.16 cm and 0.43 cm with ExacTrac imaging. The margins estimated with the two imaging modalities were comparable within ± 1 mm limit. Conclusion: Verification of setup errors in the major axes by two independent imaging systems showed the results are comparable and within ± 1 mm. This implies that planar imaging based ExacTrac can yield equal accuracy in setup error determination as the time consuming volumetric imaging which is considered as the gold standard. Accordingly PTV margins estimated by this faster imaging technique can be confidently used in clinical setup

  8. SU-E-J-39: Comparison of PTV Margins Determined by In-Room Stereoscopic Image Guidance and by On-Board Cone Beam Computed Tomography Technique for Brain Radiotherapy Patients

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, T; Paul, S; Munshi, A; Sarkar, B; Krishnankutty, S; Sathya, J; George, S; Jassal, K; Roy, S; Mohanti, B [Fortis Memorial Research Institute, Gurgaon (India)

    2014-06-01

    Purpose: Stereoscopic in room kV image guidance is a faster tool in daily monitoring of patient positioning. Our centre, for the first time in the world, has integrated such a solution from BrainLAB (ExacTrac) with Elekta's volumetric cone beam computed tomography (XVI). Using van Herk's formula, we compared the planning target volume (PTV) margins calculated by both these systems for patients treated with brain radiotherapy. Methods: For a total of 24 patients who received partial or whole brain radiotherapy, verification images were acquired for 524 treatment sessions by XVI and for 334 sessions by ExacTrac out of the total 547 sessions. Systematic and random errors were calculated in cranio-caudal, lateral and antero-posterior directions for both techniques. PTV margins were then determined using van Herk formula. Results: In the cranio-caudal direction, systematic error, random error and the calculated PTV margin were found to be 0.13 cm, 0.12 cm and 0.41 cm with XVI and 0.14 cm, 0.13 cm and 0.44 cm with ExacTrac. The corresponding values in lateral direction were 0.13 cm 0.1 cm and 0.4 cm with XVI and 0.13 cm, 0.12 cm and 0.42 cm with ExacTrac imaging. The same parameters for antero-posterior were for 0.1 cm, 0.11 cm and 0.34 cm with XVI and 0.13 cm, 0.16 cm and 0.43 cm with ExacTrac imaging. The margins estimated with the two imaging modalities were comparable within ± 1 mm limit. Conclusion: Verification of setup errors in the major axes by two independent imaging systems showed the results are comparable and within ± 1 mm. This implies that planar imaging based ExacTrac can yield equal accuracy in setup error determination as the time consuming volumetric imaging which is considered as the gold standard. Accordingly PTV margins estimated by this faster imaging technique can be confidently used in clinical setup.

  9. Brain MR imaging in dietarily treated phenylketonuria

    Energy Technology Data Exchange (ETDEWEB)

    Breysem, L. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Smet, M.H. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Johannik, K. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Hecke, P. van [Dept. of Radiology, University Hospitals, Leuven (Belgium); Francois, B. [L. Willems Inst., Diepenbeek (Belgium); Wilms, G. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Bosmans, H. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Marchal, G. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Jaeken, J. [Dept. of Pediatrics, University Hospitals, Leuven (Belgium); Demaerel, P. [Dept. of Radiology, University Hospitals, Leuven (Belgium)

    1994-08-01

    Magnetic resonance imaging is the most efficient imaging modality to evaluate brain gray and white matter of patients with metabolic diseases. The main purpose of our study was to investigate the relation between brain MRI abnormalities and the phenylalanine (phe) and tyrosine (tyr) blood levels in 38 phenylketonuria (PKU) patients. Increased periventricular white matter intensity on T2-weighted brain images was the only pathologic finding in 24 patients. Brain MRI abnormalities were scored (4) and correlated with the individual mean phe and phe/tyr levels during 1 year preceding MR examination and with phe tolerance. The residual activity of phenylalanine hydroxylase was defined for each patient by an oral phe tolerance. The appearance of MRI abnormalities on brain T2-weighted images correlates with a threshold mean phe level (averaged over the year preceding the examination). (orig.)

  10. Exploring brain function with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Since its invention in the early 1990s, functional magnetic resonance imaging (fMRI) has rapidly assumed a leading role among the techniques used to localize brain activity. The spatial and temporal resolution provided by state-of-the-art MR technology and its non-invasive character, which allows multiple studies of the same subject, are some of the main advantages of fMRI over the other functional neuroimaging modalities that are based on changes in blood flow and cortical metabolism. This paper describes the basic principles and methodology of fMRI and some aspects of its application to functional activation studies. Attention is focused on the physiology of the blood oxygenation level-dependent (BOLD) contrast mechanism and on the acquisition of functional time-series with echo planar imaging (EPI). We also provide an introduction to the current strategies for the correction of signal artefacts and other image processing techniques. In order to convey an idea of the numerous applications of fMRI, we will review some of the recent results in the fields of cognitive and sensorimotor psychology and physiology

  11. Raman Imaging Techniques and Applications

    CERN Document Server

    2012-01-01

    Raman imaging has long been used to probe the chemical nature of a sample, providing information on molecular orientation, symmetry and structure with sub-micron spatial resolution. Recent technical developments have pushed the limits of micro-Raman microscopy, enabling the acquisition of Raman spectra with unprecedented speed, and opening a pathway to fast chemical imaging for many applications from material science and semiconductors to pharmaceutical drug development and cell biology, and even art and forensic science. The promise of tip-enhanced raman spectroscopy (TERS) and near-field techniques is pushing the envelope even further by breaking the limit of diffraction and enabling nano-Raman microscopy.

  12. STEREOLOGICAL EVALUATION OF BRAIN MAGNETIC RESONANCE IMAGES OF SCHIZOPHRENIC PATIENTS

    Directory of Open Access Journals (Sweden)

    Amani Abdelrazag Elfaki

    2013-11-01

    Full Text Available Advances in neuroimaging have enabled studies of specific neuroanatomical abnormalities with relevance to schizophrenia. This study quantified structural alterations on brain magnetic resonance (MR images of patients with schizophrenia. MR brain imaging was done on 88 control and 57 schizophrenic subjects and Dicom images were analyzed with ImageJ software. The brain volume was estimated with the planimetric stereological technique. The volume fraction of brain structures was also estimated. The results showed that, the mean volume of right, left, and total hemispheres in controls were 551, 550, and 1101 cm³, respectively. The mean volumes of right, left, and total hemispheres in schizophrenics were 513, 512, and 1026 cm³, respectively. The schizophrenics’ brains were smaller than the controls (p < 0.05. The mean volume of total white matter of controls (516 cm³ was bigger than the schizophrenics’ volume (451 cm³, (p < 0.05. The volume fraction of total white matter was also lower in schizophrenics (p < 0.05. Volume fraction of the lateral ventricles was higher in schizophrenics (p < 0.05. According to the findings, the volumes of schizophrenics’ brain were smaller than the controls and the volume fractional changes in schizophrenics showed sex dependent differences. We conclude that stereological analysis of MR brain images is useful for quantifying schizophrenia related structural changes.

  13. Wavelet Based Image Denoising Technique

    Directory of Open Access Journals (Sweden)

    Sachin D Ruikar

    2011-03-01

    Full Text Available This paper proposes different approaches of wavelet based image denoising methods. The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. Wavelet algorithms are useful tool for signal processing such as image compression and denoising. Multi wavelets can be considered as an extension of scalar wavelets. The main aim is to modify the wavelet coefficients in the new basis, the noise can be removed from the data. In this paper, we extend the existing technique and providing a comprehensive evaluation of the proposed method. Results based on different noise, such as Gaussian, Poisson’s, Salt and Pepper, and Speckle performed in this paper. A signal to noise ratio as a measure of the quality of denoising was preferred.

  14. Functional imaging and related techniques: An introduction for rehabilitation researchers

    Directory of Open Access Journals (Sweden)

    Bruce Crosson, PhD

    2010-04-01

    Full Text Available Over the past 25 years, techniques to image brain structure and function have offered investigators in the cognitive neurosciences and related fields unprecedented opportunities to study how human brain systems work and are connected. Indeed, the number of peer-reviewed research articles using these techniques has grown at an exponential rate during this period. Inevitably, investigators have become interested in mapping neuroplastic changes that support learning and memory using functional neuroimaging, and concomitantly, rehabilitation researchers have become interested in mapping changes in brain systems responsible for treatment effects during the rehabilitation of patients with stroke, traumatic brain injury, and other brain injury or disease. This new rehabilitation research and development arena is important because a greater understanding of how and why brain systems remap in the service of rehabilitation will lead to the development of better treatments.

  15. Imaging Techniques for Microwave Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Donne, T. [FOM-Institute for Plasma Physics Rijnhuizen, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Luhmann Jr, N.C. [University of California, Davis, CA 95616 (United States); Park, H.K. [POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Tobias, B.

    2011-07-01

    Advances in microwave technology have made it possible to develop a new generation of microwave imaging diagnostics for measuring the parameters of magnetic fusion devices. The most prominent of these diagnostics is electron cyclotron emission imaging (ECE-I). After the first generation of ECE-I diagnostics utilized at the TEXT-U, RTP and TEXTOR tokamaks and the LHD stellarator, new systems have recently come into operation on ASDEX-UG and DIII-D, soon to be followed by a system on KSTAR. The DIII-D and KSTAR systems feature dual imaging arrays that observe different parts of the plasma. The ECE-I diagnostic yields two-dimensional movies of the electron temperature in the plasma and has given already new insights into the physics of sawtooth oscillations, tearing modes and edge localized modes. Microwave Imaging Reflectometry (MIR) is used on LHD to measure electron density fluctuations. A pilot MIR system has been tested at TEXTOR and, based on the promising results, a new system is now under design for KSTAR. The system at TEXTOR was used to measure the plasma rotation velocity. The system at KSTAR and also the one on LHD will be/are used for measuring the profile of the electron density fluctuations in the plasma. Other microwave imaging diagnostics are phase imaging interferometry, and imaging microwave scattering. The emphasis in this paper will be largely focused on ECE-I. First an overview of the advances in microwave technology are discussed, followed by a description of a typical ECE-I system along with some typical experimental results. Also the utilization of imaging techniques in other types of microwave diagnostics will be briefly reviewed. This document is composed of the slides of the presentation. (authors)

  16. Natural image classification driven by human brain activity

    Science.gov (United States)

    Zhang, Dai; Peng, Hanyang; Wang, Jinqiao; Tang, Ming; Xue, Rong; Zuo, Zhentao

    2016-03-01

    Natural image classification has been a hot topic in computer vision and pattern recognition research field. Since the performance of an image classification system can be improved by feature selection, many image feature selection methods have been developed. However, the existing supervised feature selection methods are typically driven by the class label information that are identical for different samples from the same class, ignoring with-in class image variability and therefore degrading the feature selection performance. In this study, we propose a novel feature selection method, driven by human brain activity signals collected using fMRI technique when human subjects were viewing natural images of different categories. The fMRI signals associated with subjects viewing different images encode the human perception of natural images, and therefore may capture image variability within- and cross- categories. We then select image features with the guidance of fMRI signals from brain regions with active response to image viewing. Particularly, bag of words features based on GIST descriptor are extracted from natural images for classification, and a sparse regression base feature selection method is adapted to select image features that can best predict fMRI signals. Finally, a classification model is built on the select image features to classify images without fMRI signals. The validation experiments for classifying images from 4 categories of two subjects have demonstrated that our method could achieve much better classification performance than the classifiers built on image feature selected by traditional feature selection methods.

  17. Image Registration Concept and Techniques: A Review

    Directory of Open Access Journals (Sweden)

    Sombir Singh Bisht

    2014-04-01

    Full Text Available In the past few years the global need for low computation, less time consuming, and good quality image mapping methods has caused an image registration technique alive in multiple application areas. Image registration is the method of superimposition the pixels or control points from one image over another image namely the target image and reference image respectively. The concentration is on various methods of mapping parameters. Input images are reference image and the sensed image. Basically image registration is of two types Area based and Feature based. Area based works on the intensity of image and feature based is based on feature points or objects of image. Also the simple and efficient registration techniques are very essential in many application areas. This paper presents a review on image registration techniques as well as the hybrid registration approach. Many authors have also reported the modified registration techniques, each technique is reviewed according to its merits and drawbacks.

  18. Brain MR imaging in child abuse

    International Nuclear Information System (INIS)

    Intracranial injuries represent the most severe manifestation of child abuse. CT of the brain is the current standard for evaluation of these infants; however, MR imaging offers several potential advantages. MR imaging and CT were performed in ten infants who suffered intracranial trauma owing to child abuse. CT was slightly better at demonstrating subarachnoid hemorrhage and had definite advantages for defining fractures. MR imaging was superior in the demonstration of subacute extraaxial hemorrhage, deep brain injuries owing to shearing effects from shaking, and anoxic injuries. MR imaging has a definite complementary role in the evaluation of acute intracranial trauma in child abuse victims

  19. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping.

    Science.gov (United States)

    Studholme, Colin

    2011-08-15

    The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.

  20. Novel optical system for neonatal brain imaging

    Science.gov (United States)

    Chen, Yu; Zhou, Shuoming; Nioka, Shoko; Chance, Britton; Anday, Endla; Ravishankar, Sudha; Delivoria-Papadopoulos, Maria

    1999-03-01

    A highly portable, fast, safe and affordable imaging system that provides interpretable images of brain function in full- and pre-term neonates within a few seconds has been applied to neonates with normal and pathological states. We have used a uniquely sensitive optical tomography system, termed phased array, which has revealed significant functional responses, particularly to parietal stimulation in neonate brain. This system can indicate the blood concentration and oxygenation change during the parietal brain activation in full- and pre-term neonates. The preliminary clinical results, especially a longitudinal study of a cardiac arrest neonate, suggest a variety of future applications.

  1. Differential MRI Diagnosis Between Brain Abscess and Necrotic or Cystic Brain Tumors Using Diffusion Weighted Images

    Directory of Open Access Journals (Sweden)

    Zinat Miabi

    2009-01-01

    Full Text Available "nIntroduction: Differentiating brain abscesses from cystic or necrotic tumors by CT or MR imaging can be difficult. Difficulties in the diagnosis of intracranial abscess are mainly due to the combination of often unspecified clinical findings and similarities in the morphologic appearance of some intracranial mass lesions, such as cystic gliomas, metastases, and brain abscesses. Diffusion-weighted imaging provides a way to evaluate the diffusion properties of water molecules in tissue and has been used for diseases such as ischemia, tumors, epilepsy, and white matter disorders. The goal of this study was to evaluate the diagnostic utility of diffusion MRI to differentiate between brain abscesses and necrotic or cystic brain tumors. "nMaterials and Methods: MRI was performed in 17 patients (12 men and five women; age range, 19–74 years [mean, 55 years] with necrotic lesions and MR imaging evidence of ring-shaped enhancement after the injection of contrast material .In addition to standard MR sequences diffusion weighted MRI with apparent coefficient (ADC maps. "nResults: Eleven patients had tumors, and six had pyogenic abscesses. The tumors were glioblastomas (five patients, anaplastic astrocytoma (three patients, metastases (three patients, and primary malignancy, including lung (2 and breast (1 cancer. Surgical or stereotactic biopsies were obtained, and histologic studies were performed in all except one case (case 5. In the cases of abscess, bacteriologic analysis was also conducted. None of these lesions appeared hemorrhagic on T1-weighted images. "nConclusion: Diffusion-weighted imaging is useful for differentiating brain abscess from cystic or necrotic brain tumor, which is often difficult with conventional MR imaging. Diffusion-weighted imaging is useful as an additional imaging technique for establishing the differential diagnosis between brain abscesses and cystic or necrotic brain tumors. It requires less imaging time and is more

  2. Mathematical Morphology Techniques For Image Processing Applications In Biomedical Imaging

    Science.gov (United States)

    Bartoo, Grace T.; Kim, Yongmin; Haralick, Robert M.; Nochlin, David; Sumi, Shuzo M.

    1988-06-01

    Mathematical morphology operations allow object identification based on shape and are useful for grouping a cluster of small objects into one object. Because of these capabilities, we have implemented and evaluated this technique for our study of Alzheimer's disease. The microscopic hallmark of Alzheimer's disease is the presence of brain lesions known as neurofibrillary tangles and senile plaques. These lesions have distinct shapes compared to normal brain tissue. Neurofibrillary tangles appear as flame-shaped structures, whereas senile plaques appear as circular clusters of small objects. In order to quantitatively analyze the distribution of these lesions, we have developed and applied the tools of mathematical morphology on the Pixar Image Computer. As a preliminary test of the accuracy of the automatic detection algorithm, a study comparing computer and human detection of senile plaques was performed by evaluating 50 images from 5 different patients. The results of this comparison demonstrates that the computer counts correlate very well with the human counts (correlation coefficient = .81). Now that the basic algorithm has been shown to work, optimization of the software will be performed to improve its speed. Also future improvements such as local adaptive thresholding will be made to the image analysis routine to further improve the systems accuracy.

  3. Magnetic resonance imaging of brain death

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.H.; Nathanson, J.A.; Fox, A.J.; Pelz, D.M.; Lownie, S.P.

    1995-06-01

    In order to demonstrate the magnetic resonance imaging (MRI) appearance of the brain in patients with clinical brain death, high-field MRI was performed on 5 patients using conventional T1-weighted and T2-weighted imaging. The study showed MRI exhibited similar features for all of the patients, features which were not found in MRI of comatose patients who were not clinically brain dead. It was stated that up to now the most important limitation in MRI of patients with suspected brain death has been the extreme difficulty of moving them out of the intensive care setting. If this problem can be overcome, and it appears possible with with the advent of MRI-compatible ventilators and noninvasive monitoring, MRI could become an excellent alternative for confirming clinical diagnosis of brain death for such patients. 15 refs., 3 figs.

  4. Brain magnetic resonance imaging with contrast dependent on blood oxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W. (AT and T Bell Laboratories, Murray Hill, NJ (United States))

    1990-12-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity.

  5. Brain magnetic resonance imaging with contrast dependent on blood oxygenation

    International Nuclear Information System (INIS)

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity

  6. Brain and nervous system (image)

    Science.gov (United States)

    ... complicated and interconnected functions of the body and mind. Motor, sensory cognitive and autonomic function are all coordinated and driven by the brain and nerves. As people age, nerve cells deteriorated ...

  7. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    Science.gov (United States)

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…

  8. Perfusion harmonic imaging of the human brain

    Science.gov (United States)

    Metzler, Volker H.; Seidel, Guenter; Wiesmann, Martin; Meyer, Karsten; Aach, Til

    2003-05-01

    The fast visualisation of cerebral microcirculation supports diagnosis of acute cerebrovascular diseases. However, the commonly used CT/MRI-based methods are time consuming and, moreover, costly. Therefore we propose an alternative approach to brain perfusion imaging by means of ultrasonography. In spite of the low signal/noise-ratio of transcranial ultrasound and the high impedance of the skull, flow images of cerebral blood flow can be derived by capturing the kinetics of appropriate contrast agents by harmonic ultrasound image sequences. In this paper we propose three different methods for human brain perfusion imaging, each of which yielding flow images indicating the status of the patient's cerebral microcirculation by visualising local flow parameters. Bolus harmonic imaging (BHI) displays the flow kinetics of bolus injections, while replenishment (RHI) and diminution harmonic imaging (DHI) compute flow characteristics from contrast agent continuous infusions. RHI measures the contrast agents kinetics in the influx phase and DHI displays the diminution kinetics of the contrast agent acquired from the decay phase. In clinical studies, BHI- and RHI-parameter images were found to represent comprehensive and reproducible distributions of physiological cerebral blood flow. For DHI it is shown, that bubble destruction and hence perfusion phenomena principally can be displayed. Generally, perfusion harmonic imaging enables reliable and fast bedside imaging of human brain perfusion. Due to its cost efficiency it complements cerebrovascular diagnostics by established CT/MRI-based methods.

  9. Magnetic resonance imaging of a brain abscess

    International Nuclear Information System (INIS)

    Magnetic resonance imaging (MRI) was performed on 13 patients with brain abscesses, and the alternation of MRI findings, as correlated with the progression of brain-abscess formation, was reviewed. In the cerebritis stage, spin-echo images showed a high intensity, and inversion-recovery images, a low intensity, due to inflammation and edema. The spin-echo images were very sensitive in delineating the brain edema; however, it was difficult to distinguish the inflammation from the surrounding edema. In the capsule stage, due to the accumulation of purulent material, the central necrotic area was demonstrated as a low-intensity area, while the capsule of the abscess was revealed as an iso-intensity ring on the inversion-recovery images. The central necrotic area also decreased in intensity on spin-echo images in the later period of this stage. With contrast enhancement (Gd-DTPA), the SR image showed the capsule as a high-intensity ring. MRI was found to be a useful method for estimating the process of the formation of a brain abscess. (author)

  10. Magnetic resonance imaging of a brain abscess

    Energy Technology Data Exchange (ETDEWEB)

    Oikawa, Akihiro; Kagawa, Mizuo; Yatoh, Seiji; Izawa, Masahiro; Ujiie, Hiroshi; Sakaguchi, Jun; Onda, Hideaki; Kitamura, Kohichi

    1988-06-01

    Magnetic resonance imaging (MRI) was performed on 13 patients with brain abscesses, and the alternation of MRI findings, as correlated with the progression of brain-abscess formation, was reviewed. In the cerebritis stage, spin-echo images showed a high intensity, and inversion-recovery images, a low intensity, due to inflammation and edema. The spin-echo images were very sensitive in delineating the brain edema; however, it was difficult to distinguish the inflammation from the surrounding edema. In the capsule stage, due to the accumulation of purulent material, the central necrotic area was demonstrated as a low-intensity area, while the capsule of the abscess was revealed as an iso-intensity ring on the inversion-recovery images. The central necrotic area also decreased in intensity on spin-echo images in the later period of this stage. With contrast enhancement (Gd-DTPA), the SR image showed the capsule as a high-intensity ring. MRI was found to be a useful method for estimating the process of the formation of a brain abscess.

  11. Brain imaging, genetics and emotion

    NARCIS (Netherlands)

    Aleman, Andre; Swart, Marte; van Rijn, Sophie

    2008-01-01

    This paper reviews the published evidence on genetically driven variation in neurotransmitter function and brain circuits involved in emotion. Several studies point to a role of the serotonin transporter promoter polymorphism in amygdala activation during emotion perception. We also discuss other po

  12. Noninvasive, in vivo imaging of the mouse brain using photoacoustic microscopy

    OpenAIRE

    Stein, Erich W.; Maslov, Konstantin; Wang, Lihong V.

    2009-01-01

    Noninvasive, high resolution imaging of mouse brain activity is poised to provide clinically translatable insights into human neurological disease progression. Toward noninvasive imaging of brain activity through the hemodynamic response, the dark-field photoacoustic microscopy (PAM) technique was enhanced to image the cortex vasculature of the mouse brain in vivo using endogenous hemoglobin contrast. Specifically, the PAM system was redesigned to efficiently collect photoacoustic waves origi...

  13. TWO STAGE SPATIAL DOMAIN IMAGE FUSION TECHNIQUES

    Directory of Open Access Journals (Sweden)

    C. Morris

    2014-08-01

    Full Text Available The objective of Image fusion is to combine the information from number of images of the same scene from different sensors or the images with focus on different objects. The result of image fusion is an image which is more informative and of better quality. In this paper a detailed survey of Select Maximum /minimum and principal component analysis for spatial domain image fusion techniques is done. On the basis of the survey an improved spatial domain fusion technique is proposed. The proposed spatial domain technique output performs as the state of the art spatial domain techniques.

  14. Generating text from functional brain images

    Directory of Open Access Journals (Sweden)

    Francisco ePereira

    2011-08-01

    Full Text Available Recent work has shown that it is possible to take brain images acquired during viewing of a scene and reconstruct an approximation of the scene from those images. Here we show that it is also possible to generate text about the mental content reflected in brain images. We began with images collected as participants read names of concrete items (e.g., "Apartment" while also seeing line drawings of the item named. We built a model of the mental semantic representation of concrete concepts from text data and learned to map aspects of such representation to patterns of activation in the corresponding brain image. In order to validate this mapping, without accessing information about the items viewed for left-out individual brain images, we were able to generate from each one a collection of semantically pertinent words (e.g., "door," "window" for "Apartment". Furthermore, we show that the ability to generate such words allows us to perform a classification task and thus validate our method quantitatively.

  15. MR imaging of regional late brain development

    International Nuclear Information System (INIS)

    This paper reports, to complement current knowledge on brain development, late regional brain maturation assessed with quantitative MR imaging. Axial and coronal head spin-echo (SE) images were obtained in 60 healthy individuals aged 5--56 years, with a double-echo, flow compensated imaging sequence obtained with a 1.5-T Magnetom spectroscopy and imaging system. T2-weighted images were calculated from the intensity differences in SE images at echo times (TEs) of 15 and 90 msec (TR = 2.5 second). The mean T2 values were determined at 16 sites in each cerebral hemisphere. T2 values of the six frontal subcortical white matter (FSCWM) sites and of the internal capsule (IC) were evaluated. Mean T2 values in the IC decreased until age 10 years, whereas this decrease continued in the FSCWM past age 15 years before reaching a plateau. Differential age-dependent patterns of mean T2 values emerged between the six FSCWM sites. The spread of T2 values varied at different sites independent of the age of the individuals. T2- values have previously been shown to reflect the status of brain development. The authors' data on the six FSCWM sites and the IC extend these findings to specific substructures of the brain. Interindividual variations and technical issues are responsible for the observed spread of data

  16. Four-view spect brain imaging detector

    International Nuclear Information System (INIS)

    This paper reports that with increasing use of single photon radiopharmaceuticals for brain imaging, there is a growing demand for efficient, economical SPECT brain imaging instrumentation. This new multiple view imaging detector design has the sensitivity advantages of an array of four discrete cameras, but functions essentially like a single camera head. Four separate flat crystals are surrounded with PMT's which perform as a single array for photon event detection. Unique windows on adjoining crystal edges are coupled to corner light pipe/PMT assemblies. Reduced edge packing range, and sharing of corner PMT's allows a compact assembly volume, even with 3 inch PMT's. The imaging volume is approximately a 23 centimeter cube, and the imaging electronics are nearly the same as used in a single 64 PMT gamma camera

  17. Modern Trends in Imaging IX: Biophotonics Techniques for Structural and Functional Imaging, In Vivo

    Directory of Open Access Journals (Sweden)

    Yasaman Ardeshirpour

    2012-01-01

    Full Text Available In vivo optical imaging is being conducted in a variety of medical applications, including optical breast cancer imaging, functional brain imaging, endoscopy, exercise medicine, and monitoring the photodynamic therapy and progress of neoadjuvant chemotherapy. In the past three decades, in vivo diffuse optical breast cancer imaging has shown promising results in cancer detection, and monitoring the progress of neoadjuvant chemotherapy. The use of near infrared spectroscopy for functional brain imaging has been growing rapidly. In fluorescence imaging, the difference between autofluorescence of cancer lesions compared to normal tissues were used in endoscopy to distinguish malignant lesions from normal tissue or inflammation and in determining the boarders of cancer lesions in surgery. Recent advances in drugs targeting specific tumor receptors, such as AntiBodies (MAB, has created a new demand for developing non-invasive in vivo imaging techniques for detection of cancer biomarkers, and for monitoring their down regulations during therapy. Targeted treatments, combined with new imaging techniques, are expected to potentially result in new imaging and treatment paradigms in cancer therapy. Similar approaches can potentially be applied for the characterization of other disease-related biomarkers. In this chapter, we provide a review of diffuse optical and fluorescence imaging techniques with their application in functional brain imaging and cancer diagnosis.

  18. New approaches in intelligent image analysis techniques, methodologies and applications

    CERN Document Server

    Nakamatsu, Kazumi

    2016-01-01

    This book presents an Introduction and 11 independent chapters, which are devoted to various new approaches of intelligent image processing and analysis. The book also presents new methods, algorithms and applied systems for intelligent image processing, on the following basic topics: Methods for Hierarchical Image Decomposition; Intelligent Digital Signal Processing and Feature Extraction; Data Clustering and Visualization via Echo State Networks; Clustering of Natural Images in Automatic Image Annotation Systems; Control System for Remote Sensing Image Processing; Tissue Segmentation of MR Brain Images Sequence; Kidney Cysts Segmentation in CT Images; Audio Visual Attention Models in Mobile Robots Navigation; Local Adaptive Image Processing; Learning Techniques for Intelligent Access Control; Resolution Improvement in Acoustic Maps. Each chapter is self-contained with its own references. Some of the chapters are devoted to the theoretical aspects while the others are presenting the practical aspects and the...

  19. Brain 'imaging' in the Renaissance.

    Science.gov (United States)

    Paluzzi, Alessandro; Belli, Antonio; Bain, Peter; Viva, Laura

    2007-12-01

    During the Renaissance, a period of 'rebirth' for humanities and science, new knowledge and speculation began to emerge about the function of the human body, replacing ancient religious and philosophical dogma. The brain must have been a fascinating mystery to a Renaissance artist, but some speculation existed at that time on the function of its parts. Here we show how revived interest in anatomy and life sciences may have influenced the figurative work of Italian and Flemish masters, such as Rafael, Michelangelo and David. We present a historical perspective on the artists and the period in which they lived, their fascination for human anatomy and its symbolic use in their art. Prior to the 16th century, knowledge of the brain was limited and influenced in a dogmatic way by the teachings of Galen(1) who, as we now know, conducted his anatomical studies not on humans but on animals.(2) Nemesus, Bishop of Emesa, in around the year 400 was one of the first to attribute mental faculties to the brain, specifically to the ventricles. He identified two anterior (lateral) ventricles, to which he assigned perception, a middle ventricle responsible for cognition and a posterior ventricle for memory.(2,3) After a long period of stasis in the Middle Ages, Renaissance scholars realized the importance of making direct observations on dissected cadavers. Between 1504 and 1507, Leonardo da Vinci conducted experiments to reveal the anatomy of the ventricular system in the brain. He injected hot wax through a tube thrust into the ventricular cavities of an ox and then scraped the overlying brain off, thus obtaining, in a simple but ingenious way, an accurate cast of the ventricles.(2,4) Leonardo shared the belief promoted by scholarly Christians that the ventricles were the abode of rational soul. We have several examples of hidden symbolism in Renaissance paintings, but the influence of phrenology and this rudimentary knowledge of neuroanatomy on artists of that period is under

  20. Molecular imaging of the brain. Using multi-quantum coherence and diagnostics of brain disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kaila, M.M. [New South Wales Univ., Sydney, NSW (Australia). School of Physics; Kaila, Rakhi [Univ. of New South Wales, Sydney (Australia). School of Medicine

    2013-11-01

    Explains the basics of the MRI and its use in the diagnostics and the treatment of the human brain disorders. Examines multi-quantum magnetic resonance imaging methods and the diagnostics of brain disorders. Covers how in a non-invasive manner one can diagnose diseases of the brain. This book examines multi-quantum magnetic resonance imaging methods and the diagnostics of brain disorders. It consists of two Parts. The part I is initially devoted towards the basic concepts of the conventional single quantum MRI techniques. It is supplemented by the basic knowledge required to understand multi-quantum MRI. Practical illustrations are included both on recent developments in conventional MRI and the MQ-MRI. This is to illustrate the connection between theoretical concepts and their scope in the clinical applications. The Part II initially sets out the basic details about quadrupole charge distribution present in certain nuclei and their importance about the functions they perform in our brain. Some simplified final mathematical expressions are included to illustrate facts about the basic concepts of the quantum level interactions between magnetic dipole and the electric quadrupole behavior of useful nuclei present in the brain. Selected practical illustrations, from research and clinical practices are included to illustrate the newly emerging ideas and techniques. The reader should note that the two parts of the book are written with no interdependence. One can read them quite independently.

  1. Assessment of vessel diameters for MR brain angiography processed images

    Science.gov (United States)

    Moraru, Luminita; Obreja, Cristian-Dragos; Moldovanu, Simona

    2015-12-01

    The motivation was to develop an assessment method to measure (in)visible differences between the original and the processed images in MR brain angiography as a method of evaluation of the status of the vessel segments (i.e. the existence of the occlusion or intracerebral vessels damaged as aneurysms). Generally, the image quality is limited, so we improve the performance of the evaluation through digital image processing. The goal is to determine the best processing method that allows an accurate assessment of patients with cerebrovascular diseases. A total of 10 MR brain angiography images were processed by the following techniques: histogram equalization, Wiener filter, linear contrast adjustment, contrastlimited adaptive histogram equalization, bias correction and Marr-Hildreth filter. Each original image and their processed images were analyzed into the stacking procedure so that the same vessel and its corresponding diameter have been measured. Original and processed images were evaluated by measuring the vessel diameter (in pixels) on an established direction and for the precise anatomic location. The vessel diameter is calculated using the plugin ImageJ. Mean diameter measurements differ significantly across the same segment and for different processing techniques. The best results are provided by the Wiener filter and linear contrast adjustment methods and the worst by Marr-Hildreth filter.

  2. Image reconstruction for brain CT slices

    Institute of Scientific and Technical Information of China (English)

    吴建明; 施鹏飞

    2004-01-01

    Different modalities in biomedical images, like CT, MRI and PET scanners, provide detailed cross-sectional views of human anatomy. This paper introduces three-dimensional brain reconstruction based on CT slices. It contains filtering, fuzzy segmentation, matching method of contours, cell array structure and image animation. Experimental results have shown its validity. The innovation is matching method of contours and fuzzy segmentation algorithm of CT slices.

  3. 利用新型扩散成像技术研究年老对大脑微观结构的影响%Investigating the effect of aging on the microstructure of brain with novel diffusion imaging techniques

    Institute of Scientific and Technical Information of China (English)

    邵涵钰

    2016-01-01

    了解年老过程中大脑在细胞水平上发生的变化对于揭示老年人认知功能下降的原因有重要意义。扩散MRI (diffusion MRI,dMRI)技术是目前惟一可以无创探查活体组织微观结构的方法。扩散张量成像(DTI,diffusion tensor imaging)是临床上最常用的一种dMRI技术,但是由于某些固有缺陷,它不能充分刻画大脑组织的微观结构。作者介绍三种可以有效弥补DTI不足的新型扩散成像方法:扩散峰度成像(diffusion kurtosis imaging,DKI),扩散的受阻受限合成模型(composite hindered and restricted model of diffusion,CHARMED)和神经突方向离散度与密度成像(neurite orientation dispersion and density imaging, NODDI)。联合使用DTI和这些新技术,研究者可以更深入地了解年老如何影响大脑的微观结构。%Understanding brain alterations taking place at the cell level during aging is of great importance for revealing the underlying reasons of the cognitive decline in older individuals. Diffusion magnetic resonance imaging (dMRI) provides a unique non-invasive probe into the microstructure of biological tissue in vivo. Diffusion tensor imaging (DTI) is now the most widely used dMRI technique in clinic. However, due to its some inherent limitations, it fails to fully characterize the microstructural properties of the brain tissues. Specifically, (1) DTI assumes a single diffusion process following a Gaussian distribution within each voxel, this assumption is b-value dependent and prohibits DTI from characterization of the actual non-Gaussian diffusion in brain tissues caused by obstacles such as cell membranes and organelles. (2) Diffusion parameters derived from DTI are sensitive, but non-specific to underlying structural changes. (3) DTI-based fiber tractography cannot resolve fiber crossings. (4) DTI is less applicable to investigate the microstructural changes in gray matter. Several more advanced techniques of diffusion are

  4. Radionuclide brain imaging in acquired immunodeficiency syndrome (AIDS)

    Energy Technology Data Exchange (ETDEWEB)

    Costa, D.C.; Gacinovic, S.; Miller, R.F. [London University College Medical School, Middlesex Hospital, London (United Kingdom)

    1995-09-01

    Infection with the Human Immunodeficiency Virus type 1 (HIV-1) may produce a variety of central nervous system (CNS) symptoms and signs. CNS involvement in patients with the Acquired Immunodeficiency Syndrome (AIDS) includes AIDS dementia complex or HIV-1 associated cognitive/motor complex (widely known as HIV encephalopathy), progressive multifocal leucoencephalopathy (PML), opportunistic infections such as Toxoplasma gondii, TB, Cryptococcus and infiltration by non-Hodgkin`s B cell lymphoma. High resolution structural imaging investigations, either X-ray Computed Tomography (CT scan) or Magnetic Resonance Imaging (MRI) have contributed to the understanding and definition of cerebral damage caused by HIV encephalopathy. Atrophy and mainly high signal scattered white matter abnormalities are commonly seen with MRI. PML produces focal white matter high signal abnormalities due to multiple foci of demyelination. However, using structural imaging techniques there are no reliable parameters to distinguish focal lesions due to opportunistic infection (Toxoplasma gondii abscess) from neoplasm (lymphoma infiltration). It is studied the use of radionuclide brain imaging techniques in the investigation of HIV infected patients. Brain perfusion Single Photon Emission Tomography (SPET), neuroreceptor and Positron Emission Tomography (PET) studies are reviewed. Greater emphasis is put on the potential of some radiopharmaceuticals, considered to be brain tumour markers, to distinguish intracerebral lymphoma infiltration from Toxoplasma infection. SPET with {sup 201}Tl using quantification (tumour to non-tumour radioactivity ratios) appears a very promising technique to identify intracerebral lymphoma.

  5. Radionuclide brain imaging in acquired immunodeficiency syndrome (AIDS)

    International Nuclear Information System (INIS)

    Infection with the Human Immunodeficiency Virus type 1 (HIV-1) may produce a variety of central nervous system (CNS) symptoms and signs. CNS involvement in patients with the Acquired Immunodeficiency Syndrome (AIDS) includes AIDS dementia complex or HIV-1 associated cognitive/motor complex (widely known as HIV encephalopathy), progressive multifocal leucoencephalopathy (PML), opportunistic infections such as Toxoplasma gondii, TB, Cryptococcus and infiltration by non-Hodgkin's B cell lymphoma. High resolution structural imaging investigations, either X-ray Computed Tomography (CT scan) or Magnetic Resonance Imaging (MRI) have contributed to the understanding and definition of cerebral damage caused by HIV encephalopathy. Atrophy and mainly high signal scattered white matter abnormalities are commonly seen with MRI. PML produces focal white matter high signal abnormalities due to multiple foci of demyelination. However, using structural imaging techniques there are no reliable parameters to distinguish focal lesions due to opportunistic infection (Toxoplasma gondii abscess) from neoplasm (lymphoma infiltration). It is studied the use of radionuclide brain imaging techniques in the investigation of HIV infected patients. Brain perfusion Single Photon Emission Tomography (SPET), neuroreceptor and Positron Emission Tomography (PET) studies are reviewed. Greater emphasis is put on the potential of some radiopharmaceuticals, considered to be brain tumour markers, to distinguish intracerebral lymphoma infiltration from Toxoplasma infection. SPET with 201Tl using quantification (tumour to non-tumour radioactivity ratios) appears a very promising technique to identify intracerebral lymphoma

  6. Automatic segmentation of brain images: selection of region extraction methods

    Science.gov (United States)

    Gong, Leiguang; Kulikowski, Casimir A.; Mezrich, Reuben S.

    1991-07-01

    In automatically analyzing brain structures from a MR image, the choice of low level region extraction methods depends on the characteristics of both the target object and the surrounding anatomical structures in the image. The authors have experimented with local thresholding, global thresholding, and other techniques, using various types of MR images for extracting the major brian landmarks and different types of lesions. This paper describes specifically a local- binary thresholding method and a new global-multiple thresholding technique developed for MR image segmentation and analysis. The initial testing results on their segmentation performance are presented, followed by a comparative analysis of the two methods and their ability to extract different types of normal and abnormal brain structures -- the brain matter itself, tumors, regions of edema surrounding lesions, multiple sclerosis lesions, and the ventricles of the brain. The analysis and experimental results show that the global multiple thresholding techniques are more than adequate for extracting regions that correspond to the major brian structures, while local binary thresholding is helpful for more accurate delineation of small lesions such as those produced by MS, and for the precise refinement of lesion boundaries. The detection of other landmarks, such as the interhemispheric fissure, may require other techniques, such as line-fitting. These experiments have led to the formulation of a set of generic computer-based rules for selecting the appropriate segmentation packages for particular types of problems, based on which further development of an innovative knowledge- based, goal directed biomedical image analysis framework is being made. The system will carry out the selection automatically for a given specific analysis task.

  7. Simultaneous imaging of MR angiographic image and brain surface image using steady-state free precession

    Energy Technology Data Exchange (ETDEWEB)

    Takane, Atsushi; Tsuda, Munetaka (Hitachi Ltd., Katsuta, Ibaraki (Japan)); Koizumi, Hideaki; Koyama, Susumu; Yoshida, Takeyuki

    1993-09-01

    Synthesis of a brain surface image and an angiographic image representing brain surface vasculatures can be useful for pre-operational contemplation of brain surgery. Both brain surface images and brain surface vasculature images were successfully acquired simultaneously utilizing both FID signals and time-reversed FID signals created under steady-state free precession (SSFP). This simultaneous imaging method has several advantages. No positional discrepancies between both images and prolongation of scan time are anticipated because of concurrent acquisition of the two kinds of image data. Superimposition and stereo-display of both images enable understanding of their spatial relationship, and therefore afford a useful means for pre-operational simulation of brain surgery. (author).

  8. Imaging Techniques in Endodontics: An Overview

    OpenAIRE

    Deepak, B. S.; T S Subash; Narmatha, V. J.; Anamika, T.; Snehil, T. K.; D B Nandini

    2012-01-01

    This review provides an overview of the relevance of imaging techniques such as, computed tomography, cone beam computed tomography, and ultrasound, to endodontic practice. Many limitations of the conventional radiographic techniques have been overcome by the newer methods. Advantages and disadvantages of various imaging techniques in endodontic practice are also discussed.

  9. Round Randomized Learning Vector Quantization for Brain Tumor Imaging

    Science.gov (United States)

    2016-01-01

    Brain magnetic resonance imaging (MRI) classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ) is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function.

  10. Round Randomized Learning Vector Quantization for Brain Tumor Imaging

    Directory of Open Access Journals (Sweden)

    Siti Norul Huda Sheikh Abdullah

    2016-01-01

    Full Text Available Brain magnetic resonance imaging (MRI classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function.

  11. Brain Imaging Studies of Developmental Stuttering.

    Science.gov (United States)

    Ingham, Roger J.

    2001-01-01

    A review of research on brain imaging of developmental stuttering concludes that findings increasingly point to a failure of normal temporal lobe activation during speech that may either contribute to (or is the result of) a breakdown in the sequencing of processing among premotor regions implicated in phonologic planning. (Contains references.)…

  12. Color Image Enhancement Techniques: A Critical Review

    Directory of Open Access Journals (Sweden)

    Anish Kumar Vishwakarma

    2012-02-01

    Full Text Available Image enhancement is one of the key issues in high quality pictures such as digital camera and HDTV. Since Image clarity is very easily affected by lighting, weather, or equipment that has been used to capture the image. These conditions lead to image may suffer from loss of information. As a result, many techniques have developed known as image Enhancement techniques to recover the information in an image. This paper presents a literature review on some of the image Enhancement techniques for color image enhancement like, Contrast Stretching, Histogram Equalization and its improvement versions, Homomorphic Filtering, Retinex, and Wavelet Multiscale Transform. Comparison of all the techniques concludes the better approach for its future research.

  13. Diffusion tensor imaging and fiber tractography in brain malformations

    Energy Technology Data Exchange (ETDEWEB)

    Poretti, Andrea; Meoded, Avner; Huisman, Thierry A.G.M. [The Johns Hopkins University School of Medicine, Division of Pediatric Radiology, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Rossi, Andrea [G. Gaslini Institue, Pediatric Neuroradiology, Genova (Italy); Raybaud, Charles [University of Toronto, Department of Neuroradiology, Hospital for Sick Children, Toronto, ON (Canada)

    2013-01-15

    Diffusion tensor imaging (DTI) is an advanced MR technique that provides qualitative and quantitative information about the micro-architecture of white matter. DTI and its post-processing tool fiber tractography (FT) have been increasingly used in the last decade to investigate the microstructural neuroarchitecture of brain malformations. This article aims to review the use of DTI and FT in the evaluation of a variety of common, well-described brain malformations, in particular by pointing out the additional information that DTI and FT renders compared with conventional MR sequences. In addition, the relevant existing literature is summarized. (orig.)

  14. MR imaging of acute hemorrhagic brain infarction

    International Nuclear Information System (INIS)

    Six patients with acute hemorrhagic brain infarct were imaged using spin-echo (SE) pulse sequences on a 1.5 Tesla MR scanner. Including two patients with repeated MR imaging, a total of eight examinations, all performed within 15 days after stroke, were analyzed retrospectively. Four patients revealed massive hemorrhages in the basal ganglia or cerebellum and three cases demonstrated multiple linear hemorrhages in the cerebral cortex. On T1-weighted images, hemorrhages were either mildly or definitely hyperintense relative to gray matter, while varied from mildly hypointense to hyperintense on T2-weighted images. T1-weighted images were superior to T2-weighted images in detection of hemorrhgage. CT failed to detect hemorrhage in two of five cases: indicative of MR superiority to CT in the diagnosis of acute hemorrhagic infarcts. (author)

  15. MR imaging of acute hemorrhagic brain infarction

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, Akira; Ohnari, Norihiro; Ohno, Masato (Kyushu Rosai Hospital, Fukuoka (Japan))

    1989-11-01

    Six patients with acute hemorrhagic brain infarct were imaged using spin-echo (SE) pulse sequences on a 1.5 Tesla MR scanner. Including two patients with repeated MR imaging, a total of eight examinations, all performed within 15 days after stroke, were analyzed retrospectively. Four patients revealed massive hemorrhages in the basal ganglia or cerebellum and three cases demonstrated multiple linear hemorrhages in the cerebral cortex. On T1-weighted images, hemorrhages were either mildly or definitely hyperintense relative to gray matter, while varied from mildly hypointense to hyperintense on T2-weighted images. T1-weighted images were superior to T2-weighted images in detection of hemorrhgage. CT failed to detect hemorrhage in two of five cases: indicative of MR superiority to CT in the diagnosis of acute hemorrhagic infarcts. (author).

  16. Imaging Techniques for Microwave Diagnostics

    NARCIS (Netherlands)

    Tobias, B.; Donne, A. J. H.; Park, H. K.; Boom, J. E.; Choi, M. J.; Classen, I.G.J.; Domier, C.W.; Kong, X.; Lee, W.; Liang, T.; N C Luhmann Jr.,; Munsat, T.; Yu, L.; Yun, G. S.

    2011-01-01

    Imaging diagnostics, such as Electron Cyclotron Emission Imaging (ECEI) and Microwave Imaging Reflectometry (MIR), exhibit unique characteristics that make them particularly well suited to the validation of theoretical models for plasma instabilities and turbulent fluctuations. A 2-D picture of plas

  17. Comparison of Hybrid Codes for MRI Brain Image Compression

    Directory of Open Access Journals (Sweden)

    G. Soundarya

    2012-12-01

    Full Text Available In general, medical images are compressed in a lossless manner in order to preserve details and to avoid wrong diagnosis. But this leads to a lower compression rate. Therefore, our aim is to improve the compression ratio by means of hybrid coding the MRI brain (tumor images. Hence we consider Region of Interest (ROI normally the abnormal region in the image and compress it without loss to achieve high compression ratio in par with maintaining high image quality and the Non-Region of Interest (Non-ROI of the image is compressed in a lossy manner. This study discusses two simple hybrid coding techniques (Hybrid A and Hybrid B on MRI human brain tumor image datasets. Also we evaluate their performance by comparing them with the standard lossless technique JPEG 2000 in terms of Compression Ratio (CR and Peak to Signal Noise Ratio (PSNR. Both hybrid codes have resulted in computationally economical scheme producing higher compression ratio than existing JPEG2000 and also meets the legal requirement of medical image archiving. The results obtained prove that our proposed hybrid schemes outperform existing schemes.

  18. Simulation of brain tumor resection in image-guided neurosurgery

    Science.gov (United States)

    Fan, Xiaoyao; Ji, Songbai; Fontaine, Kathryn; Hartov, Alex; Roberts, David; Paulsen, Keith

    2011-03-01

    Preoperative magnetic resonance images are typically used for neuronavigation in image-guided neurosurgery. However, intraoperative brain deformation (e.g., as a result of gravitation, loss of cerebrospinal fluid, retraction, resection, etc.) significantly degrades the accuracy in image guidance, and must be compensated for in order to maintain sufficient accuracy for navigation. Biomechanical finite element models are effective techniques that assimilate intraoperative data and compute whole-brain deformation from which to generate model-updated MR images (uMR) to improve accuracy in intraoperative guidance. To date, most studies have focused on early surgical stages (i.e., after craniotomy and durotomy), whereas simulation of more complex events at later surgical stages has remained to be a challenge using biomechanical models. We have developed a method to simulate partial or complete tumor resection that incorporates intraoperative volumetric ultrasound (US) and stereovision (SV), and the resulting whole-brain deformation was used to generate uMR. The 3D ultrasound and stereovision systems are complimentary to each other because they capture features deeper in the brain beneath the craniotomy and at the exposed cortical surface, respectively. In this paper, we illustrate the application of the proposed method to simulate brain tumor resection at three temporally distinct surgical stages throughout a clinical surgery case using sparse displacement data obtained from both the US and SV systems. We demonstrate that our technique is feasible to produce uMR that agrees well with intraoperative US and SV images after dural opening, after partial tumor resection, and after complete tumor resection. Currently, the computational cost to simulate tumor resection can be up to 30 min because of the need for re-meshing and the trial-and-error approach to refine the amount of tissue resection. However, this approach introduces minimal interruption to the surgical workflow

  19. Three-dimensional reconstruction of functional brain images

    International Nuclear Information System (INIS)

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  20. Three-dimensional reconstruction of functional brain images

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao [Kyoto Univ. (Japan)

    1999-08-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  1. Transport, monitoring, and successful brain MR imaging in unsedated neonates

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Amit M. [St. Louis Children' s Hospital at the Washington University School of Medicine, Department of Pediatrics and Newborn Medicine, St. Louis, MO (United States); St. Louis Children' s Hospital, Division of Newborn Medicine, St. Louis, MO (United States); Neil, Jeffrey J. [St. Louis Children' s Hospital at the Washington University School of Medicine, Department of Neurology, St. Louis, MO (United States); Mallinckrodt Institute of Radiology, St. Louis, MO (United States); McKinstry, Robert C. [Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Inder, Terrie E. [St. Louis Children' s Hospital at the Washington University School of Medicine, Department of Pediatrics and Newborn Medicine, St. Louis, MO (United States); St. Louis Children' s Hospital at the Washington University School of Medicine, Department of Neurology, St. Louis, MO (United States); Mallinckrodt Institute of Radiology, St. Louis, MO (United States)

    2008-03-15

    Neonatal cerebral MR imaging is a sensitive technique for evaluating brain injury in the term and preterm infant. In term encephalopathic infants, MR imaging reliably detects not only the pattern of brain injury but might also provide clues about the timing of injury. In premature infants, MR imaging has surpassed US in the detection of white matter injury, a common lesion in this population. Concerns remain about the safety and transport of sedated neonates for MR examination to radiology suites, which are usually located at a distance from neonatal intensive care units. We present our own institutional experience and guidelines used to optimize the performance of cerebral MR examinations in neonates without sedation or anesthesia. (orig.)

  2. Towards an hybrid system for annotating brain MRI images

    OpenAIRE

    Mechouche, Ammar; Golbreich, Christine; Gibaud, Bernard

    2006-01-01

    This paper describes a method combining symbolic and numerical techniques for annotating brain Magnetic Resonance images. The goal is to assist existing automatic labelling methods which are mostly statistical in nature and do not work very well in certain situations such as the presence of lesions. The system uses existing statistical methods for generating ABox facts that constitute a set of initial information sufficient for fruitful reasoning. The reasoning is supported by an OWL ontology...

  3. Thresholding magnetic resonance images of human brain

    Institute of Scientific and Technical Information of China (English)

    Qing-mao HU; Wieslaw L NOWINSKI

    2005-01-01

    In this paper, methods are proposed and validated to determine low and high thresholds to segment out gray matter and white matter for MR images of different pulse sequences of human brain. First, a two-dimensional reference image is determined to represent the intensity characteristics of the original three-dimensional data. Then a region of interest of the reference image is determined where brain tissues are present. The non-supervised fuzzy c-means clustering is employed to determine: the threshold for obtaining head mask, the low threshold for T2-weighted and PD-weighted images, and the high threshold for T1-weighted, SPGR and FLAIR images. Supervised range-constrained thresholding is employed to determine the low threshold for T1-weighted, SPGR and FLAIR images. Thresholding based on pairs of boundary pixels is proposed to determine the high threshold for T2- and PD-weighted images. Quantification against public data sets with various noise and inhomogeneity levels shows that the proposed methods can yield segmentation robust to noise and intensity inhomogeneity. Qualitatively the proposed methods work well with real clinical data.

  4. Visceral Afferent Pathways and Functional Brain Imaging

    Directory of Open Access Journals (Sweden)

    Stuart W.G. Derbyshire

    2003-01-01

    Full Text Available The application of functional imaging to study painful sensations has generated considerable interest regarding insight into brain dysfunction that may be responsible for functional pain such as that suffered in patients with irritable bowel syndrome (IBS. This review provides a brief introduction to the development of brain science as it relates to pain processing and a snapshot of recent functional imaging results with somatic and visceral pain. Particular emphasis is placed on current hypotheses regarding dysfunction of the brain-gut axis in IBS patients. There are clear and interpretable differences in brain activation following somatic as compared with visceral noxious sensation. Noxious visceral distension, particularly of the lower gastrointestinal tract, activates regions associated with unpleasant affect and autonomic responses. Noxious somatic sensation, in contrast, activates regions associated with cognition and skeletomotor responses. Differences between IBS patients and control subjects, however, were far less clear and interpretable. While this is in part due to the newness of this field, it also reflects weaknesses inherent within the current understanding of IBS. Future use of functional imaging to examine IBS and other functional disorders will be more likely to succeed by describing clear theoretical and clinical endpoints.

  5. MR imaging of the fetal brain

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, Orit A. [University of California, San Francisco, Department of Radiology, Neuroradiology Section, San Francisco, CA (United States)

    2010-01-15

    Fetal MRI is clinically performed to evaluate the brain in cases where an abnormality is detected by prenatal sonography. These most commonly include ventriculomegaly, abnormalities of the corpus callosum, and abnormalities of the posterior fossa. Fetal MRI is also increasingly performed to evaluate fetuses who have normal brain findings on prenatal sonogram but who are at increased risk for neurodevelopmental abnormalities, such as complicated monochorionic twin pregnancies. This paper will briefly discuss the common clinical conditions imaged by fetal MRI as well as recent advances in fetal MRI research. (orig.)

  6. Internal brain motion pumping of CSF using high-resolution velocity MR imaging

    International Nuclear Information System (INIS)

    An MR velocity density (MRVD) technique able to detect velocities as low as 0.4 mm/sec was applied to obtain images of the brain synchronized to the cardiac cycle in 25 healthy subjects and five patients. During systole (100-200 msec after the R wave), MRVD images demonstrated a caudad velocity in the central regions of the brain, most prominent in the brain stem (up to 1.5 mm/sec). This caudad brain motion and the synchronous ejection of cerebrospinal fluid (CSF) from the ventricles into the basal cisterns, taken together, strongly suggest a cardiac-driven pumping action of the brain on the CSF

  7. Review on Lossless Image Compression Techniques for Welding Radiographic Images

    Directory of Open Access Journals (Sweden)

    B. Karthikeyan

    2013-01-01

    Full Text Available Recent development in image processing allows us to apply it in different domains. Radiography image of weld joint is one area where image processing techniques can be applied. It can be used to identify the quality of the weld joint. For this the image has to be stored and processed later in the labs. In order to optimize the use of disk space compression is required. The aim of this study is to find a suitable and efficient lossless compression technique for radiographic weld images. Image compression is a technique by which the amount of data required to represent information is reduced. Hence image compression is effectively carried out by removing the redundant data. This study compares different ways of compressing the radiography images using combinations of different lossless compression techniques like RLE, Huffman.

  8. A Shape Based Image Search Technique

    Directory of Open Access Journals (Sweden)

    Aratrika Sarkar

    2014-08-01

    Full Text Available This paper describes an interactive application we have developed based on shaped-based image retrieval technique. The key concepts described in the project are, imatching of images based on contour matching; iimatching of images based on edge matching; iiimatching of images based on pixel matching of colours. Further, the application facilitates the matching of images invariant of transformations like i translation ; ii rotation; iii scaling. The key factor of the system is, the system shows the percentage unmatched of the image uploaded with respect to the images already existing in the database graphically, whereas, the integrity of the system lies on the unique matching techniques used for optimum result. This increases the accuracy of the system. For example, when a user uploads an image say, an image of a mango leaf, then the application shows all mango leaves present in the database as well other leaves matching the colour and shape of the mango leaf uploaded.

  9. RS Image Fusion Technique for Information Preservation

    Institute of Scientific and Technical Information of China (English)

    WU Lianxi; SU Xiaoxia; LI Dajun

    2004-01-01

    A simple spectral preserving image fusion technique, Edge Enhancement Color Normalized (EECN), was proposed to merge two kinds of image data. In addition, a mathematical model was also proposed to evaluate spectral property of the fused production of EECN. The results were clearly demonstrated by an image fusion experiment using Landsat-5 TM and IRS-1C Panchromatic images of Beijing, China. The visual evaluation and mathematical analysis compared with Brovey transform confirmed that the fused image of EECN is quite similar in color to the lower resolution multi-spectral images, and its space resolution is the same as the higher solution panchromatic image.

  10. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury

    Institute of Scientific and Technical Information of China (English)

    Quan Jiang

    2016-01-01

    Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance im-aging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic.

  11. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury

    Directory of Open Access Journals (Sweden)

    Quan Jiang

    2016-01-01

    Full Text Available Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance imaging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic.

  12. Image Mining Techniques and Applications.

    OpenAIRE

    Deepika Kishor Nagthane

    2013-01-01

    Digitization in every sector leads to the growth of digital data in a tremendous amount. Digital data are not only available in the form of text but it is also available in the form of images, audio and video. Decision making people in every field like business, public sector, hospital, etc. are trying to get useful and implicit information from the already existing digital data bases. Image mining is the concept used to extract implicit and useful data from images stored in the large data ba...

  13. Thermoacoustic tomography arising in brain imaging

    CERN Document Server

    Stefanov, Plamen

    2010-01-01

    We study the mathematical model of thermoacoustic and photoacoustic tomography when the sound speed has a jump across a smooth surface. This models the change of the sound speed in the skull when trying to image the human brain. We derive an explicit inversion formula in the form of a convergent Neumann series under the assumptions that all singularities from the support of the source reach the boundary.

  14. Non-FDG PET imaging of brain tumors

    Institute of Scientific and Technical Information of China (English)

    HUANG Zemin; GUAN Yihui; ZUO Chuantao; ZHANG Zhengwei; XUE Fangping; LIN Xiangtong

    2007-01-01

    Due to relatively high uptake of glucose in the brain cortex, the use of FDG PET imaging is greatly limited in brain tumor imaging, especially for low-grade gliomas and some metastatic tumours. More and more tracers with higher specificity were developed lately for brain tumor imaging. There are 3 main types of non-FDG PET tracers:amino acid tracers, choline tracers and nucleic acid tracers. These tracers are now widely applied in many aspects of brain tumor imaging. This article summarized the general use of non-FDG PET in different aspects of brain tumor imaging.

  15. Fetal trauma: brain imaging in four neonates

    International Nuclear Information System (INIS)

    The purpose of this paper is to describe brain pathology in neonates after major traffic trauma in utero during the third trimester. Our patient cohort consisted of four neonates born by emergency cesarean section after car accident in the third trimester of pregnancy. The median gestational age (n=4) was 36 weeks (range: 30-38). Immediate post-natal and follow-up brain imaging consisted of cranial ultrasound (n=4), computed tomography (CT) (n=1) and post-mortem magnetic resonance imaging (MRI) (n=1). Pathology findings were correlated with the imaging findings (n=3). Cranial ultrasound demonstrated a huge subarachnoidal hemorrhage (n=1), subdural hematoma (n=1), brain edema with inversion of the diastolic flow (n=1) and severe ischemic changes (n=1). In one case, CT demonstrated the presence and extension of the subarachnoidal hemorrhage, a parietal fracture and a limited intraventricular hemorrhage. Cerebellar hemorrhage and a small cerebral frontal contusion were seen on post-mortem MRI in a child with a major subarachnoidal hemorrhage on ultrasound. None of these four children survived (three children died within 2 days and one child died after 1 month). Blunt abdominal trauma during pregnancy can cause fetal cranial injury. In our cases, skull fracture, intracranial hemorrhage and hypoxic-ischemic encephalopathy were encountered. (orig.)

  16. Fetal trauma: brain imaging in four neonates

    Energy Technology Data Exchange (ETDEWEB)

    Breysem, Luc; Mussen, E.; Demaerel, P.; Smet, M. [Department of Radiology, University Hospitals, Herestraat 49, 3000, Leuven (Belgium); Cossey, V. [Department of Pediatrics, University Hospitals, Leuven (Belgium); Voorde, W. van de [Department of Forensic Medicine, University Hospitals, Leuven (Belgium)

    2004-09-01

    The purpose of this paper is to describe brain pathology in neonates after major traffic trauma in utero during the third trimester. Our patient cohort consisted of four neonates born by emergency cesarean section after car accident in the third trimester of pregnancy. The median gestational age (n=4) was 36 weeks (range: 30-38). Immediate post-natal and follow-up brain imaging consisted of cranial ultrasound (n=4), computed tomography (CT) (n=1) and post-mortem magnetic resonance imaging (MRI) (n=1). Pathology findings were correlated with the imaging findings (n=3). Cranial ultrasound demonstrated a huge subarachnoidal hemorrhage (n=1), subdural hematoma (n=1), brain edema with inversion of the diastolic flow (n=1) and severe ischemic changes (n=1). In one case, CT demonstrated the presence and extension of the subarachnoidal hemorrhage, a parietal fracture and a limited intraventricular hemorrhage. Cerebellar hemorrhage and a small cerebral frontal contusion were seen on post-mortem MRI in a child with a major subarachnoidal hemorrhage on ultrasound. None of these four children survived (three children died within 2 days and one child died after 1 month). Blunt abdominal trauma during pregnancy can cause fetal cranial injury. In our cases, skull fracture, intracranial hemorrhage and hypoxic-ischemic encephalopathy were encountered. (orig.)

  17. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging

    KAUST Repository

    Magistretti, Pierre J.

    2015-05-01

    The energy demands of the brain are high: they account for at least 20% of the body\\'s energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and pointat a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales. © 2015 Elsevier Inc.

  18. Functional magnetic resonance imaging of the brain: A quick review

    Directory of Open Access Journals (Sweden)

    Vaghela Viratsinh

    2010-01-01

    Full Text Available Ability to non-invasively map the hemodynamic changes occurring focally in areas of brain involved in various motor, sensory and cognitive functions by functional magnetic resonance imaging (fMRI has revolutionized research in neuroscience in the last two decades. This technique has already gained clinical use especially in pre-surgical evaluation of epilepsy and neurosurgical planning of resection of mass lesions adjacent to eloquent cortex. In this review we attempt to illustrate basic principles and techniques of fMRI, its applications, practical points to consider while performing and evaluating clinical fMRI and its limitations.

  19. Robust Intensity Standardization in Brain Magnetic Resonance Images.

    Science.gov (United States)

    De Nunzio, Giorgio; Cataldo, Rosella; Carlà, Alessandra

    2015-12-01

    The paper is focused on a tiSsue-Based Standardization Technique (SBST) of magnetic resonance (MR) brain images. Magnetic Resonance Imaging intensities have no fixed tissue-specific numeric meaning, even within the same MRI protocol, for the same body region, or even for images of the same patient obtained on the same scanner in different moments. This affects postprocessing tasks such as automatic segmentation or unsupervised/supervised classification methods, which strictly depend on the observed image intensities, compromising the accuracy and efficiency of many image analyses algorithms. A large number of MR images from public databases, belonging to healthy people and to patients with different degrees of neurodegenerative pathology, were employed together with synthetic MRIs. Combining both histogram and tissue-specific intensity information, a correspondence is obtained for each tissue across images. The novelty consists of computing three standardizing transformations for the three main brain tissues, for each tissue class separately. In order to create a continuous intensity mapping, spline smoothing of the overall slightly discontinuous piecewise-linear intensity transformation is performed. The robustness of the technique is assessed in a post hoc manner, by verifying that automatic segmentation of images before and after standardization gives a high overlapping (Dice index >0.9) for each tissue class, even across images coming from different sources. Furthermore, SBST efficacy is tested by evaluating if and how much it increases intertissue discrimination and by assessing gaussianity of tissue gray-level distributions before and after standardization. Some quantitative comparisons to already existing different approaches available in the literature are performed.

  20. Comparative Study of Image Enhancement Techniques

    OpenAIRE

    Seema Rajput; PROF. S.R.SURALKAR

    2013-01-01

    Fingerprints are the oldest and most widely used form of biometric identification. The performance of any fingerprint recognizer highly depends on the fingerprint image quality. Different types of noises in the fingerprint images pose greater difficulty for recognizers. However, fingerprint images are rarely of perfect quality. They may be degraded and corrupted due to variations in skin and impressionconditions. Thus, image enhancement techniques are employed prior to minutiae extraction to ...

  1. Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging.

    Directory of Open Access Journals (Sweden)

    David A Feinberg

    Full Text Available Echo planar imaging (EPI is an MRI technique of particular value to neuroscience, with its use for virtually all functional MRI (fMRI and diffusion imaging of fiber connections in the human brain. EPI generates a single 2D image in a fraction of a second; however, it requires 2-3 seconds to acquire multi-slice whole brain coverage for fMRI and even longer for diffusion imaging. Here we report on a large reduction in EPI whole brain scan time at 3 and 7 Tesla, without significantly sacrificing spatial resolution, and while gaining functional sensitivity. The multiplexed-EPI (M-EPI pulse sequence combines two forms of multiplexing: temporal multiplexing (m utilizing simultaneous echo refocused (SIR EPI and spatial multiplexing (n with multibanded RF pulses (MB to achieve m×n images in an EPI echo train instead of the normal single image. This resulted in an unprecedented reduction in EPI scan time for whole brain fMRI performed at 3 Tesla, permitting TRs of 400 ms and 800 ms compared to a more conventional 2.5 sec TR, and 2-4 times reductions in scan time for HARDI imaging of neuronal fibertracks. The simultaneous SE refocusing of SIR imaging at 7 Tesla advantageously reduced SAR by using fewer RF refocusing pulses and by shifting fat signal out of the image plane so that fat suppression pulses were not required. In preliminary studies of resting state functional networks identified through independent component analysis, the 6-fold higher sampling rate increased the peak functional sensitivity by 60%. The novel M-EPI pulse sequence resulted in a significantly increased temporal resolution for whole brain fMRI, and as such, this new methodology can be used for studying non-stationarity in networks and generally for expanding and enriching the functional information.

  2. Color Image Classification and Retrieval using Image mining Techniques

    Directory of Open Access Journals (Sweden)

    Dr.V.Mohan,

    2010-05-01

    Full Text Available Mining Image data is one of the essential features in the present scenario. Image data is the major one which plays vital role in every aspect of the systems like business for marketing, hospital for surgery, engineering for construction, Web for publication and so on. The other area in the Image mining system is the Content-BasedImage Retrieval (CBIR. CBIR systems perform retrieval based on the similarity defined in terms of extracted features with more objectiveness. But, the features of the query image alone will not be sufficient constraint for retrieving images. Hence, a new technique Color Image Classification and Retrieval using a Image Technique isproposed for improving user interaction with image retrieval systems by fully exploiting the similarity information.

  3. Three modality image registration of brain SPECT/CT and MR images for quantitative analysis of dopamine transporter imaging

    Science.gov (United States)

    Yamaguchi, Yuzuho; Takeda, Yuta; Hara, Takeshi; Zhou, Xiangrong; Matsusako, Masaki; Tanaka, Yuki; Hosoya, Kazuhiko; Nihei, Tsutomu; Katafuchi, Tetsuro; Fujita, Hiroshi

    2016-03-01

    Important features in Parkinson's disease (PD) are degenerations and losses of dopamine neurons in corpus striatum. 123I-FP-CIT can visualize activities of the dopamine neurons. The activity radio of background to corpus striatum is used for diagnosis of PD and Dementia with Lewy Bodies (DLB). The specific activity can be observed in the corpus striatum on SPECT images, but the location and the shape of the corpus striatum on SPECT images only are often lost because of the low uptake. In contrast, MR images can visualize the locations of the corpus striatum. The purpose of this study was to realize a quantitative image analysis for the SPECT images by using image registration technique with brain MR images that can determine the region of corpus striatum. In this study, the image fusion technique was used to fuse SPECT and MR images by intervening CT image taken by SPECT/CT. The mutual information (MI) for image registration between CT and MR images was used for the registration. Six SPECT/CT and four MR scans of phantom materials are taken by changing the direction. As the results of the image registrations, 16 of 24 combinations were registered within 1.3mm. By applying the approach to 32 clinical SPECT/CT and MR cases, all of the cases were registered within 0.86mm. In conclusions, our registration method has a potential in superimposing MR images on SPECT images.

  4. Molecular Imaging of the Brain Using Multi-Quantum Coherence and Diagnostics of Brain Disorders

    CERN Document Server

    Kaila, M M

    2013-01-01

    This book examines multi-quantum magnetic resonance imaging methods and the diagnostics of brain disorders. It consists of two Parts. The part I is initially devoted towards the basic concepts of the conventional single quantum MRI techniques. It is supplemented by the basic knowledge required to understand multi-quantum MRI. Practical illustrations are included both on recent developments in conventional MRI and the MQ-MRI. This is to illustrate the connection between theoretical concepts and their scope in the clinical applications. The Part II initially sets out the basic details about quadrupole charge distribution present in certain nuclei and their importance about the functions they perform in our brain. Some simplified final mathematical expressions are included to illustrate facts about the basic concepts of the quantum level interactions between magnetic dipole and the electric quadrupole behavior of useful nuclei present in the brain. Selected practical illustrations, from research and clinical pra...

  5. Label-free dopamine imaging in live rat brain slices.

    Science.gov (United States)

    Sarkar, Bidyut; Banerjee, Arkarup; Das, Anand Kant; Nag, Suman; Kaushalya, Sanjeev Kumar; Tripathy, Umakanta; Shameem, Mohammad; Shukla, Shubha; Maiti, Sudipta

    2014-05-21

    Dopaminergic neurotransmission has been investigated extensively, yet direct optical probing of dopamine has not been possible in live cells. Here we image intracellular dopamine with sub-micrometer three-dimensional resolution by harnessing its intrinsic mid-ultraviolet (UV) autofluorescence. Two-photon excitation with visible light (540 nm) in conjunction with a non-epifluorescent detection scheme is used to circumvent the UV toxicity and the UV transmission problems. The method is established by imaging dopamine in a dopaminergic cell line and in control cells (glia), and is validated by mass spectrometry. We further show that individual dopamine vesicles/vesicular clusters can be imaged in cultured rat brain slices, thereby providing a direct visualization of the intracellular events preceding dopamine release induced by depolarization or amphetamine exposure. Our technique opens up a previously inaccessible mid-ultraviolet spectral regime (excitation ~270 nm, emission free imaging of native molecules in live tissue.

  6. Brain Basics

    Medline Plus

    Full Text Available ... Research Modern research tools and techniques are giving scientists a more detailed understanding of the brain than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies ...

  7. Gastrointestinal tract imaging in children: current techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hiorns, Melanie P. [Great Ormond Street Hospital for Children, Radiology Department, London (United Kingdom)

    2011-01-15

    Imaging of the gastrointestinal (GI) tract in children continues to evolve, with new techniques, both radiological and non-radiological, being added to the repertoire. This article provides a summary of current imaging techniques of the GI tract (primarily the upper GI tract) and the relationship between those techniques. It covers the upper GI series and other contrast studies, US, CT and MRI. Note is also made of the contribution now made by capsule endoscopy (CE). Abdominal emergency imaging is not covered in this article. (orig.)

  8. A New Technique for Digital Image Watermarking

    Institute of Scientific and Technical Information of China (English)

    Xiang-Sheng Wu

    2005-01-01

    In this paper, a new technique is proposed for rotation, scaling and translation (RST) invariant image watermarking based on log-polar mappings (LPM) and phase-only filtering (POF). The watermark is embedded in the LPM of Fourier magnitude spectrum of the original image, and a small portion of resulting LPM spectrum is used to calculate the watermark positions. This technique avoids computing inverse log-polar mapping (ILPM) to preserve the quality of the watermarked image, and avoids exhaustive search to save computation time and reduce false detection. Experimental results demonstrate that the digital watermarking technique is invariant and robust to rotation, scaling, and translation transformation.

  9. Image watermark detection techniques using quadtrees

    Directory of Open Access Journals (Sweden)

    Nidaa A. Abbas

    2015-07-01

    Full Text Available The quadtree, a hierarchical data structure for the representation of spatial information based on the principle of recursive decomposition, is widely used in digital image processing and computer graphics. This paper demonstrates the detection of invisible watermarked images generated by popular watermarking techniques, including CDMA, DCT, DWT, and Least Significant Bit (LSB using quadtree. Results corresponding to typical (512 × 512 pixel images show differences among these methods when they are used. Each time we use the same image, the original images and invisible watermarked image to test the four methods in conjunction with quadtree decomposition. In addition to the subjective method represented by quadtree, many objective evaluations such as Pearson correlation, mean square error (MSE, Structural SIMilarity Index (SSIM and false positive and false negative were used to give the comparison criteria between original and watermarked images. In results, the quadtree decomposition considered a promise subjective method to recognize among these watermark techniques.

  10. Terahertz Imaging Systems With Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Krozer, Viktor; Löffler, Torsten; Dall, Jørgen;

    2010-01-01

    This paper presents the research and development of two terahertz imaging systems based on photonic and electronic principles, respectively. As part of this study, a survey of ongoing research in the field of terahertz imaging is provided focusing on security applications. Existing terahertz...... imaging systems are reviewed in terms of the employed architecture and data processing strategies. Active multichannel measurement method is found to be promising for real-time applications among the various terahertz imaging techniques and is chosen as a basis for the imaging instruments presented...... in this paper. An active system operation allows for a wide dynamic range, which is important for image quality. The described instruments employ a multichannel high-sensitivity heterodyne architecture and aperture filling techniques, with close to real-time image acquisition time. In the case of the photonic...

  11. Exploring miniature insect brains using micro-CT scanning techniques.

    Science.gov (United States)

    Smith, Dylan B; Bernhardt, Galina; Raine, Nigel E; Abel, Richard L; Sykes, Dan; Ahmed, Farah; Pedroso, Inti; Gill, Richard J

    2016-01-01

    The capacity to explore soft tissue structures in detail is important in understanding animal physiology and how this determines features such as movement, behaviour and the impact of trauma on regular function. Here we use advances in micro-computed tomography (micro-CT) technology to explore the brain of an important insect pollinator and model organism, the bumblebee (Bombus terrestris). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue free from trauma and in its natural stereo-geometry, and showcase our 3D reconstructions and analyses of 19 individual brains at high resolution. Development of this protocol allows relatively rapid and cost effective brain reconstructions, making it an accessible methodology to the wider scientific community. The protocol describes the necessary steps for sample preparation, tissue staining, micro-CT scanning and 3D reconstruction, followed by a method for image analysis using the freeware SPIERS. These image analysis methods describe how to virtually extract key composite structures from the insect brain, and we demonstrate the application and precision of this method by calculating structural volumes and investigating the allometric relationships between bumblebee brain structures. PMID:26908205

  12. Electroencephalographic imaging of higher brain function

    Science.gov (United States)

    Gevins, A.; Smith, M. E.; McEvoy, L. K.; Leong, H.; Le, J.

    1999-01-01

    High temporal resolution is necessary to resolve the rapidly changing patterns of brain activity that underlie mental function. Electroencephalography (EEG) provides temporal resolution in the millisecond range. However, traditional EEG technology and practice provide insufficient spatial detail to identify relationships between brain electrical events and structures and functions visualized by magnetic resonance imaging or positron emission tomography. Recent advances help to overcome this problem by recording EEGs from more electrodes, by registering EEG data with anatomical images, and by correcting the distortion caused by volume conduction of EEG signals through the skull and scalp. In addition, statistical measurements of sub-second interdependences between EEG time-series recorded from different locations can help to generate hypotheses about the instantaneous functional networks that form between different cortical regions during perception, thought and action. Example applications are presented from studies of language, attention and working memory. Along with its unique ability to monitor brain function as people perform everyday activities in the real world, these advances make modern EEG an invaluable complement to other functional neuroimaging modalities.

  13. Spatial normalization of brain images and beyond.

    Science.gov (United States)

    Mangin, J-F; Lebenberg, J; Lefranc, S; Labra, N; Auzias, G; Labit, M; Guevara, M; Mohlberg, H; Roca, P; Guevara, P; Dubois, J; Leroy, F; Dehaene-Lambertz, G; Cachia, A; Dickscheid, T; Coulon, O; Poupon, C; Rivière, D; Amunts, K; Sun, Z Y

    2016-10-01

    The deformable atlas paradigm has been at the core of computational anatomy during the last two decades. Spatial normalization is the variant endowing the atlas with a coordinate system used for voxel-based aggregation of images across subjects and studies. This framework has largely contributed to the success of brain mapping. Brain spatial normalization, however, is still ill-posed because of the complexity of the human brain architecture and the lack of architectural landmarks in standard morphological MRI. Multi-atlas strategies have been developed during the last decade to overcome some difficulties in the context of segmentation. A new generation of registration algorithms embedding architectural features inferred for instance from diffusion or functional MRI is on the verge to improve the architectural value of spatial normalization. A better understanding of the architectural meaning of the cortical folding pattern will lead to use some sulci as complementary constraints. Improving the architectural compliance of spatial normalization may impose to relax the diffeomorphic constraint usually underlying atlas warping. A two-level strategy could be designed: in each region, a dictionary of templates of incompatible folding patterns would be collected and matched in a way or another using rare architectural information, while individual subjects would be aligned using diffeomorphisms to the closest template. Manifold learning could help to aggregate subjects according to their morphology. Connectivity-based strategies could emerge as an alternative to deformation-based alignment leading to match the connectomes of the subjects rather than images. PMID:27344104

  14. Detection of Brain Tumor and Extraction of Texture Features using Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Prof. Dilip Kumar Gandhi

    2012-10-01

    Full Text Available Brain Cancer Detection system is designed. Aim of this paper is to locate the tumor and determine the texture features from a Brain Cancer affected MRI. A computer based diagnosis is performed in order to detect the tumors from given Magnetic Resonance Image. Basic image processing techniques are used to locate the tumor region. Basic techniques consist of image enhancement, image bianarization, and image morphological operations. Texture features are computed using the Gray Level Co-occurrence Matrix. Texture features consists of five distinct features. Selective features or the combination of selective features will be used in the future to determine the class of the query image. Astrocytoma type of Brain Cancer affected images are used only for simplicity

  15. BRAIN FUNCTIONAL IMAGING BASED ON BRAIN TISSUE OXYGEN CONTENT VIA MAGNETIC RESONANCE

    Directory of Open Access Journals (Sweden)

    M.A OGHABIAN

    2003-03-01

    Full Text Available Introduction: FMRI is a new approach in MRI to provide functional data of human brain activities. Some methods such as BOLD contrast, perfusion imaging, diffusion imaging, and spectroscopy in MRI have used to yield functional images. Material and Methods: This research was performed in imaging center of IMAM KHOMEINI hospital in TEHRAN in 1997. The experiments were performed on a conventional 1.5- T picker MR instrument, using a standard head coil. CE – FAST gradient echo images were obtained (TR=100, TE = 35, 128*256 matrix, 10 mm slice, FOV = 250 mm, F.A =25 Degree, NEX = 1, 13 s per image. Images were obtained during sensory - motor stimulation by pressing fingers to each other, coronal oblique images were acquired through central sulcus (precentral gyrus where the related sensory cortex is. Then, the Images were transferred to personal computers in order to eliminate noise and highlight the functional differences. These images were processed by various mathematical methods such as subtraction and student T- test. Results: Although some changes were seen in functional area, there were not significant results by the conventional system protocols. Some new protocols were designed and implemented to increase the sensitivity of the system to functional changes. Discussion: However, more research needs to be done in the future to obtain faster and more efficient techniques and in regard to clinical applications of the method.

  16. Segmentation and Classification of Brain MRI Images Using Improved Logismos-B Algorithm

    Directory of Open Access Journals (Sweden)

    S. Dilip kumar

    2014-12-01

    Full Text Available Automated reconstruction and diagnosis of brain MRI images is one of the most challenging problems in medical imaging. Accurate segmentation of MRI images is a key step in contouring during radiotherapy analysis. Computed tomography (CT and Magnetic resonance (MR imaging are the most widely used radiographic techniques in diagnosis and treatment planning. Segmentation techniques used for the brain Magnetic Resonance Imaging (MRI is one of the methods used by the radiographer to detect any abnormality specifically in brain. The method also identifies important regions in brain such as white matter (WM, gray matter (GM and cerebrospinal fluid spaces (CSF. These regions are significant for physician or radiographer to analyze and diagnose the disease. We propose a novel clustering algorithm, improved LOGISMOS-B to classify tissue regions based on probabilistic tissue classification, generalized gradient vector flows with cost and distance function. The LOGISMOS graph segmentation framework. Expand the framework to allow regionally-aware graph construction and segmentation

  17. Brain imaging in the assessment for epilepsy surgery.

    Science.gov (United States)

    Duncan, John S; Winston, Gavin P; Koepp, Matthias J; Ourselin, Sebastien

    2016-04-01

    Brain imaging has a crucial role in the presurgical assessment of patients with epilepsy. Structural imaging reveals most cerebral lesions underlying focal epilepsy. Advances in MRI acquisitions including diffusion-weighted imaging, post-acquisition image processing techniques, and quantification of imaging data are increasing the accuracy of lesion detection. Functional MRI can be used to identify areas of the cortex that are essential for language, motor function, and memory, and tractography can reveal white matter tracts that are vital for these functions, thus reducing the risk of epilepsy surgery causing new morbidities. PET, SPECT, simultaneous EEG and functional MRI, and electrical and magnetic source imaging can be used to infer the localisation of epileptic foci and assist in the design of intracranial EEG recording strategies. Progress in semi-automated methods to register imaging data into a common space is enabling the creation of multimodal three-dimensional patient-specific datasets. These techniques show promise for the demonstration of the complex relations between normal and abnormal structural and functional data and could be used to direct precise intracranial navigation and surgery for individual patients.

  18. Current and emerging techniques in gastrointestinal imaging

    Directory of Open Access Journals (Sweden)

    McSweeney S

    2010-01-01

    Full Text Available This review is devoted to current and emerging techniques in gastrointestinal (GI imaging. It is divided into three sections focusing on areas that are both interesting and challenging: imaging of the small bowel and appendix, imaging of the colon and rectum and finally liver and pancreas in the upper abdomen. The first section covers cross-sectional imaging of the small bowel using the techniques of multidetector computed tomography (MDCT (including CT enterography and magnetic resonance imaging (MRI. The evaluation of mesenteric ischemia and GI tract bleeding using MDCT angiography is also reviewed. Current imaging practice in the evaluation of appendix is also reviewed and illustrated. The second section reviews CT and MR colonography and imaging of the rectum. It describes CT virtual colonoscopy (CTVC with emphasis on the advantages and disadvantages of the technique with discussion of the role of CTVC in screening. The intriguing topic of MR colonography (MRC is also reviewed. Imaging of the rectum with emphasis on imaging of rectal cancer is described with the roles of CT, MR, endoluminal ultrasound and positron emission tomography scanning discussed. The final section reviews current and emerging techniques in liver imaging with the role of ultrasound including contrast ultrasound, MDCT and MR (including contrast agents discussed. The new developments and applications of imaging of pancreatic disease are discussed with emphasis on the role of MDCT and MRI with gadolinium. This review highlights the current role and advancement of imaging techniques with new diagnostic and prognostic information pertinent to gastrointestinal disease continuing to emerge.

  19. Image processing techniques for remote sensing data

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    interpretation and for processing of scene data for autonomous machine perception. The technique of digital image processing are used for' automatic character/pattern recognition, industrial robots for product assembly and inspection, military recognizance...

  20. Multislice CT brain image registration for perfusion studies

    Science.gov (United States)

    Lin, Zhong Min; Pohlman, Scott; Chandra, Shalabh

    2002-04-01

    During the last several years perfusion CT techniques have been developed as an effective technique for clinically evaluating cerebral hemodynamics. Perfusion CT techniques are capable of measurings functional parameters such as tissue perfusion, blood flow, blood volume, and mean transit time and are commonly used to evaluate stroke patients. However, the quality of functional images of the brain frequently suffers from patient head motion. Because the time window for an effective treatment of stroke patient is narrow, a fast motion correction is required. The purpose of the paper is to present a fast and accurate registration technique for motion correction of multi-slice CT and to demonstrate the effects of the registration on perfusion calculation.

  1. Compression Techniques for Image Processing Tasks

    OpenAIRE

    Roman-Gonzalez, Avid

    2013-01-01

    International audience; This article aims to present an overview of the different applications of data compression techniques in the image processing filed. Since some time ago, several research groups in the world have been developing various methods based on different data compression techniques to classify, segment, filter and detect digital images fakery. In this sense, it is necessary to analyze and clarify the relationship between different methods and put them into a framework to bette...

  2. Blank Background Image Lossless Compression Technique

    OpenAIRE

    Samer Sawalha; Arafat Awajan

    2014-01-01

    This paper presents a new technique able to provide a very good compression ratio in preserving the quality of the important components of the image called main objects. It focuses on applications where the image is of large size and consists of an object or a set of objects on background such as identity photos. In these applications, the background of the objects is in general uniform and represents insignificant information for the application. The results of this new techniques show that ...

  3. A comparison of image inpainting techniques

    Science.gov (United States)

    Liu, Yaojie; Shu, Chang

    2015-03-01

    Image inpainting is an important research topic in the field of image processing. The objective of inpainting is to "guess" the lost information according to surrounding image information, which can be applied in old photo restoration, object removal and demosaicing. Based on the foundation of previous literature of image inpainting and image modeling, this paper provides an overview of the state-of-art image inpainting methods. This survey first covers mathematics models of inpainting and different kinds of image impairment. Then it goes to the main components of an image, the structure and the texture, and states how these inpainting models and algorithms deal with the two separately, using PDE's method, exemplar-based method and etc. Afterwards sparse-representation-based inpainting and related techniques are introduced. Experimental analysis will be presented to evaluate the relative merits of different algorithms, with the measure of Peak Signal to Noise Ratio (PSNR) as well as direct visual perception.

  4. Brain dopaminergic systems : imaging with positron tomography

    International Nuclear Information System (INIS)

    Imaging of the dopaminergic system in the human brain with the in vivo use of Positron Emission Tomography emerged in the late 1980s as a tool of major importance in clinical neurosciences and pharmacology. The last few years have witnessed rapid development of new radiotracers specific to receptors, reuptake sites and enzymes of the dopamine system; the application of these radiotracers has led to major break-troughs in the pathophysiology and therapy of movement disorders and schizophrenic-like psychoses. This book is the first to collect, in a single volume, state-of-the-art contributions to the various aspects of this research. Its contents address methodological issues related to the design, labelling, quantitative imaging and compartmental modeli-sation of radioligands of the post-synaptic, pre-synaptic and enzyme sites of the dopamine system and to their use in clinical research in the fields of Parkinson's disease as well as other movement disorders, psychoses and neuroleptic receptor occupancy. The chapters were written by leading European scientists in the field of PET, gathered together in Caen (France, November 1990) under the aegis of the EEC Concerted Action on PET Investigations of Cellular Regeneration and Degeneration. This book provides a current and comprehensive overview on PET studies of the brain dopamine system which should aid and interest neurologists , psychiatrists, pharmacologists and medical imaging scientists. (author). refs.; figs.; tabs

  5. MR angiography using fast imaging techniques

    International Nuclear Information System (INIS)

    The use of fast imaging techniques provides new information about blood flow, by calculation of dynamic parameters. Using ECG-triggered gradient echo sequences, a section is imaged at various trigger delay times. Different flow velocities at several delay times lead to images with varying intensities within the vessels. According to the actual hear rate, 25-32 delay times may be sampled during one measurement. By processing the whole window of a temporal series, new flow-sensitive images are generated (e.g., by calculating the standard deviation pixel by pixel). Varying components of the arteries are extracted, while stationary tissue is eliminated. The high temporal resolution obtained with fast imaging techniques allows the display of flow phenomena in vessels in the form of MR imaging movies

  6. Lung Cancer Detection Using Image Processing Techniques

    Directory of Open Access Journals (Sweden)

    Mokhled S. AL-TARAWNEH

    2012-08-01

    Full Text Available Recently, image processing techniques are widely used in several medical areas for image improvement in earlier detection and treatment stages, where the time factor is very important to discover the abnormality issues in target images, especially in various cancer tumours such as lung cancer, breast cancer, etc. Image quality and accuracy is the core factors of this research, image quality assessment as well as improvement are depending on the enhancement stage where low pre-processing techniques is used based on Gabor filter within Gaussian rules. Following the segmentation principles, an enhanced region of the object of interest that is used as a basic foundation of feature extraction is obtained. Relying on general features, a normality comparison is made. In this research, the main detected features for accurate images comparison are pixels percentage and mask-labelling.

  7. Development of Wavelet Image Compression Technique to Particle Image Velocimetry

    Institute of Scientific and Technical Information of China (English)

    HuiLi

    2000-01-01

    In order to reduce the noise in the images and the physical storage,the wavelet-based image compression technique was applied to PIV processing in this paper,To study the effect of the wavelet bases,the standard PIV images were compressed by some known wavelet families,Daubechies,Coifman and Baylkin families with various compression ratios.It was found that a higher order wavelet base provided good compression performance for compressing PIV images,The error analysis of velocity field obtained indicated that the high compression ratio even up to 64:1,can be realized without losing significant flow information in PIV processing.The wavelet compression technique of PIV was applied to the experimental images of jet flow and showed excellent performance,A reduced number of erroneous vectors can be realized by varying compression ratio.It can say that the wavelet image compression technique is very effective in PIV system.

  8. IMAGE ANALYSIS BASED ON EDGE DETECTION TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies edge detection technique to obtain a Difference In Strength (DIS) map. An initial segmented result is obtained based on K-means clustering technique and the minimum distance. Then the region process is modeled by MRF to obtain an image that contains different intensity regions. The gradient values are calculated and then the watershed technique is used. DIS calculation is used for each pixel to define all the edges (weak or strong) in the image. The DIS map is obtained. This help as priority knowledge to know the possibility of the region segmentation by the next step (MRF), which gives an image that has all the edges and regions information. In MRF model,gray level l, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The segmentation results are improved by using watershed algorithm. After all pixels of the segmented regions are processed, a map of primitive region with edges is generated. The edge map is obtained using a merge process based on averaged intensity mean values. A common edge detectors that work on (MRF) segmented image are used and the results are compared. The segmentation and edge detection result is one closed boundary per actual region in the image.

  9. Reconstruction techniques for optoacoustic imaging

    Science.gov (United States)

    Frenz, Martin; Koestli, Kornel P.; Paltauf, Guenther; Schmidt-Kloiber, Heinz; Weber, Heinz P.

    2001-06-01

    Optoacoustics is a method to gain information from inside a tissue. This is done by irradiating a tissue with a short light pulse, which generates a pressure distribution inside the tissue that mirrors the absorber distribution. The pressure distribution measured on the tissue-surface allows, by applying a back-projection method, to calculate a tomography image of the absorber distribution. This study presents a novel computational algorithm based on Fourier transform, which, at least in principle, yields an exact 3D reconstruction of the distribution of absorbed energy density inside turbid media. The reconstruction is based on 2D pressure distributions captured outside at different times. The FFT reconstruction algorithm is first tested in the back projection of simulated pressure transients of small model absorbers, and finally applied to reconstruct the distribution of artificial blood vessels in three dimensions.

  10. Modern imaging techniques in the pediatric radiology; Moderne Bildgebungstechniken in der paediatrischen Radiologie

    Energy Technology Data Exchange (ETDEWEB)

    Staatz, Gundula [Universitaetsmedizin Mainz (Germany). Sektion Kinderradiologie; Stenzel, Martin [Universitaetsklinikum Jena (Germany). Sektion Paediatrische Radiologie; Mentzel, Hans-Joachim [Universitaetsklinikum Freiburg (Germany). Abt. Kinderradiologie

    2014-12-15

    The contribution on modern imaging techniques in the pediatric radiology covers the following topics: new sequencing techniques in pediatric skull MRI (magnetic resonance imaging): analysis of brain volume changes, diffusion weighted MRI, fractional anisotropy and fiber tracking, susceptibility weighted MRI; fetal MRI and whole-body MRI.

  11. Imaging Techniques in Spinal Cord Injury

    OpenAIRE

    Ellingson, BM; Salamon, N.; Holly, LT

    2012-01-01

    © 2014 Elsevier Inc. Background Spinal imaging plays a critical role in the diagnosis, treatment, and rehabilitation of patients with spinal cord injury (SCI). In recent years there has been increasing interest in the development of advanced imaging techniques to provide pertinent microstructural and metabolic information that is not provided by conventional modalities. Methods This review details the pathophysiological structural changes that accompany SCI, as well as their imaging correlate...

  12. Image processing techniques for digital orthophotoquad production

    Science.gov (United States)

    Hood, Joy J.; Ladner, L. J.; Champion, Richard A.

    1989-01-01

    Orthophotographs have long been recognized for their value as supplements or alternatives to standard maps. Recent trends towards digital cartography have resulted in efforts by the US Geological Survey to develop a digital orthophotoquad production system. Digital image files were created by scanning color infrared photographs on a microdensitometer. Rectification techniques were applied to remove tile and relief displacement, thereby creating digital orthophotos. Image mosaicking software was then used to join the rectified images, producing digital orthophotos in quadrangle format.

  13. Multisensor image fusion techniques in remote sensing

    Science.gov (United States)

    Ehlers, Manfred

    Current and future remote sensing programs such as Landsat, SPOT, MOS, ERS, JERS, and the space platform's Earth Observing System (Eos) are based on a variety of imaging sensors that will provide timely and repetitive multisensor earth observation data on a global scale. Visible, infrared and microwave images of high spatial and spectral resolution will eventually be available for all parts of the earth. It is essential that efficient processing techniques be developed to cope with the large multisensor data volumes. This paper discusses data fusion techniques that have proved successful for synergistic merging of SPOT HRV, Landsat TM and SIR-B images. It is demonstrated that these techniques can be used to improve rectification accuracies, to depicit greater cartographic detail, and to enhance spatial resolution in multisensor image data sets.

  14. Optimising rigid motion compensation for small animal brain PET imaging

    Science.gov (United States)

    Spangler-Bickell, Matthew G.; Zhou, Lin; Kyme, Andre Z.; De Laat, Bart; Fulton, Roger R.; Nuyts, Johan

    2016-10-01

    Motion compensation (MC) in PET brain imaging of awake small animals is attracting increased attention in preclinical studies since it avoids the confounding effects of anaesthesia and enables behavioural tests during the scan. A popular MC technique is to use multiple external cameras to track the motion of the animal’s head, which is assumed to be represented by the motion of a marker attached to its forehead. In this study we have explored several methods to improve the experimental setup and the reconstruction procedures of this method: optimising the camera-marker separation; improving the temporal synchronisation between the motion tracker measurements and the list-mode stream; post-acquisition smoothing and interpolation of the motion data; and list-mode reconstruction with appropriately selected subsets. These techniques have been tested and verified on measurements of a moving resolution phantom and brain scans of an awake rat. The proposed techniques improved the reconstructed spatial resolution of the phantom by 27% and of the rat brain by 14%. We suggest a set of optimal parameter values to use for awake animal PET studies and discuss the relative significance of each parameter choice.

  15. Solvation effects on brain uptakes of isomers of 99mTc brain imaging agents

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Analysis of electrostatic hydration free energies of the isomers of the 99mTc-BAT and 99mTc-DADT complexes is carried out using the computer simulation technique. The results show that not only a correlation exists between the logarithm of the brain uptake and the electrostatic hydration free energy for the isomers of 99mTc-brain radiopharmaceuticals, but also a linear relationship exists between the logarithm of the ratio of the brain uptake of the syn isomer to that of the anti one and the difference between the electrostatic hydration free energy of the syn-isomer and that of the anti one. Furthermore, the investigation on the important factors influencing the brain uptakes of 99mTc-radiopharmaceuticals and the reasons of the different biodistribution of the isomers of the 99mTc-complexes is explored at the molecular level. The results may provide a reference for the rational drug design of brain imaging agents.

  16. Effect of Harderian adenectomy on the statistical analyses of mouse brain imaging using positron emission tomography.

    Science.gov (United States)

    Kim, Minsoo; Woo, Sang-Keun; Yu, Jung Woo; Lee, Yong Jin; Kim, Kyeong Min; Kang, Joo Hyun; Eom, Kidong; Nahm, Sang-Soep

    2014-01-01

    Positron emission tomography (PET) using 2-deoxy-2-[(18)F] fluoro-D-glucose (FDG) as a radioactive tracer is a useful technique for in vivo brain imaging. However, the anatomical and physiological features of the Harderian gland limit the use of FDG-PET imaging in the mouse brain. The gland shows strong FDG uptake, which in turn results in distorted PET images of the frontal brain region. The purpose of this study was to determine if a simple surgical procedure to remove the Harderian gland prior to PET imaging of mouse brains could reduce or eliminate FDG uptake. Measurement of FDG uptake in unilaterally adenectomized mice showed that the radioactive signal emitted from the intact Harderian gland distorts frontal brain region images. Spatial parametric measurement analysis demonstrated that the presence of the Harderian gland could prevent accurate assessment of brain PET imaging. Bilateral Harderian adenectomy efficiently eliminated unwanted radioactive signal spillover into the frontal brain region beginning on postoperative Day 10. Harderian adenectomy did not cause any post-operative complications during the experimental period. These findings demonstrate the benefits of performing a Harderian adenectomy prior to PET imaging of mouse brains.

  17. Animal imaging studies of potential brain damage

    Science.gov (United States)

    Gatley, S. J.; Vazquez, M. E.; Rice, O.

    To date, animal studies have not been able to predict the likelihood of problems in human neurological health due to HZE particle exposure during space missions outside the Earth's magnetosphere. In ongoing studies in mice, we have demonstrated that cocaine stimulated locomotor activity is reduced by a moderate dose (120 cGy) of 1 GeV 56Fe particles. We postulate that imaging experiments in animals may provide more sensitive and earlier indicators of damage due to HZE particles than behavioral tests. Since the small size of the mouse brain is not well suited to the spatial resolution offered by microPET, we are now repeating some of our studies in a rat model. We anticipate that this will enable us to identify imaging correlates of behavioral endpoints. A specific hypothesis of our studies is that changes in the metabolic rate for glucose in striatum of animals will be correlated with alterations in locomotor activity. We will also evaluate whether the neuroprotective drug L-deprenyl reduces the effect of radiation on locomotor activity. In addition, we will conduct microPET studies of brain monoamine oxidase A and monoamine oxidase B in rats before and at various times after irradiation with HZE particles. The hypothesis is that monoamine oxidase A, which is located in nerve terminals, will be unchanged or decreased after irradiation, while monoamine oxidase B, which is located in glial cells, will be increased after irradiation. Neurochemical effects that could be measured using PET could in principle be applied in astronauts, in terms of detecting and monitoring subtle neurological damage that might have occurred during long space missions. More speculative uses of PET are in screening candidates for prolonged space missions (for example, for adequate reserve in critical brain circuits) and in optimizing medications to treat impairments after missions.

  18. An Effective Method of Image Retrieval using Image Mining Techniques

    CERN Document Server

    Kannan, A; Anbazhagan, N; 10.5121/ijma.2010.2402

    2010-01-01

    The present research scholars are having keen interest in doing their research activities in the area of Data mining all over the world. Especially, [13]Mining Image data is the one of the essential features in this present scenario since image data plays vital role in every aspect of the system such as business for marketing, hospital for surgery, engineering for construction, Web for publication and so on. The other area in the Image mining system is the Content-Based Image Retrieval (CBIR) which performs retrieval based on the similarity defined in terms of extracted features with more objectiveness. The drawback in CBIR is the features of the query image alone are considered. Hence, a new technique called Image retrieval based on optimum clusters is proposed for improving user interaction with image retrieval systems by fully exploiting the similarity information. The index is created by describing the images according to their color characteristics, with compact feature vectors, that represent typical co...

  19. Brain MR imaging in systemic lupus erythematous

    International Nuclear Information System (INIS)

    To present MR imaging findings of intracranial lesions in systemic lupus erythematosus(SLE), a retrospective study was performed on MR images of 33 SLE patients with neurologic symptoms and signs. MR imaging was performed on either a 0.5 T (21 patients) or 2.0 T unit (12 patients), using T1-weighted, proton-density-weighted, and T2-weighted spin echo sequences in all patients. In seven patients, post-contrast T1-weighted images were also obtained after administration of gadopentetate dimeglumine. The main MR findings consisted of focal lesions suggesting ischemia/infarct (15 patients), diffuse brain atrophy (8), and findings associated with infection (4). The MR findings were normal in 11 patients (33%). The focal lesions suggesting ischemia/infarcts presumably secondary to vasculitis were distributed in the cortex or subcortical white matter (7 patients), deep periventricular white matter (3), or in both areas (5). Most of the focal lesions were multiple and small in size. The findings associated with infection were variable and included communicating hydrocephalus, meningeal enhancement, granuloma, etc. MR findings of SLE were non-specific and therefore clinical correlation is needed when evaluating SLE in MR

  20. Lossless image compression technique for infrared thermal images

    Science.gov (United States)

    Allred, Lloyd G.; Kelly, Gary E.

    1992-07-01

    The authors have achieved a 6.5-to-one image compression technique for thermal images (640 X 480, 1024 colors deep). Using a combination of new and more traditional techniques, the combined algorithm is computationally simple, enabling `on-the-fly' compression and storage of an image in less time than it takes to transcribe the original image to or from a magnetic medium. Similar compression has been achieved on visual images by virtue of the feature that all optical devices possess a modulation transfer function. As a consequence of this property, the difference in color between adjacent pixels is a usually small number, often between -1 and +1 graduations for a meaningful color scheme. By differentiating adjacent rows and columns, the original image can be expressed in terms of these small numbers. A simple compression algorithm for these small numbers achieves a four to one image compression. By piggy-backing this technique with a LZW compression or a fixed Huffman coding, an additional 35% image compression is obtained, resulting in a 6.5-to-one lossless image compression. Because traditional noise-removal operators tend to minimize the color graduations between adjacent pixels, an additional 20% reduction can be obtained by preprocessing the image with a noise-removal operator. Although noise removal operators are not lossless, their application may prove crucial in applications requiring high compression, such as the storage or transmission of a large number or images. The authors are working with the Air Force Photonics Technology Application Program Management office to apply this technique to transmission of optical images from satellites.

  1. Compact and mobile high resolution PET brain imager

    Science.gov (United States)

    Majewski, Stanislaw; Proffitt, James

    2011-02-08

    A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage.

  2. Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in brain CT

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Qingguo, E-mail: renqg83@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Dewan, Sheilesh Kumar, E-mail: sheilesh_d1@hotmail.com [Department of Geriatrics, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Li, Ming, E-mail: minli77@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Li, Jianying, E-mail: Jianying.Li@med.ge.com [CT Imaging Research Center, GE Healthcare China, Beijing (China); Mao, Dingbiao, E-mail: maodingbiao74@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Wang, Zhenglei, E-mail: Williswang_doc@yahoo.com.cn [Department of Radiology, Shanghai Electricity Hospital, Shanghai 200050 (China); Hua, Yanqing, E-mail: cjr.huayanqing@vip.163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China)

    2012-10-15

    Purpose: To compare image quality and visualization of normal structures and lesions in brain computed tomography (CT) with adaptive statistical iterative reconstruction (ASIR) and filtered back projection (FBP) reconstruction techniques in different X-ray tube current–time products. Materials and methods: In this IRB-approved prospective study, forty patients (nineteen men, twenty-one women; mean age 69.5 ± 11.2 years) received brain scan at different tube current–time products (300 and 200 mAs) in 64-section multi-detector CT (GE, Discovery CT750 HD). Images were reconstructed with FBP and four levels of ASIR-FBP blending. Two radiologists (please note that our hospital is renowned for its geriatric medicine department, and these two radiologists are more experienced in chronic cerebral vascular disease than in neoplastic disease, so this research did not contain cerebral tumors but as a discussion) assessed all the reconstructed images for visibility of normal structures, lesion conspicuity, image contrast and diagnostic confidence in a blinded and randomized manner. Volume CT dose index (CTDI{sub vol}) and dose-length product (DLP) were recorded. All the data were analyzed by using SPSS 13.0 statistical analysis software. Results: There was no statistically significant difference between the image qualities at 200 mAs with 50% ASIR blending technique and 300 mAs with FBP technique (p > .05). While between the image qualities at 200 mAs with FBP and 300 mAs with FBP technique a statistically significant difference (p < .05) was found. Conclusion: ASIR provided same image quality and diagnostic ability in brain imaging with greater than 30% dose reduction compared with FBP reconstruction technique.

  3. CT and MRI imaging of the brain in MELAS syndrome

    International Nuclear Information System (INIS)

    MELAS syndrome (mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes) is a rare, multisystem disorder which belongs to a group of mitochondrial metabolic diseases. As other diseases in this group, it is inherited in the maternal line. In this report, we discussed a case of a 10-year-old girl with clinical and radiological picture of MELAS syndrome. We would like to describe characteristic radiological features of MELAS syndrome in CT, MRI and MR spectroscopy of the brain and differential diagnosis. The rarity of this disorder and the complexity of its clinical presentation make MELAS patients among the most difficult to diagnose. Brain imaging studies require a wide differential diagnosis, primarily to distinguish between MELAS and ischemic stroke. Particularly helpful are the MRI and MR spectroscopy techniques

  4. IMAGE AUTHENTICATION TECHNIQUES AND ADVANCES SURVEY

    Directory of Open Access Journals (Sweden)

    Derroll David

    2015-10-01

    Full Text Available With the advanced technologies in the area of Engineering the World has become a smaller place and communication is in our finger tips. The multimedia sharing traffic through electronic media has increased tremendously in the recent years with the higher use of social networking sites. The statistics of amount of images uploaded in the internet per day is very huge. Digital Image security has become vulnerable due to increase transmission over non-secure channel and needs protection. Digital Images play a crucial role in medical and military images etc. and any tampering of them is a serious issue. Several approaches are introduced to authenticate multimedia images. These approaches can be categorized into fragile and semi-fragile watermarking, conventional cryptography and digital signatures based on the image content. The aim of this paper is to provide a comparative study and also a survey of emerging techniques for image authentication. The important requirements for an efficient image authentication system design are discussed along with the classification of image authentication into tamper detection, localization and reconstruction and robustness against image processing operation. Furthermore, the concept of image content based authentication is enlightened.

  5. Infrared Imaging System for Studying Brain Function

    Science.gov (United States)

    Mintz, Frederick; Mintz, Frederick; Gunapala, Sarath

    2007-01-01

    A proposed special-purpose infrared imaging system would be a compact, portable, less-expensive alternative to functional magnetic resonance imaging (fMRI) systems heretofore used to study brain function. Whereas a typical fMRI system fills a large room, and must be magnetically isolated, this system would fit into a bicycle helmet. The system would include an assembly that would be mounted inside the padding in a modified bicycle helmet or other suitable headgear. The assembly would include newly designed infrared photodetectors and data-acquisition circuits on integrated-circuit chips on low-thermal-conductivity supports in evacuated housings (see figure) arranged in multiple rows and columns that would define image coordinates. Each housing would be spring-loaded against the wearer s head. The chips would be cooled by a small Stirling Engine mounted contiguous to, but thermally isolated from, the portions of the assembly in thermal contact with the wearer s head. Flexible wires or cables for transmitting data from the aforementioned chips would be routed to an integrated, multichannel transmitter and thence through the top of the assembly to a patch antenna on the outside of the helmet. The multiple streams of data from the infrared-detector chips would be sent to a remote site, where they would be processed, by software, into a three-dimensional display of evoked potentials that would represent firing neuronal bundles and thereby indicate locations of neuronal activity associated with mental or physical activity. The 3D images will be analogous to current fMRI images. The data would also be made available, in real-time, for comparison with data in local or internationally accessible relational databases that already exist in universities and research centers. Hence, this system could be used in research on, and for the diagnosis of response from the wearer s brain to physiological, psychological, and environmental changes in real time. The images would also be

  6. FULLY AUTOMATIC FRAMEWORK FOR SEGMENTATION OF BRAIN MRI IMAGE

    Institute of Scientific and Technical Information of China (English)

    Lin Pan; Zheng Chongxun; Yang Yong; Gu Jianwen

    2005-01-01

    Objective To propose an automatic framework for segmentation of brain image in this paper. Methods The brain MRI image segmentation framework consists of three-step segmentation procedures. First, Non-brain structures removal by level set method. Then, the non-uniformity correction method is based on computing estimates of tissue intensity variation. Finally, it uses a statistical model based on Markov random filed for MRI brain image segmentation. The brain tissue can be classified into cerebrospinal fluid, white matter and gray matter. Results To evaluate the proposed our method, we performed two sets of experiments, one on simulated MR and another on real MR brain data. Conclusion The efficacy of the brain MRI image segmentation framework has been demonstrated by the extensive experiments. In the future, we are also planning on a large-scale clinical evaluation of this segmentation framework.

  7. Functional brain imaging to investigate the higher brain dysfunction induced by diffuse brain injury

    International Nuclear Information System (INIS)

    Higher brain dysfunction is the major problem of patients who recover from neurotrauma the prevents them from returning to their previous social life. Many such patients do not have focal brain damage detected with morphological imaging. We focused on studying the focal brain dysfunction that can be detected only with functional imaging with positron emission tomography (PET) in relation to the score of various cognition batteries. Patients who complain of higher brain dysfunction without apparent morphological cortical damage were recruited for this study. Thirteen patients with diffuse axonal injury (DAI) or cerebral concussion was included. They underwent a PET study to image glucose metabolism by 18F-fluorodeoxyglucose (FDG), and central benodiazepine receptor (cBZD-R) (marker of neuronal body) by 11C-flumazenil, together with cognition measurement by WAIS-R, WMS-R, and WCST etc. PET data were compared with age matched normal controls using statistical parametric mapping (SPM)2. DAI patients had a significant decrease in glucose matabolism and cBZD-R distribution in the cingulated cortex than normal controls. Patients diagnosed with concussion because of shorter consciousness disturbance also had abnormal FDG uptake and cBZD-R distribution. Cognition test scores were variable among patients. Degree of decreased glucose metabolism and cBZD-R distribution in the dominant hemishphere corresponded well to the severity of cognitive disturbance. PET molecular imaging was useful to depict focal cortical dysfunction of neurotrauma patients even when morphological change was not apparent. This method may be promising to clarify the pathophysiology of higher brain dysfunction of patients with diffuse axonal injury or chronic traumatic encephalopathy. (author)

  8. Perfusion imaging with computed tomography: brain and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Miles, K.A. [Div. of Clinical and Lab. Investigation, Brighton and Sussex Medical School, Univ. of Sussex, Falmer, Brighton (United Kingdom)

    2006-01-10

    The availability of rapid imaging with multidetector CT systems and commercial analysis software has made perfusion imaging with CT an everyday technique, not only for the brain but also for other body organs. Perfusion imaging is usually performed as an adjunct to a conventional CT examination and is therefore particularly appropriate when a conventional CT is part of routine clinical protocols. The derived values are reproducible and have been validated against a range of reference techniques. Within neuroradiology, perfusion CT has attracted interest in the assessment of acute stroke but can also be used to assess secondary injury in head trauma and as an adjunct to CT angiography to evaluate cerebral spasm in subarachnoid haemorrhage. Within oncology, perfusion CT provides an imaging correlate for tumour vascularity that can be used to discriminate benign and malignant lesions, as an indicator of tumour aggressiveness, to reveal occult tumour and improve the delineation of tumours during radiotherapy planning, and as a functional assessment of tumour response to therapy. By exploiting the ability of CT systems to quantify contrast enhancement. CT perfusion imaging uses contrast media to assess vascular physiology and so improve diagnosis, prognosis, treatment selection and therapy monitoring. (orig.)

  9. Interpretation techniques. [image enhancement and pattern recognition

    Science.gov (United States)

    Dragg, J. L.

    1974-01-01

    The image enhancement and geometric correction and registration techniques developed and/or demonstrated on ERTS data are relatively mature and greatly enhance the utility of the data for a large variety of users. Pattern recognition was improved by the use of signature extension, feature extension, and other classification techniques. Many of these techniques need to be developed and generalized to become operationally useful. Advancements in the mass precision processing of ERTS were demonstrated, providing the hope for future earth resources data to be provided in a more readily usable state. Also in evidence is an increasing and healthy interaction between the techniques developers and the user/applications investigators.

  10. FCM Clustering Algorithms for Segmentation of Brain MR Images

    Directory of Open Access Journals (Sweden)

    Yogita K. Dubey

    2016-01-01

    Full Text Available The study of brain disorders requires accurate tissue segmentation of magnetic resonance (MR brain images which is very important for detecting tumors, edema, and necrotic tissues. Segmentation of brain images, especially into three main tissue types: Cerebrospinal Fluid (CSF, Gray Matter (GM, and White Matter (WM, has important role in computer aided neurosurgery and diagnosis. Brain images mostly contain noise, intensity inhomogeneity, and weak boundaries. Therefore, accurate segmentation of brain images is still a challenging area of research. This paper presents a review of fuzzy c-means (FCM clustering algorithms for the segmentation of brain MR images. The review covers the detailed analysis of FCM based algorithms with intensity inhomogeneity correction and noise robustness. Different methods for the modification of standard fuzzy objective function with updating of membership and cluster centroid are also discussed.

  11. Pitfalls and Limitations of PET/CT in Brain Imaging.

    Science.gov (United States)

    Salmon, Eric; Bernard Ir, Claire; Hustinx, Roland

    2015-11-01

    Neurologic applications were at the forefront of PET imaging when the technique was developed in the mid-1970s. Although oncologic indications have become prominent in terms of number of studies performed worldwide, neurology remains a major field in which functional imaging provides unique information, both for clinical and research purposes. The evaluation of glucose metabolism using FDG remains the most frequent exploration, but in recent years, alternative radiotracers have been developed, including fluorinated amino acid analogues for primary brain tumor imaging and fluorinated compounds for assessing the amyloid deposits in patients with suspected Alzheimer disease. As the brain is enclosed in the skull, which presents fixed landmarks, it is relatively easy to coregister images obtained with various cross-sectional imaging methods, either functional or anatomical, with a relatively high accuracy and robustness. Nevertheless, PET in neurology has fully benefited from the advent of hybrid imaging. Attenuation and scatter correction is now much faster and equally accurate, using CT as compared with the traditional transmission scan using an external radioactive source. The perfect coregistration with the CT data, which is now systematically performed, also provides its own set of valuable information, for instance regarding cerebral atrophy. However, hybrid imaging in neurology comes with pitfalls and limitations, in addition to those that are well known, for example, blood glucose levels or psychotropic drugs that greatly affect the physiological FDG uptake. Movements of the patient's head, either during the PET acquisition or between the PET and the CT acquisitions will generate artifacts that may be very subtle yet lead to erroneous interpretation of the study. Similarly, quantitative analysis, such as voxel-based analyses, may prove very helpful in improving the diagnostic accuracy and the reproducibility of the reading, but a wide variety of artifacts may

  12. Neuroimaging of pediatric brain tumors: from basic to advanced magnetic resonance imaging (MRI).

    Science.gov (United States)

    Panigrahy, Ashok; Blüml, Stefan

    2009-11-01

    In this review, the basic magnetic resonance concepts used in the imaging approach of a pediatric brain tumor are described with respect to different factors including understanding the significance of the patient's age. Also discussed are other factors directly related to the magnetic resonance scan itself including evaluating the location of the tumor, determining if the lesion is extra-axial or intra-axial, and evaluating the contrast characteristics of the lesion. Of note, there are key imaging features of pediatric brain tumors, which can give information about the cellularity of the lesion, which can then be confirmed with advanced magnetic resonance imaging (MRI) techniques. The second part of this review will provide an overview of the major advanced MRI techniques used in pediatric imaging, particularly, magnetic resonance diffusion, magnetic resonance spectroscopy, and magnetic resonance perfusion. The last part of the review will provide more specific information about the use of advanced magnetic resonance techniques in the evaluation of pediatric brain tumors.

  13. Quantitative Perfusion and Permeability Biomarkers in Brain Cancer from Tomographic CT and MR Images

    OpenAIRE

    Eilaghi, Armin; Yeung, Timothy; d’Esterre, Christopher; Bauman, Glenn; Yartsev, Slav; Easaw, Jay; Fainardi, Enrico; Lee, Ting-Yim; Frayne, Richard

    2016-01-01

    Dynamic contrast-enhanced perfusion and permeability imaging, using computed tomography and magnetic resonance systems, are important techniques for assessing the vascular supply and hemodynamics of healthy brain parenchyma and tumors. These techniques can measure blood flow, blood volume, and blood–brain barrier permeability surface area product and, thus, may provide information complementary to clinical and pathological assessments. These have been used as biomarkers to enhance the treatme...

  14. Diagnosis of scaphoid fracture: optimal imaging techniques

    Directory of Open Access Journals (Sweden)

    Geijer M

    2013-07-01

    Full Text Available Mats Geijer Center for Medical Imaging and Physiology, Skåne University Hospital and Lund University, Lund, Sweden Abstract: This review aims to provide an overview of modern imaging techniques for evaluation of scaphoid fracture, with emphasis on occult fractures and an outlook on the possible evolution of imaging; it also gives an overview of the pathologic and anatomic basis for selection of techniques. Displaced scaphoid fractures detected by wrist radiography, with or without special scaphoid views, pose no diagnostic problems. After wrist trauma with clinically suspected scaphoid fracture and normal scaphoid radiography, most patients will have no clinically important fracture. Between 5% and 19% of patients (on average 16% in meta-analyses will, however, have an occult scaphoid fracture which, untreated, may lead to later, potentially devastating, complications. Follow-up imaging may be done with repeat radiography, tomosynthesis, computed tomography, magnetic resonance imaging (MRI, or bone scintigraphy. However, no method is perfect, and choice of imaging may be based on availability, cost, perceived accuracy, or personal preference. Generally, MRI and bone scintigraphy are regarded as the most sensitive modalities, but both are flawed by false positive results at various rates. Keywords: occult fracture, wrist, radiography, computed tomography, magnetic resonance imaging, radionuclide imaging

  15. Imaging of Age-related Brain Changes: A Population-based Approach

    NARCIS (Netherlands)

    M.W. Vernooij (Meike)

    2009-01-01

    textabstractThe objective of the studies described in this thesis was to investigate with magnetic resonance imaging (MRI) brain changes that may function as preclinical imaging markers for neurodegenerative and cerebrovascular disease. For this goal, advanced MRI techniques were applied in the Rott

  16. Tablet surface characterisation by various imaging techniques

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Rantanen, Jukka; Yliruusi, Jouko

    2003-01-01

    The aim of this study was to characterise tablet surfaces using different imaging and roughness analytical techniques including optical microscopy, scanning electron microscopy (SEM), laser profilometry and atomic force microscopy (AFM). The test materials compressed were potassium chloride (KCl......, but they do not provide quantitative information about surface roughness. Laser profilometry and AFM on the other hand provide quantitative roughness data from two different scales, laser profilometer from 1 mm and atomic force microscope from 90 microm scale. AFM is a powerful technique but other imaging...

  17. Retinal Image Simulation of Subjective Refraction Techniques.

    Directory of Open Access Journals (Sweden)

    Sara Perches

    Full Text Available Refraction techniques make it possible to determine the most appropriate sphero-cylindrical lens prescription to achieve the best possible visual quality. Among these techniques, subjective refraction (i.e., patient's response-guided refraction is the most commonly used approach. In this context, this paper's main goal is to present a simulation software that implements in a virtual manner various subjective-refraction techniques-including Jackson's Cross-Cylinder test (JCC-relying all on the observation of computer-generated retinal images. This software has also been used to evaluate visual quality when the JCC test is performed in multifocal-contact-lens wearers. The results reveal this software's usefulness to simulate the retinal image quality that a particular visual compensation provides. Moreover, it can help to gain a deeper insight and to improve existing refraction techniques and it can be used for simulated training.

  18. Retinal Image Simulation of Subjective Refraction Techniques.

    Science.gov (United States)

    Perches, Sara; Collados, M Victoria; Ares, Jorge

    2016-01-01

    Refraction techniques make it possible to determine the most appropriate sphero-cylindrical lens prescription to achieve the best possible visual quality. Among these techniques, subjective refraction (i.e., patient's response-guided refraction) is the most commonly used approach. In this context, this paper's main goal is to present a simulation software that implements in a virtual manner various subjective-refraction techniques--including Jackson's Cross-Cylinder test (JCC)--relying all on the observation of computer-generated retinal images. This software has also been used to evaluate visual quality when the JCC test is performed in multifocal-contact-lens wearers. The results reveal this software's usefulness to simulate the retinal image quality that a particular visual compensation provides. Moreover, it can help to gain a deeper insight and to improve existing refraction techniques and it can be used for simulated training. PMID:26938648

  19. Methods and considerations for longitudinal structural brain imaging analysis across development

    Directory of Open Access Journals (Sweden)

    Kathryn L. Mills

    2014-07-01

    Full Text Available Magnetic resonance imaging (MRI has allowed the unprecedented capability to measure the human brain in vivo. This technique has paved the way for longitudinal studies exploring brain changes across the entire life span. Results from these studies have given us a glimpse into the remarkably extended and multifaceted development of our brain, converging with evidence from anatomical and histological studies. Ever-evolving techniques and analytical methods provide new avenues to explore and questions to consider, requiring researchers to balance excitement with caution. This review addresses what MRI studies of structural brain development in children and adolescents typically measure and how. We focus on measurements of brain morphometry (e.g., volume, cortical thickness, surface area, folding patterns, as well as measurements derived from diffusion tensor imaging (DTI. By integrating finding from multiple longitudinal investigations, we give an update on current knowledge of structural brain development and how it relates to other aspects of biological development and possible underlying physiological mechanisms. Further, we review and discuss current strategies in image processing, analysis techniques and modeling of brain development. We hope this review will aid current and future longitudinal investigations of brain development, as well as evoke a discussion amongst researchers regarding best practices.

  20. Label-free live brain imaging and targeted patching with third-harmonic generation microscopy

    Science.gov (United States)

    Witte, Stefan; Negrean, Adrian; Lodder, Johannes C.; de Kock, Christiaan P. J.; Testa Silva, Guilherme; Mansvelder, Huibert D.; Louise Groot, Marie

    2011-01-01

    The ability to visualize neurons inside living brain tissue is a fundamental requirement in neuroscience and neurosurgery. Especially the development of a noninvasive probe of brain morphology with micrometer-scale resolution is highly desirable, as it would provide a noninvasive approach to optical biopsies in diagnostic medicine. Two-photon laser-scanning microscopy (2PLSM) is a powerful tool in this regard, and has become the standard for minimally invasive high-resolution imaging of living biological samples. However, while 2PLSM-based optical methods provide sufficient resolution, they have been hampered by the requirement for fluorescent dyes to provide image contrast. Here we demonstrate high-contrast imaging of live brain tissue at cellular resolution, without the need for fluorescent probes, using optical third-harmonic generation (THG). We exploit the specific geometry and lipid content of brain tissue at the cellular level to achieve partial phase matching of THG, providing an alternative contrast mechanism to fluorescence. We find that THG brain imaging allows rapid, noninvasive label-free imaging of neurons, white-matter structures, and blood vessels simultaneously. Furthermore, we exploit THG-based imaging to guide micropipettes towards designated neurons inside live tissue. This work is a major step towards label-free microscopic live brain imaging, and opens up possibilities for the development of laser-guided microsurgery techniques in the living brain. PMID:21444784

  1. Cluster imaging of multi-brain networks (CIMBN: a general framework for hyperscanning and modeling a group of interacting brains

    Directory of Open Access Journals (Sweden)

    Lian eDuan

    2015-07-01

    Full Text Available Studying the neural basis of human social interactions is a key topic in the field of social neuroscience. Brain imaging studies in this field usually focus on the neural correlates of the social interactions between two participants. However, as the participant number further increases, even by a small amount, great difficulties raise. One challenge is how to concurrently scan all the interacting brains with high ecological validity, especially for a large number of participants. The other challenge is how to effectively model the complex group interaction behaviors emerging from the intricate neural information exchange among a group of socially organized people. Confronting these challenges, we propose a new approach called Cluster Imaging of Multi-brain Networks (CIMBN. CIMBN consists of two parts. The first part is a cluster imaging technique with high ecological validity based on multiple functional near-infrared spectroscopy (fNIRS systems. Using this technique, we can easily extend the simultaneous imaging capacity of social neuroscience studies up to dozens of participants. The second part of CIMBN is a multi-brain network (MBN modeling method based on graph theory. By taking each brain as a network node and the relationship between any two brains as a network edge, one can construct a network model for a group of interacting brains. The emergent group social behaviors can then be studied using the network’s properties, such as its topological structure and information exchange efficiency. Although there is still much work to do, as a general framework for hyperscanning and modeling a group of interacting brains, CIMBN can provide new insights into the neural correlates of group social interactions, and advance social neuroscience and social psychology.

  2. An Effective Method of Image Retrieval using Image Mining Techniques

    Directory of Open Access Journals (Sweden)

    A.Kannan

    2010-11-01

    Full Text Available The present research scholars are having keen interest in doing their research activities in the area ofData mining all over the world. Especially, [13]Mining Image data is the one of the essential features inthis present scenario since image data plays vital role in every aspect of the system such as business formarketing, hospital for surgery, engineering for construction, Web for publication and so on. The otherarea in the Image mining system is the Content-Based Image Retrieval (CBIR which performs retrievalbased on the similarity defined in terms of extracted features with more objectiveness. The drawback inCBIR is the features of the query image alone are considered. Hence, a new technique called Imageretrieval based on optimum clusters is proposed for improving user interaction with image retrievalsystems by fully exploiting the similarity information. The index is created by describing the imagesaccording to their color characteristics, with compact feature vectors, that represent typical colordistributions [12].

  3. Brain imaging and human nutrition: which measures to use in intervention studies?

    Science.gov (United States)

    Sizonenko, Stéphane V; Babiloni, Claudio; de Bruin, Eveline A; Isaacs, Elizabeth B; Jönsson, Lena S; Kennedy, David O; Latulippe, Marie E; Mohajeri, M Hasan; Moreines, Judith; Pietrini, Pietro; Walhovd, Kristine B; Winwood, Robert J; Sijben, John W

    2013-08-01

    The present review describes brain imaging technologies that can be used to assess the effects of nutritional interventions in human subjects. Specifically, we summarise the biological relevance of their outcome measures, practical use and feasibility, and recommended use in short- and long-term nutritional studies. The brain imaging technologies described consist of MRI, including diffusion tensor imaging, magnetic resonance spectroscopy and functional MRI, as well as electroencephalography/magnetoencephalography, near-IR spectroscopy, positron emission tomography and single-photon emission computerised tomography. In nutritional interventions and across the lifespan, brain imaging can detect macro- and microstructural, functional, electrophysiological and metabolic changes linked to broader functional outcomes, such as cognition. Imaging markers can be considered as specific for one or several brain processes and as surrogate instrumental endpoints that may provide sensitive measures of short- and long-term effects. For the majority of imaging measures, little information is available regarding their correlation with functional endpoints in healthy subjects; therefore, imaging markers generally cannot replace clinical endpoints that reflect the overall capacity of the brain to behaviourally respond to specific situations and stimuli. The principal added value of brain imaging measures for human nutritional intervention studies is their ability to provide unique in vivo information on the working mechanism of an intervention in hypothesis-driven research. Selection of brain imaging techniques and target markers within a given technique should mainly depend on the hypothesis regarding the mechanism of action of the intervention, level (structural, metabolic or functional) and anticipated timescale of the intervention's effects, target population, availability and costs of the techniques.

  4. Image Interpolation Techniques in Digital Image Processing: An Overview

    Directory of Open Access Journals (Sweden)

    Shreyas Fadnavis

    2014-10-01

    Full Text Available In current digital era the image interpolation techniques based on multi-resolution technique are being discovered and developed. These techniques are gaining importance due to their application in variety if field (medical, geographical, space information where fine and minor details are important. This paper presents an overview of different interpolation techniques, (nearest neighbor, Bilinear, Bicubic, B-spline, Lanczos, Discrete wavelet transform (DWT and Kriging. Our results show bicubic interpolations gives better results than nearest neighbor and bilinear, whereas DWT and Kriging give finer details.

  5. Retinal Imaging Techniques for Diabetic Retinopathy Screening.

    Science.gov (United States)

    Goh, James Kang Hao; Cheung, Carol Y; Sim, Shaun Sebastian; Tan, Pok Chien; Tan, Gavin Siew Wei; Wong, Tien Yin

    2016-03-01

    Due to the increasing prevalence of diabetes mellitus, demand for diabetic retinopathy (DR) screening platforms is steeply increasing. Early detection and treatment of DR are key public health interventions that can greatly reduce the likelihood of vision loss. Current DR screening programs typically employ retinal fundus photography, which relies on skilled readers for manual DR assessment. However, this is labor-intensive and suffers from inconsistency across sites. Hence, there has been a recent proliferation of automated retinal image analysis software that may potentially alleviate this burden cost-effectively. Furthermore, current screening programs based on 2-dimensional fundus photography do not effectively screen for diabetic macular edema (DME). Optical coherence tomography is becoming increasingly recognized as the reference standard for DME assessment and can potentially provide a cost-effective solution for improving DME detection in large-scale DR screening programs. Current screening techniques are also unable to image the peripheral retina and require pharmacological pupil dilation; ultra-widefield imaging and confocal scanning laser ophthalmoscopy, which address these drawbacks, possess great potential. In this review, we summarize the current DR screening methods using various retinal imaging techniques, and also outline future possibilities. Advances in retinal imaging techniques can potentially transform the management of patients with diabetes, providing savings in health care costs and resources. PMID:26830491

  6. Quantitative Techniques in PET-CT Imaging

    NARCIS (Netherlands)

    Basu, Sandip; Zaidi, Habib; Holm, Soren; Alavi, Abass

    2011-01-01

    The appearance of hybrid PET/CT scanners has made quantitative whole body scanning of radioactive tracers feasible. This paper deals with the novel concepts for assessing global organ function and disease activity based on combined functional (PET) and structural (CT or MR) imaging techniques, their

  7. A Novel Approach for MRI Brain Images Segmentation

    OpenAIRE

    Abo-Eleneen Z. A; Gamil Abdel-Azim

    2013-01-01

    Segmentation of brain from magnetic resonance (MR) images has important applications in neuroimaging, in particular it facilitates in extracting different brain tissues such as cerebrospinal fluids, white matter and gray matter. That helps in determining the volume of the tissues in three-dimensional brain MR images, which yields in analyzing many neural disorders such as epilepsy and Alzheimer disease. The Fisher information is a measure of the fluctuations in the observations. In a sense, ...

  8. Whole-brain dynamic CT angiography and perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orrison, W.W. [CHW Nevada Imaging Company, Nevada Imaging Centers, Spring Valley, Las Vegas, NV (United States); College of Osteopathic Medicine, Touro University Nevada, Henderson, NV (United States); Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Department of Medical Education, University of Nevada School of Medicine, Reno, NV (United States); Snyder, K.V.; Hopkins, L.N. [Department of Neurosurgery, Millard Fillmore Gates Circle Hospital, Buffalo, NY (United States); Roach, C.J. [School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States); Ringdahl, E.N. [Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV (United States); Nazir, R. [Shifa International Hospital, Islamabad (Pakistan); Hanson, E.H., E-mail: eric.hanson@amigenics.co [College of Osteopathic Medicine, Touro University Nevada, Henderson, NV (United States); Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States)

    2011-06-15

    The availability of whole brain computed tomography (CT) perfusion has expanded the opportunities for analysing the haemodynamic parameters associated with varied neurological conditions. Examples demonstrating the clinical utility of whole-brain CT perfusion imaging in selected acute and chronic ischaemic arterial neurovascular conditions are presented. Whole-brain CT perfusion enables the detection and focused haemodynamic analyses of acute and chronic arterial conditions in the central nervous system without the limitation of partial anatomical coverage of the brain.

  9. Whole-brain dynamic CT angiography and perfusion imaging

    International Nuclear Information System (INIS)

    The availability of whole brain computed tomography (CT) perfusion has expanded the opportunities for analysing the haemodynamic parameters associated with varied neurological conditions. Examples demonstrating the clinical utility of whole-brain CT perfusion imaging in selected acute and chronic ischaemic arterial neurovascular conditions are presented. Whole-brain CT perfusion enables the detection and focused haemodynamic analyses of acute and chronic arterial conditions in the central nervous system without the limitation of partial anatomical coverage of the brain.

  10. [Cucumber diseases diagnosis using multispectral imaging technique].

    Science.gov (United States)

    Feng, Jie; Liao, Ning-Fang; Zhao, Bo; Luo, Yong-Dao; Li, Bao-Ju

    2009-02-01

    For a reliable diagnosis of plant diseases and insect pests, spectroscopy analysis technique and mutispectral imaging technique are proposed to diagnose five cucumber diseases, namely Trichothecium roseum, Sphaerotheca fuliginea, Cladosporium cucumerinum, Corynespora cassiicola and Pseudoperonospora cubensis. In the experiment, the cucumbers' multispectral images of 14 visible lights channels, near infrared channel and panchromatic channel were captured using narrow-band multispectral imaging system under standard observation environment. And the 5 cucumber diseases, healthy leaves and reference white were classified using their multispectral information, the distance, angle and relativity. The discrimination of Trichothecium roseum, Sphaerotheca fuliginea, Cladosporium cucumerinum, and reference white was 100%, and that of Pseudoperonospora cubensis and healthy leaves was 80% and 93.33% respectively. The mean correct discrimination of diseases was 81.90% when the distance and relativity were used together. The result shows that the method realized good accuracy in the cucumber diseases diagnosis. PMID:19445229

  11. Functional brain imaging of gastrointestinal sensation in health and disease

    Institute of Scientific and Technical Information of China (English)

    Lukas Van Oudenhove; Steven J Coen; Qasim Aziz

    2007-01-01

    It has since long been known, from everyday experience as well as from animal and human studies, that psychological processes-both affective and cognitiveexert an influence on gastrointestinal sensorimotor function. More specifically, a link between psychological factors and visceral hypersensitivity has been suggested,mainly based on research in functional gastrointestinal disorder patients. However, until recently, the exact nature of this putative relationship remained unclear,mainly due to a lack of non-invasive methods to study the (neurobiological) mechanisms underlying this relationship in non-sleeping humans. As functional brain imaging, introduced in visceral sensory neuroscience some 10 years ago, does provide a method for in vivo study of brain-gut interactions, insight into the neurobiological mechanisms underlying visceral sensation in general and the influence of psychological factors more particularly,has rapidly grown. In this article, an overview of brain imaging evidence on gastrointestinal sensation will be given, with special emphasis on the brain mechanisms underlying the interaction between affective & cognitive processes and visceral sensation. First, the reciprocal neural pathways between the brain and the gut (braingut axis) will be briefly outlined, including brain imaging evidence in healthy volunteers. Second, functional brain imaging studies assessing the influence of psychological factors on brain processing of visceral sensation in healthy humans will be discussed in more detail.Finally, brain imaging work investigating differences in brain responses to visceral distension between healthy volunteers and functional gastrointestinal disorder patients will be highlighted.

  12. Automated segmentation of three-dimensional MR brain images

    Science.gov (United States)

    Park, Jonggeun; Baek, Byungjun; Ahn, Choong-Il; Ku, Kyo Bum; Jeong, Dong Kyun; Lee, Chulhee

    2006-03-01

    Brain segmentation is a challenging problem due to the complexity of the brain. In this paper, we propose an automated brain segmentation method for 3D magnetic resonance (MR) brain images which are represented as a sequence of 2D brain images. The proposed method consists of three steps: pre-processing, removal of non-brain regions (e.g., the skull, meninges, other organs, etc), and spinal cord restoration. In pre-processing, we perform adaptive thresholding which takes into account variable intensities of MR brain images corresponding to various image acquisition conditions. In segmentation process, we iteratively apply 2D morphological operations and masking for the sequences of 2D sagittal, coronal, and axial planes in order to remove non-brain tissues. Next, final 3D brain regions are obtained by applying OR operation for segmentation results of three planes. Finally we reconstruct the spinal cord truncated during the previous processes. Experiments are performed with fifteen 3D MR brain image sets with 8-bit gray-scale. Experiment results show the proposed algorithm is fast, and provides robust and satisfactory results.

  13. Analysis and simulation of brain signal data by EEG signal processing technique using MATLAB

    OpenAIRE

    Sasikumar Gurumurthy; Vudi Sai Mahit; Rittwika Ghosh

    2013-01-01

    EEG is brain signal processing technique that allows gaining the understanding of the complex inner mechanisms of the brain and abnormal brain waves have shown to be associated with particular brain disorders. The analysis of brain waves plays an important role in diagnosis of different brain disorders. MATLAB provides an interactive graphic user interface (GUI) allowing users to flexiblyand interactively process their high-density EEG dataset and other brain signal data different techniques ...

  14. Intracranial Hemorrhage Annotation for CT Brain Images

    Directory of Open Access Journals (Sweden)

    Tong Hau Lee

    2011-01-01

    Full Text Available In this paper, we created a decision-making model to detect intracranial hemorrhage and adopted Expectation Maximization(EM segmentation to segment the Computed Tomography (CT images. In this work, basically intracranial hemorrhage is classified into two main types which are intra-axial hemorrhage and extra-axial hemorrhage. In order to ease classification, contrast enhancement is adopted to finetune the contrast of the hemorrhage. After that, k-means is applied to group the potential and suspicious hemorrhagic regions into one cluster. The decision-making process is to identify whether the suspicious regions are hemorrhagic regions or non-regions of interest. After the hemorrhagic detection, the images are segmented into brain matter and cerebrospinal fluid (CSF by using expectation-maximization (EM segmentation. The acquired experimental results are evaluated in terms of recall and precision. The encouraging results have been attained whereby the proposed system has yielded 0.9333 and 0.8880 precision for extra-axial and intra-axial hemorrhagic detection respectively, whereas recall rate obtained is 0.9245 and 0.8043 for extra-axial and intra-axial hemorrhagic detection respectively.

  15. Advanced Neuromonitoring and Imaging in Pediatric Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Stuart H. Friess

    2012-01-01

    Full Text Available While the cornerstone of monitoring following severe pediatric traumatic brain injury is serial neurologic examinations, vital signs, and intracranial pressure monitoring, additional techniques may provide useful insight into early detection of evolving brain injury. This paper provides an overview of recent advances in neuromonitoring, neuroimaging, and biomarker analysis of pediatric patients following traumatic brain injury.

  16. Functional connectivity of the rodent brain using optical imaging

    Science.gov (United States)

    Guevara Codina, Edgar

    The aim of this thesis is to apply functional connectivity in a variety of animal models, using several optical imaging modalities. Even at rest, the brain shows high metabolic activity: the correlation in slow spontaneous fluctuations identifies remotely connected areas of the brain; hence the term "functional connectivity". Ongoing changes in spontaneous activity may provide insight into the neural processing that takes most of the brain metabolic activity, and so may provide a vast source of disease related changes. Brain hemodynamics may be modified during disease and affect resting-state activity. The thesis aims to better understand these changes in functional connectivity due to disease, using functional optical imaging. The optical imaging techniques explored in the first two contributions of this thesis are Optical Imaging of Intrinsic Signals and Laser Speckle Contrast Imaging, together they can estimate the metabolic rate of oxygen consumption, that closely parallels neural activity. They both have adequate spatial and temporal resolution and are well adapted to image the convexity of the mouse cortex. In the last article, a depth-sensitive modality called photoacoustic tomography was used in the newborn rat. Optical coherence tomography and laminar optical tomography were also part of the array of imaging techniques developed and applied in other collaborations. The first article of this work shows the changes in functional connectivity in an acute murine model of epileptiform activity. Homologous correlations are both increased and decreased with a small dependence on seizure duration. These changes suggest a potential decoupling between the hemodynamic parameters in resting-state networks, underlining the importance to investigate epileptic networks with several independent hemodynamic measures. The second study examines a novel murine model of arterial stiffness: the unilateral calcification of the right carotid. Seed-based connectivity analysis

  17. Study of Noise Detection and Noise Removal Techniques in Medical Images

    Directory of Open Access Journals (Sweden)

    Bhausaheb Shinde

    2012-03-01

    Full Text Available In this work we taken different medical images like MRI, Cancer, X-ray, and Brain and calculated standard derivations and mean of all these medical images. To finding salt & pepper noise and then applied median filtering technique for removal of noise. After removing a noise by using median filtering techniques again standard derivations and mean are evaluated. This experimental analysis will improve the accuracy of MRI, Cancer, X-ray and Brain images for easy diagnosis. The results, which we have achieved, are more useful and they prove to be helpful for general medical practitioners to analyze the symptoms of the patients.

  18. The role of functional imaging techniques in the dementia

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Young Hoon [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    2004-06-01

    Evaluation of dementia in patients with early symptoms of cognitive decline is clinically challenging, but the need for early, accurate diagnosis has become more crucial, since several medication for the treatment of mild to moderate Alzheimer' disease are available. Many neurodegenerative diseases produce significant brain function alteration even when structural imaging (CT of MRI) reveal no specific abnormalities. The role of PET and SPECT brain imaging in the initial assessment and differential diagnosis of dementia is beginning to evolve rapidly and growing evidence indicates that appropriate incorporation of PET into the clinical work up can improve diagnostic and prognostic accuracy with respect to Alzheimer's disease, the most common cause of dementia in the geriatric population. In the fast few years, studies comparing neuropathologic examination with PET have established reliable and consistent accuracy for diagnostic evaluations using PET - accuracies substantially exceeding those of comparable studies of diagnostic value of SPECT or of both modalities assessed side by side, or of clinical evaluations done without nuclear imaging. This review deals the role of functional brian imaging techniques in the evaluation of dementias and the role of nuclear neuroimaging in the early detection and diagnosis of Alzheimer's disease.

  19. Magnetic resonance imaging based volumetry: a primary approach to unravelling the brain

    Institute of Scientific and Technical Information of China (English)

    Huang Xiaoqi; Lü Su; Li Dongming; Gong Qiyong

    2007-01-01

    Magnetic resonance (MR) imaging based volumetry is recognized as an important technique for studying the brain. In this review, two principle volumetric methods using high resolution MR images were introduced, namely the Cavalieri method and the voxel based morphometry (VBM). The Cavalieri method represents a manual technique that allows the volume of brain structures to be estimated efficiently with no systematic error or sampling bias, whereby the VBM represents an automated image analysis which involves the use of statistical parametric mapping of the MR imaging data. Both methods have been refined and applied extensively in recent neuroscience research. The present paper aims to describe the development of methodologies and also to update the knowledge of their applications in studying the normal and diseased brain.

  20. Brain imaging and psychotherapy: methodological considerations and practical implications.

    Science.gov (United States)

    Linden, David E J

    2008-11-01

    The development of psychotherapy has been based on psychological theories and clinical effects. However, an investigation of the neurobiological mechanisms of psychological interventions is also needed in order to improve indication and prognosis, inform the choice of parallel pharmacotherapy, provide outcome measures and potentially even aid the development of new treatment protocols. This neurobiological investigation can be informed by animal models, for example of learning and conditioning, but will essentially need the non-invasive techniques of functional neuroimaging in order to assess psychotherapy effects on patients' brains, which will be reviewed here. Most research so far has been conducted in obsessive compulsive disorder (OCD), anxiety disorders and depression. Effects in OCD were particularly exciting in that both cognitive behavioural therapy and medication with a selective serotonin inhibitor led to a reduction in blood flow in the caudate nucleus. In phobia, brief courses of behavioural therapy produced marked reductions of paralimbic responses to offensive stimuli in line with the clinical improvement. Findings in depression are less consistent, with both increases and decreases in prefrontal metabolism being reported. However, they are important in pointing to different mechanisms for the clinical effects of pharmacotherapy (more "bottom up") and psychotherapy (more "top down"). For the future it would be desirable if the findings of psychotherapy changes to brain activation patterns were confirmed in larger groups with homogenous imaging protocols. Functional imaging has already made great contributions to the understanding of the neural correlates of psychopathology. For example, evidence converges to suggest that the subgenual cingulate is crucial for mood regulation. One current clinical application of these findings is deep brain stimulation in areas highlighted by such imaging studies. I will discuss their initial application in depression

  1. The role of magnetic resonance imaging in the management of brain metastases: diagnosis to prognosis

    OpenAIRE

    Zakaria, Rasheed; Das, Kumar; Bhojak, Maneesh; Radon, Mark; Walker, Carol; Jenkinson, Michael D

    2014-01-01

    This article reviews the different MRI techniques available for the diagnosis, treatment and monitoring of brain metastases with a focus on applying advanced MR techniques to practical clinical problems. Topics include conventional MRI sequences and contrast agents, functional MR imaging, diffusion weighted MR, MR spectroscopy and perfusion MR. The role of radiographic biomarkers is discussed as well as future directions such as molecular imaging and MR guided high frequency ultrasound.

  2. Spatial mapping of structural and connectional imaging data for the developing human brain with diffusion tensor imaging.

    Science.gov (United States)

    Ouyang, Austin; Jeon, Tina; Sunkin, Susan M; Pletikos, Mihovil; Sedmak, Goran; Sestan, Nenad; Lein, Ed S; Huang, Hao

    2015-02-01

    During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain.

  3. Liver Ultrasound Image Analysis using Enhancement Techniques

    Directory of Open Access Journals (Sweden)

    Smriti Sahu, Maheedhar Dubey, Mohammad Imroze Khan

    2012-12-01

    Full Text Available Liver cancer is the sixth most common malignanttumour and the third most common cause ofcancer-related deaths worldwide. Chronic Liverdamage affects up to 20% of our population. It hasmany causes - viral infections (Hepatitis B and C,toxins, genetic, metabolic and autoimmune diseases.The rate of liver cancer in Australia has increasedfour-fold in the past 20 years. For detection andqualitative diagnosis of liver diseases, Ultrasound(US image is an easy-to-use and minimally invasiveimaging modality. Medical images are oftendeteriorated by noise due to various sources ofinterferences and other phenomena known asSpeckle noise. Therefore it is required to apply somedigital image processing techniques for smoothingor suppression of speckle noise in ultrasoundimages. This paper attempts to undertake the studythree types of the image enhancement techniquesincluding, Shock Filter, Contrast Limited AdaptiveHistogram Equalization (CLAHE and Spatialfilter. These smoothing techniques are comparedusing performance matrices Peak Signal to NoiseRatio (PSNR and Mean Square Error (MSE. Ithas been observed that the Spatial high pass filtergives the better performance than others for liverultrasound image analysis.

  4. Diffusion MRI of the neonate brain: acquisition, processing and analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pannek, Kerstin [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, School of Medicine, Brisbane (Australia); University of Queensland, Centre for Advanced Imaging, Brisbane (Australia); Guzzetta, Andrea [IRCCS Stella Maris, Department of Developmental Neuroscience, Calambrone Pisa (Italy); Colditz, Paul B. [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, Perinatal Research Centre, Brisbane (Australia); Rose, Stephen E. [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, Centre for Advanced Imaging, Brisbane (Australia); University of Queensland Centre for Clinical Research, Royal Brisbane and Women' s Hospital, Brisbane (Australia)

    2012-10-15

    Diffusion MRI (dMRI) is a popular noninvasive imaging modality for the investigation of the neonate brain. It enables the assessment of white matter integrity, and is particularly suited for studying white matter maturation in the preterm and term neonate brain. Diffusion tractography allows the delineation of white matter pathways and assessment of connectivity in vivo. In this review, we address the challenges of performing and analysing neonate dMRI. Of particular importance in dMRI analysis is adequate data preprocessing to reduce image distortions inherent to the acquisition technique, as well as artefacts caused by head movement. We present a summary of techniques that should be used in the preprocessing of neonate dMRI data, and demonstrate the effect of these important correction steps. Furthermore, we give an overview of available analysis techniques, ranging from voxel-based analysis of anisotropy metrics including tract-based spatial statistics (TBSS) to recently developed methods of statistical analysis addressing issues of resolving complex white matter architecture. We highlight the importance of resolving crossing fibres for tractography and outline several tractography-based techniques, including connectivity-based segmentation, the connectome and tractography mapping. These techniques provide powerful tools for the investigation of brain development and maturation. (orig.)

  5. Diffusion MRI of the neonate brain: acquisition, processing and analysis techniques.

    Science.gov (United States)

    Pannek, Kerstin; Guzzetta, Andrea; Colditz, Paul B; Rose, Stephen E

    2012-10-01

    Diffusion MRI (dMRI) is a popular noninvasive imaging modality for the investigation of the neonate brain. It enables the assessment of white matter integrity, and is particularly suited for studying white matter maturation in the preterm and term neonate brain. Diffusion tractography allows the delineation of white matter pathways and assessment of connectivity in vivo. In this review, we address the challenges of performing and analysing neonate dMRI. Of particular importance in dMRI analysis is adequate data preprocessing to reduce image distortions inherent to the acquisition technique, as well as artefacts caused by head movement. We present a summary of techniques that should be used in the preprocessing of neonate dMRI data, and demonstrate the effect of these important correction steps. Furthermore, we give an overview of available analysis techniques, ranging from voxel-based analysis of anisotropy metrics including tract-based spatial statistics (TBSS) to recently developed methods of statistical analysis addressing issues of resolving complex white matter architecture. We highlight the importance of resolving crossing fibres for tractography and outline several tractography-based techniques, including connectivity-based segmentation, the connectome and tractography mapping. These techniques provide powerful tools for the investigation of brain development and maturation. PMID:22903761

  6. Applications Of Binary Image Analysis Techniques

    Science.gov (United States)

    Tropf, H.; Enderle, E.; Kammerer, H. P.

    1983-10-01

    After discussing the conditions where binary image analysis techniques can be used, three new applications of the fast binary image analysis system S.A.M. (Sensorsystem for Automation and Measurement) are reported: (1) The human view direction is measured at TV frame rate while the subject's head is free movable. (2) Industrial parts hanging on a moving conveyor are classified prior to spray painting by robot. (3) In automotive wheel assembly, the eccentricity of the wheel is minimized by turning the tyre relative to the rim in order to balance the eccentricity of the components.

  7. In vivo diffusion tensor imaging in infants: assessment of brain development and correlation with language abilities in childhood

    OpenAIRE

    Aeby, Alec

    2013-01-01

    Rapid and important cerebral developmental changes occur between the third trimester of gestation and the first postnatal months (Sidman and Rakic, 1982). Assessment of these changes in term and preterm infants is of great interest, as it provides insights into early brain development but also how early birth may affect normal brain development (Mewes et al. 2006).Conventional brain magnetic resonance imaging (MRI) is a useful technique to provide structural information on brain development, ...

  8. Optimized Fuzzy Logic Based Segmentation for Abnormal MRI Brain Images Analysis

    Directory of Open Access Journals (Sweden)

    Indah Soesanti

    2011-09-01

    Full Text Available In this paper an optimized fuzzy logic based segmentation for abnormal MRI brain images analysis is presented. A conventional fuzzy c-means (FCM technique does not use the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The FCM algorithm that incorporates spatial information into the membership function is used for clustering, while a conventional FCM algorithm does not fully utilize the spatial information in the image.The advantage of the technique is less sensitive to noise than the others. Originality of this research is focused in application of the technique on a normal and a glioma MRI brain images, and analysis of the area of abnormal mass from segmented images. The results show that the method effectively segmented MRI brain images, and the segmented normal and glioma MRI brain images can be analyzed for diagnosis purpose. The area of abnormal mass is identified from 7.15 to 19.41 cm2.

  9. Fractal and wavelet image compression techniques

    CERN Document Server

    Welstead, Stephen

    1999-01-01

    Interest in image compression for internet and other multimedia applications has spurred research into compression techniques that will increase storage capabilities and transmission speed. This tutorial provides a practical guide to fractal and wavelet approaches--two techniques with exciting potential. It is intended for scientists, engineers, researchers, and students. It provides both introductory information and implementation details. Three Windows-compatible software systems are included so that readers can explore the new technologies in depth. Complete C/C++ source code is provided, e

  10. An Effective Method of Image Retrieval using Image Mining Techniques

    Directory of Open Access Journals (Sweden)

    A.Kannan

    2010-11-01

    Full Text Available The present research scholars are having keen interest in doing their research activities in the area of Data mining all over the world. Especially, [13]Mining Image data is the one of the essential features in this present scenario since image data plays vital role in every aspect of the system such as business for marketing, hospital for surgery, engineering for construction, Web for publication and so on. The other area in the Image mining system is the Content-Based Image Retrieval (CBIR which performs retrieval based on the similarity defined in terms of extracted features with more objectiveness. The drawback in CBIR is the features of the query image alone are considered. Hence, a new technique called Image retrieval based on optimum clusters is proposed for improving user interaction with image retrieval systems by fully exploiting the similarity information. The index is created by describing the images according to their color characteristics, with compact feature vectors, that represent typical color distributions [12].

  11. Pork grade evaluation using hyperspectral imaging techniques

    Science.gov (United States)

    Zhou, Rui; Cai, Bo; Wang, Shoubing; Ji, Huihua; Chen, Huacai

    2011-11-01

    The method to evaluate the grade of the pork based on hyperspectral imaging techniques was studied. Principal component analysis (PCA) was performed on the hyperspectral image data to extract the principal components which were used as the inputs of the evaluation model. By comparing the different discriminating rates in the calibration set and the validation set under different information, the choice of the components can be optimized. Experimental results showed that the classification evaluation model was the optimal when the principal of component (PC) of spectra was 3, while the corresponding discriminating rate was 89.1% in the calibration set and 84.9% in the validation set. It was also good when the PC of images was 9, while the corresponding discriminating rate was 97.2% in the calibration set and 91.1% in the validation set. The evaluation model based on both information of spectra and images was built, in which the corresponding PCs of spectra and images were used as the inputs. This model performed very well in grade classification evaluation, and the discriminating rates of calibration set and validation set were 99.5% and 92.7%, respectively, which were better than the two evaluation models based on single information of spectra or images.

  12. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging.

    Science.gov (United States)

    Yan, Chao-Gan; Wang, Xin-Di; Zuo, Xi-Nian; Zang, Yu-Feng

    2016-07-01

    Brain imaging efforts are being increasingly devoted to decode the functioning of the human brain. Among neuroimaging techniques, resting-state fMRI (R-fMRI) is currently expanding exponentially. Beyond the general neuroimaging analysis packages (e.g., SPM, AFNI and FSL), REST and DPARSF were developed to meet the increasing need of user-friendly toolboxes for R-fMRI data processing. To address recently identified methodological challenges of R-fMRI, we introduce the newly developed toolbox, DPABI, which was evolved from REST and DPARSF. DPABI incorporates recent research advances on head motion control and measurement standardization, thus allowing users to evaluate results using stringent control strategies. DPABI also emphasizes test-retest reliability and quality control of data processing. Furthermore, DPABI provides a user-friendly pipeline analysis toolkit for rat/monkey R-fMRI data analysis to reflect the rapid advances in animal imaging. In addition, DPABI includes preprocessing modules for task-based fMRI, voxel-based morphometry analysis, statistical analysis and results viewing. DPABI is designed to make data analysis require fewer manual operations, be less time-consuming, have a lower skill requirement, a smaller risk of inadvertent mistakes, and be more comparable across studies. We anticipate this open-source toolbox will assist novices and expert users alike and continue to support advancing R-fMRI methodology and its application to clinical translational studies.

  13. Biometric identification using holographic radar imaging techniques

    Science.gov (United States)

    McMakin, Douglas L.; Sheen, David M.; Hall, Thomas E.; Kennedy, Mike O.; Foote, Harlen P.

    2007-04-01

    Pacific Northwest National Laboratory researchers have been at the forefront of developing innovative screening systems to enhance security and a novel imaging system to provide custom-fit clothing using holographic radar imaging techniques. First-of-a-kind cylindrical holographic imaging systems have been developed to screen people at security checkpoints for the detection of concealed, body worn, non-metallic threats such as plastic and liquid explosives, knifes and contraband. Another embodiment of this technology is capable of obtaining full sized body measurements in near real time without the person under surveillance removing their outer garments. Radar signals readily penetrate clothing and reflect off the water in skin. This full body measurement system is commercially available for best fitting ready to wear clothing, which was the first "biometric" application for this technology. One compelling feature of this technology for security biometric applications is that it can see effectively through disguises, appliances and body hair.

  14. Pattern recognition on brain magnetic resonance imaging in alpha dystroglycanopathies

    Directory of Open Access Journals (Sweden)

    Bindu Parayil

    2010-01-01

    Full Text Available Alpha dystroglycanopathies are heterogeneous group of disorders both phenotypically and genetically. A subgroup of these patients has characteristic brain imaging findings. Four patients with typical imaging findings of alpha dystroglycanopathy are reported. Phenotypic features included: global developmental delay, contractures, hypotonia and oculomotor abnormalities in all. Other manifestations were consanguinity (3, seizures (3, macrocephaly (1, microcephaly (3, retinal changes (2 and hypogenitalism (2. Magnetic resonance imaging (MRI of the brain revealed polymicrogyria, white matter changes, pontine hypoplasia, and subcortical cerebellar cysts in all the patients, ventriculomegaly, callosal abnormalities, and absent septum pellucidum in two and Dandy -Walker variant malformation in three. Magnetic resonace imaging of the first cousin of one the patient had the same characteristic imaging features. Brain imaging findings were almost identical despite heterogeneity in clinical presentation and histopathological features. Pattern recognition of MR imaging features may serve as a clue to the diagnosis of alpha dystroglycanopathy.

  15. Smartphones as pocketable labs: visions for mobile brain imaging and neurofeedback.

    Science.gov (United States)

    Stopczynski, Arkadiusz; Stahlhut, Carsten; Petersen, Michael Kai; Larsen, Jakob Eg; Jensen, Camilla Falk; Ivanova, Marieta Georgieva; Andersen, Tobias S; Hansen, Lars Kai

    2014-01-01

    Mobile brain imaging solutions, such as the Smartphone Brain Scanner, which combines low cost wireless EEG sensors with open source software for real-time neuroimaging, may transform neuroscience experimental paradigms. Normally subject to the physical constraints in labs, neuroscience experimental paradigms can be transformed into dynamic environments allowing for the capturing of brain signals in everyday contexts. Using smartphones or tablets to access text or images may enable experimental design capable of tracing emotional responses when shopping or consuming media, incorporating sensorimotor responses reflecting our actions into brain machine interfaces, and facilitating neurofeedback training over extended periods. Even though the quality of consumer neuroheadsets is still lower than laboratory equipment and susceptible to environmental noise, we show that mobile neuroimaging solutions, like the Smartphone Brain Scanner, complemented by 3D reconstruction or source separation techniques may support a range of neuroimaging applications and thus become a valuable addition to high-end neuroimaging solutions. PMID:23994206

  16. Fuzzy object models for newborn brain MR image segmentation

    Science.gov (United States)

    Kobashi, Syoji; Udupa, Jayaram K.

    2013-03-01

    Newborn brain MR image segmentation is a challenging problem because of variety of size, shape and MR signal although it is the fundamental study for quantitative radiology in brain MR images. Because of the large difference between the adult brain and the newborn brain, it is difficult to directly apply the conventional methods for the newborn brain. Inspired by the original fuzzy object model introduced by Udupa et al. at SPIE Medical Imaging 2011, called fuzzy shape object model (FSOM) here, this paper introduces fuzzy intensity object model (FIOM), and proposes a new image segmentation method which combines the FSOM and FIOM into fuzzy connected (FC) image segmentation. The fuzzy object models are built from training datasets in which the cerebral parenchyma is delineated by experts. After registering FSOM with the evaluating image, the proposed method roughly recognizes the cerebral parenchyma region based on a prior knowledge of location, shape, and the MR signal given by the registered FSOM and FIOM. Then, FC image segmentation delineates the cerebral parenchyma using the fuzzy object models. The proposed method has been evaluated using 9 newborn brain MR images using the leave-one-out strategy. The revised age was between -1 and 2 months. Quantitative evaluation using false positive volume fraction (FPVF) and false negative volume fraction (FNVF) has been conducted. Using the evaluation data, a FPVF of 0.75% and FNVF of 3.75% were achieved. More data collection and testing are underway.

  17. Application of radiosurgical techniques to produce a primate model of brain lesions

    Directory of Open Access Journals (Sweden)

    Jun eKunimatsu

    2015-04-01

    Full Text Available Behavioral analysis of subjects with discrete brain lesions provides important information about the mechanisms of various brain functions. However, it is generally difficult to experimentally produce discrete lesions in deep brain structures. Here we show that a radiosurgical technique, which is used as an alternative treatment for brain tumors and vascular malformations, is applicable to create non-invasive lesions in experimental animals for the research in systems neuroscience. We delivered highly focused radiation (130–150 Gy at ISO center to the frontal eye field of macaque monkeys using a clinical linear accelerator (LINAC. The effects of irradiation were assessed by analyzing oculomotor performance along with magnetic resonance (MR images before and up to 8 months following irradiation. In parallel with tissue edema indicated by MR images, deficits in saccadic and smooth pursuit eye movements were observed during several days following irradiation. Although initial signs of oculomotor deficits disappeared within a month, damage to the tissue and impaired eye movements gradually developed during the course of the subsequent 6 months. Postmortem histological examinations showed necrosis and hemorrhages within a large area of the white matter and, to a lesser extent, in the adjacent gray matter, which was centered at the irradiated target. These results indicated that the LINAC system was useful for making brain lesions in experimental animals, while the suitable radiation parameters to generate more focused lesions need to be further explored. We propose the use of a radiosurgical technique for establishing animal models of brain lesions, and discuss the possible uses of this technique for functional neurosurgical treatments in humans.

  18. Design of brain imaging agents for positron emission tomography: do large bioconjugates provide an opportunity for in vivo brain imaging?

    Science.gov (United States)

    Schirrmacher, Ralf; Bernard-Gauthier, Vadim; Reader, Andrew; Soucy, Jean-Paul; Schirrmacher, Esther; Wängler, Björn; Wängler, Carmen

    2013-09-01

    The development of brain imaging agents for positron emission tomography and other in vivo imaging modalities mostly relies on small compounds of low MW as a result of the restricted transport of larger molecules, such as peptides and proteins, across the blood-brain barrier. Besides passive transport, only a few active carrier mechanisms, such as glucose transporters and amino acid transporters, have so far been exploited to mediate the accumulation of imaging probes in the brain. An important question for the future is whether some of the abundant active carrier systems located at the blood-brain barrier can be used to shuttle potential, but non-crossing, imaging agents into the brain. What are the biological and chemical constrictions toward such bioconjugates and is it worthwhile to persue such a delivery strategy?

  19. Development of identification of the central sulcus in brain magnetic resonance imaging.

    Science.gov (United States)

    Hayashi, Norio; Sakuta, Keita; Minehiro, Kaori; Takanaga, Masako; Sanada, Shigeru; Suzuki, Masayuki; Miyati, Tosiaki; Yamamoto, Tomoyuki; Matsui, Osamu

    2011-01-01

    Magnetic resonance imaging (MRI) is useful in the quantitative evaluation of brain atrophy, because the superior contrast resolution facilitates separation of the gray and white matter. Quantitative assessment of brain atrophy has mainly been performed by manual measurement, which requires considerable time and effort to determine the brain volume. Therefore, computer-aided quantitative measurement methods for the diagnosis of brain atrophy are required. We have developed a method of segmenting the cerebrum, cerebellum-brainstem, and temporal lobe simultaneously on MR images obtained in a single sequence. It is important to measure the volume of not only these regions but also the frontal lobe in clinical use. However, for segmenting the frontal lobe, it is necessary to identify the Sylvian fissure and the central sulcus, which represent boundaries. Here, we developed a method of identifying the central sulcus from MR images obtained with a 1.5 T MRI scanner. The brain and the cerebrospinal fluid (CSF) regions were segmented using semiautomated segmentation method on MR images. The central sulcus shows an oblique line from the inside to the outside on the convexity view. The almost straight appearance of the central sulcus was used for segmentation of the central sulcus from the segmented CSF images. The central sulcus was identified with this technique in 77% of the images obtained by all sequences. This technique for identifying the central sulcus is very important not only for volumetry, but also for clinical diagnosis.

  20. Upright CBCT: A novel imaging technique

    Directory of Open Access Journals (Sweden)

    Xenia J Fave

    2014-03-01

    Full Text Available Purpose: We present a method for acquiring and correcting upright images using the on board CBCT imager. An upright imaging technique would allow for the introduction of upright radiation therapy treatments, which would benefit a variety of patients including those with thoracic cancers whose lung volumes are increased in an upright position and those who experience substantial discomfort during supine treatment positions.Methods: To acquire upright CBCT images, the linac head was positioned at 0 degrees, the KV imager and detector arms extended to their lateral positions, and the couch placed at 270 degrees. The KV imager was programmed to begin taking continuous fluoroscopic projections as the couch rotated from 270 to 90 degrees. The FOV was extended by performing this procedure twice, once with the detector shifted 14.5 cm towards the gantry and once with it shifted 14.5 cm away from the gantry. The two resulting sets of images were stitched together prior to reconstruction. The imaging parameters were chosen to deliver the some dose as that delivered during a simulation CT. A simulation CT was deformably registered to an upright CBCT reconstruction in order to evaluate the possibility of correcting the HU values via mapping.Results: Both spatial linearity and high contrast resolution were maintained in upright CBCT when compared to a simulation CT. Low contrast resolution and HU linearity decreased. Streaking artifacts were caused by the limited 180 degree arc angle and a sharp point artifact in the center of the axial slices resulted at the site of the stitching. A method for correcting the HUs was shown to be robust against these artifacts.Conclusion: Upright CBCT could be of great benefit to many patients. This study demonstrates its feasibility and presents solutions to some of its first hurdles before clinical implementation.--------------------------Cite this article as:Fave X, Yang J, Balter P, Court L. Upright CBCT: A novel imaging

  1. Appropriate Contrast Enhancement Measures for Brain and Breast Cancer Images

    Directory of Open Access Journals (Sweden)

    Suneet Gupta

    2016-01-01

    Full Text Available Medical imaging systems often produce images that require enhancement, such as improving the image contrast as they are poor in contrast. Therefore, they must be enhanced before they are examined by medical professionals. This is necessary for proper diagnosis and subsequent treatment. We do have various enhancement algorithms which enhance the medical images to different extents. We also have various quantitative metrics or measures which evaluate the quality of an image. This paper suggests the most appropriate measures for two of the medical images, namely, brain cancer images and breast cancer images.

  2. Retractor-induced brain shift compensation in image-guided neurosurgery

    Science.gov (United States)

    Fan, Xiaoyao; Ji, Songbai; Hartov, Alex; Roberts, David; Paulsen, Keith

    2013-03-01

    In image-guided neurosurgery, intraoperative brain shift significantly degrades the accuracy of neuronavigation that is solely based on preoperative magnetic resonance images (pMR). To compensate for brain deformation and to maintain the accuracy in image guidance achieved at the start of surgery, biomechanical models have been developed to simulate brain deformation and to produce model-updated MR images (uMR) to compensate for brain shift. To-date, most studies have focused on shift compensation at early stages of surgery (i.e., updated images are only produced after craniotomy and durotomy). Simulating surgical events at later stages such as retraction and tissue resection are, perhaps, clinically more relevant because of the typically much larger magnitudes of brain deformation. However, these surgical events are substantially more complex in nature, thereby posing significant challenges in model-based brain shift compensation strategies. In this study, we present results from an initial investigation to simulate retractor-induced brain deformation through a biomechanical finite element (FE) model where whole-brain deformation assimilated from intraoperative data was used produce uMR for improved accuracy in image guidance. Specifically, intensity-encoded 3D surface profiles at the exposed cortical area were reconstructed from intraoperative stereovision (iSV) images before and after tissue retraction. Retractor-induced surface displacements were then derived by coregistering the surfaces and served as sparse displacement data to drive the FE model. With one patient case, we show that our technique is able to produce uMR that agrees well with the reconstructed iSV surface after retraction. The computational cost to simulate retractor-induced brain deformation was approximately 10 min. In addition, our approach introduces minimal interruption to the surgical workflow, suggesting the potential for its clinical application.

  3. Task-specific evaluation of 3D image interpolation techniques

    Science.gov (United States)

    Grevera, George J.; Udupa, Jayaram K.; Miki, Yukio

    1998-06-01

    Image interpolation is an important operation that is widely used in medical imaging, image processing, and computer graphics. A variety of interpolation methods are available in the literature. However, their systematic evaluation is lacking. At a previous meeting, we presented a framework for the task independent comparison of interpolation methods based on a variety of medical image data pertaining to different parts of the human body taken from different modalities. In this new work, we present an objective, task-specific framework for evaluating interpolation techniques. The task considered is how the interpolation methods influence the accuracy of quantification of the total volume of lesions in the brain of Multiple Sclerosis (MS) patients. Sixty lesion detection experiments coming from ten patient studies, two subsampling techniques and the original data, and 3 interpolation methods is presented along with a statistical analysis of the results. This work comprises a systematic framework for the task-specific comparison of interpolation methods. Specifically, the influence of three interpolation methods in MS lesion quantification is compared.

  4. Increased self-diffusion of brain water in hydrocephalus measured by MR imaging

    DEFF Research Database (Denmark)

    Gideon, P; Thomsen, C; Gjerris, F;

    1994-01-01

    We used MR imaging to measure the apparent brain water self-diffusion in 5 patients with normal pressure hydrocephalus (NPH), in 2 patients with high pressure hydrocephalus (HPH), and in 8 age-matched controls. In all patients with NPH significant elevations of the apparent diffusion coefficients...... white matter, and in one patient reexamined one year after surgery, ADCs were unchanged in nearly all brain regions. The increased ADC values in hydrocephalus patients may be caused by factors such as changes in myelin-associated bound water, increased Virchow-Robin spaces, and increased extracellular...... brain water fraction. For further studies of brain water diffusion in hydrocephalus patients, echo-planar imaging techniques with imaging times of a few seconds may be valuable....

  5. Potential new approaches for the development of brain imaging agents for single-photon applications

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, F.F. Jr.; Srivastava, P.C.

    1984-01-01

    This paper describes new strategies for the brain-specific delivery of radionuclides that can be used to evaluate regional cerebral perfusion by single photon imaging techniques. A description of several examples of interesting new strategies that have recently been reported is presented. A new approach at this institution for the brain-specific delivery of radioiodinated iodophenylalkyl-substituted dihyronicotinamide systems is described which shows good brain uptake and retention in preliminary studies in rats. Following transport into the brain these agents appear to undergo facile intracerebral oxidation to the quaternized analogues which do not recross the intact blood-brain barrier and so are effectively trapped in the brain. 49 refs., 9 figs., 1 tab.

  6. Model-based brain shift compensation in image-guided neurosurgery

    Science.gov (United States)

    Ji, Songbai; Liu, Fenghong; Fan, Xiaoyao; Hartov, Alex; Roberts, David; Paulsen, Keith

    2009-02-01

    Intraoperative brain shift compensation is important for improving the accuracy of neuronavigational systems and ultimately, the accuracy of brain tumor resection as well as patient quality of life. Biomechanical models are practical methods for brain shift compensation in the operating room (OR). These methods assimilate incomplete deformation data on the brain acquired from intraoperative imaging techniques (e.g., ultrasound and stereovision), and simulate whole-brain deformation under loading and boundary conditions in the OR. Preoperative images of the patient's head (e.g., preoperative magnetic resonance images (pMR)) are then deformed accordingly based on the computed displacement field to generate updated visualizations for subsequent surgical guidance. Apparently, the clinical feasibility of the technique depends on the efficiency as well as the accuracy of the computational scheme. In this paper, we identify the major steps involved in biomechanical simulation of whole-brain deformation and demonstrate the efficiency and accuracy of each step. We show that a combined computational cost of 5 minutes with an accuracy of 1-2 millimeter can be achieved which suggests that the technique is feasible for routine application in the OR.

  7. Quantitative Perfusion and Permeability Biomarkers in Brain Cancer from Tomographic CT and MR Images.

    Science.gov (United States)

    Eilaghi, Armin; Yeung, Timothy; d'Esterre, Christopher; Bauman, Glenn; Yartsev, Slav; Easaw, Jay; Fainardi, Enrico; Lee, Ting-Yim; Frayne, Richard

    2016-01-01

    Dynamic contrast-enhanced perfusion and permeability imaging, using computed tomography and magnetic resonance systems, are important techniques for assessing the vascular supply and hemodynamics of healthy brain parenchyma and tumors. These techniques can measure blood flow, blood volume, and blood-brain barrier permeability surface area product and, thus, may provide information complementary to clinical and pathological assessments. These have been used as biomarkers to enhance the treatment planning process, to optimize treatment decision-making, and to enable monitoring of the treatment noninvasively. In this review, the principles of magnetic resonance and computed tomography dynamic contrast-enhanced perfusion and permeability imaging are described (with an emphasis on their commonalities), and the potential values of these techniques for differentiating high-grade gliomas from other brain lesions, distinguishing true progression from posttreatment effects, and predicting survival after radiotherapy, chemotherapy, and antiangiogenic treatments are presented.

  8. Quantitative Perfusion and Permeability Biomarkers in Brain Cancer from Tomographic CT and MR Images

    Science.gov (United States)

    Eilaghi, Armin; Yeung, Timothy; d’Esterre, Christopher; Bauman, Glenn; Yartsev, Slav; Easaw, Jay; Fainardi, Enrico; Lee, Ting-Yim; Frayne, Richard

    2016-01-01

    Dynamic contrast-enhanced perfusion and permeability imaging, using computed tomography and magnetic resonance systems, are important techniques for assessing the vascular supply and hemodynamics of healthy brain parenchyma and tumors. These techniques can measure blood flow, blood volume, and blood–brain barrier permeability surface area product and, thus, may provide information complementary to clinical and pathological assessments. These have been used as biomarkers to enhance the treatment planning process, to optimize treatment decision-making, and to enable monitoring of the treatment noninvasively. In this review, the principles of magnetic resonance and computed tomography dynamic contrast-enhanced perfusion and permeability imaging are described (with an emphasis on their commonalities), and the potential values of these techniques for differentiating high-grade gliomas from other brain lesions, distinguishing true progression from posttreatment effects, and predicting survival after radiotherapy, chemotherapy, and antiangiogenic treatments are presented. PMID:27398030

  9. Skull-stripping for Tumor-bearing Brain Images

    CERN Document Server

    Bauer, Stefan; Reyes, Mauricio

    2012-01-01

    Skull-stripping separates the skull region of the head from the soft brain tissues. In many cases of brain image analysis, this is an essential preprocessing step in order to improve the final result. This is true for both registration and segmentation tasks. In fact, skull-stripping of magnetic resonance images (MRI) is a well-studied problem with numerous publications in recent years. Many different algorithms have been proposed, a summary and comparison of which can be found in [Fennema-Notestine, 2006]. Despite the abundance of approaches, we discovered that the algorithms which had been suggested so far, perform poorly when dealing with tumor-bearing brain images. This is mostly due to additional difficulties in separating the brain from the skull in this case, especially when the lesion is located very close to the skull border. Additionally, images acquired according to standard clinical protocols, often exhibit anisotropic resolution and only partial coverage, which further complicates the task. There...

  10. The Center for Integrated Molecular Brain Imaging (Cimbi) database

    DEFF Research Database (Denmark)

    Knudsen, Gitte M.; Jensen, Peter S.; Erritzoe, David;

    2016-01-01

    We here describe a multimodality neuroimaging containing data from healthy volunteers and patients, acquired within the Lundbeck Foundation Center for Integrated Molecular Brain Imaging (Cimbi) in Copenhagen, Denmark. The data is of particular relevance for neurobiological research questions...

  11. Imaging of brain tumors with histological correlations. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Drevelegas, Antonios (ed.)

    2011-07-01

    This volume provides a deeper understanding of the diagnosis of brain tumors by correlating radiographic imaging features with the underlying pathological abnormalities. All modern imaging modalities are used to complete a diagnostic overview of brain tumors with emphasis on recent advances in diagnostic neuroradiology. High-quality illustrations depicting common and uncommon imaging characteristics of a wide range of brain tumors are presented and analysed, drawing attention to the ways in which these characteristics reflect different aspects of pathology. Important theoretical considerations are also discussed. Since the first edition, chapters have been revised and updated and new material has been added, including detailed information on the clinical application of functional MRI and diffusion tensor imaging. Radiologists and other clinicians interested in the current diagnostic approach to brain tumors will find this book to be an invaluable and enlightening clinical tool. (orig.)

  12. Automated morphometry of transgenic mouse brains in MR images

    NARCIS (Netherlands)

    Scheenstra, Alize Elske Hiltje

    2011-01-01

    Quantitative and local morphometry of mouse brain MRI is a relatively new field of research, where automated methods can be exploited to rapidly provide accurate and repeatable results. In this thesis we reviewed several existing methods and applications of quantitative morphometry to brain MR image

  13. Quantitative assessment of brain perfusion with magnetic resonance imaging

    NARCIS (Netherlands)

    Bleeker, Egbert Jan Willem

    2011-01-01

    This thesis focuses on assessing blood supply to brain tissue using MRI. For Dynamic Susceptibility Contrast-MRI a series of images is acquired during the passage of a bolus contrast agent through the brain up to the point that the contrast agent is equally mixed within the total blood pool. The tis

  14. Structural brain imaging in diabetes : A methodological perspective

    NARCIS (Netherlands)

    Jongen, Cynthia; Biessels, Geert Jan

    2008-01-01

    Brain imaging provides information on brain anatomy and function and progression of cerebral abnormalities can be monitored. This may provide insight into the aetiology of diabetes related cerebral disorders. This paper focuses on the methods for the assessment of white matter hyperintensities and b

  15. Rapid and automatic detection of brain tumors in MR images

    Science.gov (United States)

    Wang, Zhengjia; Hu, Qingmao; Loe, KiaFock; Aziz, Aamer; Nowinski, Wieslaw L.

    2004-04-01

    An algorithm to automatically detect brain tumors in MR images is presented. The key concern is speed in order to process efficiently large brain image databases and provide quick outcomes in clinical setting. The method is based on study of asymmetry of the brain. Tumors cause asymmetry of the brain, so we detect brain tumors in 3D MR images using symmetry analysis of image grey levels with respect to the midsagittal plane (MSP). The MSP, separating the brain into two hemispheres, is extracted using our previously developed algorithm. By removing the background pixels, the normalized grey level histograms are calculated for both hemispheres. The similarity between these two histograms manifests the symmetry of the brain, and it is quantified by using four symmetry measures: correlation coefficient, root mean square error, integral of absolute difference (IAD), and integral of normalized absolute difference (INAD). A quantitative analysis of brain normality based on 42 patients with tumors and 55 normals is presented. The sensitivity and specificity of IAD and INAD were 83.3% and 89.1%, and 85.7% and 83.6%, respectively. The running time for each symmetry measure for a 3D 8bit MR data was between 0.1 - 0.3 seconds on a 2.4GHz CPU PC.

  16. STUDY OF BRAIN TUMOURS BY NOVE L MAGNETIC RESONANCE TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Mohammad Shamim

    2015-01-01

    Full Text Available In the present study , thirty patients in the age range of 22 to 63 years of age were included after being diagnosed to be having brain tumour on CT scan or conventional MRI. In addition DWI , MRS , and PWI were carried out i n these patients. All the patients with suspicious malignant lesions were then subjected to FDG - PET examination . Histopathological correlation was obtained in all the patients to serve as gold standard against which other modalities will be assessed for th eir sensitivity , specificity , positive predictive value , negative predictive value and diagnostic accuracy. Out of thirty patients selected for this study , twenty cases were found to be malignant and ten cases were benign on Histopathological evaluation. Majority of malignant lesions were glioblastoma multiforme. Amongst benign cases , majorities were meningioma , one was a Granulomatous lesion and one was a benign cystic lesion. MRI including the novel techniques showed high sensitivity and spe cificity in identifying malignant brain lesions and has a future role in better characterization of brain tumours. Wherever available , it should be integrated in routine workup of patients presenting with brain tumours or for follow up of patients undergon e surgery / adjuvant chemotherapy.

  17. Creation and evaluation of complementary composite three-dimensional image in various brain diseases. An application of three-dimensional brain SPECT image and three-dimensional CT image

    Energy Technology Data Exchange (ETDEWEB)

    Seiki, Yoshikatsu; Shibata, Iekado; Mito, Toshiaki; Sugo, Nobuo [Toho Univ., Tokyo (Japan). School of Medicine

    2000-09-01

    The purpose of this study was to develop 3D composite images for use in functional and anatomical evaluation of various cerebral pathologies. Imaging studies were performed in normal volunteers, patients with hydrocephalus and patients with brain tumor (meningioma and metastatic tumor) using a three-detector SPECT system (Prism 3000) and helical CT scanner (Xvigor). {sup 123}I-IMP was used in normal volunteers and patients with hydrocephalus, and {sup 201}TLCL in patients with brain tumor. An Application Visualization System-Medical Viewer (AVS-MV) was used on a workstation (Titan 2) to generate 3D images. A new program was developed by synthesizing surface rendering and volume rendering techniques. The clinical effects of shunt operations were successfully evaluated in patients with hydrocephalus by means of translucent 3D images of the deep brain. Changes in the hypoperfusion area around the cerebral ventricle were compared with morphological changes in the cerebral ventricle on CT. In addition to the information concerning the characteristics of brain tumors and surrounding edemas, hemodynamic changes and changeable hypoperfusion areas around the tumors were visualized on 3D composite CT and SPECT images. A new method of generating 3D composite images of CT and SPECT was developed by combining graphic data from different systems on the same workstation. Complementary 3D composite images facilitated quantitative analysis of brain volume and functional analysis in various brain diseases. (author)

  18. Do brain image databanks support understanding of normal ageing brain structure? A systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Dickie, David Alexander; Job, Dominic E.; Wardlaw, Joanna M. [University of Edinburgh, Division of Clinical Neurosciences, Western General Hospital, Brain Research Imaging Centre (BRIC), Edinburgh (United Kingdom); Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Edinburgh (United Kingdom); Poole, Ian [Toshiba Medical Visualisation Systems Europe, Ltd., Edinburgh (United Kingdom); Ahearn, Trevor S.; Staff, Roger T.; Murray, Alison D. [University of Aberdeen, Aberdeen Biomedical Imaging Centre, Aberdeen (United Kingdom); Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Edinburgh (United Kingdom)

    2012-07-15

    To document accessible magnetic resonance (MR) brain images, metadata and statistical results from normal older subjects that may be used to improve diagnoses of dementia. We systematically reviewed published brain image databanks (print literature and Internet) concerned with normal ageing brain structure. From nine eligible databanks, there appeared to be 944 normal subjects aged {>=}60 years. However, many subjects were in more than one databank and not all were fully representative of normal ageing clinical characteristics. Therefore, there were approximately 343 subjects aged {>=}60 years with metadata representative of normal ageing, but only 98 subjects were openly accessible. No databank had the range of MR image sequences, e.g. T2*, fluid-attenuated inversion recovery (FLAIR), required to effectively characterise the features of brain ageing. No databank supported random subject retrieval; therefore, manual selection bias and errors may occur in studies that use these subjects as controls. Finally, no databank stored results from statistical analyses of its brain image and metadata that may be validated with analyses of further data. Brain image databanks require open access, more subjects, metadata, MR image sequences, searchability and statistical results to improve understanding of normal ageing brain structure and diagnoses of dementia. (orig.)

  19. Multichannel optical brain imaging to separate cerebral vascular, tissue metabolic, and neuronal effects of cocaine

    Science.gov (United States)

    Ren, Hugang; Luo, Zhongchi; Yuan, Zhijia; Pan, Yingtian; Du, Congwu

    2012-02-01

    Characterization of cerebral hemodynamic and oxygenation metabolic changes, as well neuronal function is of great importance to study of brain functions and the relevant brain disorders such as drug addiction. Compared with other neuroimaging modalities, optical imaging techniques have the potential for high spatiotemporal resolution and dissection of the changes in cerebral blood flow (CBF), blood volume (CBV), and hemoglobing oxygenation and intracellular Ca ([Ca2+]i), which serves as markers of vascular function, tissue metabolism and neuronal activity, respectively. Recently, we developed a multiwavelength imaging system and integrated it into a surgical microscope. Three LEDs of λ1=530nm, λ2=570nm and λ3=630nm were used for exciting [Ca2+]i fluorescence labeled by Rhod2 (AM) and sensitizing total hemoglobin (i.e., CBV), and deoxygenated-hemoglobin, whereas one LD of λ1=830nm was used for laser speckle imaging to form a CBF mapping of the brain. These light sources were time-sharing for illumination on the brain and synchronized with the exposure of CCD camera for multichannel images of the brain. Our animal studies indicated that this optical approach enabled simultaneous mapping of cocaine-induced changes in CBF, CBV and oxygenated- and deoxygenated hemoglobin as well as [Ca2+]i in the cortical brain. Its high spatiotemporal resolution (30μm, 10Hz) and large field of view (4x5 mm2) are advanced as a neuroimaging tool for brain functional study.

  20. A tunable continuous wave (CW) and short-pulse optical source for THz brain imaging applications

    International Nuclear Information System (INIS)

    We demonstrate recent advances toward the development of a novel 2D THz imaging system for brain imaging applications both at the macroscopic and at the bimolecular level. A frequency-synthesized THz source based on difference frequency generation between optical wavelengths is presented, utilizing supercontinuum generation in a highly nonlinear optical fiber with subsequent spectral carving by means of a fiber Fabry–Perot filter. Experimental results confirm the successful generation of THz radiation in the range of 0.2–2 THz, verifying the enhanced frequency tunability properties of the proposed system. Finally, the roadmap toward capturing functional brain information by exploiting THz imaging technologies is discussed, outlining the unique advantages offered by THz frequencies and their complementarity with existing brain imaging techniques

  1. Brain Imaging, Forward Inference, and Theories of Reasoning

    OpenAIRE

    Evan Heit

    2015-01-01

    This review focuses on the issue of how neuroimaging studies address theoretical accounts of reasoning, through the lens of the method of forward inference (Henson, 2005, 2006). After theories of deductive and inductive reasoning are briefly presented, the method of forward inference for distinguishing between psychological theories based on brain imaging evidence is critically reviewed. Brain imaging studies of reasoning, comparing deductive and inductive arguments, comparing meaningful ve...

  2. The potential of using brain images for authentication.

    Science.gov (United States)

    Chen, Fanglin; Zhou, Zongtan; Shen, Hui; Hu, Dewen

    2014-01-01

    Biometric recognition (also known as biometrics) refers to the automated recognition of individuals based on their biological or behavioral traits. Examples of biometric traits include fingerprint, palmprint, iris, and face. The brain is the most important and complex organ in the human body. Can it be used as a biometric trait? In this study, we analyze the uniqueness of the brain and try to use the brain for identity authentication. The proposed brain-based verification system operates in two stages: gray matter extraction and gray matter matching. A modified brain segmentation algorithm is implemented for extracting gray matter from an input brain image. Then, an alignment-based matching algorithm is developed for brain matching. Experimental results on two data sets show that the proposed brain recognition system meets the high accuracy requirement of identity authentication. Though currently the acquisition of the brain is still time consuming and expensive, brain images are highly unique and have the potential possibility for authentication in view of pattern recognition. PMID:25126604

  3. Wireless image-data transmission from an implanted image sensor through a living mouse brain by intra body communication

    Science.gov (United States)

    Hayami, Hajime; Takehara, Hiroaki; Nagata, Kengo; Haruta, Makito; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2016-04-01

    Intra body communication technology allows the fabrication of compact implantable biomedical sensors compared with RF wireless technology. In this paper, we report the fabrication of an implantable image sensor of 625 µm width and 830 µm length and the demonstration of wireless image-data transmission through a brain tissue of a living mouse. The sensor was designed to transmit output signals of pixel values by pulse width modulation (PWM). The PWM signals from the sensor transmitted through a brain tissue were detected by a receiver electrode. Wireless data transmission of a two-dimensional image was successfully demonstrated in a living mouse brain. The technique reported here is expected to provide useful methods of data transmission using micro sized implantable biomedical sensors.

  4. Multi-technique imaging of sarcoidosis

    Energy Technology Data Exchange (ETDEWEB)

    Balan, A. [Department of Clinical Radiology, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Hoey, E.T.D. [Department of Clinical Radiology, Heartlands Hospital, Bordesley Green, Birmingham (United Kingdom); Sheerin, F. [Department of Neuroradiology, The John Radcliffe, Headington, Oxford (United Kingdom); Lakkaraju, A. [Department of Clinical Radiology, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Chowdhury, F.U., E-mail: fahmid.chowdhury@leedsth.nhs.u [Department of Clinical Radiology, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom)

    2010-09-15

    Sarcoidosis is a multisystem granulomatous disorder of unknown aetiology. The diagnosis is suggested on the basis of wide ranging clinical and radiological manifestations, and is supported by the histological demonstration of non-caseating granulomas in affected tissues. This review highlights the multisystem radiological features of the disease across a variety of imaging methods including multidetector computed tomography (CT), magnetic resonance imaging (MRI) as well as functional radionuclide techniques, particularly 2-[{sup 18}F]-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography/computed tomography (PET/CT). It is important for the radiologist to be aware of the varied radiological manifestations of sarcoidosis in order to recognize and suggest the diagnosis in the appropriate clinical setting.

  5. Survey of Despeckling Techniques for Medical Ultrasound Images

    Directory of Open Access Journals (Sweden)

    Jappreet Kaur

    2011-07-01

    Full Text Available Ultrasound imaging is the most commonly used imaging system in medical field. Main problem related to this imaging technique is introduction of speckle noise, thus making the image unclear. The success of ultrasonic examination depends on the image quality which is usually retarded due to speckle noise. There have been several techniques for effective suppression of speckle noise present in ultrasound images. This paper presents a review of some significant work carried out for despeckling of ultrasound images.

  6. Techniques on mesh generation for the brain shift simulation

    CERN Document Server

    Lobos, Claudio; Payan, Yohan; Hitschfeld, Nancy

    2007-01-01

    Neurosurgery interventions involve complex tracking systems because a tissue deformation takesplace. The neuronavigation system relies only on preoperative images. In order to overcome the soft tissue deformations and guarantee the accuracy of the navigation a biomechanical model can be used during surgery to simulate the deformation of the brain. Therefore, a mesh generation for an optimal real-time Finite Element Model (FEM) becomes crucial. In this work we present different alternatives from a meshgeneration point of view that were evaluated to optimize the process in terms of elements quantity and quality as well as constraints of a intraoperative application and patient specific data.

  7. Multi circular-cavity surface coil for magnetic resonance imaging of monkey's brain at 4 Tesla

    Science.gov (United States)

    Osorio, A. I.; Solis-Najera, S. E.; Vázquez, F.; Wang, R. L.; Tomasi, D.; Rodriguez, A. O.

    2014-11-01

    Animal models in medical research has been used to study humans diseases for several decades. The use of different imaging techniques together with different animal models offers a great advantage due to the possibility to study some human pathologies without the necessity of chirurgical intervention. The employ of magnetic resonance imaging for the acquisition of anatomical and functional images is an excellent tool because its noninvasive nature. Dedicated coils to perform magnetic resonance imaging experiments are obligatory due to the improvement on the signal-to-noise ratio and reduced specific absorption ratio. A specifically designed surface coil for magnetic resonance imaging of monkey's brain is proposed based on the multi circular-slot coil. Numerical simulations of the magnetic and electric fields were also performed using the Finite Integration Method to solve Maxwell's equations for this particular coil design and, to study the behavior of various vector magnetic field configurations and specific absorption ratio. Monkey's brain images were then acquired with a research-dedicated magnetic resonance imaging system at 4T, to evaluate the anatomical images with conventional imaging sequences. This coil showed good quality images of a monkey's brain and full compatibility with standard pulse sequences implemented in research-dedicated imager.

  8. Detection of brain lesions at the skull base using diffusion-weighted imaging with readout-segmented echo-planar imaging and generalized autocalibrating partially parallel acquisitions

    OpenAIRE

    Xiao-Er Wei; Wen-Bin Li; Ming-Hua Li; Yue-Hua Li; Dan Wang; Yu-Zhen Zhang; Li-Xin Jin

    2011-01-01

    Objective: To analyze the value of readout-segmented echo-planar imaging (rs-EPI) with parallel imaging and a two-dimensional (2D) navigator-based reacquisition technique in the detection of brain lesions at the skull base. Materials and Methods: A total of 54 patients (male 37, female 17) with suspected skull-base intracranial lesions underwent magnetic resonance imaging (MRI), including pre-T1 weighted imaging, T2-weighted imaging, Fluid Attenuated Inversion Recovery (FLAIR), standard singl...

  9. Novel imaging technique for birefringent materials

    CERN Document Server

    Lewis, J G

    1998-01-01

    less than 40 seconds. Retardation and orientation changes of less than 1nm and 1 deg, respectively, can be resolved with a spatial resolution close to that of a conventional polarizing microscope image. A wide variety of optically anisotropic materials have been examined to demonstrate both the quantitative and qualitative nature of this new sensitive polarization microscopy technique. Preliminary measurements have shown that when the system is extended to use two or more wavelengths it is also capable of directly extracting information about the order of the phase difference. Many transparent materials including crystals, polymers, biological tissues and textile fibres are birefringent or optically anisotropic, i.e. the refractive index varies with the direction of vibration of light. Birefringent measurements are important as they provide information about the underlying structure of a material. In general, the most sensitive techniques for measuring birefringence are those that modulate the polarization st...

  10. A Review of Image Mosaicing Techniques

    OpenAIRE

    Vaghela, Dushyant; Naina, Prof. Kapildev

    2014-01-01

    Image Mosaicing is a method of constructing multiple images of the same scene into a larger image. The output of the image mosaic will be the union of two input images. Image-mosaicing algorithms are used to get mosaiced image. Image Mosaicing processed is basically divided in to 5 phases. Which includes; Feature point extraction, Image registration, Homography computation, Warping and Blending if Image. Various corner detection algorithm is being used for Feature extraction. This corner prod...

  11. Magnetic resonance imaging in assessment of treatment response of gamma knife for brain tumors

    Institute of Scientific and Technical Information of China (English)

    GAO Xiao; ZHANG Xue-ning; ZHANG Yun-ting; YU Chun-shui; XU De-sheng

    2011-01-01

    Objective To review the applications of magnetic resonance imaging (MRI) techniques in assessing treatment response to gamma knife radiosurgery for brain tumors.Data sources Published articles about assessing treatment response to gamma knife radiosurgery for brain tumors were selected using PubMed. The search terms were "MRI", "gamma knife" and "brain tumors".Study selection Articles regarding the MRI techniques using for early assessment of treatment response of gamma knife were selected.Results MRI techniques, especially diffusion weighted imaging, perfusion weighted imaging, magnetic resonance spectroscopy, are useful for early assessment of treatment response of gamma knife by detecting the hemodynamic, metabolic, and cellular alterations. Moreover, they can also provide important information on prognosis.Conclusions Diffusion weighted imaging, perfusion weighted imaging and magnetic resonance spectroscopy can provide early assessment of treatment response of gamma knife for brain tumors, and also information of tumor progression or recurrence earlier than conventional MRI. But there are still many questions to be answered which should be based on the development and advancement of MRI and related disciplines.

  12. Computed tomographic imaging of the brain of normal neonatal foals

    Directory of Open Access Journals (Sweden)

    L Cabrera

    2015-01-01

    Full Text Available The aim of this study was to provide a more complete description of normal cross-sectional anatomy of the neonatal brain of the foal and associated structures by computed tomography (CT and gross anatomical sections. Using a fourth-generation CT scanner, 2-mm contiguous transverse images were acquired from two neonatal 5-days-old Quarter horse foals. After the study the animals were euthanised for reasons unrelated to head pathology. To assist in the accurate identification of brain and associated structures, transverse CT images were obtained and compared with the corresponding frozen cross-sections of the head. CT images matched well with their corresponding transverse gross sections and provided good differentiation between the bones and the soft tissues of the head. These CT images are intended to be a useful initial anatomic reference in the interpretation for clinical CT imaging studies of the brain and associated structures in live neonatal foals.

  13. Overview of techniques used for image resolution enhancement

    Directory of Open Access Journals (Sweden)

    Mayuri D Patil

    2012-07-01

    Full Text Available Image resolution enhancement is one of the first steps in image processing. Image resolution enhancement is the process of manipulating an image so that resultant image is more suitable than the original one for specific application. Image enhancement can be done in various domains. For image resolution enhancement there are many methods, out of which image interpolation scheme is one of themost effective method. However, resolution is vital aspect of any image. Good quality image i.e. high resolution image produces better result in image processing applications. An interpolation is thetechnique to increase the resolution of the image by selecting new pixel from surrounding one. Image interpolation in complex wavelet transform is produces better results for any imaging application.DTCWT technique is used to improve the resolution of any satellite image. The paper focuses on the different techniques that are used to increase resolution of the images and their comparative results.

  14. Hypnosis and imaging of the living human brain.

    Science.gov (United States)

    Landry, Mathieu; Raz, Amir

    2015-01-01

    Over more than two decades, studies using imaging techniques of the living human brain have begun to explore the neural correlates of hypnosis. The collective findings provide a gripping, albeit preliminary, account of the underlying neurobiological mechanisms involved in hypnotic phenomena. While substantial advances lend support to different hypotheses pertaining to hypnotic modulation of attention, control, and monitoring processes, the complex interactions among the many mediating variables largely hinder our ability to isolate robust commonalities across studies. The present account presents a critical integrative synthesis of neuroimaging studies targeting hypnosis as a function of suggestion. Specifically, hypnotic induction without task-specific suggestion is examined, as well as suggestions concerning sensation and perception, memory, and ideomotor response. The importance of carefully designed experiments is highlighted to better tease apart the neural correlates that subserve hypnotic phenomena. Moreover, converging findings intimate that hypnotic suggestions seem to induce specific neural patterns. These observations propose that suggestions may have the ability to target focal brain networks. Drawing on evidence spanning several technological modalities, neuroimaging studies of hypnosis pave the road to a more scientific understanding of a dramatic, yet largely evasive, domain of human behavior.

  15. Brain imaging of pain: state of the art

    Science.gov (United States)

    Morton, Debbie L; Sandhu, Javin S; Jones, Anthony KP

    2016-01-01

    Pain is a complex sensory and emotional experience that is heavily influenced by prior experience and expectations of pain. Before the development of noninvasive human brain imaging, our grasp of the brain’s role in pain processing was limited to data from postmortem studies, direct recording of brain activity, patient experience and stimulation during neurosurgical procedures, and animal models of pain. Advances made in neuroimaging have bridged the gap between brain activity and the subjective experience of pain and allowed us to better understand the changes in the brain that are associated with both acute and chronic pain. Additionally, cognitive influences on pain such as attention, anticipation, and fear can now be directly observed, allowing for the interpretation of the neural basis of the psychological modulation of pain. The use of functional brain imaging to measure changes in endogenous neurochemistry has increased our understanding of how states of increased resilience and vulnerability to pain are maintained. PMID:27660488

  16. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments.

    Science.gov (United States)

    Gorgolewski, Krzysztof J; Auer, Tibor; Calhoun, Vince D; Craddock, R Cameron; Das, Samir; Duff, Eugene P; Flandin, Guillaume; Ghosh, Satrajit S; Glatard, Tristan; Halchenko, Yaroslav O; Handwerker, Daniel A; Hanke, Michael; Keator, David; Li, Xiangrui; Michael, Zachary; Maumet, Camille; Nichols, B Nolan; Nichols, Thomas E; Pellman, John; Poline, Jean-Baptiste; Rokem, Ariel; Schaefer, Gunnar; Sochat, Vanessa; Triplett, William; Turner, Jessica A; Varoquaux, Gaël; Poldrack, Russell A

    2016-01-01

    The development of magnetic resonance imaging (MRI) techniques has defined modern neuroimaging. Since its inception, tens of thousands of studies using techniques such as functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research, there has been no widely adopted standard for organizing and describing the data collected in an imaging experiment. This renders sharing and reusing data (within or between labs) difficult if not impossible and unnecessarily complicates the application of automatic pipelines and quality assurance protocols. To solve this problem, we have developed the Brain Imaging Data Structure (BIDS), a standard for organizing and describing MRI datasets. The BIDS standard uses file formats compatible with existing software, unifies the majority of practices already common in the field, and captures the metadata necessary for most common data processing operations. PMID:27326542

  17. Whole brain imaging with Serial Two-Photon Tomography

    Directory of Open Access Journals (Sweden)

    Stephen P Amato

    2016-03-01

    Full Text Available Imaging entire mouse brains at submicron resolution has historically been a challenging undertaking and largely confined to the province of dedicated atlasing initiatives. The has limited systematic investigations into important areas of neuroscience, such as neural circuits, brain mapping and neurodegeneration. In this paper, we describe in detail Serial Two-Photon (STP tomography, a robust, reliable method for imaging entire brains with histological detail. We provide examples of how the basic methodology can be extended to other imaging modalities, such as optical coherence tomography, in order to provide unique contrast mechanisms. Furthermore we provide a survey of the research that STP tomography has enabled in the field of neuroscience, provide examples of how this technology enables quantitative whole brain studies, and discuss the current limitations of STP tomography-based approaches

  18. Brain SPECT imaging in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Temporal lobe epilepsy is diagnosed by clinical symptoms and signs and by localization of an epileptogenic focus. A brain SPECT study of two patients with temporal lobe epilepsy, using 99mTc-HMPAO, was used to demonstrate a perfusion abnormality in the temporal lobe, while brain CT and MRI were non-contributory. The electroencephalogram, though abnormal, did not localize the diseased area. The potential role of the SPECT study in diagnosis and localization of temporal lobe epilepsy is discussed. (orig.)

  19. Photoacoustic imaging for transvascular drug delivery to the rat brain

    Science.gov (United States)

    Watanabe, Ryota; Sato, Shunichi; Tsunoi, Yasuyuki; Kawauchi, Satoko; Takemura, Toshiya; Terakawa, Mitsuhiro

    2015-03-01

    Transvascular drug delivery to the brain is difficult due to the blood-brain barrier (BBB). Thus, various methods for safely opening the BBB have been investigated, for which real-time imaging methods are desired both for the blood vessels and distribution of a drug. Photoacoustic (PA) imaging, which enables depth-resolved visualization of chromophores in tissue, would be useful for this purpose. In this study, we performed in vivo PA imaging of the blood vessels and distribution of a drug in the rat brain by using an originally developed compact PA imaging system with fiber-based illumination. As a test drug, Evans blue (EB) was injected to the tail vein, and a photomechanical wave was applied to the targeted brain tissue to increase the permeability of the blood vessel walls. For PA imaging of blood vessels and EB distribution, nanosecond pulses at 532 nm and 670 nm were used, respectively. We clearly visualized blood vessels with diameters larger than 50 μm and the distribution of EB in the brain, showing spatiotemporal characteristics of EB that was transvascularly delivered to the target tissue in the brain.

  20. 3D-visualization of intracranial vessels and brain anatomy in magnetic resonance imaging

    International Nuclear Information System (INIS)

    This paper describes a 3D-image processing approach to generate a combination display of intracranial vessels and adjacent brain tissue surfaces in magnetic resonance imaging (MRI). The algorithm is based on the ray-tracing principle and may be regarded as a union of the techniques of surface integration and maximum intensity projection (MIP). Measurement methods and preprocessing steps of acquisition of a flow-compensated vessel dataset and a T1 weighted tissue volume with isolated brain with equal partitioning are described. The method is intended as a tool for the optimization of neurosurgical planning

  1. Imaging hemodynamic changes in preterm infant brains with two-dimensional diffuse optical tomography

    Science.gov (United States)

    Gao, Feng; Ma, Yiwen; Yang, Fang; Zhao, Huijuan; Jiang, Jingying; Kusaka, Takashi; Ueno, Masanori; Yamada, Yukio

    2008-02-01

    We present our preliminary results on two-dimensional (2-D) optical tomographic imaging of hemodynamic changes of two preterm infant brains in different ventilation settings conditions. The investigations use the established two-wavelength, 16-channel time-correlated single photon counting system for the detection, and the generalized pulse spectrum technique based algorithm for the image reconstruction. The experiments demonstrate that two-dimensional diffuse optical tomography may be a potent and relatively simple way of investigating the functions and neural development of infant brains in the perinatal period.

  2. A Novel Statistical Approach for Brain MR Images Segmentation Based on Relaxation Times

    Directory of Open Access Journals (Sweden)

    Fabio Baselice

    2015-01-01

    Full Text Available Brain tissue segmentation in Magnetic Resonance Imaging is useful for a wide range of applications. Classical approaches exploit the gray levels image and implement criteria for differentiating regions. Within this paper a novel approach for brain tissue joint segmentation and classification is presented. Starting from the estimation of proton density and relaxation times, we propose a novel method for identifying the optimal decision regions. The approach exploits the statistical distribution of the involved signals in the complex domain. The technique, compared to classical threshold based ones, is able to globally improve the classification rate. The effectiveness of the approach is evaluated on both simulated and real datasets.

  3. Recent development in noninvasive brain activity measurement by functional magnetic resonance imaging (fMRI)

    International Nuclear Information System (INIS)

    fMRI (functional magnetic resonance imaging) is a non-invasive brain imaging technique with which the distribution of neural activity is estimated by measuring local blood flow changes. Blood-oxygenation-level-dependent (BOLD) method measures changes in the density of deoxidized hemoglobin in blood caused by blood flow changes, while other methods have been developed to measure the blood flow changes directly. Effort has been expended to realize a submillimeter spatial resolution by using higher static magnetic field. fMRI has been carried out with various mental tasks, and many important findings have been made on the localization of higher brain functions. (author)

  4. Wavelet Based Image Fusion for Detection of Brain Tumor

    Directory of Open Access Journals (Sweden)

    CYN Dwith

    2013-01-01

    Full Text Available Brain tumor, is one of the major causes for the increase in mortality among children and adults. Detecting the regions of brain is the major challenge in tumor detection. In the field of medical image processing, multi sensor images are widely being used as potential sources to detect brain tumor. In this paper, a wavelet based image fusion algorithm is applied on the Magnetic Resonance (MR images and Computed Tomography (CT images which are used as primary sources to extract the redundant and complementary information in order to enhance the tumor detection in the resultant fused image. The main features taken into account for detection of brain tumor are location of tumor and size of the tumor, which is further optimized through fusion of images using various wavelet transforms parameters. We discuss and enforce the principle of evaluating and comparing the performance of the algorithm applied to the images with respect to various wavelets type used for the wavelet analysis. The performance efficiency of the algorithm is evaluated on the basis of PSNR values. The obtained results are compared on the basis of PSNR with gradient vector field and big bang optimization. The algorithms are analyzed in terms of performance with respect to accuracy in estimation of tumor region and computational efficiency of the algorithms.

  5. Imaging Findings of Brain Death on 3-Tesla MRI

    International Nuclear Information System (INIS)

    To demonstrate the usefulness of 3-tesla (3T) magnetic resonance imaging (MRI) including T2-weighted imaging (T2WI), diffusion weighted imaging (DWI), time-of-flight (TOF) magnetic resonance angiography (MRA), T2*-weighted gradient recalled echo (GRE), and susceptibility weighted imaging (SWI) in diagnosing brain death. Magnetic resonance imaging findings for 10 patients with clinically verified brain death (group I) and seven patients with comatose or stuporous mentality who did not meet the clinical criteria of brain death (group II) were retrospectively reviewed. Tonsilar herniation and loss of intraarterial flow signal voids (LIFSV) on T2WI were highly sensitive and specific findings for the diagnosis of brain death (p < 0.001 and < 0.001, respectively). DWI, TOF-MRA, and GRE findings were statistically different between the two groups (p = 0.015, 0.029, and 0.003, respectively). However, cortical high signal intensities in T2WI and SWI findings were not statistically different between the two group (p = 0.412 and 1.0, respectively). T2-weighted imaging, DWI, and MRA using 3T MRI may be useful for diagnosing brain death. However, SWI findings are not specific due to high false positive findings.

  6. Imaging Findings of Brain Death on 3-Tesla MRI

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Chul Ho [Dept. of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Hwa Pyung [Dept. of Occupational and Environmental Medicine, CHA Gumi Medical Center, CHA University, Gumi (Korea, Republic of); Park, Jun Beom [Dept. of Radiology, Korean Armed Force Daejeon Hospital, Daejeon (Korea, Republic of); Chang, Hyuk Won; Kim, Easlmaan; Park, Ui Jun; Kim, Hyoung Tae [Keimyung University College of Medicine, Dongsan Medical Center, Daegu (Korea, Republic of); Kim, Eun Hee [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Ku, Jeong Hun [Dept. of Biomedical Engineering, Keimyung University College of Medicine, Daegu (Korea, Republic of)

    2012-09-15

    To demonstrate the usefulness of 3-tesla (3T) magnetic resonance imaging (MRI) including T2-weighted imaging (T2WI), diffusion weighted imaging (DWI), time-of-flight (TOF) magnetic resonance angiography (MRA), T2*-weighted gradient recalled echo (GRE), and susceptibility weighted imaging (SWI) in diagnosing brain death. Magnetic resonance imaging findings for 10 patients with clinically verified brain death (group I) and seven patients with comatose or stuporous mentality who did not meet the clinical criteria of brain death (group II) were retrospectively reviewed. Tonsilar herniation and loss of intraarterial flow signal voids (LIFSV) on T2WI were highly sensitive and specific findings for the diagnosis of brain death (p < 0.001 and < 0.001, respectively). DWI, TOF-MRA, and GRE findings were statistically different between the two groups (p = 0.015, 0.029, and 0.003, respectively). However, cortical high signal intensities in T2WI and SWI findings were not statistically different between the two group (p = 0.412 and 1.0, respectively). T2-weighted imaging, DWI, and MRA using 3T MRI may be useful for diagnosing brain death. However, SWI findings are not specific due to high false positive findings.

  7. Fuzzy local Gaussian mixture model for brain MR image segmentation.

    Science.gov (United States)

    Ji, Zexuan; Xia, Yong; Sun, Quansen; Chen, Qiang; Xia, Deshen; Feng, David Dagan

    2012-05-01

    Accurate brain tissue segmentation from magnetic resonance (MR) images is an essential step in quantitative brain image analysis. However, due to the existence of noise and intensity inhomogeneity in brain MR images, many segmentation algorithms suffer from limited accuracy. In this paper, we assume that the local image data within each voxel's neighborhood satisfy the Gaussian mixture model (GMM), and thus propose the fuzzy local GMM (FLGMM) algorithm for automated brain MR image segmentation. This algorithm estimates the segmentation result that maximizes the posterior probability by minimizing an objective energy function, in which a truncated Gaussian kernel function is used to impose the spatial constraint and fuzzy memberships are employed to balance the contribution of each GMM. We compared our algorithm to state-of-the-art segmentation approaches in both synthetic and clinical data. Our results show that the proposed algorithm can largely overcome the difficulties raised by noise, low contrast, and bias field, and substantially improve the accuracy of brain MR image segmentation.

  8. Survey of Despeckling Techniques for Medical Ultrasound Images

    OpenAIRE

    Jappreet Kaur; Jasdeep Kaur; Manpreet Kaur

    2011-01-01

    Ultrasound imaging is the most commonly used imaging system in medical field. Main problem related to this imaging technique is introduction of speckle noise, thus making the image unclear. The success of ultrasonic examination depends on the image quality which is usually retarded due to speckle noise. There have been several techniques for effective suppression of speckle noise present in ultrasound images. This paper presents a review of some significant work carried out for despeckling ...

  9. Time-difference imaging of magnetic induction tomography in a three-layer brain physical phantom

    International Nuclear Information System (INIS)

    Magnetic induction tomography (MIT) is a contactless and noninvasive technique to reconstruct the conductivity distribution in a human cross-section. In this paper, we want to study the feasibility of imaging the low-contrast perturbation and small volume object in human brains. We construct a three-layer brain physical phantom which mimics the real conductivity distribution of brains by introducing an artificial skull layer. Using our MIT data acquisition system on this phantom and differential algorithm, we have obtained a series of reconstructed images of conductivity perturbation objects. All of the conductivity perturbation objects in the brain phantom can be clearly distinguished in the reconstructed images. The minimum detectable conductivity difference between the object and the background is 0.03 S m−1 (12.5%). The minimum detectable inner volume of the objects is 3.4 cm3. The three-layer brain physical phantom is able to simulate the conductivity distribution of the main structures of a human brain. The images of the low-contrast perturbation and small volume object show the prospect of MIT in the future. (paper)

  10. A REVIEW ON INFLUENCE OF MUSIC ON BRAIN ACTIVITY USING SIGNAL PROCESSING AND IMAGING SYSTEM

    Directory of Open Access Journals (Sweden)

    Dr. K. ADALARASU,

    2011-04-01

    Full Text Available As per clinical neuroscience, listening to music involves many brain activities and its study has advanced greatly in the last thirty years. Research shows that music has significant effect on our body and mind. Music has a positive effect on the hormone system and allows the brain to concentrate more easily and assimilate more information in less time, thereby boosting learning and information intake and thus augmenting cognitive skills. Studies have found that the silence between two musical notes triggers brain cells and neurons which are responsible for the development of sharp memory. Music at different pitches (for example, Madhyamavati, Sankarabarnam raga and so on elicits exceptionally emotions and is capable ofreliably affecting the mood of individuals, which in turn changes the brain activity. This article provides a brief overview of currently available signal processing and imaging techniques to study the influence of different music on human brain activity.

  11. Clinical anatomy of the canine brain using magnetic resonance imaging.

    Science.gov (United States)

    Leigh, Edmund J; Mackillop, Edward; Robertson, Ian D; Hudson, Lola C

    2008-01-01

    The purpose of this study was to produce an magnetic resonsnce (MR) image atlas of clinically relevant brain anatomy and to relate this neuroanatomy to clinical signs. The brain of a large mixed breed dog was imaged in transverse, sagittal, and dorsal planes using a 1.5 T MR unit and the following pulse sequences: Turbo (fast) spin echo (TSE) T2, T1, and T2- weighted spatial and chemical shift-encoded excitation sequence. Relevant neuroanatomic structures were identified using anatomic texts, sectioned cadaver heads, and previously published atlases. Major subdivisions of the brain were mapped and the neurologic signs of lesions in these divisions were described. TSE T2-weighted images were found to be the most useful for identifying clinically relevant neuroanatomy. Relating clinical signs to morphology as seen on MR will assist veterinarians to better understand clinically relevant neuroanatomy in MR images. PMID:18418990

  12. A numerical model for the study of photoacoustic imaging of brain tumours

    CERN Document Server

    Firouzi, Kamyar

    2015-01-01

    Photoacoustic imaging has shown great promise for medical imaging, where optical energy absorption by blood haemoglobin is used as the contrast mechanism. A numerical method was developed for the in-silico assessment of the photoacoustic image reconstruction of the brain. Image segmentation techniques were used to prepare a digital phantom from MR images. Light transport through brain tissue was modelled using a Finite Element approach. The resulting acoustic pressure was then estimated by pulsed photoacoustics considerations. The forward acoustic wave propagation was modelled by the linearized coupled first order wave equations and solved by an acoustic k-space method. Since skull bone is an elastic solid and strongly attenuates ultrasound (due to both scattering and absorption), a k-space method was developed for elastic media. To model scattering effects, a new approach was applied based on propagation in random media. In addition, absorption effects were incorporated using a power law. Finally, the acoust...

  13. Review of Intelligent Techniques Applied for Classification and Preprocessing of Medical Image Data

    Directory of Open Access Journals (Sweden)

    H S Hota

    2013-01-01

    Full Text Available Medical image data like ECG, EEG and MRI, CT-scan images are the most important way to diagnose disease of human being in precise way and widely used by the physician. Problem can be clearly identified with the help of these medical images. A robust model can classify the medical image data in better way .In this paper intelligent techniques like neural network and fuzzy logic techniques are explored for MRI medical image data to identify tumor in human brain. Also need of preprocessing of medical image data is explored. Classification technique has been used extensively in the field of medical imaging. The conventional method in medical science for medical image data classification is done by human inspection which may result misclassification of data sometime this type of problem identification are impractical for large amounts of data and noisy data, a noisy data may be produced due to some technical fault of the machine or by human errors and can lead misclassification of medical image data. We have collected number of papers based on neural network and fuzzy logic along with hybrid technique to explore the efficiency and robustness of the model for brain MRI data. It has been analyzed that intelligent model along with data preprocessing using principal component analysis (PCA and segmentation may be the competitive model in this domain.

  14. Functional photoacoustic imaging to observe regional brain activation induced by cocaine hydrochloride

    Science.gov (United States)

    Jo, Janggun; Yang, Xinmai

    2011-09-01

    Photoacoustic microscopy (PAM) was used to detect small animal brain activation in response to drug abuse. Cocaine hydrochloride in saline solution was injected into the blood stream of Sprague Dawley rats through tail veins. The rat brain functional change in response to the injection of drug was then monitored by the PAM technique. Images in the coronal view of the rat brain at the locations of 1.2 and 3.4 mm posterior to bregma were obtained. The resulted photoacoustic (PA) images showed the regional changes in the blood volume. Additionally, the regional changes in blood oxygenation were also presented. The results demonstrated that PA imaging is capable of monitoring regional hemodynamic changes induced by drug abuse.

  15. Identifying Brain Image Level Endophenotypes in Epilepsy

    CERN Document Server

    Cheng, Wei; Tian, Ge; Feng, Jianfeng; Wang, Zhengge; Zhang, Zhiqiang; Lu, GuangMing

    2012-01-01

    A brain wide association study (BWAS) based on the logistic regression was first developed and applied to a large population of epilepsy patients (168) and healthy controls (136). It was found that the most significant links associated with epilepsy are those bilateral links with regions mainly belonging to the default mode network and subcortex, such as amygdala, fusiform gyrus, inferior temporal gyrus, hippocampus, temporal pole, parahippocampal gyrus, insula, middle occipital gyrus, cuneus. These links were found to have much higher odd ratios than other links, and all of them showed reduced functional couplings in patients compared with controls. Interestingly, with the increasing of the seizure onset frequency or duration of illness, the functional connection between these bilateral regions became further reduced. On the other hand, as a functional compensation and brain plasticity, connections of these bilateral regions to other brain regions were abnormally enhanced and became even much stronger with t...

  16. Image Fusion Technique for Impulse Noise Removal in Digital Images using Empirical Mode Decomposition

    OpenAIRE

    A. Ramarao; Ch. Satyanandareddy; Sateesh, G.

    2012-01-01

    This paper introduces the concept of image fusion technique for impulse noise reduction in digital images. Image fusion is the process of combining two or more images into a single image while retaining the important features of each image. Multiple image fusion is an important technique used in military, remote sensing and medical applications. The images captured by two different sensors undergo filtering using vector median or spatial median filter based on the noise density in the image. ...

  17. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain.

    Science.gov (United States)

    Liu, Chunlei; Li, Wei; Tong, Karen A; Yeom, Kristen W; Kuzminski, Samuel

    2015-07-01

    Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique that enhances image contrast by using the susceptibility differences between tissues. It is created by combining both magnitude and phase in the gradient echo data. SWI is sensitive to both paramagnetic and diamagnetic substances which generate different phase shift in MRI data. SWI images can be displayed as a minimum intensity projection that provides high resolution delineation of the cerebral venous architecture, a feature that is not available in other MRI techniques. As such, SWI has been widely applied to diagnose various venous abnormalities. SWI is especially sensitive to deoxygenated blood and intracranial mineral deposition and, for that reason, has been applied to image various pathologies including intracranial hemorrhage, traumatic brain injury, stroke, neoplasm, and multiple sclerosis. SWI, however, does not provide quantitative measures of magnetic susceptibility. This limitation is currently being addressed with the development of quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI). While QSM treats susceptibility as isotropic, STI treats susceptibility as generally anisotropic characterized by a tensor quantity. This article reviews the basic principles of SWI, its clinical and research applications, the mechanisms governing brain susceptibility properties, and its practical implementation, with a focus on brain imaging.

  18. Development of image and information management system for Korean standard brain

    Science.gov (United States)

    Chung, Soon Cheol; Choi, Do Young; Tack, Gye Rae; Sohn, Jin Hun

    2004-04-01

    The purpose of this study is to establish a reference for image acquisition for completing a standard brain for diverse Korean population, and to develop database management system that saves and manages acquired brain images and personal information of subjects. 3D MP-RAGE (Magnetization Prepared Rapid Gradient Echo) technique which has excellent Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR) as well as reduces image acquisition time was selected for anatomical image acquisition, and parameter values were obtained for the optimal image acquisition. Using these standards, image data of 121 young adults (early twenties) were obtained and stored in the system. System was designed to obtain, save, and manage not only anatomical image data but also subjects' basic demographic factors, medical history, handedness inventory, state-trait anxiety inventory, A-type personality inventory, self-assessment depression inventory, mini-mental state examination, intelligence test, and results of personality test via a survey questionnaire. Additionally this system was designed to have functions of saving, inserting, deleting, searching, and printing image data and personal information of subjects, and to have accessibility to them as well as automatic connection setup with ODBC. This newly developed system may have major contribution to the completion of a standard brain for diverse Korean population since it can save and manage their image data and personal information.

  19. Use of imaging techniques in radiation oncology

    International Nuclear Information System (INIS)

    Imaging techniques are used in radiation oncology for: disease diagnosis, tumor localization and staging, treatment simulation, treatment planning, clinical dosimetry displays, treatment verification and patient follow up. In industrialized countries, up to the 1970's, conventional radiology was used for diagnosis, simulation and planning. Gamma cameras helped tumor staging by detecting metastases. In the 1970's, simulators were developed for exclusive use in radiation oncology departments. Clinical dosimetry displays consisted mainly in axial dose distributions. Treatment verification was done placing films in the radiation beam with the patient under treatment. In the 1980's, 2-D imaging was replaced by 3-D displays with the incorporation of computerized tomography (CT) scanners, and in the 1990's of magnetic resonance imagers (MRI). Ultrasound units, briefly used in the 1960's for treatment planning purposes, were found again useful, mainly for brachytherapy dosimetry. Digital portal imagers allowed accurate treatment field verification. Treatment planning systems incorporated the capability of 'inverse planning', i.e. once the desired dose distribution is decided, the field size, gantry, collimator and couch angles, etc, can be automatically selected. At the end of the millennium, image fusion permitted excellent anatomical display of tumors and adjacent sensitive structures. The 2000's are seeing a change from anatomical to functional imaging with the advent of MRI units capable of spectroscopy at 3 Tesla and positron emission tomography (PET) units. In 2001 combined CT/PET units appeared in RT departments. In 2002, fusion of CT, MRI and PET images became available. Molecular imaging is being developed. The situation in developing countries is quite different. To start with, cancer incidence is different in developing and in industrialized countries. In addition, the health services pattern is different: Cancer treatment is mostly done in public institutions

  20. MR imaging of the neonatal brain: Pathologic features

    International Nuclear Information System (INIS)

    Seventy-three neonates, aged 29-43 weeks since conception, were studied. US and/or CT correlations were obtained in most infants with pathology. In the first 4-5 days after hemorrhage, US and CT were superior to MR imaging, but after that time MR imaging was the single best modality for imaging blood. In early premature infants with very watery white matter, US detected infarction and brain edema that were poorly seen on both MR imaging and CT. However, in late premature and full-term infants, MR imaging was better than CT in distinguishing between normal white matter and infarction. Only MR imaging disclosed delayed myelination in 13 term infants with hydrocephalus and severe asphyxia. MR imaging with play an important role in imaging neonates once MR imaging-compatible monitors and neonatal head coils become widely available

  1. Wavelet Technique Applications in Planetary Nebulae Images

    Science.gov (United States)

    Leal Ferreira, M. L.; Rabaça, C. R.; Cuisinier, F.; Epitácio Pereira, D. N.

    2009-05-01

    Through the application of the wavelet technique to a planetary nebulae image, we are able to identify different scale sizes structures present in its wavelet coefficient decompositions. In a multiscale vision model, an object is defined as a hierarchical set of these structures. We can then use this model to independently reconstruct the different objects that compose the nebulae. The result is the separation and identification of superposed objects, some of them with very low surface brightness, what makes them, in general, very difficult to be seen in the original images due to the presence of noise. This allows us to make a more detailed analysis of brightness distribution in these sources. In this project, we use this method to perform a detailed morphological study of some planetary nebulae and to investigate whether one of them indeed shows internal temperature fluctuations. We have also conducted a series of tests concerning the reliability of the method and the confidence level of the objects detected. The wavelet code used in this project is called OV_WAV and was developed by the UFRJ's Astronomy Departament team.

  2. Bone feature analysis using image processing techniques.

    Science.gov (United States)

    Liu, Z Q; Austin, T; Thomas, C D; Clement, J G

    1996-01-01

    In order to establish the correlation between bone structure and age, and information about age-related bone changes, it is necessary to study microstructural features of human bone. Traditionally, in bone biology and forensic science, the analysis if bone cross-sections has been carried out manually. Such a process is known to be slow, inefficient and prone to human error. Consequently, the results obtained so far have been unreliable. In this paper we present a new approach to quantitative analysis of cross-sections of human bones using digital image processing techniques. We demonstrate that such a system is able to extract various bone features consistently and is capable of providing more reliable data and statistics for bones. Consequently, we will be able to correlate features of bone microstructure with age and possibly also with age related bone diseases such as osteoporosis. The development of knowledge-based computer vision-systems for automated bone image analysis can now be considered feasible.

  3. Dual Channel Pulse Coupled Neural Network Algorithm for Fusion of Multimodality Brain Images with Quality Analysis

    Directory of Open Access Journals (Sweden)

    Kavitha SRINIVASAN

    2014-09-01

    Full Text Available Background: In the review of medical imaging techniques, an important fact that emerged is that radiologists and physicians still are in a need of high-resolution medical images with complementary information from different modalities to ensure efficient analysis. This requirement should have been sorted out using fusion techniques with the fused image being used in image-guided surgery, image-guided radiotherapy and non-invasive diagnosis. Aim: This paper focuses on Dual Channel Pulse Coupled Neural Network (PCNN Algorithm for fusion of multimodality brain images and the fused image is further analyzed using subjective (human perception and objective (statistical measures for the quality analysis. Material and Methods: The modalities used in fusion are CT, MRI with subtypes T1/T2/PD/GAD, PET and SPECT, since the information from each modality is complementary to one another. The objective measures selected for evaluation of fused image were: Information Entropy (IE - image quality, Mutual Information (MI – deviation in fused to the source images and Signal to Noise Ratio (SNR – noise level, for analysis. Eight sets of brain images with different modalities (T2 with T1, T2 with CT, PD with T2, PD with GAD, T2 with GAD, T2 with SPECT-Tc, T2 with SPECT-Ti, T2 with PET are chosen for experimental purpose and the proposed technique is compared with existing fusion methods such as the Average method, the Contrast pyramid, the Shift Invariant Discrete Wavelet Transform (SIDWT with Harr and the Morphological pyramid, using the selected measures to ascertain relative performance. Results: The IE value and SNR value of the fused image derived from dual channel PCNN is higher than other fusion methods, shows that the quality is better with less noise. Conclusion: The fused image resulting from the proposed method retains the contrast, shape and texture as in source images without false information or information loss.

  4. Techniques for a selective encryption of uncompressed and compressed images

    OpenAIRE

    Van Droogenbroeck, Marc; Benedett, Raphaël

    2002-01-01

    This paper describes several techniques to encrypt uncompressed and compressed images. We first present the aims of image encryption. In the usual ways to encryption, all the information is encrypted. But this is not mandatory. In this paper we follow the principles of a technique initially proposed by MAPLES et al. [1] and encrypt only a part of the image content in order to be able to visualize the encrypted images, although not with full precision. This concept leads to techniques that can...

  5. Interpolation Technique in Computed Tomography Image Visualisation(Short Communication)

    OpenAIRE

    Asha Tripathi; P. K. Khatri; G. L. Baheti; K. C. Songara

    2002-01-01

    An interpolation technique has been developed for generation of enlarged dataset from a limited one-dimesional acquired dataset for improving the image quality in quick-scan tomography. The effectiveness of the technique has been tested using data acquired from the first-generation. The CT images generated using this technique have been compared with the CT images generated from the acquired dataset for the same number of projections. The image quality has been improved on account of (...

  6. Wavelet Thresholding Techniques in Despeckling of Medical Ultrasound Images

    OpenAIRE

    R. Vanithamani; G. Umamaheswari

    2014-01-01

    This paper presents a review of wavelet thresholding techniques for despeckling of medical ultrasound images. An ultrasound image is first transformed into wavelet domain and then the wavelet coefficients are processed by different wavelet thresholding techniques. The denoised image is obtained by taking the inverse wavelet transform of the modified wavelet coefficients. The performance of the techniques reviewed in this paper is evaluated using the image quality assessment parameters such...

  7. APPROACHING THE BIOLOGY OF HUMAN PARENTAL ATTACHMENT: BRAIN IMAGING, OXYTOCIN AND COORDINATED ASSESSMENTS OF MOTHERS AND FATHERS

    OpenAIRE

    Swain, JE; Kim, P; Spicer, J; Ho, SS; Dayton, CJ; Elmadih, A; Abel, KM

    2014-01-01

    Brain networks that govern parental response to infant signals have been studied with imaging techniques over the last 15 years. The complex interaction of thoughts and behaviors required for sensitive parenting of offspring enable formation of each individual’s first social bonds and critically shape infants’ behavior. This review concentrates on magnetic resonance imaging experiments which directly examine the brain systems involved in parental responses to infant cues. First, we introduce ...

  8. Metabolic Syndrome, Brain Magnetic Resonance Imaging, and Cognition

    OpenAIRE

    Cavalieri, Margherita; Ropele, Stefan; Petrovic, Katja; Pluta-Fuerst, Aga; Homayoon, Nina; Enzinger, Christian; Grazer, Anja; Katschnig, Petra; Schwingenschuh, Petra; Berghold, Andrea; Schmidt, Reinhold

    2010-01-01

    OBJECTIVE We explored cognitive impairment in metabolic syndrome in relation to brain magnetic resonance imaging (MRI) findings. RESEARCH DESIGN AND METHODS We studied 819 participants free of clinical stroke and dementia of the population-based Austrian Stroke Prevention Study who had undergone brain MRI, neuropsychological testing, and a risk factor assessment relevant to National Cholesterol Education Program Adult Treatment Panel III criteria–defined metabolic syndrome. High-sensitivity C...

  9. Brain magnetic resonance imaging of infants exposed prenatally to buprenorphine

    International Nuclear Information System (INIS)

    Purpose: To evaluate the brains of newborns exposed to buprenorphine prenatally. Material and Methods: Seven neonates followed up antenatally in connection with their mothers' buprenorphine replacement therapy underwent 1.5T magnetic resonance imaging (MRI) of the brain before the age of 2 months. The infants were born to heavy drug abusers. Four mothers were hepatitis C positive, and all were HIV negative. All mothers smoked tobacco and used benzodiazepines. All pregnancies were full term, and no perinatal asphyxia occurred. All but one neonate had abstinence syndrome and needed morphine replacement therapy. Results: Neither structural abnormalities nor abnormalities in signal intensity were recorded. Conclusion: Buprenorphine replacement therapy does not seem to cause any major structural abnormalities of the brain, and it may prevent known hypoxic-ischemic brain changes resulting from uncontrolled drug abuse. Longitudinal studies are needed to assess possible abnormalities in the brain maturation process

  10. Cerenkov and radioluminescence imaging of brain tumor specimens during neurosurgery

    Science.gov (United States)

    Spinelli, Antonello Enrico; Schiariti, Marco P.; Grana, Chiara M.; Ferrari, Mahila; Cremonesi, Marta; Boschi, Federico

    2016-05-01

    We presented the first example of Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI) of human tumor specimens. A patient with a brain meningioma localized in the left parietal region was injected with 166 MBq of Y90-DOTATOC the day before neurosurgery. The specimens of the tumor removed during surgery were imaged using both CLI and RLI using an optical imager prototype developed in our laboratory. The system is based on a cooled electron multiplied charge coupled device coupled with an f/0.95 17-mm C-mount lens. We showed for the first time the possibility of obtaining CLI and RLI images of fresh human brain tumor specimens removed during neurosurgery.

  11. Use of automated image registration to generate mean brain SPECT image of Alzheimer's patients

    International Nuclear Information System (INIS)

    The purpose of this study was to compute and compare the group mean HMPAO brain SPECT images of patients with senile dementia of Alzheimer's type (SDAT) and age matched control subjects after transformation of the individual images to a standard size and shape. Ten patients with Alzheimer's disease (age 71.6±5.0 yr) and ten age matched normal subjects (age 71.0±6.1 yr) participated in this study. Tc-99m HMPAO brain SPECT and X-ray CT scans were acquired for each subject. SPECT images were normalized to an average activity of 100 counts/pixel. Individual brain images were transformed to a standard size and shape with the help of Automated Image Registration (AIR). Realigned brain SPECT images of both groups were used to generate mean and standard deviation images by arithmetic operations on voxel based numerical values. Mean images of both groups were compared by applying the unpaired t-test on a voxel by voxel basis to generate three dimensional T-maps. X-ray CT images of individual subjects were evaluated by means of a computer program for brain atrophy. A significant decrease in relative radioisotope (RI) uptake was present in the bilateral superior and inferior parietal lobules (p<0.05), bilateral inferior temporal gyri, and the bilateral superior and middle frontal gyri (p<0.001). The mean brain atrophy indices for patients and normal subjects were 0.853±0.042 and 0.933±0.017 respectively, the difference being statistically significant (p<0.001). The use of a brain image standardization procedure increases the accuracy of voxel based group comparisons. Thus, intersubject averaging enhances the capacity for detection of abnormalities in functional brain images by minimizing the influence of individual variation. (author)

  12. Rapid hybrid encoding for high-resolution whole-brain fluid-attenuated imaging.

    Science.gov (United States)

    Lee, Hoonjae; Sohn, Chul-Ho; Park, Jaeseok

    2013-12-01

    Single-slab three-dimensional (3D) turbo spin-echo (TSE) imaging combined with inversion recovery (IR), which employs short, spatially non-selective refocusing pulses and signal prescription based variable refocusing flip angles (VFA) to increase imaging efficiency, was recently introduced to produce fluid-attenuated brain images for lesion detection. Despite the advantages, the imaging efficiency in this approach still remains limited because a substantially long time of inversion is needed to selectively suppress the signal intensity of cerebrospinal fluid (CSF) while fully recovering that of brain tissues. The purpose of this work is to develop a novel, rapid hybrid encoding method for highly efficient whole-brain fluid-attenuated imaging. In each time of repetition, volumetric data are continuously encoded using the hybrid modular acquisition in a sequential fashion even during IR signal transition, wherein reversed fast imaging with steady-state free precession (PSIF) is employed to encode intermediate-to-high spatial frequency signals prior to CSF nulling, while VFA-TSE is used to collect low-to-intermediate spatial frequency signals afterwards. Gradient-induced spin de-phasing between a pair of neighboring radio-frequency (RF) pulses in both PSIF and TSE modules is kept identical to avoid the occurrence of multiple echoes in a single acquisition window. Additionally, a two-step, alternate RF phase-cycling scheme is employed in the low spatial frequency region to eliminate free induction decay induced edge artifacts. Numerical simulations of the Bloch equations were performed to evaluate signal evolution of brain tissues along the echo train while optimizing imaging parameters. In vivo studies demonstrate that the proposed technique produces high-resolution isotropic fluid-attenuated whole-brain images in a clinically acceptable imaging time with substantially high signal-to-noise ratio for white matter while retaining lesion conspicuity.

  13. In vivo bioluminescence imaging of Ca signalling in the brain of Drosophila.

    Directory of Open Access Journals (Sweden)

    Jean-René Martin

    Full Text Available Many different cells' signalling pathways are universally regulated by Ca(2+ concentration [Ca(2+] rises that have highly variable amplitudes and kinetic properties. Optical imaging can provide the means to characterise both the temporal and spatial aspects of Ca(2+ signals involved in neurophysiological functions. New methods for in vivo imaging of Ca(2+ signalling in the brain of Drosophila are required for probing the different dynamic aspects of this system. In studies here, whole brain Ca(2+ imaging was performed on transgenic flies with targeted expression of the bioluminescent Ca(2+ reporter GFP-aequorin (GA in different neural structures. A photon counting based technique was used to undertake continuous recordings of cytosolic [Ca(2+] over hours. Time integrals for reconstructing images and analysis of the data were selected offline according to the signal intensity. This approach allowed a unique Ca(2+ response associated with cholinergic transmission to be identified by whole brain imaging of specific neural structures. Notably, [Ca(2+] transients in the Mushroom Bodies (MBs following nicotine stimulation were accompanied by a delayed secondary [Ca(2+] rise (up to 15 min. later in the MB lobes. The delayed response was sensitive to thapsigargin, suggesting a role for intra-cellular Ca(2+ stores. Moreover, it was reduced in dunce mutant flies, which are impaired in learning and memory. Bioluminescence imaging is therefore useful for studying Ca(2+ signalling pathways and for functional mapping of neurophysiological processes in the fly brain.

  14. In vivo bioluminescence imaging of Ca signalling in the brain of Drosophila.

    Science.gov (United States)

    Martin, Jean-René; Rogers, Kelly L; Chagneau, Carine; Brûlet, Philippe

    2007-03-07

    Many different cells' signalling pathways are universally regulated by Ca(2+) concentration [Ca(2+)] rises that have highly variable amplitudes and kinetic properties. Optical imaging can provide the means to characterise both the temporal and spatial aspects of Ca(2+) signals involved in neurophysiological functions. New methods for in vivo imaging of Ca(2+) signalling in the brain of Drosophila are required for probing the different dynamic aspects of this system. In studies here, whole brain Ca(2+) imaging was performed on transgenic flies with targeted expression of the bioluminescent Ca(2+) reporter GFP-aequorin (GA) in different neural structures. A photon counting based technique was used to undertake continuous recordings of cytosolic [Ca(2+)] over hours. Time integrals for reconstructing images and analysis of the data were selected offline according to the signal intensity. This approach allowed a unique Ca(2+) response associated with cholinergic transmission to be identified by whole brain imaging of specific neural structures. Notably, [Ca(2+)] transients in the Mushroom Bodies (MBs) following nicotine stimulation were accompanied by a delayed secondary [Ca(2+)] rise (up to 15 min. later) in the MB lobes. The delayed response was sensitive to thapsigargin, suggesting a role for intra-cellular Ca(2+) stores. Moreover, it was reduced in dunce mutant flies, which are impaired in learning and memory. Bioluminescence imaging is therefore useful for studying Ca(2+) signalling pathways and for functional mapping of neurophysiological processes in the fly brain.

  15. In vivo Bioluminescence Imaging of Ca2+ Signalling in the Brain of Drosophila

    Science.gov (United States)

    Chagneau, Carine; Brûlet, Philippe

    2007-01-01

    Many different cells' signalling pathways are universally regulated by Ca2+ concentration [Ca2+] rises that have highly variable amplitudes and kinetic properties. Optical imaging can provide the means to characterise both the temporal and spatial aspects of Ca2+ signals involved in neurophysiological functions. New methods for in vivo imaging of Ca2+ signalling in the brain of Drosophila are required for probing the different dynamic aspects of this system. In studies here, whole brain Ca2+ imaging was performed on transgenic flies with targeted expression of the bioluminescent Ca2+ reporter GFP-aequorin (GA) in different neural structures. A photon counting based technique was used to undertake continuous recordings of cytosolic [Ca2+] over hours. Time integrals for reconstructing images and analysis of the data were selected offline according to the signal intensity. This approach allowed a unique Ca2+ response associated with cholinergic transmission to be identified by whole brain imaging of specific neural structures. Notably, [Ca2+] transients in the Mushroom Bodies (MBs) following nicotine stimulation were accompanied by a delayed secondary [Ca2+] rise (up to 15 min. later) in the MB lobes. The delayed response was sensitive to thapsigargin, suggesting a role for intra-cellular Ca2+ stores. Moreover, it was reduced in dunce mutant flies, which are impaired in learning and memory. Bioluminescence imaging is therefore useful for studying Ca2+ signalling pathways and for functional mapping of neurophysiological processes in the fly brain. PMID:17342209

  16. Three-dimensional atlas system for mouse and rat brain imaging data

    Directory of Open Access Journals (Sweden)

    Trine Hjornevik

    2007-11-01

    Full Text Available Tomographic neuroimaging techniques allow visualization of functionally and structurally specific signals in the mouse and rat brain. The interpretation of the image data relies on accurate determination of anatomical location, which is frequently obstructed by the lack of structural information in the data sets. Positron emission tomography (PET generally yields images with low spatial resolution and little structural contrast, and many experimental magnetic resonance imaging (MRI paradigms give specific signal enhancements but often limited anatomical information. Side-by-side comparison of image data with conventional atlas diagram is hampered by the 2-D format of the atlases, and by the lack of an analytical environment for accumulation of data and integrative analyses. We here present a method for reconstructing 3-D atlases from digital 2-D atlas diagrams, and exemplify 3-D atlas-based analysis of PET and MRI data. The reconstruction procedure is based on two seminal mouse and brain atlases, but is applicable to any stereotaxic atlas. Currently, 30 mouse brain structures and 60 rat brain structures have been reconstructed. To exploit the 3-D atlas models, we have developed a multi-platform atlas tool (available via The Rodent Workbench, http://rbwb.org which allows combined visualization of experimental image data within the 3-D atlas space together with 3-D viewing and user-defined slicing of selected atlas structures. The tool presented facilitates assignment of location and comparative analysis of signal location in tomographic images with low structural contrast.

  17. Development of imaging techniques for fast neutron radiography in Japan

    International Nuclear Information System (INIS)

    Neutron radiography with fast neutron beams (FNR) has been studied at the fast neutron source reactor 'YAYOI' of the University of Tokyo since 1986. Imaging techniques for FNR have been developed for CR-39 track-etch detector, electronic imaging system (television method), direct film method, imaging plate and also fast and thermal neutron concurrent imaging method. The review of FNR imaging techniques and some applications are reported in this paper

  18. CLEAN Technique to Classify and Detect Objects in Subsurface Imaging

    OpenAIRE

    Karpat, E.

    2012-01-01

    An image domain CLEAN technique, for nondestructive and noncontacting subsurface imaging, is discussed. Recently introduced finite-difference time-domain- (FDTD-) based virtual tool, GrGPR, is used to create imaging scenarios and to generate synthetic scattering data through synthetic aperture (SAR) type scanning. Matlab-based imaging algorithms are used to process recorded FDTD data. The location and the geometry of the targets are obtained by image domain CLEAN technique which is extracting...

  19. Development of imaging techniques for fast neutron radiography in Japan

    CERN Document Server

    Fujine, S; Yoshii, K; Kamata, M; Tamaki, M; Ohkubo, K; Ikeda, Y; Kobayashi, H

    1999-01-01

    Neutron radiography with fast neutron beams (FNR) has been studied at the fast neutron source reactor 'YAYOI' of the University of Tokyo since 1986. Imaging techniques for FNR have been developed for CR-39 track-etch detector, electronic imaging system (television method), direct film method, imaging plate and also fast and thermal neutron concurrent imaging method. The review of FNR imaging techniques and some applications are reported in this paper.

  20. Normal feline brain: clinical anatomy using magnetic resonance imaging.

    Science.gov (United States)

    Mogicato, G; Conchou, F; Layssol-Lamour, C; Raharison, F; Sautet, J

    2012-04-01

    The purpose of this study was to provide a clinical anatomy atlas of the feline brain using magnetic resonance imaging (MRI). Brains of twelve normal cats were imaged using a 1.5 T magnetic resonance unit and an inversion/recovery sequence (T1). Fourteen relevant MRI sections were chosen in transverse, dorsal, median and sagittal planes. Anatomic structures were identified and labelled using anatomical texts and Nomina Anatomica Veterinaria, sectioned specimen heads, and previously published articles. The MRI sections were stained according to the major embryological and anatomical subdivisions of the brain. The relevant anatomical structures seen on MRI will assist clinicians to better understand MR images and to relate this neuro-anatomy to clinical signs.

  1. Review Article: An Overview of Image Compression Techniques

    Directory of Open Access Journals (Sweden)

    M. Marimuthu

    2012-12-01

    Full Text Available To store an image, large quantities of digital data are required. Due to limited bandwidth, image must be compressed before transmission. However, image compression reduces the image fidelity, when an image is compressed at low bitrates. Hence, the compressed images suffer from block artifacts. To meet this, several compression schemes have been developed in image processing. This study presents an overview of compression techniques for image applications. It covers the lossy and lossless compression algorithm used for still image and other applications. The focus of this article is based on the overview of VLSI DCT architecture for image compression. Further, this new approach may provide better results.

  2. Simultaneous algebraic reconstruction technique based on guided image filtering.

    Science.gov (United States)

    Ji, Dongjiang; Qu, Gangrong; Liu, Baodong

    2016-07-11

    The challenge of computed tomography is to reconstruct high-quality images from few-view projections. Using a prior guidance image, guided image filtering smoothes images while preserving edge features. The prior guidance image can be incorporated into the image reconstruction process to improve image quality. We propose a new simultaneous algebraic reconstruction technique based on guided image filtering. Specifically, the prior guidance image is updated in the image reconstruction process, merging information iteratively. To validate the algorithm practicality and efficiency, experiments were performed with numerical phantom projection data and real projection data. The results demonstrate that the proposed method is effective and efficient for nondestructive testing and rock mechanics. PMID:27410859

  3. Performance Analysis of Noise Reduction Technologies in Brain MRI Image

    Directory of Open Access Journals (Sweden)

    Sheela.V.K

    2016-02-01

    Full Text Available Rapid advancement in icon-based analysis for the treatment of diseases which are affected on internal organs of human body drives medical imaging processing into an important technique among various methods of psychoanalysis. Among all the available imaging modalities magnetic resonance imaging techniques are extensively used for the analysis and discussion of diseases in soft tissue. MRI image provides insight into the anatomical structure within the body. Accuracy of the construction of the target within the body depends upon the overall imaging process. The quality of MRI image determines the effectiveness in feature extraction, analysis, recognition and quantitative measurements. The primary factors which decrease the visibility of the structure are blurring effect and noises. This leads to the need of removal of noise from MRI images as a function of the preprocessing technique in image processing; usually noise filters are employed for this function. In this paper analyzes the operation of different noise filters.

  4. The psychopath magnetized: insights from brain imaging

    OpenAIRE

    Anderson, Nathaniel E.; Kiehl, Kent A.

    2011-01-01

    Psychopaths commit a disproportionate amount of violent crime, and this places a substantial economic and emotional burden on society. Elucidation of the neural correlates of psychopathy may lead to improved management and treatment of the condition. Although some methodological issues remain, the neuroimaging literature is generally converging on a set of brain regions and circuits that are consistently implicated in the condition: the orbitofrontal cortex, amygdala, and the anterior and pos...

  5. Advanced MR brain imaging in preterm infants

    OpenAIRE

    Bruine, Francisca Teresa de

    2013-01-01

    The aim of the thesis is to investigate the diagnostic value of MRI performed around term equivalent age in evaluating brain injury and predicting neurodevelopmental outcome at two years corrected age in very preterm infants with a gestational age of less than 32 weeks. MRI is a powerful tool to diagnose all types of white matter injury and is more sensitive than ultrasound in detecting punctate white matter lesions which are associated with developmental delay and cerebral palsy. The positiv...

  6. Imaging Monoamine Oxidase in the Human Brain

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets

  7. Imaging Monoamine Oxidase in the Human Brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  8. Optical imaging of neural and hemodynamic brain activity

    Science.gov (United States)

    Schei, Jennifer Lynn

    Optical imaging technologies can be used to record neural and hemodynamic activity. Neural activity elicits physiological changes that alter the optical tissue properties. Specifically, changes in polarized light are concomitant with neural depolarization. We measured polarization changes from an isolated lobster nerve during action potential propagation using both reflected and transmitted light. In transmission mode, polarization changes were largest throughout the center of the nerve, suggesting that most of the optical signal arose from the inner nerve bundle. In reflection mode, polarization changes were largest near the edges, suggesting that most of the optical signal arose from the outer sheath. To overcome irregular cell orientation found in the brain, we measured polarization changes from a nerve tied in a knot. Our results show that neural activation produces polarization changes that can be imaged even without regular cell orientations. Neural activation expends energy resources and elicits metabolic delivery through blood vessel dilation, increasing blood flow and volume. We used spectroscopic imaging techniques combined with electrophysiological measurements to record evoked neural and hemodynamic responses from the auditory cortex of the rat. By using implantable optics, we measured responses across natural wake and sleep states, as well as responses following different amounts of sleep deprivation. During quiet sleep, evoked metabolic responses were larger compared to wake, perhaps because blood vessels were more compliant. When animals were sleep deprived, evoked hemodynamic responses were smaller following longer periods of deprivation. These results suggest that prolonged neural activity through sleep deprivation may diminish vascular compliance as indicated by the blunted vascular response. Subsequent sleep may allow vessels to relax, restoring their ability to deliver blood. These results also suggest that severe sleep deprivation or chronic

  9. Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains.

    Directory of Open Access Journals (Sweden)

    Martin K Schwarz

    Full Text Available In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain.

  10. Neurophotonics: non-invasive optical techniques for monitoring brain functions

    Science.gov (United States)

    Torricelli, Alessandro; Contini, Davide; Mora, Alberto Dalla; Pifferi, Antonio; Re, Rebecca; Zucchelli, Lucia; Caffini, Matteo; Farina, Andrea; Spinelli, Lorenzo

    2014-01-01

    Summary The aim of this review is to present the state of the art of neurophotonics, a recently founded discipline lying at the interface between optics and neuroscience. While neurophotonics also includes invasive techniques for animal studies, in this review we focus only on the non-invasive methods that use near infrared light to probe functional activity in the brain, namely the fast optical signal, diffuse correlation spectroscopy, and functional near infrared spectroscopy methods. We also present an overview of the physical principles of light propagation in biological tissues, and of the main physiological sources of signal. Finally, we discuss the open issues in models, instrumentation, data analysis and clinical approaches. PMID:25764252

  11. Live Imaging of the Ependymal Cilia in the Lateral Ventricles of the Mouse Brain.

    Science.gov (United States)

    Al Omran, Alzahra J; Saternos, Hannah C; Liu, Tongyu; Nauli, Surya M; AbouAlaiwi, Wissam A

    2015-01-01

    Multiciliated ependymal cells line the ventricles in the adult brain. Abnormal function or structure of ependymal cilia is associated with various neurological deficits. The current ex vivo live imaging of motile ependymal cilia technique allows for a detailed study of ciliary dynamics following several steps. These steps include: mice euthanasia with carbon dioxide according to protocols of The University of Toledo's Institutional Animal Care and Use Committee (IACUC); craniectomy followed by brain removal and sagittal brain dissection with a vibratome or sharp blade to obtain very thin sections through the brain lateral ventricles, where the ependymal cilia can be visualized. Incubation of the brain's slices in a customized glass-bottom plate containing Dulbecco's Modified Eagle's Medium (DMEM)/High-Glucose at 37 °C in the presence of 95%/5% O2/CO2 mixture is essential to keep the tissue alive during the experiment. A video of the cilia beating is then recorded using a high-resolution differential interference contrast microscope. The video is then analyzed frame by frame to calculate the ciliary beating frequency. This allows distinct classification of the ependymal cells into three categories or types based on their ciliary beating frequency and angle. Furthermore, this technique allows the use of high-speed fluorescence imaging analysis to characterize the unique intracellular calcium oscillation properties of ependymal cells as well as the effect of pharmacological agents on the calcium oscillations and the ciliary beating frequency. In addition, this technique is suitable for immunofluorescence imaging for ciliary structure and ciliary protein localization studies. This is particularly important in disease diagnosis and phenotype studies. The main limitation of the technique is attributed to the decrease in live motile cilia movement as the brain tissue starts to die. PMID:26067390

  12. In-vivo human brain molecular imaging with a brain-dedicated PET/MRI system.

    Science.gov (United States)

    Cho, Zang Hee; Son, Young Don; Choi, Eun Jung; Kim, Hang Keun; Kim, Jeong Hee; Lee, Sang Yoon; Ogawa, Seiji; Kim, Young Bo

    2013-02-01

    Advances in the new-generation of ultra-high-resolution, brain-dedicated positron emission tomography-magnetic resonance imaging (PET/MRI) systems have begun to provide many interesting insights into the molecular dynamics of the brain. First, the finely delineated structural information from ultra-high-field MRI can help us to identify accurate landmark structures, thereby making it easier to locate PET activation sites that are anatomically well-correlated with metabolic or ligand-specific organs in the neural structures in the brain. This synergistic potential of PET/MRI imaging is discussed in terms of neuroscience and neurological research from both translational and basic research perspectives. Experimental results from the hippocampus, thalamus, and brainstem obtained with (18)F-fluorodeoxyglucose and (11)C-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)benzonitrile are used to demonstrate the potential of this new brain PET/MRI system.

  13. Brain Imaging, Forward Inference, and Theories of Reasoning

    Directory of Open Access Journals (Sweden)

    Evan eHeit

    2015-01-01

    Full Text Available This review focuses on the issue of how neuroimaging studies address theoretical accounts of reasoning, through the lens of the method of forward inference (Henson, 2005, 2006. After theories of deductive and inductive reasoning are briefly presented, the method of forward inference for distinguishing between psychological theories based on brain imaging evidence is critically reviewed. Brain imaging studies of reasoning, comparing deductive and inductive arguments, comparing meaningful versus non-meaningful material, investigating hemispheric localization, and comparing conditional and relational arguments, are assessed in light of the method of forward inference. Finally, conclusions are drawn with regard to future research opportunities.

  14. Brain imaging, forward inference, and theories of reasoning.

    Science.gov (United States)

    Heit, Evan

    2014-01-01

    This review focuses on the issue of how neuroimaging studies address theoretical accounts of reasoning, through the lens of the method of forward inference (Henson, 2005, 2006). After theories of deductive and inductive reasoning are briefly presented, the method of forward inference for distinguishing between psychological theories based on brain imaging evidence is critically reviewed. Brain imaging studies of reasoning, comparing deductive and inductive arguments, comparing meaningful versus non-meaningful material, investigating hemispheric localization, and comparing conditional and relational arguments, are assessed in light of the method of forward inference. Finally, conclusions are drawn with regard to future research opportunities. PMID:25620926

  15. Mr imaging and mr spectroscopy of brain metastases by mr perfusion

    International Nuclear Information System (INIS)

    In follow-up examinations of irradiated brain metastases conventional contrast-enhanced morphological MR imaging is often unable to distinguish between transient radiation effects, radionecrosis, and tumor recurrence. To evaluate changes of relative cerebral blood flow (rCBF) in irradiated brain metastases arterial spin-labeling techniques (ASL) were applied and compared to the outcome of 1H MR spectroscopy and spectroscopic imaging (1H MRS, SI). Patients and methods In 2 patients follow-up examinations of irradiated brain metastases were performed on a 1.5-T tomograph (average single dose: 20 Gy/80% isodose). Relative CBF values of gray matter (GM), white matter (WM), and metastases (Met) were measured by means of the ASL techniques ITS-FAIR and Q2TIPS. 1H MRS was performed with PRESS 1500/135. In both patients with initially hyperperfused metastases (Met/GM >1) the reduction of rCBF after stereotactic radiosurgery indicated response to treatment - even if the contrast-enhancing region increased - while increasing rCBF values indicated tumor progression. The findings were confirmed by 1H MRS, SI and subsequent follow-up. The ASL techniques ITS-FAIR and Q2TIPS are able to monitor changes of rCBF in irradiated brain metastases. The two cases imply a possible role for ASL-MR perfusion imaging and 1H MR spectroscopy in differentiating radiation effects from tumor progression. (orig.)

  16. Image Mosaic Techniques OptimizationUsing Wavelet

    Institute of Scientific and Technical Information of China (English)

    ZHOUAn-qi; CUILi

    2014-01-01

    This essay concentrates on two key procedures of image mosaic——image registration and imagefusion.Becauseof the character of geometric transformation invariance of edge points, wecalculate the angle difference of the direction vector ofedge points in different images anddraw an angle difference histogramto adjust the rotationproblem. Through this way, algorithm based on gray information is expandedandcan be used in images withdisplacementand rotation. Inthe term of image fusion, wavelet multi-scale analysis is used to fuse spliced images. In order to choose the best method of imagefusion,weevaluate the results of different methods of image fusion by cross entropy.

  17. Radiation dose reduction in perfusion CT imaging of the brain: A review of the literature.

    Science.gov (United States)

    Othman, Ahmed E; Afat, Saif; Brockmann, Marc A; Nikoubashman, Omid; Brockmann, Carolin; Nikolaou, Konstantin; Wiesmann, Martin

    2016-02-01

    Perfusion CT (PCT) of the brain is widely used in the settings of acute ischemic stroke and vasospasm monitoring. The high radiation dose associated with PCT is a central topic and has been a focus of interest for many researchers. Many studies have examined the effect of radiation dose reduction in PCT using different approaches. Reduction of tube current and tube voltage can be efficient and lead to a remarkable reduction of effective radiation dose while preserving acceptable image quality. The use of novel noise reduction techniques such as iterative reconstruction or spatiotemporal smoothing can produce sufficient image quality from low-dose perfusion protocols. Reduction of sampling frequency of perfusion images has only little potential to reduce radiation dose. In the present article we aimed to summarize the available data on radiation dose reduction in PCT imaging of the brain.

  18. Nuclear medicine imaging technique in the erectile dysfunction evaluation: a mini-review

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Camila Godinho; Moura, Regina; Neves, Rosane de Figueiredo [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Biologia Roberto Alcantara Gomes. Lab. de Radiofarmacia Experimental]. E-mail: cacagr@yahoo.com.br; Spinosa, Jean Pierre [Hopital de Zone, Morges (Switzerland). Dept. of Gynecology and Obstetrics; Bernardo-Filho, Mario [Instituto Nacional do Cancer, Rio de Janeiro, RJ (Brazil). Coordenadoria de Pesquisa

    2007-09-15

    Functional imaging with positron emission tomography and single photon emission computed tomography is capable of visualizing subtle changes in physiological function in vivo. Erectile dysfunction (ED) diminishes quality of life for affected men and their partners. Identification of neural substrates may provide information regarding the pathophysiology of types of sexual dysfunction originating in the brain. The aim of this work is to verify the approaches of the nuclear medicine techniques in the evaluation of the erectile function/dysfunction. A search using the words ED and nuclear medicine, ED and scintigraphy, ED and SPECT and ED and PET was done in the PubMed. The number of citations in each subject was determined. Neuroimaging techniques offer insight into brain regions involved in sexual arousal and inhibition. To tackle problems such as hyposexual disorders or ED caused by brain disorders, it is crucial to understand how the human brain controls sexual arousal and penile erection. (author)

  19. The Statistical methods of Pixel-Based Image Fusion Techniques

    CERN Document Server

    Al-Wassai, Firouz Abdullah; Al-Zaky, Ali A

    2011-01-01

    There are many image fusion methods that can be used to produce high-resolution mutlispectral images from a high-resolution panchromatic (PAN) image and low-resolution multispectral (MS) of remote sensed images. This paper attempts to undertake the study of image fusion techniques with different Statistical techniques for image fusion as Local Mean Matching (LMM), Local Mean and Variance Matching (LMVM), Regression variable substitution (RVS), Local Correlation Modeling (LCM) and they are compared with one another so as to choose the best technique, that can be applied on multi-resolution satellite images. This paper also devotes to concentrate on the analytical techniques for evaluating the quality of image fusion (F) by using various methods including Standard Deviation (SD), Entropy(En), Correlation Coefficient (CC), Signal-to Noise Ratio (SNR), Normalization Root Mean Square Error (NRMSE) and Deviation Index (DI) to estimate the quality and degree of information improvement of a fused image quantitatively...

  20. 3T MR imaging of the brain.

    Science.gov (United States)

    DeLano, Mark C; Fisher, Charles

    2006-02-01

    The advent of very high field clinical scanners that operate at 3T is taking structural and functional imaging to new levels and is reinvigorating clinical spectroscopy, fMR imaging, and noncontrast-enhanced methods of MRA. Most of the challenges that are related to 3T imaging have been addressed to facilitate routine clinical imaging. An awareness of the complexities that underlie the solutions to these challenges is important to the continued improvements to the 3T platform so that its maximal potential can be reached. The development of the multichannel-head coils and the improvement in the design of body coils, concurrently with the development of multichannel capabilities that enable parallel imaging, have benefited all field platforms. Perhaps the added value of parallel imaging has been greatest at 3T where the additional signal can be exploited. The definition of very high field is a moving target, and may be well on its way to 7.0 T, although in terms of the current clinical state of the art, 3T is our current reference. PMID:16530636

  1. PET imaging of MRP1 function in the living brain: method development and future perspectives.

    Science.gov (United States)

    Okamura, T; Kikuchi, T; Irie, T

    2010-01-01

    Multidrug resistance-associated protein 1 (MRP1) functions as a primary active transporter utilizing energy from ATP hydrolysis. In the central nervous system (CNS), MRP1 plays an important role in limiting the permeation of xenobiotic and endogenous substrates across the blood-brain and blood-cerebrospinal fluid barriers, and across brain parenchymal cells. While MRP1 contributes to minimizing the neurotoxic effects of drugs, it may also restrict the distribution of drugs for the treatment of CNS diseases. Moreover, neurodegenerative disease may be associated with abnormal expression of efflux transporters in the brain. Noninvasive measurement of MRP1 function will therefore be useful for directly evaluating the effect of modulators on enhancing the penetration of drugs into the brain and for examining the pathophysiological role of MRP1 in the brain. Positron emission tomography (PET) is a powerful molecular imaging technique. While several PET probes have been proposed for imaging function of the efflux transporter P-glycoprotein, few reports discuss the probes for imaging MRP1 function in the brain. Ideally, brain radioactivity should consist of a single radioactive compound that is selectively transported by the efflux transporter of interest, without other efflux routes. However, most PET probes for MRP1 or P-glycoprotein are eliminated by both a transporter and simple diffusion, resulting in inaccurate measurement of pump function. This review addresses a new strategy to avoid this problem, and suggests the design of a PET probe based on this strategy, particularly for MRP1 imaging. Several published reports on imaging MRP1 function with PET are also discussed. PMID:20645911

  2. Obsessive-compulsive disorder: advances in brain imaging

    International Nuclear Information System (INIS)

    In the past twenty years functional brain imaging has advanced to the point of tackling the differential diagnosis, prognosis and therapeutic response in Neurology and Psychiatry. Psychiatric disorders were rendered 'functional' a century ago; however nowadays they can be seen by means of brain imaging. Functional images in positron emission tomography (PET) and single photon emission tomography (NEUROSPET) show in non-invasive fashion the state of brain functioning. PET does this assessing glucose metabolism and NEUROSPET by putting cerebral blood flow in images. Prevalence of OCD is clearly low (2 to 3%), but comorbidity with depression, psychoses, bipolar disorder and schizophrenia is high. Furthermore, it is not infrequent with autism, attention disorder, tichotillomany, borderline personality disorders, in pathological compulsive spending, sexual compulsion and in pathological gambling, in tics, and in Gilles de la Tourette disorder, NEUROSPET and PET show hypoperfusion in both frontal lobes, in their prefrontal dorsolateral aspects, in their inferior zone and premotor cortex, with hyperperfusion in the posterior cingulum and hypoperfusion in basal ganglia (caudate nucleus). Cummings states that hyperactivity of the limbic system might be involved in OCD. Thus, brain imaging in OCD is a diagnostic aid, allows us to see clinical imagenological evolution and therapeutic response and, possibly, it is useful predict therapeutic response (Au)

  3. 99Tcm-Neurolite brain SPECT imaging as an outcome predictor after brain trauma: initial experience

    International Nuclear Information System (INIS)

    Full text: The aim of this study was to use semi-quantitative 99Tcm-ethylene cysteine dimer (Neurolite) cerebral blood flow (CBF) SPET brain imaging to assess its role in predicting outcome after brain trauma. Twelve adult patients (9 males, 3 females) who sustained moderate to severe brain trauma were studied by CBF/SPET within 4 weeks of the injury (scan A) and again after 1 year (scan B). Clinical assessment was also performed at these times and included extensive neuropsychometric testing. Patients received 800-850 MBq 99Tcm-Neurolite intravenously, and were imaged using a triple-headed gamma camera with LEUHR fan beam collimators. Processing, filtering, reconstruction and data set selection were identical for scans A and B. Semi-quantitative analysis was performed using 25 regions of interest in the cerebral cortex and deep structures in 2 coronal, 2 sagittal and 3 oblique planes. Normalized mean counts per pixel for the whole brain, and regional brain ratios were calculated. Scans A and B were compared and correlated to the clinical outcome data. Two patients with minimal CBF abnormalities made full recoveries. The remaining 10 had moderate to severe focal CBF defects, which showed no significant improvement at 12 months. Of these patients, 2 had moderate disability, 3 had severe to moderate disability and 2 had severe disability at 12 months. Patients with persisting focal abnormal CBF showed persisting neurological deficits. Neurolite brain CBF imaging is a useful method of predicting outcome after moderate to severe head injury

  4. A Review of Imaging Techniques for Plant Phenotyping

    Directory of Open Access Journals (Sweden)

    Lei Li

    2014-10-01

    Full Text Available Given the rapid development of plant genomic technologies, a lack of access to plant phenotyping capabilities limits our ability to dissect the genetics of quantitative traits. Effective, high-throughput phenotyping platforms have recently been developed to solve this problem. In high-throughput phenotyping platforms, a variety of imaging methodologies are being used to collect data for quantitative studies of complex traits related to the growth, yield and adaptation to biotic or abiotic stress (disease, insects, drought and salinity. These imaging techniques include visible imaging (machine vision, imaging spectroscopy (multispectral and hyperspectral remote sensing, thermal infrared imaging, fluorescence imaging, 3D imaging and tomographic imaging (MRT, PET and CT. This paper presents a brief review on these imaging techniques and their applications in plant phenotyping. The features used to apply these imaging techniques to plant phenotyping are described and discussed in this review.

  5. A review of imaging techniques for plant phenotyping.

    Science.gov (United States)

    Li, Lei; Zhang, Qin; Huang, Danfeng

    2014-01-01

    Given the rapid development of plant genomic technologies, a lack of access to plant phenotyping capabilities limits our ability to dissect the genetics of quantitative traits. Effective, high-throughput phenotyping platforms have recently been developed to solve this problem. In high-throughput phenotyping platforms, a variety of imaging methodologies are being used to collect data for quantitative studies of complex traits related to the growth, yield and adaptation to biotic or abiotic stress (disease, insects, drought and salinity). These imaging techniques include visible imaging (machine vision), imaging spectroscopy (multispectral and hyperspectral remote sensing), thermal infrared imaging, fluorescence imaging, 3D imaging and tomographic imaging (MRT, PET and CT). This paper presents a brief review on these imaging techniques and their applications in plant phenotyping. The features used to apply these imaging techniques to plant phenotyping are described and discussed in this review. PMID:25347588

  6. Application of image fusion techniques in DSA

    Science.gov (United States)

    Ye, Feng; Wu, Jian; Cui, Zhiming; Xu, Jing

    2007-12-01

    Digital subtraction angiography (DSA) is an important technology in both medical diagnoses and interposal therapy, which can eliminate the interferential background and give prominence to blood vessels by computer processing. After contrast material is injected into an artery or vein, a physician produces fluoroscopic images. Using these digitized images, a computer subtracts the image made with contrast material from a series of post injection images made without background information. By analyzing the characteristics of DSA medical images, this paper provides a solution of image fusion which is in allusion to the application of DSA subtraction. We fuse the images of angiogram and subtraction, in order to obtain the new image which has more data information. The image that fused by wavelet transform can display the blood vessels and background information clearly, and medical experts gave high score on the effect of it.

  7. Molecular Imaging of Tumors Using a Quantitative T1 Mapping Technique via Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Kelsey Herrmann

    2015-07-01

    Full Text Available Magnetic resonance imaging (MRI of glioblastoma multiforme (GBM with molecular imaging agents would allow for the specific localization of brain tumors. Prior studies using T1-weighted MR imaging demonstrated that the SBK2-Tris-(Gd-DOTA3 molecular imaging agent labeled heterotopic xenograft models of brain tumors more intensely than non-specific contrast agents using conventional T1-weighted imaging techniques. In this study, we used a dynamic quantitative T1 mapping strategy to more objectively compare intra-tumoral retention of the SBK2-Tris-(Gd-DOTA3 agent over time in comparison to non-targeted control agents. Our results demonstrate that the targeted SBK2-Tris-(Gd-DOTA3 agent, a scrambled-Tris-(Gd-DOTA3 control agent, and the non-specific clinical contrast agent Optimark™ all enhanced flank tumors of human glioma cells with similar maximal changes on T1 mapping. However, the retention of the agents differs. The non-specific agents show significant recovery within 20 min by an increase in T1 while the specific agent SBK2-Tris-(Gd-DOTA3 is retained in the tumors and shows little recovery over 60 min. The retention effect is demonstrated by percent change in T1 values and slope calculations as well as by calculations of gadolinium concentration in tumor compared to muscle. Quantitative T1 mapping demonstrates the superior binding and retention in tumors of the SBK2-Tris-(Gd-DOTA3 agent over time compared to the non-specific contrast agent currently in clinical use.

  8. Impact of metal artefacts due to EEG electrodes in brain PET/CT imaging

    International Nuclear Information System (INIS)

    The goal of this study is to investigate the impact of electroencephalogram (EEG) electrodes on the visual quality and quantification of 18F-FDG PET images in neurological PET/CT examinations. For this purpose, the scans of 20 epilepsy patients with EEG monitoring were used. The CT data were reconstructed with filtered backprojection (FBP) and with a metal artefact reduction (MAR) algorithm. Both data sets were used for CT-based attenuation correction (AC) of the PET data. Also, a calculated AC (CALC) technique was considered. A volume of interest (VOI)-based analysis and a voxel-based quantitative analysis were performed to compare the different AC methods. Images were also evaluated visually by two observers. It was shown with simulations and phantom measurements that from the considered AC methods, the MAR-AC can be used as the reference in this setting. The visual assessment of PET images showed local hot spots outside the brain corresponding to the locations of the electrodes when using FBP-AC. In the brain, no abnormalities were observed. The quantitative analysis showed a very good correlation between PET-FBP-AC and PET-MAR-AC, with a statistically significant positive bias in the PET-FBP-AC images of about 5-7% in most brain voxels. There was also good correlation between PET-CALC-AC and PET-MAR-AC, but in the PET-CALC-AC images, regions with both a significant positive and negative bias were observed. EEG electrodes give rise to local hot spots outside the brain and a positive quantification bias in the brain. However, when diagnosis is made by mere visual assessment, the presence of EEG electrodes does not seem to alter the diagnosis. When quantification is performed, the bias becomes an issue especially when comparing brain images with and without EEG monitoring

  9. MR imaging of brain metastases. Pt. 1

    International Nuclear Information System (INIS)

    Sensitifity and specificity of plain T2-WI and Gd-DTPA enhanced T1-WI were compared by evaluating MR exams of 30 patients with brain metastases. Large lesions with high signal on T2-WI always enhanced (43/43) when a structure (perifocal edema, tumor tissue, centralnecrosis) was found. Large lesions nearly always enhanced (53/55) even if no such structure was found. 65% of small unstructured white matter lesions with high signal on T2-WI, which are generally considered vascular, did not enhance. Surprisingly, 35% did enhance. Demonstration of blood brain barrier disturbance in these lesions suggested a metastatic origin. In 3 patients with multiple metastases, Gd-DTPA enhanced T1-WI disclosed more than 140 lesions not seen on T2-WI. All of them were located in or adjacent to grey matter. Our results indicate that enhanced T1-WI should be obtained even if T1-WI are normal or show only small white matter lesions. (orig.)

  10. A unifying framework for partial volume segmentation of brain MR images.

    Science.gov (United States)

    Van Leemput, Koen; Maes, Frederik; Vandermeulen, Dirk; Suetens, Paul

    2003-01-01

    Accurate brain tissue segmentation by intensity-based voxel classification of magnetic resonance (MR) images is complicated by partial volume (PV) voxels that contain a mixture of two or more tissue types. In this paper, we present a statistical framework for PV segmentation that encompasses and extends existing techniques. We start from a commonly used parametric statistical image model in which each voxel belongs to one single tissue type, and introduce an additional downsampling step that causes partial voluming along the borders between tissues. An expectation-maximization approach is used to simultaneously estimate the parameters of the resulting model and perform a PV classification. We present results on well-chosen simulated images and on real MR images of the brain, and demonstrate that the use of appropriate spatial prior knowledge not only improves the classifications, but is often indispensable for robust parameter estimation as well. We conclude that general robust PV segmentation of MR brain images requires statistical models that describe the spatial distribution of brain tissues more accurately than currently available models.

  11. In Vivo Functional Brain Imaging Approach Based on Bioluminescent Calcium Indicator GFP-aequorin.

    Science.gov (United States)

    Lark, Arianna R; Kitamoto, Toshihiro; Martin, Jean-René

    2016-01-08

    Functional in vivo imaging has become a powerful approach to study the function and physiology of brain cells and structures of interest. Recently a new method of Ca(2+)-imaging using the bioluminescent reporter GFP-aequorin (GA) has been developed. This new technique relies on the fusion of the GFP and aequorin genes, producing a molecule capable of binding calcium and - with the addition of its cofactor coelenterazine - emitting bright light that can be monitored through a photon collector. Transgenic lines carrying the GFP-aequorin gene have been generated for both mice and Drosophila. In Drosophila, the GFP-aequorin gene has been placed under the control of the GAL4/UAS binary expression system allowing for targeted expression and imaging within the brain. This method has subsequently been shown to be capable of detecting both inward Ca(2+)-transients and Ca(2+)-released from inner stores. Most importantly it allows for a greater duration in continuous recording, imaging at greater depths within the brain, and recording at high temporal resolutions (up to 8.3 msec). Here we present the basic method for using bioluminescent imaging to record and analyze Ca(2+)-activity within the mushroom bodies, a structure central to learning and memory in the fly brain.

  12. CT versus MR in neonatal brain imaging at term

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Richard L.; Robson, Caroline D.; Zurakowski, David; Antiles, Sharon; Strauss, Keith; Mulkern, Robert V. [Department of Radiology, Children' s Hospital Medical Center, Harvard Medical School, 300 Longwood Avenue, MA 02115, Boston (United States)

    2003-07-01

    Recent reports have highlighted the lifetime risk of malignancy from using ionizing radiation in pediatric imaging. Computed tomography (CT), which uses ionizing radiation, is employed extensively for neonatal brain imaging of term infants. Magnetic resonance (MR) provides an alternative that does not use ionizing radiation. The purpose of this study was to assess the cross-modality agreement and interobserver agreement of CT and MR brain imaging of the term or near-term neonate. Brain CT and MR images of 48 neonates were retrospectively reviewed by two pediatric neuroradiologists. CT and MR examinations had been obtained within 72 h of one another in all patients. CT was obtained with 5 mm collimation (KV=120, mAs=340). MR consisted of T1-weighted imaging (TR/TE=300/14; 4-mm slice thickness/1-mm gap), T2-weighted imaging (TR/TE/etl= 3000/126/16; 4-mm slice thickness/1-mm gap), and line scan diffusion imaging (LSDI) (TR/TE/b factor=1258/63/750; nominal 4-mm slice thickness/3-mm gap). The brain was categorized as normal or abnormal on both CT and MR. Ischemic injury was the most common brain abnormality demonstrated. McNemar's test indicated no significant difference between CT and MR test results for reader 1 (P=0.22) or reader 2 (P=0.45). The readers agreed on the presence or absence of abnormality on CT in 40 patients (83.3%) and on MR in 45 patients (93.8%). For CT, the kappa coefficient indicated excellent interobserver agreement ({kappa}=0.68), although the lower limit of the 95% confidence interval extends to {kappa}=0.55, which indicates only good-to-moderate agreement. For MR, the kappa coefficient indicated almost perfect interobserver agreement ({kappa}=0.88) with the 95% confidence interval extending to a lower limit of {kappa}=0.76, which represents excellent agreement. Because MR demonstrates findings similar to CT and has greater interobserver agreement, it appears that MR is a superior test to CT in determining brain abnormalities in the term

  13. Biochemical imaging of the human brain in development and disease

    International Nuclear Information System (INIS)

    The authors used positron emission tomography (PET) to image cerebral glucose metabolism in more than 140 children aged 5 days to 15 years. Twenty-nine children were studied during normal development and the remainder because of infantile spasm, seizure, Lennox-Gastaut syndrome, or cerebral palsy. This exhibit demonstrates the temporal course of normal function (metabolic) development of the brain, and compares the relative value of PET, MR imaging, and x-ray CT in abnormal cases

  14. MR to CT Registration of Brains using Image Synthesis

    OpenAIRE

    Roy, Snehashis; Carass, Aaron; Jog, Amod; Prince, Jerry L.; Lee, Junghoon

    2014-01-01

    Computed tomography (CT) is the standard imaging modality for patient dose calculation for radiation therapy. Magnetic resonance (MR) imaging (MRI) is used along with CT to identify brain structures due to its superior soft tissue contrast. Registration of MR and CT is necessary for accurate delineation of the tumor and other structures, and is critical in radiotherapy planning. Mutual information (MI) or its variants are typically used as a similarity metric to register MRI to CT. However, u...

  15. Digital image processing techniques in archaeology

    Digital Repository Service at National Institute of Oceanography (India)

    Santanam, K.; Vaithiyanathan, R.; Tripati, S.

    Digital image processing involves the manipulation and interpretation of digital images with the aid of a computer. This form of remote sensing actually began in the 1960's with a limited number of researchers analysing multispectral scanner data...

  16. Brain size and brain organization of the whale shark, Rhincodon typus, using magnetic resonance imaging.

    Science.gov (United States)

    Yopak, Kara E; Frank, Lawrence R

    2009-01-01

    Very little is known about the brain organization of the suction filter feeder, Rhincodon typus, and how it compares to other orectolobiforms in light of its specialization as a plankton-feeder. Brain size and overall brain organization was assessed in two specimens of R. typus in relation to both phylogeny and ecology, using magnetic resonance imaging (MRI). In comparison to over 60 other chondrichthyan species, R. typus demonstrated a relatively small brain for its body size (expressed in terms of encephalization quotients and residuals), similar to the lamniforms Carcharodon carcharias, Cetorhinus maximus, and Carcharias taurus. R. typus possessed a relatively small telencephalon with some development of the dorsal pallium, which was suggestive of moderate social behavior, in addition to a relatively large diencephalon and a relatively reduced mesencephalon. The most notable characteristic of the brain of Rhincodon was a large and highly foliated cerebellum, one of the largest cerebellums within the chondrichthyan clade. Early development of the brain was qualitatively assessed using an in situ MRI scan of the brain and chondrocranium of a neonate specimen of R. typus. There was evidence that folding of the cerebellar corpus appeared in early development, although the depth and number of folds might vary ontogenetically in this species. Hierarchical cluster analysis and multidimensional scaling ordinations showed evidence of convergent evolution with the basking shark, Cetorhinus maximus, another large-bodied filter feeding elasmobranch, supporting the claim that organization of the brain is more similar in species with analogous but independently evolved lifestyles than those that share taxonomic classification.

  17. Advanced techniques in medical image segmentation of the liver

    OpenAIRE

    López Mir, Fernando

    2016-01-01

    [EN] Image segmentation is, along with multimodal and monomodal registration, the operation with the greatest applicability in medical image processing. There are many operations and filters, as much as applications and cases, where the segmentation of an organic tissue is the first step. The case of liver segmentation in radiological images is, after the brain, that on which the highest number of scientific publications can be found. This is due, on the one hand, to the need to continue inno...

  18. Functional imaging techniques for evaluation of sarcomas

    OpenAIRE

    Hicks, Rodney J.

    2005-01-01

    Sarcomas are often characterised by significant histopathologic heterogeneity, both between and within tumours. This heterogeneity reflects physiologic, biochemical and genetic processes that are amenable to characterisation by functional imaging. Although anatomically based imaging modalities such as plain radiography, X-ray computed tomography (CT) and magnetic resonance imaging (MRI) remain the primary diagnostic modalities for staging sarcomas, nuclear medicine approaches including gamma ...

  19. Data-driven forward model inference for EEG brain imaging

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Hauberg, Søren; Hansen, Lars Kai

    2016-01-01

    . Combined with only a recorded EEG signal, we are able to estimate both the brain sources and a person-specific forward model by optimizing this parametrization. We thus not only solve an inverse problem, but also optimize over its specification. Our work demonstrates that personalized EEG brain imaging......Electroencephalography (EEG) is a flexible and accessible tool with excellent temporal resolution but with a spatial resolution hampered by volume conduction. Reconstruction of the cortical sources of measured EEG activity partly alleviates this problem and effectively turns EEG into a brain...... imaging device. The quality of the source reconstruction depends on the forward model which details head geometry and conductivities of different head compartments. These person-specific factors are complex to determine, requiring detailed knowledge of the subject’s anatomy and physiology. In this proof...

  20. Apparatus and method for motion tracking in brain imaging

    DEFF Research Database (Denmark)

    2013-01-01

    Disclosed is apparatus and method for motion tracking of a subject in medical brain imaging. The method comprises providing a light projector and a first camera; projecting a first pattern sequence (S1) onto a surface region of the subject with the light projector, wherein the subject is positioned...

  1. Reliability and Accuracy of Brain Volume Measurement on MR Imaging

    DEFF Research Database (Denmark)

    Yamagchii, Kechiro; Lassen, Anders; Ring, Poul

    1998-01-01

    Yamaguchi, K., Lassen, A. And Ring, P. Reliability and Accuracy of Brain Volume Measurement on MR Imaging. Abstract at ESMRMB98 European Society for Magnetic Resonance in Medicine and Biology, Geneva, Sept 17-20, 1998 Danish Research Center for Magnetic Resonance, Hvidovre University Hospital...

  2. Power of the metaphor: forty signs on brain imaging.

    Science.gov (United States)

    Gocmen, Rahsan; Guler, Ezgi; Kose, Ilgaz Cagatay; Oguz, Kader K

    2015-01-01

    We retrospectively reviewed neuroradiology database at our tertiary-care hospital to search for patients with metaphoric or descriptive signs on brain computed tomography or magnetic resonance imaging. Only patients who had clinical or pathological definitive diagnosis were included in this review.

  3. Fingerprint Image Enhancement By Develop Mehtre Technique

    Directory of Open Access Journals (Sweden)

    Mustafa Salah Khalefa

    2011-12-01

    Full Text Available Fingerprint identification is one of the most reliable biometrics technologies. There are manyapplications of fingerprint recognition such as voting, ecommerce, bank, virtual banks and military.Fingerprint image enhancement is an essential preprocessing step in extract minutiae from the inputfingerprint images. In this paper, we propose an image enhancement method by developing Mehtermethod for directional image. The enhancement is done by added the Block Filtering, HistogramEqualization and High-Pass Filtering. We have evaluated the performance of the enhancement imagemethod by tested it with 100 fingerprint images. Experimental results show the enhancement methodimproves the recognition more accuracy.

  4. Imaging fault zones using 3D seismic image processing techniques

    Science.gov (United States)

    Iacopini, David; Butler, Rob; Purves, Steve

    2013-04-01

    Significant advances in structural analysis of deep water structure, salt tectonic and extensional rift basin come from the descriptions of fault system geometries imaged in 3D seismic data. However, even where seismic data are excellent, in most cases the trajectory of thrust faults is highly conjectural and still significant uncertainty exists as to the patterns of deformation that develop between the main faults segments, and even of the fault architectures themselves. Moreover structural interpretations that conventionally define faults by breaks and apparent offsets of seismic reflectors are commonly conditioned by a narrow range of theoretical models of fault behavior. For example, almost all interpretations of thrust geometries on seismic data rely on theoretical "end-member" behaviors where concepts as strain localization or multilayer mechanics are simply avoided. Yet analogue outcrop studies confirm that such descriptions are commonly unsatisfactory and incomplete. In order to fill these gaps and improve the 3D visualization of deformation in the subsurface, seismic attribute methods are developed here in conjunction with conventional mapping of reflector amplitudes (Marfurt & Chopra, 2007)). These signal processing techniques recently developed and applied especially by the oil industry use variations in the amplitude and phase of the seismic wavelet. These seismic attributes improve the signal interpretation and are calculated and applied to the entire 3D seismic dataset. In this contribution we will show 3D seismic examples of fault structures from gravity-driven deep-water thrust structures and extensional basin systems to indicate how 3D seismic image processing methods can not only build better the geometrical interpretations of the faults but also begin to map both strain and damage through amplitude/phase properties of the seismic signal. This is done by quantifying and delineating the short-range anomalies on the intensity of reflector amplitudes

  5. Imaging techniques in signal transduction IHC.

    Science.gov (United States)

    Sedgewick, Jerry

    2011-01-01

    Augmentation of digital images is almost always a necessity in order to obtain a reproduction that matches the appearance of the original. However, that augmentation can mislead if it is done incorrectly and not within reasonable limits. When procedures are in place for ensuring that originals are archived, and image manipulation steps are reported, scientists not only follow good laboratory practices, but also avoid ethical issues associated with postprocessing and protect their labs from any future allegations of scientific misconduct. Also, when procedures are in place for correct acquisition of images, the extent of postprocessing is minimized or eliminated. These procedures include color balancing (for brighfield images), keeping tonal values within the dynamic range of the detector, frame averaging to eliminate noise (typically in fluorescence imaging), use of the highest bit depth when a choice is available, flatfield correction, and archiving of the image in a nonlossy format (not JPEG).When postprocessing is necessary, the commonly used applications for correction include Photoshop, and ImageJ, but a free program (GIMP) can also be used. Corrections to images include scaling the bit depth to higher and lower ranges, removing color casts from brightfield images, setting brightness and contrast, reducing color noise, reducing "grainy" noise, conversion of pure colors to grayscale, conversion of grayscale to colors typically used in fluorescence imaging, correction of uneven illumination and flatfield correction, blending color images (fluorescence), and extending the depth of focus. These corrections are explained in step-by-step procedures in the chapter that follows. PMID:21370028

  6. A content-based image retrieval method for optical colonoscopy images based on image recognition techniques

    Science.gov (United States)

    Nosato, Hirokazu; Sakanashi, Hidenori; Takahashi, Eiichi; Murakawa, Masahiro

    2015-03-01

    This paper proposes a content-based image retrieval method for optical colonoscopy images that can find images similar to ones being diagnosed. Optical colonoscopy is a method of direct observation for colons and rectums to diagnose bowel diseases. It is the most common procedure for screening, surveillance and treatment. However, diagnostic accuracy for intractable inflammatory bowel diseases, such as ulcerative colitis (UC), is highly dependent on the experience and knowledge of the medical doctor, because there is considerable variety in the appearances of colonic mucosa within inflammations with UC. In order to solve this issue, this paper proposes a content-based image retrieval method based on image recognition techniques. The proposed retrieval method can find similar images from a database of images diagnosed as UC, and can potentially furnish the medical records associated with the retrieved images to assist the UC diagnosis. Within the proposed method, color histogram features and higher order local auto-correlation (HLAC) features are adopted to represent the color information and geometrical information of optical colonoscopy images, respectively. Moreover, considering various characteristics of UC colonoscopy images, such as vascular patterns and the roughness of the colonic mucosa, we also propose an image enhancement method to highlight the appearances of colonic mucosa in UC. In an experiment using 161 UC images from 32 patients, we demonstrate that our method improves the accuracy of retrieving similar UC images.

  7. Imaging the premature brain: ultrasound or MRI?

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Linda S. de; Benders, Manon J.N.L.; Groenendaal, Floris [UMC Utrecht, Department of Neonatology, Wilhelmina Children' s Hospital, PO Box 85090, Utrecht (Netherlands)

    2013-09-15

    Neuroimaging of preterm infants has become part of routine clinical care, but the question is often raised on how often cranial ultrasound should be done and whether every high risk preterm infant should at least have one MRI during the neonatal period. An increasing number of centres perform an MRI either at discharge or around term equivalent age, and a few centres have access to a magnet in or adjacent to the neonatal intensive care unit and are doing sequential MRIs. In this review, we try to discuss when best to perform these two neuroimaging techniques and the additional information each technique may provide. (orig.)

  8. Imaging the premature brain: ultrasound or MRI?

    International Nuclear Information System (INIS)

    Neuroimaging of preterm infants has become part of routine clinical care, but the question is often raised on how often cranial ultrasound should be done and whether every high risk preterm infant should at least have one MRI during the neonatal period. An increasing number of centres perform an MRI either at discharge or around term equivalent age, and a few centres have access to a magnet in or adjacent to the neonatal intensive care unit and are doing sequential MRIs. In this review, we try to discuss when best to perform these two neuroimaging techniques and the additional information each technique may provide. (orig.)

  9. Wavelet Thresholding Techniques in Despeckling of Medical Ultrasound Images

    Directory of Open Access Journals (Sweden)

    R.Vanithamani

    2014-01-01

    Full Text Available This paper presents a review of wavelet thresholding techniques for despeckling of medical ultrasound images. An ultrasound image is first transformed into wavelet domain and then the wavelet coefficients are processed by different wavelet thresholding techniques. The denoised image is obtained by taking the inverse wavelet transform of the modified wavelet coefficients. The performance of the techniques reviewed in this paper is evaluated using the image quality assessment parameters such as Peak Signal to Noise Ratio (PSNR, Edge Preservation Index (EPI and Correlation Coefficient (CoC.The practical implementation of this work is to determine the effective wavelet thresholding technique that compromises between edge preservation and noise suppression.

  10. MR Brain Real Images Segmentation Based Modalities Fusion and Estimation Et Maximization Approach

    Directory of Open Access Journals (Sweden)

    ASSAS Ouarda

    2016-01-01

    Full Text Available With the development of acquisition image techniques, more data coming from different sources of image become available. Multi-modality image fusion seeks to combine information from different images to obtain more inferences than can be derived from a single modality. The main aim of this work is to improve cerebral IRM real images segmentation by fusion of modalities (T1, T2 and DP using estimation et maximizatio Approach (EM. The evaluation of adopted approaches was compared using four criteria which are: the standard deviation (STD, entropy of information (IE, the coefficient of correlation (CC and the space frequency (SF. The experimental results on MRI brain real images prove that the adopted scenarios of fusion approaches are more accurate and robust than the standard EM approach

  11. Mapping drug distribution in brain tissue using liquid extraction surface analysis mass spectrometry imaging.

    Science.gov (United States)

    Swales, John G; Tucker, James W; Spreadborough, Michael J; Iverson, Suzanne L; Clench, Malcolm R; Webborn, Peter J H; Goodwin, Richard J A

    2015-10-01

    Liquid extraction surface analysis mass spectrometry (LESA-MS) is a surface sampling technique that incorporates liquid extraction from the surface of tissue sections with nanoelectrospray mass spectrometry. Traditional tissue analysis techniques usually require homogenization of the sample prior to analysis via high-performance liquid chromatography mass spectrometry (HPLC-MS), but an intrinsic weakness of this is a loss of all spatial information and the inability of the technique to distinguish between actual tissue penetration and response caused by residual blood contamination. LESA-MS, in contrast, has the ability to spatially resolve drug distributions and has historically been used to profile discrete spots on the surface of tissue sections. Here, we use the technique as a mass spectrometry imaging (MSI) tool, extracting points at 1 mm spatial resolution across tissue sections to build an image of xenobiotic and endogenous compound distribution to assess drug blood-brain barrier penetration into brain tissue. A selection of penetrant and "nonpenetrant" drugs were dosed to rats via oral and intravenous administration. Whole brains were snap-frozen at necropsy and were subsequently sectioned prior to analysis by matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and LESA-MSI. MALDI-MSI, as expected, was shown to effectively map the distribution of brain penetrative compounds but lacked sufficient sensitivity when compounds were marginally penetrative. LESA-MSI was used to effectively map the distribution of these poorly penetrative compounds, highlighting its value as a complementary technique to MALDI-MSI. The technique also showed benefits when compared to traditional homogenization, particularly for drugs that were considered nonpenetrant by homogenization but were shown to have a measurable penetration using LESA-MSI. PMID:26350423

  12. Study of Associated α Particle Imaging Technique for Explosives Detection

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The explosive detecting technique about neutron mainly include the thermal neutron analysis (TNA), the fast neutron analysis (FNA), the pulse fast and thermal neutron analysis (PFTNA) and the associated α particle imaging technique about fast neutron (API).

  13. NI-78LABEL-FREE MULTIPHOTON MICROSCOPY: A NOVEL TOOL FOR THE IMAGING OF BRAIN TUMORS

    Science.gov (United States)

    Uckermann, Ortrud; Galli, Roberta; Geiger, Kathrin; Koch, Edmund; Schackert, Gabriele; Steiner, Gerald; Kirsch, Matthias

    2014-01-01

    Changes in tissue composition caused by brain tumor growth involve a series of complex biochemical alterations which can be imaged on unstained native tissue using multiphoton microscopy: We used coherent anti-Stokes Raman scattering (CARS) imaging that resonantly excites the symmetric stretching vibration of CH2 groups at 2850 cm−1 and visualizes lipid content in combination with imaging of endogenous two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) to discern different types of tumors from normal tissue in unstained, native brain samples. Experimental brain tumors were induced in nude mice NMRI nu/nu (n = 25) by stereotactic implantation of glioblastoma (U87), melanoma (A375) and breast cancer (MCF-7) cell lines. Label-free multiphoton microscopy of brain cryosections provided exhaustive information of the tumor morphochemistry. The tumor border was defined with cellular resolution by a strong reduction of CARS signal intensity to 61% (glioblastoma), 71% (melanoma) and 68% (breast cancer). This reduction of lipid content within the tumor was confirmed by Raman spectroscopy. Micrometastases infiltrating normal tissue (size 50 - 200 µm) were identified in glioblastoma and melanoma. Additionally, multiphoton microscopy proved a reduction of CARS signal intensity in all human glioblastoma samples analyzed (to 72%, n = 6). Additionally, relevant SHG and TPEF signals were detected in human primary and secondary brain tumor samples and enabled to image variations in tumor associated vasculature, fibrosis, necrosis and nuclear size and density. All primary or secondary brain tumors investigated were characterized by a lower intensity of the CARS signal, therefore offering a simple tool for objective tumor detection and delineation. The combination of techniques allows retrieving a quantity of information on native unstained tissue which is comparable to H&E staining. Therefore, label-free multiphoton microscopy has the potential to become a

  14. Faster permutation inference in brain imaging.

    OpenAIRE

    Winkler, AM; Ridgway, GR; Douaud, G; Nichols, TE; Smith, SM

    2016-01-01

    Permutation tests are increasingly being used as a reliable method for inference in neuroimaging analysis. However, they are computationally intensive. For small, non-imaging datasets, recomputing a model thousands of times is seldom a problem, but for large, complex models this can be prohibitively slow, even with the availability of inexpensive computing power. Here we exploit properties of statistics used with the general linear model (GLM) and their distributions to obtain accelerations i...

  15. Intracranial Hemorrhage Annotation for CT Brain Images

    OpenAIRE

    Tong Hau Lee; Mohammad Faizal Ahmad Fauzi; Su-Cheng Haw

    2011-01-01

    In this paper, we created a decision-making model to detect intracranial hemorrhage and adopted Expectation Maximization(EM) segmentation to segment the Computed Tomography (CT) images. In this work, basically intracranial hemorrhage is classified into two main types which are intra-axial hemorrhage and extra-axial hemorrhage. In order to ease classification, contrast enhancement is adopted to finetune the contrast of the hemorrhage. After that, k-means is applied to group the potential and s...

  16. Brain imaging of mild cognitive impairment and Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Changhao Yin; Siou Li; Weina Zhao; Jiachun Feng

    2013-01-01

    The rapidly increasing prevalence of cognitive impairment and Alzheimer's disease has the potential to create a major worldwide healthcare crisis. Structural MRI studies in patients with Alzheimer's disease and mild cognitive impairment are currently attracting considerable interest. It is extremely important to study early structural and metabolic changes, such as those in the hippocampus, entorhinal cortex, and gray matter structures in the medial temporal lobe, to allow the early detection of mild cognitive impairment and Alzheimer's disease. The microstructural integrity of white matter can be studied with diffusion tensor imaging. Increased mean diffusivity and decreased fractional anisotropy are found in subjects with white matter damage. Functional imaging studies with positron emission tomography tracer compounds enable detection of amyloid plaques in the living brain in patients with Alzheimer's disease. In this review, we will focus on key findings from brain imaging studies in mild cognitive impairment and Alzheimer's disease, including structural brain changes studied with MRI and white matter changes seen with diffusion tensor imaging, and other specific imaging methodologies will also be discussed.

  17. Novel Imaging Techniques in Acute Kidney Injury

    OpenAIRE

    Kalantarinia, Kambiz

    2009-01-01

    Imaging of the kidneys can provide valuable information in the work up and management of acute kidney injury. Several different imaging modalities are used to gather information on anatomy of the kidney, to rule out obstruction, differentiate acute kidney injury (AKI) and chronic kidney disease and to obtain information on renal blood flow and GFR. Ultrasound is the most widely used imaging modality used in the initial work up of AKI. The utility of contrast enhanced computerized tomography a...

  18. Unconventional techniques of fundus imaging: A review

    OpenAIRE

    Mahesh P Shanmugam; Divyansh Kailash Chandra Mishra; R. Rajesh; Madhukumar, R

    2015-01-01

    The methods of fundus examination include direct and indirect ophthalmoscopy and imaging with a fundus camera are an essential part of ophthalmic practice. The usage of unconventional equipment such as a hand-held video camera, smartphone, and a nasal endoscope allows one to image the fundus with advantages and some disadvantages. The advantages of these instruments are the cost-effectiveness, ultra portability and ability to obtain images in a remote setting and share the same electronically...

  19. Improving Quantitative Measurements using Different Segmentation Techniques for Satellite Images

    OpenAIRE

    K. Ravi Kumar; K. Kavindra Kumar; R.S.V.M.Krishna; P. K. Bharadwaj

    2011-01-01

    Image segmentation is the most practical approach among all virtually automated image recognition systems. Feature extraction and recognition have numerous applications on telecommunication, weather forecasting, environment exploration and medical diagnosis. This paper deals with different image segmentation algorithms. The quality of satellite image is affected by atmosphere, temperature etc. By the usage of various segmentation techniques ,the image is divided into parts which have strong ...

  20. Comparative Analysis of Various Image Fusion Techniques For Biomedical Images: A Review

    Directory of Open Access Journals (Sweden)

    Nayera Nahvi,

    2014-05-01

    Full Text Available Image Fusion is a process of combining the relevant information from a set of images, into a single image, wherein the resultant fused image will be more informative and complete than any of the input images. This paper discusses implementation of DWT technique on different images to make a fused image having more information content. As DWT is the latest technique for image fusion as compared to simple image fusion and pyramid based image fusion, so we are going to implement DWT as the image fusion technique in our paper. Other methods such as Principal Component Analysis (PCA based fusion, Intensity hue Saturation (IHS Transform based fusion and high pass filtering methods are also discussed. A new algorithm is proposed using Discrete Wavelet transform and different fusion techniques including pixel averaging, min-max and max-min methods for medical image fusion. KEYWORDS:

  1. Functional magnetic resonance imaging of intrinsic brain networks for translational drug discovery

    OpenAIRE

    Smucny, Jason; Wylie, Korey P.; Tregellas, Jason R.

    2014-01-01

    Developing translational biomarkers is a priority for psychiatry research. Task-independent functional brain imaging is a relatively novel technique that allows examination of the brain’s intrinsic networks, defined as functionally and (often) structurally connected populations of neurons whose properties reflect fundamental neurobiological organizational principles of the central nervous system. The ability to study the activity and organization of these networks has opened a promising new a...

  2. Imaging separation of neuronal from vascular effects of cocaine on rat cortical brain in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Z.; Du, C.; Yuan, Z.; Luo, Z.; Volkow, N.D.; Pan, Y.; Du, C.

    2010-09-08

    MRI techniques to study brain function assume coupling between neuronal activity, metabolism and flow. However, recent evidence of physiological uncoupling between neuronal and cerebrovascular events highlights the need for methods to simultaneously measure these three properties. We report a multimodality optical approach that integrates dual-wavelength laser speckle imaging (measures changes in blood flow, blood volume and hemoglobin oxygenation), digital-frequency-ramping optical coherence tomography (images quantitative 3D vascular network) and Rhod2 fluorescence (images intracellular calcium for measure of neuronal activity) at high spatiotemporal resolutions (30 {micro}m, 10 Hz) and over a large field of view (3 x 5 mm{sup 2}). We apply it to assess cocaine's effects in rat cortical brain and show an immediate decrease 3.5 {+-} 0.9 min, phase (1) in the oxygen content of hemoglobin and the cerebral blood flow followed by an overshoot 7.1 {+-} 0.2 min, phase (2) lasting over 20 min whereas Ca{sup 2+} increased immediately (peaked at t = 4.1 {+-} 0.4 min) and remained elevated. This enabled us to identify a delay (2.9 {+-} 0.5 min) between peak neuronal and vascular responses in phase 2. The ability of this multimodality optical approach for simultaneous imaging at high spatiotemporal resolutions permits us to distinguish the vascular versus cellular changes of the brain, thus complimenting other neuroimaging modalities for brain functional studies (e. g., PET, fMRI).

  3. Reversible acute methotrexate leukoencephalopathy: atypical brain MR imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Ziereisen, France; Damry, Nash; Christophe, Catherine [Queen Fabiola Children' s University Hospital, Department of Radiology, Brussels (Belgium); Dan, Bernard [Queen Fabiola Children' s University Hospital, Department of Neurology, Brussels (Belgium); Azzi, Nadira; Ferster, Alina [Queen Fabiola Children' s University Hospital, Department of Paediatrics, Brussels (Belgium)

    2006-03-15

    Unusual acute symptomatic and reversible early-delayed leukoencephalopathy has been reported to be induced by methotrexate (MTX). We aimed to identify the occurrence of such atypical MTX neurotoxicity in children and document its MR presentation. We retrospectively reviewed the clinical findings and brain MRI obtained in 90 children treated with MTX for acute lymphoblastic leukaemia or non-B malignant non-Hodgkin lymphoma. All 90 patients had normal brain imaging before treatment. In these patients, brain imaging was performed after treatment completion and/or relapse and/or occurrence of neurological symptoms. Of the 90 patients, 15 (16.7%) showed signs of MTX neurotoxicity on brain MRI, 9 (10%) were asymptomatic, and 6 (6.7%) showed signs of acute leukoencephalopathy. On the routine brain MRI performed at the end of treatment, all asymptomatic patients had classical MR findings of reversible MTX neurotoxicity, such as abnormal high-intensity areas localized in the deep periventricular white matter on T2-weighted images. In contrast, the six symptomatic patients had atypical brain MRI characterized by T2 high-intensity areas in the supratentorial cortex and subcortical white matter (n=6), cerebellar cortex and white matter (n=4), deep periventricular white matter (n=2) and thalamus (n=1). MR normalization occurred later than clinical recovery in these six patients. In addition to mostly asymptomatic classical MTX neurotoxicity, MTX may induce severe but reversible unusual leukoencephalopathy. It is important to recognize this clinicoradiological presentation in the differential diagnosis of acute neurological deterioration in children treated with MTX. (orig.)

  4. A new versatile clearing method for brain imaging

    Science.gov (United States)

    Costantini, Irene; Di Giovanna, Antonino Paolo; Allegra Mascaro, Anna Letizia; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Sacconi, Leonardo; Pavone, Francesco S.

    2015-03-01

    Light scattering inside biological tissue is a limitation for large volumes imaging with microscopic resolution. Based on refractive index matching, different approaches have been developed to reduce scattering in fixed tissue. High refractive index organic solvents and water-based optical clearing agents, such as Sca/e, SeeDB and CUBIC have been used for optical clearing of entire mouse brain. Although these methods guarantee high transparency and preservation of the fluorescence, though present other non-negligible limitations. Tissue transformation by CLARITY allows high transparency, whole brain immunolabelling and structural and molecular preservation. This method however requires a highly expensive refractive index matching solution limiting practical applicability to large volumes. In this work we investigate the effectiveness of a water-soluble clearing agent, the 2,2'-thiodiethanol (TDE) to clear mouse and human brain. TDE does not quench the fluorescence signal, is compatible with immunostaining and does not introduce any deformation at sub-cellular level. The not viscous nature of the TDE make it a suitable agent to perform brain slicing during serial two-photon (STP) tomography. In fact, by improving penetration depth it reduces tissue slicing, decreasing the acquisition time and cutting artefacts. TDE can also be used as a refractive index medium for CLARITY. The potential of this method has been explored by imaging blocks of dysplastic human brain transformed with CLARITY, immunostained and cleared with the TDE. This clearing approach significantly expands the application of single and two-photon imaging, providing a new useful method for quantitative morphological analysis of structure in mouse and human brain.

  5. A Novel Technique to Image Annotation using Neural Network

    Directory of Open Access Journals (Sweden)

    Pankaj Savita

    2013-03-01

    Full Text Available : Automatic annotation of digital pictures is a key technology for managing and retrieving images from large image collection. Traditional image semantics extraction and representation schemes were commonly divided into two categories, namely visual features and text annotations. However, visual feature scheme are difficult to extract and are often semantically inconsistent. On the other hand, the image semantics can be well represented by text annotations. It is also easier to retrieve images according to their annotations. Traditional image annotation techniques are time-consuming and requiring lots of human effort. In this paper we propose Neural Network based a novel approach to the problem of image annotation. These approaches are applied to the Image data set. Our main work is focused on the image annotation by using multilayer perceptron, which exhibits a clear-cut idea on application of multilayer perceptron with special features. MLP Algorithm helps us to discover the concealed relations between image data and annotation data, and annotate image according to such relations. By using this algorithm we can save more memory space, and in case of web applications, transferring of images and download should be fast. This paper reviews 50 image annotation systems using supervised machine learning Techniques to annotate images for image retrieval. Results obtained show that the multi layer perceptron Neural Network classifier outperforms conventional DST Technique.

  6. Automated image analysis techniques for cardiovascular magnetic resonance imaging

    NARCIS (Netherlands)

    Geest, Robertus Jacobus van der

    2011-01-01

    The introductory chapter provides an overview of various aspects related to quantitative analysis of cardiovascular MR (CMR) imaging studies. Subsequently, the thesis describes several automated methods for quantitative assessment of left ventricular function from CMR imaging studies. Several novel

  7. Color Image Classification and Retrieval using Image mining Techniques

    OpenAIRE

    Dr.V.Mohan,; Kannan, A.

    2010-01-01

    Mining Image data is one of the essential features in the present scenario. Image data is the major one which plays vital role in every aspect of the systems like business for marketing, hospital for surgery, engineering for construction, Web for publication and so on. The other area in the Image mining system is the Content-BasedImage Retrieval (CBIR). CBIR systems perform retrieval based on the similarity defined in terms of extracted features with more objectiveness. But, the features of t...

  8. Analysis and simulation of brain signal data by EEG signal processing technique using MATLAB

    Directory of Open Access Journals (Sweden)

    Sasikumar Gurumurthy

    2013-06-01

    Full Text Available EEG is brain signal processing technique that allows gaining the understanding of the complex inner mechanisms of the brain and abnormal brain waves have shown to be associated with particular brain disorders. The analysis of brain waves plays an important role in diagnosis of different brain disorders. MATLAB provides an interactive graphic user interface (GUI allowing users to flexiblyand interactively process their high-density EEG dataset and other brain signal data different techniques such as independent component analysis (ICA and/or time/frequency analysis (TFA, as well as standard averaging methods. We will be showing different brain signals by comparing, analysing and simulating datasets which is already loaded in the MATLAB software to process the EEG signals.

  9. New perspectives on using brain imaging to study CNS stimulants.

    Science.gov (United States)

    Lukas, Scott E

    2014-12-01

    While the recent application of brain imaging to study CNS stimulants has offered new insights into the fundamental factors that contribute to their use and abuse, many gaps remain. Brain circuits that mediate pleasure, dependence, craving and relapse are anatomically, neurophysiologically and neurochemically distinct from one another, which has guided the search for correlates of stimulant-seeking and taking behavior. However, unlike other drugs of abuse, metrics for tolerance and physical dependence on stimulants are not obvious. The dopamine theory of stimulant abuse does not sufficiently explain this disorder as serotonergic, GABAergic and glutamagergic circuits are clearly involved in stimulant pharmacology and so tracking the source of the "addictive" processes must adopt a more multimodal, multidisciplinary approach. To this end, both anatomical and functional magnetic resonance imaging (MRI), MR spectroscopy (MRS) and positron emission tomography (PET) are complementary and have equally contributed to our understanding of how stimulants affect the brain and behavior. New vistas in this area include nanotechnology approaches to deliver small molecules to receptors and use MRI to resolve receptor dynamics. Anatomical and blood flow imaging has yielded data showing that cognitive enhancers might be useful adjuncts in treating CNS stimulant dependence, while MRS has opened opportunities to examine the brain's readiness to accept treatment as GABA tone normalizes after detoxification. A desired outcome of the above approaches is being able to offer evidence-based rationales for treatment approaches that can be implemented in a more broad geographic area, where access to brain imaging facilities may be limited. This article is part of the Special Issue entitled 'CNS Stimulants'.

  10. Radiopharmaceuticals for single-photon emission computed tomography brain imaging.

    Science.gov (United States)

    Kung, Hank F; Kung, Mei-Ping; Choi, Seok Rye

    2003-01-01

    In the past 10 years, significant progress on the development of new brain-imaging agents for single-photon emission computed tomography has been made. Most of the new radiopharmaceuticals are designed to bind specific neurotransmitter receptor or transporter sites in the central nervous system. Most of the site-specific brain radiopharmaceuticals are labeled with (123)I. Results from imaging of benzodiazepine (gamma-aminobutyric acid) receptors by [(123)I]iomazenil are useful in identifying epileptic seizure foci and changes of this receptor in psychiatric disorders. Imaging of dopamine D2/D3 receptors ([(123)I]iodobenzamide and [(123)I]epidepride) and transporters [(123)I]CIT (2-beta-carboxymethoxy-3-beta(4-iodophenyl)tropane) and [(123)I]FP-beta-CIT (N-propyl-2-beta-carboxymethoxy-3-beta(4-iodophenyl)-nortropane has proven to be a simple but powerful tool for differential diagnosis of Parkinson's and other neurodegenerative diseases. A (99m)Tc-labeled agent, [(99m)Tc]TRODAT (technetium, 2-[[2-[[[3-(4-chlorophenyl)-8-methyl-8-azabicyclo [3,2,1]oct-2-yl]methyl](2-mercaptoethyl)amino]ethyl]amino] ethanethiolato(3-)]oxo-[1R-(exo-exo)]-), for imaging dopamine transporters in the brain has been successfully applied in the diagnosis of Parkinson's disease. Despite the fact that (123)I radiopharmaceuticals have been widely used in Japan and in Europe, clinical application of (123)I-labeled brain radiopharmaceuticals in the United States is limited because of the difficulties in supplying such agents. Development of (99m)Tc agents will likely extend the application of site-specific brain radiopharmaceuticals for routine applications in aiding the diagnosis and monitoring treatments of various neurologic and psychiatric disorders. PMID:12605353

  11. Application of Preoperative CT/MRI Image Fusion in Target Positioning for Deep Brain Stimulation

    Institute of Scientific and Technical Information of China (English)

    Yu Wang; Zi-yuan Liu; Wan-chen Dou; Wen-bin Ma; Ren-zhi Wang; Yi Guo

    2016-01-01

    Objective To explore the efficacy of target positioning by preoperative CT/MRI image fusion technique in deep brain stimulation. Methods We retrospectively analyzed the clinical data and images of 79 cases (68 with Parkinson’s disease, 11 with dystonia) who received preoperative CT/MRI image fusion in target positioning of subthalamic nucleus in deep brain stimulation. Deviation of implanted electrodes from the target nucleus of each patient were measured. Neurological evaluations of each patient before and after the treatment were performed and compared. Complications of the positioning and treatment were recorded. Results The mean deviations of the electrodes implanted on X, Y, and Z axis were 0.5 mm, 0.6 mm, and 0.6 mm, respectively. Postoperative neurologic evaluations scores of unified Parkinson’s disease rating scale (UPDRS) for Parkinson’s disease and Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) for dystonia patients improved significantly compared to the preoperative scores (P<0.001); Complications occurred in 10.1% (8/79) patients, and main side effects were dysarthria and diplopia. Conclusion Target positioning by preoperative CT/MRI image fusion technique in deep brain stimulation has high accuracy and good clinical outcomes.

  12. A Fast Method for the Segmentation of Synaptic Junctions and Mitochondria in Serial Electron Microscopic Images of the Brain

    OpenAIRE

    Márquez Neila, Pablo; Baumela, Luis; González-Soriano, Juncal; Rodríguez, Jose-Rodrigo; DeFelipe, Javier; Merchán-Pérez, Ángel

    2016-01-01

    Recent electron microscopy (EM) imaging techniques permit the automatic acquisition of a large number of serial sections from brain samples. Manual segmentation of these images is tedious, time-consuming and requires a high degree of user expertise. Therefore, there is considerable interest in developing automatic segmentation methods. However, currently available methods are computationally demanding in terms of computer time and memory usage, and to work properly many of them require image ...

  13. Analysis of a proposed Compton backscatter imaging technique

    Science.gov (United States)

    Hall, James M.; Jacoby, Barry A.

    1994-03-01

    One-sided imaging techniques are currently being used in nondestructive evaluation of surfaces and shallow subsurface structures. In this work we present both analytical calculations and detailed Monte Carlo simulations aimed at assessing the capability of a proposed Compton backscattering imaging technique designed to detect and characterize voids located several centimeters below the surface of a solid.

  14. Query Implementation Technique for Large Image Databases (Short Communication

    Directory of Open Access Journals (Sweden)

    R.C. Joshi

    2002-07-01

    Full Text Available "An image indexing technique using wavelet decomposition and clustering approach, which can be employed for retrieval of images from an image database, is presented. An algorithm incorporating image indexing on the clusters of regions has been developed. This method can be employed for region-based querying of image. The querying method described in this paper has applications in different domains, including graphic design, multimedia, geology, satellite imaging, medical imaging, defence, etc. Some experimental results obtained for different feature sets using Daubechies wavelet transform and Haar wavelet transform have been presented.

  15. Unconventional techniques of fundus imaging: A review

    Directory of Open Access Journals (Sweden)

    Mahesh P Shanmugam

    2015-01-01

    Full Text Available The methods of fundus examination include direct and indirect ophthalmoscopy and imaging with a fundus camera are an essential part of ophthalmic practice. The usage of unconventional equipment such as a hand-held video camera, smartphone, and a nasal endoscope allows one to image the fundus with advantages and some disadvantages. The advantages of these instruments are the cost-effectiveness, ultra portability and ability to obtain images in a remote setting and share the same electronically. These instruments, however, are unlikely to replace the fundus camera but then would always be an additional arsenal in an ophthalmologist's armamentarium.

  16. Fingerprint image enhancement using CNN filtering techniques.

    Science.gov (United States)

    Saatci, Ertugrul; Tavsanoglu, Vedat

    2003-12-01

    Due to noisy acquisition devices and variation in impression conditions, the ridgelines of fingerprint images are mostly corrupted by various kinds of noise causing cracks, scratches and bridges in the ridges as well as blurs. These cause matching errors in fingerprint recognition. For an effective recognition the correct ridge pattern is essential which requires the enhancement of fingerprint images. Segment by segment analysis of the fingerprint pattern yields various ridge direction and frequencies. By selecting a directional filter with correct filter parameters to match ridge features at each point, we can effectively enhance fingerprint ridges. This paper proposes a fingerprint image enhancement based on CNN Gabor-Type filters.

  17. Brain surface maps from 3-D medical images

    Science.gov (United States)

    Lu, Jiuhuai; Hansen, Eric W.; Gazzaniga, Michael S.

    1991-06-01

    The anatomic and functional localization of brain lesions for neurologic diagnosis and brain surgery is facilitated by labeling the cortical surface in 3D images. This paper presents a method which extracts cortical contours from magnetic resonance (MR) image series and then produces a planar surface map which preserves important anatomic features. The resultant map may be used for manual anatomic localization as well as for further automatic labeling. Outer contours are determined on MR cross-sectional images by following the clear boundaries between gray matter and cerebral-spinal fluid, skipping over sulci. Carrying this contour below the surface by shrinking it along its normal produces an inner contour that alternately intercepts gray matter (sulci) and white matter along its length. This procedure is applied to every section in the set, and the image (grayscale) values along the inner contours are radially projected and interpolated onto a semi-cylindrical surface with axis normal to the slices and large enough to cover the whole brain. A planar map of the cortical surface results by flattening this cylindrical surface. The projection from inner contour to cylindrical surface is unique in the sense that different points on the inner contour correspond to different points on the cylindrical surface. As the outer contours are readily obtained by automatic segmentation, cortical maps can be made directly from an MR series.

  18. Dye-Enhanced Multimodal Confocal Imaging of Brain Cancers

    Science.gov (United States)

    Wirth, Dennis; Snuderl, Matija; Sheth, Sameer; Curry, William; Yaroslavsky, Anna

    2011-04-01

    Background and Significance: Accurate high resolution intraoperative detection of brain tumors may result in improved patient survival and better quality of life. The goal of this study was to evaluate dye enhanced multimodal confocal imaging for discriminating normal and cancerous brain tissue. Materials and Methods: Fresh thick brain specimens were obtained from the surgeries. Normal and cancer tissues were investigated. Samples were stained in methylene blue and imaged. Reflectance and fluorescence signals were excited at 658nm. Fluorescence emission and polarization were registered from 670 nm to 710 nm. The system provided lateral resolution of 0.6 μm and axial resolution of 7 μm. Normal and cancer specimens exhibited distinctively different characteristics. H&E histopathology was processed from each imaged sample. Results and Conclusions: The analysis of normal and cancerous tissues indicated clear differences in appearance in both the reflectance and fluorescence responses. These results confirm the feasibility of multimodal confocal imaging for intraoperative detection of small cancer nests and cells.

  19. Bacterial brain abscesses: prognostic value of an imaging severity index

    International Nuclear Information System (INIS)

    Aim: To assess the correlation between imaging findings [computed tomography (CT) or magnetic resonance imaging (MRI)] and neurological status before and after the treatment of bacterial brain abscesses. Materials and methods: CT and MRI images of 96 patients with brain abscesses were retrospectively evaluated in terms of the number, location and size of lesions, and the presence and extent of perilesional oedema and midline shift. An imaging severity index (ISI) based on these different radiological parameters was calculated. Initial Glasgow Coma Scale (GCS) scores and ISI were assessed and the prognostic value of these two indices was calculated. The Pearson correlation test, Mann-Whitney test, Chi-square test, receiver-operating characteristic (ROC) analysis, together with comparison of ROC analyses and Fisher's exact test were used. Results: There was a negative correlation between ISI and the initial GCS values: ISI increased as the GCS score decreased, indicating an inverse relationship (r = -0.51, p < 0.0001). There was a significant difference between the ISI and GCS scores of patients with an adverse event compared with patients with good recovery. Outcome was significantly worse in patients with initial ISI over the calculated cut-off values of 8 points or GCS scores under the cut-off value of 13 points. Conclusion: ISI is a useful prognostic indicator for bacterial brain abscess patients and correlates strongly with the patient outcome for all parameters studied. ISI score had a better prognostic value than GCS

  20. A New Image Steganography Based On First Component Alteration Technique

    Directory of Open Access Journals (Sweden)

    Amanpreet Kaur

    2009-12-01

    Full Text Available In this paper, A new image steganography scheme is proposed which is a kind of spatial domain technique. In order to hide secret data in cover-image, the first component alteration technique is used. Techniques used so far focuses only on the two or four bits of a pixel in a image (at the most five bits at the edge of an image which results in less peak to signal noise ratio and high root mean square error. In this technique, 8 bits of blue components of pixels are replaced with secret data bits. Proposed scheme can embed more data than previous schemes and shows better image quality. To prove this scheme, several experiments are performed, and are compared the experimental results with the related previous works.Keywords—image; mean square error; Peak signal to noise ratio; steganography;

  1. Partial-Transfer Absorption Imaging: A versatile technique for optimal imaging of ultracold gases

    CERN Document Server

    Ramanathan, Anand; Wright, Kevin C; Anderson, Russell P; Phillips, William D; Helmerson, Kristian; Campbell, Gretchen K

    2012-01-01

    Partial-transfer absorption imaging is a tool that enables optimal imaging of atomic clouds for a wide range of optical depths. In contrast to standard absorption imaging, the technique can be minimally-destructive and can be used to obtain multiple successive images of the same sample. The technique involves transferring a small fraction of the sample from an initial internal atomic state to an auxiliary state and subsequently imaging that fraction absorptively on a cycling transition. The atoms remaining in the initial state are essentially unaffected. We demonstrate the technique, discuss its applicability, and compare its performance as a minimally-destructive technique to that of phase-contrast imaging.

  2. Techniques in Iterative Proton CT Image Reconstruction

    CERN Document Server

    Penfold, Scott

    2015-01-01

    This is a review paper on some of the physics, modeling, and iterative algorithms in proton computed tomography (pCT) image reconstruction. The primary challenge in pCT image reconstruction lies in the degraded spatial resolution resulting from multiple Coulomb scattering within the imaged object. Analytical models such as the most likely path (MLP) have been proposed to predict the scattered trajectory from measurements of individual proton location and direction before and after the object. Iterative algorithms provide a flexible tool with which to incorporate these models into image reconstruction. The modeling leads to a large and sparse linear system of equations that can efficiently be solved by projection methods-based iterative algorithms. Such algorithms perform projections of the iterates onto the hyperlanes that are represented by the linear equations of the system. They perform these projections in possibly various algorithmic structures, such as block-iterative projections (BIP), string-averaging...

  3. Optimization of Butterworth filter for brain SPECT imaging

    International Nuclear Information System (INIS)

    A method has been described to optimize the cutoff frequency of the Butterworth filter for brain SPECT imaging. Since a computer simulation study has demonstrated that separation between an object signal and the random noise in projection images in a spatial-frequency domain is influenced by the total number of counts, the cutoff frequency of the Butterworth filter should be optimized for individual subjects according to total counts in a study. To reveal the relationship between the optimal cutoff frequencies and total counts in brain SPECT study, we used a normal volunteer and 99mTc hexamethyl-propyleneamine oxime (HMPAO) to obtain projection sets with different total counts. High quality images were created from a projection set with an acquisition time of 300-seconds per projection. The filter was optimized by calculating mean square errors from high quality images visually inspecting filtered reconstructed images. Dependence between total counts and optimal cutoff frequencies was clearly demonstrated in a nomogram. Using this nomogram, the optimal cutoff frequency for each study can be estimated from total counts, maximizing visual image quality. The results suggest that the cutoff frequency of Butterworth filter should be determined by referring to total counts in each study. (author)

  4. Millimeter-wave Imaging Systems with Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Löffler, Torsten; Krozer, Viktor; Zhurbenko, Vitaliy;

    2010-01-01

    The paper describes development of a millimetre-wave imaging system using multi-element aperture filling techniques [1]. Such imaging systems are increasingly demonstrated for security applications and in particular standoff imaging of persons and bonding flaw and defect detection [2]. The major ...

  5. Image characterization by fractal descriptors in variational mode decomposition domain: Application to brain magnetic resonance

    Science.gov (United States)

    Lahmiri, Salim

    2016-08-01

    The main purpose of this work is to explore the usefulness of fractal descriptors estimated in multi-resolution domains to characterize biomedical digital image texture. In this regard, three multi-resolution techniques are considered: the well-known discrete wavelet transform (DWT) and the empirical mode decomposition (EMD), and; the newly introduced; variational mode decomposition mode (VMD). The original image is decomposed by the DWT, EMD, and VMD into different scales. Then, Fourier spectrum based fractal descriptors is estimated at specific scales and directions to characterize the image. The support vector machine (SVM) was used to perform supervised classification. The empirical study was applied to the problem of distinguishing between normal and abnormal brain magnetic resonance images (MRI) affected with Alzheimer disease (AD). Our results demonstrate that fractal descriptors estimated in VMD domain outperform those estimated in DWT and EMD domains; and also those directly estimated from the original image.

  6. A Novel Contrast Enhancement Technique on Palm Bone Images

    OpenAIRE

    Yung-Tsang Chang; Jen-Tse Wang; Wang-Hsai Yang

    2014-01-01

    Contrast enhancement plays a fundamental role in image processing. Many histogram-based techniques are widely used for contrast enhancement of given images, due to their simple function and effectiveness. However, the conventional histogram equalization (HE) methods result in excessive contrast enhancement, which causes natural looking and satisfactory results for a variety of low contrast images. To solve such problems, a novel multi-histogram equalization technique is proposed to enhance th...

  7. Technique for identifying, tracing, or tracking objects in image data

    Science.gov (United States)

    Anderson, Robert J.; Rothganger, Fredrick

    2012-08-28

    A technique for computer vision uses a polygon contour to trace an object. The technique includes rendering a polygon contour superimposed over a first frame of image data. The polygon contour is iteratively refined to more accurately trace the object within the first frame after each iteration. The refinement includes computing image energies along lengths of contour lines of the polygon contour and adjusting positions of the contour lines based at least in part on the image energies.

  8. High-field magnetic resonance imaging of brain iron: birth of a biomarker?

    Science.gov (United States)

    Schenck, John F; Zimmerman, Earl A

    2004-11-01

    The brain has an unusually high concentration of iron, which is distributed in an unusual pattern unlike that in any other organ. The physiological role of this iron and the reasons for this pattern of distribution are not yet understood. There is increasing evidence that several neurodegenerative diseases are associated with altered brain iron metabolism. Understanding these dysmetabolic conditions may provide important information for their diagnosis and treatment. For many years the iron distribution in the human brain could be studied effectively only under postmortem conditions. This situation was changed dramatically by the finding that T2-weighted MR imaging at high field strength (initially 1.5 T) appears to demonstrate the pattern of iron distribution in normal brains and that this imaging technique can detect changes in brain iron concentrations associated with disease states. Up to the present time this imaging capability has been utilized in many research applications but it has not yet been widely applied in the routine diagnosis and management of neurodegenerative disorders. However, recent advances in the basic science of brain iron metabolism, the clinical understanding of neurodegenerative diseases and in MRI technology, particularly in the availability of clinical scanners operating at the higher field strength of 3 T, suggest that iron-dependent MR imaging may soon provide biomarkers capable of characterizing the presence and progression of important neurological disorders. Such biomarkers may be of crucial assistance in the development and utilization of effective new therapies for Alzheimer's and Parkinson's diseases, multiple sclerosis and other iron-related CNS disorders which are difficult to diagnose and treat.

  9. Molecular Genetics Techniques to Develop New Treatments for Brain Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Jacob; Fathallan-Shaykh, Hassan

    2006-09-22

    The objectives of this report are: (1) to devise novel molecular gene therapies for malignant brain tumors, (2) advance our understanding of the immune system in the central nervous system; and (3) apply genomics to find molecular probes to diagnose brain tumors, predict prognosis, biological behavior and their response to treatment.

  10. Through Skull Fluorescence Imaging of the Brain in a New Near-Infrared Window

    CERN Document Server

    Hong, Guosong; Chang, Junlei; Antaris, Alexander L; Chen, Changxin; Zhang, Bo; Zhao, Su; Atochin, Dmitriy N; Huang, Paul L; Andreasson, Katrin I; Kuo, Calvin J; Dai, Hongjie

    2014-01-01

    To date, brain imaging has largely relied on X-ray computed tomography and magnetic resonance angiography with limited spatial resolution and long scanning times. Fluorescence-based brain imaging in the visible and traditional near-infrared regions (400-900 nm) is an alternative but currently requires craniotomy, cranial windows and skull thinning techniques, and the penetration depth is limited to 1-2 mm due to light scattering. Here, we report through-scalp and through-skull fluorescence imaging of mouse cerebral vasculature without craniotomy utilizing the intrinsic photoluminescence of single-walled carbon nanotubes in the 1.3-1.4 micrometre near-infrared window. Reduced photon scattering in this spectral region allows fluorescence imaging reaching a depth of >2 mm in mouse brain with sub-10 micrometre resolution. An imaging rate of ~5.3 frames/s allows for dynamic recording of blood perfusion in the cerebral vessels with sufficient temporal resolution, providing real-time assessment of blood flow anomaly...

  11. A GENERIC APPROACH TO CONTENT BASED IMAGE RETRIEVAL USING DCT AND CLASSIFICATION TECHNIQUES

    Directory of Open Access Journals (Sweden)

    RAMESH BABU DURAI C

    2010-09-01

    Full Text Available With the rapid development of technology, the traditional information retrieval techniques based on keywords are not sufficient, content - based image retrieval (CBIR has been an active research topic.Content Based Image Retrieval (CBIR technologies provide a method to find images in large databases by using unique descriptors from a trained image. The ability of the system to classify images based on the training set feature extraction is quite challenging.In this paper we propose to extract features on MRI scanned brain images using Discrete cosine transform and down sample the extracted features by alternate pixel sampling. The dataset so created is investigated using WEKA classifier to check the efficacy of various classification algorithms on our dataset. Results are promising andtabulated.

  12. An Efficient Image Compression Technique Based on Arithmetic Coding

    Directory of Open Access Journals (Sweden)

    Prof. Rajendra Kumar Patel

    2012-12-01

    Full Text Available The rapid growth of digital imaging applications, including desktop publishing, multimedia, teleconferencing, and high visual definition has increased the need for effective and standardized image compression techniques. Digital Images play a very important role for describing the detailed information. The key obstacle for many applications is the vast amount of data required to represent a digital image directly. The various processes of digitizing the images to obtain it in the best quality for the more clear and accurate information leads to the requirement of more storage space and better storage and accessing mechanism in the form of hardware or software. In this paper we concentrate mainly on the above flaw so that we reduce the space with best quality image compression. State-ofthe-art techniques can compress typical images from 1/10 to 1/50 their uncompressed size without visibly affecting image quality. From our study I observe that there is a need of good image compression technique which provides better reduction technique in terms of storage and quality. Arithmetic coding is the best way to reducing encoding data. So in this paper we propose arithmetic coding with walsh transformation based image compression technique which is an efficient way of reduction

  13. Image processing technique based on image understanding architecture

    Science.gov (United States)

    Kuvychko, Igor

    2000-12-01

    Effectiveness of image applications is directly based on its abilities to resolve ambiguity and uncertainty in the real images. That requires tight integration of low-level image processing with high-level knowledge-based reasoning, which is the solution of the image understanding problem. This article presents a generic computational framework necessary for the solution of image understanding problem -- Spatial Turing Machine. Instead of tape of symbols, it works with hierarchical networks dually represented as discrete and continuous structures. Dual representation provides natural transformation of the continuous image information into the discrete structures, making it available for analysis. Such structures are data and algorithms at the same time and able to perform graph and diagrammatic operations being the basis of intelligence. They can create derivative structures that play role of context, or 'measurement device,' giving the ability to analyze, and run top-bottom algorithms. Symbols naturally emerge there, and symbolic operations work in combination with new simplified methods of computational intelligence. That makes images and scenes self-describing, and provides flexible ways of resolving uncertainty. Classification of images truly invariant to any transformation could be done via matching their derivative structures. New proposed architecture does not require supercomputers, opening ways to the new image technologies.

  14. An Effective Method of Image Retrieval using Image Mining Techniques

    OpenAIRE

    Kannan, A.; Mohan, V.; N Anbazhagan

    2010-01-01

    The present research scholars are having keen interest in doing their research activities in the area of Data mining all over the world. Especially, [13]Mining Image data is the one of the essential features in this present scenario since image data plays vital role in every aspect of the system such as business for marketing, hospital for surgery, engineering for construction, Web for publication and so on. The other area in the Image mining system is the Content-Based Image Retrieval (CBIR)...

  15. Techniques of Glaucoma Detection From Color Fundus Images: A Review

    Directory of Open Access Journals (Sweden)

    Malaya Kumar Nath

    2012-09-01

    Full Text Available Glaucoma is a generic name for a group of diseases which causes progressive optic neuropathy and vision loss due to degeneration of the optic nerves. Optic nerve cells act as transducer and convert light signal entered into the eye to electrical signal for visual processing in the brain. The main risk factors of glaucoma are elevated intraocular pressure exerted by aqueous humour, family history of glaucoma (hereditary and diabetes. It causes damages to the eye, whether intraocular pressure is high, normal or below normal. It causes the peripheral vision loss. There are different types of glaucoma. Some glaucoma occurs suddenly. So, detection of glaucoma is essential for minimizing the vision loss. Increased cup area to disc area ratio is the significant change during glaucoma. Diagnosis of glaucoma is based on measurement of intraocular pressure by tonometry, visual field examination by perimetry and measurement of cup area to disc area ratio from the color fundus images. In this paper the different signal processing techniques are discussed for detection and classification of glaucoma.

  16. Studying Satellite Image Quality Based on the Fusion Techniques

    CERN Document Server

    Al-Wassai, Firouz Abdullah; Al-Zaky, Ali A

    2011-01-01

    Various and different methods can be used to produce high-resolution multispectral images from high-resolution panchromatic image (PAN) and low-resolution multispectral images (MS), mostly on the pixel level. However, the jury is still out on the benefits of a fused image compared to its original images. There is also a lack of measures for assessing the objective quality of the spatial resolution for the fusion methods. Therefore, an objective quality of the spatial resolution assessment for fusion images is required. So, this study attempts to develop a new qualitative assessment to evaluate the spatial quality of the pan sharpened images by many spatial quality metrics. Also, this paper deals with a comparison of various image fusion techniques based on pixel and feature fusion techniques.

  17. Scintigraphic techniques for hepatic imaging. Update for 2000.

    Science.gov (United States)

    Drane, W E

    1998-03-01

    Nuclear medicine continues to evolve from a generic imaging approach to a collection of imaging techniques that are disease-specific. In-111 octreotide SPECT scan has quickly become the method of choice to image gastrinoma. A number of other agents have a role in other tumor models. FDG imaging of the liver is in its infancy, but has potential to outperform anatomic methods (CT scan, MR imaging), particularly in the detection of colorectal cancer metastases. The imaging of FDG in nuclear medicine involves rapidly evolving technology and has the potential to diffuse to the community level practice. To further face the controversial areas head on, another problem for nuclear medicine's role in hepatic imaging remains its somewhat separate existence from radiology. Frequently, the abdominal imager or the general radiologist is in the best position to recommend a scintigraphic liver study. A broad knowledge of these techniques by all radiologists is essential for their ultimate success. PMID:9520984

  18. Quantitative imaging assessment of blood-brain barrier permeability in humans

    Directory of Open Access Journals (Sweden)

    Chassidim Yoash

    2013-02-01

    Full Text Available Abstract The blood–brain barrier (BBB is a functional and structural barrier separating the intravascular and neuropil compartments of the brain. It characterizes the vascular bed and is essential for normal brain functions. Dysfunction in the BBB properties have been described in most common neurological disorders, such as stroke, traumatic injuries, intracerebral hemorrhage, tumors, epilepsy and neurodegenerative disorders. It is now obvious that the BBB plays an important role in normal brain activity, stressing the need for applicable imaging and assessment methods. Recent advancements in imaging techniques now make it possible to establish sensitive and quantitative methods for the assessment of BBB permeability. However, most of the existing techniques require complicated and demanding dynamic scanning protocols that are impractical and cannot be fulfilled in some cases. We review existing methods for the evaluation of BBB permeability, focusing on quantitative magnetic resonance-based approaches and discuss their drawbacks and limitations. In light of those limitations we propose two new approaches for BBB assessment with less demanding imaging sequences: the “post-pre” and the “linear dynamic” methods, both allow semi-quantitative permeability assessment and localization of dysfunctional BBB with simple/partial dynamic imaging protocols and easy-to-apply analysis algorithms. We present preliminary results and show an example which compares these new methods with the existing standard assessment method. We strongly believe that the establishment of such “easy to use” and reliable imaging methods is essential before BBB assessment can become a routine clinical tool. Large clinical trials are awaited to fully understand the significance of BBB permeability as a biomarker and target for treatment in neurological disorders.

  19. Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler.

    Science.gov (United States)

    Errico, Claudia; Osmanski, Bruno-Félix; Pezet, Sophie; Couture, Olivier; Lenkei, Zsolt; Tanter, Mickael

    2016-01-01

    Functional ultrasound (fUS) is a novel neuroimaging technique, based on high-sensitivity ultrafast Doppler imaging of cerebral blood volume, capable of measuring brain activation and connectivity in rodents with high spatiotemporal resolution (100μm, 1ms). However, the skull attenuates acoustic waves, so fUS in rats currently requires craniotomy or a thinned-skull window. Here we propose a non-invasive approach by enhancing the fUS signal with a contrast agent, inert gas microbubbles. Plane-wave illumination of the brain at high frame rate (500Hz compounded sequence with three tilted plane waves, PRF=1500Hz with a 128 element 15MHz linear transducer), yields highly-resolved neurovascular maps. We compared fUS imaging performance through the intact skull bone (transcranial fUS) versus a thinned-skull window in the same animal. First, we show that the vascular network of the adult rat brain can be imaged transcranially only after a bolus intravenous injection of microbubbles, which leads to a 9dB gain in the contrast-to-tissue ratio. Next, we demonstrate that functional increase in the blood volume of the primary sensory cortex after targeted electrical-evoked stimulations of the sciatic nerve is observable transcranially in presence of contrast agents, with high reproducibility (Pearson's coefficient ρ=0.7±0.1, p=0.85). Our work demonstrates that the combination of ultrafast Doppler imaging and injection of contrast agent allows non-invasive functional brain imaging through the intact skull bone in rats. These results should ease non-invasive longitudinal studies in rodents and open a promising perspective for the adoption of highly resolved fUS approaches for the adult human brain.

  20. The image of a brain stroke in a computed tomograph

    International Nuclear Information System (INIS)

    On the basis of 100 findings from patients who suffered brain strokes and by the use of 1500 ensured stroke images it was tested whether or not the stroke-predilection typologie outlined by Zuelch is based on a coincidental summation of individual cases. The radio-computed tomography with the possibility of evaluation of non-lethal cases proved itself as a suited method for confirmation or repudiation of this stroke theory. By means of the consistently achieved association of the frontal, respectively horizontal sectional image for the typology it could be proven and - with the exception of a few rather seldom types - also demonstrated that the basic and predilection types of brain stroke repeated themselves in their pattern. In individual cases a specification of lower types could also be undertaken. (orig./TRV)

  1. Mixture Segmentation of Multispectral MR Brain Images for Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Lihong Li

    2005-04-01

    Full Text Available We present a fully automatic mixture model-based tissue classification of multispectral (T1- and T2-weighted magnetic resonance (MR brain images. Unlike the conventional hard classification with a unique label for each voxel, our method models a mixture to estimate the partial volumes (PV of multiple tissue types within a voxel. A new Markov random field (MRF model is proposed to reflect the spatial information of tissue mixtures. A mixture classification algorithm is performed by the maximum a posterior (MAP criterion, where the expectation maximization (EM algorithm is utilized to estimate model parameters. The algorithm interleaves segmentation with parameter estimation and improves classification in an iterative manner. The presented method is evaluated by clinical MR image datasets for quantification of brain volumes and multiple sclerosis (MS.

  2. Functional imaging of single synapses in brain slices.

    Science.gov (United States)

    Oertner, Thomas G

    2002-11-01

    The strength of synaptic connections in the brain is not fixed, but can be modulated by numerous mechanisms. Traditionally, electrophysiology has been used to characterize connections between neurons. Electrophysiology typically reports the activity of populations of synapses, while most mechanisms of plasticity are thought to operate at the level of single synapses. Recently, two-photon laser scanning microscopy has enabled us to perform optical quantal analysis of individual synapses in intact brain tissue. Here we introduce the basic principle of the two-photon microscope and discuss its main differences compared to the confocal microscope. Using calcium imaging in dendritic spines as an example, we explain the advantages of simultaneous dual-dye imaging for quantitative calcium measurements and address two common problems, dye saturation and background fluorescence subtraction.

  3. PET/SPECT imaging: From carotid vulnerability to brain viability

    Energy Technology Data Exchange (ETDEWEB)

    Meerwaldt, Robbert [Department of Surgery, Isala Clinics, Zwolle (Netherlands); Slart, Riemer H.J.A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands); Dam, Gooitzen M. van [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands); Luijckx, Gert-Jan [Department of Neurology, University Medical Center Groningen, Groningen (Netherlands); Tio, Rene A. [Department of Cardiology, University Medical Center Groningen, Groningen (Netherlands); Zeebregts, Clark J. [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands)], E-mail: czeebregts@hotmail.com

    2010-04-15

    Background: Current key issues in ischemic stroke are related to carotid plaque vulnerability, brain viability, and timing of intervention. The treatment of ischemic stroke has evolved into urgent active interventions, as 'time is brain'. Functional imaging such as positron emission tomography (PET)/single photon emission computed tomography (SPECT) could improve selection of patients with a vulnerable plaque and evaluation of brain viability in ischemic stroke. Objective: To describe the current applications of PET and SPECT as a diagnostic tool in relation to ischemic stroke. Methods: A literature search using PubMed identified articles. Manual cross-referencing was also performed. Results: Several papers, all observational studies, identified PET/SPECT to be used as a tool to monitor systemic atheroma modifying treatment and to select high-risk patients for surgery regardless of the degree of luminal stenosis in carotid lesions. Furthermore, PET/SPECT is able to quantify the penumbra region during ischemic stroke and in this way may identify those patients who may benefit from timely intervention. Discussion: Functional imaging modalities such as PET/SPECT may become important tools for risk-assessment and evaluation of treatment strategies in carotid plaque vulnerability and brain viability. Prospective clinical studies are needed to evaluate the diagnostic accuracy of PET/SPECT.

  4. Study of functional brain imaging for bilingual language cognition

    International Nuclear Information System (INIS)

    Bilingual and multilingual brain studies of language recognition is an interdisciplinary subject which needs to identify different levels involved in the neural representation of languages, such as neuroanatomical, neurofunctional, biochemical, psychological and linguistic levels. Furthermore, specific factor's such as age, manner of acquisition and environmental factors seem to affect the neural representation. Functional brain imaging, such as PET, SPECT and functional MRI can explore the neurolinguistics representation of bilingualism in the brain in subjects, and elucidate the neuronal mechanisms of bilingual language processing. Functional imaging methods show differences in the pattern of cerebral activation associated with a second language compared with the subject's native language. It shows that verbal memory processing in two unrelated languages is mediated by a common neural system with some distinct cortical areas. The different patterns of activation differ according to the language used. It also could be ascribed either to age of acquisition or to proficiency level. And attained proficiency is more important than age of acquisition as a determinant of the cortical representation of the second language. The study used PET and SPECT shows that sign and spoken language seem to be localized in the same brain areas, and elicit similar regional cerebral blood flow patterns. But for sign language perception, the functional anatomy overlaps that of language processing contain both auditory and visual components. And the sign language is dependent on spatial information too. (authors)

  5. Methods for processing and analysis functional and anatomical brain images: computerized tomography, emission tomography and nuclear resonance imaging

    International Nuclear Information System (INIS)

    The various methods for brain image processing and analysis are presented and compared. The following topics are developed: the physical basis of brain image comparison (nature and formation of signals intrinsic performance of the methods image characteristics); mathematical methods for image processing and analysis (filtering, functional parameter extraction, morphological analysis, robotics and artificial intelligence); methods for anatomical localization (neuro-anatomy atlas, proportional stereotaxic atlas, numerized atlas); methodology of cerebral image superposition (normalization, retiming); image networks

  6. WAVELET STATISTICAL TEXTURE FEATURES WITH ORTHOGONAL OPERATORS TUMOUR CLASSIFICATION IN MAGNETIC RESONANCE IMAGING BRAIN

    Directory of Open Access Journals (Sweden)

    R. Meenakshi

    2013-01-01

    Full Text Available Tumors medically also called neoplasms are an abnormal mass of tissue resulting from uncontrolled proliferation or division of cells occurring in the human body. If such growth is located in the brain then it is called as brain tumor. Identification of such tumors is a major challenge in the field of medical science. Early identification of tumors prove to be critical as serious consequences can be averted. Its threat level depends on a combination of various factors like the type of tumor, its location, its size and its developmental stage. Tumor can occur in any part of the body. Magnetic Resonance Imaging (MRI technique is mainly used for analyzing the brain, as the images produced are of high precision and applicability. The main objective of this study is to classify the brain MRI dataset for the existence or non existence of tumors. The proposed method uses Two Dimensional Discrete Wavelet Transform (2D-DWT for pre-processing and further classification with orthogonal operators and SVM. The usage of 2D-DWT for pre-processing improves the classification accuracy by 2% when compared to the existing classification techniques.

  7. Externally triggered imaging technique for microbolometer-type terahertz imager

    Science.gov (United States)

    Oda, Naoki; Sudou, Takayuki; Ishi, Tsutomu; Okubo, Syuichi; Isoyama, Goro; Irizawa, Akinori; Kawase, Keigo; Kato, Ryukou

    2016-04-01

    The authors developed terahertz (THz) imager which incorporates 320x240 focal plane array (FPA) with enhanced sensitivity in sub-THz region (ca. 0.5 THz). The imager includes functions such as external-trigger imaging, lock-in imaging, beam profiling and so on. The function of the external-trigger imaging is mainly described in this paper, which was verified in combination of the THz imager with the pulsed THz free electron laser (THz-FEL) developed by Osaka University. The THz-FEL emits THz radiation in a wavelength range of 25 - 150 μm at repetition rates of 2.5, 3.3, 5.0 and 10 pulses per second. The external trigger pulse for the THz imager was generated with a pulse generator, using brightening pulse for THz-FEL. A series of pulses emitted by the THz-FEL at 86 μm were introduced to the THz imager and Joule meter via beam splitter, so that the output signal of THz imager was normalized with the output of the Joule meter and the stability of the THz radiation from FEL was also monitored. The normalized output signals of THz imager (digits/μJ) obtained at the repetition rates mentioned above were found consistent with one another. The timing-relation of the external trigger pulse to the brightening pulse was varied and the influence of the timing-relation on beam pattern is presented. These experimental results verify that the external trigger imaging function operates correctly.

  8. Diffusion tensor MR imaging in neurofibromatosis type 1: expanding the knowledge of microstructural brain abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz-Filho, Jose R.L.; Muniz, Marcos P.; Souza, Antonio S. [Medical School in Sao Jose do Rio Preto (FAMERP), Radiology Department, Sao Paulo (Brazil); Rocha, Antonio J. da [School Medical Sciences of the Santa Casa de Sao Paulo, Radiology Department, Sao Paulo (Brazil); Goloni-Bertollo, Eny M.; Pavarino-Bertelli, Erika C. [Center of Research and attendace in Neurofibromatosis (CEPAN) of Medical School in Sao Jose do Rio Preto (FAMERP), Sao Paulo (Brazil)

    2012-04-15

    Neurofibromatosis type 1 (NF1) is a hereditary disease with a dominant autosomal pattern. In children and adolescents, it is frequently associated with the appearance of T2-weighted hyperintensities in the brain's white matter. MRI with diffusion tensor imaging (DTI) is used to detect white matter abnormalities by measuring fractional anisotropy (FA). This study employed DTI to evaluate the relationship between FA patterns and the findings of T2 sequences, with the aim of improving our understanding of anatomical changes and microstructural brain abnormalities in individuals with NF1. Forty-four individuals with NF1 and 20 control subjects were evaluated. The comparative analysis of FA between NF1 and control groups was based on four predetermined anatomical regions of the brain hemispheres (basal ganglia, cerebellum, pons, thalamus) and related the presence or absence of T2-weighted hyperintensities in the brain, which are called unidentified bright objects (UBOs). The FA values between the groups demonstrated statistically significant differences (P {<=} 0.05) for the cerebellum and thalamus in patients with NF1, independent of the occurrence of UBOs. Diffusion tensor MR imaging confirms the influence of UBOs in the decrease of FA values in this series of patients with NF1. Additionally, this technique allows the characterization of microstructural abnormalities even in some brain regions that appear normal in conventional MR sequences. (orig.)

  9. In vivo bioimpedance measurement of healthy and ischaemic rat brain: implications for stroke imaging using electrical impedance tomography.

    OpenAIRE

    Dowrick, T.; Blochet, C.; Holder, D

    2015-01-01

    In order to facilitate the imaging of haemorrhagic and ischaemic stroke using frequency difference electrical impedance tomography (EIT), impedance measurements of normal and ischaemic brain, and clotted blood during haemorrhage, were gathered using a four-terminal technique in an in vivo animal model, a first for ischaemic measurements. Differences of 5-10% in impedance were seen between the frequency spectrums of healthy and ischaemic brain, over the frequency range 0-3 kHz, while the spect...

  10. Brain size and brain organization of the whale shark, Rhincodon typus, using magnetic resonance imaging.

    Science.gov (United States)

    Yopak, Kara E; Frank, Lawrence R

    2009-01-01

    Very little is known about the brain organization of the suction filter feeder, Rhincodon typus, and how it compares to other orectolobiforms in light of its specialization as a plankton-feeder. Brain size and overall brain organization was assessed in two specimens of R. typus in relation to both phylogeny and ecology, using magnetic resonance imaging (MRI). In comparison to over 60 other chondrichthyan species, R. typus demonstrated a relatively small brain for its body size (expressed in terms of encephalization quotients and residuals), similar to the lamniforms Carcharodon carcharias, Cetorhinus maximus, and Carcharias taurus. R. typus possessed a relatively small telencephalon with some development of the dorsal pallium, which was suggestive of moderate social behavior, in addition to a relatively large diencephalon and a relatively reduced mesencephalon. The most notable characteristic of the brain of Rhincodon was a large and highly foliated cerebellum, one of the largest cerebellums within the chondrichthyan clade. Early development of the brain was qualitatively assessed using an in situ MRI scan of the brain and chondrocranium of a neonate specimen of R. typus. There was evidence that folding of the cerebellar corpus appeared in early development, although the depth and number of folds might vary ontogenetically in this species. Hierarchical cluster analysis and multidimensional scaling ordinations showed evidence of convergent evolution with the basking shark, Cetorhinus maximus, another large-bodied filter feeding elasmobranch, supporting the claim that organization of the brain is more similar in species with analogous but independently evolved lifestyles than those that share taxonomic classification. PMID:19729899

  11. Infrared Imaging Data Reduction Software and Techniques

    CERN Document Server

    Sabbey, C N; Lewis, J R; Irwin, M J; Sabbey, Chris N.; Mahon, Richard G. Mc; Lewis, James R.; Irwin, Mike J.

    2001-01-01

    We describe the InfraRed Data Reduction (IRDR) software package, a small ANSI C library of fast image processing routines for automated pipeline reduction of infrared (dithered) observations. We developed the software to satisfy certain design requirements not met in existing packages (e.g., full weight map handling) and to optimize the software for large data sets (non-interactive tasks that are CPU and disk efficient). The software includes stand-alone C programs for tasks such as running sky frame subtraction with object masking, image registration and coaddition with weight maps, dither offset measurement using cross-correlation, and object mask dilation. Although we currently use the software to process data taken with CIRSI (a near-IR mosaic imager), the software is modular and concise and should be easy to adapt/reuse for other work. IRDR is available from anonymous ftp to ftp.ast.cam.ac.uk in pub/sabbey.

  12. Advanced techniques in digital mammographic images recognition

    International Nuclear Information System (INIS)

    Computer Aided Detection and Diagnosis is used in digital radiography as a second thought in the process of determining diagnoses, which reduces the percentage of wrong diagnoses of the established interpretation of mammographic images. The issues that are discussed in the dissertation are the analyses and improvement of advanced technologies in the field of artificial intelligence, more specifically in the field of machine learning for solving diagnostic problems and automatic detection of speculated lesions in digital mammograms. The developed of SVM-based ICAD system with cascade architecture for analyses and comparison mammographic images in both projections (CC and MLO) gives excellent result for detection and masses and microcalcifications. In order to develop a system with optimal performances of sensitivity, specificity and time complexity, a set of relevant characteristics need to be created which will show all the pathological regions that might be present in the mammographic image. The structure of the mammographic image, size and the large number of pathological structures in this area are the reason why the creation of a set of these features is necessary for the presentation of good indicators. These pathological structures are a real challenge today and the world of science is working in that direction. The doctoral dissertation showed that the system has optimal results, which are confirmed by experts, and institutions, which are dealing with these same issues. Also, the thesis presents a new approach for automatic identification of regions of interest in the mammographic image where regions of interest are automatically selected for further processing mammography in cases when the number of examined patients is higher. Out of 480 mammographic images downloaded from MIAS database and tested with ICAD system the author shows that, after separation and selection of relevant features of ICAD system the accuracy is 89.7% (96.4% for microcalcifications

  13. Magnetic resonance imaging in perinatal brain injury: clinical presentation, lesions and outcome

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Mary; Ward, Phil; Allsop, Joanna; Counsell, Serena [Imperial College London, Hammersmith Hospital, Robert Steiner MR Unit, Imaging Sciences Department, Clinical Sciences Centre, London (United Kingdom); Srinivasan, Latha; Dyet, Leigh; Cowan, Frances [Imperial College, Hammersmith Hospital, Department of Paediatrics, Imaging Sciences Department, Clinical Sciences Centre, London (United Kingdom)

    2006-07-15

    Neonatal MR imaging is invaluable in assessing the term born neonate who presents with an encephalopathy. Successful imaging requires adaptations to both the hardware and the sequences used for adults. The perinatal and postnatal details often predict the pattern of lesions sustained and are essential for correct interpretation of the imaging findings, but additional or alternative diagnoses in infants with apparent hypoxic ischaemic encephalopathy should always be considered. Perinatally acquired lesions are usually at their most obvious between 1 and 2 weeks of age. Very early imaging (<3 days) may be useful to make management decisions in ventilated neonates, but abnormalities may be subtle at that stage. Diffusion-weighted imaging is clinically useful for the early identification of ischaemic white matter in the neonatal brain but is less reliable in detecting lesions within the basal ganglia and thalami. The pattern of lesions seen on MRI can predict neurodevelopmental outcome. Additional useful information may be obtained by advanced techniques such as MR angiography, venography and perfusion-weighted imaging. Serial imaging with quantification of both structure size and tissue damage provides invaluable insights into perinatal brain injury. (orig.)

  14. Full Parallax Integral 3D Display and Image Processing Techniques

    Directory of Open Access Journals (Sweden)

    Byung-Gook Lee

    2015-02-01

    Full Text Available Purpose – Full parallax integral 3D display is one of the promising future displays that provide different perspectives according to viewing direction. In this paper, the authors review the recent integral 3D display and image processing techniques for improving the performance, such as viewing resolution, viewing angle, etc.Design/methodology/approach – Firstly, to improve the viewing resolution of 3D images in the integral imaging display with lenslet array, the authors present 3D integral imaging display with focused mode using the time-multiplexed display. Compared with the original integral imaging with focused mode, the authors use the electrical masks and the corresponding elemental image set. In this system, the authors can generate the resolution-improved 3D images with the n×n pixels from each lenslet by using n×n time-multiplexed display. Secondly, a new image processing technique related to the elemental image generation for 3D scenes is presented. With the information provided by the Kinect device, the array of elemental images for an integral imaging display is generated.Findings – From their first work, the authors improved the resolution of 3D images by using the time-multiplexing technique through the demonstration of the 24 inch integral imaging system. Authors’ method can be applied to a practical application. Next, the proposed method with the Kinect device can gain a competitive advantage over other methods for the capture of integral images of big 3D scenes. The main advantage of fusing the Kinect and the integral imaging concepts is the acquisition speed, and the small amount of handled data.Originality / Value – In this paper, the authors review their recent methods related to integral 3D display and image processing technique.Research type – general review.

  15. Reduction in radiation dose with reconstruction technique in the brain perfusion CT

    Science.gov (United States)

    Kim, H. J.; Lee, H. K.; Song, H.; Ju, M. S.; Dong, K. R.; Chung, W. K.; Cho, M. S.; Cho, J. H.

    2011-12-01

    The principal objective of this study was to verify the utility of the reconstruction imaging technique in the brain perfusion computed tomography (PCT) scan by assessing reductions in the radiation dose and analyzing the generated images. The setting used for image acquisition had a detector coverage of 40 mm, a helical thickness of 0.625 mm, a helical shuttle mode scan type and a rotation time of 0.5 s as the image parameters used for the brain PCT scan. Additionally, a phantom experiment and an animal experiment were carried out. In the phantom and animal experiments, noise was measured in the scanning with the tube voltage fixed at 80 kVp (kilovolt peak) and the level of the adaptive statistical iterative reconstruction (ASIR) was changed from 0% to 100% at 10% intervals. The standard deviation of the CT coefficient was measured three times to calculate the mean value. In the phantom and animal experiments, the absorbed dose was measured 10 times under the same conditions as the ones for noise measurement before the mean value was calculated. In the animal experiment, pencil-type and CT-dedicated ionization chambers were inserted into the central portion of pig heads for measurement. In the phantom study, as the level of the ASIR changed from 0% to 100% under identical scanning conditions, the noise value and dose were proportionally reduced. In our animal experiment, the noise value was lowest when the ASIR level was 50%, unlike in the phantom study. The dose was reduced as in the phantom study.

  16. New imaging techniques and opportunities in endoscopy.

    Science.gov (United States)

    Kiesslich, Ralf; Goetz, Martin; Hoffman, Arthur; Galle, Peter Robert

    2011-09-06

    Gastrointestinal endoscopy is undergoing major improvements, which are driven by new available technologies and substantial refinements of optical features. In this Review, we summarize available and evolving imaging technologies that could influence the clinical algorithm of endoscopic diagnosis. Detection, characterization and confirmation are essential steps required for proper endoscopic diagnosis. Optical and nonoptical methods can help to improve each step; these improvements are likely to increase the detection rate of neoplasias and reduce unnecessary endoscopic treatments. Furthermore, functional and molecular imaging are emerging as new diagnostic tools that could provide an opportunity for personalized medicine, in which endoscopy will define disease outcome or predict the response to targeted therapy.

  17. Imaging of Brain Dopamine Pathways: Implications for Understanding Obesity

    OpenAIRE

    Wang, Gene-Jack; Volkow, Nora D.; Panayotis K Thanos; Fowler, Joanna S.

    2009-01-01

    Obesity is typically associated with abnormal eating behaviors. Brain imaging studies in humans implicate the involvement of dopamine (DA)-modulated circuits in pathologic eating behavior(s). Food cues increase striatal extracellular DA, providing evidence for the involvement of DA in the nonhedonic motivational properties of food. Food cues also increase metabolism in the orbitofrontal cortex indicating the association of this region with the motivation for food consumption. Similar to drug-...

  18. A new antigen retrieval technique for human brain tissue.

    Directory of Open Access Journals (Sweden)

    Raúl Alelú-Paz

    Full Text Available Immunohistochemical staining of tissues is a powerful tool used to delineate the presence or absence of an antigen. During the last 30 years, antigen visualization in human brain tissue has been significantly limited by the masking effect of fixatives. In the present study, we have used a new method for antigen retrieval in formalin-fixed human brain tissue and examined the effectiveness of this protocol to reveal masked antigens in tissues with both short and long formalin fixation times. This new method, which is based on the use of citraconic acid, has not been previously utilized in brain tissue although it has been employed in various other tissues such as tonsil, ovary, skin, lymph node, stomach, breast, colon, lung and thymus. Thus, we reported here a novel method to carry out immunohistochemical studies in free-floating human brain sections. Since fixation of brain tissue specimens in formaldehyde is a commonly method used in brain banks, this new antigen retrieval method could facilitate immunohistochemical studies of brains with prolonged formalin fixation times.

  19. A nested phosphorus and proton coil array for brain magnetic resonance imaging and spectroscopy.

    Science.gov (United States)

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Parasoglou, Prodromos

    2016-01-01

    A dual-nuclei radiofrequency coil array was constructed for phosphorus and proton magnetic resonance imaging and spectroscopy of the human brain at 7T. An eight-channel transceive degenerate birdcage phosphorus module was implemented to provide whole-brain coverage and significant sensitivity improvement over a standard dual-tuned loop coil. A nested eight-channel proton module provided adequate sensitivity for anatomical localization without substantially sacrificing performance on the phosphorus module. The developed array enabled phosphorus spectroscopy, a saturation transfer technique to calculate the global creatine kinase forward reaction rate, and single-metabolite whole-brain imaging with 1.4cm nominal isotropic resolution in 15min (2.3cm actual resolution), while additionally enabling 1mm isotropic proton imaging. This study demonstrates that a multi-channel array can be utilized for phosphorus and proton applications with improved coverage and/or sensitivity over traditional single-channel coils. The efficient multi-channel coil array, time-efficient pulse sequences, and the enhanced signal strength available at ultra-high fields can be combined to allow volumetric assessment of the brain and could provide new insights into the underlying energy metabolism impairment in several neurodegenerative conditions, such as Alzheimer's and Parkinson's diseases, as well as mental disorders such as schizophrenia.

  20. Monitoring fractional anisotropy in developing rabbit brain using MR diffusion tensor imaging at 3T

    Science.gov (United States)

    Jao, Jo-Chi; Yang, Yu-Ting; Hsiao, Chia-Chi; Chen, Po-Chou

    2016-03-01

    The aim of this study was to investigate the factional anisotropy (FA) in various regions of developing rabbit brain using magnetic resonance diffusion tensor imaging (MR DTI) at 3 T. A whole-body clinical MR imaging (MRI) scanner with a 15-channel high resolution knee coil was used. An echo-planar-imaging (EPI)-DTI pulse sequence was performed. Five 5 week-old New Zealand white (NZW) rabbits underwent MRI once per week for 24 weeks. After scanning, FA maps were obtained. ROIs (regions of interests) in the frontal lobe, parietal & temporal lobe, and occipital lobe were measured. FA changes with time were evaluated with a linear regression analysis. The results show that the FA values in all lobes of the brain increased linearly with age. The ranking of FA values was FA(frontal lobe) FA(occipital lobe). There was significant difference (p rabbits to investigate the brain anatomy during development using clinical MRI. This technique can be further applied to the pre-clinical diagnosis, treatment, prognosis and follow-up of brain lesions.

  1. Multivariate Analysis of Magnetic Resonance Imaging Signals of the Human Brain.

    Science.gov (United States)

    Miyawaki, Yoichi

    2016-01-01

    Magnetic resonance imaging (MRI) of the human brain plays an important role in the field of medical imaging as well as basic neuroscience. It measures proton spin relaxation, the time constant of which depends on tissue type, and allows us to visualize anatomical structures in the brain. It can also measure functional signals that depend on the local ratio of oxyhemoglobin to deoxyhemoglobin in the blood, which is believed to reflect the degree of neural activity in the corresponding area. MRI thus provides anatomical and functional information about the human brain with high spatial resolution. Conventionally, MRI signals are measured and analyzed for each individual voxel. However, these signals are essentially multivariate because they are measured from multiple voxels simultaneously, and the pattern of activity might carry more useful information than each individual voxel does. This paper reviews recent trends in multivariate analysis of MRI signals in the human brain, and discusses applications of this technique in the fields of medical imaging and neuroscience.

  2. Imaging Nicotine in Rat Brain Tissue by Use of Nanospray Desorption Electrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lanekoff, Ingela T.; Thomas, Mathew; Carson, James P.; Smith, Jordan N.; Timchalk, Charles; Laskin, Julia

    2013-01-15

    Imaging mass spectrometry offers simultaneous detection of drugs, drug metabolites and endogenous substances in a single experiment. This is important when evaluating effects of a drug on a complex organ system such as the brain, where there is a need to understand how regional drug distribution impacts function. Nicotine is an addictive drug and its action in the brain is of high interest. Here we use nanospray desorption electrospray ionization, nano-DESI, imaging to discover the localization of nicotine in rat brain tissue after in vivo administration of nicotine. Nano-DESI is a new ambient technique that enables spatially-resolved analysis of tissue samples without special sample pretreatment. We demonstrate high sensitivity of nano-DESI imaging that enables detection of only 0.7 fmole nicotine per pixel in the complex brain matrix. Furthermore, by adding deuterated nicotine to the solvent, we examined how matrix effects, ion suppression, and normalization affect the observed nicotine distribution. Finally, we provide preliminary results suggesting that nicotine localizes to the hippocampal substructure called dentate gyrus.

  3. Elderly depression diagnostic of diabetic patients by brain tissue pulsatility imaging

    Science.gov (United States)

    Hachemi, Mélouka Elkateb; Remeniéras, Jean-pierre; Desmidt, Thomas; Camus, Vincent; Tranquart, François

    2010-01-01

    Pulsatile motion of brain parenchyma results from cardiac and breathing cycles and consists in a rapid displacement in systole, with slow diastolic recovery. Based on the vascular depression concept and recent studies where a correlation was found between cerebral haemodynamics and depression in the elderly, we emitted the hypothesis that tissue brain motion due to perfusion is correlated to elderly depression associated with cardiovascular risk factors. Tissue Pulsatlity Imaging (TPI) is a new ultrasound technique developed firstly at the University of Washington to assess the brain tissue motion. We used TPI technique to measure the brain displacement of two groups of elderly patients with diabetes as a vascular risk factor. The first group is composed of 11 depressed diabetic patients. The second group is composed of 12 diabetic patients without depressive symptoms. Transcranial acquisitions were performed with a 1.8 MHz ultrasound phased array probe through the right temporal bone window. The acquisition of six cardiac cycles was realized on each patient with a frame rate of 23 frames/s. Displacements estimation was performed by off-line analysis. A significant decrease in brain pulsatility was observed in the group of depressed patients compared to the group of non depressed patients. Mean displacement magnitude was about 44±7 μm in the first group and 68±13 μm in the second group.

  4. Imaging synaptic density in the living human brain.

    Science.gov (United States)

    Finnema, Sjoerd J; Nabulsi, Nabeel B; Eid, Tore; Detyniecki, Kamil; Lin, Shu-Fei; Chen, Ming-Kai; Dhaher, Roni; Matuskey, David; Baum, Evan; Holden, Daniel; Spencer, Dennis D; Mercier, Joël; Hannestad, Jonas; Huang, Yiyun; Carson, Richard E

    2016-07-20

    Chemical synapses are the predominant neuron-to-neuron contact in the central nervous system. Presynaptic boutons of neurons contain hundreds of vesicles filled with neurotransmitters, the diffusible signaling chemicals. Changes in the number of synapses are associated with numerous brain disorders, including Alzheimer's disease and epilepsy. However, all current approaches for measuring synaptic density in humans require brain tissue from autopsy or surgical resection. We report the use of the synaptic vesicle glycoprotein 2A (SV2A) radioligand [(11)C]UCB-J combined with positron emission tomography (PET) to quantify synaptic density in the living human brain. Validation studies in a baboon confirmed that SV2A is an alternative synaptic density marker to synaptophysin. First-in-human PET studies demonstrated that [(11)C]UCB-J had excellent imaging properties. Finally, we confirmed that PET imaging of SV2A was sensitive to synaptic loss in patients with temporal lobe epilepsy. Thus, [(11)C]UCB-J PET imaging is a promising approach for in vivo quantification of synaptic density with several potential applications in diagnosis and therapeutic monitoring of neurological and psychiatric disorders. PMID:27440727

  5. Comparative Study of Spatial Domain Image Steganography Techniques

    Directory of Open Access Journals (Sweden)

    Rejani. R

    2015-09-01

    Full Text Available Steganography is an important area of research in information security. It is the technique of disclosing information into the cover image via. text, video, and image without causing statistically significant modification to the cover image. Secure communication of data through internet has become a main issue due to several passive and active attacks. The purpose of stegnography is to hide the existence of the message so that it becomes difficult for attacker to detect it. Different steganography techniques are implemented to hide the information effectively also researchers contributed various algorithms in each technique to improve the technique’s efficiency. In this paper we do a brief analysis of different spatial domain image stegnography techniques and their comparison. The modern secure image steganography presents a challenging task of transferring the embedded information to the destination without being detected.

  6. A New Image Steganography Based On First Component Alteration Technique

    CERN Document Server

    Kaur, Amanpreet; Sikka, Geeta

    2010-01-01

    In this paper, A new image steganography scheme is proposed which is a kind of spatial domain technique. In order to hide secret data in cover-image, the first component alteration technique is used. Techniques used so far focuses only on the two or four bits of a pixel in a image (at the most five bits at the edge of an image) which results in less peak to signal noise ratio and high root mean square error. In this technique, 8 bits of blue components of pixels are replaced with secret data bits. Proposed scheme can embed more data than previous schemes and shows better image quality. To prove this scheme, several experiments are performed, and are compared the experimental results with the related previous works.

  7. Simultaneous MRI and PET imaging of a rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Raylman, Raymond R [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Majewski, Stan [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Lemieux, Susan K [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Velan, S Sendhil [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Kross, Brian [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Popov, Vladimir [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Smith, Mark F [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Weisenberger, Andrew G [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Zorn, Carl [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Marano, Gary D [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States)

    2006-12-21

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.

  8. Effect of Enhancement Technique on Nonuniform and Uniform Ultrasound Images

    Directory of Open Access Journals (Sweden)

    Parveen Lehana

    2015-01-01

    Full Text Available The absence of adequate scientific resources in the area of medical sciences sometimes leads to improper diagnosis of diseases and hence the treatments of such diseases are affected badly. However, with the advancement of technology, the complicacy of various malfunctions inside the human body reduces. Ultrasound imaging is one of the biomedical scanning techniques that let the pathologist make comment reasonably and accurately on the disease or irregularity seen in the scan while low imaging quality lets the diagnosis go wrong. Even a little distortion can route the pathologist away from the main cause of the disease. In this research work, the enhancement of dark ultrasound images has been done. An algorithm is developed using enhancement technique for nonuniform and uniform dark images. Finally, we compared the quality of the processed and unprocessed images. Both ETNUD and mean and median filtering techniques were used for image analysis.

  9. A Secure and High Capacity Image Steganography Technique

    Directory of Open Access Journals (Sweden)

    Hemalatha S

    2013-02-01

    Full Text Available Steganography is the science of “invisible” communication. The purpose of Steganography is to maintainsecret communication between two parties. The secret information can be concealed in content such asimage, audio, or video. This paper provides a novelimage steganography technique to hide multiple secretimages and keys in color cover image using IntegerWavelet Transform (IWT. There is no visual differencebetween the stego image and the cover image. The extracted secret images are also similar to the originalsecret images. Very good PSNR (Peak Signal to NoiseRatio values are obtained for both stego andextracted secret images. The results are compared with the results of other techniques, where single imageis hidden and it is found that the proposed technique is simple and gives better PSNR values than others.

  10. Jet-Images: Computer Vision Inspired Techniques for Jet Tagging

    CERN Document Server

    Cogan, Josh; Strauss, Emanuel; Schwarztman, Ariel

    2014-01-01

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon- initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  11. Optimization of Memory Management in Image Processing using Pipelining Technique

    Directory of Open Access Journals (Sweden)

    P.S. Ramesh

    2015-02-01

    Full Text Available The quality of the image is mainly based on the various phenomena which generally consume lots of memory that needs to be resolved addressed. The handling of the memory is mainly affected due to disorderly arranged pixels in an image. This may lead to salt and pepper noise which will affect the quality of the image. The aim of this study is to remove the salt and pepper noise which is most crucial in image processing fields. In this study, we proposed a technique which combines adaptive mean filtering technique and wavelet transform technique based on pipeline processing to remove intensity spikes from the image and then both Otsu’s and Clahe algorithms are used to enhance the image. The implemented framework produces good results and proves against salt and pepper noise using PSNR algorithm.

  12. Quantitative magnetic resonance imaging of the fetal brain in utero: Methods and applications

    Institute of Scientific and Technical Information of China (English)

    Anat; Biegon; Chen; Hoffmann

    2014-01-01

    Application of modern magnetic resonance imaging(MRI) techniques to the live fetus in utero is a relatively recent endeavor. The relative advantages and disadvantages of clinical MRI relative to the widely used and accepted ultrasonographic approach are the subject of a continuing debate; however the focus of this review is on the even younger field of quantitative MRI as applied to non-invasive studies of fetal brain development. The techniques covered under this header include structural MRI when followed by quan-titative(e.g., volumetric) analysis, as well as quantita-tive analyses of diffusion weighted imaging, diffusion tensor imaging, magnetic resonance spectroscopy and functional MRI. The majority of the published work re-viewed here reflects information gathered from normal fetuses scanned during the 3rd trimester, with relatively smaller number of studies of pathological samples including common congenital pathologies such as ven-triculomegaly and viral infection.

  13. Ultrasound Evaluation of Normal and Abnormal Fetuses: Comparison of Conventional, Tissue Harmonic, and Pulse-Inversion Harmonic Imaging Techniques

    OpenAIRE

    Ryu, Jeong-Ah; Kim, Bohyun; Kim, Sooah; Yang, Soon Ha; Choi, Moon Hae; Ahn, Hyeong sik

    2003-01-01

    Objective To determine the usefulness of tissue harmonic imaging (THI) and pulse-inversion harmonic imaging (PIHI) in the evaluation of normal and abnormal fetuses. Materials and Methods Forty-one pregnant women who bore a total of 31 normal and ten abnormal fetuses underwent conventional ultrasonography (CUS), and then THI and PIHI. US images of six organ systems, namely the brain, spine, heart, abdomen, extremities and face were compared between the three techniques in terms of overall cons...

  14. Brain Extraction and Fuzzy Tissue Segmentation in Cerebral 2D T1-Weigthed Magnetic Resonance Images

    OpenAIRE

    Bouchaib Cherradi; Omar Bouattane; Mohamed Youssfi; Abdelhadi Raihani

    2011-01-01

    In medical imaging, accurate segmentation of brain MR images is of interest for many brain manipulations. In this paper, we present a method for brain Extraction and tissues classification. An application of this method to the segmentation of simulated MRI cerebral images in three clusters will be made. The studied method is composed with different stages, first Brain Extraction from T1-weighted 2D MRI slices (TMBE) is performed as pre-processing procedure, then Histogram based centroids init...

  15. Magnetic resonance imaging research progress on brain functional reorganization after peripheral nerve injury

    International Nuclear Information System (INIS)

    In the recent years, with the development of functional magnetic resonance imaging technology the brain plasticity and functional reorganization are hot topics in the central nervous system imaging studies. Brain functional reorganization and rehabilitation after peripheral nerve injury may have certain regularity. In this paper, the progress of brain functional magnetic resonance imaging technology and its applications in the world wide clinical and experimental researches of the brain functional reorganization after peripheral nerve injury is are reviewed. (authors)

  16. Synthetic T1-weighted brain image generation with incorporated coil intensity correction using DESPOT1.

    Science.gov (United States)

    Deoni, Sean C L; Rutt, Brian K; Peters, Terry M

    2006-11-01

    The increased use of phased-array and surface coils in magnetic resonance imaging, the push toward increased field strength and the need for standardized imaging across multiple sites during clinical trials have resulted in the need for methods that can ensure consistency of intensity both within the image and across multiple subjects/sites. Here, we describe a means of addressing these concerns through an extension of the rapid T(1) mapping technique - driven equilibrium single-pulse observation of T(1). The effectiveness of the proposed approach was evaluated using human brain T(1) maps acquired at 1.5 T with a multichannel phased-array coil. Corrected "synthetic" T(1)-weighted images were reconstructed by substituting the T(1) values back into the governing signal intensity equation while assuming a constant value for the equilibrium magnetization. To demonstrate signal normalization across a longitudinal study, we calculated synthetic T(1)-weighted images from data acquired from the same healthy subject at four different time points. Signal intensity profiles between the acquired and synthetic images were compared to determine the improvements with our proposed approach. Following correction, the images demonstrate obvious qualitative improvement with increased signal uniformity across the image. Near-perfect signal normalization was also observed across the longitudinal study, allowing direct comparison between the images. In addition, we observe an increase in contrast-to-noise ratio (compared with regular T(1)-weighted images) for synthetic images created, assuming uniform proton density throughout the volume. The proposed approach permits rapid correction for signal intensity inhomogeneity without significantly lengthening exam time or reducing image signal-to-noise ratio. This technique also provides a robust method for signal normalization, which is useful in multicenter longitudinal MR studies of disease progression, and allows the user to reconstruct T

  17. Imaging techniques in nuclear medicine. Including DRG, cost and risks

    International Nuclear Information System (INIS)

    One important instrument of optimizing the establishing of indications for imaging diagnostics and interventional radiology is the introduction of indication-specific standards and guidelines. This book for the first time combines the presentation of meaningful and necessary imaging techniques for a large number of clinical indications with an economical assessment of this diagnostical techniques. The average costs of imaging techniques are shown in a way easy to comprehend and are compared with the average remuneration of the whole in-house treatment of the case

  18. Reticle defect sizing of optical proximity correction defects using SEM imaging and image analysis techniques

    Science.gov (United States)

    Zurbrick, Larry S.; Wang, Lantian; Konicek, Paul; Laird, Ellen R.

    2000-07-01

    Sizing of programmed defects on optical proximity correction (OPC) feature sis addressed using high resolution scanning electron microscope (SEM) images and image analysis techniques. A comparison and analysis of different sizing methods is made. This paper addresses the issues of OPC defect definition and discusses the experimental measurement results obtained by SEM in combination with image analysis techniques.

  19. Image Compression and Reconstruction using Cubic Spline Interpolation Technique

    Directory of Open Access Journals (Sweden)

    R. Muthaiah

    2008-01-01

    Full Text Available A new dimension of image compression using random pixels of irregular sampling and image reconstruction using cubic-spline interpolation techniques proposed in this paper. It also covers the wide field of multimedia communication concerned with multimedia messaging (MMS and image transfer through mobile phones and tried to find a mechanism to transfer images with minimum bandwidth requirement. This method would provide a better efficiency both in pixel reconstruction and color reproduction. The discussion covers theoretical techniques of random pixel selection, transfer and implementation of efficient reconstruction with cubic spline interpolation.

  20. Multiple Myeloma: A Review of Imaging Features and Radiological Techniques

    Directory of Open Access Journals (Sweden)

    C. F. Healy

    2011-01-01

    Full Text Available The recently updated Durie/Salmon PLUS staging system published in 2006 highlights the many advances that have been made in the imaging of multiple myeloma, a common malignancy of plasma cells. In this article, we shall focus primarily on the more sensitive and specific whole-body imaging techniques, including whole-body computed tomography, whole-body magnetic resonance imaging, and positron emission computed tomography. We shall also discuss new and emerging imaging techniques and future developments in the radiological assessment of multiple myeloma.