WorldWideScience

Sample records for brain imaging techniques

  1. Image reconstruction techniques for high resolution human brain PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Comtat, C.; Bataille, F.; Sureau, F. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), 91 - Orsay (France)

    2006-07-01

    High resolution PET imaging is now a well established technique not only for small animal, but also for human brain studies. The ECAT HRRT brain PET scanner(Siemens Molecular Imaging) is characterized by an effective isotropic spatial resolution of 2.5 mm, about a factor of 2 better than for state-of-the-art whole-body clinical PET scanners. Although the absolute sensitivity of the HRRT (6.5 %) for point source in the center of the field-of-view is increased relative to whole-body scanner (typically 4.5 %) thanks to a larger co-polar aperture, the sensitivity in terms of volumetric resolution (75 (m{sup 3} at best for whole-body scanners and 16 (m{sup 3} for t he HRRT) is much lower. This constraint has an impact on the performance of image reconstruction techniques, in particular for dynamic studies. Standard reconstruction methods used with clinical whole-body PET scanners are not optimal for this application. Specific methods had to be developed, based on fully 3D iterative techniques. Different refinements can be added in the reconstruction process to improve image quality: more accurate modeling of the acquisition system, more accurate modeling of the statistical properties of the acquired data, anatomical side information to guide the reconstruction . We will present the performances these added developments for neuronal imaging in humans. (author)

  2. Implementing Tumor Detection and Area Calculation in Mri Image of Human Brain Using Image Processing Techniques

    OpenAIRE

    Sunil L. Bangare; Madhura Patil

    2015-01-01

    This paper is based on the research on Human Brain Tumor which uses the MRI imaging technique to capture the image. In this proposed work Brain Tumor area is calculated to define the Stage or level of seriousness of the tumor. Image Processing techniques are used for the brain tumor area calculation and Neural Network algorithms for the tumor position calculation. Also in the further advancement the classification of the tumor based on few parameters is also expected. Proposed wor...

  3. Unsupervised Neural Techniques Applied to MR Brain Image Segmentation

    Directory of Open Access Journals (Sweden)

    A. Ortiz

    2012-01-01

    Full Text Available The primary goal of brain image segmentation is to partition a given brain image into different regions representing anatomical structures. Magnetic resonance image (MRI segmentation is especially interesting, since accurate segmentation in white matter, grey matter and cerebrospinal fluid provides a way to identify many brain disorders such as dementia, schizophrenia or Alzheimer’s disease (AD. Then, image segmentation results in a very interesting tool for neuroanatomical analyses. In this paper we show three alternatives to MR brain image segmentation algorithms, with the Self-Organizing Map (SOM as the core of the algorithms. The procedures devised do not use any a priori knowledge about voxel class assignment, and results in fully-unsupervised methods for MRI segmentation, making it possible to automatically discover different tissue classes. Our algorithm has been tested using the images from the Internet Brain Image Repository (IBSR outperforming existing methods, providing values for the average overlap metric of 0.7 for the white and grey matter and 0.45 for the cerebrospinal fluid. Furthermore, it also provides good results for high-resolution MR images provided by the Nuclear Medicine Service of the “Virgen de las Nieves” Hospital (Granada, Spain.

  4. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    Science.gov (United States)

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  5. Implementing Tumor Detection and Area Calculation in Mri Image of Human Brain Using Image Processing Techniques

    Directory of Open Access Journals (Sweden)

    Sunil L. Bangare

    2015-04-01

    Full Text Available This paper is based on the research on Human Brain Tumor which uses the MRI imaging technique to capture the image. In this proposed work Brain Tumor area is calculated to define the Stage or level of seriousness of the tumor. Image Processing techniques are used for the brain tumor area calculation and Neural Network algorithms for the tumor position calculation. Also in the further advancement the classification of the tumor based on few parameters is also expected. Proposed work is divided in to following Modules: Module 1: Image Pre-Processing Module 2: Feature Extraction, Segmentation using K-Means Algorithm and Fuzzy C-Means Algorithm Module 3: Tumor Area calculation & Stage detection Module 4: Classification and position calculation of tumor using Neural Network

  6. Emerging Techniques in Brain Tumor Imaging: What Radiologists Need to Know

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjae; Kim, Ho Sung [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of)

    2016-11-01

    Among the currently available brain tumor imaging, advanced MR imaging techniques, such as diffusion-weighted MR imaging and perfusion MR imaging, have been used for solving diagnostic challenges associated with conventional imaging and for monitoring the brain tumor treatment response. Further development of advanced MR imaging techniques and postprocessing methods may contribute to predicting the treatment response to a specific therapeutic regimen, particularly using multi-modality and multiparametric imaging. Over the next few years, new imaging techniques, such as amide proton transfer imaging, will be studied regarding their potential use in quantitative brain tumor imaging. In this review, the pathophysiologic considerations and clinical validations of these promising techniques are discussed in the context of brain tumor characterization and treatment response.

  7. Emerging techniques in brain tumor imaging: What radiologists need to know

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Jae; Kim, Ho Sung [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2016-09-15

    Among the currently available brain tumor imaging, advanced MR imaging techniques, such as diffusion-weighted MR imaging and perfusion MR imaging, have been used for solving diagnostic challenges associated with conventional imaging and for monitoring the brain tumor treatment response. Further development of advanced MR imaging techniques and postprocessing methods may contribute to predicting the treatment response to a specific therapeutic regimen, particularly using multi-modality and multiparametric imaging. Over the next few years, new imaging techniques, such as amide proton transfer imaging, will be studied regarding their potential use in quantitative brain tumor imaging. In this review, the pathophysiologic considerations and clinical validations of these promising techniques are discussed in the context of brain tumor characterization and treatment response.

  8. Visualizing the blind brain: brain imaging of visual field defects from early recovery to rehabilitation techniques

    Directory of Open Access Journals (Sweden)

    Marika eUrbanski

    2014-09-01

    Full Text Available Visual field defects (VFDs are one of the most common consequences observed after brain injury, especially after a stroke in the posterior cerebral artery territory. Less frequently, tumours, traumatic brain injury, brain surgery or demyelination can also determine various visual disabilities, from a decrease in visual acuity to cerebral blindness. VFD is a factor of bad functional prognosis as it compromises many daily life activities (e.g., obstacle avoidance, driving, and reading and therefore the patient’s quality of life. Spontaneous recovery seems to be limited and restricted to the first six months, with the best chance of improvement at one month. The possible mechanisms at work could be partly due to cortical reorganization in the visual areas (plasticity and/or partly to the use of intact alternative visual routes, first identified in animal studies and possibly underlying the phenomenon of blindsight. Despite processes of early recovery, which is rarely complete, and learning of compensatory strategies, the patient’s autonomy may still be compromised at more chronic stages. Therefore, various rehabilitation therapies based on neuroanatomical knowledge have been developed to improve VFDs. These use eye-movement training techniques (e.g., visual search, saccadic eye movements, reading training, visual field restitution (the Vision Restoration Therapy, VRT, or perceptual learning. In this review, we will focus on studies of human adults with acquired VFDs, which have used different imaging techniques (Positron Emission Tomography: PET, Diffusion Tensor Imaging: DTI, functional Magnetic Resonance Imaging: fMRI, MagnetoEncephalography: MEG or neurostimulation techniques (Transcranial Magnetic Stimulation: TMS; transcranial Direct Current Stimulation, tDCS to show brain activations in the course of spontaneous recovery or after specific rehabilitation techniques.

  9. A technique for the deidentification of structural brain MR images

    DEFF Research Database (Denmark)

    Bischoff-Grethe, Amanda; Ozyurt, I Burak; Busa, Evelina;

    2007-01-01

    is presented, the optimal linear transform is computed for the input volume (Fischl et al. [2002]: Neuron 33:341-355; Fischl et al. [2004]: Neuroimage 23 (Suppl 1):S69-S84). A brain mask is constructed by forming the union of all voxels with nonzero probability of being brain and then morphologically dilated...... inspection showed none had brain tissue removed. In a detailed analysis of the impact of defacing on skull-stripping, 16 datasets were bias corrected with N3 (Sled et al. [1998]: IEEE Trans Med Imaging 17:87-97), defaced, and then skull-stripped using either a hybrid watershed algorithm (Ségonne et al. [2004......]: Neuroimage 22:1060-1075, in FreeSurfer) or Brain Surface Extractor (Sandor and Leahy [1997]: IEEE Trans Med Imaging 16:41-54; Shattuck et al. [2001]: Neuroimage 13:856-876); defacing did not appreciably influence the outcome of skull-stripping. Results suggested that the automatic defacing algorithm...

  10. A technique for the deidentification of structural brain MR images

    DEFF Research Database (Denmark)

    Bischoff-Grethe, Amanda; Ozyurt, I Burak; Busa, Evelina;

    2007-01-01

    Due to the increasing need for subject privacy, the ability to deidentify structural MR images so that they do not provide full facial detail is desirable. A program was developed that uses models of nonbrain structures for removing potentially identifying facial features. When a novel image....... All voxels outside the mask with a nonzero probability of being a facial feature are set to 0. The algorithm was applied to 342 datasets that included two different T1-weighted pulse sequences and four different diagnoses (depressed, Alzheimer's, and elderly and young control groups). Visual...... inspection showed none had brain tissue removed. In a detailed analysis of the impact of defacing on skull-stripping, 16 datasets were bias corrected with N3 (Sled et al. [1998]: IEEE Trans Med Imaging 17:87-97), defaced, and then skull-stripped using either a hybrid watershed algorithm (Ségonne et al. [2004...

  11. An Improved Image Mining Technique For Brain Tumour Classification Using Efficient Classifier

    OpenAIRE

    Rajendran, P.; M.Madheswaran

    2010-01-01

    An improved image mining technique for brain tumor classification using pruned association rule with MARI algorithm is presented in this paper. The method proposed makes use of association rule mining technique to classify the CT scan brain images into three categories namely normal, benign and malign. It combines the low-level features extracted from images and high level knowledge from specialists. The developed algorithm can assist the physicians for efficient classification with multiple ...

  12. An Improved Image Mining Technique For Brain Tumour Classification Using Efficient Classifier

    Directory of Open Access Journals (Sweden)

    P. Rajendran

    2009-12-01

    Full Text Available An improved image mining technique for brain tumor classification using pruned association rule with MARI algorithm is presented in this paper. The method proposed makes use of association rule mining technique to classify the CT scan brain images into three categories namely normal, benign and malign. It combines the low-level features extracted from images and high level knowledge from specialists. The developed algorithm can assist the physicians for efficient classification with multiple keywords per image to improve the accuracy. The experimental result on pre-diagnosed database of brain images showed 96% and 93% sensitivity and accuracy respectively.Keywords- Data mining; Image ming; Association rule mining; Medical Imaging; Medical image diagnosis; Classification;

  13. Advanced techniques in magnetic resonance imaging of the brain in children with ADHD

    Energy Technology Data Exchange (ETDEWEB)

    Pastura, Giuseppe, E-mail: giuseppe.pastura@terra.com.b [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Pediatria; Mattos, Paulo [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Psiquiatria; Gasparetto, Emerson Leandro [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Radiologia; Araujo, Alexandra Prufer de Queiroz Campos [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Neuropediatria

    2011-04-15

    Attention deficit hyperactivity disorder (ADHD) affects about 5% of school-aged child. Previous published works using different techniques of magnetic resonance imaging (MRI) have demonstrated that there may be some differences between the brain of people with and without this condition. This review aims at providing neurologists, pediatricians and psychiatrists an update on the differences between the brain of children with and without ADHD using advanced techniques of magnetic resonance imaging such as diffusion tensor imaging, brain volumetry and cortical thickness, spectroscopy and functional MRI. Data was obtained by a comprehensive, non-systematic review of medical literature. The regions with a greater number of abnormalities are splenium of the corpus callosum, cingulated gyrus, caudate nucleus, cerebellum, striatum, frontal and temporal cortices. The brain regions where abnormalities are observed in studies of diffusion tensor, volumetry, spectroscopy and cortical thickness are the same involved in neurobiological theories of ADHD coming from studies with functional magnetic resonance imaging. (author)

  14. A Review of Fully Automated Techniques for Brain Tumor Detection From MR Images

    Directory of Open Access Journals (Sweden)

    Anjum Hayat Gondal

    2013-02-01

    Full Text Available Radiologists use medical images to diagnose diseases precisely. However, identification of brain tumor from medical images is still a critical and complicated job for a radiologist. Brain tumor identification form magnetic resonance imaging (MRI consists of several stages. Segmentation is known to be an essential step in medical imaging classification and analysis. Performing the brain MR images segmentation manually is a difficult task as there are several challenges associated with it. Radiologist and medical experts spend plenty of time for manually segmenting brain MR images, and this is a non-repeatable task. In view of this, an automatic segmentation of brain MR images is needed to correctly segment White Matter (WM, Gray Matter (GM and Cerebrospinal Fluid (CSF tissues of brain in a shorter span of time. The accurate segmentation is crucial as otherwise the wrong identification of disease can lead to severe consequences. Taking into account the aforesaid challenges, this research is focused towards highlighting the strengths and limitations of the earlier proposed segmentation techniques discussed in the contemporary literature. Besides summarizing the literature, the paper also provides a critical evaluation of the surveyed literature which reveals new facets of research. However, articulating a new technique is beyond the scope of this paper.

  15. Magnetic resonance imaging acquisition techniques intended to decrease movement artefact in paediatric brain imaging: a systematic review.

    Science.gov (United States)

    Woodfield, Julie; Kealey, Susan

    2015-08-01

    Attaining paediatric brain images of diagnostic quality can be difficult because of young age or neurological impairment. The use of anaesthesia to reduce movement in MRI increases clinical risk and cost, while CT, though faster, exposes children to potentially harmful ionising radiation. MRI acquisition techniques that aim to decrease movement artefact may allow diagnostic paediatric brain imaging without sedation or anaesthesia. We conducted a systematic review to establish the evidence base for ultra-fast sequences and sequences using oversampling of k-space in paediatric brain MR imaging. Techniques were assessed for imaging time, occurrence of movement artefact, the need for sedation, and either image quality or diagnostic accuracy. We identified 24 relevant studies. We found that ultra-fast techniques had shorter imaging acquisition times compared to standard MRI. Techniques using oversampling of k-space required equal or longer imaging times than standard MRI. Both ultra-fast sequences and those using oversampling of k-space reduced movement artefact compared with standard MRI in unsedated children. Assessment of overall diagnostic accuracy was difficult because of the heterogeneous patient populations, imaging indications, and reporting methods of the studies. In children with shunt-treated hydrocephalus there is evidence that ultra-fast MRI is sufficient for the assessment of ventricular size.

  16. Magnetic resonance imaging acquisition techniques intended to decrease movement artefact in paediatric brain imaging: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Woodfield, Julie [University of Edinburgh, Child Life and Health, Edinburgh (United Kingdom); Kealey, Susan [Western General Hospital, Department of Neuroradiology, Edinburgh (United Kingdom)

    2015-08-15

    Attaining paediatric brain images of diagnostic quality can be difficult because of young age or neurological impairment. The use of anaesthesia to reduce movement in MRI increases clinical risk and cost, while CT, though faster, exposes children to potentially harmful ionising radiation. MRI acquisition techniques that aim to decrease movement artefact may allow diagnostic paediatric brain imaging without sedation or anaesthesia. We conducted a systematic review to establish the evidence base for ultra-fast sequences and sequences using oversampling of k-space in paediatric brain MR imaging. Techniques were assessed for imaging time, occurrence of movement artefact, the need for sedation, and either image quality or diagnostic accuracy. We identified 24 relevant studies. We found that ultra-fast techniques had shorter imaging acquisition times compared to standard MRI. Techniques using oversampling of k-space required equal or longer imaging times than standard MRI. Both ultra-fast sequences and those using oversampling of k-space reduced movement artefact compared with standard MRI in unsedated children. Assessment of overall diagnostic accuracy was difficult because of the heterogeneous patient populations, imaging indications, and reporting methods of the studies. In children with shunt-treated hydrocephalus there is evidence that ultra-fast MRI is sufficient for the assessment of ventricular size. (orig.)

  17. AN IMPROVED TECHNIQUE FOR IDENTIFICATION AND CLASSIFICATION OF BRAIN DISORDER FROM MRI BRAIN IMAGE

    Directory of Open Access Journals (Sweden)

    Finitha Joseph

    2015-11-01

    Full Text Available Medical image processing is developing recently due to its wide applications. An efficient MRI image segmentation is needed at present. In this paper, MRI brain segmentation is done by Semi supervised learning which does not require pathology modelling and, thus, allows high degree of automation. In abnormality detection, a vector is characterized as anomalous if it does not comply with the probability distribution obtained from normal data. The estimation of the probability density function, however, is usually not feasible due to large data dimensionality. In order to overcome this challenge, we treat every image as a network of locally coherent image partitions (overlapping blocks. We formulate and maximize a strictly concave likelihood function estimating abnormality for each partition and fuse the local estimates into a globally optimal estimate that satisfies the consistency constraints, based on a distributed estimation algorithm. After this features are extracted by Gray-Level Co-occurrence Matrices (GLCM algorithm and those features are given to Particle Spam Optimization (PSO and finally classification is done by using Library Support Vector Machine (LIBSVM.Thus results are evaluated and proved its efficiency using accuracy.

  18. An improved brain image classification technique with mining and shape prior segmentation procedure.

    Science.gov (United States)

    Rajendran, P; Madheswaran, M

    2012-04-01

    The shape prior segmentation procedure and pruned association rule with ImageApriori algorithm has been used to develop an improved brain image classification system are presented in this paper. The CT scan brain images have been classified into three categories namely normal, benign and malignant, considering the low-level features extracted from the images and high level knowledge from specialists to enhance the accuracy in decision process. The experimental results on pre-diagnosed brain images showed 97% sensitivity, 91% specificity and 98.5% accuracy. The proposed algorithm is expected to assist the physicians for efficient classification with multiple key features per image.

  19. Imaging evidence and recommendations for traumatic brain injury: conventional neuroimaging techniques.

    Science.gov (United States)

    Wintermark, Max; Sanelli, Pina C; Anzai, Yoshimi; Tsiouris, A John; Whitlow, Christopher T

    2015-02-01

    Imaging plays an essential role in identifying intracranial injury in patients with traumatic brain injury (TBI). The goals of imaging include (1) detecting injuries that may require immediate surgical or procedural intervention, (2) detecting injuries that may benefit from early medical therapy or vigilant neurologic supervision, and (3) determining the prognosis of patients to tailor rehabilitative therapy or help with family counseling and discharge planning. In this article, the authors perform a review of the evidence on the utility of various imaging techniques in patients presenting with TBI to provide guidance for evidence-based, clinical imaging protocols. The intent of this article is to suggest practical imaging recommendations for patients presenting with TBI across different practice settings and to simultaneously provide the rationale and background evidence supporting their use. These recommendations should ultimately assist referring physicians faced with the task of ordering appropriate imaging tests in particular patients with TBI for whom they are providing care. These recommendations should also help radiologists advise their clinical colleagues on appropriate imaging utilization for patients with TBI.

  20. Robust biological parametric mapping: an improved technique for multimodal brain image analysis

    Science.gov (United States)

    Yang, Xue; Beason-Held, Lori; Resnick, Susan M.; Landman, Bennett A.

    2011-03-01

    Mapping the quantitative relationship between structure and function in the human brain is an important and challenging problem. Numerous volumetric, surface, region of interest and voxelwise image processing techniques have been developed to statistically assess potential correlations between imaging and non-imaging metrics. Recently, biological parametric mapping has extended the widely popular statistical parametric approach to enable application of the general linear model to multiple image modalities (both for regressors and regressands) along with scalar valued observations. This approach offers great promise for direct, voxelwise assessment of structural and functional relationships with multiple imaging modalities. However, as presented, the biological parametric mapping approach is not robust to outliers and may lead to invalid inferences (e.g., artifactual low p-values) due to slight mis-registration or variation in anatomy between subjects. To enable widespread application of this approach, we introduce robust regression and robust inference in the neuroimaging context of application of the general linear model. Through simulation and empirical studies, we demonstrate that our robust approach reduces sensitivity to outliers without substantial degradation in power. The robust approach and associated software package provides a reliable way to quantitatively assess voxelwise correlations between structural and functional neuroimaging modalities.

  1. Brain tumor classification using the diffusion tensor image segmentation (D-SEG) technique

    Science.gov (United States)

    Jones, Timothy L.; Byrnes, Tiernan J.; Yang, Guang; Howe, Franklyn A.; Bell, B. Anthony; Barrick, Thomas R.

    2015-01-01

    Background There is an increasing demand for noninvasive brain tumor biomarkers to guide surgery and subsequent oncotherapy. We present a novel whole-brain diffusion tensor imaging (DTI) segmentation (D-SEG) to delineate tumor volumes of interest (VOIs) for subsequent classification of tumor type. D-SEG uses isotropic (p) and anisotropic (q) components of the diffusion tensor to segment regions with similar diffusion characteristics. Methods DTI scans were acquired from 95 patients with low- and high-grade glioma, metastases, and meningioma and from 29 healthy subjects. D-SEG uses k-means clustering of the 2D (p,q) space to generate segments with different isotropic and anisotropic diffusion characteristics. Results Our results are visualized using a novel RGB color scheme incorporating p, q and T2-weighted information within each segment. The volumetric contribution of each segment to gray matter, white matter, and cerebrospinal fluid spaces was used to generate healthy tissue D-SEG spectra. Tumor VOIs were extracted using a semiautomated flood-filling technique and D-SEG spectra were computed within the VOI. Classification of tumor type using D-SEG spectra was performed using support vector machines. D-SEG was computationally fast and stable and delineated regions of healthy tissue from tumor and edema. D-SEG spectra were consistent for each tumor type, with constituent diffusion characteristics potentially reflecting regional differences in tissue microstructure. Support vector machines classified tumor type with an overall accuracy of 94.7%, providing better classification than previously reported. Conclusions D-SEG presents a user-friendly, semiautomated biomarker that may provide a valuable adjunct in noninvasive brain tumor diagnosis and treatment planning. PMID:25121771

  2. Image analysis of intracranial high perfusion lesion by whole brain one-stop imaging technique with 320 detector rows CT

    Directory of Open Access Journals (Sweden)

    Fei-zhou DU

    2014-03-01

    Full Text Available Objective  The perfusion and vascular architecture features were investigated and evaluated by use of one-stop imaging technique with 320 rows CT for exploring the clinical value of one-stop imaging technique in the diagnosis of intracranial lesions. Methods  The perfusion parameters and vascular architecture of intracranial high perfusion lesions of 52 patients were collected in General Hospital of Chengdu Command from Oct. 2010 to Apr. 2013, who were examined by one-stop imaging technique with 320 rows CT, were retrospectively analyzed. The perfusion values of normal contralateral cerebral tissue were used as control to analyze the perfusion and vascular architecture features of injured parts. Results  Of the 52 patients, there were 16 cases of subacute cerebral infarction, 9 cases of arteriovenous malformation, 7 cases of hemangioma, 12 cases of meningioma, and 8 cases of glioma. All the patients showed elevated CBV and/or CBF and different changes in mean transit time (MTT, time to peak (TTP and delay time (Delay. In the cases of subacute cerebral infarction, the parameters of MTT, TTP and Delay increased. In the cases of arteriovenous malformation, all the parameters decreased. In the cases of hemangioma, the MTT decreased, while TTP and Delay increased. In the cases of glioma, the TTP and Delay increased, while the change of MTT varied. Meanwhile, abnormality of vascular structures was found in all the cases by CT angiography. Conclusion  With whole brain perfusion and one-stop vascular imaging with 320 rows CT, the perfusion characteristics of intracranial lesions can be revealed completely, including blood supply and microcirculation changes in the lesions, and it may be of benefit in guiding the clinical diagnosis and treatment. DOI: 10.11855/j.issn.0577-7402.2014.03.10

  3. Brain connectivity study of joint attention using frequency-domain optical imaging technique

    Science.gov (United States)

    Chaudhary, Ujwal; Zhu, Banghe; Godavarty, Anuradha

    2010-02-01

    Autism is a socio-communication brain development disorder. It is marked by degeneration in the ability to respond to joint attention skill task, from as early as 12 to 18 months of age. This trait is used to distinguish autistic from nonautistic populations. In this study, diffuse optical imaging is being used to study brain connectivity for the first time in response to joint attention experience in normal adults. The prefrontal region of the brain was non-invasively imaged using a frequency-domain based optical imager. The imaging studies were performed on 11 normal right-handed adults and optical measurements were acquired in response to joint-attention based video clips. While the intensity-based optical data provides information about the hemodynamic response of the underlying neural process, the time-dependent phase-based optical data has the potential to explicate the directional information on the activation of the brain. Thus brain connectivity studies are performed by computing covariance/correlations between spatial units using this frequency-domain based optical measurements. The preliminary results indicate that the extent of synchrony and directional variation in the pattern of activation varies in the left and right frontal cortex. The results have significant implication for research in neural pathways associated with autism that can be mapped using diffuse optical imaging tools in the future.

  4. The Contribution of Novel Brain Imaging Techniques to Understanding the Neurobiology of Mental Retardation and Developmental Disabilities

    Science.gov (United States)

    Gothelf, Doron; Furfaro, Joyce A.; Penniman, Lauren C.; Glover, Gary H.; Reiss, Allan L.

    2005-01-01

    Studying the biological mechanisms underlying mental retardation and developmental disabilities (MR/DD) is a very complex task. This is due to the wide heterogeneity of etiologies and pathways that lead to MR/DD. Breakthroughs in genetics and molecular biology and the development of sophisticated brain imaging techniques during the last decades…

  5. Detecting brain tumor in computed tomography images using Markov random fields and fuzzy C-means clustering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Abdulbaqi, Hayder Saad [School of Physics, Universiti Sains Malaysia, 11700, Penang (Malaysia); Department of Physics, College of Education, University of Al-Qadisiya, Al-Qadisiya (Iraq); Jafri, Mohd Zubir Mat; Omar, Ahmad Fairuz; Mustafa, Iskandar Shahrim Bin [School of Physics, Universiti Sains Malaysia, 11700, Penang (Malaysia); Abood, Loay Kadom [Department of Computer Science, College of Science, University of Baghdad, Baghdad (Iraq)

    2015-04-24

    Brain tumors, are an abnormal growth of tissues in the brain. They may arise in people of any age. They must be detected early, diagnosed accurately, monitored carefully, and treated effectively in order to optimize patient outcomes regarding both survival and quality of life. Manual segmentation of brain tumors from CT scan images is a challenging and time consuming task. Size and location accurate detection of brain tumor plays a vital role in the successful diagnosis and treatment of tumors. Brain tumor detection is considered a challenging mission in medical image processing. The aim of this paper is to introduce a scheme for tumor detection in CT scan images using two different techniques Hidden Markov Random Fields (HMRF) and Fuzzy C-means (FCM). The proposed method has been developed in this research in order to construct hybrid method between (HMRF) and threshold. These methods have been applied on 4 different patient data sets. The result of comparison among these methods shows that the proposed method gives good results for brain tissue detection, and is more robust and effective compared with (FCM) techniques.

  6. MRI brain imaging.

    Science.gov (United States)

    Skinner, Sarah

    2013-11-01

    General practitioners (GPs) are expected to be allowed to request MRI scans for adults for selected clinically appropriate indications from November 2013 as part of the expansion of Medicare-funded MRI services announced by the Federal Government in 2011. This article aims to give a brief overview of MRI brain imaging relevant to GPs, which will facilitate explanation of scan findings and management planning with their patients. Basic imaging techniques, common findings and terminology are presented using some illustrative case examples.

  7. Brain image Compression, a brief survey

    Directory of Open Access Journals (Sweden)

    Saleha Masood

    2013-01-01

    Full Text Available Brain image compression is known as a subfield of image compression. It allows the deep analysis and measurements of brain images in different modes. Brain images are compressed to analyze and diagnose in an effective manner while reducing the image storage space. This survey study describes the different existing techniques regarding brain image compression. The techniques come under different categories. The study also discusses these categories.

  8. Automated brain tumor segmentation in magnetic resonance imaging based on sliding-window technique and symmetry analysis

    Institute of Scientific and Technical Information of China (English)

    Lian Yanyun; Song Zhijian

    2014-01-01

    Background Brain tumor segmentation from magnetic resonance imaging (MRI) is an important step toward surgical planning,treatment planning,monitoring of therapy.However,manual tumor segmentation commonly used in clinic is time-consuming and challenging,and none of the existed automated methods are highly robust,reliable and efficient in clinic application.An accurate and automated tumor segmentation method has been developed for brain tumor segmentation that will provide reproducible and objective results close to manual segmentation results.Methods Based on the symmetry of human brain,we employed sliding-window technique and correlation coefficient to locate the tumor position.At first,the image to be segmented was normalized,rotated,denoised,and bisected.Subsequently,through vertical and horizontal sliding-windows technique in turn,that is,two windows in the left and the right part of brain image moving simultaneously pixel by pixel in two parts of brain image,along with calculating of correlation coefficient of two windows,two windows with minimal correlation coefficient were obtained,and the window with bigger average gray value is the location of tumor and the pixel with biggest gray value is the locating point of tumor.At last,the segmentation threshold was decided by the average gray value of the pixels in the square with center at the locating point and 10 pixels of side length,and threshold segmentation and morphological operations were used to acquire the final tumor region.Results The method was evaluated on 3D FSPGR brain MR images of 10 patients.As a result,the average ratio of correct location was 93.4% for 575 slices containing tumor,the average Dice similarity coefficient was 0.77 for one scan,and the average time spent on one scan was 40 seconds.Conclusions An fully automated,simple and efficient segmentation method for brain tumor is proposed and promising for future clinic use.Correlation coefficient is a new and effective feature for tumor

  9. Nanoparticle-based CT imaging technique for longitudinal and quantitative stem cell tracking within the brain: application in neuropsychiatric disorders.

    Science.gov (United States)

    Betzer, Oshra; Shwartz, Amit; Motiei, Menachem; Kazimirsky, Gila; Gispan, Iris; Damti, Efrat; Brodie, Chaya; Yadid, Gal; Popovtzer, Rachela

    2014-09-23

    A critical problem in the development and implementation of stem cell-based therapy is the lack of reliable, noninvasive means to image and trace the cells post-transplantation and evaluate their biodistribution, final fate, and functionality. In this study, we developed a gold nanoparticle-based CT imaging technique for longitudinal mesenchymal stem cell (MSC) tracking within the brain. We applied this technique for noninvasive monitoring of MSCs transplanted in a rat model for depression. Our research reveals that cell therapy is a potential approach for treating neuropsychiatric disorders. Our results, which demonstrate that cell migration could be detected as early as 24 h and up to one month post-transplantation, revealed that MSCs specifically navigated and homed to distinct depression-related brain regions. We further developed a noninvasive quantitative CT ruler, which can be used to determine the number of cells residing in a specific brain region, without tissue destruction or animal scarification. This technique may have a transformative effect on cellular therapy, both for basic research and clinical applications.

  10. Quantitative Analysis of Diffusion Weighted MR Images of Brain Tumor Using Signal Intensity Gradient Technique

    Directory of Open Access Journals (Sweden)

    S. S. Shanbhag

    2014-01-01

    Full Text Available The purpose of this study was to evaluate the role of diffusion weighted-magnetic resonance imaging (DW-MRI in the examination and classification of brain tumors, namely, glioma and meningioma. Our hypothesis was that as signal intensity variations on diffusion weighted (DW images depend on histology and cellularity of the tumor, analysing the signal intensity characteristics on DW images may allow differentiating between the tumor types. Towards this end the signal intensity variations on DW images of the entire tumor volume data of 20 subjects with glioma and 12 subjects with meningioma were investigated and quantified using signal intensity gradient (SIG parameter. The relative increase in the SIG values (RSIG for the subjects with glioma and meningioma was in the range of 10.08–28.36 times and 5.60–9.86 times, respectively, compared to their corresponding SIG values on the contralateral hemisphere. The RSIG values were significantly different between the subjects with glioma and meningioma (P<0.01, with no overlap between RSIG values across the two tumors. The results indicate that the quantitative changes in the RSIG values could be applied in the differential diagnosis of glioma and meningioma, and their adoption in clinical diagnosis and treatment could be helpful and informative.

  11. [A technique for the vein extraction from the susceptibility weighted imaging of the brain].

    Science.gov (United States)

    Suo, Shi; Dou, Feifei; Wang, Cheng; Xu, Jianrong; Huang, Xin; Qian, Lijun; Xu, Xiu

    2011-03-01

    This paper studies the vein extraction technique based on the susceptibility weighted imaging (SWI) and introduced an improved self-adaptive threshold method based on the vessel enhancing diffusion. The approach employs the combination indicator of the local gray character, the global gray character and the tubular information of the vein. It first applies the vessel enhancing diffusion filter to enhance the continuity of the vein, increases the detection rate of tiny vein and suppresses the nucleus areas. And then it uses the improved self-adaptive threshold method to extract the vein. The results demonstrate that this approach can solve the problem above and extract the vein from the SWI image accurately.

  12. Functional Brain Imaging: A Comprehensive Survey

    CERN Document Server

    Sarraf, Saman

    2016-01-01

    Functional brain imaging allows measuring dynamic functionality in all brain regions. It is broadly used in clinical cognitive neuroscience as, well as in research. It will allow the observation of neural activities in the brain simultaneously. From the beginning when functional brain imaging was initiated by the mapping of brain functions proposed by phrenologists, many scientists were asking why we need to image brain functionality since we have already structural information. Simply, their important question was including a great answer. Functional information of the human brain would definitely complement structural information, helping to have a better understanding of what is happening in the brain. This paper, which could be useful to those who have an interest in functional brain imaging, such as engineers, will present a quick review of modalities used in functional brain imaging. We will concentrate on the most used techniques in functional imaging which are functional magnetic resonance imaging (fM...

  13. Experimental models of brain ischemia: a review of techniques, magnetic resonance imaging and investigational cell-based therapies

    Directory of Open Access Journals (Sweden)

    Alessandra eCanazza

    2014-02-01

    Full Text Available Stroke continues to be a significant cause of death and disability worldwide. Although major advances have been made in the past decades in prevention, treatment and rehabilitation, enormous challenges remain in the way of translating new therapeutic approaches from bench to bedside. Thrombolysis, while routinely used for ischemic stroke, is only a viable option within a narrow time window. Recently, progress in stem cell biology has opened up avenues to therapeutic strategies aimed at supporting and replacing neural cells in infarcted areas. Realistic experimental animal models are crucial to understand the mechanisms of neuronal survival following ischemic brain injury and to develop therapeutic interventions. Current studies on experimental stroke therapies evaluate the efficiency of neuroprotective agents and cell-based approaches using primarily rodent models of permanent or transient focal cerebral ischemia. In parallel, advancements in imaging techniques permit better mapping of the spatial-temporal evolution of the lesioned cortex and its functional responses. This review provides a condensed conceptual review of the state of the art of this field, from models and magnetic resonance imaging techniques through to stem cell therapies.

  14. Live cell imaging techniques to study T cell trafficking across the blood-brain barrier in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Coisne Caroline

    2013-01-01

    Full Text Available Abstract Background The central nervous system (CNS is an immunologically privileged site to which access for circulating immune cells is tightly controlled by the endothelial blood–brain barrier (BBB located in CNS microvessels. Under physiological conditions immune cell migration across the BBB is low. However, in neuroinflammatory diseases such as multiple sclerosis, many immune cells can cross the BBB and cause neurological symptoms. Extravasation of circulating immune cells is a multi-step process that is regulated by the sequential interaction of different adhesion and signaling molecules on the immune cells and on the endothelium. The specialized barrier characteristics of the BBB, therefore, imply the existence of unique mechanisms for immune cell migration across the BBB. Methods and design An in vitro mouse BBB model maintaining physiological barrier characteristics in a flow chamber and combined with high magnification live cell imaging, has been established. This model enables the molecular mechanisms involved in the multi-step extravasation of T cells across the in vitro BBB, to be defined with high-throughput analyses. Subsequently these mechanisms have been verified in vivo using a limited number of experimental animals and a spinal cord window surgical technique. The window enables live observation of the dynamic interaction between T cells and spinal cord microvessels under physiological and pathological conditions using real time epifluorescence intravital imaging. These in vitro and in vivo live cell imaging methods have shown that the BBB endothelium possesses unique and specialized mechanisms involved in the multi-step T cell migration across this endothelial barrier under physiological flow. The initial T cell interaction with the endothelium is either mediated by T cell capture or by T cell rolling. Arrest follows, and then T cells polarize and especially CD4+ T cells crawl over long distances against the direction of

  15. Brain Image Motion Correction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus

    2015-01-01

    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  16. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between v...

  17. Classification of Medical Brain Images

    Institute of Scientific and Technical Information of China (English)

    Pan Haiwei(潘海为); Li Jianzhong; Zhang Wei

    2003-01-01

    Since brain tumors endanger people's living quality and even their lives, the accuracy of classification becomes more important. Conventional classifying techniques are used to deal with those datasets with characters and numbers. It is difficult, however, to apply them to datasets that include brain images and medical history (alphanumeric data), especially to guarantee the accuracy. For these datasets, this paper combines the knowledge of medical field and improves the traditional decision tree. The new classification algorithm with the direction of the medical knowledge not only adds the interaction with the doctors, but also enhances the quality of classification. The algorithm has been used on real brain CT images and a precious rule has been gained from the experiments. This paper shows that the algorithm works well for real CT data.

  18. Minireview of Stereoselective Brain Imaging

    DEFF Research Database (Denmark)

    Smith, Donald F.; Jakobsen, Steen

    2014-01-01

    Stereoselectivity is a fundamental principle in living systems. Stereoselectivity reflects the dependence of molecular processes on the spatial orientation of constituent atoms. Stereoselective processes govern many aspects of brain function and direct the course of many psychotropic drugs. Today...... animals and awake humans. The studies have demonstrated how many aspects of neurotransmission consist of crucial stereoselective events that can affect brain function in health and disease. Here, we present a brief account of those findings in hope of stimulating further interest in the vital topic......., modern imaging techniques such as SPECT and PET provide a means for studying stereoselective processes in the living brain. Chemists have prepared numerous radiolabelled stereoisomers for use in SPECT and PET in order to explore various molecular processes in the living brain of anesthetized laboratory...

  19. Comparison of iterative model, hybrid iterative, and filtered back projection reconstruction techniques in low-dose brain CT: impact of thin-slice imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakaura, Takeshi; Iyama, Yuji; Kidoh, Masafumi; Yokoyama, Koichi [Amakusa Medical Center, Diagnostic Radiology, Amakusa, Kumamoto (Japan); Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Oda, Seitaro; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Tokuyasu, Shinichi [Philips Electronics, Kumamoto (Japan); Harada, Kazunori [Amakusa Medical Center, Department of Surgery, Kumamoto (Japan)

    2016-03-15

    The purpose of this study was to evaluate the utility of iterative model reconstruction (IMR) in brain CT especially with thin-slice images. This prospective study received institutional review board approval, and prior informed consent to participate was obtained from all patients. We enrolled 34 patients who underwent brain CT and reconstructed axial images with filtered back projection (FBP), hybrid iterative reconstruction (HIR) and IMR with 1 and 5 mm slice thicknesses. The CT number, image noise, contrast, and contrast noise ratio (CNR) between the thalamus and internal capsule, and the rate of increase of image noise in 1 and 5 mm thickness images between the reconstruction methods, were assessed. Two independent radiologists assessed image contrast, image noise, image sharpness, and overall image quality on a 4-point scale. The CNRs in 1 and 5 mm slice thickness were significantly higher with IMR (1.2 ± 0.6 and 2.2 ± 0.8, respectively) than with FBP (0.4 ± 0.3 and 1.0 ± 0.4, respectively) and HIR (0.5 ± 0.3 and 1.2 ± 0.4, respectively) (p < 0.01). The mean rate of increasing noise from 5 to 1 mm thickness images was significantly lower with IMR (1.7 ± 0.3) than with FBP (2.3 ± 0.3) and HIR (2.3 ± 0.4) (p < 0.01). There were no significant differences in qualitative analysis of unfamiliar image texture between the reconstruction techniques. IMR offers significant noise reduction and higher contrast and CNR in brain CT, especially for thin-slice images, when compared to FBP and HIR. (orig.)

  20. Neuroimaging in Traumatic Brain Imaging

    OpenAIRE

    Lee, Bruce; Newberg, Andrew

    2005-01-01

    Summary: Traumatic brain injury (TBI) is a common and potentially devastating clinical problem. Because prompt proper management of TBI sequelae can significantly alter the clinical course especially within 48 h of the injury, neuroimaging techniques have become an important part of the diagnostic work up of such patients. In the acute setting, these imaging studies can determine the presence and extent of injury and guide surgical planning and minimally invasive interventions. Neuroimaging a...

  1. Brain hypoxia imaging

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ho Chun [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-04-15

    The measurement of pathologically low levels of tissue pO{sub 2} is an important diagnostic goal for determining the prognosis of many clinically important diseases including cardiovascular insufficiency, stroke and cancer. The target tissues nowadays have mostly been tumors or the myocardium, with less attention centered on the brain. Radiolabelled nitroimidazole or derivatives may be useful in identifying the hypoxic cells in cerebrovascular disease or traumatic brain injury, and hypoxic-ischemic encephalopathy. In acute stroke, the target of therapy is the severely hypoxic but salvageable tissue. {sup 18}F-MISO PET and {sup 99m}Tc-EC-metronidazole SPECT in patients with acute ischemic stroke identified hypoxic tissues and ischemic penumbra, and predicted its outcome. A study using {sup 123}I-IAZA in patient with closed head injury detected the hypoxic tissues after head injury. Up till now these radiopharmaceuticals have drawbacks due to its relatively low concentration with hypoxic tissues associated with/without low blood-brain barrier permeability and the necessity to wait a long time to achieve acceptable target to background ratios for imaging in acute ischemic stroke. It is needed to develop new hypoxic marker exhibiting more rapid localization in the hypoxic region in the brain. And then, the hypoxic brain imaging with imidazoles or non-imidazoles may be very useful in detecting the hypoxic tissues, determining therapeutic strategies and developing therapeutic drugs in several neurological disease, especially, in acute ischemic stroke.

  2. Imaging techniques in microbiology.

    Science.gov (United States)

    Fung, D C; Theriot, J A

    1998-06-01

    Recent advances in optical imaging have dramatically expanded the capabilities of the light microscope and its usefulness in microbiology research. Some of these advances include improved fluorescent probes, better cameras, new techniques such as confocal and deconvolution microscopy, and the use of computers in imaging and image analysis. These new technologies have now been applied to microbiological problems with resounding success.

  3. Brain Image Representation and Rendering: A Survey

    Directory of Open Access Journals (Sweden)

    Mudassar Raza

    2012-09-01

    Full Text Available Brain image representation and rendering processes are basically used for evaluation, development and investigation consent experimental examination and formation of brain images of a variety of modalities that includes the major brain types like MEG, EEG, PET, MRI, CT or microscopy. So, there is a need to conduct a study to review the existing work in this area. This paper provides a review of different existing techniques and methods regarding the brain image representation and rendering. Image Rendering is the method of generating an image by means of a model, through computer programs. The basic purpose of brain image representation and rendering processes is to analyze the brain images precisely in order to effectively diagnose and examine the diseases and problems. The basic objective of this study is to evaluate and discuss different techniques and approaches proposed in order to handle different brain imaging types. The paper provides a short overview of different methods, in the form of advantages and limitations, presented in the prospect of brain image representation and rendering along with their sub categories proposed by different authors.

  4. Brain imaging and autism

    Energy Technology Data Exchange (ETDEWEB)

    Zilbovicius, M. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), INSERM CEA 0205, 91 - Orsay (France)

    2006-07-01

    Autism is a neuro-developmental disorder with a range of clinical presentations, from mild to severe, referred to as autism spectrum disorders (ASD). The most common clinical ASD sign is social interaction impairment, which is associated with verbal and non-verbal communication deficits and stereotyped and obsessive behaviors. Thanks to recent brain imaging studies, scientists are getting a better idea of the neural circuits involved in ASD. Indeed, functional brain imaging, such as positron emission tomography (PET), single positron emission tomograph y (SPECT) and functional MRI (fMRI) have opened a new perspective to study normal and pathological brain functions. Three independent studies have found anatomical and rest functional temporal abnormalities. These anomalies are localized in the superior temporal sulcus bilaterally which are critical for perception of key social stimuli. In addition, functional studies have shown hypo-activation of most areas implicated in social perception (face and voice perception) and social cognition (theory of mind). These data suggest an abnormal functioning of the social brain network. The understanding of such crucial abnormal mechanism may drive the elaboration of new and more adequate social re-educative strategies in autism. (author)

  5. MRI Brain Image Segmentation based on Thresholding

    Directory of Open Access Journals (Sweden)

    G. Evelin Sujji, Y.V.S. Lakshmi, G. Wiselin Jiji

    2013-03-01

    Full Text Available Medical Image processing is one of the mostchallenging topics in research field. The mainobjective of image segmentation is to extract variousfeatures of the image that are used foranalysing,interpretation and understanding of images.Medical Resonance Image plays a major role inMedical diagnostics. Image processing in MRI ofbrain is highlyessential due to accurate detection ofthe type of brain abnormality which can reduce thechance of fatal result. This paper outlines anefficient image segmentation technique that candistinguish the pathological tissues such asedemaandtumourfrom thenormal tissues such as WhiteMatter(WM,GreyMatter(GM, andCerebrospinal Fluid(CSF. Thresholding is simplerand most commonly used techniques in imagesegmentation. This technique can be used to detectthe contour of thetumourin brain.

  6. Imaging brain development: the adolescent brain.

    Science.gov (United States)

    Blakemore, Sarah-Jayne

    2012-06-01

    The past 15 years have seen a rapid expansion in the number of studies using neuroimaging techniques to investigate maturational changes in the human brain. In this paper, I review MRI studies on structural changes in the developing brain, and fMRI studies on functional changes in the social brain during adolescence. Both MRI and fMRI studies point to adolescence as a period of continued neural development. In the final section, I discuss a number of areas of research that are just beginning and may be the subject of developmental neuroimaging in the next twenty years. Future studies might focus on complex questions including the development of functional connectivity; how gender and puberty influence adolescent brain development; the effects of genes, environment and culture on the adolescent brain; development of the atypical adolescent brain; and implications for policy of the study of the adolescent brain.

  7. Brain imaging in type 2 diabetes.

    Science.gov (United States)

    Brundel, Manon; Kappelle, L Jaap; Biessels, Geert Jan

    2014-12-01

    Type 2 diabetes mellitus (T2DM) is associated with cognitive dysfunction and dementia. Brain imaging may provide important clues about underlying processes. This review focuses on the relationship between T2DM and brain abnormalities assessed with different imaging techniques: both structural and functional magnetic resonance imaging (MRI), including diffusion tensor imaging and magnetic resonance spectroscopy, as well as positron emission tomography and single-photon emission computed tomography. Compared to people without diabetes, people with T2DM show slightly more global brain atrophy, which increases gradually over time compared with normal aging. Moreover, vascular lesions are seen more often, particularly lacunar infarcts. The association between T2DM and white matter hyperintensities and microbleeds is less clear. T2DM has been related to diminished cerebral blood flow and cerebrovascular reactivity, particularly in more advanced disease. Diffusion tensor imaging is a promising technique with respect to subtle white matter involvement. Thus, brain imaging studies show that T2DM is associated with both degenerative and vascular brain damage, which develops slowly over the course of many years. The challenge for future studies will be to further unravel the etiology of brain damage in T2DM, and to identify subgroups of patients that will develop distinct progressive brain damage and cognitive decline.

  8. CT scan of the brain (image)

    Science.gov (United States)

    ... CAT scan (computed tomography) is a much more sensitive imaging technique than x-ray, allowing high definition not only of the bony structures, but of the soft tissues. Clear images of organs such as the brain, muscles, joint structures, veins ...

  9. Advantages in functional imaging of the brain

    Directory of Open Access Journals (Sweden)

    Walter eMier

    2015-05-01

    Full Text Available As neuronal pathologies cause only minor morphological alterations, molecular imaging techniques are a prerequisite for the study of diseases of the brain. The development of molecular probes that specifically bind biochemical markers and the advances of instrumentation have revolutionized the possibilities to gain insight into the human brain organization and beyond this visualize structure-function and brain-behavior relationships. The review describes the development and current applications of functional brain imaging techniques with a focus on applications in psychiatry. A historical overview of the development of functional imaging is followed by the portrayal of the principles and applications of positron emission tomography (PET and functional magnetic resonance imaging (fMRI, two key molecular imaging techniques that have revolutionized the ability to image molecular processes in the brain. In the juxtaposition of PET and fMRI in hybrid PET/MRI scanners enhances the significance of both modalities for research in neurology and psychiatry and might pave the way for a new area of personalized medicine.

  10. Imaging brain plasticity after trauma

    Institute of Scientific and Technical Information of China (English)

    Zhifeng Kou; Armin Iraji

    2014-01-01

    The brain is highly plastic after stroke or epilepsy;however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrat-ed both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the ifeld is still short of proper means on how to guide the choice of TBI rehabilitation or treat-ment plan to promote brain plasticity. The authors also point out the new direction of brain plas-ticity investigation.

  11. Analysis of Dynamic Brain Imaging Data

    CERN Document Server

    Mitra, P

    1998-01-01

    Modern imaging techniques for probing brain function, including functional Magnetic Resonance Imaging, intrinsic and extrinsic contrast optical imaging, and magnetoencephalography, generate large data sets with complex content. In this paper we develop appropriate techniques of analysis and visualization of such imaging data, in order to separate the signal from the noise, as well as to characterize the signal. The techniques developed fall into the general category of multivariate time series analysis, and in particular we extensively use the multitaper framework of spectral analysis. We develop specific protocols for the analysis of fMRI, optical imaging and MEG data, and illustrate the techniques by applications to real data sets generated by these imaging modalities. In general, the analysis protocols involve two distinct stages: `noise' characterization and suppression, and `signal' characterization and visualization. An important general conclusion of our study is the utility of a frequency-based repres...

  12. Advanced Pediatric Brain Imaging Research and Training Program

    Science.gov (United States)

    2015-10-01

    online learning management system, by creating and implementing methods for converting the existing in- classroom educational BRAIN seminars into self...iii) the necessary skills to apply advanced MRI techniques to study brain injury, and to facilitate the diagnosis, management , and ultimately...Recent advances in pediatric magnetic resonance imaging (MRI) techniques are revolutionizing our understanding of brain injury, its potential for

  13. A Review of Brain Extraction Techniques in Fetal MRI

    Directory of Open Access Journals (Sweden)

    Morteza Pishghadam

    2016-03-01

    Full Text Available Sonography, Maternal Serum Screening, amniocentesis, and sampling are among the techniques utilized to examine a developing fetus and diagnose fetal abnormalities in the uterus. Despite the fact that Sonography is the main technique used for imaging and monitoring, the use of Magnetic Resonance Imaging (MRI to evaluate the fetus is growing. Moreover, MRI is used for further examinations in case of abnormalities diagnosed in the ultrasound scan. MRI, in comparison with other imaging techniques, provides the advantage of fetal brain study with higher precision and quality. The first step to study the fetal brain is its extraction from the MRI of the fetal brain. Since the maternal tissue is also present in the MRI of the fetal brain tissue, and due to the differences in the adult and fetus signals of brain tissue, it is not possible to use the adult brain extraction techniques for fetus. Given that semi-automatic segmentation is a time-consuming and tedious task, the need for automatic segmentation is highlighted. This is while the development of the stages of automatic segmentation of brain structures is still a challenge to overcome. In the present paper, we review the techniques for automatic segmentation or brain extraction of fetal MRI.

  14. Psoriatic arthritis: imaging techniques

    Directory of Open Access Journals (Sweden)

    E. Lubrano

    2012-06-01

    Full Text Available Imaging techniques to assess psoriatic arthritis (PsA include radiography, ultrasonography (US, magnetic resonance imaging (MRI, computed tomography (CT and bone scintigraphy. The radiographic hallmark of PsA is the combination of destructive changes (joint erosions, tuft resorption, osteolysis with bone proliferation (including periarticular and shaft periostitis, ankylosis, spur formation and non-marginal syndesmophytes. US has an increasing important role in the evaluation of PsA. In fact, power Doppler US is useful mainly for its ability to assess musculoskeletal (joints, tendons, entheses and cutaneous (skin and nails involvement, to monitor efficacy of therapy and to guide steroid injections at the level of inflamed joints, tendon sheaths and entheses. MRI allows direct visualization of inflammation in peripheral and axial joints, and peripheral and axial entheses, and has dramatically improved the possibilities for early diagnosis and objective monitoring of the disease process in PsA. MRI has allowed explaining the relationships among enthesitis, synovitis and osteitis in PsA, supporting a SpA pattern of inflammation where enthesitis is the primary target of inflammation. CT has little role in assessment of peripheral joints, but it may be useful in assessing elements of spine disease. CT accuracy is similar to MRI in assessment of erosions in sacroiliac joint involvement, but CT is not as effective in detecting synovial inflammation. Bone scintigraphy lacks specificity and is now supplanted with US and MRI techniques.

  15. Morphological Techniques for Medical Images: A Review

    Directory of Open Access Journals (Sweden)

    Isma Irum

    2012-08-01

    Full Text Available Image processing is playing a very important role in medical imaging with its versatile applications and features towards the development of computer aided diagnostic systems, automatic detections of abnormalities and enhancement in ultrasonic, computed tomography, magnetic resonance images and lots more applications. Medical images morphology is a field of study where the medical images are observed and processed on basis of geometrical and changing structures. Medical images morphological techniques has been reviewed in this study underlying the some human organ images, the associated diseases and processing techniques to address some anatomical problem detection. Images of Human brain, bone, heart, carotid, iris, lesion, liver and lung have been discussed in this study.

  16. Image processing techniques for acoustic images

    Science.gov (United States)

    Murphy, Brian P.

    1991-06-01

    The primary goal of this research is to test the effectiveness of various image processing techniques applied to acoustic images generated in MATLAB. The simulated acoustic images have the same characteristics as those generated by a computer model of a high resolution imaging sonar. Edge detection and segmentation are the two image processing techniques discussed in this study. The two methods tested are a modified version of the Kalman filtering and median filtering.

  17. Optical Brain Imaging: A Powerful Tool for Neuroscience.

    Science.gov (United States)

    Zhu, Xinpei; Xia, Yanfang; Wang, Xuecen; Si, Ke; Gong, Wei

    2017-02-01

    As the control center of organisms, the brain remains little understood due to its complexity. Taking advantage of imaging methods, scientists have found an accessible approach to unraveling the mystery of neuroscience. Among these methods, optical imaging techniques are widely used due to their high molecular specificity and single-molecule sensitivity. Here, we overview several optical imaging techniques in neuroscience of recent years, including brain clearing, the micro-optical sectioning tomography system, and deep tissue imaging.

  18. Proton MRS imaging in pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Zarifi, Maria [Aghia Sophia Children' s Hospital, Department of Radiology, Athens (Greece); Tzika, A.A. [Harvard Medical School, Department of Surgery, Massachusetts General Hospital, Boston, MA (United States); Shriners Burn Hospital, Boston, MA (United States)

    2016-06-15

    Magnetic resonance (MR) techniques offer a noninvasive, non-irradiating yet sensitive approach to diagnosing and monitoring pediatric brain tumors. Proton MR spectroscopy (MRS), as an adjunct to MRI, is being more widely applied to monitor the metabolic aspects of brain cancer. In vivo MRS biomarkers represent a promising advance and may influence treatment choice at both initial diagnosis and follow-up, given the inherent difficulties of sequential biopsies to monitor therapeutic response. When combined with anatomical or other types of imaging, MRS provides unique information regarding biochemistry in inoperable brain tumors and can complement neuropathological data, guide biopsies and enhance insight into therapeutic options. The combination of noninvasively acquired prognostic information and the high-resolution anatomical imaging provided by conventional MRI is expected to surpass molecular analysis and DNA microarray gene profiling, both of which, although promising, depend on invasive biopsy. This review focuses on recent data in the field of MRS in children with brain tumors. (orig.)

  19. Other imaging techniques.

    Science.gov (United States)

    Isard, H J

    1984-02-01

    Images of the breast can now be produced by five modalities: x-ray, heat, sound, light, and magnetism. X-ray mammography is generally accepted as the most accurate of these in the detection of breast cancer, and the standard by which the others are judged. Despite the obvious attraction of nonionizing techniques, the economic factor attendant on multiple studies requires consideration. Nuclear magnetic resonance (NMR) is currently being investigated in several clinics, but as yet there is no large series of documented cases. This report addresses itself to thermography, ultrasonography and diaphanography (transillumination). The unique characteristics of each and their respective roles in evaluation of the breast, particularly in the detection of breast cancer, will be discussed. When used in conjunction with mammography, potential advantages include: enhanced diagnostic accuracy, reduction of unnecessary surgery, and, in proven cases of breast cancer, prognostic capability. Thus far it has not been demonstrated that any of the nonionizing techniques can serve as a sole screening modality for breast cancer detection in asymptomatic women.

  20. IMAGE ENHANCEMENT USING IMAGE FUSION AND IMAGE PROCESSING TECHNIQUES

    OpenAIRE

    Arjun Nelikanti

    2015-01-01

    Principle objective of Image enhancement is to process an image so that result is more suitable than original image for specific application. Digital image enhancement techniques provide a multitude of choices for improving the visual quality of images. Appropriate choice of such techniques is greatly influenced by the imaging modality, task at hand and viewing conditions. This paper will provide a combination of two concepts, image fusion by DWT and digital image processing techniques. The e...

  1. Imaging biomarkers in primary brain tumours

    Energy Technology Data Exchange (ETDEWEB)

    Lopci, Egesta; Chiti, Arturo [Humanitas Clinical and Research Center, Nuclear Medicine Department, Rozzano, MI (Italy); Franzese, Ciro; Navarria, Pierina; Scorsetti, Marta [Humanitas Clinical and Research Center, Radiosurgery and Radiotherapy, Rozzano, MI (Italy); Grimaldi, Marco [Humanitas Clinical and Research Center, Radiology, Rozzano, MI (Italy); Zucali, Paolo Andrea; Simonelli, Matteo [Humanitas Clinical and Research Center, Medical Oncology, Rozzano, MI (Italy); Bello, Lorenzo [Humanitas Clinical and Research Center, Neurosurgery, Rozzano, MI (Italy)

    2015-04-01

    We are getting used to referring to instrumentally detectable biological features in medical language as ''imaging biomarkers''. These two terms combined reflect the evolution of medical imaging during recent decades, and conceptually comprise the principle of noninvasive detection of internal processes that can become targets for supplementary therapeutic strategies. These targets in oncology include those biological pathways that are associated with several tumour features including independence from growth and growth-inhibitory signals, avoidance of apoptosis and immune system control, unlimited potential for replication, self-sufficiency in vascular supply and neoangiogenesis, acquired tissue invasiveness and metastatic diffusion. Concerning brain tumours, there have been major improvements in neurosurgical techniques and radiotherapy planning, and developments of novel target drugs, thus increasing the need for reproducible, noninvasive, quantitative imaging biomarkers. However, in this context, conventional radiological criteria may be inappropriate to determine the best therapeutic option and subsequently to assess response to therapy. Integration of molecular imaging for the evaluation of brain tumours has for this reason become necessary, and an important role in this setting is played by imaging biomarkers in PET and MRI. In the current review, we describe most relevant techniques and biomarkers used for imaging primary brain tumours in clinical practice, and discuss potential future developments from the experimental context. (orig.)

  2. Radiologic imaging technique

    Energy Technology Data Exchange (ETDEWEB)

    Bushong, S.C. (Dept. of Radiology, Baylor College of Medicine, Houston, TX (US)); Eastman, T.R. (Agfagavert Inc., Irving, TX (US))

    1990-01-01

    The authors focus on the subject of clinical radiographic technique. Emphasizing correct radiographic technique, it's heavily illustrated with radiographs that demonstrate proper exposure and show what happens when exposure variables are changed. A key feature is a discussion and evaluation of radiographic technique charts. Basic technique charts are provided for every body part examined.

  3. Hybrid ultrasound imaging techniques (fusion imaging).

    Science.gov (United States)

    Sandulescu, Daniela Larisa; Dumitrescu, Daniela; Rogoveanu, Ion; Saftoiu, Adrian

    2011-01-07

    Visualization of tumor angiogenesis can facilitate non-invasive evaluation of tumor vascular characteristics to supplement the conventional diagnostic imaging goals of depicting tumor location, size, and morphology. Hybrid imaging techniques combine anatomic [ultrasound, computed tomography (CT), and/or magnetic resonance imaging (MRI)] and molecular (single photon emission CT and positron emission tomography) imaging modalities. One example is real-time virtual sonography, which combines ultrasound (grayscale, colour Doppler, or dynamic contrast harmonic imaging) with contrast-enhanced CT/MRI. The benefits of fusion imaging include an increased diagnostic confidence, direct comparison of the lesions using different imaging modalities, more precise monitoring of interventional procedures, and reduced radiation exposure.

  4. IMAGING THE BRAIN AS SCHIZOPHRENIA DEVELOPS: DYNAMIC & GENETIC BRAIN MAPS.

    Science.gov (United States)

    Thompson, Paul; Rapoport, Judith L; Cannon, Tyrone D; Toga, Arthur W

    2002-01-01

    Schizophrenia is a chronic, debilitating psychiatric disorder that affects 0.2-2% of the population worldwide. Often striking without warning in the late teens or early twenties, its symptoms include auditory and visual hallucinations, psychotic outbreaks, bizarre or disordered thinking, depression and social withdrawal. To combat the disease, new antipsychotic drugs are emerging; these atypical neuroleptics target dopamine and serotonin pathways in the brain, offering increased therapeutic efficacy with fewer side effects. Despite their moderate success in controlling some patients' symptoms, little is known about the causes of schizophrenia, and what triggers the disease. Its peculiar age of onset raises key questions: What physical changes occur in the brain as a patient develops schizophrenia? Do these deficits spread in the brain, and can they be opposed? How do they relate to psychotic symptoms? As risk for the disease is genetically transmitted, do a patient's relatives exhibit similar brain changes? Recent advances in brain imaging and genetics provide exciting insight on these questions. Neuroimaging can now chart the emergence and progression of deficits in the brain, providing an exceptionally sharp scalpel to dissect the effects of genetic risk, environmental triggers, and susceptibility genes. Visualizing the dynamics of the disease, these techniques also offer new strategies to evaluate drugs that combat the unrelenting symptoms of schizophrenia.

  5. Electromagnetic imaging of dynamic brain activity

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J.; Leahy, R. [University of Southern California, Los Angeles, CA (United States). Dept. of Electrical Engineering; Lewis, P.; Lewine, J.; George, J. [Los Alamos National Lab., NM (United States); Singh, M. [University of Southern California, Los Angeles, CA (United States). Dept. of Radiology

    1991-12-31

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  6. Optimized Discretization Schemes For Brain Images

    Directory of Open Access Journals (Sweden)

    USHA RANI.N,

    2011-02-01

    Full Text Available In medical image processing active contour method is the important technique in segmenting human organs. Geometric deformable curves known as levelsets are widely used in segmenting medical images. In this modeling , evolution of the curve is described by the basic lagrange pde expressed as a function of space and time. This pde can be solved either using continuous functions or discrete numerical methods.This paper deals with the application of numerical methods like finite diffefence and TVd-RK methods for brain scans. The stability and accuracy of these methods are also discussed. This paper also deals with the more accurate higher order non-linear interpolation techniques like ENO and WENO in reconstructing the brain scans like CT,MRI,PET and SPECT is considered.

  7. Forthergillian Lecture. Imaging human brain function.

    Science.gov (United States)

    Frackowiak, R S

    The non-invasive brain scanning techniques introduced a quarter of a century ago have become crucial for diagnosis in clinical neurology. They have also been used to investigate brain function and have provided information about normal activity and pathogenesis. They have been used to investigate functional specialization in the brain and how specialized areas communicate to generate complex integrated functions such as speech, memory, the emotions and so on. The phenomenon of brain plasticity is poorly understood and yet clinical neurologists are aware, from everyday observations, that spontaneous recovery from brain lesions is common. An improved understanding of the mechanisms of recovery may generate new therapeutic strategies and indicate ways of modulating mechanisms that promote plastic compensation for loss of function. The main methods used to investigate these issues are positron emission tomography and magnetic resonance imaging (M.R.I.). M.R.I. is also used to map brain structure. The techniques of functional brain mapping and computational morphometrics depend on high performance scanners and a validated set of analytic statistical procedures that generate reproducible data and meaningful inferences from brain scanning data. The motor system presents a good paradigm to illustrate advances made by scanning towards an understanding of plasticity at the level of brain areas. The normal motor system is organized in a nested hierarchy. Recovery from paralysis caused by internal capsule strokes involves functional reorganization manifesting itself as changed patterns of activity in the component brain areas of the normal motor system. The pattern of plastic modification depends in part on patterns of residual or disturbed connectivity after brain injury. Therapeutic manipulations in patients with Parkinson's disease using deep brain stimulation, dopaminergic agents or fetal mesencephalic transplantation provide a means to examine mechanisms underpinning

  8. Optical Methods and Instrumentation in Brain Imaging and Therapy

    CERN Document Server

    2013-01-01

    This book provides a comprehensive up-to-date review of optical approaches used in brain imaging and therapy. It covers a variety of imaging techniques including diffuse optical imaging, laser speckle imaging, photoacoustic imaging and optical coherence tomography. A number of laser-based therapeutic approaches are reviewed, including photodynamic therapy, fluorescence guided resection and photothermal therapy. Fundamental principles and instrumentation are discussed for each imaging and therapeutic technique. Represents the first publication dedicated solely to optical diagnostics and therapeutics in the brain Provides a comprehensive review of the principles of each imaging/therapeutic modality Reviews the latest advances in instrumentation for optical diagnostics in the brain Discusses new optical-based therapeutic approaches for brain diseases

  9. Consistent 4D Brain Extraction of Serial Brain MR Images

    OpenAIRE

    Wang, Yaping; Li, Gang; Nie, Jingxin; Yap, Pew-Thian; Guo, Lei; Shen, Dinggang

    2013-01-01

    Accurate and consistent skull stripping of serial brain MR images is of great importance in longitudinal studies that aim to detect subtle brain morphological changes. To avoid inconsistency and the potential bias introduced by independently performing skull-stripping for each time-point image, we propose an effective method that is capable of skull-stripping serial brain MR images simultaneously. Specifically, all serial images of the same subject are first affine aligned in a groupwise mann...

  10. Monkey brain cortex imaging by photoacoustic tomography

    OpenAIRE

    Yang, Xinmai; Wang, Lihong V.

    2008-01-01

    Photoacoustic tomography (PAT) is applied to image the brain cortex of a monkey through the intact scalp and skull ex vivo. The reconstructed PAT image shows the major blood vessels on the monkey brain cortex. For comparison, the brain cortex is imaged without the scalp, and then imaged again without the scalp and skull. Ultrasound attenuation through the skull is also measured at various incidence angles. This study demonstrates that PAT of the brain cortex is capable of surviving the ultras...

  11. Brain Imaging in Alzheimer Disease

    Science.gov (United States)

    Johnson, Keith A.; Fox, Nick C.; Sperling, Reisa A.; Klunk, William E.

    2012-01-01

    Imaging has played a variety of roles in the study of Alzheimer disease (AD) over the past four decades. Initially, computed tomography (CT) and then magnetic resonance imaging (MRI) were used diagnostically to rule out other causes of dementia. More recently, a variety of imaging modalities including structural and functional MRI and positron emission tomography (PET) studies of cerebral metabolism with fluoro-deoxy-d-glucose (FDG) and amyloid tracers such as Pittsburgh Compound-B (PiB) have shown characteristic changes in the brains of patients with AD, and in prodromal and even presymptomatic states that can help rule-in the AD pathophysiological process. No one imaging modality can serve all purposes as each have unique strengths and weaknesses. These modalities and their particular utilities are discussed in this article. The challenge for the future will be to combine imaging biomarkers to most efficiently facilitate diagnosis, disease staging, and, most importantly, development of effective disease-modifying therapies. PMID:22474610

  12. Statistical normalization techniques for magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Russell T. Shinohara

    2014-01-01

    Full Text Available While computed tomography and other imaging techniques are measured in absolute units with physical meaning, magnetic resonance images are expressed in arbitrary units that are difficult to interpret and differ between study visits and subjects. Much work in the image processing literature on intensity normalization has focused on histogram matching and other histogram mapping techniques, with little emphasis on normalizing images to have biologically interpretable units. Furthermore, there are no formalized principles or goals for the crucial comparability of image intensities within and across subjects. To address this, we propose a set of criteria necessary for the normalization of images. We further propose simple and robust biologically motivated normalization techniques for multisequence brain imaging that have the same interpretation across acquisitions and satisfy the proposed criteria. We compare the performance of different normalization methods in thousands of images of patients with Alzheimer's disease, hundreds of patients with multiple sclerosis, and hundreds of healthy subjects obtained in several different studies at dozens of imaging centers.

  13. Fast optical imaging of human brain function

    Directory of Open Access Journals (Sweden)

    Gabriele Gratton

    2010-06-01

    Full Text Available Great advancements in brain imaging during the last few decades have opened a large number of new possibilities for neuroscientists. The most dominant methodologies (electrophysiological and magnetic resonance-based methods emphasize temporal and spatial information, respectively. However, theorizing about brain function has recently emphasized the importance of rapid (within 100 ms or so interactions between different elements of complex neuronal networks. Fast optical imaging, and in particular the event-related optical signal (EROS, a technology that has emerged over the last 15 years may provide descriptions of localized (to sub-cm level brain activity with a temporal resolution of less than 100 ms. The main limitations of EROS are its limited penetration, which allows us to image cortical structures not deeper than 3 cm from the surface of the head, and its low signal-to-noise ratio. Advantages include the fact that EROS is compatible with most other imaging methods, including electrophysiological, magnetic resonance, and trans-cranial magnetic stimulation techniques, with which can be recorded concurrently. In this paper we present a summary of the research that has been conducted so far on fast optical imaging, including evidence for the possibility of recording neuronal signals with this method, the properties of the signals, and various examples of applications to the study of human cognitive neuroscience. Extant issues, controversies, and possible future developments are also discussed.

  14. Review of advanced imaging techniques

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2012-01-01

    Full Text Available Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images ("optical biopsies" at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy. This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques.

  15. Mechanism of Chronic Pain in Rodent Brain Imaging

    Science.gov (United States)

    Chang, Pei-Ching

    Chronic pain is a significant health problem that greatly impacts the quality of life of individuals and imparts high costs to society. Despite intense research effort in understanding of the mechanism of pain, chronic pain remains a clinical problem that has few effective therapies. The advent of human brain imaging research in recent years has changed the way that chronic pain is viewed. To further extend the use of human brain imaging techniques for better therapies, the adoption of imaging technique onto the animal pain models is essential, in which underlying brain mechanisms can be systematically studied using various combination of imaging and invasive techniques. The general goal of this thesis is to addresses how brain develops and maintains chronic pain in an animal model using fMRI. We demonstrate that nucleus accumbens, the central component of mesolimbic circuitry, is essential in development of chronic pain. To advance our imaging technique, we develop an innovative methodology to carry out fMRI in awake, conscious rat. Using this cutting-edge technique, we show that allodynia is assoicated with shift brain response toward neural circuits associated nucleus accumbens and prefrontal cortex that regulate affective and cognitive component of pain. Taken together, this thesis provides a deeper understanding of how brain mediates pain. It builds on the existing body of knowledge through maximizing the depth of insight into brain imaging of chronic pain.

  16. EDITORIAL: Imaging Systems and Techniques Imaging Systems and Techniques

    Science.gov (United States)

    Giakos, George; Yang, Wuqiang; Petrou, M.; Nikita, K. S.; Pastorino, M.; Amanatiadis, A.; Zentai, G.

    2011-10-01

    This special feature on Imaging Systems and Techniques comprises 27 technical papers, covering essential facets in imaging systems and techniques both in theory and applications, from research groups spanning three different continents. It mainly contains peer-reviewed articles from the IEEE International Conference on Imaging Systems and Techniques (IST 2011), held in Thessaloniki, Greece, as well a number of articles relevant to the scope of this issue. The multifaceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment, and the technological revolution; there is an urgent need to address and propose dynamic and innovative solutions to problems that tend to be either complex and static or rapidly evolving with a lot of unknowns. For instance, exploration of the engineering and physical principles of new imaging systems and techniques for medical applications, remote sensing, monitoring of space resources and enhanced awareness, exploration and management of natural resources, and environmental monitoring, are some of the areas that need to be addressed with urgency. Similarly, the development of efficient medical imaging techniques capable of providing physiological information at the molecular level is another important area of research. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, using high resolution and high selectivity nanoimaging techniques, can play an important role in the diagnosis and treatment of cancer, as well as provide efficient drug-delivery imaging solutions for disease treatment with increased sensitivity and specificity. On the other hand, technical advances in the development of efficient digital imaging systems and techniques and tomographic devices operating on electric impedance tomography, computed tomography, single-photon emission and positron emission tomography detection principles are anticipated to have a significant impact on a

  17. Hybrid ultrasound imaging techniques(fusion imaging)

    Institute of Scientific and Technical Information of China (English)

    Daniela Larisa Sandulescu; Daniela Dumitrescu; Ion Rogoveanu; Adrian Saftoiu

    2011-01-01

    Visualization of tumor angiogenesis can facilitate noninvasive evaluation of tumor vascular characteristics to supplement the conventional diagnostic imaging goals of depicting tumor location,size,and morphology.Hybrid imaging techniques combine anatomic [ultrasound,computed tomography(CT),and/or magnetic resonance imaging(MRI)] and molecular(single photon emission CT and positron emission tomography)imaging modalities.One example is real-time virtual sonography,which combines ultrasound(grayscale,colour Doppler,or dynamic contrast harmonic imaging)with contrast-enhanced CT/MRI.The benefits of fusion imaging include an increased diagnostic confidence,direct comparison of the lesions using different imaging modalities,more precise monitoring of interventional procedures,and reduced radiation exposure.

  18. Functional brain imaging studies on specificity of meridian and acupoints

    Institute of Scientific and Technical Information of China (English)

    Xuezhi Li; Xuguang Liu; Fanrong Liang

    2008-01-01

    At present,the specificity of meridians and acupoints has been studied using functional brain imaging techniques from many standpoints.including meridians,acupoints,and sham acupoints,as well as different meridians and acupoints,coordination of acupoints,and factors influencing meridian and acupoint specificity.Preliminary experimental data have demonstrated that acupuncture at meridians and acupoints is specific with regard to brain neural information.However,research findings are contradictory,which may be related to brain functional complexity,resolution of functional brain imaging techniques,and experimental design.Future studies should further improve study method,and should strictly control experimental conditions to better analyze experimental data and acquire more beneficial data.Because of its many advantages.the functional brain imaging technique is a promising method for studying meridian and acupoint specificity.

  19. Brain imaging, genetics and emotion.

    Science.gov (United States)

    Aleman, André; Swart, Marte; van Rijn, Sophie

    2008-09-01

    This paper reviews the published evidence on genetically driven variation in neurotransmitter function and brain circuits involved in emotion. Several studies point to a role of the serotonin transporter promoter polymorphism in amygdala activation during emotion perception. We also discuss other polymorphisms (e.g. the COMT val158met polymorphism, tryptophan hydroxylase-2 -703 G/T) and putative effects on affective processing in cortical and limbic regions. A different line of research concerns studies with genetic disorders. Although at a less fine-grained level, studies with individuals with aneuploidies of the X chromosome (Turner syndrome and Klinefelter syndrome), who display impairments in emotion processing, have resulted in new insights and hypotheses with regard to X chromosomal influences on brain systems supporting cognition and emotion. These have also implicated a key role for the amygdala. Integration of the emerging evidence, suggests that the study of polymorphisms using brain imaging can potentially elucidate biological pathways and mechanisms contributing to individual differences in brain circuits that may bias behavior and affect risk for psychiatric illness.

  20. Functional brain imaging; Funktionelle Hirnbildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Gizewski, E.R. [Medizinische Universitaet Innsbruck, Universitaetsklinik fuer Neuroradiologie, Innsbruck (Austria)

    2016-02-15

    Functional magnetic resonance imaging (fMRI) is a non-invasive method that has become one of the major tools for understanding human brain function and in recent years has also been developed for clinical applications. Changes in hemodynamic signals correspond to changes in neuronal activity with good spatial and temporal resolution in fMRI. Using high-field MR systems and increasingly dedicated statistics and postprocessing, activated brain areas can be detected and superimposed on anatomical images. Currently, fMRI data are often combined in multimodal imaging, e. g. with diffusion tensor imaging (DTI) sequences. This method is helping to further understand the physiology of cognitive brain processes and is also being used in a number of clinical applications. In addition to the blood oxygenation level-dependent (BOLD) signals, this article deals with the construction of fMRI investigations, selection of paradigms and evaluation in the clinical routine. Clinically, this method is mainly used in the planning of brain surgery, analyzing the location of brain tumors in relation to eloquent brain areas and the lateralization of language processing. As the BOLD signal is dependent on the strength of the magnetic field as well as other limitations, an overview of recent developments is given. Increases of magnetic field strength (7 T), available head coils and advances in MRI analytical methods have led to constant improvement in fMRI signals and experimental design. Especially the depiction of eloquent brain regions can be done easily and quickly and has become an essential part of presurgical planning. (orig.) [German] Mittlerweile ist die funktionelle MRT (fMRT) eine Methode, die nicht mehr nur in der neurowissenschaftlichen Routine verwendet wird. Die fMRT ermoeglicht die nichtinvasive Darstellung der Hirnaktivitaet in guter raeumlicher und zeitlicher Aufloesung unter Ausnutzung der Durchblutungsaenderung aufgrund der erhoehten Nervenzellaktivitaet. Unter

  1. Advances in brain imaging of neuropathic pain

    Institute of Scientific and Technical Information of China (English)

    CHEN Fu-yong; TAO Wei; LI Yong-jie

    2008-01-01

    Objective To review the literature on the use of brain imaging,including functional magnetic resonance imaging(fMRI), positron emission tomography(PET),magnetic resonance spectroscopy(MRS)and voxel-based morphometry(VBM)in investigation of the activity in diverse brain regions that creates and modulates chronic neuropathic pain. Data sources English literatures from January 1,2000 to July 31,2007 that examined human brain activity in chronic neuropathic pain were accessed through MEDLINE/CD ROM,using PET,fMRI,VBM,MRS and receptor binding. Study selection Published articles about the application of fMRI,PET,VBM,MRS and chronic neuropathic pain were selected. Data extraction Data were mainly extracted from 40 representative articles as the research basis. Results The PET studies suggested that spontaneous neuropathic pain is associated with changes in thalamic activity. Both PET and fMRI have been used to investigate the substrate of allodynia.The VBM demonstrated that brain structural changes are involved in chronic neuropathic pain,which is not seen in a matched control group.However,the results obtained had a large variety,which may be due to different pain etiology,pain distribution,lesion tomography,symptoms and stimulation procedures. Conclusions Application of the techniques of brain imaging plays a very important role in the study of structural and functional reorganization In patients with neuropathic pain.However,a unique"pain matrix" has not been defined.Future studies should be conducted using a prospective longitudinal research design,which would guarantee the control for many confounding factors.

  2. EDITORIAL: Imaging systems and techniques Imaging systems and techniques

    Science.gov (United States)

    Yang, Wuqiang; Giakos, George; Nikita, Konstantina; Pastorino, Matteo; Karras, Dimitrios

    2009-10-01

    The papers in this special issue focus on providing the state-of-the-art approaches and solutions to some of the most challenging imaging areas, such as the design, development, evaluation and applications of imaging systems, measuring techniques, image processing algorithms and instrumentation, with an ultimate aim of enhancing the measurement accuracy and image quality. This special issue explores the principles, engineering developments and applications of new imaging systems and techniques, and encourages broad discussion of imaging methodologies, shaping the future and identifying emerging trends. The multi-faceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment and technological evolution. There is an urgent need to address new problems, which tend to be either static but complex, or dynamic, e.g. rapidly evolving with time, with many unknowns, and to propose innovative solutions. For instance, the battles against cancer and terror, monitoring of space resources and enhanced awareness, management of natural resources and environmental monitoring are some of the areas that need to be addressed. The complexity of the involved imaging scenarios and demanding design parameters, e.g. speed, signal-to-noise ratio (SNR), specificity, contrast, spatial resolution, scatter rejection, complex background and harsh environments, necessitate the development of a multi-functional, scalable and efficient imaging suite of sensors, solutions driven by innovation, and operation on diverse detection and imaging principles. Efficient medical imaging techniques capable of providing physiological information at the molecular level present another important research area. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, and using high-resolution, high-selectivity nano-imaging methods, quantum dots, nanoparticles, biomarkers, nanostructures, nanosensors, micro-array imaging chips

  3. Automated Brain Tumor Segmentation on MR Images Based on Neutrosophic Set Approach

    OpenAIRE

    Mohan J; Krishnaveni V; Yanhui Huo

    2015-01-01

    Brain tumor segmentation for MR images is a difficult and challenging task due to variation in type, size, location and shape of tumors. This paper presents an efficient and fully automatic brain tumor segmentation technique. This proposed technique includes non local preprocessing, fuzzy intensification to enhance the quality of the MR images, k - means clustering method for brain tumor segmentation.

  4. Atypical pyogenic brain abscess evaluation by diffusion-weighted imaging: diagnosis with multimodality MR imaging.

    Science.gov (United States)

    Ozbayrak, Mustafa; Ulus, Ozden Sila; Berkman, Mehmet Zafer; Kocagoz, Sesin; Karaarslan, Ercan

    2015-10-01

    Whether a brain abscess is apparent by imaging depends on the stage of the abscess at the time of imaging, as well as the etiology of the infection. Because conventional magnetic resonance imaging (MRI) is limited in its ability to distinguish brain abscesses from necrotic tumors, advanced techniques are required. The management of these two disease entities differs and can potentially affect the clinical outcome. We report a case having atypical imaging features of a pyogenic brain abscess on advanced MRI, in particular, on diffusion-weighted and perfusion imaging, in a patient with osteosarcoma undergoing chemotherapy.

  5. Susceptibility weighted imaging of the neonatal brain

    Energy Technology Data Exchange (ETDEWEB)

    Meoded, A.; Poretti, A. [Division of Pediatric Radiology and Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Northington, F.J. [Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Tekes, A.; Intrapiromkul, J. [Division of Pediatric Radiology and Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Huisman, T.A.G.M., E-mail: thuisma1@jhmi.edu [Division of Pediatric Radiology and Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD (United States)

    2012-08-15

    Susceptibility weighted imaging (SWI) is a well-established magnetic resonance technique, which is highly sensitive for blood, iron, and calcium depositions in the brain and has been implemented in the routine clinical use in both children and neonates. SWI in neonates might provide valuable additional diagnostic and prognostic information for a wide spectrum of neonatal neurological disorders. To date, there are few articles available on the application of SWI in neonatal neurological disorders. The purpose of this article is to illustrate and describe the characteristic SWI findings in various typical neonatal neurological disorders.

  6. A Primer on Brain Imaging in Developmental Psychopathology: What Is It Good For?

    Science.gov (United States)

    Pine, Daniel S.

    2006-01-01

    This primer introduces a Special Section on brain imaging, which includes a commentary and 10 data papers presenting applications of brain imaging to questions on developmental psychopathology. This primer serves two purposes. First, the article summarizes the strength and weaknesses of various brain-imaging techniques typically employed in…

  7. Monkey brain cortex imaging by photoacoustic tomography.

    Science.gov (United States)

    Yang, Xinmai; Wang, Lihong V

    2008-01-01

    Photoacoustic tomography (PAT) is applied to image the brain cortex of a monkey through the intact scalp and skull ex vivo. The reconstructed PAT image shows the major blood vessels on the monkey brain cortex. For comparison, the brain cortex is imaged without the scalp, and then imaged again without the scalp and skull. Ultrasound attenuation through the skull is also measured at various incidence angles. This study demonstrates that PAT of the brain cortex is capable of surviving the ultrasound signal attenuation and distortion caused by a relatively thick skull.

  8. Automated in situ brain imaging for mapping the Drosophila connectome.

    Science.gov (United States)

    Lin, Chi-Wen; Lin, Hsuan-Wen; Chiu, Mei-Tzu; Shih, Yung-Hsin; Wang, Ting-Yuan; Chang, Hsiu-Ming; Chiang, Ann-Shyn

    2015-01-01

    Mapping the connectome, a wiring diagram of the entire brain, requires large-scale imaging of numerous single neurons with diverse morphology. It is a formidable challenge to reassemble these neurons into a virtual brain and correlate their structural networks with neuronal activities, which are measured in different experiments to analyze the informational flow in the brain. Here, we report an in situ brain imaging technique called Fly Head Array Slice Tomography (FHAST), which permits the reconstruction of structural and functional data to generate an integrative connectome in Drosophila. Using FHAST, the head capsules of an array of flies can be opened with a single vibratome sectioning to expose the brains, replacing the painstaking and inconsistent brain dissection process. FHAST can reveal in situ brain neuroanatomy with minimal distortion to neuronal morphology and maintain intact neuronal connections to peripheral sensory organs. Most importantly, it enables the automated 3D imaging of 100 intact fly brains in each experiment. The established head model with in situ brain neuroanatomy allows functional data to be accurately registered and associated with 3D images of single neurons. These integrative data can then be shared, searched, visualized, and analyzed for understanding how brain-wide activities in different neurons within the same circuit function together to control complex behaviors.

  9. MR fluid-attenuated inversion recovery imaging as routine brain T2-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Arakia, Yutaka; Ashikaga, Ryuichiro; Fujii, Koichi; Nishimura, Yasumasa; Ueda, Jun; Fujita, Norihiko

    1999-11-01

    We tried to investigate if magnetic resonance (MR) fluid-attenuated inversion recovery (FLAIR) imaging can be used as a routine brain screening examination instead of spin-echo T2-weighted imaging. Three hundred and ninety-four patients with clinically suspected brain diseases were randomly selected and examined with both brain MR FLAIR and T2-weighted imaging on the axial plane. These two imaging techniques were evaluated by two neuroradiologists as to which imaging was better for routine brain T2-weighted imaging. In 123 of 394 cases (31%), FLAIR imaging was superior to spin-echo T2-weighted imaging. Especially in cases with inflammatory diseases, traumatic diseases and demyelinating diseases, FLAIR imaging was particularly useful. Small lesions bordering cerebrospinal fluid (CSF) are often detected only by FLAIR imaging. In 259 cases (66%), including 147 normal cases (37%), they were equally evaluated. Only in 12 cases (3%) was conventional T2-weighted imaging superior to FLAIR imaging. Cerebrovascular lesions like cerebral aneurysm and Moyamoya disease could not be detected on FLAIR images because these structures were obscured by a low signal from the CSF. Also, because old infarctions tend to appear as low signal intensity on FLAIR images, the condition was sometimes hard to detect. Finally, FLAIR imaging could be used as routine brain T2-weighted imaging instead of conventional spin-echo T2-weighted imaging if these vascular lesions were watched.

  10. In vivo calcium imaging of the aging and diseased brain

    Energy Technology Data Exchange (ETDEWEB)

    Eichhoff, Gerhard; Busche, Marc A.; Garaschuk, Olga [Technical University of Munich, Institute of Neuroscience, Munich (Germany)

    2008-03-15

    Over the last decade, in vivo calcium imaging became a powerful tool for studying brain function. With the use of two-photon microscopy and modern labelling techniques, it allows functional studies of individual living cells, their processes and their interactions within neuronal networks. In vivo calcium imaging is even more important for studying the aged brain, which is hard to investigate in situ due to the fragility of neuronal tissue. In this article, we give a brief overview of the techniques applicable to image aged rodent brain at cellular resolution. We use multicolor imaging to visualize specific cell types (neurons, astrocytes, microglia) as well as the autofluorescence of the ''aging pigment'' lipofuscin. Further, we illustrate an approach for simultaneous imaging of cortical cells and senile plaques in mouse models of Alzheimer's disease. (orig.)

  11. Diffuse Optical Tomography for Brain Imaging: Theory

    Science.gov (United States)

    Yuan, Zhen; Jiang, Huabei

    Diffuse optical tomography (DOT) is a noninvasive, nonionizing, and inexpensive imaging technique that uses near-infrared light to probe tissue optical properties. Regional variations in oxy- and deoxy-hemoglobin concentrations as well as blood flow and oxygen consumption can be imaged by monitoring spatiotemporal variations in the absorption spectra. For brain imaging, this provides DOT unique abilities to directly measure the hemodynamic, metabolic, and neuronal responses to cells (neurons), and tissue and organ activations with high temporal resolution and good tissue penetration. DOT can be used as a stand-alone modality or can be integrated with other imaging modalities such as fMRI/MRI, PET/CT, and EEG/MEG in studying neurophysiology and pathology. This book chapter serves as an introduction to the basic theory and principles of DOT for neuroimaging. It covers the major aspects of advances in neural optical imaging including mathematics, physics, chemistry, reconstruction algorithm, instrumentation, image-guided spectroscopy, neurovascular and neurometabolic coupling, and clinical applications.

  12. Brain tumor segmentation based on a hybrid clustering technique

    Directory of Open Access Journals (Sweden)

    Eman Abdel-Maksoud

    2015-03-01

    This paper presents an efficient image segmentation approach using K-means clustering technique integrated with Fuzzy C-means algorithm. It is followed by thresholding and level set segmentation stages to provide an accurate brain tumor detection. The proposed technique can get benefits of the K-means clustering for image segmentation in the aspects of minimal computation time. In addition, it can get advantages of the Fuzzy C-means in the aspects of accuracy. The performance of the proposed image segmentation approach was evaluated by comparing it with some state of the art segmentation algorithms in case of accuracy, processing time, and performance. The accuracy was evaluated by comparing the results with the ground truth of each processed image. The experimental results clarify the effectiveness of our proposed approach to deal with a higher number of segmentation problems via improving the segmentation quality and accuracy in minimal execution time.

  13. Lesion detection in magnetic resonance brain images by hyperspectral imaging algorithms

    Science.gov (United States)

    Xue, Bai; Wang, Lin; Li, Hsiao-Chi; Chen, Hsian Min; Chang, Chein-I.

    2016-05-01

    Magnetic Resonance (MR) images can be considered as multispectral images so that MR imaging can be processed by multispectral imaging techniques such as maximum likelihood classification. Unfortunately, most multispectral imaging techniques are not particularly designed for target detection. On the other hand, hyperspectral imaging is primarily developed to address subpixel detection, mixed pixel classification for which multispectral imaging is generally not effective. This paper takes advantages of hyperspectral imaging techniques to develop target detection algorithms to find lesions in MR brain images. Since MR images are collected by only three image sequences, T1, T2 and PD, if a hyperspectral imaging technique is used to process MR images it suffers from the issue of insufficient dimensionality. To address this issue, two approaches to nonlinear dimensionality expansion are proposed, nonlinear correlation expansion and nonlinear band ratio expansion. Once dimensionality is expanded hyperspectral imaging algorithms are readily applied. The hyperspectral detection algorithm to be investigated for lesion detection in MR brain is the well-known subpixel target detection algorithm, called Constrained Energy Minimization (CEM). In order to demonstrate the effectiveness of proposed CEM in lesion detection, synthetic images provided by BrainWeb are used for experiments.

  14. Neurolight -astonishing advances in brain imaging.

    Science.gov (United States)

    Rojczyk-Gołębiewska, Ewa; Pałasz, Artur; Worthington, John J; Markowski, Grzegorz; Wiaderkiewicz, Ryszard

    2015-02-01

    In recent years, significant advances in basic neuroanatomical studies have taken place. Moreover, such classical, clinically-oriented human brain imaging methods such as MRI, PET and DTI have been applied to small laboratory animals allowing improvement in current experimental neuroscience. Contemporary structural neurobiology also uses various technologies based on fluorescent proteins. One of these is optogenetics, which integrates physics, genetics and bioengineering to enable temporal precise control of electrical activity of specific neurons. Another important challenge in the field is the accurate imaging of complicated neural networks. To address this problem, three-dimensional reconstruction techniques and retrograde labeling with modified viruses has been developed. However, a revolutionary step was the invention of the "Brainbow" system, utilizing gene constructs including the sequences of fluorescent proteins and the usage of Cre recombinase to create dozens of colour combinations, enabling visualization of neurons and their connections in extremely high resolution. Furthermore, the newly- introduced CLARITY method should make it possible to visualize three-dimensionally the structure of translucent brain tissue using the hydrogel polymeric network. This original technique is a big advance in neuroscience creating novel viewpoints completely different than standard glass slide immunostaining.

  15. BEaST: brain extraction based on nonlocal segmentation technique.

    NARCIS (Netherlands)

    Eskildsen, S.F.; Coupe, P.; Fonov, V.; Manjon, J.V.; Leung, K.K.; Guizard, N.; Wassef, S.N.; Ostergaard, L.R.; Collins, D.L.; Olde Rikkert, M.

    2012-01-01

    Brain extraction is an important step in the analysis of brain images. The variability in brain morphology and the difference in intensity characteristics due to imaging sequences make the development of a general purpose brain extraction algorithm challenging. To address this issue, we propose a ne

  16. Raman Imaging Techniques and Applications

    CERN Document Server

    2012-01-01

    Raman imaging has long been used to probe the chemical nature of a sample, providing information on molecular orientation, symmetry and structure with sub-micron spatial resolution. Recent technical developments have pushed the limits of micro-Raman microscopy, enabling the acquisition of Raman spectra with unprecedented speed, and opening a pathway to fast chemical imaging for many applications from material science and semiconductors to pharmaceutical drug development and cell biology, and even art and forensic science. The promise of tip-enhanced raman spectroscopy (TERS) and near-field techniques is pushing the envelope even further by breaking the limit of diffraction and enabling nano-Raman microscopy.

  17. Three-dimensional microtomographic imaging of human brain cortex

    CERN Document Server

    Mizutania, Ryuta; Uesugi, Kentaro; Ohyama, Masami; Takekoshi, Susumu; Osamura, R Yoshiyuki; Suzuki, Yoshio

    2016-01-01

    This paper describes an x-ray microtomographic technique for imaging the three-dimensional structure of the human cerebral cortex. Neurons in the brain constitute a neural circuit as a three-dimensional network. The brain tissue is composed of light elements that give little contrast in a hard x-ray transmission image. The contrast was enhanced by staining neural cells with metal compounds. The obtained structure revealed the microarchitecture of the gray and white matter regions of the frontal cortex, which is responsible for the higher brain functions.

  18. SU-E-J-39: Comparison of PTV Margins Determined by In-Room Stereoscopic Image Guidance and by On-Board Cone Beam Computed Tomography Technique for Brain Radiotherapy Patients

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, T; Paul, S; Munshi, A; Sarkar, B; Krishnankutty, S; Sathya, J; George, S; Jassal, K; Roy, S; Mohanti, B [Fortis Memorial Research Institute, Gurgaon (India)

    2014-06-01

    Purpose: Stereoscopic in room kV image guidance is a faster tool in daily monitoring of patient positioning. Our centre, for the first time in the world, has integrated such a solution from BrainLAB (ExacTrac) with Elekta's volumetric cone beam computed tomography (XVI). Using van Herk's formula, we compared the planning target volume (PTV) margins calculated by both these systems for patients treated with brain radiotherapy. Methods: For a total of 24 patients who received partial or whole brain radiotherapy, verification images were acquired for 524 treatment sessions by XVI and for 334 sessions by ExacTrac out of the total 547 sessions. Systematic and random errors were calculated in cranio-caudal, lateral and antero-posterior directions for both techniques. PTV margins were then determined using van Herk formula. Results: In the cranio-caudal direction, systematic error, random error and the calculated PTV margin were found to be 0.13 cm, 0.12 cm and 0.41 cm with XVI and 0.14 cm, 0.13 cm and 0.44 cm with ExacTrac. The corresponding values in lateral direction were 0.13 cm 0.1 cm and 0.4 cm with XVI and 0.13 cm, 0.12 cm and 0.42 cm with ExacTrac imaging. The same parameters for antero-posterior were for 0.1 cm, 0.11 cm and 0.34 cm with XVI and 0.13 cm, 0.16 cm and 0.43 cm with ExacTrac imaging. The margins estimated with the two imaging modalities were comparable within ± 1 mm limit. Conclusion: Verification of setup errors in the major axes by two independent imaging systems showed the results are comparable and within ± 1 mm. This implies that planar imaging based ExacTrac can yield equal accuracy in setup error determination as the time consuming volumetric imaging which is considered as the gold standard. Accordingly PTV margins estimated by this faster imaging technique can be confidently used in clinical setup.

  19. Linking brain imaging signals to visual perception.

    Science.gov (United States)

    Welchman, Andrew E; Kourtzi, Zoe

    2013-11-01

    The rapid advances in brain imaging technology over the past 20 years are affording new insights into cortical processing hierarchies in the human brain. These new data provide a complementary front in seeking to understand the links between perceptual and physiological states. Here we review some of the challenges associated with incorporating brain imaging data into such "linking hypotheses," highlighting some of the considerations needed in brain imaging data acquisition and analysis. We discuss work that has sought to link human brain imaging signals to existing electrophysiological data and opened up new opportunities in studying the neural basis of complex perceptual judgments. We consider a range of approaches when using human functional magnetic resonance imaging to identify brain circuits whose activity changes in a similar manner to perceptual judgments and illustrate these approaches by discussing work that has studied the neural basis of 3D perception and perceptual learning. Finally, we describe approaches that have sought to understand the information content of brain imaging data using machine learning and work that has integrated multimodal data to overcome the limitations associated with individual brain imaging approaches. Together these approaches provide an important route in seeking to understand the links between physiological and psychological states.

  20. Wavelet Based Image Denoising Technique

    Directory of Open Access Journals (Sweden)

    Sachin D Ruikar

    2011-03-01

    Full Text Available This paper proposes different approaches of wavelet based image denoising methods. The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. Wavelet algorithms are useful tool for signal processing such as image compression and denoising. Multi wavelets can be considered as an extension of scalar wavelets. The main aim is to modify the wavelet coefficients in the new basis, the noise can be removed from the data. In this paper, we extend the existing technique and providing a comprehensive evaluation of the proposed method. Results based on different noise, such as Gaussian, Poisson’s, Salt and Pepper, and Speckle performed in this paper. A signal to noise ratio as a measure of the quality of denoising was preferred.

  1. Different Image Segmentation Techniques for Dental Image Extraction

    Directory of Open Access Journals (Sweden)

    R. Bala Subramanyam

    2014-07-01

    Full Text Available Image segmentation is the process of partitioning a digital image into multiple segments and often used to locate objects and boundaries (lines, curves etc.. In this paper, we have proposed image segmentation techniques: Region based, Texture based, Edge based. These techniques have been implemented on dental radiographs and gained good results compare to conventional technique known as Thresholding based technique. The quantitative results show the superiority of the image segmentation technique over three proposed techniques and conventional technique.

  2. Imaging Techniques for Microwave Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Donne, T. [FOM-Institute for Plasma Physics Rijnhuizen, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Luhmann Jr, N.C. [University of California, Davis, CA 95616 (United States); Park, H.K. [POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Tobias, B.

    2011-07-01

    Advances in microwave technology have made it possible to develop a new generation of microwave imaging diagnostics for measuring the parameters of magnetic fusion devices. The most prominent of these diagnostics is electron cyclotron emission imaging (ECE-I). After the first generation of ECE-I diagnostics utilized at the TEXT-U, RTP and TEXTOR tokamaks and the LHD stellarator, new systems have recently come into operation on ASDEX-UG and DIII-D, soon to be followed by a system on KSTAR. The DIII-D and KSTAR systems feature dual imaging arrays that observe different parts of the plasma. The ECE-I diagnostic yields two-dimensional movies of the electron temperature in the plasma and has given already new insights into the physics of sawtooth oscillations, tearing modes and edge localized modes. Microwave Imaging Reflectometry (MIR) is used on LHD to measure electron density fluctuations. A pilot MIR system has been tested at TEXTOR and, based on the promising results, a new system is now under design for KSTAR. The system at TEXTOR was used to measure the plasma rotation velocity. The system at KSTAR and also the one on LHD will be/are used for measuring the profile of the electron density fluctuations in the plasma. Other microwave imaging diagnostics are phase imaging interferometry, and imaging microwave scattering. The emphasis in this paper will be largely focused on ECE-I. First an overview of the advances in microwave technology are discussed, followed by a description of a typical ECE-I system along with some typical experimental results. Also the utilization of imaging techniques in other types of microwave diagnostics will be briefly reviewed. This document is composed of the slides of the presentation. (authors)

  3. Functional brain imaging across development.

    Science.gov (United States)

    Rubia, Katya

    2013-12-01

    The developmental cognitive neuroscience literature has grown exponentially over the last decade. This paper reviews the functional magnetic resonance imaging (fMRI) literature on brain function development of typically late developing functions of cognitive and motivation control, timing and attention as well as of resting state neural networks. Evidence shows that between childhood and adulthood, concomitant with cognitive maturation, there is progressively increased functional activation in task-relevant lateral and medial frontal, striatal and parieto-temporal brain regions that mediate these higher level control functions. This is accompanied by progressively stronger functional inter-regional connectivity within task-relevant fronto-striatal and fronto-parieto-temporal networks. Negative age associations are observed in earlier developing posterior and limbic regions, suggesting a shift with age from the recruitment of "bottom-up" processing regions towards "top-down" fronto-cortical and fronto-subcortical connections, leading to a more mature, supervised cognition. The resting state fMRI literature further complements this evidence by showing progressively stronger deactivation with age in anti-correlated task-negative resting state networks, which is associated with better task performance. Furthermore, connectivity analyses during the resting state show that with development increasingly stronger long-range connections are being formed, for example, between fronto-parietal and fronto-cerebellar connections, in both task-positive networks and in task-negative default mode networks, together with progressively lesser short-range connections, suggesting progressive functional integration and segregation with age. Overall, evidence suggests that throughout development between childhood and adulthood, there is progressive refinement and integration of both task-positive fronto-cortical and fronto-subcortical activation and task-negative deactivation, leading to

  4. Functional imaging and related techniques: An introduction for rehabilitation researchers

    Directory of Open Access Journals (Sweden)

    Bruce Crosson, PhD

    2010-04-01

    Full Text Available Over the past 25 years, techniques to image brain structure and function have offered investigators in the cognitive neurosciences and related fields unprecedented opportunities to study how human brain systems work and are connected. Indeed, the number of peer-reviewed research articles using these techniques has grown at an exponential rate during this period. Inevitably, investigators have become interested in mapping neuroplastic changes that support learning and memory using functional neuroimaging, and concomitantly, rehabilitation researchers have become interested in mapping changes in brain systems responsible for treatment effects during the rehabilitation of patients with stroke, traumatic brain injury, and other brain injury or disease. This new rehabilitation research and development arena is important because a greater understanding of how and why brain systems remap in the service of rehabilitation will lead to the development of better treatments.

  5. Brain MR imaging in dietarily treated phenylketonuria

    Energy Technology Data Exchange (ETDEWEB)

    Breysem, L. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Smet, M.H. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Johannik, K. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Hecke, P. van [Dept. of Radiology, University Hospitals, Leuven (Belgium); Francois, B. [L. Willems Inst., Diepenbeek (Belgium); Wilms, G. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Bosmans, H. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Marchal, G. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Jaeken, J. [Dept. of Pediatrics, University Hospitals, Leuven (Belgium); Demaerel, P. [Dept. of Radiology, University Hospitals, Leuven (Belgium)

    1994-08-01

    Magnetic resonance imaging is the most efficient imaging modality to evaluate brain gray and white matter of patients with metabolic diseases. The main purpose of our study was to investigate the relation between brain MRI abnormalities and the phenylalanine (phe) and tyrosine (tyr) blood levels in 38 phenylketonuria (PKU) patients. Increased periventricular white matter intensity on T2-weighted brain images was the only pathologic finding in 24 patients. Brain MRI abnormalities were scored (4) and correlated with the individual mean phe and phe/tyr levels during 1 year preceding MR examination and with phe tolerance. The residual activity of phenylalanine hydroxylase was defined for each patient by an oral phe tolerance. The appearance of MRI abnormalities on brain T2-weighted images correlates with a threshold mean phe level (averaged over the year preceding the examination). (orig.)

  6. STEREOLOGICAL EVALUATION OF BRAIN MAGNETIC RESONANCE IMAGES OF SCHIZOPHRENIC PATIENTS

    Directory of Open Access Journals (Sweden)

    Amani Abdelrazag Elfaki

    2013-11-01

    Full Text Available Advances in neuroimaging have enabled studies of specific neuroanatomical abnormalities with relevance to schizophrenia. This study quantified structural alterations on brain magnetic resonance (MR images of patients with schizophrenia. MR brain imaging was done on 88 control and 57 schizophrenic subjects and Dicom images were analyzed with ImageJ software. The brain volume was estimated with the planimetric stereological technique. The volume fraction of brain structures was also estimated. The results showed that, the mean volume of right, left, and total hemispheres in controls were 551, 550, and 1101 cm³, respectively. The mean volumes of right, left, and total hemispheres in schizophrenics were 513, 512, and 1026 cm³, respectively. The schizophrenics’ brains were smaller than the controls (p < 0.05. The mean volume of total white matter of controls (516 cm³ was bigger than the schizophrenics’ volume (451 cm³, (p < 0.05. The volume fraction of total white matter was also lower in schizophrenics (p < 0.05. Volume fraction of the lateral ventricles was higher in schizophrenics (p < 0.05. According to the findings, the volumes of schizophrenics’ brain were smaller than the controls and the volume fractional changes in schizophrenics showed sex dependent differences. We conclude that stereological analysis of MR brain images is useful for quantifying schizophrenia related structural changes.

  7. Modelling Brain Tissue using Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Dyrby, Tim Bjørn

    2008-01-01

    Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking...... tractography. Although probabilistic tractography currently holds great promise as a powerful non-invasive connectivity-measurement tool, its accuracy and limitations remain to be evaluated. Probabilistic tractography was assessed post mortem in an in vitro environment. Postmortem DWI benefits from...... environment differs from that of in vivo both due to a lowered environmental temperature and due to the fixation process itself. We argue that the perfusion fixation procedure employed in this thesis ensures that the postmortem tissue is as close to that of in vivo as possible. Different fibre reconstruction...

  8. Image processing techniques for remote sensing data

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    phenomenon is based on some apriori or aposteriori knowledge of it. Image restoration is d&tferent from image enhancement techniques which are designated to manipulate an image taking advantage of the psychophysical aspects of the human visual system. A...

  9. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping.

    Science.gov (United States)

    Studholme, Colin

    2011-08-15

    The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.

  10. Manganese accumulation in the brain: MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, A.; Nomiyama, K.; Takase, Y.; Nakazono, T.; Nojiri, J.; Kudo, S. [Saga Medical School, Department of Radiology, Saga (Japan); Noguchi, T. [Kyushu University, Department of Clinical Radiology, Graduate School of Medicine, Fukuoka (Japan)

    2007-09-15

    Manganese (Mn) accumulation in the brain is detected as symmetrical high signal intensity in the globus pallidi on T1-weighted MR images without an abnormal signal on T2-weighted images. In this review, we present several cases of Mn accumulation in the brain due to acquired or congenital diseases of the abdomen including hepatic cirrhosis with a portosystemic shunt, congenital biliary atresia, primary biliary cirrhosis, congenital intrahepatic portosystemic shunt without liver dysfunction, Rendu-Osler-Weber syndrome with a diffuse intrahepatic portosystemic shunt, and patent ductus venosus. Other causes of Mn accumulation in the brain are Mn overload from total parenteral nutrition and welding-related Mn intoxication. (orig.)

  11. Novel optical system for neonatal brain imaging

    Science.gov (United States)

    Chen, Yu; Zhou, Shuoming; Nioka, Shoko; Chance, Britton; Anday, Endla; Ravishankar, Sudha; Delivoria-Papadopoulos, Maria

    1999-03-01

    A highly portable, fast, safe and affordable imaging system that provides interpretable images of brain function in full- and pre-term neonates within a few seconds has been applied to neonates with normal and pathological states. We have used a uniquely sensitive optical tomography system, termed phased array, which has revealed significant functional responses, particularly to parietal stimulation in neonate brain. This system can indicate the blood concentration and oxygenation change during the parietal brain activation in full- and pre-term neonates. The preliminary clinical results, especially a longitudinal study of a cardiac arrest neonate, suggest a variety of future applications.

  12. Potential for photoacoustic imaging of the neonatal brain

    Science.gov (United States)

    Tavakolian, Pantea; Kosik, Ivan; Chamson-Reig, Astrid; St. Lawrence, Keith; Carson, Jeffrey J. L.

    2013-03-01

    Photoacoustic imaging (PAI) has been proposed as a non-invasive technique for imaging neonatal brain injury. Since PAI combines many of the merits of both optical and ultrasound imaging, images with high contrast, high resolution, and a greater penetration depth can be obtained when compared to more traditional optical methods. However, due to the strong attenuation and reflection of photoacoustic pressure waves at the skull bone, PAI of the brain is much more challenging than traditional methods (e.g. near infrared spectroscopy) for optical interrogation of the neonatal brain. To evaluate the potential limits the skull places on 3D PAI of the neonatal brain, we constructed a neonatal skull phantom (1.4-mm thick) with a mixture of epoxy and titanium dioxide powder that provided acoustic insertion loss (1-5MHz) similar to human infant skull bone. The phantom was molded into a realistic infant skull shape by means of a CNCmachined mold that was based upon a 3D CAD model. To evaluate the effect of the skull bone on PAI, a photoacoustic point source was raster scanned within the phantom brain cavity to capture the imaging operator of the 3D PAI system (128 ultrasound transducers in a hemispherical arrangement) with and without the intervening skull phantom. The resultant imaging operators were compared to determine the effect of the skull layer on the PA signals in terms of amplitude loss and time delay.

  13. Magnetic resonance imaging of brain death

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.H.; Nathanson, J.A.; Fox, A.J.; Pelz, D.M.; Lownie, S.P.

    1995-06-01

    In order to demonstrate the magnetic resonance imaging (MRI) appearance of the brain in patients with clinical brain death, high-field MRI was performed on 5 patients using conventional T1-weighted and T2-weighted imaging. The study showed MRI exhibited similar features for all of the patients, features which were not found in MRI of comatose patients who were not clinically brain dead. It was stated that up to now the most important limitation in MRI of patients with suspected brain death has been the extreme difficulty of moving them out of the intensive care setting. If this problem can be overcome, and it appears possible with with the advent of MRI-compatible ventilators and noninvasive monitoring, MRI could become an excellent alternative for confirming clinical diagnosis of brain death for such patients. 15 refs., 3 figs.

  14. [Functional imaging of deep brain stimulation in idiopathic Parkinson's disease].

    Science.gov (United States)

    Hilker, R

    2010-10-01

    Functional brain imaging allows the effects of deep brain stimulation (DBS) on the living human brain to be investigated. In patients with advanced Parkinson's disease (PD), positron emission tomography (PET) studies were undertaken at rest as well as under motor, cognitive or behavioral activation. DBS leads to a reduction of abnormal PD-related network activity in the motor system, which partly correlates with the improvement of motor symptoms. The local increase of energy consumption within the direct target area suggests a predominant excitatory influence of the stimulation current on neuronal tissue. Remote effects of DBS of the subthalamic nucleus (STN) on frontal association cortices indicate an interference of stimulation energy with associative and limbic basal ganglia loops. Taken together, functional brain imaging provides very valuable data for advancement of the DBS technique in PD therapy.

  15. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    Science.gov (United States)

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…

  16. Perfusion harmonic imaging of the human brain

    Science.gov (United States)

    Metzler, Volker H.; Seidel, Guenter; Wiesmann, Martin; Meyer, Karsten; Aach, Til

    2003-05-01

    The fast visualisation of cerebral microcirculation supports diagnosis of acute cerebrovascular diseases. However, the commonly used CT/MRI-based methods are time consuming and, moreover, costly. Therefore we propose an alternative approach to brain perfusion imaging by means of ultrasonography. In spite of the low signal/noise-ratio of transcranial ultrasound and the high impedance of the skull, flow images of cerebral blood flow can be derived by capturing the kinetics of appropriate contrast agents by harmonic ultrasound image sequences. In this paper we propose three different methods for human brain perfusion imaging, each of which yielding flow images indicating the status of the patient's cerebral microcirculation by visualising local flow parameters. Bolus harmonic imaging (BHI) displays the flow kinetics of bolus injections, while replenishment (RHI) and diminution harmonic imaging (DHI) compute flow characteristics from contrast agent continuous infusions. RHI measures the contrast agents kinetics in the influx phase and DHI displays the diminution kinetics of the contrast agent acquired from the decay phase. In clinical studies, BHI- and RHI-parameter images were found to represent comprehensive and reproducible distributions of physiological cerebral blood flow. For DHI it is shown, that bubble destruction and hence perfusion phenomena principally can be displayed. Generally, perfusion harmonic imaging enables reliable and fast bedside imaging of human brain perfusion. Due to its cost efficiency it complements cerebrovascular diagnostics by established CT/MRI-based methods.

  17. New approaches in intelligent image analysis techniques, methodologies and applications

    CERN Document Server

    Nakamatsu, Kazumi

    2016-01-01

    This book presents an Introduction and 11 independent chapters, which are devoted to various new approaches of intelligent image processing and analysis. The book also presents new methods, algorithms and applied systems for intelligent image processing, on the following basic topics: Methods for Hierarchical Image Decomposition; Intelligent Digital Signal Processing and Feature Extraction; Data Clustering and Visualization via Echo State Networks; Clustering of Natural Images in Automatic Image Annotation Systems; Control System for Remote Sensing Image Processing; Tissue Segmentation of MR Brain Images Sequence; Kidney Cysts Segmentation in CT Images; Audio Visual Attention Models in Mobile Robots Navigation; Local Adaptive Image Processing; Learning Techniques for Intelligent Access Control; Resolution Improvement in Acoustic Maps. Each chapter is self-contained with its own references. Some of the chapters are devoted to the theoretical aspects while the others are presenting the practical aspects and the...

  18. Adaptive Intuitionistic Fuzzy Enhancement of Brain Tumor MR Images.

    Science.gov (United States)

    Deng, He; Deng, Wankai; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-10-27

    Image enhancement techniques are able to improve the contrast and visual quality of magnetic resonance (MR) images. However, conventional methods cannot make up some deficiencies encountered by respective brain tumor MR imaging modes. In this paper, we propose an adaptive intuitionistic fuzzy sets-based scheme, called as AIFE, which takes information provided from different MR acquisitions and tries to enhance the normal and abnormal structural regions of the brain while displaying the enhanced results as a single image. The AIFE scheme firstly separates an input image into several sub images, then divides each sub image into object and background areas. After that, different novel fuzzification, hyperbolization and defuzzification operations are implemented on each object/background area, and finally an enhanced result is achieved via nonlinear fusion operators. The fuzzy implementations can be processed in parallel. Real data experiments demonstrate that the AIFE scheme is not only effectively useful to have information from images acquired with different MR sequences fused in a single image, but also has better enhancement performance when compared to conventional baseline algorithms. This indicates that the proposed AIFE scheme has potential for improving the detection and diagnosis of brain tumors.

  19. Brain imaging, genetics and emotion

    NARCIS (Netherlands)

    Aleman, Andre; Swart, Marte; van Rijn, Sophie

    2008-01-01

    This paper reviews the published evidence on genetically driven variation in neurotransmitter function and brain circuits involved in emotion. Several studies point to a role of the serotonin transporter promoter polymorphism in amygdala activation during emotion perception. We also discuss other po

  20. Imaging of Traumatic Brain Injury

    NARCIS (Netherlands)

    Zagorchev, L.; McAllister, T.

    2011-01-01

    Traumatic brain injury (TBI) represents an enormous public health challenge and is often associated with life long neurobehavioral sequelae in survivors. Several factors including higher percentages of individuals surviving TBI, as well as increasing concern about potential long term sequelae of ev

  1. Diffusion MR Imaging of the Brain in Patients with Cancer

    Directory of Open Access Journals (Sweden)

    J. Matthew Debnam

    2011-01-01

    Full Text Available Over the last several years, there has been significant advancement in the molecular characterization of intracranial diseases, particularly cerebral neoplasms. While nuclear medicine technology, including PET/CT, has been at the foreground of exploration, new MR imaging techniques, specifically diffusion-weighted and diffusion tensor imaging, have shown interesting applications towards advancing our understanding of cancer involving the brain. In this paper, we review the fundamentals and basic physics of these techniques, and their applications to patient care for both general diagnostic use and in answering specific questions in selection of patients in terms of expected response to treatment.

  2. Brain imaging with synthetic MR in children: clinical quality assessment

    Energy Technology Data Exchange (ETDEWEB)

    Betts, Aaron M.; Serai, Suraj [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Leach, James L.; Jones, Blaise V. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); University of Cincinnati College of Medicine, Cincinnati, OH (United States); Zhang, Bin [Cincinnati Children' s Hospital Medical Center, Biostatistics and Epidemiology, Cincinnati, OH (United States)

    2016-10-15

    Synthetic magnetic resonance imaging is a quantitative imaging technique that measures inherent T1-relaxation, T2-relaxation, and proton density. These inherent tissue properties allow synthesis of various imaging sequences from a single acquisition. Clinical use of synthetic MR imaging has been described in adult populations. However, use of synthetic MR imaging has not been previously reported in children. The purpose of this study is to report our assessment of diagnostic image quality using synthetic MR imaging in children. Synthetic MR acquisition was obtained in a sample of children undergoing brain MR imaging. Image quality assessments were performed on conventional and synthetic T1-weighted, T2-weighted, and FLAIR images. Standardized linear measurements were performed on conventional and synthetic T2 images. Estimates of patient age based upon myelination patterns were also performed. Conventional and synthetic MR images were evaluated on 30 children. Using a 4-point assessment scale, conventional imaging performed better than synthetic imaging for T1-weighted, T2-weighted, and FLAIR images. When the assessment was simplified to a dichotomized scale, the conventional and synthetic T1-weighted and T2-weighted images performed similarly. However, the superiority of conventional FLAIR images persisted in the dichotomized assessment. There were no statistically significant differences between linear measurements made on T2-weighted images. Estimates of patient age based upon pattern of myelination were also similar between conventional and synthetic techniques. Synthetic MR imaging may be acceptable for clinical use in children. However, users should be aware of current limitations that could impact clinical utility in the software version used in this study. (orig.)

  3. Brain 'imaging' in the Renaissance.

    Science.gov (United States)

    Paluzzi, Alessandro; Belli, Antonio; Bain, Peter; Viva, Laura

    2007-12-01

    During the Renaissance, a period of 'rebirth' for humanities and science, new knowledge and speculation began to emerge about the function of the human body, replacing ancient religious and philosophical dogma. The brain must have been a fascinating mystery to a Renaissance artist, but some speculation existed at that time on the function of its parts. Here we show how revived interest in anatomy and life sciences may have influenced the figurative work of Italian and Flemish masters, such as Rafael, Michelangelo and David. We present a historical perspective on the artists and the period in which they lived, their fascination for human anatomy and its symbolic use in their art. Prior to the 16th century, knowledge of the brain was limited and influenced in a dogmatic way by the teachings of Galen(1) who, as we now know, conducted his anatomical studies not on humans but on animals.(2) Nemesus, Bishop of Emesa, in around the year 400 was one of the first to attribute mental faculties to the brain, specifically to the ventricles. He identified two anterior (lateral) ventricles, to which he assigned perception, a middle ventricle responsible for cognition and a posterior ventricle for memory.(2,3) After a long period of stasis in the Middle Ages, Renaissance scholars realized the importance of making direct observations on dissected cadavers. Between 1504 and 1507, Leonardo da Vinci conducted experiments to reveal the anatomy of the ventricular system in the brain. He injected hot wax through a tube thrust into the ventricular cavities of an ox and then scraped the overlying brain off, thus obtaining, in a simple but ingenious way, an accurate cast of the ventricles.(2,4) Leonardo shared the belief promoted by scholarly Christians that the ventricles were the abode of rational soul. We have several examples of hidden symbolism in Renaissance paintings, but the influence of phrenology and this rudimentary knowledge of neuroanatomy on artists of that period is under

  4. 利用新型扩散成像技术研究年老对大脑微观结构的影响%Investigating the effect of aging on the microstructure of brain with novel diffusion imaging techniques

    Institute of Scientific and Technical Information of China (English)

    邵涵钰

    2016-01-01

    了解年老过程中大脑在细胞水平上发生的变化对于揭示老年人认知功能下降的原因有重要意义。扩散MRI (diffusion MRI,dMRI)技术是目前惟一可以无创探查活体组织微观结构的方法。扩散张量成像(DTI,diffusion tensor imaging)是临床上最常用的一种dMRI技术,但是由于某些固有缺陷,它不能充分刻画大脑组织的微观结构。作者介绍三种可以有效弥补DTI不足的新型扩散成像方法:扩散峰度成像(diffusion kurtosis imaging,DKI),扩散的受阻受限合成模型(composite hindered and restricted model of diffusion,CHARMED)和神经突方向离散度与密度成像(neurite orientation dispersion and density imaging, NODDI)。联合使用DTI和这些新技术,研究者可以更深入地了解年老如何影响大脑的微观结构。%Understanding brain alterations taking place at the cell level during aging is of great importance for revealing the underlying reasons of the cognitive decline in older individuals. Diffusion magnetic resonance imaging (dMRI) provides a unique non-invasive probe into the microstructure of biological tissue in vivo. Diffusion tensor imaging (DTI) is now the most widely used dMRI technique in clinic. However, due to its some inherent limitations, it fails to fully characterize the microstructural properties of the brain tissues. Specifically, (1) DTI assumes a single diffusion process following a Gaussian distribution within each voxel, this assumption is b-value dependent and prohibits DTI from characterization of the actual non-Gaussian diffusion in brain tissues caused by obstacles such as cell membranes and organelles. (2) Diffusion parameters derived from DTI are sensitive, but non-specific to underlying structural changes. (3) DTI-based fiber tractography cannot resolve fiber crossings. (4) DTI is less applicable to investigate the microstructural changes in gray matter. Several more advanced techniques of diffusion are

  5. Molecular imaging of the brain. Using multi-quantum coherence and diagnostics of brain disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kaila, M.M. [New South Wales Univ., Sydney, NSW (Australia). School of Physics; Kaila, Rakhi [Univ. of New South Wales, Sydney (Australia). School of Medicine

    2013-11-01

    Explains the basics of the MRI and its use in the diagnostics and the treatment of the human brain disorders. Examines multi-quantum magnetic resonance imaging methods and the diagnostics of brain disorders. Covers how in a non-invasive manner one can diagnose diseases of the brain. This book examines multi-quantum magnetic resonance imaging methods and the diagnostics of brain disorders. It consists of two Parts. The part I is initially devoted towards the basic concepts of the conventional single quantum MRI techniques. It is supplemented by the basic knowledge required to understand multi-quantum MRI. Practical illustrations are included both on recent developments in conventional MRI and the MQ-MRI. This is to illustrate the connection between theoretical concepts and their scope in the clinical applications. The Part II initially sets out the basic details about quadrupole charge distribution present in certain nuclei and their importance about the functions they perform in our brain. Some simplified final mathematical expressions are included to illustrate facts about the basic concepts of the quantum level interactions between magnetic dipole and the electric quadrupole behavior of useful nuclei present in the brain. Selected practical illustrations, from research and clinical practices are included to illustrate the newly emerging ideas and techniques. The reader should note that the two parts of the book are written with no interdependence. One can read them quite independently.

  6. Simultaneous imaging of MR angiographic image and brain surface image using steady-state free precession

    Energy Technology Data Exchange (ETDEWEB)

    Takane, Atsushi; Tsuda, Munetaka (Hitachi Ltd., Katsuta, Ibaraki (Japan)); Koizumi, Hideaki; Koyama, Susumu; Yoshida, Takeyuki

    1993-09-01

    Synthesis of a brain surface image and an angiographic image representing brain surface vasculatures can be useful for pre-operational contemplation of brain surgery. Both brain surface images and brain surface vasculature images were successfully acquired simultaneously utilizing both FID signals and time-reversed FID signals created under steady-state free precession (SSFP). This simultaneous imaging method has several advantages. No positional discrepancies between both images and prolongation of scan time are anticipated because of concurrent acquisition of the two kinds of image data. Superimposition and stereo-display of both images enable understanding of their spatial relationship, and therefore afford a useful means for pre-operational simulation of brain surgery. (author).

  7. Radionuclide brain imaging in acquired immunodeficiency syndrome (AIDS)

    Energy Technology Data Exchange (ETDEWEB)

    Costa, D.C.; Gacinovic, S.; Miller, R.F. [London University College Medical School, Middlesex Hospital, London (United Kingdom)

    1995-09-01

    Infection with the Human Immunodeficiency Virus type 1 (HIV-1) may produce a variety of central nervous system (CNS) symptoms and signs. CNS involvement in patients with the Acquired Immunodeficiency Syndrome (AIDS) includes AIDS dementia complex or HIV-1 associated cognitive/motor complex (widely known as HIV encephalopathy), progressive multifocal leucoencephalopathy (PML), opportunistic infections such as Toxoplasma gondii, TB, Cryptococcus and infiltration by non-Hodgkin`s B cell lymphoma. High resolution structural imaging investigations, either X-ray Computed Tomography (CT scan) or Magnetic Resonance Imaging (MRI) have contributed to the understanding and definition of cerebral damage caused by HIV encephalopathy. Atrophy and mainly high signal scattered white matter abnormalities are commonly seen with MRI. PML produces focal white matter high signal abnormalities due to multiple foci of demyelination. However, using structural imaging techniques there are no reliable parameters to distinguish focal lesions due to opportunistic infection (Toxoplasma gondii abscess) from neoplasm (lymphoma infiltration). It is studied the use of radionuclide brain imaging techniques in the investigation of HIV infected patients. Brain perfusion Single Photon Emission Tomography (SPET), neuroreceptor and Positron Emission Tomography (PET) studies are reviewed. Greater emphasis is put on the potential of some radiopharmaceuticals, considered to be brain tumour markers, to distinguish intracerebral lymphoma infiltration from Toxoplasma infection. SPET with {sup 201}Tl using quantification (tumour to non-tumour radioactivity ratios) appears a very promising technique to identify intracerebral lymphoma.

  8. History and evolution of brain tumor imaging: insights through radiology.

    Science.gov (United States)

    Castillo, Mauricio

    2014-11-01

    This review recounts the history of brain tumor diagnosis from antiquity to the present and, indirectly, the history of neuroradiology. Imaging of the brain has from the beginning held an enormous interest because of the inherent difficulty of this endeavor due to the presence of the skull. Because of this, most techniques when newly developed have always been used in neuroradiology and, although some have proved to be inappropriate for this purpose, many were easily incorporated into the specialty. The first major advance in modern neuroimaging was contrast agent-enhanced computed tomography, which permitted accurate anatomic localization of brain tumors and, by virtue of contrast enhancement, malignant ones. The most important advances in neuroimaging occurred with the development of magnetic resonance imaging and diffusion-weighted sequences that allowed an indirect estimation of tumor cellularity; this was further refined by the development of perfusion and permeability mapping. From its beginnings with indirect and purely anatomic imaging techniques, neuroradiology now uses a combination of anatomic and physiologic techniques that will play a critical role in biologic tumor imaging and radiologic genomics.

  9. Automatic segmentation of brain images: selection of region extraction methods

    Science.gov (United States)

    Gong, Leiguang; Kulikowski, Casimir A.; Mezrich, Reuben S.

    1991-07-01

    In automatically analyzing brain structures from a MR image, the choice of low level region extraction methods depends on the characteristics of both the target object and the surrounding anatomical structures in the image. The authors have experimented with local thresholding, global thresholding, and other techniques, using various types of MR images for extracting the major brian landmarks and different types of lesions. This paper describes specifically a local- binary thresholding method and a new global-multiple thresholding technique developed for MR image segmentation and analysis. The initial testing results on their segmentation performance are presented, followed by a comparative analysis of the two methods and their ability to extract different types of normal and abnormal brain structures -- the brain matter itself, tumors, regions of edema surrounding lesions, multiple sclerosis lesions, and the ventricles of the brain. The analysis and experimental results show that the global multiple thresholding techniques are more than adequate for extracting regions that correspond to the major brian structures, while local binary thresholding is helpful for more accurate delineation of small lesions such as those produced by MS, and for the precise refinement of lesion boundaries. The detection of other landmarks, such as the interhemispheric fissure, may require other techniques, such as line-fitting. These experiments have led to the formulation of a set of generic computer-based rules for selecting the appropriate segmentation packages for particular types of problems, based on which further development of an innovative knowledge- based, goal directed biomedical image analysis framework is being made. The system will carry out the selection automatically for a given specific analysis task.

  10. Image reconstruction for brain CT slices

    Institute of Scientific and Technical Information of China (English)

    吴建明; 施鹏飞

    2004-01-01

    Different modalities in biomedical images, like CT, MRI and PET scanners, provide detailed cross-sectional views of human anatomy. This paper introduces three-dimensional brain reconstruction based on CT slices. It contains filtering, fuzzy segmentation, matching method of contours, cell array structure and image animation. Experimental results have shown its validity. The innovation is matching method of contours and fuzzy segmentation algorithm of CT slices.

  11. CARS and non-linear microscopy imaging of brain tumors

    Science.gov (United States)

    Galli, Roberta; Uckermann, Ortrud; Tamosaityte, Sandra; Geiger, Kathrin; Schackert, Gabriele; Steiner, Gerald; Koch, Edmund; Kirsch, Matthias

    2013-06-01

    Nonlinear optical microscopy offers a series of techniques that have the potential to be applied in vivo, for intraoperative identification of tumor border and in situ pathology. By addressing the different content of lipids that characterize the tumors with respect to the normal brain tissue, CARS microscopy enables to discern primary and secondary brain tumors from healthy tissue. A study performed in mouse models shows that the reduction of the CARS signal is a reliable quantity to identify brain tumors, irrespective from the tumor type. Moreover it enables to identify tumor borders and infiltrations at a cellular resolution. Integration of CARS with autogenous TPEF and SHG adds morphological and compositional details about the tissue. Examples of multimodal CARS imaging of different human tumor biopsies demonstrate the ability of the technique to retrieve information useful for histopathological diagnosis.

  12. Review on Lossless Image Compression Techniques for Welding Radiographic Images

    Directory of Open Access Journals (Sweden)

    B. Karthikeyan

    2013-01-01

    Full Text Available Recent development in image processing allows us to apply it in different domains. Radiography image of weld joint is one area where image processing techniques can be applied. It can be used to identify the quality of the weld joint. For this the image has to be stored and processed later in the labs. In order to optimize the use of disk space compression is required. The aim of this study is to find a suitable and efficient lossless compression technique for radiographic weld images. Image compression is a technique by which the amount of data required to represent information is reduced. Hence image compression is effectively carried out by removing the redundant data. This study compares different ways of compressing the radiography images using combinations of different lossless compression techniques like RLE, Huffman.

  13. Brain Imaging Studies of Developmental Stuttering.

    Science.gov (United States)

    Ingham, Roger J.

    2001-01-01

    A review of research on brain imaging of developmental stuttering concludes that findings increasingly point to a failure of normal temporal lobe activation during speech that may either contribute to (or is the result of) a breakdown in the sequencing of processing among premotor regions implicated in phonologic planning. (Contains references.)…

  14. Brain imaging of affective disorders and schizophrenia.

    Science.gov (United States)

    Kishimoto, H; Yamada, K; Iseki, E; Kosaka, K; Okoshi, T

    1998-12-01

    We review recent findings in human brain imaging, for example, which brain areas are used during perception of colors, moving objects, human faces, facial expressions, sadness and happiness etc. One study used fluorine-18-labeled deoxyglucose positron emission tomography (PET) in patients with unipolar depression and bipolar depression, and found hypometabolism in the left anterolateral prefrontal cortex. Another study reported increased regional cerebral blood flow in the amygdala in familial pure depressive disease. Using 11C-glucose PET, we reported that the glutamic acid pool was reduced in cortical areas of the brain in patients with major depression. We also found that the thalamic and cingulate areas were hyperactive in drug-naive (never medicated) acute schizophrenics, while the associative frontal, parietal, temporal gyri were hypoactive in drug-naive chronic schizophrenics. Brain biochemical disturbances of schizophrenic patients involved glutamic acid, N-acetyl aspartic acid, phosphatidylcholine and sphingomyelin which are important chemical substances in the working brain. The areas of the thalamus and the cingulate which become hyperactive in acute schizophrenic patients are important brain areas for perception and communication. The association areas of the cortex which become disturbed in chronic schizophrenia are essential brain areas in human creativity (language, concepts, formation of cultures and societies) and exist only in human beings.

  15. Imaging Study Confirms Brain Differences in People with ADHD

    Science.gov (United States)

    ... Imaging Study Confirms Brain Differences in People With ADHD Attention-deficit/hyperactivity should be considered a brain ... Researchers who pinpointed brain differences in people with attention-deficit/hyperactivity disorder (ADHD) say their findings show the condition should ...

  16. A Shape Based Image Search Technique

    Directory of Open Access Journals (Sweden)

    Aratrika Sarkar

    2014-08-01

    Full Text Available This paper describes an interactive application we have developed based on shaped-based image retrieval technique. The key concepts described in the project are, imatching of images based on contour matching; iimatching of images based on edge matching; iiimatching of images based on pixel matching of colours. Further, the application facilitates the matching of images invariant of transformations like i translation ; ii rotation; iii scaling. The key factor of the system is, the system shows the percentage unmatched of the image uploaded with respect to the images already existing in the database graphically, whereas, the integrity of the system lies on the unique matching techniques used for optimum result. This increases the accuracy of the system. For example, when a user uploads an image say, an image of a mango leaf, then the application shows all mango leaves present in the database as well other leaves matching the colour and shape of the mango leaf uploaded.

  17. Three-dimensional reconstruction of functional brain images

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao [Kyoto Univ. (Japan)

    1999-08-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  18. Transport, monitoring, and successful brain MR imaging in unsedated neonates

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Amit M. [St. Louis Children' s Hospital at the Washington University School of Medicine, Department of Pediatrics and Newborn Medicine, St. Louis, MO (United States); St. Louis Children' s Hospital, Division of Newborn Medicine, St. Louis, MO (United States); Neil, Jeffrey J. [St. Louis Children' s Hospital at the Washington University School of Medicine, Department of Neurology, St. Louis, MO (United States); Mallinckrodt Institute of Radiology, St. Louis, MO (United States); McKinstry, Robert C. [Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Inder, Terrie E. [St. Louis Children' s Hospital at the Washington University School of Medicine, Department of Pediatrics and Newborn Medicine, St. Louis, MO (United States); St. Louis Children' s Hospital at the Washington University School of Medicine, Department of Neurology, St. Louis, MO (United States); Mallinckrodt Institute of Radiology, St. Louis, MO (United States)

    2008-03-15

    Neonatal cerebral MR imaging is a sensitive technique for evaluating brain injury in the term and preterm infant. In term encephalopathic infants, MR imaging reliably detects not only the pattern of brain injury but might also provide clues about the timing of injury. In premature infants, MR imaging has surpassed US in the detection of white matter injury, a common lesion in this population. Concerns remain about the safety and transport of sedated neonates for MR examination to radiology suites, which are usually located at a distance from neonatal intensive care units. We present our own institutional experience and guidelines used to optimize the performance of cerebral MR examinations in neonates without sedation or anesthesia. (orig.)

  19. Imaging techniques: Nanoparticle atoms pinpointed

    Science.gov (United States)

    Farle, Michael

    2017-02-01

    The locations of atoms in a metallic alloy nanoparticle have been determined using a combination of electron microscopy and image simulation, revealing links between the particle's structure and magnetic properties. See Letter p.75

  20. Thresholding magnetic resonance images of human brain

    Institute of Scientific and Technical Information of China (English)

    Qing-mao HU; Wieslaw L NOWINSKI

    2005-01-01

    In this paper, methods are proposed and validated to determine low and high thresholds to segment out gray matter and white matter for MR images of different pulse sequences of human brain. First, a two-dimensional reference image is determined to represent the intensity characteristics of the original three-dimensional data. Then a region of interest of the reference image is determined where brain tissues are present. The non-supervised fuzzy c-means clustering is employed to determine: the threshold for obtaining head mask, the low threshold for T2-weighted and PD-weighted images, and the high threshold for T1-weighted, SPGR and FLAIR images. Supervised range-constrained thresholding is employed to determine the low threshold for T1-weighted, SPGR and FLAIR images. Thresholding based on pairs of boundary pixels is proposed to determine the high threshold for T2- and PD-weighted images. Quantification against public data sets with various noise and inhomogeneity levels shows that the proposed methods can yield segmentation robust to noise and intensity inhomogeneity. Qualitatively the proposed methods work well with real clinical data.

  1. Optical Coherence Tomography for Brain Imaging

    Science.gov (United States)

    Liu, Gangjun; Chen, Zhongping

    Recently, there has been growing interest in using OCT for brain imaging. A feasibility study of OCT for guiding deep brain probes has found that OCT can differentiate the white matter and gray matter because the white matter tends to have a higher peak reflectivity and steeper attenuation rate compared to gray matter. In vivo 3D visualization of the layered organization of a rat olfactory bulb with OCT has been demonstrated. OCT has been used for single myelin fiber imaging in living rodents without labeling. The refractive index in the rat somatosensory cortex has also been measured with OCT. In addition, functional extension of OCT, such as Doppler-OCT (D-OCT), polarization sensitive-OCT (PS-OCT), and phase-resolved-OCT (PR-OCT), can image and quantify physiological parameters in addition to the morphological structure image. Based on the scattering changes during neural activity, OCT has been used to measure the functional activation in neuronal tissues. PS-OCT, which combines polarization sensitive detection with OCT to determine tissue birefringence, has been used for the localization of nerve fiber bundles and the mapping of micrometer-scale fiber pathways in the brain. D-OCT, also named optical Doppler tomography (ODT), combines the Doppler principle with OCT to obtain high resolution tomographic images of moving constituents in highly scattering biological tissues. D-OCT has been successfully used to image cortical blood flow and map the blood vessel network for brain research. In this chapter, the principle and technology of OCT and D-OCT are reviewed and examples of potential applications are described.

  2. Infectious diseases of the brain: imaging and differential diagnosis; Infektioese Hirnerkrankungen: Bildgebung und differenzialdiagnostische Aspekte

    Energy Technology Data Exchange (ETDEWEB)

    Haehnel, S.; Seitz, A. [Abt. Neuroradiologie, Neurologische Klinik, Universitaetsklinikum Heidelberg (Germany); Storch-Hagenlocher, B. [Abt. Neurologie, Neurologische Klinik, Universitaetsklinikum Heidelberg (Germany)

    2006-09-15

    Infectious diseases of the central nervous system have to be considered in differential diagnosis particularly in immunocompromised persons. Neuro-imaging, specifically advanced techniques such as diffusion weighted MRI and perfusion MRI contribute much to the differentiation of brain infections and for differentiating brain infections from other, for instance, neoplastic diseases. In this review we present the imaging criteria of the most important brains infections in adults and in pediatric patients and discuss differential diagnostic aspects in detail. (orig.)

  3. Visceral Afferent Pathways and Functional Brain Imaging

    Directory of Open Access Journals (Sweden)

    Stuart W.G. Derbyshire

    2003-01-01

    Full Text Available The application of functional imaging to study painful sensations has generated considerable interest regarding insight into brain dysfunction that may be responsible for functional pain such as that suffered in patients with irritable bowel syndrome (IBS. This review provides a brief introduction to the development of brain science as it relates to pain processing and a snapshot of recent functional imaging results with somatic and visceral pain. Particular emphasis is placed on current hypotheses regarding dysfunction of the brain-gut axis in IBS patients. There are clear and interpretable differences in brain activation following somatic as compared with visceral noxious sensation. Noxious visceral distension, particularly of the lower gastrointestinal tract, activates regions associated with unpleasant affect and autonomic responses. Noxious somatic sensation, in contrast, activates regions associated with cognition and skeletomotor responses. Differences between IBS patients and control subjects, however, were far less clear and interpretable. While this is in part due to the newness of this field, it also reflects weaknesses inherent within the current understanding of IBS. Future use of functional imaging to examine IBS and other functional disorders will be more likely to succeed by describing clear theoretical and clinical endpoints.

  4. MR imaging of the fetal brain

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, Orit A. [University of California, San Francisco, Department of Radiology, Neuroradiology Section, San Francisco, CA (United States)

    2010-01-15

    Fetal MRI is clinically performed to evaluate the brain in cases where an abnormality is detected by prenatal sonography. These most commonly include ventriculomegaly, abnormalities of the corpus callosum, and abnormalities of the posterior fossa. Fetal MRI is also increasingly performed to evaluate fetuses who have normal brain findings on prenatal sonogram but who are at increased risk for neurodevelopmental abnormalities, such as complicated monochorionic twin pregnancies. This paper will briefly discuss the common clinical conditions imaged by fetal MRI as well as recent advances in fetal MRI research. (orig.)

  5. Color Image Classification and Retrieval using Image mining Techniques

    Directory of Open Access Journals (Sweden)

    Dr.V.Mohan,

    2010-05-01

    Full Text Available Mining Image data is one of the essential features in the present scenario. Image data is the major one which plays vital role in every aspect of the systems like business for marketing, hospital for surgery, engineering for construction, Web for publication and so on. The other area in the Image mining system is the Content-BasedImage Retrieval (CBIR. CBIR systems perform retrieval based on the similarity defined in terms of extracted features with more objectiveness. But, the features of the query image alone will not be sufficient constraint for retrieving images. Hence, a new technique Color Image Classification and Retrieval using a Image Technique isproposed for improving user interaction with image retrieval systems by fully exploiting the similarity information.

  6. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury

    Directory of Open Access Journals (Sweden)

    Quan Jiang

    2016-01-01

    Full Text Available Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance imaging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic.

  7. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury

    Institute of Scientific and Technical Information of China (English)

    Quan Jiang

    2016-01-01

    Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance im-aging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic.

  8. Gastrointestinal tract imaging in children: current techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hiorns, Melanie P. [Great Ormond Street Hospital for Children, Radiology Department, London (United Kingdom)

    2011-01-15

    Imaging of the gastrointestinal (GI) tract in children continues to evolve, with new techniques, both radiological and non-radiological, being added to the repertoire. This article provides a summary of current imaging techniques of the GI tract (primarily the upper GI tract) and the relationship between those techniques. It covers the upper GI series and other contrast studies, US, CT and MRI. Note is also made of the contribution now made by capsule endoscopy (CE). Abdominal emergency imaging is not covered in this article. (orig.)

  9. A New Technique for Digital Image Watermarking

    Institute of Scientific and Technical Information of China (English)

    Xiang-Sheng Wu

    2005-01-01

    In this paper, a new technique is proposed for rotation, scaling and translation (RST) invariant image watermarking based on log-polar mappings (LPM) and phase-only filtering (POF). The watermark is embedded in the LPM of Fourier magnitude spectrum of the original image, and a small portion of resulting LPM spectrum is used to calculate the watermark positions. This technique avoids computing inverse log-polar mapping (ILPM) to preserve the quality of the watermarked image, and avoids exhaustive search to save computation time and reduce false detection. Experimental results demonstrate that the digital watermarking technique is invariant and robust to rotation, scaling, and translation transformation.

  10. Image watermark detection techniques using quadtrees

    Directory of Open Access Journals (Sweden)

    Nidaa A. Abbas

    2015-07-01

    Full Text Available The quadtree, a hierarchical data structure for the representation of spatial information based on the principle of recursive decomposition, is widely used in digital image processing and computer graphics. This paper demonstrates the detection of invisible watermarked images generated by popular watermarking techniques, including CDMA, DCT, DWT, and Least Significant Bit (LSB using quadtree. Results corresponding to typical (512 × 512 pixel images show differences among these methods when they are used. Each time we use the same image, the original images and invisible watermarked image to test the four methods in conjunction with quadtree decomposition. In addition to the subjective method represented by quadtree, many objective evaluations such as Pearson correlation, mean square error (MSE, Structural SIMilarity Index (SSIM and false positive and false negative were used to give the comparison criteria between original and watermarked images. In results, the quadtree decomposition considered a promise subjective method to recognize among these watermark techniques.

  11. Improvement of ultrasound speckle image velocimetry using image enhancement techniques.

    Science.gov (United States)

    Yeom, Eunseop; Nam, Kweon-Ho; Paeng, Dong-Guk; Lee, Sang Joon

    2014-01-01

    Ultrasound-based techniques have been developed and widely used in noninvasive measurement of blood velocity. Speckle image velocimetry (SIV), which applies a cross-correlation algorithm to consecutive B-mode images of blood flow has often been employed owing to its better spatial resolution compared with conventional Doppler-based measurement techniques. The SIV technique utilizes speckles backscattered from red blood cell (RBC) aggregates as flow tracers. Hence, the intensity and size of such speckles are highly dependent on hemodynamic conditions. The grayscale intensity of speckle images varies along the radial direction of blood vessels because of the shear rate dependence of RBC aggregation. This inhomogeneous distribution of echo speckles decreases the signal-to-noise ratio (SNR) of a cross-correlation analysis and produces spurious results. In the present study, image-enhancement techniques such as contrast-limited adaptive histogram equalization (CLAHE), min/max technique, and subtraction of background image (SB) method were applied to speckle images to achieve a more accurate SIV measurement. A mechanical sector ultrasound scanner was used to obtain ultrasound speckle images from rat blood under steady and pulsatile flows. The effects of the image-enhancement techniques on SIV analysis were evaluated by comparing image intensities, velocities, and cross-correlation maps. The velocity profiles and wall shear rate (WSR) obtained from RBC suspension images were compared with the analytical solution for validation. In addition, the image-enhancement techniques were applied to in vivo measurement of blood flow in human vein. The experimental results of both in vitro and in vivo SIV measurements show that the intensity gradient in heterogeneous speckles has substantial influence on the cross-correlation analysis. The image-enhancement techniques used in this study can minimize errors encountered in ultrasound SIV measurement in which RBCs are used as flow

  12. Pediatric imaging: Current and emerging techniques

    Directory of Open Access Journals (Sweden)

    Shenoy-Bhangle A

    2010-01-01

    Full Text Available Imaging has always been an important component of the clinical evaluation of pediatric patients. Rapid technological advances in imaging are making noninvasive evaluation of a wide range of pediatric diseases possible. Ultrasound and magnetic resonance imaging (MRI are two imaging modalities that do not involve ionizing radiation and are preferred imaging modalities in the pediatric population. Computed tomography (CT remains the imaging modality with the highest increase in utilization in children due to its widespread availability and rapid image acquisition. Emerging imaging applications to be discussed include MR urography, voiding urosonography with use of ultrasound contrast agents, CT dose reduction techniques, MR enterography for inflammatory bowel disease, and MR cine airway imaging.

  13. Brain imaging of neurovascular dysfunction in Alzheimer's disease.

    Science.gov (United States)

    Montagne, Axel; Nation, Daniel A; Pa, Judy; Sweeney, Melanie D; Toga, Arthur W; Zlokovic, Berislav V

    2016-05-01

    Neurovascular dysfunction, including blood-brain barrier (BBB) breakdown and cerebral blood flow (CBF) dysregulation and reduction, are increasingly recognized to contribute to Alzheimer's disease (AD). The spatial and temporal relationships between different pathophysiological events during preclinical stages of AD, including cerebrovascular dysfunction and pathology, amyloid and tau pathology, and brain structural and functional changes remain, however, still unclear. Recent advances in neuroimaging techniques, i.e., magnetic resonance imaging (MRI) and positron emission tomography (PET), offer new possibilities to understand how the human brain works in health and disease. This includes methods to detect subtle regional changes in the cerebrovascular system integrity. Here, we focus on the neurovascular imaging techniques to evaluate regional BBB permeability (dynamic contrast-enhanced MRI), regional CBF changes (arterial spin labeling- and functional-MRI), vascular pathology (structural MRI), and cerebral metabolism (PET) in the living human brain, and examine how they can inform about neurovascular dysfunction and vascular pathophysiology in dementia and AD. Altogether, these neuroimaging approaches will continue to elucidate the spatio-temporal progression of vascular and neurodegenerative processes in dementia and AD and how they relate to each other.

  14. Brain SPECT imaging in Sydenham's chorea

    Directory of Open Access Journals (Sweden)

    Barsottini O.G.P.

    2002-01-01

    Full Text Available The objective of the present study was to determine whether brain single-photon emission computed tomography (SPECT imaging is capable of detecting perfusional abnormalities. Ten Sydenham's chorea (SC patients, eight females and two males, 8 to 25 years of age (mean 13.4, with a clinical diagnosis of SC were submitted to brain SPECT imaging. We used HMPAO labeled with technetium-99m at a dose of 740 MBq. Six examinations revealed hyperperfusion of the basal ganglia, while the remaining four were normal. The six patients with abnormal results were females and their data were not correlated with severity of symptoms. Patients with abnormal brain SPECT had a more recent onset of symptoms (mean of 49 days compared to those with normal SPECT (mean of 85 days but this difference did not reach statistical significance. Brain SPECT can be a helpful method to determine abnormalities of the basal ganglia in SC patients but further studies on a larger number of patients are needed in order to detect the phase of the disease during which the examination is more sensitive.

  15. Functional magnetic resonance imaging of the brain: A quick review

    Directory of Open Access Journals (Sweden)

    Vaghela Viratsinh

    2010-01-01

    Full Text Available Ability to non-invasively map the hemodynamic changes occurring focally in areas of brain involved in various motor, sensory and cognitive functions by functional magnetic resonance imaging (fMRI has revolutionized research in neuroscience in the last two decades. This technique has already gained clinical use especially in pre-surgical evaluation of epilepsy and neurosurgical planning of resection of mass lesions adjacent to eloquent cortex. In this review we attempt to illustrate basic principles and techniques of fMRI, its applications, practical points to consider while performing and evaluating clinical fMRI and its limitations.

  16. Thermoacoustic tomography arising in brain imaging

    CERN Document Server

    Stefanov, Plamen

    2010-01-01

    We study the mathematical model of thermoacoustic and photoacoustic tomography when the sound speed has a jump across a smooth surface. This models the change of the sound speed in the skull when trying to image the human brain. We derive an explicit inversion formula in the form of a convergent Neumann series under the assumptions that all singularities from the support of the source reach the boundary.

  17. FPGA implementation of image enhancement techniques

    Science.gov (United States)

    Kumar, Karan; Jain, Aditya; Srivastava, Atul Kumar

    2009-06-01

    The objective of this paper is designing, modeling, simulation and synthesis of four Image Enhancement techniques on FPGA. Image Enhancement Algorithms can be classified as point processing Techniques, in which operation is done on pixel level and Spatial Filtering Technique, in which operation is performed within neighborhood of a pixel. Algorithms of all the techniques are studied and hardware circuits are realized for them. Then hardware logic is modeled in Matlab Simulink using Xilinx System Generator Block set and synthesized onto Virtex4 xc4vsx35-10ff668 FPGA chip. Using hardware co-simulation feature of FPGA kit, the algorithms developed are validated.

  18. Current and emerging techniques in gastrointestinal imaging

    Directory of Open Access Journals (Sweden)

    McSweeney S

    2010-01-01

    Full Text Available This review is devoted to current and emerging techniques in gastrointestinal (GI imaging. It is divided into three sections focusing on areas that are both interesting and challenging: imaging of the small bowel and appendix, imaging of the colon and rectum and finally liver and pancreas in the upper abdomen. The first section covers cross-sectional imaging of the small bowel using the techniques of multidetector computed tomography (MDCT (including CT enterography and magnetic resonance imaging (MRI. The evaluation of mesenteric ischemia and GI tract bleeding using MDCT angiography is also reviewed. Current imaging practice in the evaluation of appendix is also reviewed and illustrated. The second section reviews CT and MR colonography and imaging of the rectum. It describes CT virtual colonoscopy (CTVC with emphasis on the advantages and disadvantages of the technique with discussion of the role of CTVC in screening. The intriguing topic of MR colonography (MRC is also reviewed. Imaging of the rectum with emphasis on imaging of rectal cancer is described with the roles of CT, MR, endoluminal ultrasound and positron emission tomography scanning discussed. The final section reviews current and emerging techniques in liver imaging with the role of ultrasound including contrast ultrasound, MDCT and MR (including contrast agents discussed. The new developments and applications of imaging of pancreatic disease are discussed with emphasis on the role of MDCT and MRI with gadolinium. This review highlights the current role and advancement of imaging techniques with new diagnostic and prognostic information pertinent to gastrointestinal disease continuing to emerge.

  19. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging

    KAUST Repository

    Magistretti, Pierre J.

    2015-05-01

    The energy demands of the brain are high: they account for at least 20% of the body\\'s energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and pointat a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales. © 2015 Elsevier Inc.

  20. Non-FDG PET imaging of brain tumors

    Institute of Scientific and Technical Information of China (English)

    HUANG Zemin; GUAN Yihui; ZUO Chuantao; ZHANG Zhengwei; XUE Fangping; LIN Xiangtong

    2007-01-01

    Due to relatively high uptake of glucose in the brain cortex, the use of FDG PET imaging is greatly limited in brain tumor imaging, especially for low-grade gliomas and some metastatic tumours. More and more tracers with higher specificity were developed lately for brain tumor imaging. There are 3 main types of non-FDG PET tracers:amino acid tracers, choline tracers and nucleic acid tracers. These tracers are now widely applied in many aspects of brain tumor imaging. This article summarized the general use of non-FDG PET in different aspects of brain tumor imaging.

  1. Fetal trauma: brain imaging in four neonates

    Energy Technology Data Exchange (ETDEWEB)

    Breysem, Luc; Mussen, E.; Demaerel, P.; Smet, M. [Department of Radiology, University Hospitals, Herestraat 49, 3000, Leuven (Belgium); Cossey, V. [Department of Pediatrics, University Hospitals, Leuven (Belgium); Voorde, W. van de [Department of Forensic Medicine, University Hospitals, Leuven (Belgium)

    2004-09-01

    The purpose of this paper is to describe brain pathology in neonates after major traffic trauma in utero during the third trimester. Our patient cohort consisted of four neonates born by emergency cesarean section after car accident in the third trimester of pregnancy. The median gestational age (n=4) was 36 weeks (range: 30-38). Immediate post-natal and follow-up brain imaging consisted of cranial ultrasound (n=4), computed tomography (CT) (n=1) and post-mortem magnetic resonance imaging (MRI) (n=1). Pathology findings were correlated with the imaging findings (n=3). Cranial ultrasound demonstrated a huge subarachnoidal hemorrhage (n=1), subdural hematoma (n=1), brain edema with inversion of the diastolic flow (n=1) and severe ischemic changes (n=1). In one case, CT demonstrated the presence and extension of the subarachnoidal hemorrhage, a parietal fracture and a limited intraventricular hemorrhage. Cerebellar hemorrhage and a small cerebral frontal contusion were seen on post-mortem MRI in a child with a major subarachnoidal hemorrhage on ultrasound. None of these four children survived (three children died within 2 days and one child died after 1 month). Blunt abdominal trauma during pregnancy can cause fetal cranial injury. In our cases, skull fracture, intracranial hemorrhage and hypoxic-ischemic encephalopathy were encountered. (orig.)

  2. Three modality image registration of brain SPECT/CT and MR images for quantitative analysis of dopamine transporter imaging

    Science.gov (United States)

    Yamaguchi, Yuzuho; Takeda, Yuta; Hara, Takeshi; Zhou, Xiangrong; Matsusako, Masaki; Tanaka, Yuki; Hosoya, Kazuhiko; Nihei, Tsutomu; Katafuchi, Tetsuro; Fujita, Hiroshi

    2016-03-01

    Important features in Parkinson's disease (PD) are degenerations and losses of dopamine neurons in corpus striatum. 123I-FP-CIT can visualize activities of the dopamine neurons. The activity radio of background to corpus striatum is used for diagnosis of PD and Dementia with Lewy Bodies (DLB). The specific activity can be observed in the corpus striatum on SPECT images, but the location and the shape of the corpus striatum on SPECT images only are often lost because of the low uptake. In contrast, MR images can visualize the locations of the corpus striatum. The purpose of this study was to realize a quantitative image analysis for the SPECT images by using image registration technique with brain MR images that can determine the region of corpus striatum. In this study, the image fusion technique was used to fuse SPECT and MR images by intervening CT image taken by SPECT/CT. The mutual information (MI) for image registration between CT and MR images was used for the registration. Six SPECT/CT and four MR scans of phantom materials are taken by changing the direction. As the results of the image registrations, 16 of 24 combinations were registered within 1.3mm. By applying the approach to 32 clinical SPECT/CT and MR cases, all of the cases were registered within 0.86mm. In conclusions, our registration method has a potential in superimposing MR images on SPECT images.

  3. Robust Intensity Standardization in Brain Magnetic Resonance Images.

    Science.gov (United States)

    De Nunzio, Giorgio; Cataldo, Rosella; Carlà, Alessandra

    2015-12-01

    The paper is focused on a tiSsue-Based Standardization Technique (SBST) of magnetic resonance (MR) brain images. Magnetic Resonance Imaging intensities have no fixed tissue-specific numeric meaning, even within the same MRI protocol, for the same body region, or even for images of the same patient obtained on the same scanner in different moments. This affects postprocessing tasks such as automatic segmentation or unsupervised/supervised classification methods, which strictly depend on the observed image intensities, compromising the accuracy and efficiency of many image analyses algorithms. A large number of MR images from public databases, belonging to healthy people and to patients with different degrees of neurodegenerative pathology, were employed together with synthetic MRIs. Combining both histogram and tissue-specific intensity information, a correspondence is obtained for each tissue across images. The novelty consists of computing three standardizing transformations for the three main brain tissues, for each tissue class separately. In order to create a continuous intensity mapping, spline smoothing of the overall slightly discontinuous piecewise-linear intensity transformation is performed. The robustness of the technique is assessed in a post hoc manner, by verifying that automatic segmentation of images before and after standardization gives a high overlapping (Dice index >0.9) for each tissue class, even across images coming from different sources. Furthermore, SBST efficacy is tested by evaluating if and how much it increases intertissue discrimination and by assessing gaussianity of tissue gray-level distributions before and after standardization. Some quantitative comparisons to already existing different approaches available in the literature are performed.

  4. SAR Image Segmentation using Vector Quantization Technique on Entropy Images

    CERN Document Server

    Kekre, H B; Sarode, Tanuja K

    2010-01-01

    The development and application of various remote sensing platforms result in the production of huge amounts of satellite image data. Therefore, there is an increasing need for effective querying and browsing in these image databases. In order to take advantage and make good use of satellite images data, we must be able to extract meaningful information from the imagery. Hence we proposed a new algorithm for SAR image segmentation. In this paper we propose segmentation using vector quantization technique on entropy image. Initially, we obtain entropy image and in second step we use Kekre's Fast Codebook Generation (KFCG) algorithm for segmentation of the entropy image. Thereafter, a codebook of size 128 was generated for the Entropy image. These code vectors were further clustered in 8 clusters using same KFCG algorithm and converted into 8 images. These 8 images were displayed as a result. This approach does not lead to over segmentation or under segmentation. We compared these results with well known Gray L...

  5. Image-matching as a medical diagnostic support tool (DST) for brain diseases in children.

    Science.gov (United States)

    Huang, H K; Nielsen, J F; Nelson, Marvin D; Liu, Lifeng

    2005-01-01

    Imaging-matching is an important research area in imaging informatics. We have developed and evaluated a novel diagnostic support tool (DST) based on medical image matching using MR brain images. The approach consists of two steps, database generation and image matching. The database contains pre-diagnosed MR brain images. As the images are added to the database, they are registered to the 3D Talairach coordinate system. In addition, regions of interests (ROI) are generated, and image-processing techniques are used to extract relevant image parameters related to the brain and diseases from the ROIs and from the entire MR image. The second step is to retrieve relevant information from the database by performing image matching. In this step, the physician first submits a query image. The DST computes the similarity between the query image and each of the images in the database, and then presents the most similar images to the user. Since the database contains pre-diagnosed images, the retrieved cases tend to contain relevant diagnostic information. To evaluate the usefulness of the DST in a clinical setting, pediatric brain diseases were used. The database contains 2500 pediatric patients between ages 0 and 18 with brain Magnetic Resonance (MR) images of known brain lesions. A testbed was established at the Children's Hospital Los Angeles (CHLA) for acquiring MR images from the PACS server of patients with known lesions. These images were matched against those in the DST pediatric brain MR database. An expert pediatric neuroradiologist evaluated the matched results. We found that in most cases, the image-matching method was able to quickly retrieve images with relevant diagnostic content. The evaluation method and results are given.

  6. A Proposed Multi Images Visible Watermarking Technique

    Directory of Open Access Journals (Sweden)

    Ruba G. Al-Zamil

    2016-04-01

    Full Text Available Visible watermarking techniques are proposed to secure digital data against unauthorized attacks. These techniques protect data from illegal access and use. In this work, a multi visible watermarking technique that allows embedding different types of markers into different types of background images has been proposed It also allows adding multiple markers on the same background image with different sizes, positions and opacity levels without any interference. The proposed technique improves the flexibility issues of visible watermarking and helps in increasing the security levels. A visible watermarking system is designed to implement the proposed technique. The system facilitates single and multiple watermarking as illustrated in the proposed technique. Experimental results indicate that the proposed technique applies visible watermarking successfully.

  7. Ant Colony Clustering Algorithm and Improved Markov Random Fusion Algorithm in Image Segmentation of Brain Images

    Directory of Open Access Journals (Sweden)

    Guohua Zou

    2016-12-01

    Full Text Available New medical imaging technology, such as Computed Tomography and Magnetic Resonance Imaging (MRI, has been widely used in all aspects of medical diagnosis. The purpose of these imaging techniques is to obtain various qualitative and quantitative data of the patient comprehensively and accurately, and provide correct digital information for diagnosis, treatment planning and evaluation after surgery. MR has a good imaging diagnostic advantage for brain diseases. However, as the requirements of the brain image definition and quantitative analysis are always increasing, it is necessary to have better segmentation of MR brain images. The FCM (Fuzzy C-means algorithm is widely applied in image segmentation, but it has some shortcomings, such as long computation time and poor anti-noise capability. In this paper, firstly, the Ant Colony algorithm is used to determine the cluster centers and the number of FCM algorithm so as to improve its running speed. Then an improved Markov random field model is used to improve the algorithm, so that its antinoise ability can be improved. Experimental results show that the algorithm put forward in this paper has obvious advantages in image segmentation speed and segmentation effect.

  8. Compression Techniques for Image Processing Tasks

    OpenAIRE

    2013-01-01

    International audience; This article aims to present an overview of the different applications of data compression techniques in the image processing filed. Since some time ago, several research groups in the world have been developing various methods based on different data compression techniques to classify, segment, filter and detect digital images fakery. In this sense, it is necessary to analyze and clarify the relationship between different methods and put them into a framework to bette...

  9. Lung Cancer Detection Using Image Processing Techniques

    Directory of Open Access Journals (Sweden)

    Mokhled S. AL-TARAWNEH

    2012-08-01

    Full Text Available Recently, image processing techniques are widely used in several medical areas for image improvement in earlier detection and treatment stages, where the time factor is very important to discover the abnormality issues in target images, especially in various cancer tumours such as lung cancer, breast cancer, etc. Image quality and accuracy is the core factors of this research, image quality assessment as well as improvement are depending on the enhancement stage where low pre-processing techniques is used based on Gabor filter within Gaussian rules. Following the segmentation principles, an enhanced region of the object of interest that is used as a basic foundation of feature extraction is obtained. Relying on general features, a normality comparison is made. In this research, the main detected features for accurate images comparison are pixels percentage and mask-labelling.

  10. Development of Wavelet Image Compression Technique to Particle Image Velocimetry

    Institute of Scientific and Technical Information of China (English)

    HuiLi

    2000-01-01

    In order to reduce the noise in the images and the physical storage,the wavelet-based image compression technique was applied to PIV processing in this paper,To study the effect of the wavelet bases,the standard PIV images were compressed by some known wavelet families,Daubechies,Coifman and Baylkin families with various compression ratios.It was found that a higher order wavelet base provided good compression performance for compressing PIV images,The error analysis of velocity field obtained indicated that the high compression ratio even up to 64:1,can be realized without losing significant flow information in PIV processing.The wavelet compression technique of PIV was applied to the experimental images of jet flow and showed excellent performance,A reduced number of erroneous vectors can be realized by varying compression ratio.It can say that the wavelet image compression technique is very effective in PIV system.

  11. IMAGE ANALYSIS BASED ON EDGE DETECTION TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies edge detection technique to obtain a Difference In Strength (DIS) map. An initial segmented result is obtained based on K-means clustering technique and the minimum distance. Then the region process is modeled by MRF to obtain an image that contains different intensity regions. The gradient values are calculated and then the watershed technique is used. DIS calculation is used for each pixel to define all the edges (weak or strong) in the image. The DIS map is obtained. This help as priority knowledge to know the possibility of the region segmentation by the next step (MRF), which gives an image that has all the edges and regions information. In MRF model,gray level l, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The segmentation results are improved by using watershed algorithm. After all pixels of the segmented regions are processed, a map of primitive region with edges is generated. The edge map is obtained using a merge process based on averaged intensity mean values. A common edge detectors that work on (MRF) segmented image are used and the results are compared. The segmentation and edge detection result is one closed boundary per actual region in the image.

  12. Introduction to Magnetic Resonance Imaging Techniques

    OpenAIRE

    2009-01-01

    It is quite possible to acquire images with an MR scanner without understanding the principles behind it, but choosing the best parameters and methods, and interpreting images and artifacts, requires understanding. This text serves as an introduction to magnetic resonance imaging techniques. It is aimed at beginners in possession of only a minimal level of technical expertise, yet it introduces aspects of MR that are typically considered technically challenging. The notes were written in conn...

  13. Label-free dopamine imaging in live rat brain slices.

    Science.gov (United States)

    Sarkar, Bidyut; Banerjee, Arkarup; Das, Anand Kant; Nag, Suman; Kaushalya, Sanjeev Kumar; Tripathy, Umakanta; Shameem, Mohammad; Shukla, Shubha; Maiti, Sudipta

    2014-05-21

    Dopaminergic neurotransmission has been investigated extensively, yet direct optical probing of dopamine has not been possible in live cells. Here we image intracellular dopamine with sub-micrometer three-dimensional resolution by harnessing its intrinsic mid-ultraviolet (UV) autofluorescence. Two-photon excitation with visible light (540 nm) in conjunction with a non-epifluorescent detection scheme is used to circumvent the UV toxicity and the UV transmission problems. The method is established by imaging dopamine in a dopaminergic cell line and in control cells (glia), and is validated by mass spectrometry. We further show that individual dopamine vesicles/vesicular clusters can be imaged in cultured rat brain slices, thereby providing a direct visualization of the intracellular events preceding dopamine release induced by depolarization or amphetamine exposure. Our technique opens up a previously inaccessible mid-ultraviolet spectral regime (excitation ~270 nm, emission free imaging of native molecules in live tissue.

  14. Thyroid, brain and mood modulation in affective disorder: insights from molecular research and functional brain imaging.

    Science.gov (United States)

    Bauer, M; London, E D; Silverman, D H; Rasgon, N; Kirchheiner, J; Whybrow, P C

    2003-11-01

    The efficacy resulting from adjunctive use of supraphysiological doses of levothyroxine has emerged as a promising approach to therapy and prophylaxis for refractory mood disorders. Most patients with mood disorders who receive treatment with supraphysiological doses of levothyroxine have normal peripheral thyroid hormone levels, and also respond differently to the hormone and tolerate it better than healthy individuals and patients with primary thyroid diseases. Progress in molecular and functional brain imaging techniques has provided a new understanding of these phenomena, illuminating the relationship between thyroid function, mood modulation and behavior. Thyroid hormones are widely distributed in the brain and have a multitude of effects on the central nervous system. Notably many of the limbic system structures where thyroid hormone receptors are prevalent have been implicated in the pathogenesis of mood disorders. The influence of the thyroid system on neurotransmitters (particularly serotonin and norepinephrine), which putatively play a major role in the regulation of mood and behavior, may contribute to the mechanisms of mood modulation. Recent functional brain imaging studies using positron emission tomography (PET) with [ (18)F]-fluorodeoxyglucose demonstrated that thyroid hormone treatment with levothyroxine affects regional brain metabolism in patients with hypothyroidism and bipolar disorder. Theses studies confirm that thyroid hormones are active in modulating metabolic function in the mature adult brain, and provide intriging neuroanatomic clues that may guide future research.

  15. Superresolution imaging: a survey of current techniques

    Science.gov (United States)

    Cristóbal, G.; Gil, E.; Šroubek, F.; Flusser, J.; Miravet, C.; Rodríguez, F. B.

    2008-08-01

    Imaging plays a key role in many diverse areas of application, such as astronomy, remote sensing, microscopy, and tomography. Owing to imperfections of measuring devices (e.g., optical degradations, limited size of sensors) and instability of the observed scene (e.g., object motion, media turbulence), acquired images can be indistinct, noisy, and may exhibit insuffcient spatial and temporal resolution. In particular, several external effects blur images. Techniques for recovering the original image include blind deconvolution (to remove blur) and superresolution (SR). The stability of these methods depends on having more than one image of the same frame. Differences between images are necessary to provide new information, but they can be almost unperceivable. State-of-the-art SR techniques achieve remarkable results in resolution enhancement by estimating the subpixel shifts between images, but they lack any apparatus for calculating the blurs. In this paper, after introducing a review of current SR techniques we describe two recently developed SR methods by the authors. First, we introduce a variational method that minimizes a regularized energy function with respect to the high resolution image and blurs. In this way we establish a unifying way to simultaneously estimate the blurs and the high resolution image. By estimating blurs we automatically estimate shifts with subpixel accuracy, which is inherent for good SR performance. Second, an innovative learning-based algorithm using a neural architecture for SR is described. Comparative experiments on real data illustrate the robustness and utilization of both methods.

  16. Modern imaging techniques in the pediatric radiology; Moderne Bildgebungstechniken in der paediatrischen Radiologie

    Energy Technology Data Exchange (ETDEWEB)

    Staatz, Gundula [Universitaetsmedizin Mainz (Germany). Sektion Kinderradiologie; Stenzel, Martin [Universitaetsklinikum Jena (Germany). Sektion Paediatrische Radiologie; Mentzel, Hans-Joachim [Universitaetsklinikum Freiburg (Germany). Abt. Kinderradiologie

    2014-12-15

    The contribution on modern imaging techniques in the pediatric radiology covers the following topics: new sequencing techniques in pediatric skull MRI (magnetic resonance imaging): analysis of brain volume changes, diffusion weighted MRI, fractional anisotropy and fiber tracking, susceptibility weighted MRI; fetal MRI and whole-body MRI.

  17. Molecular Imaging of the Brain Using Multi-Quantum Coherence and Diagnostics of Brain Disorders

    CERN Document Server

    Kaila, M M

    2013-01-01

    This book examines multi-quantum magnetic resonance imaging methods and the diagnostics of brain disorders. It consists of two Parts. The part I is initially devoted towards the basic concepts of the conventional single quantum MRI techniques. It is supplemented by the basic knowledge required to understand multi-quantum MRI. Practical illustrations are included both on recent developments in conventional MRI and the MQ-MRI. This is to illustrate the connection between theoretical concepts and their scope in the clinical applications. The Part II initially sets out the basic details about quadrupole charge distribution present in certain nuclei and their importance about the functions they perform in our brain. Some simplified final mathematical expressions are included to illustrate facts about the basic concepts of the quantum level interactions between magnetic dipole and the electric quadrupole behavior of useful nuclei present in the brain. Selected practical illustrations, from research and clinical pra...

  18. Detection of Brain Tumor and Extraction of Texture Features using Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Prof. Dilip Kumar Gandhi

    2012-10-01

    Full Text Available Brain Cancer Detection system is designed. Aim of this paper is to locate the tumor and determine the texture features from a Brain Cancer affected MRI. A computer based diagnosis is performed in order to detect the tumors from given Magnetic Resonance Image. Basic image processing techniques are used to locate the tumor region. Basic techniques consist of image enhancement, image bianarization, and image morphological operations. Texture features are computed using the Gray Level Co-occurrence Matrix. Texture features consists of five distinct features. Selective features or the combination of selective features will be used in the future to determine the class of the query image. Astrocytoma type of Brain Cancer affected images are used only for simplicity

  19. Structural imaging measures of brain aging.

    Science.gov (United States)

    Lockhart, Samuel N; DeCarli, Charles

    2014-09-01

    During the course of normal aging, biological changes occur in the brain that are associated with changes in cognitive ability. This review presents data from neuroimaging studies of primarily "normal" or healthy brain aging. As such, we focus on research in unimpaired or nondemented older adults, but also include findings from lifespan studies that include younger and middle aged individuals as well as from populations with prodromal or clinically symptomatic disease such as cerebrovascular or Alzheimer's disease. This review predominantly addresses structural MRI biomarkers, such as volumetric or thickness measures from anatomical images, and measures of white matter injury and integrity respectively from FLAIR or DTI, and includes complementary data from PET and cognitive or clinical testing as appropriate. The findings reveal highly consistent age-related differences in brain structure, particularly frontal lobe and medial temporal regions that are also accompanied by age-related differences in frontal and medial temporal lobe mediated cognitive abilities. Newer findings also suggest that degeneration of specific white matter tracts such as those passing through the genu and splenium of the corpus callosum may also be related to age-related differences in cognitive performance. Interpretation of these findings, however, must be tempered by the fact that comorbid diseases such as cerebrovascular and Alzheimer's disease also increase in prevalence with advancing age. As such, this review discusses challenges related to interpretation of current theories of cognitive aging in light of the common occurrence of these later-life diseases. Understanding the differences between "Normal" and "Healthy" brain aging and identifying potential modifiable risk factors for brain aging is critical to inform potential treatments to stall or reverse the effects of brain aging and possibly extend cognitive health for our aging society.

  20. Brain imaging in the assessment for epilepsy surgery.

    Science.gov (United States)

    Duncan, John S; Winston, Gavin P; Koepp, Matthias J; Ourselin, Sebastien

    2016-04-01

    Brain imaging has a crucial role in the presurgical assessment of patients with epilepsy. Structural imaging reveals most cerebral lesions underlying focal epilepsy. Advances in MRI acquisitions including diffusion-weighted imaging, post-acquisition image processing techniques, and quantification of imaging data are increasing the accuracy of lesion detection. Functional MRI can be used to identify areas of the cortex that are essential for language, motor function, and memory, and tractography can reveal white matter tracts that are vital for these functions, thus reducing the risk of epilepsy surgery causing new morbidities. PET, SPECT, simultaneous EEG and functional MRI, and electrical and magnetic source imaging can be used to infer the localisation of epileptic foci and assist in the design of intracranial EEG recording strategies. Progress in semi-automated methods to register imaging data into a common space is enabling the creation of multimodal three-dimensional patient-specific datasets. These techniques show promise for the demonstration of the complex relations between normal and abnormal structural and functional data and could be used to direct precise intracranial navigation and surgery for individual patients.

  1. BRAIN FUNCTIONAL IMAGING BASED ON BRAIN TISSUE OXYGEN CONTENT VIA MAGNETIC RESONANCE

    Directory of Open Access Journals (Sweden)

    M.A OGHABIAN

    2003-03-01

    Full Text Available Introduction: FMRI is a new approach in MRI to provide functional data of human brain activities. Some methods such as BOLD contrast, perfusion imaging, diffusion imaging, and spectroscopy in MRI have used to yield functional images. Material and Methods: This research was performed in imaging center of IMAM KHOMEINI hospital in TEHRAN in 1997. The experiments were performed on a conventional 1.5- T picker MR instrument, using a standard head coil. CE – FAST gradient echo images were obtained (TR=100, TE = 35, 128*256 matrix, 10 mm slice, FOV = 250 mm, F.A =25 Degree, NEX = 1, 13 s per image. Images were obtained during sensory - motor stimulation by pressing fingers to each other, coronal oblique images were acquired through central sulcus (precentral gyrus where the related sensory cortex is. Then, the Images were transferred to personal computers in order to eliminate noise and highlight the functional differences. These images were processed by various mathematical methods such as subtraction and student T- test. Results: Although some changes were seen in functional area, there were not significant results by the conventional system protocols. Some new protocols were designed and implemented to increase the sensitivity of the system to functional changes. Discussion: However, more research needs to be done in the future to obtain faster and more efficient techniques and in regard to clinical applications of the method.

  2. Automatic Image Registration Technique of Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    M. Wahed

    2013-03-01

    Full Text Available Image registration is a crucial step in most image processing tasks for which the final result is achieved from a combination of various resources. Automatic registration of remote-sensing images is a difficult task as it must deal with the intensity changes and variation of scale, rotation and illumination of the images. This paper proposes image registration technique of multi-view, multi- temporal and multi-spectral remote sensing images. Firstly, a preprocessing step is performed by applying median filtering to enhance the images. Secondly, the Steerable Pyramid Transform is adopted to produce multi-resolution levels of reference and sensed images; then, the Scale Invariant Feature Transform (SIFT is utilized for extracting feature points that can deal with the large variations of scale, rotation and illumination between images .Thirdly, matching the features points by using the Euclidian distance ratio; then removing the false matching pairs using the RANdom SAmple Consensus (RANSAC algorithm. Finally, the mapping function is obtained by the affine transformation. Quantitative comparisons of our technique with the related techniques show a significant improvement in the presence of large scale, rotation changes, and the intensity changes. The effectiveness of the proposed technique is demonstrated by the experimental results.

  3. Multisensor image fusion techniques in remote sensing

    Science.gov (United States)

    Ehlers, Manfred

    Current and future remote sensing programs such as Landsat, SPOT, MOS, ERS, JERS, and the space platform's Earth Observing System (Eos) are based on a variety of imaging sensors that will provide timely and repetitive multisensor earth observation data on a global scale. Visible, infrared and microwave images of high spatial and spectral resolution will eventually be available for all parts of the earth. It is essential that efficient processing techniques be developed to cope with the large multisensor data volumes. This paper discusses data fusion techniques that have proved successful for synergistic merging of SPOT HRV, Landsat TM and SIR-B images. It is demonstrated that these techniques can be used to improve rectification accuracies, to depicit greater cartographic detail, and to enhance spatial resolution in multisensor image data sets.

  4. Spatial normalization of brain images and beyond.

    Science.gov (United States)

    Mangin, J-F; Lebenberg, J; Lefranc, S; Labra, N; Auzias, G; Labit, M; Guevara, M; Mohlberg, H; Roca, P; Guevara, P; Dubois, J; Leroy, F; Dehaene-Lambertz, G; Cachia, A; Dickscheid, T; Coulon, O; Poupon, C; Rivière, D; Amunts, K; Sun, Z Y

    2016-10-01

    The deformable atlas paradigm has been at the core of computational anatomy during the last two decades. Spatial normalization is the variant endowing the atlas with a coordinate system used for voxel-based aggregation of images across subjects and studies. This framework has largely contributed to the success of brain mapping. Brain spatial normalization, however, is still ill-posed because of the complexity of the human brain architecture and the lack of architectural landmarks in standard morphological MRI. Multi-atlas strategies have been developed during the last decade to overcome some difficulties in the context of segmentation. A new generation of registration algorithms embedding architectural features inferred for instance from diffusion or functional MRI is on the verge to improve the architectural value of spatial normalization. A better understanding of the architectural meaning of the cortical folding pattern will lead to use some sulci as complementary constraints. Improving the architectural compliance of spatial normalization may impose to relax the diffeomorphic constraint usually underlying atlas warping. A two-level strategy could be designed: in each region, a dictionary of templates of incompatible folding patterns would be collected and matched in a way or another using rare architectural information, while individual subjects would be aligned using diffeomorphisms to the closest template. Manifold learning could help to aggregate subjects according to their morphology. Connectivity-based strategies could emerge as an alternative to deformation-based alignment leading to match the connectomes of the subjects rather than images.

  5. PET imaging of neurogenic activity in the adult brain: Toward in vivo imaging of human neurogenesis.

    Science.gov (United States)

    Tamura, Yasuhisa; Kataoka, Yosky

    2017-01-01

    Neural stem cells are present in 2 neurogenic regions, the subventricular zone (SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG), and continue to generate new neurons throughout life. Adult hippocampal neurogenesis is linked to a variety of psychiatric disorders such as depression and anxiety, and to the therapeutic effects of antidepressants, as well as learning and memory. In vivo imaging for hippocampal neurogenic activity may be used to diagnose psychiatric disorders and evaluate the therapeutic efficacy of antidepressants. However, these imaging techniques remain to be established until now. Recently, we established a quantitative positron emission tomography (PET) imaging technique for neurogenic activity in the adult brain with 3'-deoxy-3'-[(18)F]fluoro-L-thymidine ([(18)F]FLT) and probenecid, a drug transporter inhibitor in blood-brain barrier. Moreover, we showed that this PET imaging technique can monitor alterations in neurogenic activity in the hippocampus of adult rats with depression and following treatment with an antidepressant. This PET imaging method may assist in diagnosing depression and in monitoring the therapeutic efficacy of antidepressants. In this commentary, we discuss the possibility of in vivo PET imaging for neurogenic activity in adult non-human primates and humans.

  6. ENCRYPTION TECHNIQUES FOR SECURITY OF IMAGES

    Directory of Open Access Journals (Sweden)

    DR. DHIRENDRA MISHRA

    2014-01-01

    Full Text Available With the proliferation in technology and advent of internet the data has been digitized, so more emphasis is required for security while transmission and storage to save from unauthorized users. Protecting data in a safe and secure way which does not hamper the access of an authorized authority is difficult and interesting research problem. Many attempts have been made to solve this problem within the cryptographic community. Visual cryptography provides a very powerful technique by which one secret can be distributed into two or more images known as shares. When the shares on transparencies are superimposed exactly together, original secret can be discovered without computer involvement. Image cryptography disrupts the image so that no useful information is seen. The keys used for disruption is used in reverse manner to decrypt the image. This paper discusses the various encryption techniques for better image security and to protect them from unintentional user.

  7. Multislice CT brain image registration for perfusion studies

    Science.gov (United States)

    Lin, Zhong Min; Pohlman, Scott; Chandra, Shalabh

    2002-04-01

    During the last several years perfusion CT techniques have been developed as an effective technique for clinically evaluating cerebral hemodynamics. Perfusion CT techniques are capable of measurings functional parameters such as tissue perfusion, blood flow, blood volume, and mean transit time and are commonly used to evaluate stroke patients. However, the quality of functional images of the brain frequently suffers from patient head motion. Because the time window for an effective treatment of stroke patient is narrow, a fast motion correction is required. The purpose of the paper is to present a fast and accurate registration technique for motion correction of multi-slice CT and to demonstrate the effects of the registration on perfusion calculation.

  8. An Effective Method of Image Retrieval using Image Mining Techniques

    CERN Document Server

    Kannan, A; Anbazhagan, N; 10.5121/ijma.2010.2402

    2010-01-01

    The present research scholars are having keen interest in doing their research activities in the area of Data mining all over the world. Especially, [13]Mining Image data is the one of the essential features in this present scenario since image data plays vital role in every aspect of the system such as business for marketing, hospital for surgery, engineering for construction, Web for publication and so on. The other area in the Image mining system is the Content-Based Image Retrieval (CBIR) which performs retrieval based on the similarity defined in terms of extracted features with more objectiveness. The drawback in CBIR is the features of the query image alone are considered. Hence, a new technique called Image retrieval based on optimum clusters is proposed for improving user interaction with image retrieval systems by fully exploiting the similarity information. The index is created by describing the images according to their color characteristics, with compact feature vectors, that represent typical co...

  9. Lossless image compression technique for infrared thermal images

    Science.gov (United States)

    Allred, Lloyd G.; Kelly, Gary E.

    1992-07-01

    The authors have achieved a 6.5-to-one image compression technique for thermal images (640 X 480, 1024 colors deep). Using a combination of new and more traditional techniques, the combined algorithm is computationally simple, enabling `on-the-fly' compression and storage of an image in less time than it takes to transcribe the original image to or from a magnetic medium. Similar compression has been achieved on visual images by virtue of the feature that all optical devices possess a modulation transfer function. As a consequence of this property, the difference in color between adjacent pixels is a usually small number, often between -1 and +1 graduations for a meaningful color scheme. By differentiating adjacent rows and columns, the original image can be expressed in terms of these small numbers. A simple compression algorithm for these small numbers achieves a four to one image compression. By piggy-backing this technique with a LZW compression or a fixed Huffman coding, an additional 35% image compression is obtained, resulting in a 6.5-to-one lossless image compression. Because traditional noise-removal operators tend to minimize the color graduations between adjacent pixels, an additional 20% reduction can be obtained by preprocessing the image with a noise-removal operator. Although noise removal operators are not lossless, their application may prove crucial in applications requiring high compression, such as the storage or transmission of a large number or images. The authors are working with the Air Force Photonics Technology Application Program Management office to apply this technique to transmission of optical images from satellites.

  10. IMAGE AUTHENTICATION TECHNIQUES AND ADVANCES SURVEY

    Directory of Open Access Journals (Sweden)

    Derroll David

    2015-10-01

    Full Text Available With the advanced technologies in the area of Engineering the World has become a smaller place and communication is in our finger tips. The multimedia sharing traffic through electronic media has increased tremendously in the recent years with the higher use of social networking sites. The statistics of amount of images uploaded in the internet per day is very huge. Digital Image security has become vulnerable due to increase transmission over non-secure channel and needs protection. Digital Images play a crucial role in medical and military images etc. and any tampering of them is a serious issue. Several approaches are introduced to authenticate multimedia images. These approaches can be categorized into fragile and semi-fragile watermarking, conventional cryptography and digital signatures based on the image content. The aim of this paper is to provide a comparative study and also a survey of emerging techniques for image authentication. The important requirements for an efficient image authentication system design are discussed along with the classification of image authentication into tamper detection, localization and reconstruction and robustness against image processing operation. Furthermore, the concept of image content based authentication is enlightened.

  11. Optimising rigid motion compensation for small animal brain PET imaging

    Science.gov (United States)

    Spangler-Bickell, Matthew G.; Zhou, Lin; Kyme, Andre Z.; De Laat, Bart; Fulton, Roger R.; Nuyts, Johan

    2016-10-01

    Motion compensation (MC) in PET brain imaging of awake small animals is attracting increased attention in preclinical studies since it avoids the confounding effects of anaesthesia and enables behavioural tests during the scan. A popular MC technique is to use multiple external cameras to track the motion of the animal’s head, which is assumed to be represented by the motion of a marker attached to its forehead. In this study we have explored several methods to improve the experimental setup and the reconstruction procedures of this method: optimising the camera-marker separation; improving the temporal synchronisation between the motion tracker measurements and the list-mode stream; post-acquisition smoothing and interpolation of the motion data; and list-mode reconstruction with appropriately selected subsets. These techniques have been tested and verified on measurements of a moving resolution phantom and brain scans of an awake rat. The proposed techniques improved the reconstructed spatial resolution of the phantom by 27% and of the rat brain by 14%. We suggest a set of optimal parameter values to use for awake animal PET studies and discuss the relative significance of each parameter choice.

  12. Tablet surface characterisation by various imaging techniques

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Rantanen, Jukka; Yliruusi, Jouko

    2003-01-01

    The aim of this study was to characterise tablet surfaces using different imaging and roughness analytical techniques including optical microscopy, scanning electron microscopy (SEM), laser profilometry and atomic force microscopy (AFM). The test materials compressed were potassium chloride (KCl......, but they do not provide quantitative information about surface roughness. Laser profilometry and AFM on the other hand provide quantitative roughness data from two different scales, laser profilometer from 1 mm and atomic force microscope from 90 microm scale. AFM is a powerful technique but other imaging...

  13. Effect of Harderian adenectomy on the statistical analyses of mouse brain imaging using positron emission tomography.

    Science.gov (United States)

    Kim, Minsoo; Woo, Sang-Keun; Yu, Jung Woo; Lee, Yong Jin; Kim, Kyeong Min; Kang, Joo Hyun; Eom, Kidong; Nahm, Sang-Soep

    2014-01-01

    Positron emission tomography (PET) using 2-deoxy-2-[(18)F] fluoro-D-glucose (FDG) as a radioactive tracer is a useful technique for in vivo brain imaging. However, the anatomical and physiological features of the Harderian gland limit the use of FDG-PET imaging in the mouse brain. The gland shows strong FDG uptake, which in turn results in distorted PET images of the frontal brain region. The purpose of this study was to determine if a simple surgical procedure to remove the Harderian gland prior to PET imaging of mouse brains could reduce or eliminate FDG uptake. Measurement of FDG uptake in unilaterally adenectomized mice showed that the radioactive signal emitted from the intact Harderian gland distorts frontal brain region images. Spatial parametric measurement analysis demonstrated that the presence of the Harderian gland could prevent accurate assessment of brain PET imaging. Bilateral Harderian adenectomy efficiently eliminated unwanted radioactive signal spillover into the frontal brain region beginning on postoperative Day 10. Harderian adenectomy did not cause any post-operative complications during the experimental period. These findings demonstrate the benefits of performing a Harderian adenectomy prior to PET imaging of mouse brains.

  14. Solvation effects on brain uptakes of isomers of 99mTc brain imaging agents

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Analysis of electrostatic hydration free energies of the isomers of the 99mTc-BAT and 99mTc-DADT complexes is carried out using the computer simulation technique. The results show that not only a correlation exists between the logarithm of the brain uptake and the electrostatic hydration free energy for the isomers of 99mTc-brain radiopharmaceuticals, but also a linear relationship exists between the logarithm of the ratio of the brain uptake of the syn isomer to that of the anti one and the difference between the electrostatic hydration free energy of the syn-isomer and that of the anti one. Furthermore, the investigation on the important factors influencing the brain uptakes of 99mTc-radiopharmaceuticals and the reasons of the different biodistribution of the isomers of the 99mTc-complexes is explored at the molecular level. The results may provide a reference for the rational drug design of brain imaging agents.

  15. Red flag imaging techniques in Barrett's esophagus.

    Science.gov (United States)

    Saxena, Payal; Canto, Marcia Irene

    2013-07-01

    The key to detection and treatment of early neoplasia in Barrett's esophagus (BE) is thorough and careful inspection of the Barrett's segment. The greatest role for red flag techniques is to help identify neoplastic lesions for targeted biopsy and therapy. High-definition white light endoscopy (HD-WLE) can potentially improve endoscopic imaging of BE compared with standard endoscopy, but little scientific evidence supports this. The addition of autofluorescence imaging to HD-WLE and narrow band imaging increases sensitivity and the false-positive rate without significantly improving overall detection of BE-related neoplasia.

  16. Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in brain CT

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Qingguo, E-mail: renqg83@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Dewan, Sheilesh Kumar, E-mail: sheilesh_d1@hotmail.com [Department of Geriatrics, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Li, Ming, E-mail: minli77@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Li, Jianying, E-mail: Jianying.Li@med.ge.com [CT Imaging Research Center, GE Healthcare China, Beijing (China); Mao, Dingbiao, E-mail: maodingbiao74@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Wang, Zhenglei, E-mail: Williswang_doc@yahoo.com.cn [Department of Radiology, Shanghai Electricity Hospital, Shanghai 200050 (China); Hua, Yanqing, E-mail: cjr.huayanqing@vip.163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China)

    2012-10-15

    Purpose: To compare image quality and visualization of normal structures and lesions in brain computed tomography (CT) with adaptive statistical iterative reconstruction (ASIR) and filtered back projection (FBP) reconstruction techniques in different X-ray tube current–time products. Materials and methods: In this IRB-approved prospective study, forty patients (nineteen men, twenty-one women; mean age 69.5 ± 11.2 years) received brain scan at different tube current–time products (300 and 200 mAs) in 64-section multi-detector CT (GE, Discovery CT750 HD). Images were reconstructed with FBP and four levels of ASIR-FBP blending. Two radiologists (please note that our hospital is renowned for its geriatric medicine department, and these two radiologists are more experienced in chronic cerebral vascular disease than in neoplastic disease, so this research did not contain cerebral tumors but as a discussion) assessed all the reconstructed images for visibility of normal structures, lesion conspicuity, image contrast and diagnostic confidence in a blinded and randomized manner. Volume CT dose index (CTDI{sub vol}) and dose-length product (DLP) were recorded. All the data were analyzed by using SPSS 13.0 statistical analysis software. Results: There was no statistically significant difference between the image qualities at 200 mAs with 50% ASIR blending technique and 300 mAs with FBP technique (p > .05). While between the image qualities at 200 mAs with FBP and 300 mAs with FBP technique a statistically significant difference (p < .05) was found. Conclusion: ASIR provided same image quality and diagnostic ability in brain imaging with greater than 30% dose reduction compared with FBP reconstruction technique.

  17. Angular Differential Imaging: a Powerful High-Contrast Imaging Technique

    Energy Technology Data Exchange (ETDEWEB)

    Marois, C; Lafreniere, D; Doyon, R; Macintosh, B; Nadeau, D

    2005-11-07

    Angular differential imaging is a high-contrast imaging technique that reduces speckle noise from quasi-static optical aberrations and facilitates the detection of faint nearby companions. A sequence of images is acquired with an altitude/azimuth telescope, the instrument rotator being turned off. This keeps the instrument and telescope optics aligned, stabilizes the instrumental PSF and allows the field of view to rotate with respect to the instrument. For each image, a reference PSF obtained from other images of the sequence is subtracted. All residual images are then rotated to align the field and are median combined. Observed performances are reported for Gemini Altair/NIRI data. Inside the speckle dominated region of the PSF, it is shown that quasi-static PSF noise can be reduced by a factor {approx}5 for each image subtraction. The combination of all residuals then provides an additional gain of the order of the square root of the total number of images acquired. To our knowledge, this is the first time an acquisition strategy and reduction pipeline designed for speckle attenuation and high contrast imaging is demonstrated to significantly get better detection limits with longer integration times at all angular separations. A PSF noise attenuation of 100 was achieved from 2-hour long sequences of images of Vega, reaching a 5-sigma contrast of 20 magnitudes for separations greater than 7''. This technique can be used with currently available instruments to search for {approx} 1 M{sub Jup} exoplanets with orbits of radii between 50 and 300 AU around nearby young stars. The possibility of combining the technique with other high-contrast imaging methods is briefly discussed.

  18. Compact and mobile high resolution PET brain imager

    Science.gov (United States)

    Majewski, Stanislaw; Proffitt, James

    2011-02-08

    A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage.

  19. Perfusion imaging with computed tomography: brain and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Miles, K.A. [Div. of Clinical and Lab. Investigation, Brighton and Sussex Medical School, Univ. of Sussex, Falmer, Brighton (United Kingdom)

    2006-01-10

    The availability of rapid imaging with multidetector CT systems and commercial analysis software has made perfusion imaging with CT an everyday technique, not only for the brain but also for other body organs. Perfusion imaging is usually performed as an adjunct to a conventional CT examination and is therefore particularly appropriate when a conventional CT is part of routine clinical protocols. The derived values are reproducible and have been validated against a range of reference techniques. Within neuroradiology, perfusion CT has attracted interest in the assessment of acute stroke but can also be used to assess secondary injury in head trauma and as an adjunct to CT angiography to evaluate cerebral spasm in subarachnoid haemorrhage. Within oncology, perfusion CT provides an imaging correlate for tumour vascularity that can be used to discriminate benign and malignant lesions, as an indicator of tumour aggressiveness, to reveal occult tumour and improve the delineation of tumours during radiotherapy planning, and as a functional assessment of tumour response to therapy. By exploiting the ability of CT systems to quantify contrast enhancement. CT perfusion imaging uses contrast media to assess vascular physiology and so improve diagnosis, prognosis, treatment selection and therapy monitoring. (orig.)

  20. Infrared Imaging System for Studying Brain Function

    Science.gov (United States)

    Mintz, Frederick; Mintz, Frederick; Gunapala, Sarath

    2007-01-01

    A proposed special-purpose infrared imaging system would be a compact, portable, less-expensive alternative to functional magnetic resonance imaging (fMRI) systems heretofore used to study brain function. Whereas a typical fMRI system fills a large room, and must be magnetically isolated, this system would fit into a bicycle helmet. The system would include an assembly that would be mounted inside the padding in a modified bicycle helmet or other suitable headgear. The assembly would include newly designed infrared photodetectors and data-acquisition circuits on integrated-circuit chips on low-thermal-conductivity supports in evacuated housings (see figure) arranged in multiple rows and columns that would define image coordinates. Each housing would be spring-loaded against the wearer s head. The chips would be cooled by a small Stirling Engine mounted contiguous to, but thermally isolated from, the portions of the assembly in thermal contact with the wearer s head. Flexible wires or cables for transmitting data from the aforementioned chips would be routed to an integrated, multichannel transmitter and thence through the top of the assembly to a patch antenna on the outside of the helmet. The multiple streams of data from the infrared-detector chips would be sent to a remote site, where they would be processed, by software, into a three-dimensional display of evoked potentials that would represent firing neuronal bundles and thereby indicate locations of neuronal activity associated with mental or physical activity. The 3D images will be analogous to current fMRI images. The data would also be made available, in real-time, for comparison with data in local or internationally accessible relational databases that already exist in universities and research centers. Hence, this system could be used in research on, and for the diagnosis of response from the wearer s brain to physiological, psychological, and environmental changes in real time. The images would also be

  1. FULLY AUTOMATIC FRAMEWORK FOR SEGMENTATION OF BRAIN MRI IMAGE

    Institute of Scientific and Technical Information of China (English)

    Lin Pan; Zheng Chongxun; Yang Yong; Gu Jianwen

    2005-01-01

    Objective To propose an automatic framework for segmentation of brain image in this paper. Methods The brain MRI image segmentation framework consists of three-step segmentation procedures. First, Non-brain structures removal by level set method. Then, the non-uniformity correction method is based on computing estimates of tissue intensity variation. Finally, it uses a statistical model based on Markov random filed for MRI brain image segmentation. The brain tissue can be classified into cerebrospinal fluid, white matter and gray matter. Results To evaluate the proposed our method, we performed two sets of experiments, one on simulated MR and another on real MR brain data. Conclusion The efficacy of the brain MRI image segmentation framework has been demonstrated by the extensive experiments. In the future, we are also planning on a large-scale clinical evaluation of this segmentation framework.

  2. Neuroimaging of pediatric brain tumors: from basic to advanced magnetic resonance imaging (MRI).

    Science.gov (United States)

    Panigrahy, Ashok; Blüml, Stefan

    2009-11-01

    In this review, the basic magnetic resonance concepts used in the imaging approach of a pediatric brain tumor are described with respect to different factors including understanding the significance of the patient's age. Also discussed are other factors directly related to the magnetic resonance scan itself including evaluating the location of the tumor, determining if the lesion is extra-axial or intra-axial, and evaluating the contrast characteristics of the lesion. Of note, there are key imaging features of pediatric brain tumors, which can give information about the cellularity of the lesion, which can then be confirmed with advanced magnetic resonance imaging (MRI) techniques. The second part of this review will provide an overview of the major advanced MRI techniques used in pediatric imaging, particularly, magnetic resonance diffusion, magnetic resonance spectroscopy, and magnetic resonance perfusion. The last part of the review will provide more specific information about the use of advanced magnetic resonance techniques in the evaluation of pediatric brain tumors.

  3. Pitfalls and Limitations of PET/CT in Brain Imaging.

    Science.gov (United States)

    Salmon, Eric; Bernard Ir, Claire; Hustinx, Roland

    2015-11-01

    Neurologic applications were at the forefront of PET imaging when the technique was developed in the mid-1970s. Although oncologic indications have become prominent in terms of number of studies performed worldwide, neurology remains a major field in which functional imaging provides unique information, both for clinical and research purposes. The evaluation of glucose metabolism using FDG remains the most frequent exploration, but in recent years, alternative radiotracers have been developed, including fluorinated amino acid analogues for primary brain tumor imaging and fluorinated compounds for assessing the amyloid deposits in patients with suspected Alzheimer disease. As the brain is enclosed in the skull, which presents fixed landmarks, it is relatively easy to coregister images obtained with various cross-sectional imaging methods, either functional or anatomical, with a relatively high accuracy and robustness. Nevertheless, PET in neurology has fully benefited from the advent of hybrid imaging. Attenuation and scatter correction is now much faster and equally accurate, using CT as compared with the traditional transmission scan using an external radioactive source. The perfect coregistration with the CT data, which is now systematically performed, also provides its own set of valuable information, for instance regarding cerebral atrophy. However, hybrid imaging in neurology comes with pitfalls and limitations, in addition to those that are well known, for example, blood glucose levels or psychotropic drugs that greatly affect the physiological FDG uptake. Movements of the patient's head, either during the PET acquisition or between the PET and the CT acquisitions will generate artifacts that may be very subtle yet lead to erroneous interpretation of the study. Similarly, quantitative analysis, such as voxel-based analyses, may prove very helpful in improving the diagnostic accuracy and the reproducibility of the reading, but a wide variety of artifacts may

  4. Quantitative Techniques in PET-CT Imaging

    NARCIS (Netherlands)

    Basu, Sandip; Zaidi, Habib; Holm, Soren; Alavi, Abass

    2011-01-01

    The appearance of hybrid PET/CT scanners has made quantitative whole body scanning of radioactive tracers feasible. This paper deals with the novel concepts for assessing global organ function and disease activity based on combined functional (PET) and structural (CT or MR) imaging techniques, their

  5. [Molecular imaging of histamine receptors in the human brain].

    Science.gov (United States)

    Tashiro, Manabu; Yanai, Kazuhiko

    2007-03-01

    Brain histamine is involved in a wide range of physiological functions such as regulation of sleep-wake cycle, arousal, appetite control, cognition, learning and memory mainly through the 4 receptor subtypes: H1, H2, H3 and H4. Neurons producing histamine, histaminergic neurons, are exclusively located in the tuberomammillary nucleus of the posterior hypothalamus and are transmitting histamine to almost all regions of the brain. Roles of brain histamine have been studied using animals including knock-out mice and human subjects. For clinical studies, molecular imaging technique such as positron emission tomography (PET), with ligands such as [11C]doxepin and [11C]pyrilamine, has been a useful tool. A series of clinical studies on histamine H1 antagonists, or antihistamines, have demonstrated that antihistamines can be classified into sedative, mildly-sedative and non-sedative drugs according to their blood-brain barrier (BBB) permeability, showing apparent clinical usefulness regarding QOL, work efficiency and traffic safety of allergic patients. PET has also been used for elucidation of aging effects and pathophysiological roles of histaminergic nervous system in various neuropsychiatric disorders such as Alzheimer's disease, schizophrenia and depression, where H1 receptor binding potentials were lower than age-matched healthy controls. It has been also demonstrated that brain histamine functions as an endogenous anti-epileptic. In addition, H3 receptors are located in the presynaptic sites of not only histaminergic nerves but also in other nervous systems such as serotonergic, cholinergic and dopaminergic systems, and to be regulating secretion of various neurotransmitters. Nowadays, H3 receptors have been thought to be a new target of drug treatment of various neuropsychiatric disorders. There are still many research topics to be investigated regarding molecular imaging of histamine and histamine receptors. The authors hope that this line of research contributes

  6. FCM Clustering Algorithms for Segmentation of Brain MR Images

    Directory of Open Access Journals (Sweden)

    Yogita K. Dubey

    2016-01-01

    Full Text Available The study of brain disorders requires accurate tissue segmentation of magnetic resonance (MR brain images which is very important for detecting tumors, edema, and necrotic tissues. Segmentation of brain images, especially into three main tissue types: Cerebrospinal Fluid (CSF, Gray Matter (GM, and White Matter (WM, has important role in computer aided neurosurgery and diagnosis. Brain images mostly contain noise, intensity inhomogeneity, and weak boundaries. Therefore, accurate segmentation of brain images is still a challenging area of research. This paper presents a review of fuzzy c-means (FCM clustering algorithms for the segmentation of brain MR images. The review covers the detailed analysis of FCM based algorithms with intensity inhomogeneity correction and noise robustness. Different methods for the modification of standard fuzzy objective function with updating of membership and cluster centroid are also discussed.

  7. Meta-analysis of functional brain imaging in specific phobia.

    Science.gov (United States)

    Ipser, Jonathan C; Singh, Leesha; Stein, Dan J

    2013-07-01

    Although specific phobia is a prevalent anxiety disorder, evidence regarding its underlying functional neuroanatomy is inconsistent. A meta-analysis was undertaken to identify brain regions that were consistently responsive to phobic stimuli, and to characterize changes in brain activation following cognitive behavioral therapy (CBT). We searched the PubMed, SCOPUS and PsycINFO databases to identify positron emission tomography and functional magnetic resonance imaging studies comparing brain activation in specific phobia patients and healthy controls. Two raters independently extracted study data from all the eligible studies, and pooled coordinates from these studies using activation likelihood estimation, a quantitative meta-analytic technique. Resulting statistical parametric maps were compared between patients and healthy controls, in response to phobic versus fear-evoking stimuli, and before and after therapy. Thirteen studies were included, comprising 327 participants. Regions that were consistently activated in response to phobic stimuli included the left insula, amygdala, and globus pallidus. Compared to healthy controls, phobic subjects had increased activation in response to phobic stimuli in the left amygdala/globus pallidus, left insula, right thalamus (pulvinar), and cerebellum. Following exposure-based therapy widespread deactivation was observed in the right frontal cortex, limbic cortex, basal ganglia and cerebellum, with increased activation detected in the thalamus. Exposure to phobia-specific stimuli elicits brain activation that is consistent with current understandings of the neuroanatomy of fear conditioning and extinction. There is evidence that the effects of CBT in specific phobia may be mediated through the same underlying neurocircuitry.

  8. Image processing techniques for passive millimeter-wave imaging

    Science.gov (United States)

    Lettington, Alan H.; Gleed, David G.

    1998-08-01

    We present our results on the application of image processing techniques for passive millimeter-wave imaging and discuss possible future trends. Passive millimeter-wave imaging is useful in poor weather such as in fog and cloud. Its spatial resolution, however, can be restricted due to the diffraction limit of the front aperture. Its resolution may be increased using super-resolution techniques but often at the expense of processing time. Linear methods may be implemented in real time but non-linear methods which are required to restore missing spatial frequencies are usually more time consuming. In the present paper we describe fast super-resolution techniques which are potentially capable of being applied in real time. Associated issues such as reducing the influence of noise and improving recognition capability will be discussed. Various techniques have been used to enhance passive millimeter wave images giving excellent results and providing a significant quantifiable increase in spatial resolution. Examples of applying these techniques to imagery will be given.

  9. Consistent Reconstruction of Cortical Surfaces from Longitudinal Brain MR Images

    OpenAIRE

    Li, Gang; Nie, Jingxin; Wu, Guorong; Wang, Yaping; Shen, Dinggang

    2011-01-01

    Accurate and consistent reconstruction of cortical surfaces from longitudinal human brain MR images is of great importance in studying longitudinal subtle change of the cerebral cortex. This paper presents a novel deformable surface method for consistent and accurate reconstruction of inner, central and outer cortical surfaces from longitudinal brain MR images. Specifically, the cortical surfaces of the group-mean image of all aligned longitudinal images of the same subject are first reconstr...

  10. Label-free live brain imaging and targeted patching with third-harmonic generation microscopy

    Science.gov (United States)

    Witte, Stefan; Negrean, Adrian; Lodder, Johannes C.; de Kock, Christiaan P. J.; Testa Silva, Guilherme; Mansvelder, Huibert D.; Louise Groot, Marie

    2011-01-01

    The ability to visualize neurons inside living brain tissue is a fundamental requirement in neuroscience and neurosurgery. Especially the development of a noninvasive probe of brain morphology with micrometer-scale resolution is highly desirable, as it would provide a noninvasive approach to optical biopsies in diagnostic medicine. Two-photon laser-scanning microscopy (2PLSM) is a powerful tool in this regard, and has become the standard for minimally invasive high-resolution imaging of living biological samples. However, while 2PLSM-based optical methods provide sufficient resolution, they have been hampered by the requirement for fluorescent dyes to provide image contrast. Here we demonstrate high-contrast imaging of live brain tissue at cellular resolution, without the need for fluorescent probes, using optical third-harmonic generation (THG). We exploit the specific geometry and lipid content of brain tissue at the cellular level to achieve partial phase matching of THG, providing an alternative contrast mechanism to fluorescence. We find that THG brain imaging allows rapid, noninvasive label-free imaging of neurons, white-matter structures, and blood vessels simultaneously. Furthermore, we exploit THG-based imaging to guide micropipettes towards designated neurons inside live tissue. This work is a major step towards label-free microscopic live brain imaging, and opens up possibilities for the development of laser-guided microsurgery techniques in the living brain. PMID:21444784

  11. Methods and considerations for longitudinal structural brain imaging analysis across development

    Directory of Open Access Journals (Sweden)

    Kathryn L. Mills

    2014-07-01

    Full Text Available Magnetic resonance imaging (MRI has allowed the unprecedented capability to measure the human brain in vivo. This technique has paved the way for longitudinal studies exploring brain changes across the entire life span. Results from these studies have given us a glimpse into the remarkably extended and multifaceted development of our brain, converging with evidence from anatomical and histological studies. Ever-evolving techniques and analytical methods provide new avenues to explore and questions to consider, requiring researchers to balance excitement with caution. This review addresses what MRI studies of structural brain development in children and adolescents typically measure and how. We focus on measurements of brain morphometry (e.g., volume, cortical thickness, surface area, folding patterns, as well as measurements derived from diffusion tensor imaging (DTI. By integrating finding from multiple longitudinal investigations, we give an update on current knowledge of structural brain development and how it relates to other aspects of biological development and possible underlying physiological mechanisms. Further, we review and discuss current strategies in image processing, analysis techniques and modeling of brain development. We hope this review will aid current and future longitudinal investigations of brain development, as well as evoke a discussion amongst researchers regarding best practices.

  12. The role of functional imaging techniques in the dementia

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Young Hoon [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    2004-06-01

    Evaluation of dementia in patients with early symptoms of cognitive decline is clinically challenging, but the need for early, accurate diagnosis has become more crucial, since several medication for the treatment of mild to moderate Alzheimer' disease are available. Many neurodegenerative diseases produce significant brain function alteration even when structural imaging (CT of MRI) reveal no specific abnormalities. The role of PET and SPECT brain imaging in the initial assessment and differential diagnosis of dementia is beginning to evolve rapidly and growing evidence indicates that appropriate incorporation of PET into the clinical work up can improve diagnostic and prognostic accuracy with respect to Alzheimer's disease, the most common cause of dementia in the geriatric population. In the fast few years, studies comparing neuropathologic examination with PET have established reliable and consistent accuracy for diagnostic evaluations using PET - accuracies substantially exceeding those of comparable studies of diagnostic value of SPECT or of both modalities assessed side by side, or of clinical evaluations done without nuclear imaging. This review deals the role of functional brian imaging techniques in the evaluation of dementias and the role of nuclear neuroimaging in the early detection and diagnosis of Alzheimer's disease.

  13. Whole Mouse Brain Image Reconstruction from Serial Coronal Sections Using FIJI (ImageJ).

    Science.gov (United States)

    Paletzki, Ronald; Gerfen, Charles R

    2015-10-01

    Whole-brain reconstruction of the mouse enables comprehensive analysis of the distribution of neurochemical markers, the distribution of anterogradely labeled axonal projections or retrogradely labeled neurons projecting to a specific brain site, or the distribution of neurons displaying activity-related markers in behavioral paradigms. This unit describes a method to produce whole-brain reconstruction image sets from coronal brain sections with up to four fluorescent markers using the freely available image-processing program FIJI (ImageJ).

  14. Combining calcium imaging with other optical techniques.

    Science.gov (United States)

    Canepari, Marco; Zecevic, Dejan; Vogt, Kaspar E; Ogden, David; De Waard, Michel

    2013-12-01

    Ca(2+) imaging is a commonly used approach for measuring Ca(2+) signals at high spatial resolution. The method is often combined with electrode recordings to correlate electrical and chemical signals or to investigate Ca(2+) signals following an electrical stimulation. To obtain information on electrical activity at the same spatial resolution, Ca(2+) imaging must be combined with membrane potential imaging. Similarly, stimulation of subcellular compartments requires photostimulation. Thus, combining Ca(2+) imaging with an additional optical technique facilitates the study of a number of physiological questions. The aim of this article is to introduce some basic principles regarding the combination of Ca(2+) imaging with other optical techniques. We discuss the design of the optics, the design of experimental protocols, the optical characteristics of Ca(2+) indicators used in combination with an optical probe, and the affinity of the Ca(2+) indicator in relation to the type of measurement. This information will enable the reader to devise an optimal strategy for combined optical experiments.

  15. Brain imaging and human nutrition: which measures to use in intervention studies?

    Science.gov (United States)

    Sizonenko, Stéphane V; Babiloni, Claudio; de Bruin, Eveline A; Isaacs, Elizabeth B; Jönsson, Lena S; Kennedy, David O; Latulippe, Marie E; Mohajeri, M Hasan; Moreines, Judith; Pietrini, Pietro; Walhovd, Kristine B; Winwood, Robert J; Sijben, John W

    2013-08-01

    The present review describes brain imaging technologies that can be used to assess the effects of nutritional interventions in human subjects. Specifically, we summarise the biological relevance of their outcome measures, practical use and feasibility, and recommended use in short- and long-term nutritional studies. The brain imaging technologies described consist of MRI, including diffusion tensor imaging, magnetic resonance spectroscopy and functional MRI, as well as electroencephalography/magnetoencephalography, near-IR spectroscopy, positron emission tomography and single-photon emission computerised tomography. In nutritional interventions and across the lifespan, brain imaging can detect macro- and microstructural, functional, electrophysiological and metabolic changes linked to broader functional outcomes, such as cognition. Imaging markers can be considered as specific for one or several brain processes and as surrogate instrumental endpoints that may provide sensitive measures of short- and long-term effects. For the majority of imaging measures, little information is available regarding their correlation with functional endpoints in healthy subjects; therefore, imaging markers generally cannot replace clinical endpoints that reflect the overall capacity of the brain to behaviourally respond to specific situations and stimuli. The principal added value of brain imaging measures for human nutritional intervention studies is their ability to provide unique in vivo information on the working mechanism of an intervention in hypothesis-driven research. Selection of brain imaging techniques and target markers within a given technique should mainly depend on the hypothesis regarding the mechanism of action of the intervention, level (structural, metabolic or functional) and anticipated timescale of the intervention's effects, target population, availability and costs of the techniques.

  16. Cluster imaging of multi-brain networks (CIMBN: a general framework for hyperscanning and modeling a group of interacting brains

    Directory of Open Access Journals (Sweden)

    Lian eDuan

    2015-07-01

    Full Text Available Studying the neural basis of human social interactions is a key topic in the field of social neuroscience. Brain imaging studies in this field usually focus on the neural correlates of the social interactions between two participants. However, as the participant number further increases, even by a small amount, great difficulties raise. One challenge is how to concurrently scan all the interacting brains with high ecological validity, especially for a large number of participants. The other challenge is how to effectively model the complex group interaction behaviors emerging from the intricate neural information exchange among a group of socially organized people. Confronting these challenges, we propose a new approach called Cluster Imaging of Multi-brain Networks (CIMBN. CIMBN consists of two parts. The first part is a cluster imaging technique with high ecological validity based on multiple functional near-infrared spectroscopy (fNIRS systems. Using this technique, we can easily extend the simultaneous imaging capacity of social neuroscience studies up to dozens of participants. The second part of CIMBN is a multi-brain network (MBN modeling method based on graph theory. By taking each brain as a network node and the relationship between any two brains as a network edge, one can construct a network model for a group of interacting brains. The emergent group social behaviors can then be studied using the network’s properties, such as its topological structure and information exchange efficiency. Although there is still much work to do, as a general framework for hyperscanning and modeling a group of interacting brains, CIMBN can provide new insights into the neural correlates of group social interactions, and advance social neuroscience and social psychology.

  17. The physiological and biochemical bases of functional brain imaging

    OpenAIRE

    2007-01-01

    Functional brain imaging is based on the display of computer-derived images of changes in physiological and/or biochemical functions altered by activation or depression of local functional activities in the brain. This article reviews the physiological and biochemical mechanisms involved.

  18. [Psychopathology of schizophrenia and brain imaging].

    Science.gov (United States)

    Gross, G; Huber, G

    2008-05-01

    separated from idiopathic schizophrenias as symptomatic by neurohistopathological findings of post mortem examinations and e.g. diagnosed as sporadic, atypical encephalitis. The cenesthetic type had a pilot function for the development of the BSC, because in its course the basic symptomatology determined as well the prodromes before the first psychotic episode, as after that the reversible postpsychotic basic stages respectively the irreversible pure defect syndromes, into which two thirds of cenesthetic schizophrenias terminate; then, because with this type the first time has been observed, that from initially quite uncharacteristic basic symptoms (BS) (level 1 BS), qualitatively peculiar basic symptoms (level 2 BS) and then distinct psychotic symptoms, i.e. bodily hallucinations arise; and because in patients with persisting pure deficiency syndromes neuromorphological changes in the sense of a basal ganglia syndrome could be proved. The clinical neuroradiological correlation study in 195 schizophrenic patients with slight residues or full remissions and 212 chronic schizophrenias as well as in 535 patients with organic psychosyndromes of different diagnostic groups reveal that brain imaging and biological-psychiatric research are only promising in close connection with clinical psychopathology and observation of the course, if they aim to assign certain structural or functional cerebral disturbances with certain clinical symptoms and syndromes. In this respect schizophrenic, schizoaffective and affective idiopathic psychosyndromes do not differ from somatically based psychoses in definable brain diseases. With functional-dynamic parameters the differentiation in process active and inactive stages has to be made guided by the actual clinical psychopathological syndrome at the moment of the collecting of the electroencephalographic, neurochemical, fMRI or PET findings. The reasons of inconsistencies of the EEG, PEG, CT, MRI, PET findings are analysed and it is shown that

  19. Whole-brain dynamic CT angiography and perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orrison, W.W. [CHW Nevada Imaging Company, Nevada Imaging Centers, Spring Valley, Las Vegas, NV (United States); College of Osteopathic Medicine, Touro University Nevada, Henderson, NV (United States); Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Department of Medical Education, University of Nevada School of Medicine, Reno, NV (United States); Snyder, K.V.; Hopkins, L.N. [Department of Neurosurgery, Millard Fillmore Gates Circle Hospital, Buffalo, NY (United States); Roach, C.J. [School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States); Ringdahl, E.N. [Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV (United States); Nazir, R. [Shifa International Hospital, Islamabad (Pakistan); Hanson, E.H., E-mail: eric.hanson@amigenics.co [College of Osteopathic Medicine, Touro University Nevada, Henderson, NV (United States); Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States)

    2011-06-15

    The availability of whole brain computed tomography (CT) perfusion has expanded the opportunities for analysing the haemodynamic parameters associated with varied neurological conditions. Examples demonstrating the clinical utility of whole-brain CT perfusion imaging in selected acute and chronic ischaemic arterial neurovascular conditions are presented. Whole-brain CT perfusion enables the detection and focused haemodynamic analyses of acute and chronic arterial conditions in the central nervous system without the limitation of partial anatomical coverage of the brain.

  20. Automated segmentation of three-dimensional MR brain images

    Science.gov (United States)

    Park, Jonggeun; Baek, Byungjun; Ahn, Choong-Il; Ku, Kyo Bum; Jeong, Dong Kyun; Lee, Chulhee

    2006-03-01

    Brain segmentation is a challenging problem due to the complexity of the brain. In this paper, we propose an automated brain segmentation method for 3D magnetic resonance (MR) brain images which are represented as a sequence of 2D brain images. The proposed method consists of three steps: pre-processing, removal of non-brain regions (e.g., the skull, meninges, other organs, etc), and spinal cord restoration. In pre-processing, we perform adaptive thresholding which takes into account variable intensities of MR brain images corresponding to various image acquisition conditions. In segmentation process, we iteratively apply 2D morphological operations and masking for the sequences of 2D sagittal, coronal, and axial planes in order to remove non-brain tissues. Next, final 3D brain regions are obtained by applying OR operation for segmentation results of three planes. Finally we reconstruct the spinal cord truncated during the previous processes. Experiments are performed with fifteen 3D MR brain image sets with 8-bit gray-scale. Experiment results show the proposed algorithm is fast, and provides robust and satisfactory results.

  1. Functional brain imaging of gastrointestinal sensation in health and disease

    Institute of Scientific and Technical Information of China (English)

    Lukas Van Oudenhove; Steven J Coen; Qasim Aziz

    2007-01-01

    It has since long been known, from everyday experience as well as from animal and human studies, that psychological processes-both affective and cognitiveexert an influence on gastrointestinal sensorimotor function. More specifically, a link between psychological factors and visceral hypersensitivity has been suggested,mainly based on research in functional gastrointestinal disorder patients. However, until recently, the exact nature of this putative relationship remained unclear,mainly due to a lack of non-invasive methods to study the (neurobiological) mechanisms underlying this relationship in non-sleeping humans. As functional brain imaging, introduced in visceral sensory neuroscience some 10 years ago, does provide a method for in vivo study of brain-gut interactions, insight into the neurobiological mechanisms underlying visceral sensation in general and the influence of psychological factors more particularly,has rapidly grown. In this article, an overview of brain imaging evidence on gastrointestinal sensation will be given, with special emphasis on the brain mechanisms underlying the interaction between affective & cognitive processes and visceral sensation. First, the reciprocal neural pathways between the brain and the gut (braingut axis) will be briefly outlined, including brain imaging evidence in healthy volunteers. Second, functional brain imaging studies assessing the influence of psychological factors on brain processing of visceral sensation in healthy humans will be discussed in more detail.Finally, brain imaging work investigating differences in brain responses to visceral distension between healthy volunteers and functional gastrointestinal disorder patients will be highlighted.

  2. Functional connectivity of the rodent brain using optical imaging

    Science.gov (United States)

    Guevara Codina, Edgar

    The aim of this thesis is to apply functional connectivity in a variety of animal models, using several optical imaging modalities. Even at rest, the brain shows high metabolic activity: the correlation in slow spontaneous fluctuations identifies remotely connected areas of the brain; hence the term "functional connectivity". Ongoing changes in spontaneous activity may provide insight into the neural processing that takes most of the brain metabolic activity, and so may provide a vast source of disease related changes. Brain hemodynamics may be modified during disease and affect resting-state activity. The thesis aims to better understand these changes in functional connectivity due to disease, using functional optical imaging. The optical imaging techniques explored in the first two contributions of this thesis are Optical Imaging of Intrinsic Signals and Laser Speckle Contrast Imaging, together they can estimate the metabolic rate of oxygen consumption, that closely parallels neural activity. They both have adequate spatial and temporal resolution and are well adapted to image the convexity of the mouse cortex. In the last article, a depth-sensitive modality called photoacoustic tomography was used in the newborn rat. Optical coherence tomography and laminar optical tomography were also part of the array of imaging techniques developed and applied in other collaborations. The first article of this work shows the changes in functional connectivity in an acute murine model of epileptiform activity. Homologous correlations are both increased and decreased with a small dependence on seizure duration. These changes suggest a potential decoupling between the hemodynamic parameters in resting-state networks, underlining the importance to investigate epileptic networks with several independent hemodynamic measures. The second study examines a novel murine model of arterial stiffness: the unilateral calcification of the right carotid. Seed-based connectivity analysis

  3. Adapting Parcellation Schemes to Study Fetal Brain Connectivity in Serial Imaging Studies

    DEFF Research Database (Denmark)

    Cheng, Xi; Wilm, Jakob; Seshamani, Sharmishtaa

    2013-01-01

    of the developing fetal brain such functional and associated structural markers are not consistently present over time. In this study we adapt two non-atlas based parcellation schemes to study the development of connectivity networks of a fetal monkey brain using Diffusion Weighted Imaging techniques. Results......A crucial step in studying brain connectivity is the definition of the Regions Of Interest (ROI's) which are considered as nodes of a network graph. These ROI's identified in structural imaging reflect consistent functional regions in the anatomies being compared. However in serial studies...

  4. Intracranial Hemorrhage Annotation for CT Brain Images

    Directory of Open Access Journals (Sweden)

    Tong Hau Lee

    2011-01-01

    Full Text Available In this paper, we created a decision-making model to detect intracranial hemorrhage and adopted Expectation Maximization(EM segmentation to segment the Computed Tomography (CT images. In this work, basically intracranial hemorrhage is classified into two main types which are intra-axial hemorrhage and extra-axial hemorrhage. In order to ease classification, contrast enhancement is adopted to finetune the contrast of the hemorrhage. After that, k-means is applied to group the potential and suspicious hemorrhagic regions into one cluster. The decision-making process is to identify whether the suspicious regions are hemorrhagic regions or non-regions of interest. After the hemorrhagic detection, the images are segmented into brain matter and cerebrospinal fluid (CSF by using expectation-maximization (EM segmentation. The acquired experimental results are evaluated in terms of recall and precision. The encouraging results have been attained whereby the proposed system has yielded 0.9333 and 0.8880 precision for extra-axial and intra-axial hemorrhagic detection respectively, whereas recall rate obtained is 0.9245 and 0.8043 for extra-axial and intra-axial hemorrhagic detection respectively.

  5. Biometric identification using holographic radar imaging techniques

    Science.gov (United States)

    McMakin, Douglas L.; Sheen, David M.; Hall, Thomas E.; Kennedy, Mike O.; Foote, Harlen P.

    2007-04-01

    Pacific Northwest National Laboratory researchers have been at the forefront of developing innovative screening systems to enhance security and a novel imaging system to provide custom-fit clothing using holographic radar imaging techniques. First-of-a-kind cylindrical holographic imaging systems have been developed to screen people at security checkpoints for the detection of concealed, body worn, non-metallic threats such as plastic and liquid explosives, knifes and contraband. Another embodiment of this technology is capable of obtaining full sized body measurements in near real time without the person under surveillance removing their outer garments. Radar signals readily penetrate clothing and reflect off the water in skin. This full body measurement system is commercially available for best fitting ready to wear clothing, which was the first "biometric" application for this technology. One compelling feature of this technology for security biometric applications is that it can see effectively through disguises, appliances and body hair.

  6. Magnetic resonance imaging based volumetry: a primary approach to unravelling the brain

    Institute of Scientific and Technical Information of China (English)

    Huang Xiaoqi; Lü Su; Li Dongming; Gong Qiyong

    2007-01-01

    Magnetic resonance (MR) imaging based volumetry is recognized as an important technique for studying the brain. In this review, two principle volumetric methods using high resolution MR images were introduced, namely the Cavalieri method and the voxel based morphometry (VBM). The Cavalieri method represents a manual technique that allows the volume of brain structures to be estimated efficiently with no systematic error or sampling bias, whereby the VBM represents an automated image analysis which involves the use of statistical parametric mapping of the MR imaging data. Both methods have been refined and applied extensively in recent neuroscience research. The present paper aims to describe the development of methodologies and also to update the knowledge of their applications in studying the normal and diseased brain.

  7. Spatial mapping of structural and connectional imaging data for the developing human brain with diffusion tensor imaging.

    Science.gov (United States)

    Ouyang, Austin; Jeon, Tina; Sunkin, Susan M; Pletikos, Mihovil; Sedmak, Goran; Sestan, Nenad; Lein, Ed S; Huang, Hao

    2015-02-01

    During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain.

  8. Upright CBCT: A novel imaging technique

    Directory of Open Access Journals (Sweden)

    Xenia J Fave

    2014-03-01

    Full Text Available Purpose: We present a method for acquiring and correcting upright images using the on board CBCT imager. An upright imaging technique would allow for the introduction of upright radiation therapy treatments, which would benefit a variety of patients including those with thoracic cancers whose lung volumes are increased in an upright position and those who experience substantial discomfort during supine treatment positions.Methods: To acquire upright CBCT images, the linac head was positioned at 0 degrees, the KV imager and detector arms extended to their lateral positions, and the couch placed at 270 degrees. The KV imager was programmed to begin taking continuous fluoroscopic projections as the couch rotated from 270 to 90 degrees. The FOV was extended by performing this procedure twice, once with the detector shifted 14.5 cm towards the gantry and once with it shifted 14.5 cm away from the gantry. The two resulting sets of images were stitched together prior to reconstruction. The imaging parameters were chosen to deliver the some dose as that delivered during a simulation CT. A simulation CT was deformably registered to an upright CBCT reconstruction in order to evaluate the possibility of correcting the HU values via mapping.Results: Both spatial linearity and high contrast resolution were maintained in upright CBCT when compared to a simulation CT. Low contrast resolution and HU linearity decreased. Streaking artifacts were caused by the limited 180 degree arc angle and a sharp point artifact in the center of the axial slices resulted at the site of the stitching. A method for correcting the HUs was shown to be robust against these artifacts.Conclusion: Upright CBCT could be of great benefit to many patients. This study demonstrates its feasibility and presents solutions to some of its first hurdles before clinical implementation.--------------------------Cite this article as:Fave X, Yang J, Balter P, Court L. Upright CBCT: A novel imaging

  9. Diffusion MRI of the neonate brain: acquisition, processing and analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pannek, Kerstin [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, School of Medicine, Brisbane (Australia); University of Queensland, Centre for Advanced Imaging, Brisbane (Australia); Guzzetta, Andrea [IRCCS Stella Maris, Department of Developmental Neuroscience, Calambrone Pisa (Italy); Colditz, Paul B. [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, Perinatal Research Centre, Brisbane (Australia); Rose, Stephen E. [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, Centre for Advanced Imaging, Brisbane (Australia); University of Queensland Centre for Clinical Research, Royal Brisbane and Women' s Hospital, Brisbane (Australia)

    2012-10-15

    Diffusion MRI (dMRI) is a popular noninvasive imaging modality for the investigation of the neonate brain. It enables the assessment of white matter integrity, and is particularly suited for studying white matter maturation in the preterm and term neonate brain. Diffusion tractography allows the delineation of white matter pathways and assessment of connectivity in vivo. In this review, we address the challenges of performing and analysing neonate dMRI. Of particular importance in dMRI analysis is adequate data preprocessing to reduce image distortions inherent to the acquisition technique, as well as artefacts caused by head movement. We present a summary of techniques that should be used in the preprocessing of neonate dMRI data, and demonstrate the effect of these important correction steps. Furthermore, we give an overview of available analysis techniques, ranging from voxel-based analysis of anisotropy metrics including tract-based spatial statistics (TBSS) to recently developed methods of statistical analysis addressing issues of resolving complex white matter architecture. We highlight the importance of resolving crossing fibres for tractography and outline several tractography-based techniques, including connectivity-based segmentation, the connectome and tractography mapping. These techniques provide powerful tools for the investigation of brain development and maturation. (orig.)

  10. Whole brain myelin mapping using T1- and T2-weighted MR imaging data

    Directory of Open Access Journals (Sweden)

    Marco eGanzetti

    2014-09-01

    Full Text Available Despite recent advancements in MR imaging, non-invasive mapping of myelin in the brain still remains an open issue. Here we attempted to provide a potential solution. Specifically, we developed a processing workflow based on T1-w and T2-w MR data to generate an optimized myelin enhanced contrast image. The workflow allows whole brain mapping using the T1-w/T2-w technique, which was originally introduced as a non-invasive method for assessing cortical myelin content. The hallmark of our approach is a retrospective calibration algorithm, applied to bias-corrected T1-w and T2-w images, that relies on image intensities outside the brain. This permits standardizing the intensity histogram of the ratio image, thereby allowing for across-subject statistical analyses. Quantitative comparisons of image histograms within and across different datasets confirmed the effectiveness of our normalization procedure. Not only did the calibrated T1-w/T2-w images exhibit a comparable intensity range, but also the shape of the intensity histograms was largely corresponding. We also assessed the reliability and specificity of the ratio image compared to other MR-based techniques, such as magnetization transfer ratio, fractional anisotropy and fluid-attenuated inversion recovery. With respect to these other techniques, T1-w/T2-w had consistently high values, as well as low inter-subject variability, in brain structures where myelin is most abundant. Overall, our results suggested that the T1-w/T2-w technique may be a valid tool supporting the non-invasive mapping of myelin in the brain. Therefore, it might find important applications in the study of brain development, aging and disease.

  11. Rhesus monkey brain imaging through intact skull with thermoacoustic tomography.

    Science.gov (United States)

    Xu, Yuan; Wang, Lihong V

    2006-03-01

    Two-dimensional microwave-induced thermoacoustic tomography (TAT) is applied to imaging the Rhesus monkey brain through the intact skull. To reduce the wavefront distortion caused by the skull, only the low-frequency components of the thermoacoustic signals (images. The methods of signal processing and image reconstruction are validated by imaging a lamb kidney. The resolution of the system is found to be 4 mm when we image a 1-month-old monkey head containing inserted needles. We also image the coronal and axial sections of a 7-month-old monkey head. Brain features that are 3 cm deep in the head are imaged clearly. Our results demonstrate that TAT has potential for use in portable, cost-effective imagers for pediatric brains.

  12. Diagnosing Autism Spectrum Disorder through Brain Functional Magnetic Resonance Imaging

    Science.gov (United States)

    2016-03-01

    Diagnosing Autism Spectrum Disorder through Brain Functional Magnetic Resonance Imaging THESIS MARCH 2016 Kyle A. Palko, Second Lieutenant, USAF AFIT...DISORDER THROUGH BRAIN FUNCTIONAL MAGNETIC RESONANCE IMAGING THESIS Presented to the Faculty Department of Operational Sciences Graduate School of...available data includes raw fMRI as well as processed MP RAGE1 images . All data within the ABIDE database was compiled through studies on autism. All

  13. Optimized Fuzzy Logic Based Segmentation for Abnormal MRI Brain Images Analysis

    Directory of Open Access Journals (Sweden)

    Indah Soesanti

    2011-09-01

    Full Text Available In this paper an optimized fuzzy logic based segmentation for abnormal MRI brain images analysis is presented. A conventional fuzzy c-means (FCM technique does not use the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The FCM algorithm that incorporates spatial information into the membership function is used for clustering, while a conventional FCM algorithm does not fully utilize the spatial information in the image.The advantage of the technique is less sensitive to noise than the others. Originality of this research is focused in application of the technique on a normal and a glioma MRI brain images, and analysis of the area of abnormal mass from segmented images. The results show that the method effectively segmented MRI brain images, and the segmented normal and glioma MRI brain images can be analyzed for diagnosis purpose. The area of abnormal mass is identified from 7.15 to 19.41 cm2.

  14. Connectomic analysis of brain networks: novel techniques and future directions

    Directory of Open Access Journals (Sweden)

    Leonie Cazemier

    2016-11-01

    Full Text Available Brain networks, localized or brain-wide, exist only at the cellular level, i.e. between specific pre- and postsynaptic neurons, which are connected through functionally diverse synapses located at specific points of their cell membranes. Connectomics is the emerging subfield of neuroanatomy explicitly aimed at elucidating the wiring of brain networks with cellular resolution and a quantified accuracy. Such data are indispensable for realistic modeling of brain circuitry and function. A connectomic analysis, therefore, needs to identify and measure the soma, dendrites, axonal path and branching patterns together with the synapses and gap junctions of the neurons involved in any given brain circuit or network. However, because of the submicron caliber, 3D complexity and high packing density of most such structures, as well as the fact that axons frequently extend over long distances to make synapses in remote brain regions, creating connectomic maps is technically challenging and requires multi-scale approaches, Such approaches involve the combination of the most sensitive cell labeling and analysis methods available, as well as the development of new ones able to resolve individual cells and synapses with increasing high-throughput. In this review, we provide an overview of recently introduced high-resolution methods, which researchers wanting to enter the field of connectomics may consider. It includes several molecular labeling tools, some of which specifically label synapses, and covers a number of novel imaging tools such as brain clearing protocols and microscopy approaches. Apart from describing the tools, we also provide an assessment of their qualities. The criteria we use assess the qualities that tools need in order to contribute to deciphering the key levels of circuit organization. We conclude with a brief future outlook for neuroanatomic research, computational methods and network modeling, where we also point out several outstanding

  15. Cognitive neuroscience and brain imaging in bipolar disorder.

    Science.gov (United States)

    Clark, Luke; Sahakian, Barbara J

    2008-01-01

    Bipolar disorder is characterized by a combination of state-related changes in psychological function that are restricted to illness episodes, coupled with trait-related changes that persist through periods of remission, irrespective of symptom status. This article reviews studies that have investigated the brain systems involved in these state- and trait-related changes, using two techniques: (i) indirect measures of neurocognitive function, and (ii) direct neuroimaging measures of brain function during performance of a cognitive task. Studies of neurocognitive function in bipolar disorder indicate deficits in three core domains: attention, executive function, and emotional processing. Functional imaging studies implicate pathophysiology in distributed neural circuitry that includes the prefrontal and anterior cingulate cortices, as well as subcortical limbic structures including the amygdala and the ventral striatum. Whilst there have been clear advances in our understanding of brain changes in bipolar disorder, there are limited data in bipolar depression, and there is limited understanding of the influence of clinical variables including medication status, illness severity, and specific symptom dimensions.

  16. Special feature on imaging systems and techniques

    Science.gov (United States)

    Yang, Wuqiang; Giakos, George

    2013-07-01

    The IEEE International Conference on Imaging Systems and Techniques (IST'2012) was held in Manchester, UK, on 16-17 July 2012. The participants came from 26 countries or regions: Austria, Brazil, Canada, China, Denmark, France, Germany, Greece, India, Iran, Iraq, Italy, Japan, Korea, Latvia, Malaysia, Norway, Poland, Portugal, Sweden, Switzerland, Taiwan, Tunisia, UAE, UK and USA. The technical program of the conference consisted of a series of scientific and technical sessions, exploring physical principles, engineering and applications of new imaging systems and techniques, as reflected by the diversity of the submitted papers. Following a rigorous review process, a total of 123 papers were accepted, and they were organized into 30 oral presentation sessions and a poster session. In addition, six invited keynotes were arranged. The conference not only provided the participants with a unique opportunity to exchange ideas and disseminate research outcomes but also paved a way to establish global collaboration. Following the IST'2012, a total of 55 papers, which were technically extended substantially from their versions in the conference proceeding, were submitted as regular papers to this special feature of Measurement Science and Technology . Following a rigorous reviewing process, 25 papers have been finally accepted for publication in this special feature and they are organized into three categories: (1) industrial tomography, (2) imaging systems and techniques and (3) image processing. These papers not only present the latest developments in the field of imaging systems and techniques but also offer potential solutions to existing problems. We hope that this special feature provides a good reference for researchers who are active in the field and will serve as a catalyst to trigger further research. It has been our great pleasure to be the guest editors of this special feature. We would like to thank the authors for their contributions, without which it would

  17. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging.

    Science.gov (United States)

    Yan, Chao-Gan; Wang, Xin-Di; Zuo, Xi-Nian; Zang, Yu-Feng

    2016-07-01

    Brain imaging efforts are being increasingly devoted to decode the functioning of the human brain. Among neuroimaging techniques, resting-state fMRI (R-fMRI) is currently expanding exponentially. Beyond the general neuroimaging analysis packages (e.g., SPM, AFNI and FSL), REST and DPARSF were developed to meet the increasing need of user-friendly toolboxes for R-fMRI data processing. To address recently identified methodological challenges of R-fMRI, we introduce the newly developed toolbox, DPABI, which was evolved from REST and DPARSF. DPABI incorporates recent research advances on head motion control and measurement standardization, thus allowing users to evaluate results using stringent control strategies. DPABI also emphasizes test-retest reliability and quality control of data processing. Furthermore, DPABI provides a user-friendly pipeline analysis toolkit for rat/monkey R-fMRI data analysis to reflect the rapid advances in animal imaging. In addition, DPABI includes preprocessing modules for task-based fMRI, voxel-based morphometry analysis, statistical analysis and results viewing. DPABI is designed to make data analysis require fewer manual operations, be less time-consuming, have a lower skill requirement, a smaller risk of inadvertent mistakes, and be more comparable across studies. We anticipate this open-source toolbox will assist novices and expert users alike and continue to support advancing R-fMRI methodology and its application to clinical translational studies.

  18. Calcium imaging of infrared-stimulated activity in rodent brain.

    Science.gov (United States)

    Cayce, Jonathan Matthew; Bouchard, Matthew B; Chernov, Mykyta M; Chen, Brenda R; Grosberg, Lauren E; Jansen, E Duco; Hillman, Elizabeth M C; Mahadevan-Jansen, Anita

    2014-04-01

    Infrared neural stimulation (INS) is a promising neurostimulation technique that can activate neural tissue with high spatial precision and without the need for exogenous agents. However, little is understood about how infrared light interacts with neural tissue on a cellular level, particularly within the living brain. In this study, we use calcium sensitive dye imaging on macroscopic and microscopic scales to explore the spatiotemporal effects of INS on cortical calcium dynamics. The INS-evoked calcium signal that was observed exhibited a fast and slow component suggesting activation of multiple cellular mechanisms. The slow component of the evoked signal exhibited wave-like properties suggesting network activation, and was verified to originate from astrocytes through pharmacology and 2-photon imaging. We also provide evidence that the fast calcium signal may have been evoked through modulation of glutamate transients. This study demonstrates that pulsed infrared light can induce intracellular calcium modulations in both astrocytes and neurons, providing new insights into the mechanisms of action of INS in the brain.

  19. Controversies of diffusion weighted imaging in the diagnosis of brain death.

    Science.gov (United States)

    Luchtmann, Michael; Bernarding, Johannes; Beuing, Oliver; Kohl, Jana; Bondar, Imre; Skalej, Martin; Firsching, Raimund

    2013-10-01

    Imaging techniques as confirmatory tests may add safety to the diagnosis of brain death, but are partly not accepted either because they are too invasive, such as conventional arterial angiography, or because there is still lack of evidence of its reliability, such as magnetic resonance angiography. In this study the reliability of diffusion weighted imaging for the diagnosis of brain death was evaluated according in terms of its sensitivity and specificity. The apparent diffusion coefficients (ADC) of 18 brain dead patients were registered from 14 distinct brain areas. The mean ADC values of the brain dead patients were compared with normal controls of physiological ADC values of unaffected brain tissue. Despite a highly significant decrease of the mean ADC value in 16 patients, two patients showed mean ADC values that were within normal physiological range. An explanation may be the pseudonormalization of ADC values seen in stroke patients that depends on the time of the onset of the brain damage. We conclude, diffusion-weighted imaging may provide additional information on damage of the brain tissue but is not a practicable confirmatory test for the reliable diagnosis of brain death.

  20. Magnetic resonance elastography (MRE) of the human brain: technique, findings and clinical applications

    Science.gov (United States)

    Hiscox, Lucy V.; Johnson, Curtis L.; Barnhill, Eric; McGarry, Matt D. J.; Huston 3rd, John; van Beek, Edwin J. R.; Starr, John M.; Roberts, Neil

    2016-12-01

    Neurological disorders are one of the most important public health concerns in developed countries. Established brain imaging techniques such as magnetic resonance imaging (MRI) and x-ray computerised tomography (CT) have been essential in the identification and diagnosis of a wide range of disorders, although usually are insufficient in sensitivity for detecting subtle pathological alterations to the brain prior to the onset of clinical symptoms—at a time when prognosis for treatment is more favourable. The mechanical properties of biological tissue provide information related to the strength and integrity of the cellular microstructure. In recent years, mechanical properties of the brain have been visualised and measured non-invasively with magnetic resonance elastography (MRE), a particularly sensitive medical imaging technique that may increase the potential for early diagnosis. This review begins with an introduction to the various methods used for the acquisition and analysis of MRE data. A systematic literature search is then conducted to identify studies that have specifically utilised MRE to investigate the human brain. Through the conversion of MRE-derived measurements to shear stiffness (kPa) and, where possible, the loss tangent (rad), a summary of results for global brain tissue and grey and white matter across studies is provided for healthy participants, as potential baseline values to be used in future clinical investigations. In addition, the extent to which MRE has revealed significant alterations to the brain in patients with neurological disorders is assessed and discussed in terms of known pathophysiology. The review concludes by predicting the trends for future MRE research and applications in neuroscience.

  1. Pattern recognition on brain magnetic resonance imaging in alpha dystroglycanopathies

    Directory of Open Access Journals (Sweden)

    Bindu Parayil

    2010-01-01

    Full Text Available Alpha dystroglycanopathies are heterogeneous group of disorders both phenotypically and genetically. A subgroup of these patients has characteristic brain imaging findings. Four patients with typical imaging findings of alpha dystroglycanopathy are reported. Phenotypic features included: global developmental delay, contractures, hypotonia and oculomotor abnormalities in all. Other manifestations were consanguinity (3, seizures (3, macrocephaly (1, microcephaly (3, retinal changes (2 and hypogenitalism (2. Magnetic resonance imaging (MRI of the brain revealed polymicrogyria, white matter changes, pontine hypoplasia, and subcortical cerebellar cysts in all the patients, ventriculomegaly, callosal abnormalities, and absent septum pellucidum in two and Dandy -Walker variant malformation in three. Magnetic resonace imaging of the first cousin of one the patient had the same characteristic imaging features. Brain imaging findings were almost identical despite heterogeneity in clinical presentation and histopathological features. Pattern recognition of MR imaging features may serve as a clue to the diagnosis of alpha dystroglycanopathy.

  2. Parkinson's disease biomarkers program brain imaging repository.

    Science.gov (United States)

    Ofori, Edward; Du, Guangwei; Babcock, Debra; Huang, Xuemei; Vaillancourt, David E

    2016-01-01

    The Parkinson's Disease Biomarkers Program (PDBP) is a multi-site study designed to identify Parkinson's disease (PD) biomarkers that can be used to improve the understanding of PD pathophysiology and to develop tools that provide novel measures to evaluate PD clinical trials. The PDBP consortium comprises numerous individual projects of which two are specifically geared to the development of brain imaging markers for diagnosis, progression, and prognosis of PD or related disorders. All study data from PD patients, atypical Parkinsonian patients, patients with essential tremor, and healthy controls collected from the sites are integrated in the PDBP database and will be publically available. All subjects are asked to submit blood samples, and undergo a battery of clinical evaluations that cover motor, cognitive, and other background information. In addition, a subset of subjects contributed cerebrospinal fluid samples. A restricted access, web-based Data Management Resource facilitates rapid sharing of data and biosamples across the entire PD research community. The PDBP consortium is a useful resource for research and collaboration aimed at the discovery of biomarkers and their use in understanding the pathophysiology of PD.

  3. Development of identification of the central sulcus in brain magnetic resonance imaging.

    Science.gov (United States)

    Hayashi, Norio; Sakuta, Keita; Minehiro, Kaori; Takanaga, Masako; Sanada, Shigeru; Suzuki, Masayuki; Miyati, Tosiaki; Yamamoto, Tomoyuki; Matsui, Osamu

    2011-01-01

    Magnetic resonance imaging (MRI) is useful in the quantitative evaluation of brain atrophy, because the superior contrast resolution facilitates separation of the gray and white matter. Quantitative assessment of brain atrophy has mainly been performed by manual measurement, which requires considerable time and effort to determine the brain volume. Therefore, computer-aided quantitative measurement methods for the diagnosis of brain atrophy are required. We have developed a method of segmenting the cerebrum, cerebellum-brainstem, and temporal lobe simultaneously on MR images obtained in a single sequence. It is important to measure the volume of not only these regions but also the frontal lobe in clinical use. However, for segmenting the frontal lobe, it is necessary to identify the Sylvian fissure and the central sulcus, which represent boundaries. Here, we developed a method of identifying the central sulcus from MR images obtained with a 1.5 T MRI scanner. The brain and the cerebrospinal fluid (CSF) regions were segmented using semiautomated segmentation method on MR images. The central sulcus shows an oblique line from the inside to the outside on the convexity view. The almost straight appearance of the central sulcus was used for segmentation of the central sulcus from the segmented CSF images. The central sulcus was identified with this technique in 77% of the images obtained by all sequences. This technique for identifying the central sulcus is very important not only for volumetry, but also for clinical diagnosis.

  4. Multi-technique imaging of sarcoidosis

    Energy Technology Data Exchange (ETDEWEB)

    Balan, A. [Department of Clinical Radiology, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Hoey, E.T.D. [Department of Clinical Radiology, Heartlands Hospital, Bordesley Green, Birmingham (United Kingdom); Sheerin, F. [Department of Neuroradiology, The John Radcliffe, Headington, Oxford (United Kingdom); Lakkaraju, A. [Department of Clinical Radiology, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Chowdhury, F.U., E-mail: fahmid.chowdhury@leedsth.nhs.u [Department of Clinical Radiology, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom)

    2010-09-15

    Sarcoidosis is a multisystem granulomatous disorder of unknown aetiology. The diagnosis is suggested on the basis of wide ranging clinical and radiological manifestations, and is supported by the histological demonstration of non-caseating granulomas in affected tissues. This review highlights the multisystem radiological features of the disease across a variety of imaging methods including multidetector computed tomography (CT), magnetic resonance imaging (MRI) as well as functional radionuclide techniques, particularly 2-[{sup 18}F]-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography/computed tomography (PET/CT). It is important for the radiologist to be aware of the varied radiological manifestations of sarcoidosis in order to recognize and suggest the diagnosis in the appropriate clinical setting.

  5. Appropriate Contrast Enhancement Measures for Brain and Breast Cancer Images

    Directory of Open Access Journals (Sweden)

    Suneet Gupta

    2016-01-01

    Full Text Available Medical imaging systems often produce images that require enhancement, such as improving the image contrast as they are poor in contrast. Therefore, they must be enhanced before they are examined by medical professionals. This is necessary for proper diagnosis and subsequent treatment. We do have various enhancement algorithms which enhance the medical images to different extents. We also have various quantitative metrics or measures which evaluate the quality of an image. This paper suggests the most appropriate measures for two of the medical images, namely, brain cancer images and breast cancer images.

  6. Design of brain imaging agents for positron emission tomography: do large bioconjugates provide an opportunity for in vivo brain imaging?

    Science.gov (United States)

    Schirrmacher, Ralf; Bernard-Gauthier, Vadim; Reader, Andrew; Soucy, Jean-Paul; Schirrmacher, Esther; Wängler, Björn; Wängler, Carmen

    2013-09-01

    The development of brain imaging agents for positron emission tomography and other in vivo imaging modalities mostly relies on small compounds of low MW as a result of the restricted transport of larger molecules, such as peptides and proteins, across the blood-brain barrier. Besides passive transport, only a few active carrier mechanisms, such as glucose transporters and amino acid transporters, have so far been exploited to mediate the accumulation of imaging probes in the brain. An important question for the future is whether some of the abundant active carrier systems located at the blood-brain barrier can be used to shuttle potential, but non-crossing, imaging agents into the brain. What are the biological and chemical constrictions toward such bioconjugates and is it worthwhile to persue such a delivery strategy?

  7. Increased self-diffusion of brain water in hydrocephalus measured by MR imaging

    DEFF Research Database (Denmark)

    Gideon, P; Thomsen, C; Gjerris, F

    1994-01-01

    We used MR imaging to measure the apparent brain water self-diffusion in 5 patients with normal pressure hydrocephalus (NPH), in 2 patients with high pressure hydrocephalus (HPH), and in 8 age-matched controls. In all patients with NPH significant elevations of the apparent diffusion coefficients...... white matter, and in one patient reexamined one year after surgery, ADCs were unchanged in nearly all brain regions. The increased ADC values in hydrocephalus patients may be caused by factors such as changes in myelin-associated bound water, increased Virchow-Robin spaces, and increased extracellular...... brain water fraction. For further studies of brain water diffusion in hydrocephalus patients, echo-planar imaging techniques with imaging times of a few seconds may be valuable....

  8. Novel imaging technique for birefringent materials

    CERN Document Server

    Lewis, J G

    1998-01-01

    less than 40 seconds. Retardation and orientation changes of less than 1nm and 1 deg, respectively, can be resolved with a spatial resolution close to that of a conventional polarizing microscope image. A wide variety of optically anisotropic materials have been examined to demonstrate both the quantitative and qualitative nature of this new sensitive polarization microscopy technique. Preliminary measurements have shown that when the system is extended to use two or more wavelengths it is also capable of directly extracting information about the order of the phase difference. Many transparent materials including crystals, polymers, biological tissues and textile fibres are birefringent or optically anisotropic, i.e. the refractive index varies with the direction of vibration of light. Birefringent measurements are important as they provide information about the underlying structure of a material. In general, the most sensitive techniques for measuring birefringence are those that modulate the polarization st...

  9. A Review of Image Mosaicing Techniques

    OpenAIRE

    Vaghela, Dushyant; Naina, Prof. Kapildev

    2014-01-01

    Image Mosaicing is a method of constructing multiple images of the same scene into a larger image. The output of the image mosaic will be the union of two input images. Image-mosaicing algorithms are used to get mosaiced image. Image Mosaicing processed is basically divided in to 5 phases. Which includes; Feature point extraction, Image registration, Homography computation, Warping and Blending if Image. Various corner detection algorithm is being used for Feature extraction. This corner prod...

  10. Image Data Mining for Pattern Classification and Visualization of Morphological Changes in Brain MR Images.

    Science.gov (United States)

    Murakawa, Saki; Ikuta, Rie; Uchiyama, Yoshikazu; Shiraishi, Junji

    2016-02-01

    Hospital information systems (HISs) and picture archiving and communication systems (PACSs) are archiving large amounts of data (i.e., "big data") that are not being used. Therefore, many research projects in progress are trying to use "big data" for the development of early diagnosis, prediction of disease onset, and personalized therapies. In this study, we propose a new method for image data mining to identify regularities and abnormalities in the large image data sets. We used 70 archived magnetic resonance (MR) images that were acquired using three-dimensional magnetization-prepared rapid acquisition with gradient echo (3D MP-RAGE). These images were obtained from the Alzheimer's disease neuroimaging initiative (ADNI) database. For anatomical standardization of the data, we used the statistical parametric mapping (SPM) software. Using a similarity matrix based on cross-correlation coefficients (CCs) calculated from an anatomical region and a hierarchical clustering technique, we classified all the abnormal cases into five groups. The Z score map identified the difference between a standard normal brain and each of those from the Alzheimer's groups. In addition, the scatter plot obtained from two similarity matrixes visualized the regularities and abnormalities in the image data sets. Image features identified using our method could be useful for understanding of image findings associated with Alzheimer's disease.

  11. Potential new approaches for the development of brain imaging agents for single-photon applications

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, F.F. Jr.; Srivastava, P.C.

    1984-01-01

    This paper describes new strategies for the brain-specific delivery of radionuclides that can be used to evaluate regional cerebral perfusion by single photon imaging techniques. A description of several examples of interesting new strategies that have recently been reported is presented. A new approach at this institution for the brain-specific delivery of radioiodinated iodophenylalkyl-substituted dihyronicotinamide systems is described which shows good brain uptake and retention in preliminary studies in rats. Following transport into the brain these agents appear to undergo facile intracerebral oxidation to the quaternized analogues which do not recross the intact blood-brain barrier and so are effectively trapped in the brain. 49 refs., 9 figs., 1 tab.

  12. Brain imaging of pain: state of the art.

    Science.gov (United States)

    Morton, Debbie L; Sandhu, Javin S; Jones, Anthony Kp

    2016-01-01

    Pain is a complex sensory and emotional experience that is heavily influenced by prior experience and expectations of pain. Before the development of noninvasive human brain imaging, our grasp of the brain's role in pain processing was limited to data from postmortem studies, direct recording of brain activity, patient experience and stimulation during neurosurgical procedures, and animal models of pain. Advances made in neuroimaging have bridged the gap between brain activity and the subjective experience of pain and allowed us to better understand the changes in the brain that are associated with both acute and chronic pain. Additionally, cognitive influences on pain such as attention, anticipation, and fear can now be directly observed, allowing for the interpretation of the neural basis of the psychological modulation of pain. The use of functional brain imaging to measure changes in endogenous neurochemistry has increased our understanding of how states of increased resilience and vulnerability to pain are maintained.

  13. Quantitative Perfusion and Permeability Biomarkers in Brain Cancer from Tomographic CT and MR Images.

    Science.gov (United States)

    Eilaghi, Armin; Yeung, Timothy; d'Esterre, Christopher; Bauman, Glenn; Yartsev, Slav; Easaw, Jay; Fainardi, Enrico; Lee, Ting-Yim; Frayne, Richard

    2016-01-01

    Dynamic contrast-enhanced perfusion and permeability imaging, using computed tomography and magnetic resonance systems, are important techniques for assessing the vascular supply and hemodynamics of healthy brain parenchyma and tumors. These techniques can measure blood flow, blood volume, and blood-brain barrier permeability surface area product and, thus, may provide information complementary to clinical and pathological assessments. These have been used as biomarkers to enhance the treatment planning process, to optimize treatment decision-making, and to enable monitoring of the treatment noninvasively. In this review, the principles of magnetic resonance and computed tomography dynamic contrast-enhanced perfusion and permeability imaging are described (with an emphasis on their commonalities), and the potential values of these techniques for differentiating high-grade gliomas from other brain lesions, distinguishing true progression from posttreatment effects, and predicting survival after radiotherapy, chemotherapy, and antiangiogenic treatments are presented.

  14. Quantitative Perfusion and Permeability Biomarkers in Brain Cancer from Tomographic CT and MR Images

    Science.gov (United States)

    Eilaghi, Armin; Yeung, Timothy; d’Esterre, Christopher; Bauman, Glenn; Yartsev, Slav; Easaw, Jay; Fainardi, Enrico; Lee, Ting-Yim; Frayne, Richard

    2016-01-01

    Dynamic contrast-enhanced perfusion and permeability imaging, using computed tomography and magnetic resonance systems, are important techniques for assessing the vascular supply and hemodynamics of healthy brain parenchyma and tumors. These techniques can measure blood flow, blood volume, and blood–brain barrier permeability surface area product and, thus, may provide information complementary to clinical and pathological assessments. These have been used as biomarkers to enhance the treatment planning process, to optimize treatment decision-making, and to enable monitoring of the treatment noninvasively. In this review, the principles of magnetic resonance and computed tomography dynamic contrast-enhanced perfusion and permeability imaging are described (with an emphasis on their commonalities), and the potential values of these techniques for differentiating high-grade gliomas from other brain lesions, distinguishing true progression from posttreatment effects, and predicting survival after radiotherapy, chemotherapy, and antiangiogenic treatments are presented. PMID:27398030

  15. Classification of CT brain images based on deep learning networks.

    Science.gov (United States)

    Gao, Xiaohong W; Hui, Rui; Tian, Zengmin

    2017-01-01

    While computerised tomography (CT) may have been the first imaging tool to study human brain, it has not yet been implemented into clinical decision making process for diagnosis of Alzheimer's disease (AD). On the other hand, with the nature of being prevalent, inexpensive and non-invasive, CT does present diagnostic features of AD to a great extent. This study explores the significance and impact on the application of the burgeoning deep learning techniques to the task of classification of CT brain images, in particular utilising convolutional neural network (CNN), aiming at providing supplementary information for the early diagnosis of Alzheimer's disease. Towards this end, three categories of CT images (N = 285) are clustered into three groups, which are AD, lesion (e.g. tumour) and normal ageing. In addition, considering the characteristics of this collection with larger thickness along the direction of depth (z) (~3-5 mm), an advanced CNN architecture is established integrating both 2D and 3D CNN networks. The fusion of the two CNN networks is subsequently coordinated based on the average of Softmax scores obtained from both networks consolidating 2D images along spatial axial directions and 3D segmented blocks respectively. As a result, the classification accuracy rates rendered by this elaborated CNN architecture are 85.2%, 80% and 95.3% for classes of AD, lesion and normal respectively with an average of 87.6%. Additionally, this improved CNN network appears to outperform the others when in comparison with 2D version only of CNN network as well as a number of state of the art hand-crafted approaches. As a result, these approaches deliver accuracy rates in percentage of 86.3, 85.6 ± 1.10, 86.3 ± 1.04, 85.2 ± 1.60, 83.1 ± 0.35 for 2D CNN, 2D SIFT, 2D KAZE, 3D SIFT and 3D KAZE respectively. The two major contributions of the paper constitute a new 3-D approach while applying deep learning technique to extract signature information

  16. NMR imaging of cell phone radiation absorption in brain tissue

    OpenAIRE

    Gultekin, David H.; Moeller, Lothar

    2012-01-01

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance...

  17. Creation and evaluation of complementary composite three-dimensional image in various brain diseases. An application of three-dimensional brain SPECT image and three-dimensional CT image

    Energy Technology Data Exchange (ETDEWEB)

    Seiki, Yoshikatsu; Shibata, Iekado; Mito, Toshiaki; Sugo, Nobuo [Toho Univ., Tokyo (Japan). School of Medicine

    2000-09-01

    The purpose of this study was to develop 3D composite images for use in functional and anatomical evaluation of various cerebral pathologies. Imaging studies were performed in normal volunteers, patients with hydrocephalus and patients with brain tumor (meningioma and metastatic tumor) using a three-detector SPECT system (Prism 3000) and helical CT scanner (Xvigor). {sup 123}I-IMP was used in normal volunteers and patients with hydrocephalus, and {sup 201}TLCL in patients with brain tumor. An Application Visualization System-Medical Viewer (AVS-MV) was used on a workstation (Titan 2) to generate 3D images. A new program was developed by synthesizing surface rendering and volume rendering techniques. The clinical effects of shunt operations were successfully evaluated in patients with hydrocephalus by means of translucent 3D images of the deep brain. Changes in the hypoperfusion area around the cerebral ventricle were compared with morphological changes in the cerebral ventricle on CT. In addition to the information concerning the characteristics of brain tumors and surrounding edemas, hemodynamic changes and changeable hypoperfusion areas around the tumors were visualized on 3D composite CT and SPECT images. A new method of generating 3D composite images of CT and SPECT was developed by combining graphic data from different systems on the same workstation. Complementary 3D composite images facilitated quantitative analysis of brain volume and functional analysis in various brain diseases. (author)

  18. Skull-stripping for Tumor-bearing Brain Images

    CERN Document Server

    Bauer, Stefan; Reyes, Mauricio

    2012-01-01

    Skull-stripping separates the skull region of the head from the soft brain tissues. In many cases of brain image analysis, this is an essential preprocessing step in order to improve the final result. This is true for both registration and segmentation tasks. In fact, skull-stripping of magnetic resonance images (MRI) is a well-studied problem with numerous publications in recent years. Many different algorithms have been proposed, a summary and comparison of which can be found in [Fennema-Notestine, 2006]. Despite the abundance of approaches, we discovered that the algorithms which had been suggested so far, perform poorly when dealing with tumor-bearing brain images. This is mostly due to additional difficulties in separating the brain from the skull in this case, especially when the lesion is located very close to the skull border. Additionally, images acquired according to standard clinical protocols, often exhibit anisotropic resolution and only partial coverage, which further complicates the task. There...

  19. Imaging of brain tumors with histological correlations. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Drevelegas, Antonios (ed.)

    2011-07-01

    This volume provides a deeper understanding of the diagnosis of brain tumors by correlating radiographic imaging features with the underlying pathological abnormalities. All modern imaging modalities are used to complete a diagnostic overview of brain tumors with emphasis on recent advances in diagnostic neuroradiology. High-quality illustrations depicting common and uncommon imaging characteristics of a wide range of brain tumors are presented and analysed, drawing attention to the ways in which these characteristics reflect different aspects of pathology. Important theoretical considerations are also discussed. Since the first edition, chapters have been revised and updated and new material has been added, including detailed information on the clinical application of functional MRI and diffusion tensor imaging. Radiologists and other clinicians interested in the current diagnostic approach to brain tumors will find this book to be an invaluable and enlightening clinical tool. (orig.)

  20. Blood-Brain Barrier Imaging in Human Neuropathologies

    Science.gov (United States)

    Veksler, Ronel; Shelef, Ilan; Friedman, Alon

    2014-01-01

    The blood–brain barrier (BBB) is essential for normal function of the brain, and its role in many brain pathologies has been the focus of numerous studies during the last decades. Dysfunction of the BBB is not only being shown in numerous brain diseases, but animal studies have indicated that it plays a direct key role in the genesis of neurovascular dysfunction and associated neurodegeneration. As such evidence accumulates, the need for robust and clinically applicable methods for minimally invasive assessment of BBB integrity is becoming urgent. This review provides an introduction to BBB imaging methods in the clinical scenario. First, imaging modalities are reviewed, with a focus on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). We then proceed to review image analysis methods, including quantitative and semi-quantitative methods. The advantages and limitations of each approach are discussed, and future directions and questions are highlighted. PMID:25453223

  1. Automated morphometry of transgenic mouse brains in MR images

    NARCIS (Netherlands)

    Scheenstra, Alize Elske Hiltje

    2011-01-01

    Quantitative and local morphometry of mouse brain MRI is a relatively new field of research, where automated methods can be exploited to rapidly provide accurate and repeatable results. In this thesis we reviewed several existing methods and applications of quantitative morphometry to brain MR image

  2. Quantitative assessment of brain perfusion with magnetic resonance imaging

    NARCIS (Netherlands)

    Bleeker, Egbert Jan Willem

    2011-01-01

    This thesis focuses on assessing blood supply to brain tissue using MRI. For Dynamic Susceptibility Contrast-MRI a series of images is acquired during the passage of a bolus contrast agent through the brain up to the point that the contrast agent is equally mixed within the total blood pool. The tis

  3. PET/SPECT imaging : From carotid vulnerability to brain viability

    NARCIS (Netherlands)

    Meerwaldt, Robbert; Slart, Riemer H. J. A.; van Dam, Gooitzen M.; Luijckx, Gert-Jan; Tio, Rene A.; Zeebregts, Clark J.

    2010-01-01

    Background: Current key issues in ischemic stroke are related to carotid plaque vulnerability, brain viability, and timing of intervention. The treatment of ischemic stroke has evolved into urgent active interventions, as 'time is brain'. Functional imaging such as positron emission tomography (PET)

  4. Structural brain imaging in diabetes : A methodological perspective

    NARCIS (Netherlands)

    Jongen, Cynthia; Biessels, Geert Jan

    2008-01-01

    Brain imaging provides information on brain anatomy and function and progression of cerebral abnormalities can be monitored. This may provide insight into the aetiology of diabetes related cerebral disorders. This paper focuses on the methods for the assessment of white matter hyperintensities and b

  5. Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder

    DEFF Research Database (Denmark)

    Kremer, S.; Renard, F.; Achard, S.

    2015-01-01

    not been identified. This literature review summarizes the literature on advanced quantitative imaging measures reported for patients with NMO spectrum disorder, including proton MR spectroscopy, diffusion tensor imaging, magnetization transfer imaging, quantitative MR voltametry, and ultrahigh......-field strength MRI. It was undertaken to consider the advanced MRI techniques used for patients with NMO different specialists in the field. Although quantitative measures such as proton MR spectroscopy or magnetization transfer imaging have not reproducibly revealed diffuse brain injury, preliminary data from...... diffusion-weighted imaging and brain tissue volumetry indicate greater white matter than gray matter degradation. These findings could be confirmed by ultrahigh-field MRI. The use of nonconventional MR I techniques may further our understanding of the pathogenic processes hi NMO spectrum disorders and may...

  6. DATA SYNTHESIS AND METHOD EVALUATION FOR BRAIN IMAGING GENETICS

    OpenAIRE

    Sheng, Jinhua; Kim, Sungeun; Yan, Jingwen; Moore, Jason; Saykin, Andrew; Shen, Li

    2014-01-01

    Brain imaging genetics is an emergent research field where the association between genetic variations such as single nucleotide polymorphisms (SNPs) and neuroimaging quantitative traits (QTs) is evaluated. Sparse canonical correlation analysis (SCCA) is a bi-multivariate analysis method that has the potential to reveal complex multi-SNP-multi-QT associations. We present initial efforts on evaluating a few SCCA methods for brain imaging genetics. This includes a data synthesis method to create...

  7. Do brain image databanks support understanding of normal ageing brain structure? A systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Dickie, David Alexander; Job, Dominic E.; Wardlaw, Joanna M. [University of Edinburgh, Division of Clinical Neurosciences, Western General Hospital, Brain Research Imaging Centre (BRIC), Edinburgh (United Kingdom); Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Edinburgh (United Kingdom); Poole, Ian [Toshiba Medical Visualisation Systems Europe, Ltd., Edinburgh (United Kingdom); Ahearn, Trevor S.; Staff, Roger T.; Murray, Alison D. [University of Aberdeen, Aberdeen Biomedical Imaging Centre, Aberdeen (United Kingdom); Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Edinburgh (United Kingdom)

    2012-07-15

    To document accessible magnetic resonance (MR) brain images, metadata and statistical results from normal older subjects that may be used to improve diagnoses of dementia. We systematically reviewed published brain image databanks (print literature and Internet) concerned with normal ageing brain structure. From nine eligible databanks, there appeared to be 944 normal subjects aged {>=}60 years. However, many subjects were in more than one databank and not all were fully representative of normal ageing clinical characteristics. Therefore, there were approximately 343 subjects aged {>=}60 years with metadata representative of normal ageing, but only 98 subjects were openly accessible. No databank had the range of MR image sequences, e.g. T2*, fluid-attenuated inversion recovery (FLAIR), required to effectively characterise the features of brain ageing. No databank supported random subject retrieval; therefore, manual selection bias and errors may occur in studies that use these subjects as controls. Finally, no databank stored results from statistical analyses of its brain image and metadata that may be validated with analyses of further data. Brain image databanks require open access, more subjects, metadata, MR image sequences, searchability and statistical results to improve understanding of normal ageing brain structure and diagnoses of dementia. (orig.)

  8. Multi circular-cavity surface coil for magnetic resonance imaging of monkey's brain at 4 Tesla

    Science.gov (United States)

    Osorio, A. I.; Solis-Najera, S. E.; Vázquez, F.; Wang, R. L.; Tomasi, D.; Rodriguez, A. O.

    2014-11-01

    Animal models in medical research has been used to study humans diseases for several decades. The use of different imaging techniques together with different animal models offers a great advantage due to the possibility to study some human pathologies without the necessity of chirurgical intervention. The employ of magnetic resonance imaging for the acquisition of anatomical and functional images is an excellent tool because its noninvasive nature. Dedicated coils to perform magnetic resonance imaging experiments are obligatory due to the improvement on the signal-to-noise ratio and reduced specific absorption ratio. A specifically designed surface coil for magnetic resonance imaging of monkey's brain is proposed based on the multi circular-slot coil. Numerical simulations of the magnetic and electric fields were also performed using the Finite Integration Method to solve Maxwell's equations for this particular coil design and, to study the behavior of various vector magnetic field configurations and specific absorption ratio. Monkey's brain images were then acquired with a research-dedicated magnetic resonance imaging system at 4T, to evaluate the anatomical images with conventional imaging sequences. This coil showed good quality images of a monkey's brain and full compatibility with standard pulse sequences implemented in research-dedicated imager.

  9. The Potential of Using Brain Images for Authentication

    Directory of Open Access Journals (Sweden)

    Fanglin Chen

    2014-01-01

    Full Text Available Biometric recognition (also known as biometrics refers to the automated recognition of individuals based on their biological or behavioral traits. Examples of biometric traits include fingerprint, palmprint, iris, and face. The brain is the most important and complex organ in the human body. Can it be used as a biometric trait? In this study, we analyze the uniqueness of the brain and try to use the brain for identity authentication. The proposed brain-based verification system operates in two stages: gray matter extraction and gray matter matching. A modified brain segmentation algorithm is implemented for extracting gray matter from an input brain image. Then, an alignment-based matching algorithm is developed for brain matching. Experimental results on two data sets show that the proposed brain recognition system meets the high accuracy requirement of identity authentication. Though currently the acquisition of the brain is still time consuming and expensive, brain images are highly unique and have the potential possibility for authentication in view of pattern recognition.

  10. The potential of using brain images for authentication.

    Science.gov (United States)

    Chen, Fanglin; Zhou, Zongtan; Shen, Hui; Hu, Dewen

    2014-01-01

    Biometric recognition (also known as biometrics) refers to the automated recognition of individuals based on their biological or behavioral traits. Examples of biometric traits include fingerprint, palmprint, iris, and face. The brain is the most important and complex organ in the human body. Can it be used as a biometric trait? In this study, we analyze the uniqueness of the brain and try to use the brain for identity authentication. The proposed brain-based verification system operates in two stages: gray matter extraction and gray matter matching. A modified brain segmentation algorithm is implemented for extracting gray matter from an input brain image. Then, an alignment-based matching algorithm is developed for brain matching. Experimental results on two data sets show that the proposed brain recognition system meets the high accuracy requirement of identity authentication. Though currently the acquisition of the brain is still time consuming and expensive, brain images are highly unique and have the potential possibility for authentication in view of pattern recognition.

  11. Consistent Reconstruction of Cortical Surfaces from Longitudinal Brain MR Images

    OpenAIRE

    Li, Gang; Nie, Jingxin; Shen, Dinggang

    2011-01-01

    Accurate and consistent reconstruction of cortical surfaces from longitudinal human brain MR images is of great importance in studying subtle morphological changes of the cerebral cortex. This paper presents a new deformable surface method for consistent and accurate reconstruction of inner, central and outer cortical surfaces from longitudinal MR images. Specifically, the cortical surfaces of the group-mean image of all aligned longitudinal images of the same subject are first reconstructed ...

  12. Magnetic resonance imaging in assessment of treatment response of gamma knife for brain tumors

    Institute of Scientific and Technical Information of China (English)

    GAO Xiao; ZHANG Xue-ning; ZHANG Yun-ting; YU Chun-shui; XU De-sheng

    2011-01-01

    Objective To review the applications of magnetic resonance imaging (MRI) techniques in assessing treatment response to gamma knife radiosurgery for brain tumors.Data sources Published articles about assessing treatment response to gamma knife radiosurgery for brain tumors were selected using PubMed. The search terms were "MRI", "gamma knife" and "brain tumors".Study selection Articles regarding the MRI techniques using for early assessment of treatment response of gamma knife were selected.Results MRI techniques, especially diffusion weighted imaging, perfusion weighted imaging, magnetic resonance spectroscopy, are useful for early assessment of treatment response of gamma knife by detecting the hemodynamic, metabolic, and cellular alterations. Moreover, they can also provide important information on prognosis.Conclusions Diffusion weighted imaging, perfusion weighted imaging and magnetic resonance spectroscopy can provide early assessment of treatment response of gamma knife for brain tumors, and also information of tumor progression or recurrence earlier than conventional MRI. But there are still many questions to be answered which should be based on the development and advancement of MRI and related disciplines.

  13. Quantitative MALDI tandem mass spectrometric imaging of cocaine from brain tissue with a deuterated internal standard.

    NARCIS (Netherlands)

    Pirman, D.A.; Reich, R.F.; Kiss, A.; Heeren, R.M.A.; Yost, R.A.

    2013-01-01

    Mass spectrometric imaging (MSI) is an analytical technique used to determine the distribution of individual analytes within a given sample. A wide array of analytes and samples can be investigated by MSI, including drug distribution in rats, lipid analysis from brain tissue, protein differentiation

  14. Computed tomographic imaging of the brain of normal neonatal foals

    Directory of Open Access Journals (Sweden)

    L Cabrera

    2015-01-01

    Full Text Available The aim of this study was to provide a more complete description of normal cross-sectional anatomy of the neonatal brain of the foal and associated structures by computed tomography (CT and gross anatomical sections. Using a fourth-generation CT scanner, 2-mm contiguous transverse images were acquired from two neonatal 5-days-old Quarter horse foals. After the study the animals were euthanised for reasons unrelated to head pathology. To assist in the accurate identification of brain and associated structures, transverse CT images were obtained and compared with the corresponding frozen cross-sections of the head. CT images matched well with their corresponding transverse gross sections and provided good differentiation between the bones and the soft tissues of the head. These CT images are intended to be a useful initial anatomic reference in the interpretation for clinical CT imaging studies of the brain and associated structures in live neonatal foals.

  15. Review of Intelligent Techniques Applied for Classification and Preprocessing of Medical Image Data

    Directory of Open Access Journals (Sweden)

    H S Hota

    2013-01-01

    Full Text Available Medical image data like ECG, EEG and MRI, CT-scan images are the most important way to diagnose disease of human being in precise way and widely used by the physician. Problem can be clearly identified with the help of these medical images. A robust model can classify the medical image data in better way .In this paper intelligent techniques like neural network and fuzzy logic techniques are explored for MRI medical image data to identify tumor in human brain. Also need of preprocessing of medical image data is explored. Classification technique has been used extensively in the field of medical imaging. The conventional method in medical science for medical image data classification is done by human inspection which may result misclassification of data sometime this type of problem identification are impractical for large amounts of data and noisy data, a noisy data may be produced due to some technical fault of the machine or by human errors and can lead misclassification of medical image data. We have collected number of papers based on neural network and fuzzy logic along with hybrid technique to explore the efficiency and robustness of the model for brain MRI data. It has been analyzed that intelligent model along with data preprocessing using principal component analysis (PCA and segmentation may be the competitive model in this domain.

  16. Numerical Simulations of MREIT Conductivity Imaging for Brain Tumor Detection

    Directory of Open Access Journals (Sweden)

    Zi Jun Meng

    2013-01-01

    Full Text Available Magnetic resonance electrical impedance tomography (MREIT is a new modality capable of imaging the electrical properties of human body using MRI phase information in conjunction with external current injection. Recent in vivo animal and human MREIT studies have revealed unique conductivity contrasts related to different physiological and pathological conditions of tissues or organs. When performing in vivo brain imaging, small imaging currents must be injected so as not to stimulate peripheral nerves in the skin, while delivery of imaging currents to the brain is relatively small due to the skull’s low conductivity. As a result, injected imaging currents may induce small phase signals and the overall low phase SNR in brain tissues. In this study, we present numerical simulation results of the use of head MREIT for brain tumor detection. We used a realistic three-dimensional head model to compute signal levels produced as a consequence of a predicted doubling of conductivity occurring within simulated tumorous brain tissues. We determined the feasibility of measuring these changes in a time acceptable to human subjects by adding realistic noise levels measured from a candidate 3 T system. We also reconstructed conductivity contrast images, showing that such conductivity differences can be both detected and imaged.

  17. Numerical simulations of MREIT conductivity imaging for brain tumor detection.

    Science.gov (United States)

    Meng, Zi Jun; Sajib, Saurav Z K; Chauhan, Munish; Sadleir, Rosalind J; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2013-01-01

    Magnetic resonance electrical impedance tomography (MREIT) is a new modality capable of imaging the electrical properties of human body using MRI phase information in conjunction with external current injection. Recent in vivo animal and human MREIT studies have revealed unique conductivity contrasts related to different physiological and pathological conditions of tissues or organs. When performing in vivo brain imaging, small imaging currents must be injected so as not to stimulate peripheral nerves in the skin, while delivery of imaging currents to the brain is relatively small due to the skull's low conductivity. As a result, injected imaging currents may induce small phase signals and the overall low phase SNR in brain tissues. In this study, we present numerical simulation results of the use of head MREIT for brain tumor detection. We used a realistic three-dimensional head model to compute signal levels produced as a consequence of a predicted doubling of conductivity occurring within simulated tumorous brain tissues. We determined the feasibility of measuring these changes in a time acceptable to human subjects by adding realistic noise levels measured from a candidate 3 T system. We also reconstructed conductivity contrast images, showing that such conductivity differences can be both detected and imaged.

  18. Hypnosis and imaging of the living human brain.

    Science.gov (United States)

    Landry, Mathieu; Raz, Amir

    2015-01-01

    Over more than two decades, studies using imaging techniques of the living human brain have begun to explore the neural correlates of hypnosis. The collective findings provide a gripping, albeit preliminary, account of the underlying neurobiological mechanisms involved in hypnotic phenomena. While substantial advances lend support to different hypotheses pertaining to hypnotic modulation of attention, control, and monitoring processes, the complex interactions among the many mediating variables largely hinder our ability to isolate robust commonalities across studies. The present account presents a critical integrative synthesis of neuroimaging studies targeting hypnosis as a function of suggestion. Specifically, hypnotic induction without task-specific suggestion is examined, as well as suggestions concerning sensation and perception, memory, and ideomotor response. The importance of carefully designed experiments is highlighted to better tease apart the neural correlates that subserve hypnotic phenomena. Moreover, converging findings intimate that hypnotic suggestions seem to induce specific neural patterns. These observations propose that suggestions may have the ability to target focal brain networks. Drawing on evidence spanning several technological modalities, neuroimaging studies of hypnosis pave the road to a more scientific understanding of a dramatic, yet largely evasive, domain of human behavior.

  19. Compressed sensing imaging techniques for radio interferometry

    CERN Document Server

    Wiaux, Y; Puy, G; Scaife, A M M; Vandergheynst, P

    2009-01-01

    Radio interferometry probes astrophysical signals through incomplete and noisy Fourier measurements. The theory of compressed sensing demonstrates that such measurements may actually suffice for accurate reconstruction of sparse or compressible signals. We propose new generic imaging techniques based on convex optimization for global minimization problems defined in this context. The versatility of the framework notably allows introduction of specific prior information on the signals, which offers the possibility of significant improvements of reconstruction relative to the standard local matching pursuit algorithm CLEAN used in radio astronomy. We illustrate the potential of the approach by studying reconstruction performances on simulations of two different kinds of signals observed with very generic interferometric configurations. The first kind is an intensity field of compact astrophysical objects. The second kind is the imprint of cosmic strings in the temperature field of the cosmic microwave backgroun...

  20. Brain tumor classification of microscopy images using deep residual learning

    Science.gov (United States)

    Ishikawa, Yota; Washiya, Kiyotada; Aoki, Kota; Nagahashi, Hiroshi

    2016-12-01

    The crisis rate of brain tumor is about one point four in ten thousands. In general, cytotechnologists take charge of cytologic diagnosis. However, the number of cytotechnologists who can diagnose brain tumors is not sufficient, because of the necessity of highly specialized skill. Computer-Aided Diagnosis by computational image analysis may dissolve the shortage of experts and support objective pathological examinations. Our purpose is to support a diagnosis from a microscopy image of brain cortex and to identify brain tumor by medical image processing. In this study, we analyze Astrocytes that is a type of glia cell of central nerve system. It is not easy for an expert to discriminate brain tumor correctly since the difference between astrocytes and low grade astrocytoma (tumors formed from Astrocyte) is very slight. In this study, we present a novel method to segment cell regions robustly using BING objectness estimation and to classify brain tumors using deep convolutional neural networks (CNNs) constructed by deep residual learning. BING is a fast object detection method and we use pretrained BING model to detect brain cells. After that, we apply a sequence of post-processing like Voronoi diagram, binarization, watershed transform to obtain fine segmentation. For classification using CNNs, a usual way of data argumentation is applied to brain cells database. Experimental results showed 98.5% accuracy of classification and 98.2% accuracy of segmentation.

  1. Brain imaging of pain: state of the art

    Science.gov (United States)

    Morton, Debbie L; Sandhu, Javin S; Jones, Anthony KP

    2016-01-01

    Pain is a complex sensory and emotional experience that is heavily influenced by prior experience and expectations of pain. Before the development of noninvasive human brain imaging, our grasp of the brain’s role in pain processing was limited to data from postmortem studies, direct recording of brain activity, patient experience and stimulation during neurosurgical procedures, and animal models of pain. Advances made in neuroimaging have bridged the gap between brain activity and the subjective experience of pain and allowed us to better understand the changes in the brain that are associated with both acute and chronic pain. Additionally, cognitive influences on pain such as attention, anticipation, and fear can now be directly observed, allowing for the interpretation of the neural basis of the psychological modulation of pain. The use of functional brain imaging to measure changes in endogenous neurochemistry has increased our understanding of how states of increased resilience and vulnerability to pain are maintained. PMID:27660488

  2. Whole brain imaging with Serial Two-Photon Tomography

    Directory of Open Access Journals (Sweden)

    Stephen P Amato

    2016-03-01

    Full Text Available Imaging entire mouse brains at submicron resolution has historically been a challenging undertaking and largely confined to the province of dedicated atlasing initiatives. The has limited systematic investigations into important areas of neuroscience, such as neural circuits, brain mapping and neurodegeneration. In this paper, we describe in detail Serial Two-Photon (STP tomography, a robust, reliable method for imaging entire brains with histological detail. We provide examples of how the basic methodology can be extended to other imaging modalities, such as optical coherence tomography, in order to provide unique contrast mechanisms. Furthermore we provide a survey of the research that STP tomography has enabled in the field of neuroscience, provide examples of how this technology enables quantitative whole brain studies, and discuss the current limitations of STP tomography-based approaches

  3. Photoacoustic imaging for transvascular drug delivery to the rat brain

    Science.gov (United States)

    Watanabe, Ryota; Sato, Shunichi; Tsunoi, Yasuyuki; Kawauchi, Satoko; Takemura, Toshiya; Terakawa, Mitsuhiro

    2015-03-01

    Transvascular drug delivery to the brain is difficult due to the blood-brain barrier (BBB). Thus, various methods for safely opening the BBB have been investigated, for which real-time imaging methods are desired both for the blood vessels and distribution of a drug. Photoacoustic (PA) imaging, which enables depth-resolved visualization of chromophores in tissue, would be useful for this purpose. In this study, we performed in vivo PA imaging of the blood vessels and distribution of a drug in the rat brain by using an originally developed compact PA imaging system with fiber-based illumination. As a test drug, Evans blue (EB) was injected to the tail vein, and a photomechanical wave was applied to the targeted brain tissue to increase the permeability of the blood vessel walls. For PA imaging of blood vessels and EB distribution, nanosecond pulses at 532 nm and 670 nm were used, respectively. We clearly visualized blood vessels with diameters larger than 50 μm and the distribution of EB in the brain, showing spatiotemporal characteristics of EB that was transvascularly delivered to the target tissue in the brain.

  4. Imaging hemodynamic changes in preterm infant brains with two-dimensional diffuse optical tomography

    Science.gov (United States)

    Gao, Feng; Ma, Yiwen; Yang, Fang; Zhao, Huijuan; Jiang, Jingying; Kusaka, Takashi; Ueno, Masanori; Yamada, Yukio

    2008-02-01

    We present our preliminary results on two-dimensional (2-D) optical tomographic imaging of hemodynamic changes of two preterm infant brains in different ventilation settings conditions. The investigations use the established two-wavelength, 16-channel time-correlated single photon counting system for the detection, and the generalized pulse spectrum technique based algorithm for the image reconstruction. The experiments demonstrate that two-dimensional diffuse optical tomography may be a potent and relatively simple way of investigating the functions and neural development of infant brains in the perinatal period.

  5. Smartphones as pocketable labs: Visions for mobile brain imaging and neurofeedback

    DEFF Research Database (Denmark)

    Stopczynski, Arkadiusz; Stahlhut, Carsten; Petersen, Michael Kai

    2014-01-01

    Mobile brain imaging solutions, such as the Smartphone Brain Scanner, which combines low cost wireless EEG sensors with open source software for real-time neuroimaging, may transform neuroscience experimental paradigms. Normally subject to the physical constraints in labs, neuroscience experimental...... paradigms can be transformed into dynamic environments allowing for the capturing of brain signals in everyday contexts. Using smartphones or tablets to access text or images may enable experimental design capable of tracing emotional responses when shopping or consuming media, incorporating sensorimotor...... the Smartphone Brain Scanner, complemented by 3D reconstruction or source separation techniques may support a range of neuroimaging applications and thus become a valuable addition to high-end neuroimaging solutions....

  6. Imaging brain tumor proliferative activity with [I-124]iododeoxyuridine

    NARCIS (Netherlands)

    Blasberg, RG; Roelcke, U; Weinreich, R; Beattie, B; von Ammon, K; Yonekawa, Y; Landolt, H; Guenther, [No Value; Crompton, NEA; Vontobel, P; Missimer, J; Maguire, RP; Koziorowski, J; Knust, EJ; Finn, RD; Leenders, KL

    2000-01-01

    Iododeoxyuridine (IUdR) uptake and retention was imaged by positron emission tomography (PET) at 0-48 min and 24 h after administration of 28.0-64.4 MBq (0.76-1.74 mCi) of [I-124]IUdR in 20 patients with brain tumors, including meningiomas and gliomas, The PET images were directly compared with gado

  7. Monitoring fractional anisotropy in developing rabbit brain using MR diffusion tensor imaging at 3T

    Science.gov (United States)

    Jao, Jo-Chi; Yang, Yu-Ting; Hsiao, Chia-Chi; Chen, Po-Chou

    2016-03-01

    The aim of this study was to investigate the factional anisotropy (FA) in various regions of developing rabbit brain using magnetic resonance diffusion tensor imaging (MR DTI) at 3 T. A whole-body clinical MR imaging (MRI) scanner with a 15-channel high resolution knee coil was used. An echo-planar-imaging (EPI)-DTI pulse sequence was performed. Five 5 week-old New Zealand white (NZW) rabbits underwent MRI once per week for 24 weeks. After scanning, FA maps were obtained. ROIs (regions of interests) in the frontal lobe, parietal & temporal lobe, and occipital lobe were measured. FA changes with time were evaluated with a linear regression analysis. The results show that the FA values in all lobes of the brain increased linearly with age. The ranking of FA values was FA(frontal lobe) FA(occipital lobe). There was significant difference (p brain functions. The FA change rate could be a biomarker to monitor the brain development. Understanding the FA values of various lobes during development could provide helpful information to diagnosis the abnormal syndrome earlier and have a better treatment and prognosis. This study established a brain MR-DTI protocol for rabbits to investigate the brain anatomy during development using clinical MRI. This technique can be further applied to the pre-clinical diagnosis, treatment, prognosis and follow-up of brain lesions.

  8. Metabolic brain imaging correlated with clinical features of brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Alavi, J.; Alavi, A.; Dann, R.; Kushner, M.; Chawluk, J.; Powlis, W.; Reivich, M.

    1985-05-01

    Nineteen adults with brain tumors have been studied with positron emission tomography utilizing FDG. Fourteen had biopsy proven cerebral malignant glioma, one each had meningioma, hemangiopericytoma, primitive neuroectodermal tumor (PNET), two had unbiopsied lesions, and one patient had an area of biopsy proven radiation necrosis. Three different patterns of glucose metabolism are observed: marked increase in metabolism at the site of the known tumor in (10 high grade gliomas and the PNET), lower than normal metabolism at the tumor (in 1 grade II glioma, 3 grade III gliomas, 2 unbiopsied low density nonenhancing lesions, and the meningioma), no abnormality (1 enhancing glioma, the hemangiopericytoma and the radiation necrosis.) The metabolic rate of the tumor or the surrounding brain did not appear to be correlated with the history of previous irradiation or chemotherapy. Decreased metabolism was frequently observed in the rest of the affected hemisphere and in the contralateral cerebellum. Tumors of high grade or with enhancing CT characteristics were more likely to show increased metabolism. Among the patients with proven gliomas, survival after PETT scan tended to be longer for those with low metabolic activity tumors than for those with highly active tumors. The authors conclude that PETT may help to predict the malignant potential of tumors, and may add useful clinical information to the CT scan.

  9. Imaging Findings of Brain Death on 3-Tesla MRI

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Chul Ho [Dept. of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Hwa Pyung [Dept. of Occupational and Environmental Medicine, CHA Gumi Medical Center, CHA University, Gumi (Korea, Republic of); Park, Jun Beom [Dept. of Radiology, Korean Armed Force Daejeon Hospital, Daejeon (Korea, Republic of); Chang, Hyuk Won; Kim, Easlmaan; Park, Ui Jun; Kim, Hyoung Tae [Keimyung University College of Medicine, Dongsan Medical Center, Daegu (Korea, Republic of); Kim, Eun Hee [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Ku, Jeong Hun [Dept. of Biomedical Engineering, Keimyung University College of Medicine, Daegu (Korea, Republic of)

    2012-09-15

    To demonstrate the usefulness of 3-tesla (3T) magnetic resonance imaging (MRI) including T2-weighted imaging (T2WI), diffusion weighted imaging (DWI), time-of-flight (TOF) magnetic resonance angiography (MRA), T2*-weighted gradient recalled echo (GRE), and susceptibility weighted imaging (SWI) in diagnosing brain death. Magnetic resonance imaging findings for 10 patients with clinically verified brain death (group I) and seven patients with comatose or stuporous mentality who did not meet the clinical criteria of brain death (group II) were retrospectively reviewed. Tonsilar herniation and loss of intraarterial flow signal voids (LIFSV) on T2WI were highly sensitive and specific findings for the diagnosis of brain death (p < 0.001 and < 0.001, respectively). DWI, TOF-MRA, and GRE findings were statistically different between the two groups (p = 0.015, 0.029, and 0.003, respectively). However, cortical high signal intensities in T2WI and SWI findings were not statistically different between the two group (p = 0.412 and 1.0, respectively). T2-weighted imaging, DWI, and MRA using 3T MRI may be useful for diagnosing brain death. However, SWI findings are not specific due to high false positive findings.

  10. Fuzzy local Gaussian mixture model for brain MR image segmentation.

    Science.gov (United States)

    Ji, Zexuan; Xia, Yong; Sun, Quansen; Chen, Qiang; Xia, Deshen; Feng, David Dagan

    2012-05-01

    Accurate brain tissue segmentation from magnetic resonance (MR) images is an essential step in quantitative brain image analysis. However, due to the existence of noise and intensity inhomogeneity in brain MR images, many segmentation algorithms suffer from limited accuracy. In this paper, we assume that the local image data within each voxel's neighborhood satisfy the Gaussian mixture model (GMM), and thus propose the fuzzy local GMM (FLGMM) algorithm for automated brain MR image segmentation. This algorithm estimates the segmentation result that maximizes the posterior probability by minimizing an objective energy function, in which a truncated Gaussian kernel function is used to impose the spatial constraint and fuzzy memberships are employed to balance the contribution of each GMM. We compared our algorithm to state-of-the-art segmentation approaches in both synthetic and clinical data. Our results show that the proposed algorithm can largely overcome the difficulties raised by noise, low contrast, and bias field, and substantially improve the accuracy of brain MR image segmentation.

  11. A numerical model for the study of photoacoustic imaging of brain tumours

    CERN Document Server

    Firouzi, Kamyar

    2015-01-01

    Photoacoustic imaging has shown great promise for medical imaging, where optical energy absorption by blood haemoglobin is used as the contrast mechanism. A numerical method was developed for the in-silico assessment of the photoacoustic image reconstruction of the brain. Image segmentation techniques were used to prepare a digital phantom from MR images. Light transport through brain tissue was modelled using a Finite Element approach. The resulting acoustic pressure was then estimated by pulsed photoacoustics considerations. The forward acoustic wave propagation was modelled by the linearized coupled first order wave equations and solved by an acoustic k-space method. Since skull bone is an elastic solid and strongly attenuates ultrasound (due to both scattering and absorption), a k-space method was developed for elastic media. To model scattering effects, a new approach was applied based on propagation in random media. In addition, absorption effects were incorporated using a power law. Finally, the acoust...

  12. Development of imaging techniques for fast neutron radiography in Japan

    CERN Document Server

    Fujine, S; Yoshii, K; Kamata, M; Tamaki, M; Ohkubo, K; Ikeda, Y; Kobayashi, H

    1999-01-01

    Neutron radiography with fast neutron beams (FNR) has been studied at the fast neutron source reactor 'YAYOI' of the University of Tokyo since 1986. Imaging techniques for FNR have been developed for CR-39 track-etch detector, electronic imaging system (television method), direct film method, imaging plate and also fast and thermal neutron concurrent imaging method. The review of FNR imaging techniques and some applications are reported in this paper.

  13. A REVIEW ON INFLUENCE OF MUSIC ON BRAIN ACTIVITY USING SIGNAL PROCESSING AND IMAGING SYSTEM

    Directory of Open Access Journals (Sweden)

    Dr. K. ADALARASU,

    2011-04-01

    Full Text Available As per clinical neuroscience, listening to music involves many brain activities and its study has advanced greatly in the last thirty years. Research shows that music has significant effect on our body and mind. Music has a positive effect on the hormone system and allows the brain to concentrate more easily and assimilate more information in less time, thereby boosting learning and information intake and thus augmenting cognitive skills. Studies have found that the silence between two musical notes triggers brain cells and neurons which are responsible for the development of sharp memory. Music at different pitches (for example, Madhyamavati, Sankarabarnam raga and so on elicits exceptionally emotions and is capable ofreliably affecting the mood of individuals, which in turn changes the brain activity. This article provides a brief overview of currently available signal processing and imaging techniques to study the influence of different music on human brain activity.

  14. Review Article: An Overview of Image Compression Techniques

    Directory of Open Access Journals (Sweden)

    M. Marimuthu

    2012-12-01

    Full Text Available To store an image, large quantities of digital data are required. Due to limited bandwidth, image must be compressed before transmission. However, image compression reduces the image fidelity, when an image is compressed at low bitrates. Hence, the compressed images suffer from block artifacts. To meet this, several compression schemes have been developed in image processing. This study presents an overview of compression techniques for image applications. It covers the lossy and lossless compression algorithm used for still image and other applications. The focus of this article is based on the overview of VLSI DCT architecture for image compression. Further, this new approach may provide better results.

  15. Look again: effects of brain images and mind-brain dualism on lay evaluations of research.

    Science.gov (United States)

    Hook, Cayce J; Farah, Martha J

    2013-09-01

    Brain scans have frequently been credited with uniquely seductive and persuasive qualities, leading to claims that fMRI research receives a disproportionate share of public attention and funding. It has been suggested that functional brain images are fascinating because they contradict dualist beliefs regarding the relationship between the body and the mind. Although previous research has indicated that brain images can increase judgments of an article's scientific reasoning, the hypotheses that brain scans make research appear more interesting, surprising, or worthy of funding have not been tested. Neither has the relation between the allure of brain imaging and dualism. In the following three studies, laypersons rated both fictional research descriptions and real science news articles accompanied by brain scans, bar charts, or photographs. Across 988 participants, we found little evidence of neuroimaging's seductive allure or of its relation to self-professed dualistic beliefs. These results, taken together with other recent null findings, suggest that brain images are less powerful than has been argued.

  16. Selection of appropriate template for spatial normalization of brain images: tensor based morphometry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Lee, Dong Soo; Kim, Yu Kyeong; Chung, June Key; Lee, Myung Chul [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    2004-07-01

    Although there have been remarkable advances in spatial normalization techniques, the differences in the shape of the hemispheres and the sulcal pattern of brains relative to age, gender, races, and diseases cannot be fully overcome by the nonlinear spatial normalization techniques. T1 SPGR MR images in 16 elderly male normal volunteers (>55 y. mean age: = 61.8 {+-} 3.5 y) were spatially normalized onto the age/gender specific Korean templates, and the Caucasian MNI template and the extent of the deformations were compared. These particular subjects were never included in the development of the templates. First , the images were matched into the templates using an affine transformation to eliminate the global difference between the templates and source images. Second the affine registration was followed by an estimation of nonlinear deformation. Determinants of the Jacobian matrices of the nonlinear deformation were then calculated for every voxel to estimate the regional volume change during the nonlinear transformation Jacobian determinant images highlighted the great magnitude of the relative local volume changes obtained when the elderly brains were spatially normalized onto the young/midlife male or female templates. They reflect the enlargement of CSF space in the lateral ventricles, sylvian fissures and cisterna magna, and the shrinkage of the cortex noted mainly in frontal, insular and lateral temporal cortexes, and the cerebellums in the aged brains. In the Jacobian determinant images, a regional shrinkage of the brain in the left middle prefrontal cortex was observed in addition to the regional expansion in the ventricles and sylvian fissures, which may be due to the age differences between the template and source images. The regional anatomical difference between template and source images could impose an extreme deformation of the source images during the spatial normalization and therefore. Individual brains should be placed into the appropriate

  17. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain.

    Science.gov (United States)

    Liu, Chunlei; Li, Wei; Tong, Karen A; Yeom, Kristen W; Kuzminski, Samuel

    2015-07-01

    Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique that enhances image contrast by using the susceptibility differences between tissues. It is created by combining both magnitude and phase in the gradient echo data. SWI is sensitive to both paramagnetic and diamagnetic substances which generate different phase shift in MRI data. SWI images can be displayed as a minimum intensity projection that provides high resolution delineation of the cerebral venous architecture, a feature that is not available in other MRI techniques. As such, SWI has been widely applied to diagnose various venous abnormalities. SWI is especially sensitive to deoxygenated blood and intracranial mineral deposition and, for that reason, has been applied to image various pathologies including intracranial hemorrhage, traumatic brain injury, stroke, neoplasm, and multiple sclerosis. SWI, however, does not provide quantitative measures of magnetic susceptibility. This limitation is currently being addressed with the development of quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI). While QSM treats susceptibility as isotropic, STI treats susceptibility as generally anisotropic characterized by a tensor quantity. This article reviews the basic principles of SWI, its clinical and research applications, the mechanisms governing brain susceptibility properties, and its practical implementation, with a focus on brain imaging.

  18. Development of image and information management system for Korean standard brain

    Science.gov (United States)

    Chung, Soon Cheol; Choi, Do Young; Tack, Gye Rae; Sohn, Jin Hun

    2004-04-01

    The purpose of this study is to establish a reference for image acquisition for completing a standard brain for diverse Korean population, and to develop database management system that saves and manages acquired brain images and personal information of subjects. 3D MP-RAGE (Magnetization Prepared Rapid Gradient Echo) technique which has excellent Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR) as well as reduces image acquisition time was selected for anatomical image acquisition, and parameter values were obtained for the optimal image acquisition. Using these standards, image data of 121 young adults (early twenties) were obtained and stored in the system. System was designed to obtain, save, and manage not only anatomical image data but also subjects' basic demographic factors, medical history, handedness inventory, state-trait anxiety inventory, A-type personality inventory, self-assessment depression inventory, mini-mental state examination, intelligence test, and results of personality test via a survey questionnaire. Additionally this system was designed to have functions of saving, inserting, deleting, searching, and printing image data and personal information of subjects, and to have accessibility to them as well as automatic connection setup with ODBC. This newly developed system may have major contribution to the completion of a standard brain for diverse Korean population since it can save and manage their image data and personal information.

  19. Dual Channel Pulse Coupled Neural Network Algorithm for Fusion of Multimodality Brain Images with Quality Analysis

    Directory of Open Access Journals (Sweden)

    Kavitha SRINIVASAN

    2014-09-01

    Full Text Available Background: In the review of medical imaging techniques, an important fact that emerged is that radiologists and physicians still are in a need of high-resolution medical images with complementary information from different modalities to ensure efficient analysis. This requirement should have been sorted out using fusion techniques with the fused image being used in image-guided surgery, image-guided radiotherapy and non-invasive diagnosis. Aim: This paper focuses on Dual Channel Pulse Coupled Neural Network (PCNN Algorithm for fusion of multimodality brain images and the fused image is further analyzed using subjective (human perception and objective (statistical measures for the quality analysis. Material and Methods: The modalities used in fusion are CT, MRI with subtypes T1/T2/PD/GAD, PET and SPECT, since the information from each modality is complementary to one another. The objective measures selected for evaluation of fused image were: Information Entropy (IE - image quality, Mutual Information (MI – deviation in fused to the source images and Signal to Noise Ratio (SNR – noise level, for analysis. Eight sets of brain images with different modalities (T2 with T1, T2 with CT, PD with T2, PD with GAD, T2 with GAD, T2 with SPECT-Tc, T2 with SPECT-Ti, T2 with PET are chosen for experimental purpose and the proposed technique is compared with existing fusion methods such as the Average method, the Contrast pyramid, the Shift Invariant Discrete Wavelet Transform (SIDWT with Harr and the Morphological pyramid, using the selected measures to ascertain relative performance. Results: The IE value and SNR value of the fused image derived from dual channel PCNN is higher than other fusion methods, shows that the quality is better with less noise. Conclusion: The fused image resulting from the proposed method retains the contrast, shape and texture as in source images without false information or information loss.

  20. Identifying Brain Image Level Endophenotypes in Epilepsy

    CERN Document Server

    Cheng, Wei; Tian, Ge; Feng, Jianfeng; Wang, Zhengge; Zhang, Zhiqiang; Lu, GuangMing

    2012-01-01

    A brain wide association study (BWAS) based on the logistic regression was first developed and applied to a large population of epilepsy patients (168) and healthy controls (136). It was found that the most significant links associated with epilepsy are those bilateral links with regions mainly belonging to the default mode network and subcortex, such as amygdala, fusiform gyrus, inferior temporal gyrus, hippocampus, temporal pole, parahippocampal gyrus, insula, middle occipital gyrus, cuneus. These links were found to have much higher odd ratios than other links, and all of them showed reduced functional couplings in patients compared with controls. Interestingly, with the increasing of the seizure onset frequency or duration of illness, the functional connection between these bilateral regions became further reduced. On the other hand, as a functional compensation and brain plasticity, connections of these bilateral regions to other brain regions were abnormally enhanced and became even much stronger with t...

  1. Image Mosaic Techniques OptimizationUsing Wavelet

    Institute of Scientific and Technical Information of China (English)

    ZHOUAn-qi; CUILi

    2014-01-01

    This essay concentrates on two key procedures of image mosaic——image registration and imagefusion.Becauseof the character of geometric transformation invariance of edge points, wecalculate the angle difference of the direction vector ofedge points in different images anddraw an angle difference histogramto adjust the rotationproblem. Through this way, algorithm based on gray information is expandedandcan be used in images withdisplacementand rotation. Inthe term of image fusion, wavelet multi-scale analysis is used to fuse spliced images. In order to choose the best method of imagefusion,weevaluate the results of different methods of image fusion by cross entropy.

  2. Diagnostic confirmation of mild traumatic brain injury by diffusion tensor imaging: a case report

    Directory of Open Access Journals (Sweden)

    Krishna Ranga

    2012-02-01

    Full Text Available Abstract Introduction Traumatic brain injury is a form of acquired brain injury that results from sudden trauma to the head. Specifically, mild traumatic brain injury is a clinical diagnosis that can have significant effects on an individual's life, yet is difficult to identify through traditional imaging techniques. Case presentation This is the case of a 68-year-old previously healthy African American woman who was involved in a motor vehicle accident that resulted in significant head trauma. After the accident, she experienced symptoms indicative of mild traumatic brain injury and sought a neurological consultation when her symptoms did not subside. She was initially evaluated with a neurological examination, psychological evaluation, acute concussion evaluation and a third-party memory test using software from CNS Vital Signs for neurocognitive function. A diagnosis of post-concussion syndrome was suggested. Diffusion tensor imaging revealed decreased fractional anisotropy in the region immediately adjacent to both lateral ventricles, which was used to confirm the diagnosis. Fractional anisotropy is a scalar value between zero and one that describes the degree of anisotropy of a diffusion process. These results are indicative of post-traumatic gliosis and are undetectable by magnetic resonance imaging. Our patient was treated with cognitive therapy. Conclusion Minor traumatic brain injury is a common injury with variable clinical presentation. The system of diagnosis used in this case found a significant relationship between the clinical assessment and imaging results. This would not have been possible using traditional imaging techniques and highlights the benefits of using diffusion tensor imaging in the sub-acute assessment of minor traumatic brain injury.

  3. Rhesus monkey brain imaging through intact skull with thermoacoustic tomography

    OpenAIRE

    Xu, Yuan; Wang, Lihong V.

    2006-01-01

    Two-dimensional microwave-induced thermoacoustic tomography (TAT) is applied to imaging the Rhesus monkey brain through the intact skull. To reduce the wavefront distortion caused by the skull, only the low-frequency components of the thermoacoustic signals (< 1 MHz) are used to reconstruct the TAT images. The methods of signal processing and image reconstruction are validated by imaging a lamb kidney. The resolution of the system is found to be 4 mm when we image a 1-month-old monkey head co...

  4. Incidental ferumoxytol artifacts in clinical brain MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bowser, Bruce A.; Campeau, Norbert G.; Carr, Carrie M.; Diehn, Felix E.; McDonald, Jennifer S.; Miller, Gary M.; Kaufmann, Timothy J. [Mayo Clinic, Department of Radiology, Rochester, MN (United States)

    2016-11-15

    Ferumoxytol (Feraheme) is a parenteral therapy approved for treatment of iron deficiency anemia. The product insert for ferumoxytol states that it may affect the diagnostic ability of MRI for up to 3 months. However, the expected effects may not be commonly recognized among clinical neuroradiologists. Our purpose is to describe the artifacts we have seen at our institution during routine clinical practice. We reviewed the patients at our institution that had brain MRI performed within 90 days of receiving intravenous ferumoxytol. The imaging was reviewed for specific findings, including diffusion-weighted imaging vascular susceptibility artifact, gradient-echo echo-planar T2*-weighted vascular susceptibility artifact, SWI/SWAN vascular susceptibility artifact, hypointense vascular signal on T2-weighted images, pre-gadolinium contrast vascular enhancement on magnetization-prepared rapid acquisition gradient echo (MPRAGE) imaging, and effects on post-gadolinium contrast T1 imaging. Multiple artifacts were observed in patients having a brain MRI within 3 days of receiving intravenous ferumoxytol. These included susceptibility artifact on DWI, GRE, and SWAN/SWI imaging, pre-gadolinium contrast increased vascular signal on MPRAGE imaging, and decreased expected enhancement on post-gadolinium contrast T1-weighted imaging. Ferumoxytol can create imaging artifacts which complicate clinical interpretation when brain MRI is performed within 3 days of administration. Recognition of the constellation of artifacts produced by ferumoxytol is important in order to obviate additional unnecessary examinations and mitigate errors in interpretation. (orig.)

  5. Image Interpolation Using Kriging Technique for Spatial Data

    OpenAIRE

    Jassim, Firas Ajil; Altaany, Fawzi Hasan

    2013-01-01

    Image interpolation has been used spaciously by customary interpolation techniques. Recently, Kriging technique has been widely implemented in simulation area and geostatistics for prediction. In this article, Kriging technique was used instead of the classical interpolation methods to predict the unknown points in the digital image array. The efficiency of the proposed technique was proven using the PSNR and compared with the traditional interpolation techniques. The results showed that Krig...

  6. Analyzing the blood-brain barrier: the benefits of medical imaging in research and clinical practice.

    Science.gov (United States)

    Chassidim, Yoash; Vazana, Udi; Prager, Ofer; Veksler, Ronel; Bar-Klein, Guy; Schoknecht, Karl; Fassler, Michael; Lublinsky, Svetlana; Shelef, Ilan

    2015-02-01

    A dysfunctional BBB is a common feature in a variety of brain disorders, a fact stressing the need for diagnostic tools designed to assess brain vessels' permeability in space and time. Biological research has benefited over the years various means to analyze BBB integrity. The use of biomarkers for improper BBB functionality is abundant. Systemic administration of BBB impermeable tracers can both visualize brain regions characterized by BBB impairment, as well as lead to its quantification. Additionally, locating molecular, physiological content in regions from which it is restricted under normal BBB functionality undoubtedly indicates brain pathology-related BBB disruption. However, in-depth research into the BBB's phenotype demands higher analytical complexity than functional vs. pathological BBB; criteria which biomarker based BBB permeability analyses do not meet. The involvement of accurate and engineering sciences in recent brain research, has led to improvements in the field, in the form of more accurate, sensitive imaging-based methods. Improvements in the spatiotemporal resolution of many imaging modalities and in image processing techniques, make up for the inadequacies of biomarker based analyses. In pre-clinical research, imaging approaches involving invasive procedures, enable microscopic evaluation of BBB integrity, and benefit high levels of sensitivity and accuracy. However, invasive techniques may alter normal physiological function, thus generating a modality-based impact on vessel's permeability, which needs to be corrected for. Non-invasive approaches do not affect proper functionality of the inspected system, but lack in spatiotemporal resolution. Nevertheless, the benefit of medical imaging, even in pre-clinical phases, outweighs its disadvantages. The innovations in pre-clinical imaging and the development of novel processing techniques, have led to their implementation in clinical use as well. Specialized analyses of vessels' permeability

  7. Application of image fusion techniques in DSA

    Science.gov (United States)

    Ye, Feng; Wu, Jian; Cui, Zhiming; Xu, Jing

    2007-12-01

    Digital subtraction angiography (DSA) is an important technology in both medical diagnoses and interposal therapy, which can eliminate the interferential background and give prominence to blood vessels by computer processing. After contrast material is injected into an artery or vein, a physician produces fluoroscopic images. Using these digitized images, a computer subtracts the image made with contrast material from a series of post injection images made without background information. By analyzing the characteristics of DSA medical images, this paper provides a solution of image fusion which is in allusion to the application of DSA subtraction. We fuse the images of angiogram and subtraction, in order to obtain the new image which has more data information. The image that fused by wavelet transform can display the blood vessels and background information clearly, and medical experts gave high score on the effect of it.

  8. Human brain activity with functional NIR optical imager

    Science.gov (United States)

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  9. Chemical imaging analysis of the brain with X-ray methods

    Science.gov (United States)

    Collingwood, Joanna F.; Adams, Freddy

    2017-04-01

    Cells employ various metal and metalloid ions to augment the structure and the function of proteins and to assist with vital biological processes. In the brain they mediate biochemical processes, and disrupted metabolism of metals may be a contributing factor in neurodegenerative disorders. In this tutorial review we will discuss the particular role of X-ray methods for elemental imaging analysis of accumulated metal species and metal-containing compounds in biological materials, in the context of post-mortem brain tissue. X-rays have the advantage that they have a short wavelength and can penetrate through a thick biological sample. Many of the X-ray microscopy techniques that provide the greatest sensitivity and specificity for trace metal concentrations in biological materials are emerging at synchrotron X-ray facilities. Here, the extremely high flux available across a wide range of soft and hard X-rays, combined with state-of-the-art focusing techniques and ultra-sensitive detectors, makes it viable to undertake direct imaging of a number of elements in brain tissue. The different methods for synchrotron imaging of metals in brain tissues at regional, cellular, and sub-cellular spatial resolution are discussed. Methods covered include X-ray fluorescence for elemental imaging, X-ray absorption spectrometry for speciation imaging, X-ray diffraction for structural imaging, phase contrast for enhanced contrast imaging and scanning transmission X-ray microscopy for spectromicroscopy. Two- and three-dimensional (confocal and tomographic) imaging methods are considered as well as the correlation of X-ray microscopy with other imaging tools.

  10. Molecular Imaging of Tumors Using a Quantitative T1 Mapping Technique via Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Kelsey Herrmann

    2015-07-01

    Full Text Available Magnetic resonance imaging (MRI of glioblastoma multiforme (GBM with molecular imaging agents would allow for the specific localization of brain tumors. Prior studies using T1-weighted MR imaging demonstrated that the SBK2-Tris-(Gd-DOTA3 molecular imaging agent labeled heterotopic xenograft models of brain tumors more intensely than non-specific contrast agents using conventional T1-weighted imaging techniques. In this study, we used a dynamic quantitative T1 mapping strategy to more objectively compare intra-tumoral retention of the SBK2-Tris-(Gd-DOTA3 agent over time in comparison to non-targeted control agents. Our results demonstrate that the targeted SBK2-Tris-(Gd-DOTA3 agent, a scrambled-Tris-(Gd-DOTA3 control agent, and the non-specific clinical contrast agent Optimark™ all enhanced flank tumors of human glioma cells with similar maximal changes on T1 mapping. However, the retention of the agents differs. The non-specific agents show significant recovery within 20 min by an increase in T1 while the specific agent SBK2-Tris-(Gd-DOTA3 is retained in the tumors and shows little recovery over 60 min. The retention effect is demonstrated by percent change in T1 values and slope calculations as well as by calculations of gadolinium concentration in tumor compared to muscle. Quantitative T1 mapping demonstrates the superior binding and retention in tumors of the SBK2-Tris-(Gd-DOTA3 agent over time compared to the non-specific contrast agent currently in clinical use.

  11. Resolving brain regions using nanostructure initiator mass spectrometry imaging

    OpenAIRE

    Lee, Do Yup; Platt, Virginia; Bowen, Ben; Louie, Katherine; Canaria, Christie; McMurray, Cynthia T.; Northen, Trent

    2012-01-01

    Specific cell types are critically implicated in a variety of neuropathologies that exhibit region-specific susceptibility. Neuronal and glial function is impaired in a host of neurodegenerative diseases. Previous reports suggest that mass spectrometry imaging has the potential to resolve cell-specific enrichment in brain regions; however, individual ions cannot resolve glial and neuronal cells within the complex structure of brain tissue. Here, we utilized a matrix-free surface mass spectrom...

  12. Metabolic Syndrome, Brain Magnetic Resonance Imaging, and Cognition

    OpenAIRE

    2010-01-01

    OBJECTIVE We explored cognitive impairment in metabolic syndrome in relation to brain magnetic resonance imaging (MRI) findings. RESEARCH DESIGN AND METHODS We studied 819 participants free of clinical stroke and dementia of the population-based Austrian Stroke Prevention Study who had undergone brain MRI, neuropsychological testing, and a risk factor assessment relevant to National Cholesterol Education Program Adult Treatment Panel III criteria–defined metabolic syndrome. High-sensitivity C...

  13. Rapid hybrid encoding for high-resolution whole-brain fluid-attenuated imaging.

    Science.gov (United States)

    Lee, Hoonjae; Sohn, Chul-Ho; Park, Jaeseok

    2013-12-01

    Single-slab three-dimensional (3D) turbo spin-echo (TSE) imaging combined with inversion recovery (IR), which employs short, spatially non-selective refocusing pulses and signal prescription based variable refocusing flip angles (VFA) to increase imaging efficiency, was recently introduced to produce fluid-attenuated brain images for lesion detection. Despite the advantages, the imaging efficiency in this approach still remains limited because a substantially long time of inversion is needed to selectively suppress the signal intensity of cerebrospinal fluid (CSF) while fully recovering that of brain tissues. The purpose of this work is to develop a novel, rapid hybrid encoding method for highly efficient whole-brain fluid-attenuated imaging. In each time of repetition, volumetric data are continuously encoded using the hybrid modular acquisition in a sequential fashion even during IR signal transition, wherein reversed fast imaging with steady-state free precession (PSIF) is employed to encode intermediate-to-high spatial frequency signals prior to CSF nulling, while VFA-TSE is used to collect low-to-intermediate spatial frequency signals afterwards. Gradient-induced spin de-phasing between a pair of neighboring radio-frequency (RF) pulses in both PSIF and TSE modules is kept identical to avoid the occurrence of multiple echoes in a single acquisition window. Additionally, a two-step, alternate RF phase-cycling scheme is employed in the low spatial frequency region to eliminate free induction decay induced edge artifacts. Numerical simulations of the Bloch equations were performed to evaluate signal evolution of brain tissues along the echo train while optimizing imaging parameters. In vivo studies demonstrate that the proposed technique produces high-resolution isotropic fluid-attenuated whole-brain images in a clinically acceptable imaging time with substantially high signal-to-noise ratio for white matter while retaining lesion conspicuity.

  14. Three-dimensional atlas system for mouse and rat brain imaging data

    Directory of Open Access Journals (Sweden)

    Trine Hjornevik

    2007-11-01

    Full Text Available Tomographic neuroimaging techniques allow visualization of functionally and structurally specific signals in the mouse and rat brain. The interpretation of the image data relies on accurate determination of anatomical location, which is frequently obstructed by the lack of structural information in the data sets. Positron emission tomography (PET generally yields images with low spatial resolution and little structural contrast, and many experimental magnetic resonance imaging (MRI paradigms give specific signal enhancements but often limited anatomical information. Side-by-side comparison of image data with conventional atlas diagram is hampered by the 2-D format of the atlases, and by the lack of an analytical environment for accumulation of data and integrative analyses. We here present a method for reconstructing 3-D atlases from digital 2-D atlas diagrams, and exemplify 3-D atlas-based analysis of PET and MRI data. The reconstruction procedure is based on two seminal mouse and brain atlases, but is applicable to any stereotaxic atlas. Currently, 30 mouse brain structures and 60 rat brain structures have been reconstructed. To exploit the 3-D atlas models, we have developed a multi-platform atlas tool (available via The Rodent Workbench, http://rbwb.org which allows combined visualization of experimental image data within the 3-D atlas space together with 3-D viewing and user-defined slicing of selected atlas structures. The tool presented facilitates assignment of location and comparative analysis of signal location in tomographic images with low structural contrast.

  15. In vivo bioluminescence imaging of Ca signalling in the brain of Drosophila.

    Science.gov (United States)

    Martin, Jean-René; Rogers, Kelly L; Chagneau, Carine; Brûlet, Philippe

    2007-03-07

    Many different cells' signalling pathways are universally regulated by Ca(2+) concentration [Ca(2+)] rises that have highly variable amplitudes and kinetic properties. Optical imaging can provide the means to characterise both the temporal and spatial aspects of Ca(2+) signals involved in neurophysiological functions. New methods for in vivo imaging of Ca(2+) signalling in the brain of Drosophila are required for probing the different dynamic aspects of this system. In studies here, whole brain Ca(2+) imaging was performed on transgenic flies with targeted expression of the bioluminescent Ca(2+) reporter GFP-aequorin (GA) in different neural structures. A photon counting based technique was used to undertake continuous recordings of cytosolic [Ca(2+)] over hours. Time integrals for reconstructing images and analysis of the data were selected offline according to the signal intensity. This approach allowed a unique Ca(2+) response associated with cholinergic transmission to be identified by whole brain imaging of specific neural structures. Notably, [Ca(2+)] transients in the Mushroom Bodies (MBs) following nicotine stimulation were accompanied by a delayed secondary [Ca(2+)] rise (up to 15 min. later) in the MB lobes. The delayed response was sensitive to thapsigargin, suggesting a role for intra-cellular Ca(2+) stores. Moreover, it was reduced in dunce mutant flies, which are impaired in learning and memory. Bioluminescence imaging is therefore useful for studying Ca(2+) signalling pathways and for functional mapping of neurophysiological processes in the fly brain.

  16. In vivo Bioluminescence Imaging of Ca2+ Signalling in the Brain of Drosophila

    Science.gov (United States)

    Chagneau, Carine; Brûlet, Philippe

    2007-01-01

    Many different cells' signalling pathways are universally regulated by Ca2+ concentration [Ca2+] rises that have highly variable amplitudes and kinetic properties. Optical imaging can provide the means to characterise both the temporal and spatial aspects of Ca2+ signals involved in neurophysiological functions. New methods for in vivo imaging of Ca2+ signalling in the brain of Drosophila are required for probing the different dynamic aspects of this system. In studies here, whole brain Ca2+ imaging was performed on transgenic flies with targeted expression of the bioluminescent Ca2+ reporter GFP-aequorin (GA) in different neural structures. A photon counting based technique was used to undertake continuous recordings of cytosolic [Ca2+] over hours. Time integrals for reconstructing images and analysis of the data were selected offline according to the signal intensity. This approach allowed a unique Ca2+ response associated with cholinergic transmission to be identified by whole brain imaging of specific neural structures. Notably, [Ca2+] transients in the Mushroom Bodies (MBs) following nicotine stimulation were accompanied by a delayed secondary [Ca2+] rise (up to 15 min. later) in the MB lobes. The delayed response was sensitive to thapsigargin, suggesting a role for intra-cellular Ca2+ stores. Moreover, it was reduced in dunce mutant flies, which are impaired in learning and memory. Bioluminescence imaging is therefore useful for studying Ca2+ signalling pathways and for functional mapping of neurophysiological processes in the fly brain. PMID:17342209

  17. Nuclear emission-based imaging in the study of brain function

    Science.gov (United States)

    Sossi, Vesna

    2016-09-01

    Nuclear emission - based imaging has been used in medicine for decades either in the form of Single Photon Emission Computerized Tomography (SPECT) or Positron Emission Tomography (PET). Both techniques are based on radiolabelling molecules of biological interest (radiotracers) with either a gamma (SPECT) or a positron (PET) emitting radionuclide. By detecting radiation from the radiolabels and reconstructing the acquired data it is possible to form an image of the radiotracer distribution in the body and thus obtain information on the biological process that the radiotracer is tagging. While most of the clinical applications of PET are in oncology, where the glucose analogue 18F-flurodeoxyglocose (FDG) is the most commonly used radiotracer, the importance of PET imaging for brain applications is rapidly increasing. Numerous radiotracers exist that can tag different neurotransmitter systems as well as abnormal protein aggregations that are known to underlie several brain diseases: amyloid deposition, a characteristic of Alzheimer's, and, more recently, tau deposition, which is deemed abnormal not only in dementia, but also in Parkinson's syndrome and traumatic brain injury. Imaging has shown that may brain diseases start decades before clinical symptoms, in part explaining the difficulty of developing adequate treatments. This talk will briefly summarize the role of PET imaging in the study of neurodegeneration and discuss the upcoming hybrid PET/MRI imaging instrumentation. NSERC, CIHR, MJFF.

  18. In vivo bioluminescence imaging of Ca signalling in the brain of Drosophila.

    Directory of Open Access Journals (Sweden)

    Jean-René Martin

    Full Text Available Many different cells' signalling pathways are universally regulated by Ca(2+ concentration [Ca(2+] rises that have highly variable amplitudes and kinetic properties. Optical imaging can provide the means to characterise both the temporal and spatial aspects of Ca(2+ signals involved in neurophysiological functions. New methods for in vivo imaging of Ca(2+ signalling in the brain of Drosophila are required for probing the different dynamic aspects of this system. In studies here, whole brain Ca(2+ imaging was performed on transgenic flies with targeted expression of the bioluminescent Ca(2+ reporter GFP-aequorin (GA in different neural structures. A photon counting based technique was used to undertake continuous recordings of cytosolic [Ca(2+] over hours. Time integrals for reconstructing images and analysis of the data were selected offline according to the signal intensity. This approach allowed a unique Ca(2+ response associated with cholinergic transmission to be identified by whole brain imaging of specific neural structures. Notably, [Ca(2+] transients in the Mushroom Bodies (MBs following nicotine stimulation were accompanied by a delayed secondary [Ca(2+] rise (up to 15 min. later in the MB lobes. The delayed response was sensitive to thapsigargin, suggesting a role for intra-cellular Ca(2+ stores. Moreover, it was reduced in dunce mutant flies, which are impaired in learning and memory. Bioluminescence imaging is therefore useful for studying Ca(2+ signalling pathways and for functional mapping of neurophysiological processes in the fly brain.

  19. Cerenkov and radioluminescence imaging of brain tumor specimens during neurosurgery

    Science.gov (United States)

    Spinelli, Antonello Enrico; Schiariti, Marco P.; Grana, Chiara M.; Ferrari, Mahila; Cremonesi, Marta; Boschi, Federico

    2016-05-01

    We presented the first example of Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI) of human tumor specimens. A patient with a brain meningioma localized in the left parietal region was injected with 166 MBq of Y90-DOTATOC the day before neurosurgery. The specimens of the tumor removed during surgery were imaged using both CLI and RLI using an optical imager prototype developed in our laboratory. The system is based on a cooled electron multiplied charge coupled device coupled with an f/0.95 17-mm C-mount lens. We showed for the first time the possibility of obtaining CLI and RLI images of fresh human brain tumor specimens removed during neurosurgery.

  20. Biomarkers for Musculoskeletal Pain Conditions: Use of Brain Imaging and Machine Learning.

    Science.gov (United States)

    Boissoneault, Jeff; Sevel, Landrew; Letzen, Janelle; Robinson, Michael; Staud, Roland

    2017-01-01

    Chronic musculoskeletal pain condition often shows poor correlations between tissue abnormalities and clinical pain. Therefore, classification of pain conditions like chronic low back pain, osteoarthritis, and fibromyalgia depends mostly on self report and less on objective findings like X-ray or magnetic resonance imaging (MRI) changes. However, recent advances in structural and functional brain imaging have identified brain abnormalities in chronic pain conditions that can be used for illness classification. Because the analysis of complex and multivariate brain imaging data is challenging, machine learning techniques have been increasingly utilized for this purpose. The goal of machine learning is to train specific classifiers to best identify variables of interest on brain MRIs (i.e., biomarkers). This report describes classification techniques capable of separating MRI-based brain biomarkers of chronic pain patients from healthy controls with high accuracy (70-92%) using machine learning, as well as critical scientific, practical, and ethical considerations related to their potential clinical application. Although self-report remains the gold standard for pain assessment, machine learning may aid in the classification of chronic pain disorders like chronic back pain and fibromyalgia as well as provide mechanistic information regarding their neural correlates.

  1. NMR imaging of cell phone radiation absorption in brain tissue.

    Science.gov (United States)

    Gultekin, David H; Moeller, Lothar

    2013-01-02

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry.

  2. Brain magnetic resonance imaging of infants exposed prenatally to buprenorphine

    Energy Technology Data Exchange (ETDEWEB)

    Kahila, H.; Kivitie-Kallio, S.; Halmesmaki, E.; Valanne, L.; Autti, T. [Dept. of Obstetrics and Gynecology, Dept. of Pediatrics, and Helsinki Medical Imaging Center, Helsinki Univ. Central Hospital (Finland)

    2007-02-15

    Purpose: To evaluate the brains of newborns exposed to buprenorphine prenatally. Material and Methods: Seven neonates followed up antenatally in connection with their mothers' buprenorphine replacement therapy underwent 1.5T magnetic resonance imaging (MRI) of the brain before the age of 2 months. The infants were born to heavy drug abusers. Four mothers were hepatitis C positive, and all were HIV negative. All mothers smoked tobacco and used benzodiazepines. All pregnancies were full term, and no perinatal asphyxia occurred. All but one neonate had abstinence syndrome and needed morphine replacement therapy. Results: Neither structural abnormalities nor abnormalities in signal intensity were recorded. Conclusion: Buprenorphine replacement therapy does not seem to cause any major structural abnormalities of the brain, and it may prevent known hypoxic-ischemic brain changes resulting from uncontrolled drug abuse. Longitudinal studies are needed to assess possible abnormalities in the brain maturation process.

  3. Cross contrast multi-channel image registration using image synthesis for MR brain images.

    Science.gov (United States)

    Chen, Min; Carass, Aaron; Jog, Amod; Lee, Junghoon; Roy, Snehashis; Prince, Jerry L

    2017-02-01

    Multi-modal deformable registration is important for many medical image analysis tasks such as atlas alignment, image fusion, and distortion correction. Whereas a conventional method would register images with different modalities using modality independent features or information theoretic metrics such as mutual information, this paper presents a new framework that addresses the problem using a two-channel registration algorithm capable of using mono-modal similarity measures such as sum of squared differences or cross-correlation. To make it possible to use these same-modality measures, image synthesis is used to create proxy images for the opposite modality as well as intensity-normalized images from each of the two available images. The new deformable registration framework was evaluated by performing intra-subject deformation recovery, intra-subject boundary alignment, and inter-subject label transfer experiments using multi-contrast magnetic resonance brain imaging data. Three different multi-channel registration algorithms were evaluated, revealing that the framework is robust to the multi-channel deformable registration algorithm that is used. With a single exception, all results demonstrated improvements when compared against single channel registrations using the same algorithm with mutual information.

  4. Digital image processing techniques in archaeology

    Digital Repository Service at National Institute of Oceanography (India)

    Santanam, K.; Vaithiyanathan, R.; Tripati, S.

    Digital image processing involves the manipulation and interpretation of digital images with the aid of a computer. This form of remote sensing actually began in the 1960's with a limited number of researchers analysing multispectral scanner data...

  5. Normal feline brain: clinical anatomy using magnetic resonance imaging.

    Science.gov (United States)

    Mogicato, G; Conchou, F; Layssol-Lamour, C; Raharison, F; Sautet, J

    2012-04-01

    The purpose of this study was to provide a clinical anatomy atlas of the feline brain using magnetic resonance imaging (MRI). Brains of twelve normal cats were imaged using a 1.5 T magnetic resonance unit and an inversion/recovery sequence (T1). Fourteen relevant MRI sections were chosen in transverse, dorsal, median and sagittal planes. Anatomic structures were identified and labelled using anatomical texts and Nomina Anatomica Veterinaria, sectioned specimen heads, and previously published articles. The MRI sections were stained according to the major embryological and anatomical subdivisions of the brain. The relevant anatomical structures seen on MRI will assist clinicians to better understand MR images and to relate this neuro-anatomy to clinical signs.

  6. Neurophotonics: non-invasive optical techniques for monitoring brain functions

    Science.gov (United States)

    Torricelli, Alessandro; Contini, Davide; Mora, Alberto Dalla; Pifferi, Antonio; Re, Rebecca; Zucchelli, Lucia; Caffini, Matteo; Farina, Andrea; Spinelli, Lorenzo

    2014-01-01

    Summary The aim of this review is to present the state of the art of neurophotonics, a recently founded discipline lying at the interface between optics and neuroscience. While neurophotonics also includes invasive techniques for animal studies, in this review we focus only on the non-invasive methods that use near infrared light to probe functional activity in the brain, namely the fast optical signal, diffuse correlation spectroscopy, and functional near infrared spectroscopy methods. We also present an overview of the physical principles of light propagation in biological tissues, and of the main physiological sources of signal. Finally, we discuss the open issues in models, instrumentation, data analysis and clinical approaches. PMID:25764252

  7. Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains.

    Directory of Open Access Journals (Sweden)

    Martin K Schwarz

    Full Text Available In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain.

  8. Radiation dose reduction in perfusion CT imaging of the brain: A review of the literature.

    Science.gov (United States)

    Othman, Ahmed E; Afat, Saif; Brockmann, Marc A; Nikoubashman, Omid; Brockmann, Carolin; Nikolaou, Konstantin; Wiesmann, Martin

    2016-02-01

    Perfusion CT (PCT) of the brain is widely used in the settings of acute ischemic stroke and vasospasm monitoring. The high radiation dose associated with PCT is a central topic and has been a focus of interest for many researchers. Many studies have examined the effect of radiation dose reduction in PCT using different approaches. Reduction of tube current and tube voltage can be efficient and lead to a remarkable reduction of effective radiation dose while preserving acceptable image quality. The use of novel noise reduction techniques such as iterative reconstruction or spatiotemporal smoothing can produce sufficient image quality from low-dose perfusion protocols. Reduction of sampling frequency of perfusion images has only little potential to reduce radiation dose. In the present article we aimed to summarize the available data on radiation dose reduction in PCT imaging of the brain.

  9. Advanced techniques in medical image segmentation of the liver

    OpenAIRE

    López Mir, Fernando

    2016-01-01

    [EN] Image segmentation is, along with multimodal and monomodal registration, the operation with the greatest applicability in medical image processing. There are many operations and filters, as much as applications and cases, where the segmentation of an organic tissue is the first step. The case of liver segmentation in radiological images is, after the brain, that on which the highest number of scientific publications can be found. This is due, on the one hand, to the need to continue inno...

  10. Fingerprint Image Enhancement By Develop Mehtre Technique

    Directory of Open Access Journals (Sweden)

    Mustafa Salah Khalefa

    2011-12-01

    Full Text Available Fingerprint identification is one of the most reliable biometrics technologies. There are manyapplications of fingerprint recognition such as voting, ecommerce, bank, virtual banks and military.Fingerprint image enhancement is an essential preprocessing step in extract minutiae from the inputfingerprint images. In this paper, we propose an image enhancement method by developing Mehtermethod for directional image. The enhancement is done by added the Block Filtering, HistogramEqualization and High-Pass Filtering. We have evaluated the performance of the enhancement imagemethod by tested it with 100 fingerprint images. Experimental results show the enhancement methodimproves the recognition more accuracy.

  11. Imaging fault zones using 3D seismic image processing techniques

    Science.gov (United States)

    Iacopini, David; Butler, Rob; Purves, Steve

    2013-04-01

    Significant advances in structural analysis of deep water structure, salt tectonic and extensional rift basin come from the descriptions of fault system geometries imaged in 3D seismic data. However, even where seismic data are excellent, in most cases the trajectory of thrust faults is highly conjectural and still significant uncertainty exists as to the patterns of deformation that develop between the main faults segments, and even of the fault architectures themselves. Moreover structural interpretations that conventionally define faults by breaks and apparent offsets of seismic reflectors are commonly conditioned by a narrow range of theoretical models of fault behavior. For example, almost all interpretations of thrust geometries on seismic data rely on theoretical "end-member" behaviors where concepts as strain localization or multilayer mechanics are simply avoided. Yet analogue outcrop studies confirm that such descriptions are commonly unsatisfactory and incomplete. In order to fill these gaps and improve the 3D visualization of deformation in the subsurface, seismic attribute methods are developed here in conjunction with conventional mapping of reflector amplitudes (Marfurt & Chopra, 2007)). These signal processing techniques recently developed and applied especially by the oil industry use variations in the amplitude and phase of the seismic wavelet. These seismic attributes improve the signal interpretation and are calculated and applied to the entire 3D seismic dataset. In this contribution we will show 3D seismic examples of fault structures from gravity-driven deep-water thrust structures and extensional basin systems to indicate how 3D seismic image processing methods can not only build better the geometrical interpretations of the faults but also begin to map both strain and damage through amplitude/phase properties of the seismic signal. This is done by quantifying and delineating the short-range anomalies on the intensity of reflector amplitudes

  12. In Vivo Imaging Techniques: A New Era for Histochemical Analysis

    Science.gov (United States)

    Busato, A.; Feruglio, P. Fumene; Parnigotto, P.P.; Marzola, P.; Sbarbati, A.

    2016-01-01

    In vivo imaging techniques can be integrated with classical histochemistry to create an actual histochemistry of water. In particular, Magnetic Resonance Imaging (MRI), an imaging technique primarily used as diagnostic tool in clinical/preclinical research, has excellent anatomical resolution, unlimited penetration depth and intrinsic soft tissue contrast. Thanks to the technological development, MRI is not only capable to provide morphological information but also and more interestingly functional, biophysical and molecular. In this paper we describe the main features of several advanced imaging techniques, such as MRI microscopy, Magnetic Resonance Spectroscopy, functional MRI, Diffusion Tensor Imaging and MRI with contrast agent as a useful support to classical histochemistry. PMID:28076937

  13. Interpolation Technique in Computed Tomography Image Visualisation(Short Communication

    Directory of Open Access Journals (Sweden)

    Asha Tripathi

    2002-07-01

    Full Text Available An interpolation technique has been developed for generation of enlarged dataset from a limited one-dimesional acquired dataset for improving the image quality in quick-scan tomography. The effectiveness of the technique has been tested using data acquired from the first-generation. The CT images generated using this technique have been compared with the CT images generated from the acquired dataset for the same number of projections. The image quality has been improved on account of (i enhancement of features, (ii reduction in reconstruction artifacts, and (iii magnification of the image without pixelisation.

  14. Brain imaging, forward inference, and theories of reasoning.

    Science.gov (United States)

    Heit, Evan

    2014-01-01

    This review focuses on the issue of how neuroimaging studies address theoretical accounts of reasoning, through the lens of the method of forward inference (Henson, 2005, 2006). After theories of deductive and inductive reasoning are briefly presented, the method of forward inference for distinguishing between psychological theories based on brain imaging evidence is critically reviewed. Brain imaging studies of reasoning, comparing deductive and inductive arguments, comparing meaningful versus non-meaningful material, investigating hemispheric localization, and comparing conditional and relational arguments, are assessed in light of the method of forward inference. Finally, conclusions are drawn with regard to future research opportunities.

  15. Brain Imaging, Forward Inference, and Theories of Reasoning

    Directory of Open Access Journals (Sweden)

    Evan eHeit

    2015-01-01

    Full Text Available This review focuses on the issue of how neuroimaging studies address theoretical accounts of reasoning, through the lens of the method of forward inference (Henson, 2005, 2006. After theories of deductive and inductive reasoning are briefly presented, the method of forward inference for distinguishing between psychological theories based on brain imaging evidence is critically reviewed. Brain imaging studies of reasoning, comparing deductive and inductive arguments, comparing meaningful versus non-meaningful material, investigating hemispheric localization, and comparing conditional and relational arguments, are assessed in light of the method of forward inference. Finally, conclusions are drawn with regard to future research opportunities.

  16. Study of Associated α Particle Imaging Technique for Explosives Detection

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The explosive detecting technique about neutron mainly include the thermal neutron analysis (TNA), the fast neutron analysis (FNA), the pulse fast and thermal neutron analysis (PFTNA) and the associated α particle imaging technique about fast neutron (API).

  17. Application of digital image processing techniques to astronomical imagery 1977

    Science.gov (United States)

    Lorre, J. J.; Lynn, D. J.

    1978-01-01

    Nine specific techniques of combination of techniques developed for applying digital image processing technology to existing astronomical imagery are described. Photoproducts are included to illustrate the results of each of these investigations.

  18. Preprocessing Techniques for Image Mining on Biopsy Images

    Directory of Open Access Journals (Sweden)

    Ms. Nikita Ramrakhiani

    2015-08-01

    Full Text Available Biomedical imaging has been undergoing rapid technological advancements over the last several decades and has seen the development of many new applications. A single Image can give all the details about an organ from the cellular level to the whole-organ level. Biomedical imaging is becoming increasingly important as an approach to synthesize, extract and translate useful information from large multidimensional databases accumulated in research frontiers such as functional genomics, proteomics, and functional imaging. To fulfill this approach Image Mining can be used. Image Mining will bridge this gap to extract and translate semantically meaningful information from biomedical images and apply it for testing and detecting any anomaly in the target organ. The essential component in image mining is identifying similar objects in different images and finding correlations in them. Integration of Image Mining and Biomedical field can result in many real world applications

  19. In-vivo human brain molecular imaging with a brain-dedicated PET/MRI system.

    Science.gov (United States)

    Cho, Zang Hee; Son, Young Don; Choi, Eun Jung; Kim, Hang Keun; Kim, Jeong Hee; Lee, Sang Yoon; Ogawa, Seiji; Kim, Young Bo

    2013-02-01

    Advances in the new-generation of ultra-high-resolution, brain-dedicated positron emission tomography-magnetic resonance imaging (PET/MRI) systems have begun to provide many interesting insights into the molecular dynamics of the brain. First, the finely delineated structural information from ultra-high-field MRI can help us to identify accurate landmark structures, thereby making it easier to locate PET activation sites that are anatomically well-correlated with metabolic or ligand-specific organs in the neural structures in the brain. This synergistic potential of PET/MRI imaging is discussed in terms of neuroscience and neurological research from both translational and basic research perspectives. Experimental results from the hippocampus, thalamus, and brainstem obtained with (18)F-fluorodeoxyglucose and (11)C-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)benzonitrile are used to demonstrate the potential of this new brain PET/MRI system.

  20. Functional magnetic resonance imaging and the brain: A brief review

    Science.gov (United States)

    Chow, Maggie S M; Wu, Sharon L; Webb, Sarah E; Gluskin, Katie; Yew, D T

    2017-01-01

    Functional magnetic resonance imaging (fMRI) is employed in many behavior analysis studies, with blood oxygen level dependent- (BOLD-) contrast imaging being the main method used to generate images. The use of BOLD-contrast imaging in fMRI has been refined over the years, for example, the inclusion of a spin echo pulse and increased magnetic strength were shown to produce better recorded images. Taking careful precautions to control variables during measurement, comparisons between different specimen groups can be illustrated by fMRI imaging using both quantitative and qualitative methods. Differences have been observed in comparisons of active and resting, developing and aging, and defective and damaged brains in various studies. However, cognitive studies using fMRI still face a number of challenges in interpretation that can only be overcome by imaging large numbers of samples. Furthermore, fMRI studies of brain cancer, lesions and other brain pathologies of both humans and animals are still to be explored. PMID:28144401

  1. Various diffusion magnetic resonance imaging techniques for pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Meng-Yue Tang; Xiao-Ming Zhang; Tian-Wu Chen; Xiao-Hua Huang

    2015-01-01

    Pancreatic cancer is one of the most common malignanttumors and remains a treatment-refractory cancer with a poor prognosis. Currently, the diagnosis of pancreatic neoplasm depends mainly on imaging and which methods are conducive to detecting small lesions. Compared to the other techniques, magnetic resonance imaging(MRI) has irreplaceable advantages and can provide valuable information unattainable with other noninvasive or minimally invasive imaging techniques. Advances in MR hardware and pulse sequence design have particularly improved the quality and robustness of MRI of the pancreas. Diffusion MR imaging serves as one of the common functional MRI techniques and is the only technique that can be used to reflect the diffusion movement of water molecules in vivo. It is generally known that diffusion properties depend on the characterization of intrinsic features of tissue microdynamics and microstructure. With the improvement of the diffusion models, diffusion MR imaging techniques are increasingly varied, from the simplest and most commonly used technique to the more complex. In this review, the various diffusion MRI techniques for pancreatic cancer are discussed, including conventional diffusion weighted imaging(DWI), multi-b DWI based on intra-voxel incoherent motion theory, diffusion tensor imaging and diffusion kurtosis imaging. The principles, main parameters, advantages and limitations of these techniques, as well as future directions for pancreatic diffusion imaging are also discussed.

  2. 3D Brain Tumors and Internal Brain Structures Segmentation in MR Images

    Directory of Open Access Journals (Sweden)

    P.NARENDRAN

    2012-02-01

    Full Text Available The main topic of this paper is to segment brain tumors, their components (edema and necrosis and internal structures of the brain in 3D MR images. For tumor segmentation we propose a framework that is a combination of region-based and boundary-based paradigms. In this framework, segment the brain using a method adapted for pathological cases and extract some global information on the tumor by symmetry based histogram analysis. We propose a new and original method that combines region and boundary information in two phases: initialization and refinement. The method relies on symmetry-based histogram analysis. The initial segmentation of the tumor is refined relying on boundary information of the image. We use a deformable model which is again constrained by the fused spatial relations of the structure. The method was also evaluated on 10 contrast enhanced T1-weighted images to segment the ventricles, caudate nucleus and thalamus.

  3. In Vivo Follow-up of Brain Tumor Growth via Bioluminescence Imaging and Fluorescence Tomography

    Directory of Open Access Journals (Sweden)

    Coralie Genevois

    2016-10-01

    Full Text Available Reporter gene-based strategies are widely used in experimental oncology. Bioluminescence imaging (BLI using the firefly luciferase (Fluc as a reporter gene and d-luciferin as a substrate is currently the most widely employed technique. The present paper compares the performances of BLI imaging with fluorescence imaging using the near infrared fluorescent protein (iRFP to monitor brain tumor growth in mice. Fluorescence imaging includes fluorescence reflectance imaging (FRI, fluorescence diffuse optical tomography (fDOT, and fluorescence molecular Imaging (FMT®. A U87 cell line was genetically modified for constitutive expression of both the encoding Fluc and iRFP reporter genes and assayed for cell, subcutaneous tumor and brain tumor imaging. On cultured cells, BLI was more sensitive than FRI; in vivo, tumors were first detected by BLI. Fluorescence of iRFP provided convenient tools such as flux cytometry, direct detection of the fluorescent protein on histological slices, and fluorescent tomography that allowed for 3D localization and absolute quantification of the fluorescent signal in brain tumors.

  4. Impact of metal artefacts due to EEG electrodes in brain PET/CT imaging

    Science.gov (United States)

    Lemmens, Catherine; Montandon, Marie-Louise; Nuyts, Johan; Ratib, Osman; Dupont, Patrick; Zaidi, Habib

    2008-08-01

    The goal of this study is to investigate the impact of electroencephalogram (EEG) electrodes on the visual quality and quantification of 18F-FDG PET images in neurological PET/CT examinations. For this purpose, the scans of 20 epilepsy patients with EEG monitoring were used. The CT data were reconstructed with filtered backprojection (FBP) and with a metal artefact reduction (MAR) algorithm. Both data sets were used for CT-based attenuation correction (AC) of the PET data. Also, a calculated AC (CALC) technique was considered. A volume of interest (VOI)-based analysis and a voxel-based quantitative analysis were performed to compare the different AC methods. Images were also evaluated visually by two observers. It was shown with simulations and phantom measurements that from the considered AC methods, the MAR-AC can be used as the reference in this setting. The visual assessment of PET images showed local hot spots outside the brain corresponding to the locations of the electrodes when using FBP-AC. In the brain, no abnormalities were observed. The quantitative analysis showed a very good correlation between PET-FBP-AC and PET-MAR-AC, with a statistically significant positive bias in the PET-FBP-AC images of about 5-7% in most brain voxels. There was also good correlation between PET-CALC-AC and PET-MAR-AC, but in the PET-CALC-AC images, regions with both a significant positive and negative bias were observed. EEG electrodes give rise to local hot spots outside the brain and a positive quantification bias in the brain. However, when diagnosis is made by mere visual assessment, the presence of EEG electrodes does not seem to alter the diagnosis. When quantification is performed, the bias becomes an issue especially when comparing brain images with and without EEG monitoring.

  5. COMPARATIVE ANALYSIS OF SATELLITE IMAGE PRE-PROCESSING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    T. Sree Sharmila

    2013-01-01

    Full Text Available Satellite images are corrupted by noise in its acquisition and transmission. The removal of noise from the image by attenuating the high frequency image components, removes some important details as well. In order to retain the useful information and improve the visual appearance, an effective denoising and resolution enhancement techniques are required. In this research, Hybrid Directional Lifting (HDL technique is proposed to retain the important details of the image and improve the visual appearance. The Discrete Wavelet Transform (DWT based interpolation technique is developed for enhancing the resolution of the denoised image. The performance of the proposed techniques are tested by Land Remote-Sensing Satellite (LANDSAT images, using the quantitative performance measure, Peak Signal to Noise Ratio (PSNR and computation time to show the significance of the proposed techniques. The PSNR of the HDL technique increases 1.02 dB compared to the standard denoising technique and the DWT based interpolation technique increases 3.94 dB. From the experimental results it reveals that newly developed image denoising and resolution enhancement techniques improve the image visual quality with rich textures.

  6. Comparative Analysis of Various Image Fusion Techniques For Biomedical Images: A Review

    Directory of Open Access Journals (Sweden)

    Nayera Nahvi,

    2014-05-01

    Full Text Available Image Fusion is a process of combining the relevant information from a set of images, into a single image, wherein the resultant fused image will be more informative and complete than any of the input images. This paper discusses implementation of DWT technique on different images to make a fused image having more information content. As DWT is the latest technique for image fusion as compared to simple image fusion and pyramid based image fusion, so we are going to implement DWT as the image fusion technique in our paper. Other methods such as Principal Component Analysis (PCA based fusion, Intensity hue Saturation (IHS Transform based fusion and high pass filtering methods are also discussed. A new algorithm is proposed using Discrete Wavelet transform and different fusion techniques including pixel averaging, min-max and max-min methods for medical image fusion. KEYWORDS:

  7. A unifying framework for partial volume segmentation of brain MR images.

    Science.gov (United States)

    Van Leemput, Koen; Maes, Frederik; Vandermeulen, Dirk; Suetens, Paul

    2003-01-01

    Accurate brain tissue segmentation by intensity-based voxel classification of magnetic resonance (MR) images is complicated by partial volume (PV) voxels that contain a mixture of two or more tissue types. In this paper, we present a statistical framework for PV segmentation that encompasses and extends existing techniques. We start from a commonly used parametric statistical image model in which each voxel belongs to one single tissue type, and introduce an additional downsampling step that causes partial voluming along the borders between tissues. An expectation-maximization approach is used to simultaneously estimate the parameters of the resulting model and perform a PV classification. We present results on well-chosen simulated images and on real MR images of the brain, and demonstrate that the use of appropriate spatial prior knowledge not only improves the classifications, but is often indispensable for robust parameter estimation as well. We conclude that general robust PV segmentation of MR brain images requires statistical models that describe the spatial distribution of brain tissues more accurately than currently available models.

  8. In Vivo Functional Brain Imaging Approach Based on Bioluminescent Calcium Indicator GFP-aequorin.

    Science.gov (United States)

    Lark, Arianna R; Kitamoto, Toshihiro; Martin, Jean-René

    2016-01-08

    Functional in vivo imaging has become a powerful approach to study the function and physiology of brain cells and structures of interest. Recently a new method of Ca(2+)-imaging using the bioluminescent reporter GFP-aequorin (GA) has been developed. This new technique relies on the fusion of the GFP and aequorin genes, producing a molecule capable of binding calcium and - with the addition of its cofactor coelenterazine - emitting bright light that can be monitored through a photon collector. Transgenic lines carrying the GFP-aequorin gene have been generated for both mice and Drosophila. In Drosophila, the GFP-aequorin gene has been placed under the control of the GAL4/UAS binary expression system allowing for targeted expression and imaging within the brain. This method has subsequently been shown to be capable of detecting both inward Ca(2+)-transients and Ca(2+)-released from inner stores. Most importantly it allows for a greater duration in continuous recording, imaging at greater depths within the brain, and recording at high temporal resolutions (up to 8.3 msec). Here we present the basic method for using bioluminescent imaging to record and analyze Ca(2+)-activity within the mushroom bodies, a structure central to learning and memory in the fly brain.

  9. A Survey Paper on Fuzzy Image Segmentation Techniques

    Directory of Open Access Journals (Sweden)

    Ms. R. Saranya Pon Selvi

    2014-03-01

    Full Text Available The image segmentation plays an important role in the day-to-day life. The new technologies are emerging in the field of Image processing, especially in the domain of segmentation.Segmentation is considered as one of the main steps in image processing. It divides a digital image into multiple regions in order to analyze them. It is also used to distinguish different objects in the image. Several image segmentation techniques have been developed by the researchers in order to make images smooth and easy to evaluate. This paper presents a brief outline on some of the most commonly used segmentation techniques like thresholding, Region based, Model based, Edge detection..etc. mentioning its advantages as well as the drawbacks. Some of the techniques are suitable for noisy images.

  10. CT versus MR in neonatal brain imaging at term

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Richard L.; Robson, Caroline D.; Zurakowski, David; Antiles, Sharon; Strauss, Keith; Mulkern, Robert V. [Department of Radiology, Children' s Hospital Medical Center, Harvard Medical School, 300 Longwood Avenue, MA 02115, Boston (United States)

    2003-07-01

    Recent reports have highlighted the lifetime risk of malignancy from using ionizing radiation in pediatric imaging. Computed tomography (CT), which uses ionizing radiation, is employed extensively for neonatal brain imaging of term infants. Magnetic resonance (MR) provides an alternative that does not use ionizing radiation. The purpose of this study was to assess the cross-modality agreement and interobserver agreement of CT and MR brain imaging of the term or near-term neonate. Brain CT and MR images of 48 neonates were retrospectively reviewed by two pediatric neuroradiologists. CT and MR examinations had been obtained within 72 h of one another in all patients. CT was obtained with 5 mm collimation (KV=120, mAs=340). MR consisted of T1-weighted imaging (TR/TE=300/14; 4-mm slice thickness/1-mm gap), T2-weighted imaging (TR/TE/etl= 3000/126/16; 4-mm slice thickness/1-mm gap), and line scan diffusion imaging (LSDI) (TR/TE/b factor=1258/63/750; nominal 4-mm slice thickness/3-mm gap). The brain was categorized as normal or abnormal on both CT and MR. Ischemic injury was the most common brain abnormality demonstrated. McNemar's test indicated no significant difference between CT and MR test results for reader 1 (P=0.22) or reader 2 (P=0.45). The readers agreed on the presence or absence of abnormality on CT in 40 patients (83.3%) and on MR in 45 patients (93.8%). For CT, the kappa coefficient indicated excellent interobserver agreement ({kappa}=0.68), although the lower limit of the 95% confidence interval extends to {kappa}=0.55, which indicates only good-to-moderate agreement. For MR, the kappa coefficient indicated almost perfect interobserver agreement ({kappa}=0.88) with the 95% confidence interval extending to a lower limit of {kappa}=0.76, which represents excellent agreement. Because MR demonstrates findings similar to CT and has greater interobserver agreement, it appears that MR is a superior test to CT in determining brain abnormalities in the term

  11. A Novel Technique to Image Annotation using Neural Network

    Directory of Open Access Journals (Sweden)

    Pankaj Savita

    2013-03-01

    Full Text Available : Automatic annotation of digital pictures is a key technology for managing and retrieving images from large image collection. Traditional image semantics extraction and representation schemes were commonly divided into two categories, namely visual features and text annotations. However, visual feature scheme are difficult to extract and are often semantically inconsistent. On the other hand, the image semantics can be well represented by text annotations. It is also easier to retrieve images according to their annotations. Traditional image annotation techniques are time-consuming and requiring lots of human effort. In this paper we propose Neural Network based a novel approach to the problem of image annotation. These approaches are applied to the Image data set. Our main work is focused on the image annotation by using multilayer perceptron, which exhibits a clear-cut idea on application of multilayer perceptron with special features. MLP Algorithm helps us to discover the concealed relations between image data and annotation data, and annotate image according to such relations. By using this algorithm we can save more memory space, and in case of web applications, transferring of images and download should be fast. This paper reviews 50 image annotation systems using supervised machine learning Techniques to annotate images for image retrieval. Results obtained show that the multi layer perceptron Neural Network classifier outperforms conventional DST Technique.

  12. Brain imaging of pain: state of the art

    Directory of Open Access Journals (Sweden)

    Morton DL

    2016-09-01

    Full Text Available Debbie L Morton, Javin S Sandhu, Anthony KP Jones Human Pain Research Group, Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK Abstract: Pain is a complex sensory and emotional experience that is heavily influenced by prior experience and expectations of pain. Before the development of noninvasive human brain imaging, our grasp of the brain’s role in pain processing was limited to data from postmortem studies, direct recording of brain activity, patient experience and stimulation during neurosurgical procedures, and animal models of pain. Advances made in neuroimaging have bridged the gap between brain activity and the subjective experience of pain and allowed us to better understand the changes in the brain that are associated with both acute and chronic pain. Additionally, cognitive influences on pain such as attention, anticipation, and fear can now be directly observed, allowing for the interpretation of the neural basis of the psychological modulation of pain. The use of functional brain imaging to measure changes in endogenous neurochemistry has increased our understanding of how states of increased resilience and vulnerability to pain are maintained. Keywords: fMRI, PET, EEG, arthritis, fibromyalgia

  13. Diffusion-weighted imaging predicts cognition in pediatric brain injury.

    Science.gov (United States)

    Babikian, Talin; Tong, Karen A; Galloway, Nicholas R; Freier-Randall, Mary-Catherin; Obenaus, André; Ashwal, Stephen

    2009-12-01

    Apparent diffusion coefficient maps from diffusion-weighted imaging predict gross neurologic outcome in adults with traumatic brain injury. Few studies in children have been reported, and none have used apparent diffusion coefficient maps to predict long-term (>1 year) neurocognitive outcomes. In this study, pooled regional and total brain diffusion coefficients were used to predict long-term outcomes in 17 pediatric brain injury patients. Apparent diffusion coefficient values were grouped into peripheral and deep gray and white matter, posterior fossa, and total brain. Regions of interest excluded areas that appeared abnormal on T(2)-weighted images. Apparent diffusion coefficient values from peripheral regions were inversely correlated with cognitive functioning. No significant correlations were apparent between the cognitive scores and apparent diffusion coefficient values for deep tissue or the posterior fossa. Regression analyses suggested that combined peripheral gray and white matter apparent diffusion coefficients explained 42% of the variance in the combined neurocognitive index. Peripheral gray diffusion coefficients alone explained an additional 20% of variance after accounting for clinical variables. These results suggest that obtaining apparent diffusion coefficient values, specifically from peripheral brain regions, may predict long-term outcome after pediatric brain injury. Discrepancies in the literature on this topic, as well as possible explanations, including sampling and clinical considerations, are discussed.

  14. Automated image analysis techniques for cardiovascular magnetic resonance imaging

    NARCIS (Netherlands)

    Geest, Robertus Jacobus van der

    2011-01-01

    The introductory chapter provides an overview of various aspects related to quantitative analysis of cardiovascular MR (CMR) imaging studies. Subsequently, the thesis describes several automated methods for quantitative assessment of left ventricular function from CMR imaging studies. Several novel

  15. Terahertz Imaging Systems With Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Krozer, Viktor; Löffler, Torsten; Dall, Jørgen

    2010-01-01

    This paper presents the research and development of two terahertz imaging systems based on photonic and electronic principles, respectively. As part of this study, a survey of ongoing research in the field of terahertz imaging is provided focusing on security applications. Existing terahertz...

  16. Image Fusion Techniques for Multispectral Palm Image Enhancement

    OpenAIRE

    Rajashree Bhokare; Deepali Sale; Dr. (Mrs. ) M. A. Joshi; Dr. M. S. Gaikwad

    2013-01-01

    We proposed the multispectral image enhancement through image fusion by combining the data from the multiple spectrum to address the problem of accuracy and make the system robust against spoofing and to improve the accuracy of recognition, using more discriminating of palm images. Palm line features are clearer in the blue and green bands while red band can reveal some palm vein structure. The NIR band can show the palm vein structure as well as partial line information. Image fusion improve...

  17. Color Image Classification and Retrieval using Image mining Techniques

    OpenAIRE

    Dr.V.Mohan,; Kannan, A.

    2010-01-01

    Mining Image data is one of the essential features in the present scenario. Image data is the major one which plays vital role in every aspect of the systems like business for marketing, hospital for surgery, engineering for construction, Web for publication and so on. The other area in the Image mining system is the Content-BasedImage Retrieval (CBIR). CBIR systems perform retrieval based on the similarity defined in terms of extracted features with more objectiveness. But, the features of t...

  18. MR Brain Real Images Segmentation Based Modalities Fusion and Estimation Et Maximization Approach

    Directory of Open Access Journals (Sweden)

    ASSAS Ouarda

    2016-01-01

    Full Text Available With the development of acquisition image techniques, more data coming from different sources of image become available. Multi-modality image fusion seeks to combine information from different images to obtain more inferences than can be derived from a single modality. The main aim of this work is to improve cerebral IRM real images segmentation by fusion of modalities (T1, T2 and DP using estimation et maximizatio Approach (EM. The evaluation of adopted approaches was compared using four criteria which are: the standard deviation (STD, entropy of information (IE, the coefficient of correlation (CC and the space frequency (SF. The experimental results on MRI brain real images prove that the adopted scenarios of fusion approaches are more accurate and robust than the standard EM approach

  19. Reliability and Accuracy of Brain Volume Measurement on MR Imaging

    DEFF Research Database (Denmark)

    Yamagchii, Kechiro; Lassen, Anders; Ring, Poul

    1998-01-01

    Yamaguchi, K., Lassen, A. And Ring, P. Reliability and Accuracy of Brain Volume Measurement on MR Imaging. Abstract at ESMRMB98 European Society for Magnetic Resonance in Medicine and Biology, Geneva, Sept 17-20, 1998 Danish Research Center for Magnetic Resonance, Hvidovre University Hospital...

  20. Apparatus and method for motion tracking in brain imaging

    DEFF Research Database (Denmark)

    2013-01-01

    Disclosed is apparatus and method for motion tracking of a subject in medical brain imaging. The method comprises providing a light projector and a first camera; projecting a first pattern sequence (S1) onto a surface region of the subject with the light projector, wherein the subject is positioned...

  1. Quantitative analysis of brain magnetic resonance imaging for hepatic encephalopathy

    Science.gov (United States)

    Syh, Hon-Wei; Chu, Wei-Kom; Ong, Chin-Sing

    1992-06-01

    High intensity lesions around ventricles have recently been observed in T1-weighted brain magnetic resonance images for patients suffering hepatic encephalopathy. The exact etiology that causes magnetic resonance imaging (MRI) gray scale changes has not been totally understood. The objective of our study was to investigate, through quantitative means, (1) the amount of changes to brain white matter due to the disease process, and (2) the extent and distribution of these high intensity lesions, since it is believed that the abnormality may not be entirely limited to the white matter only. Eleven patients with proven haptic encephalopathy and three normal persons without any evidence of liver abnormality constituted our current data base. Trans-axial, sagittal, and coronal brain MRI were obtained on a 1.5 Tesla scanner. All processing was carried out on a microcomputer-based image analysis system in an off-line manner. Histograms were decomposed into regular brain tissues and lesions. Gray scale ranges coded as lesion were then brought back to original images to identify distribution of abnormality. Our results indicated the disease process involved pallidus, mesencephalon, and subthalamic regions.

  2. Power of the metaphor: forty signs on brain imaging.

    Science.gov (United States)

    Gocmen, Rahsan; Guler, Ezgi; Kose, Ilgaz Cagatay; Oguz, Kader K

    2015-01-01

    We retrospectively reviewed neuroradiology database at our tertiary-care hospital to search for patients with metaphoric or descriptive signs on brain computed tomography or magnetic resonance imaging. Only patients who had clinical or pathological definitive diagnosis were included in this review.

  3. Brain imaging in patients with freezing of gait

    NARCIS (Netherlands)

    Bartels, Anna L.; Leenders, Klaus L.

    2008-01-01

    Freezing of gait (FOG) is a disabling gait disturbance with unknown cerebral pathophysiology. In this review, we discuss the functional brain imaging Studies that address gait physiology and pathophysiology of FOG. Radiotracer metabolic studies show basal ganglia-cortical circuitry involvement in di

  4. Imaging the premature brain: ultrasound or MRI?

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Linda S. de; Benders, Manon J.N.L.; Groenendaal, Floris [UMC Utrecht, Department of Neonatology, Wilhelmina Children' s Hospital, PO Box 85090, Utrecht (Netherlands)

    2013-09-15

    Neuroimaging of preterm infants has become part of routine clinical care, but the question is often raised on how often cranial ultrasound should be done and whether every high risk preterm infant should at least have one MRI during the neonatal period. An increasing number of centres perform an MRI either at discharge or around term equivalent age, and a few centres have access to a magnet in or adjacent to the neonatal intensive care unit and are doing sequential MRIs. In this review, we try to discuss when best to perform these two neuroimaging techniques and the additional information each technique may provide. (orig.)

  5. Evaluation of an automatic brain segmentation method developed for neonates on adult MR brain images

    Science.gov (United States)

    Moeskops, Pim; Viergever, Max A.; Benders, Manon J. N. L.; Išgum, Ivana

    2015-03-01

    Automatic brain tissue segmentation is of clinical relevance in images acquired at all ages. The literature presents a clear distinction between methods developed for MR images of infants, and methods developed for images of adults. The aim of this work is to evaluate a method developed for neonatal images in the segmentation of adult images. The evaluated method employs supervised voxel classification in subsequent stages, exploiting spatial and intensity information. Evaluation was performed using images available within the MRBrainS13 challenge. The obtained average Dice coefficients were 85.77% for grey matter, 88.66% for white matter, 81.08% for cerebrospinal fluid, 95.65% for cerebrum, and 96.92% for intracranial cavity, currently resulting in the best overall ranking. The possibility of applying the same method to neonatal as well as adult images can be of great value in cross-sectional studies that include a wide age range.

  6. Fingerprint image enhancement using CNN filtering techniques.

    Science.gov (United States)

    Saatci, Ertugrul; Tavsanoglu, Vedat

    2003-12-01

    Due to noisy acquisition devices and variation in impression conditions, the ridgelines of fingerprint images are mostly corrupted by various kinds of noise causing cracks, scratches and bridges in the ridges as well as blurs. These cause matching errors in fingerprint recognition. For an effective recognition the correct ridge pattern is essential which requires the enhancement of fingerprint images. Segment by segment analysis of the fingerprint pattern yields various ridge direction and frequencies. By selecting a directional filter with correct filter parameters to match ridge features at each point, we can effectively enhance fingerprint ridges. This paper proposes a fingerprint image enhancement based on CNN Gabor-Type filters.

  7. A New Image Steganography Based On First Component Alteration Technique

    Directory of Open Access Journals (Sweden)

    Amanpreet Kaur

    2009-12-01

    Full Text Available In this paper, A new image steganography scheme is proposed which is a kind of spatial domain technique. In order to hide secret data in cover-image, the first component alteration technique is used. Techniques used so far focuses only on the two or four bits of a pixel in a image (at the most five bits at the edge of an image which results in less peak to signal noise ratio and high root mean square error. In this technique, 8 bits of blue components of pixels are replaced with secret data bits. Proposed scheme can embed more data than previous schemes and shows better image quality. To prove this scheme, several experiments are performed, and are compared the experimental results with the related previous works.Keywords—image; mean square error; Peak signal to noise ratio; steganography;

  8. Magnetic resonance imaging based noninvasive measurements of brain hemodynamics in neonates : A review

    NARCIS (Netherlands)

    De Vis, Jill B; Alderliesten, Thomas; Hendrikse, Jeroen; Petersen, Esben T; Benders, Manon Jnl

    2016-01-01

    Perinatal disturbances of brain hemodynamics can have a detrimental effect on the brain's parenchyma with consequently adverse neurodevelopmental outcome. Noninvasive, reliable tools to evaluate the neonate's brain hemodynamics are scarce. Advances in magnetic resonance imaging have provided new met

  9. NI-78LABEL-FREE MULTIPHOTON MICROSCOPY: A NOVEL TOOL FOR THE IMAGING OF BRAIN TUMORS

    Science.gov (United States)

    Uckermann, Ortrud; Galli, Roberta; Geiger, Kathrin; Koch, Edmund; Schackert, Gabriele; Steiner, Gerald; Kirsch, Matthias

    2014-01-01

    Changes in tissue composition caused by brain tumor growth involve a series of complex biochemical alterations which can be imaged on unstained native tissue using multiphoton microscopy: We used coherent anti-Stokes Raman scattering (CARS) imaging that resonantly excites the symmetric stretching vibration of CH2 groups at 2850 cm−1 and visualizes lipid content in combination with imaging of endogenous two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) to discern different types of tumors from normal tissue in unstained, native brain samples. Experimental brain tumors were induced in nude mice NMRI nu/nu (n = 25) by stereotactic implantation of glioblastoma (U87), melanoma (A375) and breast cancer (MCF-7) cell lines. Label-free multiphoton microscopy of brain cryosections provided exhaustive information of the tumor morphochemistry. The tumor border was defined with cellular resolution by a strong reduction of CARS signal intensity to 61% (glioblastoma), 71% (melanoma) and 68% (breast cancer). This reduction of lipid content within the tumor was confirmed by Raman spectroscopy. Micrometastases infiltrating normal tissue (size 50 - 200 µm) were identified in glioblastoma and melanoma. Additionally, multiphoton microscopy proved a reduction of CARS signal intensity in all human glioblastoma samples analyzed (to 72%, n = 6). Additionally, relevant SHG and TPEF signals were detected in human primary and secondary brain tumor samples and enabled to image variations in tumor associated vasculature, fibrosis, necrosis and nuclear size and density. All primary or secondary brain tumors investigated were characterized by a lower intensity of the CARS signal, therefore offering a simple tool for objective tumor detection and delineation. The combination of techniques allows retrieving a quantity of information on native unstained tissue which is comparable to H&E staining. Therefore, label-free multiphoton microscopy has the potential to become a

  10. Brain imaging. Direct diagnosis in radiology

    Energy Technology Data Exchange (ETDEWEB)

    Sartor, K.; Haehnel, S. [Heidelberg Univ. Medical Center (Germany). Dept. of Neurology; Kress, B. [Hospital Nordwest, Frankfurt am Main (Germany). Dept. of Radiology and Neuroradiology

    2008-07-01

    The book covers CT findings, MRI findings, the modality of diagnostic technique selection, and clinical aspects (typical presentation, treatment options, course and prognosis) within the following chapters: trauma, inflammation, aneurysms, vascular malformations, stroke, tumors, cysts, meninges, ventricles and cisterns, leukocephalopathies, congenital malformations, artifacts in MRI and postoperative changes.

  11. Partial-Transfer Absorption Imaging: A versatile technique for optimal imaging of ultracold gases

    CERN Document Server

    Ramanathan, Anand; Wright, Kevin C; Anderson, Russell P; Phillips, William D; Helmerson, Kristian; Campbell, Gretchen K

    2012-01-01

    Partial-transfer absorption imaging is a tool that enables optimal imaging of atomic clouds for a wide range of optical depths. In contrast to standard absorption imaging, the technique can be minimally-destructive and can be used to obtain multiple successive images of the same sample. The technique involves transferring a small fraction of the sample from an initial internal atomic state to an auxiliary state and subsequently imaging that fraction absorptively on a cycling transition. The atoms remaining in the initial state are essentially unaffected. We demonstrate the technique, discuss its applicability, and compare its performance as a minimally-destructive technique to that of phase-contrast imaging.

  12. Millimeter-wave Imaging Systems with Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Löffler, Torsten; Krozer, Viktor; Zhurbenko, Vitaliy;

    2010-01-01

    The paper describes development of a millimetre-wave imaging system using multi-element aperture filling techniques [1]. Such imaging systems are increasingly demonstrated for security applications and in particular standoff imaging of persons and bonding flaw and defect detection [2]. The major...

  13. Techniques in Iterative Proton CT Image Reconstruction

    CERN Document Server

    Penfold, Scott

    2015-01-01

    This is a review paper on some of the physics, modeling, and iterative algorithms in proton computed tomography (pCT) image reconstruction. The primary challenge in pCT image reconstruction lies in the degraded spatial resolution resulting from multiple Coulomb scattering within the imaged object. Analytical models such as the most likely path (MLP) have been proposed to predict the scattered trajectory from measurements of individual proton location and direction before and after the object. Iterative algorithms provide a flexible tool with which to incorporate these models into image reconstruction. The modeling leads to a large and sparse linear system of equations that can efficiently be solved by projection methods-based iterative algorithms. Such algorithms perform projections of the iterates onto the hyperlanes that are represented by the linear equations of the system. They perform these projections in possibly various algorithmic structures, such as block-iterative projections (BIP), string-averaging...

  14. Technique for identifying, tracing, or tracking objects in image data

    Science.gov (United States)

    Anderson, Robert J.; Rothganger, Fredrick

    2012-08-28

    A technique for computer vision uses a polygon contour to trace an object. The technique includes rendering a polygon contour superimposed over a first frame of image data. The polygon contour is iteratively refined to more accurately trace the object within the first frame after each iteration. The refinement includes computing image energies along lengths of contour lines of the polygon contour and adjusting positions of the contour lines based at least in part on the image energies.

  15. Brain imaging of mild cognitive impairment and Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Changhao Yin; Siou Li; Weina Zhao; Jiachun Feng

    2013-01-01

    The rapidly increasing prevalence of cognitive impairment and Alzheimer's disease has the potential to create a major worldwide healthcare crisis. Structural MRI studies in patients with Alzheimer's disease and mild cognitive impairment are currently attracting considerable interest. It is extremely important to study early structural and metabolic changes, such as those in the hippocampus, entorhinal cortex, and gray matter structures in the medial temporal lobe, to allow the early detection of mild cognitive impairment and Alzheimer's disease. The microstructural integrity of white matter can be studied with diffusion tensor imaging. Increased mean diffusivity and decreased fractional anisotropy are found in subjects with white matter damage. Functional imaging studies with positron emission tomography tracer compounds enable detection of amyloid plaques in the living brain in patients with Alzheimer's disease. In this review, we will focus on key findings from brain imaging studies in mild cognitive impairment and Alzheimer's disease, including structural brain changes studied with MRI and white matter changes seen with diffusion tensor imaging, and other specific imaging methodologies will also be discussed.

  16. Regional manifold learning for deformable registration of brain MR images.

    Science.gov (United States)

    Ye, Dong Hye; Hamm, Jihun; Kwon, Dongjin; Davatzikos, Christos; Pohl, Kilian M

    2012-01-01

    We propose a method for deformable registration based on learning the manifolds of individual brain regions. Recent publications on registration of medical images advocate the use of manifold learning in order to confine the search space to anatomically plausible deformations. Existing methods construct manifolds based on a single metric over the entire image domain thus frequently miss regional brain variations. We address this issue by first learning manifolds for specific regions and then computing region-specific deformations from these manifolds. We then determine deformations for the entire image domain by learning the global manifold in such a way that it preserves the region-specific deformations. We evaluate the accuracy of our method by applying it to the LPBA40 dataset and measuring the overlap of the deformed segmentations. The result shows significant improvement in registration accuracy on cortex regions compared to other state of the art methods.

  17. An Efficient Image Compression Technique Based on Arithmetic Coding

    Directory of Open Access Journals (Sweden)

    Prof. Rajendra Kumar Patel

    2012-12-01

    Full Text Available The rapid growth of digital imaging applications, including desktop publishing, multimedia, teleconferencing, and high visual definition has increased the need for effective and standardized image compression techniques. Digital Images play a very important role for describing the detailed information. The key obstacle for many applications is the vast amount of data required to represent a digital image directly. The various processes of digitizing the images to obtain it in the best quality for the more clear and accurate information leads to the requirement of more storage space and better storage and accessing mechanism in the form of hardware or software. In this paper we concentrate mainly on the above flaw so that we reduce the space with best quality image compression. State-ofthe-art techniques can compress typical images from 1/10 to 1/50 their uncompressed size without visibly affecting image quality. From our study I observe that there is a need of good image compression technique which provides better reduction technique in terms of storage and quality. Arithmetic coding is the best way to reducing encoding data. So in this paper we propose arithmetic coding with walsh transformation based image compression technique which is an efficient way of reduction

  18. An Effective Method of Image Retrieval using Image Mining Techniques

    OpenAIRE

    Kannan, A.; Dr.V.Mohan; Dr.N.Anbazhagan

    2010-01-01

    The present research scholars are having keen interest in doing their research activities in the area of Data mining all over the world. Especially, [13]Mining Image data is the one of the essential features in this present scenario since image data plays vital role in every aspect of the system such as business for marketing, hospital for surgery, engineering for construction, Web for publication and so on. The other area in the Image mining system is the Content-Based Image Retrieval (CB...

  19. Imaging separation of neuronal from vascular effects of cocaine on rat cortical brain in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Z.; Du, C.; Yuan, Z.; Luo, Z.; Volkow, N.D.; Pan, Y.; Du, C.

    2010-09-08

    MRI techniques to study brain function assume coupling between neuronal activity, metabolism and flow. However, recent evidence of physiological uncoupling between neuronal and cerebrovascular events highlights the need for methods to simultaneously measure these three properties. We report a multimodality optical approach that integrates dual-wavelength laser speckle imaging (measures changes in blood flow, blood volume and hemoglobin oxygenation), digital-frequency-ramping optical coherence tomography (images quantitative 3D vascular network) and Rhod2 fluorescence (images intracellular calcium for measure of neuronal activity) at high spatiotemporal resolutions (30 {micro}m, 10 Hz) and over a large field of view (3 x 5 mm{sup 2}). We apply it to assess cocaine's effects in rat cortical brain and show an immediate decrease 3.5 {+-} 0.9 min, phase (1) in the oxygen content of hemoglobin and the cerebral blood flow followed by an overshoot 7.1 {+-} 0.2 min, phase (2) lasting over 20 min whereas Ca{sup 2+} increased immediately (peaked at t = 4.1 {+-} 0.4 min) and remained elevated. This enabled us to identify a delay (2.9 {+-} 0.5 min) between peak neuronal and vascular responses in phase 2. The ability of this multimodality optical approach for simultaneous imaging at high spatiotemporal resolutions permits us to distinguish the vascular versus cellular changes of the brain, thus complimenting other neuroimaging modalities for brain functional studies (e. g., PET, fMRI).

  20. THE VALORIZATION OF THE BRAIN CIRCULATION PHENOMENON FOR PROMOTING ROMANIA’S IMAGE AND IDENTITY

    Directory of Open Access Journals (Sweden)

    Denisa Adriana COTÎRLEA

    2015-08-01

    Full Text Available This article was written in order to provide an overview regarding the opportunities of promoting Romania’s image and identity through the brain circulation phenomenon; it deals with skilled migration from a developing country perspective, while emphasizing the influences that the Brain Circulation phenomenon can have in promoting Romania’s image and identity abroad, within the nation branding process. Perceived as being one of the most important and sustainable assets that assures continuous development, the subject of nation branding became a widely approached one; thus, due to its complexity, the promotion of a nation within the nation branding process met various methods and techniques, while one of the most important elements has been avoided: the subject of the brain drain circulation, whose perspective regarding its image of the country of origin can suffer modifications while traveling abroad and who can influence other’s opinion by becoming authentic representatives of their nation, country ambassadors across the borders. Considering this, the paper aims at facilitating readers’ understanding regarding nation branding process, country image promotion and brain circulation phenomenon by identifying and explaining their connections and by highlighting their role in assuring long term prosperity.

  1. Amide Proton Transfer (APT) MR imaging and Magnetization Transfer (MT) MR imaging of pediatric brain development

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hong; Kang, Huiying; Peng, Yun [Beijing Children' s Hospital, Capital Medical University, Imaging Center, Department of Radiology, Beijing (China); Zhao, Xuna [Philips Healthcare, Beijing (China); Jiang, Shanshan; Zhang, Yi; Zhou, Jinyuan [Johns Hopkins University, Division of MR Research, Department of Radiology, Baltimore, MD (United States)

    2016-10-15

    To quantify the brain maturation process during childhood using combined amide proton transfer (APT) and conventional magnetization transfer (MT) imaging at 3 Tesla. Eighty-two neurodevelopmentally normal children (44 males and 38 females; age range, 2-190 months) were imaged using an APT/MT imaging protocol with multiple saturation frequency offsets. The APT-weighted (APTW) and MT ratio (MTR) signals were quantitatively analyzed in multiple brain areas. Age-related changes in MTR and APTW were evaluated with a non-linear regression analysis. The APTW signals followed a decreasing exponential curve with age in all brain regions measured (R{sup 2} = 0.7-0.8 for the corpus callosum, frontal and occipital white matter, and centrum semiovale). The most significant changes appeared within the first year. At maturation, larger decreases in APTW and lower APTW values were found in the white matter. On the contrary, the MTR signals followed an increasing exponential curve with age in the same brain regions measured, with the most significant changes appearing within the initial 2 years. There was an inverse correlation between the MTR and APTW signal intensities during brain maturation. Together with MT imaging, protein-based APT imaging can provide additional information in assessing brain myelination in the paediatric population. (orig.)

  2. Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain

    Science.gov (United States)

    Bovetti, Serena; Moretti, Claudio; Zucca, Stefano; Dal Maschio, Marco; Bonifazi, Paolo; Fellin, Tommaso

    2017-01-01

    Genetically encoded calcium indicators and optogenetic actuators can report and manipulate the activity of specific neuronal populations. However, applying imaging and optogenetics simultaneously has been difficult to establish in the mammalian brain, even though combining the techniques would provide a powerful approach to reveal the functional organization of neural circuits. Here, we developed a technique based on patterned two-photon illumination to allow fast scanless imaging of GCaMP6 signals in the intact mouse brain at the same time as single-photon optogenetic inhibition with Archaerhodopsin. Using combined imaging and electrophysiological recording, we demonstrate that single and short bursts of action potentials in pyramidal neurons can be detected in the scanless modality at acquisition frequencies up to 1 kHz. Moreover, we demonstrate that our system strongly reduces the artifacts in the fluorescence detection that are induced by single-photon optogenetic illumination. Finally, we validated our technique investigating the role of parvalbumin-positive (PV) interneurons in the control of spontaneous cortical dynamics. Monitoring the activity of cellular populations on a precise spatiotemporal scale while manipulating neuronal activity with optogenetics provides a powerful tool to causally elucidate the cellular mechanisms underlying circuit function in the intact mammalian brain.

  3. Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain

    Science.gov (United States)

    Bovetti, Serena; Moretti, Claudio; Zucca, Stefano; Dal Maschio, Marco; Bonifazi, Paolo; Fellin, Tommaso

    2017-01-01

    Genetically encoded calcium indicators and optogenetic actuators can report and manipulate the activity of specific neuronal populations. However, applying imaging and optogenetics simultaneously has been difficult to establish in the mammalian brain, even though combining the techniques would provide a powerful approach to reveal the functional organization of neural circuits. Here, we developed a technique based on patterned two-photon illumination to allow fast scanless imaging of GCaMP6 signals in the intact mouse brain at the same time as single-photon optogenetic inhibition with Archaerhodopsin. Using combined imaging and electrophysiological recording, we demonstrate that single and short bursts of action potentials in pyramidal neurons can be detected in the scanless modality at acquisition frequencies up to 1 kHz. Moreover, we demonstrate that our system strongly reduces the artifacts in the fluorescence detection that are induced by single-photon optogenetic illumination. Finally, we validated our technique investigating the role of parvalbumin-positive (PV) interneurons in the control of spontaneous cortical dynamics. Monitoring the activity of cellular populations on a precise spatiotemporal scale while manipulating neuronal activity with optogenetics provides a powerful tool to causally elucidate the cellular mechanisms underlying circuit function in the intact mammalian brain. PMID:28053310

  4. Techniques of Glaucoma Detection From Color Fundus Images: A Review

    Directory of Open Access Journals (Sweden)

    Malaya Kumar Nath

    2012-09-01

    Full Text Available Glaucoma is a generic name for a group of diseases which causes progressive optic neuropathy and vision loss due to degeneration of the optic nerves. Optic nerve cells act as transducer and convert light signal entered into the eye to electrical signal for visual processing in the brain. The main risk factors of glaucoma are elevated intraocular pressure exerted by aqueous humour, family history of glaucoma (hereditary and diabetes. It causes damages to the eye, whether intraocular pressure is high, normal or below normal. It causes the peripheral vision loss. There are different types of glaucoma. Some glaucoma occurs suddenly. So, detection of glaucoma is essential for minimizing the vision loss. Increased cup area to disc area ratio is the significant change during glaucoma. Diagnosis of glaucoma is based on measurement of intraocular pressure by tonometry, visual field examination by perimetry and measurement of cup area to disc area ratio from the color fundus images. In this paper the different signal processing techniques are discussed for detection and classification of glaucoma.

  5. Infrared Imaging Data Reduction Software and Techniques

    CERN Document Server

    Sabbey, C N; Lewis, J R; Irwin, M J; Sabbey, Chris N.; Mahon, Richard G. Mc; Lewis, James R.; Irwin, Mike J.

    2001-01-01

    We describe the InfraRed Data Reduction (IRDR) software package, a small ANSI C library of fast image processing routines for automated pipeline reduction of infrared (dithered) observations. We developed the software to satisfy certain design requirements not met in existing packages (e.g., full weight map handling) and to optimize the software for large data sets (non-interactive tasks that are CPU and disk efficient). The software includes stand-alone C programs for tasks such as running sky frame subtraction with object masking, image registration and coaddition with weight maps, dither offset measurement using cross-correlation, and object mask dilation. Although we currently use the software to process data taken with CIRSI (a near-IR mosaic imager), the software is modular and concise and should be easy to adapt/reuse for other work. IRDR is available from anonymous ftp to ftp.ast.cam.ac.uk in pub/sabbey.

  6. Reversible acute methotrexate leukoencephalopathy: atypical brain MR imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Ziereisen, France; Damry, Nash; Christophe, Catherine [Queen Fabiola Children' s University Hospital, Department of Radiology, Brussels (Belgium); Dan, Bernard [Queen Fabiola Children' s University Hospital, Department of Neurology, Brussels (Belgium); Azzi, Nadira; Ferster, Alina [Queen Fabiola Children' s University Hospital, Department of Paediatrics, Brussels (Belgium)

    2006-03-15

    Unusual acute symptomatic and reversible early-delayed leukoencephalopathy has been reported to be induced by methotrexate (MTX). We aimed to identify the occurrence of such atypical MTX neurotoxicity in children and document its MR presentation. We retrospectively reviewed the clinical findings and brain MRI obtained in 90 children treated with MTX for acute lymphoblastic leukaemia or non-B malignant non-Hodgkin lymphoma. All 90 patients had normal brain imaging before treatment. In these patients, brain imaging was performed after treatment completion and/or relapse and/or occurrence of neurological symptoms. Of the 90 patients, 15 (16.7%) showed signs of MTX neurotoxicity on brain MRI, 9 (10%) were asymptomatic, and 6 (6.7%) showed signs of acute leukoencephalopathy. On the routine brain MRI performed at the end of treatment, all asymptomatic patients had classical MR findings of reversible MTX neurotoxicity, such as abnormal high-intensity areas localized in the deep periventricular white matter on T2-weighted images. In contrast, the six symptomatic patients had atypical brain MRI characterized by T2 high-intensity areas in the supratentorial cortex and subcortical white matter (n=6), cerebellar cortex and white matter (n=4), deep periventricular white matter (n=2) and thalamus (n=1). MR normalization occurred later than clinical recovery in these six patients. In addition to mostly asymptomatic classical MTX neurotoxicity, MTX may induce severe but reversible unusual leukoencephalopathy. It is important to recognize this clinicoradiological presentation in the differential diagnosis of acute neurological deterioration in children treated with MTX. (orig.)

  7. Technique of Hadamard transform microscope fluorescence image analysis

    Institute of Scientific and Technical Information of China (English)

    梅二文; 顾文芳; 曾晓斌; 陈观铨; 曾云鹗

    1995-01-01

    Hadamard transform spatial multiplexed imaging technique is combined with fluorescence microscope and an instrument of Hadamard transform microscope fluorescence image analysis is developed. Images acquired by this instrument can provide a lot of useful information simultaneously, including three-dimensional Hadamard transform microscope cell fluorescence image, the fluorescence intensity and fluorescence distribution of a cell, the background signal intensity and the signal/noise ratio, etc.

  8. Full Parallax Integral 3D Display and Image Processing Techniques

    Directory of Open Access Journals (Sweden)

    Byung-Gook Lee

    2015-02-01

    Full Text Available Purpose – Full parallax integral 3D display is one of the promising future displays that provide different perspectives according to viewing direction. In this paper, the authors review the recent integral 3D display and image processing techniques for improving the performance, such as viewing resolution, viewing angle, etc.Design/methodology/approach – Firstly, to improve the viewing resolution of 3D images in the integral imaging display with lenslet array, the authors present 3D integral imaging display with focused mode using the time-multiplexed display. Compared with the original integral imaging with focused mode, the authors use the electrical masks and the corresponding elemental image set. In this system, the authors can generate the resolution-improved 3D images with the n×n pixels from each lenslet by using n×n time-multiplexed display. Secondly, a new image processing technique related to the elemental image generation for 3D scenes is presented. With the information provided by the Kinect device, the array of elemental images for an integral imaging display is generated.Findings – From their first work, the authors improved the resolution of 3D images by using the time-multiplexing technique through the demonstration of the 24 inch integral imaging system. Authors’ method can be applied to a practical application. Next, the proposed method with the Kinect device can gain a competitive advantage over other methods for the capture of integral images of big 3D scenes. The main advantage of fusing the Kinect and the integral imaging concepts is the acquisition speed, and the small amount of handled data.Originality / Value – In this paper, the authors review their recent methods related to integral 3D display and image processing technique.Research type – general review.

  9. Application of Preoperative CT/MRI Image Fusion in Target Positioning for Deep Brain Stimulation

    Institute of Scientific and Technical Information of China (English)

    Yu Wang; Zi-yuan Liu; Wan-chen Dou; Wen-bin Ma; Ren-zhi Wang; Yi Guo

    2016-01-01

    Objective To explore the efficacy of target positioning by preoperative CT/MRI image fusion technique in deep brain stimulation. Methods We retrospectively analyzed the clinical data and images of 79 cases (68 with Parkinson’s disease, 11 with dystonia) who received preoperative CT/MRI image fusion in target positioning of subthalamic nucleus in deep brain stimulation. Deviation of implanted electrodes from the target nucleus of each patient were measured. Neurological evaluations of each patient before and after the treatment were performed and compared. Complications of the positioning and treatment were recorded. Results The mean deviations of the electrodes implanted on X, Y, and Z axis were 0.5 mm, 0.6 mm, and 0.6 mm, respectively. Postoperative neurologic evaluations scores of unified Parkinson’s disease rating scale (UPDRS) for Parkinson’s disease and Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) for dystonia patients improved significantly compared to the preoperative scores (P<0.001); Complications occurred in 10.1% (8/79) patients, and main side effects were dysarthria and diplopia. Conclusion Target positioning by preoperative CT/MRI image fusion technique in deep brain stimulation has high accuracy and good clinical outcomes.

  10. Imaging of aromatase distribution in rat and rhesus monkey brains with [{sup 11}C]vorozole

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kayo [Division of Pharmacology, Department of Neuroscience, Uppsala University, Uppsala SE-75124 (Sweden); Uppsala Imanet, Uppsala SE-75109 (Sweden)]. E-mail: kayo.takahashi@uppsala.imanet.se; Bergstroem, Mats [Uppsala Imanet, Uppsala SE-75109 (Sweden); Department of Pharmaceutical Biosciences, Uppsala University, Uppsala SE-75124 (Sweden); Fraendberg, Pernilla [Uppsala Imanet, Uppsala SE-75109 (Sweden); Vesstroem, Eva-Lotta [Uppsala Imanet, Uppsala SE-75109 (Sweden); Watanabe, Yasuyoshi [Department of Physiology, Osaka City University Graduate School of Medicine, Osaka 545-8585 (Japan); Langstroem, Bengt [Uppsala Imanet, Uppsala SE-75109 (Sweden)

    2006-07-15

    Aromatase is an enzyme that converts androgens to estrogens and may play a role in mood and mental status. The aim of this study was to demonstrate that brain aromatase distribution could be evaluated with a novel positron emission tomography (PET) tracer [{sup 11}C]vorozole. Vorozole is a nonsteroidal aromatase inhibitor that reversibly binds to the heme domain of aromatase. In vitro experiments in rat brain, using frozen section autoradiography, illustrated specific binding in the medial amygdala (MA), the bed nucleus of stria terminalis (BST) and the preoptic area (POA) of male rat brain. Specific binding in female rat brain was found in the MA and the BST; however, the signals were lower than those of males. The K {sub d} of [{sup 11}C]vorozole binding to aromatase in MA was determined to be 0.60{+-}0.06 nM by Scatchard plot analysis using homogenates. An in vivo PET study in female rhesus monkey brain demonstrated the uptake of [{sup 11}C]vorozole in the amygdala, where the uptake was blocked by the presence of excess amounts of unlabeled vorozole. Thus, this tracer has a high affinity for brain aromatase and could have a potential for in vivo aromatase imaging. This technique might enable the investigation of human brain aromatase in healthy and diseased persons.

  11. Measurement and correction of microscopic head motion during magnetic resonance imaging of the brain.

    Directory of Open Access Journals (Sweden)

    Julian Maclaren

    Full Text Available Magnetic resonance imaging (MRI is a widely used method for non-invasive study of the structure and function of the human brain. Increasing magnetic field strengths enable higher resolution imaging; however, long scan times and high motion sensitivity mean that image quality is often limited by the involuntary motion of the subject. Prospective motion correction is a technique that addresses this problem by tracking head motion and continuously updating the imaging pulse sequence, locking the imaging volume position and orientation relative to the moving brain. The accuracy and precision of current MR-compatible tracking systems and navigator methods allows the quantification and correction of large-scale motion, but not the correction of very small involuntary movements in six degrees of freedom. In this work, we present an MR-compatible tracking system comprising a single camera and a single 15 mm marker that provides tracking precision in the order of 10 m and 0.01 degrees. We show preliminary results, which indicate that when used for prospective motion correction, the system enables improvement in image quality at both 3 T and 7 T, even in experienced and cooperative subjects trained to remain motionless during imaging. We also report direct observation and quantification of the mechanical ballistocardiogram (BCG during simultaneous MR imaging. This is particularly apparent in the head-feet direction, with a peak-to-peak displacement of 140 m.

  12. New imaging techniques and opportunities in endoscopy.

    Science.gov (United States)

    Kiesslich, Ralf; Goetz, Martin; Hoffman, Arthur; Galle, Peter Robert

    2011-09-06

    Gastrointestinal endoscopy is undergoing major improvements, which are driven by new available technologies and substantial refinements of optical features. In this Review, we summarize available and evolving imaging technologies that could influence the clinical algorithm of endoscopic diagnosis. Detection, characterization and confirmation are essential steps required for proper endoscopic diagnosis. Optical and nonoptical methods can help to improve each step; these improvements are likely to increase the detection rate of neoplasias and reduce unnecessary endoscopic treatments. Furthermore, functional and molecular imaging are emerging as new diagnostic tools that could provide an opportunity for personalized medicine, in which endoscopy will define disease outcome or predict the response to targeted therapy.

  13. Image Reversal Techniques With Standard Positive Photoresist

    Science.gov (United States)

    Long, Mary L.; Newman, Jeff

    1984-05-01

    The basic reaction of positive photoresist involves the conversion of the dissolution inhibitor (diazoketone) to a dissolution enhancer (carboxylic acid). The novolac-type resin is basically unchanged, but its solubility is controlled by the presence of either the dissolution inhibitor or enhancer. It has been demonstrated that the dissolution enhancer can be thermally degraded, and, under the proper conditions, this degradation can lead to the reversal of the resist image. It is, of course, imperative to optimize the developer selectivity and to capitalize on the specific characteristics of common positive resists to define a production-oriented image reversal process.**

  14. Analysis and simulation of brain signal data by EEG signal processing technique using MATLAB

    Directory of Open Access Journals (Sweden)

    Sasikumar Gurumurthy

    2013-06-01

    Full Text Available EEG is brain signal processing technique that allows gaining the understanding of the complex inner mechanisms of the brain and abnormal brain waves have shown to be associated with particular brain disorders. The analysis of brain waves plays an important role in diagnosis of different brain disorders. MATLAB provides an interactive graphic user interface (GUI allowing users to flexiblyand interactively process their high-density EEG dataset and other brain signal data different techniques such as independent component analysis (ICA and/or time/frequency analysis (TFA, as well as standard averaging methods. We will be showing different brain signals by comparing, analysing and simulating datasets which is already loaded in the MATLAB software to process the EEG signals.

  15. Computer aided detection of tumor and edema in brain FLAIR magnetic resonance image using ANN

    Science.gov (United States)

    Pradhan, Nandita; Sinha, A. K.

    2008-03-01

    This paper presents an efficient region based segmentation technique for detecting pathological tissues (Tumor & Edema) of brain using fluid attenuated inversion recovery (FLAIR) magnetic resonance (MR) images. This work segments FLAIR brain images for normal and pathological tissues based on statistical features and wavelet transform coefficients using k-means algorithm. The image is divided into small blocks of 4×4 pixels. The k-means algorithm is used to cluster the image based on the feature vectors of blocks forming different classes representing different regions in the whole image. With the knowledge of the feature vectors of different segmented regions, supervised technique is used to train Artificial Neural Network using fuzzy back propagation algorithm (FBPA). Segmentation for detecting healthy tissues and tumors has been reported by several researchers by using conventional MRI sequences like T1, T2 and PD weighted sequences. This work successfully presents segmentation of healthy and pathological tissues (both Tumors and Edema) using FLAIR images. At the end pseudo coloring of segmented and classified regions are done for better human visualization.

  16. New perspectives on using brain imaging to study CNS stimulants.

    Science.gov (United States)

    Lukas, Scott E

    2014-12-01

    While the recent application of brain imaging to study CNS stimulants has offered new insights into the fundamental factors that contribute to their use and abuse, many gaps remain. Brain circuits that mediate pleasure, dependence, craving and relapse are anatomically, neurophysiologically and neurochemically distinct from one another, which has guided the search for correlates of stimulant-seeking and taking behavior. However, unlike other drugs of abuse, metrics for tolerance and physical dependence on stimulants are not obvious. The dopamine theory of stimulant abuse does not sufficiently explain this disorder as serotonergic, GABAergic and glutamagergic circuits are clearly involved in stimulant pharmacology and so tracking the source of the "addictive" processes must adopt a more multimodal, multidisciplinary approach. To this end, both anatomical and functional magnetic resonance imaging (MRI), MR spectroscopy (MRS) and positron emission tomography (PET) are complementary and have equally contributed to our understanding of how stimulants affect the brain and behavior. New vistas in this area include nanotechnology approaches to deliver small molecules to receptors and use MRI to resolve receptor dynamics. Anatomical and blood flow imaging has yielded data showing that cognitive enhancers might be useful adjuncts in treating CNS stimulant dependence, while MRS has opened opportunities to examine the brain's readiness to accept treatment as GABA tone normalizes after detoxification. A desired outcome of the above approaches is being able to offer evidence-based rationales for treatment approaches that can be implemented in a more broad geographic area, where access to brain imaging facilities may be limited. This article is part of the Special Issue entitled 'CNS Stimulants'.

  17. A New Image Steganography Based On First Component Alteration Technique

    CERN Document Server

    Kaur, Amanpreet; Sikka, Geeta

    2010-01-01

    In this paper, A new image steganography scheme is proposed which is a kind of spatial domain technique. In order to hide secret data in cover-image, the first component alteration technique is used. Techniques used so far focuses only on the two or four bits of a pixel in a image (at the most five bits at the edge of an image) which results in less peak to signal noise ratio and high root mean square error. In this technique, 8 bits of blue components of pixels are replaced with secret data bits. Proposed scheme can embed more data than previous schemes and shows better image quality. To prove this scheme, several experiments are performed, and are compared the experimental results with the related previous works.

  18. Comparative Study of Spatial Domain Image Steganography Techniques

    Directory of Open Access Journals (Sweden)

    Rejani. R

    2015-09-01

    Full Text Available Steganography is an important area of research in information security. It is the technique of disclosing information into the cover image via. text, video, and image without causing statistically significant modification to the cover image. Secure communication of data through internet has become a main issue due to several passive and active attacks. The purpose of stegnography is to hide the existence of the message so that it becomes difficult for attacker to detect it. Different steganography techniques are implemented to hide the information effectively also researchers contributed various algorithms in each technique to improve the technique’s efficiency. In this paper we do a brief analysis of different spatial domain image stegnography techniques and their comparison. The modern secure image steganography presents a challenging task of transferring the embedded information to the destination without being detected.

  19. Limitations of Sulforhodamine 101 for Brain Imaging

    Science.gov (United States)

    Hülsmann, Swen; Hagos, Liya; Heuer, Heike; Schnell, Christian

    2017-01-01

    Since 2004, the red fluorescent dye Sulforhodamine 101 (SR101) has been boosting the functional analysis of astrocytes in a functional environment in an unprecedented way. However, two major limitations have been challenging the usefulness of this tool for cellular imaging: (i) SR101 is not as specific for astrocytes as previously reported; and (ii) discoveries of severe excitatory side effects of SR101 are bearing the risk of unwanted alteration of the system of interest. In this article, we summarize the current knowledge about SR101-labeling protocols and discuss the problems that arise from varying of the staining protocols. Furthermore, we provide a testable hypothesis for the observed hyper-excitability that can be observed when using SR101.

  20. The study on increasing the equivalent SNR in the certain DOI by adjusting the SD separation in near-infrared brain imaging application

    Science.gov (United States)

    Wang, Jinhai; Liu, Dongyuan; Sun, Jinggong; Zhang, Yanjun; Sun, Qiuming; Ma, Jun; Zheng, Yu; Wang, Huiquan

    2016-10-01

    Near-infrared (NIR) brain imaging is one of the most promising techniques for brain research in recent years. As a significant supplement to the clinical imaging technique, such as CT and MRI, the NIR technique can achieve a fast, non-invasive, and low cost imaging of the brain, which is widely used for the brain functional imaging and hematoma detection. NIR imaging can achieve an imaging depth up to only several centimeters due to the reduced optical attenuation. The structure of the human brain is so particularly complex, from the perspective of optical detection, the measurement light needs go through the skin, skull, cerebrospinal fluid (CSF), grey matter, and white matter, and then reverses the order reflected by the detector. The more photons from the Depth of Interest (DOI) in brain the detector capture, the better detection accuracy and stability can be obtained. In this study, the Equivalent Signal to Noise Ratio (ESNR) was defined as the proportion of the photons from the DOI to the total photons the detector evaluated the best Source and Detector (SD) separation. The Monte-Carlo (MC) simulation was used to establish a multi brain layer model to analyze the distribution of the ESNR along the radial direction for different DOIs and several basic brain optical and structure parameters. A map between the best detection SD separation, in which distance the ESNR was the highest, and the brain parameters was established for choosing the best detection point in the NIR brain imaging application. The results showed that the ESNR was very sensitivity to the SD separation. So choosing the best SD separation based on the ESNR is very significant for NIR brain imaging application. It provides an important reference and new thinking for the brain imaging in the near infrared.

  1. A Secure and High Capacity Image Steganography Technique

    Directory of Open Access Journals (Sweden)

    Hemalatha S

    2013-02-01

    Full Text Available Steganography is the science of “invisible” communication. The purpose of Steganography is to maintainsecret communication between two parties. The secret information can be concealed in content such asimage, audio, or video. This paper provides a novelimage steganography technique to hide multiple secretimages and keys in color cover image using IntegerWavelet Transform (IWT. There is no visual differencebetween the stego image and the cover image. The extracted secret images are also similar to the originalsecret images. Very good PSNR (Peak Signal to NoiseRatio values are obtained for both stego andextracted secret images. The results are compared with the results of other techniques, where single imageis hidden and it is found that the proposed technique is simple and gives better PSNR values than others.

  2. Optimization of Memory Management in Image Processing using Pipelining Technique

    Directory of Open Access Journals (Sweden)

    P.S. Ramesh

    2015-02-01

    Full Text Available The quality of the image is mainly based on the various phenomena which generally consume lots of memory that needs to be resolved addressed. The handling of the memory is mainly affected due to disorderly arranged pixels in an image. This may lead to salt and pepper noise which will affect the quality of the image. The aim of this study is to remove the salt and pepper noise which is most crucial in image processing fields. In this study, we proposed a technique which combines adaptive mean filtering technique and wavelet transform technique based on pipeline processing to remove intensity spikes from the image and then both Otsu’s and Clahe algorithms are used to enhance the image. The implemented framework produces good results and proves against salt and pepper noise using PSNR algorithm.

  3. Effect of Enhancement Technique on Nonuniform and Uniform Ultrasound Images

    Directory of Open Access Journals (Sweden)

    Parveen Lehana

    2015-01-01

    Full Text Available The absence of adequate scientific resources in the area of medical sciences sometimes leads to improper diagnosis of diseases and hence the treatments of such diseases are affected badly. However, with the advancement of technology, the complicacy of various malfunctions inside the human body reduces. Ultrasound imaging is one of the biomedical scanning techniques that let the pathologist make comment reasonably and accurately on the disease or irregularity seen in the scan while low imaging quality lets the diagnosis go wrong. Even a little distortion can route the pathologist away from the main cause of the disease. In this research work, the enhancement of dark ultrasound images has been done. An algorithm is developed using enhancement technique for nonuniform and uniform dark images. Finally, we compared the quality of the processed and unprocessed images. Both ETNUD and mean and median filtering techniques were used for image analysis.

  4. Jet-Images: Computer Vision Inspired Techniques for Jet Tagging

    CERN Document Server

    Cogan, Josh; Strauss, Emanuel; Schwarztman, Ariel

    2014-01-01

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon- initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  5. Image characterization by fractal descriptors in variational mode decomposition domain: Application to brain magnetic resonance

    Science.gov (United States)

    Lahmiri, Salim

    2016-08-01

    The main purpose of this work is to explore the usefulness of fractal descriptors estimated in multi-resolution domains to characterize biomedical digital image texture. In this regard, three multi-resolution techniques are considered: the well-known discrete wavelet transform (DWT) and the empirical mode decomposition (EMD), and; the newly introduced; variational mode decomposition mode (VMD). The original image is decomposed by the DWT, EMD, and VMD into different scales. Then, Fourier spectrum based fractal descriptors is estimated at specific scales and directions to characterize the image. The support vector machine (SVM) was used to perform supervised classification. The empirical study was applied to the problem of distinguishing between normal and abnormal brain magnetic resonance images (MRI) affected with Alzheimer disease (AD). Our results demonstrate that fractal descriptors estimated in VMD domain outperform those estimated in DWT and EMD domains; and also those directly estimated from the original image.

  6. An image-guided technique for planning and verification of supine craniospinal irradiation.

    Science.gov (United States)

    McMahon, Ryan L; Larrier, Nicole A; Wu, Q Jackie

    2011-01-31

    We present a technique for planning and verification of craniospinal treatment with the patient in the supine position. Treatment delivery and verification is streamlined through the use of modern imaging techniques. Treatments use two lateral brain fields abutted to a single or pair of posterior spine fields. Treatment delivery is simplified by aligning all isocenters in the anterior-posterior and lateral directions. Patient positioning is accomplished via on-board kV imaging. Verification of field shape and junctions is accomplished with BB placement and MV portal imaging. Daily treatment is simplified by using only longitundinal couch shifts, which are recorded in the patient chart and RV database. The technique is simple to implement in a clinic that is already using a similar beam arrangement with the patient prone. It requires no additional devices to be fabricated (for immobilization or QA), and it takes advantage of all the existing elements of a modern linac.

  7. Dye-Enhanced Multimodal Confocal Imaging of Brain Cancers

    Science.gov (United States)

    Wirth, Dennis; Snuderl, Matija; Sheth, Sameer; Curry, William; Yaroslavsky, Anna

    2011-04-01

    Background and Significance: Accurate high resolution intraoperative detection of brain tumors may result in improved patient survival and better quality of life. The goal of this study was to evaluate dye enhanced multimodal confocal imaging for discriminating normal and cancerous brain tissue. Materials and Methods: Fresh thick brain specimens were obtained from the surgeries. Normal and cancer tissues were investigated. Samples were stained in methylene blue and imaged. Reflectance and fluorescence signals were excited at 658nm. Fluorescence emission and polarization were registered from 670 nm to 710 nm. The system provided lateral resolution of 0.6 μm and axial resolution of 7 μm. Normal and cancer specimens exhibited distinctively different characteristics. H&E histopathology was processed from each imaged sample. Results and Conclusions: The analysis of normal and cancerous tissues indicated clear differences in appearance in both the reflectance and fluorescence responses. These results confirm the feasibility of multimodal confocal imaging for intraoperative detection of small cancer nests and cells.

  8. Hierarchical clustering techniques for image database organization and summarization

    Science.gov (United States)

    Vellaikal, Asha; Kuo, C.-C. Jay

    1998-10-01

    This paper investigates clustering techniques as a method of organizing image databases to support popular visual management functions such as searching, browsing and navigation. Different types of hierarchical agglomerative clustering techniques are studied as a method of organizing features space as well as summarizing image groups by the selection of a few appropriate representatives. Retrieval performance using both single and multiple level hierarchies are experimented with and the algorithms show an interesting relationship between the top k correct retrievals and the number of comparisons required. Some arguments are given to support the use of such cluster-based techniques for managing distributed image databases.

  9. Reticle defect sizing of optical proximity correction defects using SEM imaging and image analysis techniques

    Science.gov (United States)

    Zurbrick, Larry S.; Wang, Lantian; Konicek, Paul; Laird, Ellen R.

    2000-07-01

    Sizing of programmed defects on optical proximity correction (OPC) feature sis addressed using high resolution scanning electron microscope (SEM) images and image analysis techniques. A comparison and analysis of different sizing methods is made. This paper addresses the issues of OPC defect definition and discusses the experimental measurement results obtained by SEM in combination with image analysis techniques.

  10. High-field magnetic resonance imaging of brain iron: birth of a biomarker?

    Science.gov (United States)

    Schenck, John F; Zimmerman, Earl A

    2004-11-01

    The brain has an unusually high concentration of iron, which is distributed in an unusual pattern unlike that in any other organ. The physiological role of this iron and the reasons for this pattern of distribution are not yet understood. There is increasing evidence that several neurodegenerative diseases are associated with altered brain iron metabolism. Understanding these dysmetabolic conditions may provide important information for their diagnosis and treatment. For many years the iron distribution in the human brain could be studied effectively only under postmortem conditions. This situation was changed dramatically by the finding that T2-weighted MR imaging at high field strength (initially 1.5 T) appears to demonstrate the pattern of iron distribution in normal brains and that this imaging technique can detect changes in brain iron concentrations associated with disease states. Up to the present time this imaging capability has been utilized in many research applications but it has not yet been widely applied in the routine diagnosis and management of neurodegenerative disorders. However, recent advances in the basic science of brain iron metabolism, the clinical understanding of neurodegenerative diseases and in MRI technology, particularly in the availability of clinical scanners operating at the higher field strength of 3 T, suggest that iron-dependent MR imaging may soon provide biomarkers capable of characterizing the presence and progression of important neurological disorders. Such biomarkers may be of crucial assistance in the development and utilization of effective new therapies for Alzheimer's and Parkinson's diseases, multiple sclerosis and other iron-related CNS disorders which are difficult to diagnose and treat.

  11. A review of imaging techniques for systems biology

    Directory of Open Access Journals (Sweden)

    Po Ming J

    2008-08-01

    Full Text Available Abstract This paper presents a review of imaging techniques and of their utility in system biology. During the last decade systems biology has matured into a distinct field and imaging has been increasingly used to enable the interplay of experimental and theoretical biology. In this review, we describe and compare the roles of microscopy, ultrasound, CT (Computed Tomography, MRI (Magnetic Resonance Imaging, PET (Positron Emission Tomography, and molecular probes such as quantum dots and nanoshells in systems biology. As a unified application area among these different imaging techniques, examples in cancer targeting are highlighted.

  12. Multiple Myeloma: A Review of Imaging Features and Radiological Techniques

    Directory of Open Access Journals (Sweden)

    C. F. Healy

    2011-01-01

    Full Text Available The recently updated Durie/Salmon PLUS staging system published in 2006 highlights the many advances that have been made in the imaging of multiple myeloma, a common malignancy of plasma cells. In this article, we shall focus primarily on the more sensitive and specific whole-body imaging techniques, including whole-body computed tomography, whole-body magnetic resonance imaging, and positron emission computed tomography. We shall also discuss new and emerging imaging techniques and future developments in the radiological assessment of multiple myeloma.

  13. Multiple myeloma: a review of imaging features and radiological techniques.

    Science.gov (United States)

    Healy, C F; Murray, J G; Eustace, S J; Madewell, J; O'Gorman, P J; O'Sullivan, P

    2011-01-01

    The recently updated Durie/Salmon PLUS staging system published in 2006 highlights the many advances that have been made in the imaging of multiple myeloma, a common malignancy of plasma cells. In this article, we shall focus primarily on the more sensitive and specific whole-body imaging techniques, including whole-body computed tomography, whole-body magnetic resonance imaging, and positron emission computed tomography. We shall also discuss new and emerging imaging techniques and future developments in the radiological assessment of multiple myeloma.

  14. Comparison of Satellite Image Enhancement Techniques in Wavelet Domain

    Directory of Open Access Journals (Sweden)

    K. Narasimhan

    2012-12-01

    Full Text Available In this study, a comparison of various existing satellite image resolution enhancement techniques in wavelet domain is done. Each method is analysed quantitatively and visually. There are various wavelet domain based methods such as Wavelet Zero Padding, Dual Tree-Complex Wavelet Transform, Discrete Wavelet Transform, Cycle Spinning and Undecimated Wavelet Transform. On the basis of analysis, the most efficient method is proposed. The algorithms take the low resolution image as the input image and then wavelet transformation using daubechies (db3 is used to decompose the input image into different sub band images containing high and low frequency component. Then these subband images along with the input image are interpolated followed by combining all these images to generate a new resolution enhanced image by an inverse process.

  15. Through Skull Fluorescence Imaging of the Brain in a New Near-Infrared Window

    CERN Document Server

    Hong, Guosong; Chang, Junlei; Antaris, Alexander L; Chen, Changxin; Zhang, Bo; Zhao, Su; Atochin, Dmitriy N; Huang, Paul L; Andreasson, Katrin I; Kuo, Calvin J; Dai, Hongjie

    2014-01-01

    To date, brain imaging has largely relied on X-ray computed tomography and magnetic resonance angiography with limited spatial resolution and long scanning times. Fluorescence-based brain imaging in the visible and traditional near-infrared regions (400-900 nm) is an alternative but currently requires craniotomy, cranial windows and skull thinning techniques, and the penetration depth is limited to 1-2 mm due to light scattering. Here, we report through-scalp and through-skull fluorescence imaging of mouse cerebral vasculature without craniotomy utilizing the intrinsic photoluminescence of single-walled carbon nanotubes in the 1.3-1.4 micrometre near-infrared window. Reduced photon scattering in this spectral region allows fluorescence imaging reaching a depth of >2 mm in mouse brain with sub-10 micrometre resolution. An imaging rate of ~5.3 frames/s allows for dynamic recording of blood perfusion in the cerebral vessels with sufficient temporal resolution, providing real-time assessment of blood flow anomaly...

  16. Employing image processing techniques for cancer detection using microarray images.

    Science.gov (United States)

    Dehghan Khalilabad, Nastaran; Hassanpour, Hamid

    2017-02-01

    Microarray technology is a powerful genomic tool for simultaneously studying and analyzing the behavior of thousands of genes. The analysis of images obtained from this technology plays a critical role in the detection and treatment of diseases. The aim of the current study is to develop an automated system for analyzing data from microarray images in order to detect cancerous cases. The proposed system consists of three main phases, namely image processing, data mining, and the detection of the disease. The image processing phase performs operations such as refining image rotation, gridding (locating genes) and extracting raw data from images the data mining includes normalizing the extracted data and selecting the more effective genes. Finally, via the extracted data, cancerous cell is recognized. To evaluate the performance of the proposed system, microarray database is employed which includes Breast cancer, Myeloid Leukemia and Lymphomas from the Stanford Microarray Database. The results indicate that the proposed system is able to identify the type of cancer from the data set with an accuracy of 95.45%, 94.11%, and 100%, respectively.

  17. Efficient imaging techniques using an ultrasonic array

    Science.gov (United States)

    Moreau, L.; Hunter, A. J.; Drinkwater, B. W.; Wilcox, P. D.

    2010-03-01

    Over the past few years, ultrasonic phased arrays have shown good potential for non-destructive testing (NDT), thanks to high resolution imaging algorithms that allow the characterization of defects in a structure. Many algorithms are based on the full matrix capture, obtained by firing each element of an ultrasonic array independently, while collecting the data with all elements. Because of the finite sound velocity in the specimen, two consecutive firings must be separated by a minimum time interval. Therefore, more elements in the array require longer data acquisition times. Moreover, if the array has N elements, then the full matrix contains N2 temporal signals to be processed. Because of the limited calculation speed of current computers, a large matrix of data can result in rather long post-processing times. In an industrial context where real-time imaging is desirable, it is crucial to reduce acquisition and/or post-processing times. This paper investigates methods designed to reduce acquisition and post-processing times for the TFM and wavenumber algorithms. To reduce data capture and post-processing, limited transmission cycles are used. Post-processing times is also further reduced by demodulating the data to baseband, which allows reducing the sampling rate of signals. Results are presented so that a compromise can be made between acquisition time, post-processing time and image quality. Possible improvement of images quality, using the effective aperture theory, is discussed. This has been implemented for the TFM but it still has to be developed for the wavenumber algorithm.

  18. Data-driven forward model inference for EEG brain imaging

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Hauberg, Søren; Hansen, Lars Kai

    2016-01-01

    Electroencephalography (EEG) is a flexible and accessible tool with excellent temporal resolution but with a spatial resolution hampered by volume conduction. Reconstruction of the cortical sources of measured EEG activity partly alleviates this problem and effectively turns EEG into a brain......-of-concept study, we show that, even when anatomical knowledge is unavailable, a suitable forward model can be estimated directly from the EEG. We propose a data-driven approach that provides a low-dimensional parametrization of head geometry and compartment conductivities, built using a corpus of forward models....... Combined with only a recorded EEG signal, we are able to estimate both the brain sources and a person-specific forward model by optimizing this parametrization. We thus not only solve an inverse problem, but also optimize over its specification. Our work demonstrates that personalized EEG brain imaging...

  19. Connectomic Analysis of Brain Networks : Novel Techniques and Future Directions

    NARCIS (Netherlands)

    Cazemier, J Leonie; Clascá, Francisco; Tiesinga, Paul H E

    2016-01-01

    Brain networks, localized or brain-wide, exist only at the cellular level, i.e., between specific pre- and post-synaptic neurons, which are connected through functionally diverse synapses located at specific points of their cell membranes. "Connectomics" is the emerging subfield of neuroanatomy expl

  20. Molecular Genetics Techniques to Develop New Treatments for Brain Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Jacob; Fathallan-Shaykh, Hassan

    2006-09-22

    The objectives of this report are: (1) to devise novel molecular gene therapies for malignant brain tumors, (2) advance our understanding of the immune system in the central nervous system; and (3) apply genomics to find molecular probes to diagnose brain tumors, predict prognosis, biological behavior and their response to treatment.

  1. Living Brain Optical Imaging: Technology, Methods and Applications

    Science.gov (United States)

    Tsytsarev, Vassiliy; Bernardelli, Chad; Maslov, Konstantin I.

    2017-01-01

    Within the last few decades, optical imaging methods have yielded revolutionary results when applied to all parts of the central nervous system. The purpose of this review is to analyze research possibilities and limitations of several novel imaging techniques and show some of the most interesting achievements obtained by these methods. Here we covered intrinsic optical imaging, voltage-sensitive dye, photoacoustic, optical coherence tomography, near-infrared spectroscopy and some other techniques. All of them are mainly applicable for experimental neuroscience but some of them also suitable for the clinical studies.

  2. Exploring altered consciousness states by magnetic resonance imaging in brain injury.

    Science.gov (United States)

    Lescot, Thomas; Galanaud, Damien; Puybasset, Louis

    2009-03-01

    Traumatic brain injury (TBI) occurs abruptly, involves multiple specialized teams, calls on the health-care system in its emergency dimension, and engages the well-being of the patient and his relatives for a lifetime period. Clinicians in charge of these patients are faced with issues of uppermost importance: medical issues such as predicting the long-term neurological outcome of the comatose patient; ethical issues because of the influence of intensive care on the long-term survival of patients in a vegetative and minimally conscious state; legal issues because of the law that has set the concept of proportionality of care as the legal rule; and social issues as the result of the very high cost of these pathologies. Today's larger availability of magnetic resonance imaging (MRI) in ventilated patients and the recent improvements in hardware and in imaging techniques that have made the last-developed imaging techniques such as diffusion tensor imaging and magnetic resonance spectroscopy available in brain-trauma patients, are changing the paradigm in neurointensive care regarding outcome prediction. The old paradigm that no individual prognosis could be made at the subacute phase in TBI patients does not hold true anymore. This major change opens new challenging ethical questions. This review focuses on the brain explorations that are required, such as MRI, magnetic resonance spectroscopy, and diffusion tensor imaging, to provide the clinician with a multimodal assessment of the brain state to predict outcome of coma. Such an assessment will become mandatory in the near future to answer the crucial question of proportionality of care in these patients.

  3. Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler.

    Science.gov (United States)

    Errico, Claudia; Osmanski, Bruno-Félix; Pezet, Sophie; Couture, Olivier; Lenkei, Zsolt; Tanter, Mickael

    2016-01-01

    Functional ultrasound (fUS) is a novel neuroimaging technique, based on high-sensitivity ultrafast Doppler imaging of cerebral blood volume, capable of measuring brain activation and connectivity in rodents with high spatiotemporal resolution (100μm, 1ms). However, the skull attenuates acoustic waves, so fUS in rats currently requires craniotomy or a thinned-skull window. Here we propose a non-invasive approach by enhancing the fUS signal with a contrast agent, inert gas microbubbles. Plane-wave illumination of the brain at high frame rate (500Hz compounded sequence with three tilted plane waves, PRF=1500Hz with a 128 element 15MHz linear transducer), yields highly-resolved neurovascular maps. We compared fUS imaging performance through the intact skull bone (transcranial fUS) versus a thinned-skull window in the same animal. First, we show that the vascular network of the adult rat brain can be imaged transcranially only after a bolus intravenous injection of microbubbles, which leads to a 9dB gain in the contrast-to-tissue ratio. Next, we demonstrate that functional increase in the blood volume of the primary sensory cortex after targeted electrical-evoked stimulations of the sciatic nerve is observable transcranially in presence of contrast agents, with high reproducibility (Pearson's coefficient ρ=0.7±0.1, p=0.85). Our work demonstrates that the combination of ultrafast Doppler imaging and injection of contrast agent allows non-invasive functional brain imaging through the intact skull bone in rats. These results should ease non-invasive longitudinal studies in rodents and open a promising perspective for the adoption of highly resolved fUS approaches for the adult human brain.

  4. Decoding post-stroke motor function from structural brain imaging

    Directory of Open Access Journals (Sweden)

    Jane M. Rondina

    2016-01-01

    Full Text Available Clinical research based on neuroimaging data has benefited from machine learning methods, which have the ability to provide individualized predictions and to account for the interaction among units of information in the brain. Application of machine learning in structural imaging to investigate diseases that involve brain injury presents an additional challenge, especially in conditions like stroke, due to the high variability across patients regarding characteristics of the lesions. Extracting data from anatomical images in a way that translates brain damage information into features to be used as input to learning algorithms is still an open question. One of the most common approaches to capture regional information from brain injury is to obtain the lesion load per region (i.e. the proportion of voxels in anatomical structures that are considered to be damaged. However, no systematic evaluation has yet been performed to compare this approach with using patterns of voxels (i.e. considering each voxel as a single feature. In this paper we compared both approaches applying Gaussian Process Regression to decode motor scores in 50 chronic stroke patients based solely on data derived from structural MRI. For both approaches we compared different ways to delimit anatomical areas: regions of interest from an anatomical atlas, the corticospinal tract, a mask obtained from fMRI analysis with a motor task in healthy controls and regions selected using lesion-symptom mapping. Our analysis showed that extracting features through patterns of voxels that represent lesion probability produced better results than quantifying the lesion load per region. In particular, from the different ways to delimit anatomical areas compared, the best performance was obtained with a combination of a range of cortical and subcortical motor areas as well as the corticospinal tract. These results will inform the appropriate methodology for predicting long term motor outcomes

  5. An Useful Information Extraction using Image Mining Techniques from Remotely Sensed Image (RSI)

    OpenAIRE

    Dr. C. Jothi Venkateswaran,; Murugan, S.; Dr. N. Radhakrishnan

    2010-01-01

    Information extraction using mining techniques from remote sensing image (RSI) is rapidly gaining attention among researchers and decision makers because of its potential in application oriented studies. Knowledge discovery from image poses many interesting challenges such as preprocessing the image data set, training the data and discovering useful image patterns applicable to many newapplication frontiers. In the image rich domain of RSI, image mining implies the synergy of data mining and ...

  6. Magnetic resonance imaging in perinatal brain injury: clinical presentation, lesions and outcome

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Mary; Ward, Phil; Allsop, Joanna; Counsell, Serena [Imperial College London, Hammersmith Hospital, Robert Steiner MR Unit, Imaging Sciences Department, Clinical Sciences Centre, London (United Kingdom); Srinivasan, Latha; Dyet, Leigh; Cowan, Frances [Imperial College, Hammersmith Hospital, Department of Paediatrics, Imaging Sciences Department, Clinical Sciences Centre, London (United Kingdom)

    2006-07-15

    Neonatal MR imaging is invaluable in assessing the term born neonate who presents with an encephalopathy. Successful imaging requires adaptations to both the hardware and the sequences used for adults. The perinatal and postnatal details often predict the pattern of lesions sustained and are essential for correct interpretation of the imaging findings, but additional or alternative diagnoses in infants with apparent hypoxic ischaemic encephalopathy should always be considered. Perinatally acquired lesions are usually at their most obvious between 1 and 2 weeks of age. Very early imaging (<3 days) may be useful to make management decisions in ventilated neonates, but abnormalities may be subtle at that stage. Diffusion-weighted imaging is clinically useful for the early identification of ischaemic white matter in the neonatal brain but is less reliable in detecting lesions within the basal ganglia and thalami. The pattern of lesions seen on MRI can predict neurodevelopmental outcome. Additional useful information may be obtained by advanced techniques such as MR angiography, venography and perfusion-weighted imaging. Serial imaging with quantification of both structure size and tissue damage provides invaluable insights into perinatal brain injury. (orig.)

  7. A New Image Fusion Technique to Improve the Quality of Remote Sensing images

    Directory of Open Access Journals (Sweden)

    Aboubaker Milad Ahmed

    2013-01-01

    Full Text Available Image fusion is a process of producing a single fused image from a set of input images. In this paper a new fusion technique based on the use of independent component analysis (ICA and IHS transformation is proposed. A comparison of this new technique with PCA, IHS, and ICA-based fusion techniques is given. Quick Bird data are used to test these techniques, the output was evaluated using subjective comparison, statistical correlation, information entropy, mean square error, and standard deviation. The results of the proposed technique show higher performance compared to the other techniques.

  8. Fluorescence and Bioluminescence Imaging of Orthotopic Brain Tumors in Mice.

    Science.gov (United States)

    McKinnon, Emilie; Moore, Alfred; Dixit, Suraj; Zhu, Yun; Broome, Ann-Marie

    2017-01-01

    Optical imaging strategies, such as fluorescence and bioluminescence imaging, are non-invasive, in vivo whole body imaging techniques utilized to study cancer. Optical imaging is widely used in preclinical work because of its ease of use and cost-friendliness. It also provides the opportunity to study animals and biological responses longitudinally over time. Important considerations include depth of tissue penetration, photon scattering, absorption and the choice of light emitting probe, all of which affect the resolution (image quality and data information) and the signal to noise ratio of the image. We describe how to use bioluminescence and fluorescence imaging to track a chemotherapeutic delivery nanocarrier conjugated with a fluorophore to determine its localization in vivo.

  9. Reduction in radiation dose with reconstruction technique in the brain perfusion CT

    Science.gov (United States)

    Kim, H. J.; Lee, H. K.; Song, H.; Ju, M. S.; Dong, K. R.; Chung, W. K.; Cho, M. S.; Cho, J. H.

    2011-12-01

    The principal objective of this study was to verify the utility of the reconstruction imaging technique in the brain perfusion computed tomography (PCT) scan by assessing reductions in the radiation dose and analyzing the generated images. The setting used for image acquisition had a detector coverage of 40 mm, a helical thickness of 0.625 mm, a helical shuttle mode scan type and a rotation time of 0.5 s as the image parameters used for the brain PCT scan. Additionally, a phantom experiment and an animal experiment were carried out. In the phantom and animal experiments, noise was measured in the scanning with the tube voltage fixed at 80 kVp (kilovolt peak) and the level of the adaptive statistical iterative reconstruction (ASIR) was changed from 0% to 100% at 10% intervals. The standard deviation of the CT coefficient was measured three times to calculate the mean value. In the phantom and animal experiments, the absorbed dose was measured 10 times under the same conditions as the ones for noise measurement before the mean value was calculated. In the animal experiment, pencil-type and CT-dedicated ionization chambers were inserted into the central portion of pig heads for measurement. In the phantom study, as the level of the ASIR changed from 0% to 100% under identical scanning conditions, the noise value and dose were proportionally reduced. In our animal experiment, the noise value was lowest when the ASIR level was 50%, unlike in the phantom study. The dose was reduced as in the phantom study.

  10. Diffusion tensor MR imaging in neurofibromatosis type 1: expanding the knowledge of microstructural brain abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz-Filho, Jose R.L.; Muniz, Marcos P.; Souza, Antonio S. [Medical School in Sao Jose do Rio Preto (FAMERP), Radiology Department, Sao Paulo (Brazil); Rocha, Antonio J. da [School Medical Sciences of the Santa Casa de Sao Paulo, Radiology Department, Sao Paulo (Brazil); Goloni-Bertollo, Eny M.; Pavarino-Bertelli, Erika C. [Center of Research and attendace in Neurofibromatosis (CEPAN) of Medical School in Sao Jose do Rio Preto (FAMERP), Sao Paulo (Brazil)

    2012-04-15

    Neurofibromatosis type 1 (NF1) is a hereditary disease with a dominant autosomal pattern. In children and adolescents, it is frequently associated with the appearance of T2-weighted hyperintensities in the brain's white matter. MRI with diffusion tensor imaging (DTI) is used to detect white matter abnormalities by measuring fractional anisotropy (FA). This study employed DTI to evaluate the relationship between FA patterns and the findings of T2 sequences, with the aim of improving our understanding of anatomical changes and microstructural brain abnormalities in individuals with NF1. Forty-four individuals with NF1 and 20 control subjects were evaluated. The comparative analysis of FA between NF1 and control groups was based on four predetermined anatomical regions of the brain hemispheres (basal ganglia, cerebellum, pons, thalamus) and related the presence or absence of T2-weighted hyperintensities in the brain, which are called unidentified bright objects (UBOs). The FA values between the groups demonstrated statistically significant differences (P {<=} 0.05) for the cerebellum and thalamus in patients with NF1, independent of the occurrence of UBOs. Diffusion tensor MR imaging confirms the influence of UBOs in the decrease of FA values in this series of patients with NF1. Additionally, this technique allows the characterization of microstructural abnormalities even in some brain regions that appear normal in conventional MR sequences. (orig.)

  11. Mixture Segmentation of Multispectral MR Brain Images for Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Lihong Li

    2005-04-01

    Full Text Available We present a fully automatic mixture model-based tissue classification of multispectral (T1- and T2-weighted magnetic resonance (MR brain images. Unlike the conventional hard classification with a unique label for each voxel, our method models a mixture to estimate the partial volumes (PV of multiple tissue types within a voxel. A new Markov random field (MRF model is proposed to reflect the spatial information of tissue mixtures. A mixture classification algorithm is performed by the maximum a posterior (MAP criterion, where the expectation maximization (EM algorithm is utilized to estimate model parameters. The algorithm interleaves segmentation with parameter estimation and improves classification in an iterative manner. The presented method is evaluated by clinical MR image datasets for quantification of brain volumes and multiple sclerosis (MS.

  12. Functional imaging of single synapses in brain slices.

    Science.gov (United States)

    Oertner, Thomas G

    2002-11-01

    The strength of synaptic connections in the brain is not fixed, but can be modulated by numerous mechanisms. Traditionally, electrophysiology has been used to characterize connections between neurons. Electrophysiology typically reports the activity of populations of synapses, while most mechanisms of plasticity are thought to operate at the level of single synapses. Recently, two-photon laser scanning microscopy has enabled us to perform optical quantal analysis of individual synapses in intact brain tissue. Here we introduce the basic principle of the two-photon microscope and discuss its main differences compared to the confocal microscope. Using calcium imaging in dendritic spines as an example, we explain the advantages of simultaneous dual-dye imaging for quantitative calcium measurements and address two common problems, dye saturation and background fluorescence subtraction.

  13. A Potential Magnetic Resonance Imaging Technique Based on Chemical Exchange Saturation Transfer for In Vivo γ-Aminobutyric Acid Imaging

    Science.gov (United States)

    Yan, Gen; Zhang, Tao; Dai, Zhuozhi; Yi, Meizhi; Jia, Yanlong; Nie, Tingting; Zhang, Handi; Xiao, Gang; Wu, Renhua

    2016-01-01

    Purpose We developed a novel magnetic resonance imaging (MRI) technique based on chemical exchange saturation transfer (CEST) for GABA imaging and investigated the concentration-dependent CEST effect ofGABA in a rat model of brain tumor with blood—brain barrier (BBB) disruption. Materials and Methods All MRI studies were performed using a 7.0-T Agilent MRI scanner. Z-spectra for GABA were acquired at 7.0 T, 37°C, and a pH of 7.0 using varying B1 amplitudes. CEST images of phantoms with different concentrations of GABA solutions (pH, 7.0) and other metabolites (glutamine, myoinositol, creatinine, and choline) were collected to investigate the concentration-dependent CEST effect of GABA and the potential contribution from other brain metabolites. CEST maps for GABA in rat brains with tumors were collected at baseline and 50 min, 1.5 h, and 2.0 h after the injection of GABA solution. Results The CEST effect of GABA was observed at approximately 2.75 parts per million(ppm) downfield from bulk water, and this effect increased with an increase in the B1 amplitude and remained steady after the B1 amplitude reached 6.0 μT (255 Hz). The CEST effect of GABA was proportional to the GABA concentration in vitro. CEST imaging of GABA in a rat brain with a tumor and compromised BBB showed a gradual increase in the CEST effect after GABA injection. Conclusion The findings of this study demonstrate the feasibility and potential of CEST MRI with the optimal B1 amplitude, which exhibits excellent spatial and temporal resolutions, to map changes in GABA. PMID:27711138

  14. PET/SPECT imaging: From carotid vulnerability to brain viability

    Energy Technology Data Exchange (ETDEWEB)

    Meerwaldt, Robbert [Department of Surgery, Isala Clinics, Zwolle (Netherlands); Slart, Riemer H.J.A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands); Dam, Gooitzen M. van [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands); Luijckx, Gert-Jan [Department of Neurology, University Medical Center Groningen, Groningen (Netherlands); Tio, Rene A. [Department of Cardiology, University Medical Center Groningen, Groningen (Netherlands); Zeebregts, Clark J. [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands)], E-mail: czeebregts@hotmail.com

    2010-04-15

    Background: Current key issues in ischemic stroke are related to carotid plaque vulnerability, brain viability, and timing of intervention. The treatment of ischemic stroke has evolved into urgent active interventions, as 'time is brain'. Functional imaging such as positron emission tomography (PET)/single photon emission computed tomography (SPECT) could improve selection of patients with a vulnerable plaque and evaluation of brain viability in ischemic stroke. Objective: To describe the current applications of PET and SPECT as a diagnostic tool in relation to ischemic stroke. Methods: A literature search using PubMed identified articles. Manual cross-referencing was also performed. Results: Several papers, all observational studies, identified PET/SPECT to be used as a tool to monitor systemic atheroma modifying treatment and to select high-risk patients for surgery regardless of the degree of luminal stenosis in carotid lesions. Furthermore, PET/SPECT is able to quantify the penumbra region during ischemic stroke and in this way may identify those patients who may benefit from timely intervention. Discussion: Functional imaging modalities such as PET/SPECT may become important tools for risk-assessment and evaluation of treatment strategies in carotid plaque vulnerability and brain viability. Prospective clinical studies are needed to evaluate the diagnostic accuracy of PET/SPECT.

  15. Diffusion tensor imaging of post mortem multiple sclerosis brain.

    Science.gov (United States)

    Schmierer, Klaus; Wheeler-Kingshott, Claudia A M; Boulby, Phil A; Scaravilli, Francesco; Altmann, Daniel R; Barker, Gareth J; Tofts, Paul S; Miller, David H

    2007-04-01

    Magnetic resonance imaging (MRI) is being used to probe the central nervous system (CNS) of patients with multiple sclerosis (MS), a chronic demyelinating disease. Conventional T(2)-weighted MRI (cMRI) largely fails to predict the degree of patients' disability. This shortcoming may be due to poor specificity of cMRI for clinically relevant pathology. Diffusion tensor imaging (DTI) has shown promise to be more specific for MS pathology. In this study we investigated the association between histological indices of myelin content, axonal count and gliosis, and two measures of DTI (mean diffusivity [MD] and fractional anisotropy [FA]), in unfixed post mortem MS brain using a 1.5-T MR system. Both MD and FA were significantly lower in post mortem MS brain compared to published data acquired in vivo. However, the differences of MD and FA described in vivo between white matter lesions (WMLs) and normal-appearing white matter (NAWM) were retained in this study of post mortem brain: average MD in WMLs was 0.35x10(-3) mm(2)/s (SD, 0.09) versus 0.22 (0.04) in NAWM; FA was 0.22 (0.06) in WMLs versus 0.38 (0.13) in NAWM. Correlations were detected between myelin content (Tr(myelin)) and (i) FA (r=-0.79, ppost mortem MS brain.

  16. Visualization of sound generation: special imaging techniques

    Science.gov (United States)

    Hahlweg, Cornelius F.; Skaloud, Daniel C.; Gutzmann, Holger L.; Kutz, Sascha; Rothe, Hendrik

    2013-09-01

    The present paper is dedicated to the Optics and Music session of the Novel Systems Design and Optimization XVI Conference. It is intended as an informative paper for the music enthusiasts. Included are some examples of visualization of sound generation and vibration modes of musically relevant objects and processes - record playback, an electric guitar and a wine glass - using high speed video, borescopic view and cross polarization techniques.

  17. Technique development for photoacoustic imaging guided interventions

    Science.gov (United States)

    Cheng, Qian; Zhang, Haonan; Yuan, Jie; Feng, Ting; Xu, Guan; Wang, Xueding

    2015-03-01

    Laser-induced thermotherapy (LITT), i.e. tissue destruction induced by a local increase of temperature by means of laser light energy transmission, has been frequently used for minimally invasive treatments of various diseases such as benign thyroid nodules and liver cancer. The emerging photoacoustic (PA) imaging, when integrated with ultrasound (US), could contribute to LITT procedure. PA can enable a good visualization of percutaneous apparatus deep inside tissue and, therefore, can offer accurate guidance of the optical fibers to the target tissue. Our initial experiment demonstrated that, by picking the strong photoacoustic signals generated at the tips of optical fibers as a needle, the trajectory and position of the fibers could be visualized clearly using a commercial available US unit. When working the conventional US Bscan mode, the fibers disappeared when the angle between the fibers and the probe surface was larger than 60 degree; while working on the new PA mode, the fibers could be visualized without any problem even when the angle between the fibers and the probe surface was larger than 75 degree. Moreover, with PA imaging function integrated, the optical fibers positioned into the target tissue, besides delivering optical energy for thermotherapy, can also be used to generate PA signals for on-line evaluation of LITT. Powered by our recently developed PA physio-chemical analysis, PA measurements from the tissue can provide a direct and accurate feedback of the tissue responses to laser ablation, including the changes in not only chemical compositions but also histological microstructures. The initial experiment on the rat liver model has demonstrated the excellent sensitivity of PA imaging to the changes in tissue temperature rise and tissue status (from native to coagulated) when the tissue is treated in vivo with LITT.

  18. Extraction of Information from Images using Dewrapping Techniques

    Directory of Open Access Journals (Sweden)

    Khalid Nazim S. A.

    2010-11-01

    Full Text Available An image containing textual information is called a document image. The textual information in document images is useful in areas like vehicle number plate reading, passport reading and cargo container reading and so on. Thus extracting useful textual information in the document image plays an important role in many applications. One of the major challenges in camera document analysis is to deal with the wrap and perspective distortions. In spite of the prevalence of dewrapping techniques, there is no standard efficient algorithm for the performance evaluation that concentrates on visualization. Wrapping is a common appearance document image before recognition. In order to capture the document images a mobile camera of 2megapixel resolution is used. A database is developed with variations in background, size and colour along with wrapped images, blurred and clean images. This database will be explored and text extraction from those document images is performed. In case of wrapped images no efficient dewrapping techniques have been implemented till date. Thus extracting the text from the wrapped images is done by maintaining a suitable template database. Further, the extracted text from the wrapped or other document images will be converted into an editable form such as Notepad or MS word document. The experimental results were corroborated on various objects of database.

  19. The application of tDCS in psychiatric disorders: a brain imaging view

    Directory of Open Access Journals (Sweden)

    Chris Baeken

    2016-03-01

    Full Text Available Background: Transcranial direct current stimulation (tDCS is a non-invasive, non-convulsive technique for modulating brain function. In contrast to other non-invasive brain stimulation techniques, where costs, clinical applicability, and availability limit their large-scale use in clinical practices, the low-cost, portable, and easy-to-use tDCS devices may overcome these restrictions. Objective: Despite numerous clinical applications in large numbers of patients suffering from psychiatric disorders, it is not quite clear how tDCS influences the mentally affected human brain. In order to decipher potential neural mechanisms of action of tDCS in patients with psychiatric conditions, we focused on the combination of tDCS with neuroimaging techniques. Design: We propose a contemporary overview on the currently available neurophysiological and neuroimaging data where tDCS has been used as a research or treatment tool in patients with psychiatric disorders. Results: Over a reasonably short period of time, tDCS has been broadly used as a research tool to examine neuronal processes in the healthy brain. tDCS has also commonly been applied as a treatment application in a variety of mental disorders, with to date no straightforward clinical outcome and not always accompanied by brain imaging techniques. Conclusion: tDCS, as do other neuromodulation devices, clearly affects the underlying neuronal processes. However, research on these mechanisms in psychiatric patients is rather limited. A better comprehension of how tDCS modulates brain function will help us to define optimal parameters of stimulation in each indication and may result in the detection of biomarkers in favor of clinical response.

  20. Coded Aperture Nuclear Scintigraphy: A Novel Small Animal Imaging Technique

    Directory of Open Access Journals (Sweden)

    Dawid Schellingerhout

    2002-10-01

    Full Text Available We introduce and demonstrate the utility of coded aperture (CA nuclear scintigraphy for imaging small animals. CA imaging uses multiple pinholes in a carefully designed mask pattern, mounted on a conventional gamma camera. System performance was assessed using point sources and phantoms, while several animal experiments were performed to test the usefulness of the imaging system in vivo, with commonly used radiopharmaceuticals. The sensitivity of the CA system for 99mTc was 4.2 × 103 cps/Bq (9400 cpm/μCi, compared to 4.4 × 104 cps/Bq (990 cpm/μCi for a conventional collimator system. The system resolution was 1.7 mm, as compared to 4–6 mm for the conventional imaging system (using a high-sensitivity low-energy collimator. Animal imaging demonstrated artifact-free imaging with superior resolution and image quality compared to conventional collimator images in several mouse and rat models. We conclude that: (a CA imaging is a useful nuclear imaging technique for small animal imaging. The advantage in signal-to-noise can be traded to achieve higher resolution, decreased dose or reduced imaging time. (b CA imaging works best for images where activity is concentrated in small volumes; a low count outline may be better demonstrated using conventional collimator imaging. Thus, CA imaging should be viewed as a technique to complement rather than replace traditional nuclear imaging methods. (c CA hardware and software can be readily adapted to existing gamma cameras, making their implementation a relatively inexpensive retrofit to most systems.

  1. Colored Digital Image Watermarking using the Wavelet Technique

    Directory of Open Access Journals (Sweden)

    Mohammed F. Al-Hunaity

    2007-01-01

    Full Text Available With the revolution of information technology and Wide Area Networking, data has become less and less private where the access of media as well as the attempts to change and manipulate the contents of media data have become a common case. For that, we need to use a watermarking technique to protect the copyright of the media as well as for digital right management but without leaving a visual effect. We presented a watermarking technique that deals with images where the used technique to embed a wavelet compressed watermark image within the least significant bit (LSB of the cover image pixels in a specific pattern which won't be visible after embedding and will cause the cover image to become copyrighted using the embedded watermark image that can be extracted later.

  2. PANDA: a pipeline toolbox for analyzing brain diffusion images

    Directory of Open Access Journals (Sweden)

    Zaixu eCui

    2013-02-01

    Full Text Available Diffusion magnetic resonance imaging (dMRI is widely used in both scientific research and clinical practice in in-vivo studies of the human brain. While a number of post-processing packages have been developed, fully automated processing of dMRI datasets remains challenging. Here, we developed a MATLAB toolbox named Pipeline for Analyzing braiN Diffusion imAges (PANDA for fully automated processing of brain diffusion images. The processing modules of a few established packages, including FMRIB Software Library (FSL, Pipeline System for Octave and Matlab (PSOM, Diffusion Toolkit and MRIcron, were employed in PANDA. Using any number of raw dMRI datasets from different subjects, in either DICOM or NIfTI format, PANDA can automatically perform a series of steps to process DICOM/NIfTI to diffusion metrics (e.g., FA and MD that are ready for statistical analysis at the voxel-level, the atlas-level and the Tract-Based Spatial Statistics (TBSS-level and can finish the construction of anatomical brain networks for all subjects. In particular, PANDA can process different subjects in parallel, using multiple cores either in a single computer or in a distributed computing environment, thus greatly reducing the time cost when dealing with a large number of datasets. In addition, PANDA has a friendly graphical user interface (GUI, allowing the user to be interactive and to adjust the input/output settings, as well as the processing parameters. As an open-source package, PANDA is freely available at http://www.nitrc.org/projects/panda/. This novel toolbox is expected to substantially simplify the image processing of dMRI datasets and facilitate human structural connectome studies.

  3. PANDA: a pipeline toolbox for analyzing brain diffusion images.

    Science.gov (United States)

    Cui, Zaixu; Zhong, Suyu; Xu, Pengfei; He, Yong; Gong, Gaolang

    2013-01-01

    Diffusion magnetic resonance imaging (dMRI) is widely used in both scientific research and clinical practice in in-vivo studies of the human brain. While a number of post-processing packages have been developed, fully automated processing of dMRI datasets remains challenging. Here, we developed a MATLAB toolbox named "Pipeline for Analyzing braiN Diffusion imAges" (PANDA) for fully automated processing of brain diffusion images. The processing modules of a few established packages, including FMRIB Software Library (FSL), Pipeline System for Octave and Matlab (PSOM), Diffusion Toolkit and MRIcron, were employed in PANDA. Using any number of raw dMRI datasets from different subjects, in either DICOM or NIfTI format, PANDA can automatically perform a series of steps to process DICOM/NIfTI to diffusion metrics [e.g., fractional anisotropy (FA) and mean diffusivity (MD)] that are ready for statistical analysis at the voxel-level, the atlas-level and the Tract-Based Spatial Statistics (TBSS)-level and can finish the construction of anatomical brain networks for all subjects. In particular, PANDA can process different subjects in parallel, using multiple cores either in a single computer or in a distributed computing environment, thus greatly reducing the time cost when dealing with a large number of datasets. In addition, PANDA has a friendly graphical user interface (GUI), allowing the user to be interactive and to adjust the input/output settings, as well as the processing parameters. As an open-source package, PANDA is freely available at http://www.nitrc.org/projects/panda/. This novel toolbox is expected to substantially simplify the image processing of dMRI datasets and facilitate human structural connectome studies.

  4. Parkinson’s Disease Biomarkers Program Brain Imaging Repository

    OpenAIRE

    Ofori, Edward; Du, Guangwei; Babcock, Debra; Huang, Xuemei; Vaillancourt, David E.

    2015-01-01

    The Parkinson’s Disease Biomarkers Program (PDBP) is a multi-site study designed to identify Parkinson’s Disease (PD) biomarkers that can be used to improve the understanding of PD pathophysiology and to develop tools that provide novel measures to evaluate PD clinical trials. The PDBP consortium comprises numerous individual projects of which two are specifically geared to the development of brain imaging markers for diagnosis, progression, and prognosis of PD or related disorders. All study...

  5. Multivariate Analysis of Magnetic Resonance Imaging Signals of the Human Brain.

    Science.gov (United States)

    Miyawaki, Yoichi

    2016-01-01

    Magnetic resonance imaging (MRI) of the human brain plays an important role in the field of medical imaging as well as basic neuroscience. It measures proton spin relaxation, the time constant of which depends on tissue type, and allows us to visualize anatomical structures in the brain. It can also measure functional signals that depend on the local ratio of oxyhemoglobin to deoxyhemoglobin in the blood, which is believed to reflect the degree of neural activity in the corresponding area. MRI thus provides anatomical and functional information about the human brain with high spatial resolution. Conventionally, MRI signals are measured and analyzed for each individual voxel. However, these signals are essentially multivariate because they are measured from multiple voxels simultaneously, and the pattern of activity might carry more useful information than each individual voxel does. This paper reviews recent trends in multivariate analysis of MRI signals in the human brain, and discusses applications of this technique in the fields of medical imaging and neuroscience.

  6. A nested phosphorus and proton coil array for brain magnetic resonance imaging and spectroscopy.

    Science.gov (United States)

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Parasoglou, Prodromos

    2016-01-01

    A dual-nuclei radiofrequency coil array was constructed for phosphorus and proton magnetic resonance imaging and spectroscopy of the human brain at 7T. An eight-channel transceive degenerate birdcage phosphorus module was implemented to provide whole-brain coverage and significant sensitivity improvement over a standard dual-tuned loop coil. A nested eight-channel proton module provided adequate sensitivity for anatomical localization without substantially sacrificing performance on the phosphorus module. The developed array enabled phosphorus spectroscopy, a saturation transfer technique to calculate the global creatine kinase forward reaction rate, and single-metabolite whole-brain imaging with 1.4cm nominal isotropic resolution in 15min (2.3cm actual resolution), while additionally enabling 1mm isotropic proton imaging. This study demonstrates that a multi-channel array can be utilized for phosphorus and proton applications with improved coverage and/or sensitivity over traditional single-channel coils. The efficient multi-channel coil array, time-efficient pulse sequences, and the enhanced signal strength available at ultra-high fields can be combined to allow volumetric assessment of the brain and could provide new insights into the underlying energy metabolism impairment in several neurodegenerative conditions, such as Alzheimer's and Parkinson's diseases, as well as mental disorders such as schizophrenia.

  7. Quantitative magnetic resonance imaging of the fetal brain in utero: Methods and applications

    Institute of Scientific and Technical Information of China (English)

    Anat; Biegon; Chen; Hoffmann

    2014-01-01

    Application of modern magnetic resonance imaging(MRI) techniques to the live fetus in utero is a relatively recent endeavor. The relative advantages and disadvantages of clinical MRI relative to the widely used and accepted ultrasonographic approach are the subject of a continuing debate; however the focus of this review is on the even younger field of quantitative MRI as applied to non-invasive studies of fetal brain development. The techniques covered under this header include structural MRI when followed by quan-titative(e.g., volumetric) analysis, as well as quantita-tive analyses of diffusion weighted imaging, diffusion tensor imaging, magnetic resonance spectroscopy and functional MRI. The majority of the published work re-viewed here reflects information gathered from normal fetuses scanned during the 3rd trimester, with relatively smaller number of studies of pathological samples including common congenital pathologies such as ven-triculomegaly and viral infection.

  8. Bore hole image well logging technique

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Young Kwon; Kim, Geon Young; Bae, Dae Seok; Kim, Kyung Su; Ryu, Ji Hoon; Park, Kyung Woo; Ji, Sung Hoon

    2009-08-15

    As one of the investigation method which the underground geological features is direct drill investigation geological features condition of underground directness it will can confirm visually there is a strong point but the drill nose in compliance with war potential or a shock from the digging through process which it knows the orientation scattering, or, the capital where the destruction action which is mechanical will accompany it will be, also to the case where the ground condition is defective the nose Oh there is a possibility of being difficult also oneself getting to the evaluation which ground is accurate with being difficult, it operated and it was come. As the method which solves like this problem drill worker image photographing which is the possibility of getting the burn was introduced in about the drill worker wall. Drill worker image photographing it will be able to classify with 3 kind of electricity, the sound wave and optical science etc. on a large scale and these people are controlled and respectively amplitude and staring reaction of electric resistivity reaction and the sound wave, in order for the pixel price which digitizes optical science photograph etc. to confront clearly in spatial location it will be able to provide information concretely about rock floor etc., discontinuity surface situation and of the public wall travelling and inclination and the clearance

  9. Elderly depression diagnostic of diabetic patients by brain tissue pulsatility imaging

    Science.gov (United States)

    Hachemi, Mélouka Elkateb; Remeniéras, Jean-pierre; Desmidt, Thomas; Camus, Vincent; Tranquart, François

    2010-01-01

    Pulsatile motion of brain parenchyma results from cardiac and breathing cycles and consists in a rapid displacement in systole, with slow diastolic recovery. Based on the vascular depression concept and recent studies where a correlation was found between cerebral haemodynamics and depression in the elderly, we emitted the hypothesis that tissue brain motion due to perfusion is correlated to elderly depression associated with cardiovascular risk factors. Tissue Pulsatlity Imaging (TPI) is a new ultrasound technique developed firstly at the University of Washington to assess the brain tissue motion. We used TPI technique to measure the brain displacement of two groups of elderly patients with diabetes as a vascular risk factor. The first group is composed of 11 depressed diabetic patients. The second group is composed of 12 diabetic patients without depressive symptoms. Transcranial acquisitions were performed with a 1.8 MHz ultrasound phased array probe through the right temporal bone window. The acquisition of six cardiac cycles was realized on each patient with a frame rate of 23 frames/s. Displacements estimation was performed by off-line analysis. A significant decrease in brain pulsatility was observed in the group of depressed patients compared to the group of non depressed patients. Mean displacement magnitude was about 44±7 μm in the first group and 68±13 μm in the second group.

  10. Image evaluation of HIV encephalopathy: a multimodal approach using quantitative MR techniques

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Paulo T.C.; Escorsi-Rosset, Sara [University of Sao Paulo, Radiology Section, Internal Medicine Department, Ribeirao Preto School of Medicine, Sao Paulo (Brazil); Cervi, Maria C. [University of Sao Paulo, Department of Pediatrics, Ribeirao Preto School of Medicine, Sao Paulo (Brazil); Santos, Antonio Carlos [University of Sao Paulo, Radiology Section, Internal Medicine Department, Ribeirao Preto School of Medicine, Sao Paulo (Brazil); Hospital das Clinicas da FMRP-USP, Ribeirao Preto, SP (Brazil)

    2011-11-15

    A multimodal approach of the human immunodeficiency virus (HIV) encephalopathy using quantitative magnetic resonance (MR) techniques can demonstrate brain changes not detectable only with conventional magnetic resonance imaging (MRI). The aim of this study was to compare conventional MRI and MR quantitative techniques, such as magnetic resonance spectroscopy (MRS) and relaxometry and to determine whether quantitative techniques are more sensitive than conventional imaging for brain changes caused by HIV infection. We studied prospectively nine HIV positive children (mean age 6 years, from 5 to 8 years old) and nine controls (mean age 7.3 years; from 3 to 10 years), using MRS and relaxometry. Examinations were carried on 1.5-T equipment. HIV-positive patients presented with only minor findings and all control patients had normal conventional MR findings. MRS findings showed an increase in choline to creatine (CHO/CRE) ratios bilaterally in both frontal gray and white matter, in the left parietal white matter, and in total CHO/CRE ratio. In contrast, N-acetylaspartate to creatine (NAA/CRE) ratios did not present with any significant difference between both groups. Relaxometry showed significant bilateral abnormalities, with lengthening of the relaxation time in HIV positive in many regions. Conventional MRI is not sensitive for early brain changes caused by HIV infection. Quantitative techniques such as MRS and relaxometry appear as valuable tools in the diagnosis of these early changes. Therefore, a multimodal quantitative study can be useful in demonstrating and understanding the physiopathology of the disease. (orig.)

  11. Brain tumor segmentation based on a hybrid clustering technique

    OpenAIRE

    Eman Abdel-Maksoud; Mohammed Elmogy; Rashid Al-Awadi

    2015-01-01

    Image segmentation refers to the process of partitioning an image into mutually exclusive regions. It can be considered as the most essential and crucial process for facilitating the delineation, characterization, and visualization of regions of interest in any medical image. Despite intensive research, segmentation remains a challenging problem due to the diverse image content, cluttered objects, occlusion, image noise, non-uniform object texture, and other factors. There are many algorithms...

  12. Simultaneous MRI and PET imaging of a rat brain

    Science.gov (United States)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan K.; Sendhil Velan, S.; Kross, Brian; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Zorn, Carl; Marano, Gary D.

    2006-12-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.

  13. Simultaneous MRI and PET imaging of a rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Raylman, Raymond R [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Majewski, Stan [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Lemieux, Susan K [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Velan, S Sendhil [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Kross, Brian [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Popov, Vladimir [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Smith, Mark F [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Weisenberger, Andrew G [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Zorn, Carl [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Marano, Gary D [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States)

    2006-12-21

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.

  14. CATEGORICAL IMAGE COMPONENTS IN THE FORMING SYSTEM OF A MARKETING TECHNIQUES MANAGER’S IMAGE CULTURE

    Directory of Open Access Journals (Sweden)

    Anna Borisovna Cherednyakova

    2015-08-01

    Full Text Available Based on the understanding of the image culture formation of managers of marketing techniques, as a representative of the social and communication interaction of public structures, categorical apparatus of image culture with an emphasis on the etymology of the image, as an integral component of image culture was analyzed. Categorical components of the image are presented from the standpoint of image culture, as personal new formation, an integral part of the professional activity of the marketing techniques manager: object-communicative categorical component, subject-activity categorical component of image, personality-oriented categorical component, value-acmeological categorical component of image.The aim is to identify and justify the image categorical components as a component of image culture of the marketing techniques manager.Method and methodology of work – a general scientific research approach reflecting scientific apparatus of research.Results. Categorical components of the image, as an image culture component of manager of marketing techniques were defined.Practical implication of the results. The theoretical part of «Imageology» course, special course «Image culture of manager of marketing techniques», the theoretical and methodological study and the formation of image culture.

  15. An Useful Information Extraction using Image Mining Techniques from Remotely Sensed Image (RSI

    Directory of Open Access Journals (Sweden)

    Dr. C. Jothi Venkateswaran,

    2010-11-01

    Full Text Available Information extraction using mining techniques from remote sensing image (RSI is rapidly gaining attention among researchers and decision makers because of its potential in application oriented studies. Knowledge discovery from image poses many interesting challenges such as preprocessing the image data set, training the data and discovering useful image patterns applicable to many newapplication frontiers. In the image rich domain of RSI, image mining implies the synergy of data mining and image processing technology. Such culmination of techniques renders a valuable tool in information extraction. Also, this encompasses the problem of handling a larger data base of varied image data formats representing various levels ofinformation such as pixel, local and regional. In the present paper, various preprocessing corrections and techniques of image mining are discussed.

  16. The molecular imaging approach to image infections and inflammation by nuclear medicine techniques

    NARCIS (Netherlands)

    Signore, Alberto; Glaudemans, Andor W. J. M.

    2011-01-01

    Inflammatory and infectious diseases are a heterogeneous class of diseases that may be divided into infections, acute inflammation and chronic inflammation. Radiological imaging techniques have, with the exception of functional MRI, high sensitivity but lack in specificity. Nuclear medicine techniqu

  17. Image segmentation by EM-based adaptive pulse coupled neural networks in brain magnetic resonance imaging.

    Science.gov (United States)

    Fu, J C; Chen, C C; Chai, J W; Wong, S T C; Li, I C

    2010-06-01

    We propose an automatic hybrid image segmentation model that integrates the statistical expectation maximization (EM) model and the spatial pulse coupled neural network (PCNN) for brain magnetic resonance imaging (MRI) segmentation. In addition, an adaptive mechanism is developed to fine tune the PCNN parameters. The EM model serves two functions: evaluation of the PCNN image segmentation and adaptive adjustment of the PCNN parameters for optimal segmentation. To evaluate the performance of the adaptive EM-PCNN, we use it to segment MR brain image into gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). The performance of the adaptive EM-PCNN is compared with that of the non-adaptive EM-PCNN, EM, and Bias Corrected Fuzzy C-Means (BCFCM) algorithms. The result is four sets of boundaries for the GM and the brain parenchyma (GM+WM), the two regions of most interest in medical research and clinical applications. Each set of boundaries is compared with the golden standard to evaluate the segmentation performance. The adaptive EM-PCNN significantly outperforms the non-adaptive EM-PCNN, EM, and BCFCM algorithms in gray mater segmentation. In brain parenchyma segmentation, the adaptive EM-PCNN significantly outperforms the BCFCM only. However, the adaptive EM-PCNN is better than the non-adaptive EM-PCNN and EM on average. We conclude that of the three approaches, the adaptive EM-PCNN yields the best results for gray matter and brain parenchyma segmentation.

  18. Muscle perfusion and metabolic heterogeneity: insights from noninvasive imaging techniques

    DEFF Research Database (Denmark)

    Kalliokoski, Kari K; Scheede-Bergdahl, Celena; Kjaer, Michael

    2006-01-01

    Recent developments in noninvasive imaging techniques have enabled the study of local changes in perfusion and metabolism in skeletal muscle as well as patterns of heterogeneity in these variables in humans. In this review, the principles of these techniques along with some recent findings on fun...

  19. Techniques and software architectures for medical visualisation and image processing

    NARCIS (Netherlands)

    Botha, C.P.

    2005-01-01

    This thesis presents a flexible software platform for medical visualisation and image processing, a technique for the segmentation of the shoulder skeleton from CT data and three techniques that make contributions to the field of direct volume rendering. Our primary goal was to investigate the use

  20. The dynamic dielectric at a brain functional site and an EM wave approach to functional brain imaging.

    Science.gov (United States)

    Li, X P; Xia, Q; Qu, D; Wu, T C; Yang, D G; Hao, W D; Jiang, X; Li, X M

    2014-11-04

    Functional brain imaging has tremendous applications. The existing methods for functional brain imaging include functional Magnetic Resonant Imaging (fMRI), scalp electroencephalography (EEG), implanted EEG, magnetoencephalography (MEG) and Positron Emission Tomography (PET), which have been widely and successfully applied to various brain imaging studies. To develop a new method for functional brain imaging, here we show that the dielectric at a brain functional site has a dynamic nature, varying with local neuronal activation as the permittivity of the dielectric varies with the ion concentration of the extracellular fluid surrounding neurons in activation. Therefore, the neuronal activation can be sensed by a radiofrequency (RF) electromagnetic (EM) wave propagating through the site as the phase change of the EM wave varies with the permittivity. Such a dynamic nature of the dielectric at a brain functional site provides the basis for an RF EM wave approach to detecting and imaging neuronal activation at brain functional sites, leading to an RF EM wave approach to functional brain imaging.

  1. A Microwave Imaging and Enhancement Technique from Noisy Synthetic Data

    CERN Document Server

    Kundu, Anjan Kumar; Sanyal, Sugata

    2010-01-01

    An inverse iterative algorithm for microwave imaging based on moment method solution is presented here. The iterative scheme has been developed on constrained optimization technique and is certain to converge. Different mesh size for the model has been used here to overcome the Inverse Crime. The synthetic data at the receivers is contaminated with different percentage of noise. The ill-posedness of the problem is solved by Levenberg-Marquardt method. The algorithm is applied to synthetic data and the reconstructed image is then further enhanced through the Image enhancement technique

  2. Using image processing techniques on proximity probe signals in rotordynamics

    Science.gov (United States)

    Diamond, Dawie; Heyns, Stephan; Oberholster, Abrie

    2016-06-01

    This paper proposes a new approach to process proximity probe signals in rotordynamic applications. It is argued that the signal be interpreted as a one dimensional image. Existing image processing techniques can then be used to gain information about the object being measured. Some results from one application is presented. Rotor blade tip deflections can be calculated through localizing phase information in this one dimensional image. It is experimentally shown that the newly proposed method performs more accurately than standard techniques, especially where the sampling rate of the data acquisition system is inadequate by conventional standards.

  3. Imaging Atmospheric Cerenkov Telescopes Techniques and Results

    CERN Document Server

    Bradbury, S M

    2001-01-01

    The hunt for cosmic TeV particle accelerators is prospering through Imaging Atmospheric Cerenkov Telescopes. We face challenges such as low light levels and MHz trigger rates, and the need to distinguish between particle air showers stemming from primary gamma rays and those due to the hadronic cosmic ray background. Our test beam is provided by the Crab Nebula, a steady accelerator of particles to energies beyond 20 TeV. Highly variable gamma-ray emission, coincident with flares at longer wavelengths, is revealing the particle acceleration mechanisms at work in the relativistic jets of Active Galaxies. These 200 GeV to 20 TeV photons propagating over cosmological distances allow us to place a limit on the infra-red background linked to galaxy formation and, some speculate, to the decay of massive relic neutrinos. Gamma rays produced in neutralino annihilation or the evaporation of primordial black holes may also be detectable. These phenomena and a zoo of astrophysical objects will be the targets of the next...

  4. Improving Seismic Image with Advanced Processing Techniques

    Directory of Open Access Journals (Sweden)

    Mericy Lastra Cunill

    2012-07-01

    Full Text Available Taking Taking into account the need to improve the seismic image in the central area of Cuba, specifically in the area of the Venegas sector, located in the Cuban Folded Belt, the seismic data acquired by Cuba Petróleo (CUPET in the year 2007 was reprocessed according to the experience accumulated during the previous processing carried out in the same year, and the new geologic knowledge on the area. This was done with the objective of improving the results. The processing applied previously was analyzed by reprocessing the primary data with new focuses and procedures, among them are the following: the attenuation of the superficial wave with a filter in the Radon domain in its lineal variant, the change of the primary statics corrections of elevation by those of refraction, the study of velocity with the selection automatic biespectral of high density, the study of the anisotropy, the attenuation of the random noise, and the pre stack time and depth migration. As a result of this reprocessing, a structure that was not identified in the seismic sections of the previous processing was located at the top of a Continental Margin sediment located to the north of the sector that increased the potentialities of finding hydrocarbons in quantities of economic importance thus diminishing the risk of drilling in the sector Venegas.

  5. Improved LSB Steganograhy Technique for grayscale and RGB images

    Directory of Open Access Journals (Sweden)

    Raju

    2014-10-01

    Full Text Available A number of techniques are there to converse securely. Encryption and cryptography are enabling us to have a secure conversation. To protect privacy and communicate in an undetectable way it is required to use some steganography technique. This is to hide messages in some other media generally called cover object. In todays digital world where images are a common means of information sharing, most of the steganography techniques use digital images as a carrier for hiding message. In this paper a LSB based technique is proposed for steganograpgy. This technique is different from standard LSB technique that along with message hidden in LSB bits a part of message also resides at other selective bits using a key. The method is developed to increase the payload capacity and make detection impossible.

  6. Non-invasive parenchymal, vascular and metabolic high-frequency ultrasound and photoacoustic rat deep brain imaging.

    Science.gov (United States)

    Giustetto, Pierangela; Filippi, Miriam; Castano, Mauro; Terreno, Enzo

    2015-03-02

    Photoacoustics and high frequency ultrasound stands out as powerful tools for neurobiological applications enabling high-resolution imaging on the central nervous system of small animals. However, transdermal and transcranial neuroimaging is frequently affected by low sensitivity, image aberrations and loss of space resolution, requiring scalp or even skull removal before imaging. To overcome this challenge, a new protocol is presented to gain significant insights in brain hemodynamics by photoacoustic and high-frequency ultrasounds imaging with the animal skin and skull intact. The procedure relies on the passage of ultrasound (US) waves and laser directly through the fissures that are naturally present on the animal cranium. By juxtaposing the imaging transducer device exactly in correspondence to these selected areas where the skull has a reduced thickness or is totally absent, one can acquire high quality deep images and explore internal brain regions that are usually difficult to anatomically or functionally describe without an invasive approach. By applying this experimental procedure, significant data can be collected in both sonic and optoacoustic modalities, enabling to image the parenchymal and the vascular anatomy far below the head surface. Deep brain features such as parenchymal convolutions and fissures separating the lobes were clearly visible. Moreover, the configuration of large and small blood vessels was imaged at several millimeters of depth, and precise information were collected about blood fluxes, vascular stream velocities and the hemoglobin chemical state. This repertoire of data could be crucial in several research contests, ranging from brain vascular disease studies to experimental techniques involving the systemic administration of exogenous chemicals or other objects endowed with imaging contrast enhancement properties. In conclusion, thanks to the presented protocol, the US and PA techniques become an attractive noninvasive

  7. Automated delineation of stroke lesions using brain CT images

    Directory of Open Access Journals (Sweden)

    Céline R. Gillebert

    2014-01-01

    Full Text Available Computed tomographic (CT images are widely used for the identification of abnormal brain tissue following infarct and hemorrhage in stroke. Manual lesion delineation is currently the standard approach, but is both time-consuming and operator-dependent. To address these issues, we present a method that can automatically delineate infarct and hemorrhage in stroke CT images. The key elements of this method are the accurate normalization of CT images from stroke patients into template space and the subsequent voxelwise comparison with a group of control CT images for defining areas with hypo- or hyper-intense signals. Our validation, using simulated and actual lesions, shows that our approach is effective in reconstructing lesions resulting from both infarct and hemorrhage and yields lesion maps spatially consistent with those produced manually by expert operators. A limitation is that, relative to manual delineation, there is reduced sensitivity of the automated method in regions close to the ventricles and the brain contours. However, the automated method presents a number of benefits in terms of offering significant time savings and the elimination of the inter-operator differences inherent to manual tracing approaches. These factors are relevant for the creation of large-scale lesion databases for neuropsychological research. The automated delineation of stroke lesions from CT scans may also enable longitudinal studies to quantify changes in damaged tissue in an objective and reproducible manner.

  8. Registration of multimodal brain images: some experimental results

    Science.gov (United States)

    Chen, Hua-mei; Varshney, Pramod K.

    2002-03-01

    Joint histogram of two images is required to uniquely determine the mutual information between the two images. It has been pointed out that, under certain conditions, existing joint histogram estimation algorithms like partial volume interpolation (PVI) and linear interpolation may result in different types of artifact patterns in the MI based registration function by introducing spurious maxima. As a result, the artifacts may hamper the global optimization process and limit registration accuracy. In this paper we present an extensive study of interpolation-induced artifacts using simulated brain images and show that similar artifact patterns also exist when other intensity interpolation algorithms like cubic convolution interpolation and cubic B-spline interpolation are used. A new joint histogram estimation scheme named generalized partial volume estimation (GPVE) is proposed to eliminate the artifacts. A kernel function is involved in the proposed scheme and when the 1st order B-spline is chosen as the kernel function, it is equivalent to the PVI. A clinical brain image database furnished by Vanderbilt University is used to compare the accuracy of our algorithm with that of PVI. Our experimental results show that the use of higher order kernels can effectively remove the artifacts and, in cases when MI based registration result suffers from the artifacts, registration accuracy can be improved significantly.

  9. A Blind High-Capacity Wavelet-Based Steganography Technique for Hiding Images into other Images

    Directory of Open Access Journals (Sweden)

    HAMAD, S.

    2014-05-01

    Full Text Available The flourishing field of Steganography is providing effective techniques to hide data into different types of digital media. In this paper, a novel technique is proposed to hide large amounts of image data into true colored images. The proposed method employs wavelet transforms to decompose images in a way similar to the Human Visual System (HVS for more secure and effective data hiding. The designed model can blindly extract the embedded message without the need to refer to the original cover image. Experimental results showed that the proposed method outperformed all of the existing techniques not only imperceptibility but also in terms of capacity. In fact, the proposed technique showed an outstanding performance on hiding a secret image whose size equals 100% of the cover image while maintaining excellent visual quality of the resultant stego-images.

  10. The Real-Time Image Processing Technique Based on DSP

    Institute of Scientific and Technical Information of China (English)

    QI Chang; CHEN Yue-hua; HUANG Tian-shu

    2005-01-01

    This paper proposes a novel real-time image processing technique based on digital singnal processor (DSP). At the aspect of wavelet transform(WT) algorithm, the technique uses algorithm of second generation wavelet transform-lifting scheme WT that has low calculation complexity property for the 2-D image data processing. Since the processing effect of lifting scheme WT for 1-D data is better than the effect of it for 2-D data obviously, this paper proposes a reformative processing method: Transform 2-D image data to 1-D data sequence by linearization method, then process the 1-D data sequence by algorithm of lifting scheme WT. The method changes the image convolution mode,which based on the cross filtering of rows and columns. At the aspect of hardware realization, the technique optimizes the program structure of DSP to exert the operation power with the in-chip memorizer of DSP. The experiment results show that the real-time image processing technique proposed in this paper can meet the real-time requirement of video-image transmitting in the video surveillance system of electric power. So the technique is a feasible and efficient DSP solution.

  11. Peplography: an image restoration technique through scattering media

    Science.gov (United States)

    Cho, Myungjin; Cho, Ki-Ok; Kim, Youngjun

    2016-06-01

    In this paper, we propose an image restoration technique through scattering media. Under natural light an imaging through scattering media is a big challenge in many applications. To overcome this challenge, many methods have been reported such as non-invasive imaging, ghost imaging, and wavefront shaping. However, their results have not been sufficient for observers. In this paper, we estimate the scattering media by statistical estimation such as maximum likelihood estimation. By removing this estimated scattering media from the original image, we can obtain the image with only ballistic photons. Then, the ballistic photons can be detected by photon counting imaging concept. In addition, since each basic color channel has its own wavelength, color photon counting process can be implemented. To enhance the visual quality of the result image, a passive three-dimensional (3D) imaging technique such as integral imaging is used. To prove our method and show the better performance, we carried out optical experiments and calculate mean square error (MSE).

  12. Connecting combat-related mild traumatic brain injury with posttraumatic stress disorder symptoms through brain imaging.

    Science.gov (United States)

    Costanzo, Michelle E; Chou, Yi-Yu; Leaman, Suzanne; Pham, Dzung L; Keyser, David; Nathan, Dominic E; Coughlin, Mary; Rapp, Paul; Roy, Michael J

    2014-08-01

    Mild traumatic brain injury (mTBI) and posttraumatic stress disorder (PTSD) may share common symptom and neuropsychological profiles in military service members (SMs) following deployment; while a connection between the two conditions is plausible, the relationship between them has been difficult to discern. The intent of this report is to enhance our understanding of the relationship between findings on structural and functional brain imaging and symptoms of PTSD. Within a cohort of SMs who did not meet criteria for PTSD but were willing to complete a comprehensive assessment within 2 months of their return from combat deployment, we conducted a nested case-control analysis comparing those with combat-related mTBI to age/gender-matched controls with diffusion tensor imaging, resting state functional magnetic resonance imaging and a range of psychological measures. We report degraded white matter integrity in those with a history of combat mTBI, and a positive correlation between the white matter microstructure and default mode network (DMN) connectivity. Higher clinician-administered and self-reported subthreshold PTSD symptoms were reported in those with combat mTBI. Our findings offer a potential mechanism through which mTBI may alter brain function, and in turn, contribute to PTSD symptoms.

  13. Nondestructive evaluation technique using infrared thermography and terahertz imaging

    Science.gov (United States)

    Sakagami, Takahide; Shiozawa, Daiki; Tamaki, Yoshitaka; Iwama, Tatsuya

    2016-05-01

    Nondestructive testing (NDT) techniques using pulse heating infrared thermography and terahertz (THz) imaging were developed for detecting deterioration of oil tank floor, such as blister and delamination of corrosion protection coating, or corrosion of the bottom steel plate under coating. Experimental studies were conducted to demonstrate the practicability of developed techniques. It was found that the pulse heating infrared thermography was utilized for effective screening inspection and THz-TDS imaging technique performed well for the detailed inspection of coating deterioration and steel corrosion.

  14. A Review of Image Contrast Enhancement Methods and Techniques

    Directory of Open Access Journals (Sweden)

    G. Maragatham

    2015-02-01

    Full Text Available In this study we aim to provide a survey of existing enhancement techniques with their descriptions and present a detailed analysis of them. Since most of the images while capturing are affected by weather, poor lighting and the acquiring device itself, they suffer from poor contrast. Sufficient Contrast in an image makes an object distinguishable from the other objects and the background. Contrast enhancement improves the quality of images for human observer by expanding the dynamic range of input gray level. A plethora enhancement techniques have though emerged, none of them deem to be a universal one, thus becoming selective in application. In such a scenario, it has become imperative to provide a comprehensive survey of these contrast enhancement techniques used in digital image processing.

  15. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    DEFF Research Database (Denmark)

    Menze, Bjoern H.; Jakab, Andras; Bauer, Stefan

    2015-01-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low......- and high-grade glioma patients – manually annotated by up to four raters – and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74...... a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing...

  16. Imaging of sodium in the brain: a brief review.

    Science.gov (United States)

    Shah, N Jon; Worthoff, Wieland A; Langen, Karl-Josef

    2016-02-01

    Sodium-based MRI plays a vital role in the study of metabolism and can unveil valuable information about emerging and existing pathology--in particular in the human brain. Sodium is the second most abundant MR active nucleus in living tissue and, due to its quadrupolar nature, has magnetic properties not common to conventional proton MRI, which can reveal further insights, such as information on the compartmental distribution of intra- and extracellular sodium. Nevertheless, the use of sodium nuclei for imaging comes at the expense of a lower sensitivity and significantly reduced relaxation times, making in vivo sodium studies feasible only at high magnetic field strength and by the use of dedicated pulse sequences. Hybrid imaging combining sodium MRI and positron emission tomography (PET) simultaneously is a novel and promising approach to access information on dynamic metabolism with much increased, PET-derived specificity. Application of this new methodology is demonstrated herein using examples from tumour imaging.

  17. Brain Tumor Detection and Classification Using Deep Learning Classifier on MRI Images

    Directory of Open Access Journals (Sweden)

    V.P. Gladis Pushpa Rathi

    2015-05-01

    Full Text Available Magnetic Resonance Imaging (MRI has become an effective tool for clinical research in recent years and has found itself in applications such as brain tumour detection. In this study, tumor classification using multiple kernel-based probabilistic clustering and deep learning classifier is proposed. The proposed technique consists of three modules, namely segmentation module, feature extraction module and classification module. Initially, the MRI image is pre-processed to make it fit for segmentation and de-noising process is carried out using median filter. Then, pre-processed image is segmented using Multiple Kernel based Probabilistic Clustering (MKPC. Subsequently, features are extracted for every segment based on the shape, texture and intensity. After features extraction, important features will be selected using Linear Discriminant Analysis (LDA for classification purpose. Finally, deep learning classifier is employed for classification into tumor or non-tumor. The proposed technique is evaluated using sensitivity, specificity and accuracy. The proposed technique results are also compared with existing technique which uses Feed-Forward Back Propagation Network (FFBN. The proposed technique achieved an average sensitivity, specificity and accuracy of 0.88, 0.80 and 0.83, respectively with the highest values as about 1, 0.85 and 0.94. Improved results show the efficiency of the proposed technique.

  18. Data-driven forward model inference for EEG brain imaging.

    Science.gov (United States)

    Hansen, Sofie Therese; Hauberg, Søren; Hansen, Lars Kai

    2016-06-13

    Electroencephalography (EEG) is a flexible and accessible tool with excellent temporal resolution but with a spatial resolution hampered by volume conduction. Reconstruction of the cortical sources of measured EEG activity partly alleviates this problem and effectively turns EEG into a brain imaging device. The quality of the source reconstruction depends on the forward model which details head geometry and conductivities of different head compartments. These person-specific factors are complex to determine, requiring detailed knowledge of the subject's anatomy and physiology. In this proof-of-concept study, we show that, even when anatomical knowledge is unavailable, a suitable forward model can be estimated directly from the EEG. We propose a data-driven approach that provides a low-dimensional parametrization of head geometry and compartment conductivities, built using a corpus of forward models. Combined with only a recorded EEG signal, we are able to estimate both the brain sources and a person-specific forward model by optimizing this parametrization. We thus not only solve an inverse problem, but also optimize over its specification. Our work demonstrates that personalized EEG brain imaging is possible, even when the head geometry and conductivities are unknown.

  19. Diffusion Tensor Imaging Of the Brain in Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Jo Ann V. Antenor-Dorsey

    2014-10-01

    Full Text Available Individuals with Type 1 diabetes mellitus (T1DM are required to carefully manage their insulin dosing, dietary intake, and activity levels in order to maintain optimal blood sugar levels. Over time, exposure to hyperglycaemia is known to cause significant damage to the peripheral nervous system, but its impact on the central nervous system has been less well studied. Researchers have begun to explore the cumulative impact of commonly experienced blood glucose fluctuations on brain structure and function in patient populations. To date, these studies have typically used magnetic resonance imaging to measure regional grey and white matter volumes across the brain. However, newer methods, such as diffusion tensor imaging (DTI can measure the microstructural properties of white matter, which can be more sensitive to neurological effects than standard volumetric measures. Studies are beginning to use DTI to understand the impact of T1DM on white matter structure in the human brain. This work, its implications, future directions, and important caveats, are the focus of this review.

  20. Chest trauma in children: current imaging guidelines and techniques.

    LENUS (Irish Health Repository)

    Moore, Michael A

    2011-09-01

    Given the heterogeneous nature of pediatric chest trauma, the optimal imaging approach is tailored to the specific patient. Chest radiography remains the most important imaging modality for initial triage. The decision to perform a chest computed tomography scan should be based on the nature of the trauma, the child\\'s clinical condition, and the initial radiographic findings, taking the age-related pretest probabilities of serious injury into account. The principles of as low as reasonably achievable and Image Gently should be followed. The epidemiology and pathophysiology, imaging techniques, characteristic findings, and evidence-based algorithms for pediatric chest trauma are discussed.

  1. Digital signal processing techniques and applications in radar image processing

    CERN Document Server

    Wang, Bu-Chin

    2008-01-01

    A self-contained approach to DSP techniques and applications in radar imagingThe processing of radar images, in general, consists of three major fields: Digital Signal Processing (DSP); antenna and radar operation; and algorithms used to process the radar images. This book brings together material from these different areas to allow readers to gain a thorough understanding of how radar images are processed.The book is divided into three main parts and covers:* DSP principles and signal characteristics in both analog and digital domains, advanced signal sampling, and

  2. Brain Imaging of Nicotinic Receptors in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Jin Wu

    2010-01-01

    Full Text Available Neuronal nicotinic acetylcholine receptors (nAChRs are a family of ligand-gated ion channels which are widely distributed in the human brain. Several lines of evidence suggest that two major subtypes (α4β2 and α7 of nAChRs play an important role in the pathophysiology of Alzheimer's disease (AD. Postmortem studies demonstrated alterations in the density of these subtypes of nAChRs in the brain of patients with AD. Currently, nAChRs are one of the most attractive therapeutic targets for AD. Therefore, several researchers have made an effort to develop novel radioligands that can be used to study quantitatively the distribution of these two subtypes in the human brain with positron emission tomography (PET and single-photon emission computed tomography (SPECT. In this paper, we discuss the current topics on in vivo imaging of two subtypes of nAChRs in the brain of patients with AD.

  3. Application of Ultrasonic Techniques for Brain Injury Diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Kasili, P.M.; Mobley, J.; Norton, S.J.; Vo-Dinh, T.

    1999-09-19

    In this work, we evaluate methods for detecting brain injury using ultrasound. We have used simulations of ultrasonic fields in the head to model the phase distortion of the skull. In addition we present experimental data from the crania of large animals. The experimental data help us understand and evaluate the performance of different transducers in acquiring the backscatter data from the brain through the skull. Both the simulations and acquired data illustrate the superiority of lower-frequency (<= 1 MHz) ultrasonic fields for transcranial acquisition of signals from inside the brain. Additionally, the experimental work shows that the higher-frequency (5 MHz) ultrasound can also be useful in acquiring clean nearfield data to help detect the position of the inner boundary of the skull.

  4. Dense deformation field estimation for atlas-based segmentation of pathological MR brain images.

    Science.gov (United States)

    Bach Cuadra, M; De Craene, M; Duay, V; Macq, B; Pollo, C; Thiran, J-Ph

    2006-12-01

    Atlas registration is a recognized paradigm for the automatic segmentation of normal MR brain images. Unfortunately, atlas-based segmentation has been of limited use in presence of large space-occupying lesions. In fact, brain deformations induced by such lesions are added to normal anatomical variability and they may dramatically shift and deform anatomically or functionally important brain structures. In this work, we chose to focus on the problem of inter-subject registration of MR images with large tumors, inducing a significant shift of surrounding anatomical structures. First, a brief survey of the existing methods that have been proposed to deal with this problem is presented. This introduces the discussion about the requirements and desirable properties that we consider necessary to be fulfilled by a registration method in this context: To have a dense and smooth deformation field and a model of lesion growth, to model different deformability for some structures, to introduce more prior knowledge, and to use voxel-based features with a similarity measure robust to intensity differences. In a second part of this work, we propose a new approach that overcomes some of the main limitations of the existing techniques while complying with most of the desired requirements above. Our algorithm combines the mathematical framework for computing a variational flow proposed by Hermosillo et al. [G. Hermosillo, C. Chefd'Hotel, O. Faugeras, A variational approach to multi-modal image matching, Tech. Rep., INRIA (February 2001).] with the radial lesion growth pattern presented by Bach et al. [M. Bach Cuadra, C. Pollo, A. Bardera, O. Cuisenaire, J.-G. Villemure, J.-Ph. Thiran, Atlas-based segmentation of pathological MR brain images using a model of lesion growth, IEEE Trans. Med. Imag. 23 (10) (2004) 1301-1314.]. Results on patients with a meningioma are visually assessed and compared to those obtained with the most similar method from the state-of-the-art.

  5. Semi-automatic Epileptic Hot Spot Detection in ECD brain SPECT images

    Science.gov (United States)

    Papp, Laszlo; Zuhayra, Maaz; Henze, Eberhard

    A method is proposed to process ECD brain SPECT images representing epileptic hot spots inside the brain. For validation 35 ictal —interictal patient image data were processed. The images were registered by a normalized mutual information method, then the separation of the suspicious and normal brain areas were performed by two threshold-based segmentations. Normalization between the images was performed by local normal brain mean values. Based on the validation made by two medical physicians, minimal human intervention in the segmentation parameters was necessary to detect all epileptic spots and minimize the number of false spots inside the brain.

  6. Some Problems for Representations of Brain Organization Based on Activation in Functional Imaging

    Science.gov (United States)

    Sidtis, John J.

    2007-01-01

    Functional brain imaging has overshadowed traditional lesion studies in becoming the dominant approach to the study of brain-behavior relationships. The proponents of functional imaging studies frequently argue that this approach provides an advantage over lesion studies by observing normal brain activity in vivo without the disruptive effects of…

  7. Intraoperative image updating for brain shift following dural opening.

    Science.gov (United States)

    Fan, Xiaoyao; Roberts, David W; Schaewe, Timothy J; Ji, Songbai; Holton, Leslie H; Simon, David A; Paulsen, Keith D

    2016-09-09

    OBJECTIVE Preoperative magnetic resonance images (pMR) are typically coregistered to provide intraoperative navigation, the accuracy of which can be significantly compromised by brain deformation. In this study, the authors generated updated MR images (uMR) in the operating room (OR) to compensate for brain shift due to dural opening, and evaluated the accuracy and computational efficiency of the process. METHODS In 20 open cranial neurosurgical cases, a pair of intraoperative stereovision (iSV) images was acquired after dural opening to reconstruct a 3D profile of the exposed cortical surface. The iSV surface was registered with pMR to detect cortical displacements that were assimilated by a biomechanical model to estimate whole-brain nonrigid deformation and produce uMR in the OR. The uMR views were displayed on a commercial navigation system and compared side by side with the corresponding coregistered pMR. A tracked stylus was used to acquire coordinate locations of features on the cortical surface that served as independent positions for calculating target registration errors (TREs) for the coregistered uMR and pMR image volumes. RESULTS The uMR views were visually more accurate and well aligned with the iSV surface in terms of both geometry and texture compared with pMR where misalignment was evident. The average misfit between model estimates and measured displacements was 1.80 ± 0.35 mm, compared with the average initial misfit of 7.10 ± 2.78 mm between iSV and pMR, and the average TRE was 1.60 ± 0.43 mm across the 20 patients in the uMR image volume, compared with 7.31 ± 2.82 mm on average in the pMR cases. The iSV also proved to be accurate with an average error of 1.20 ± 0.37 mm. The overall computational time required to generate the uMR views was 7-8 minutes. CONCLUSIONS This study compensated for brain deformation caused by intraoperative dural opening using computational model-based assimilation of iSV cortical surface displacements. The u

  8. Technique of Embedding Depth Maps into 2D Images

    Institute of Scientific and Technical Information of China (English)

    Kazutake Uehira; Hiroshi Unno; Youichi Takashima

    2014-01-01

    This paper proposes a new technique that is used to embed depth maps into corresponding 2-dimensional (2D) images. Since a 2D image and its depth map are integrated into one type of image format, they can be treated as if they were one 2D image. Thereby, it can reduce the amount of data in 3D images by half and simplify the processes for sending them through networks because the synchronization between images for the left and right eyes becomes unnecessary. We embed depth maps in the quantized discrete cosine transform (DCT) data of 2D images. The key to this technique is whether the depth maps could be embedded into 2D images without perceivably deteriorating their quality. We try to reduce their deterioration by compressing the depth map data by using the differences from the next pixel to the left. We assume that there is only one non-zero pixel at most on one horizontal line in the DCT block because the depth map values change abruptly. We conduct an experiment to evaluate the quality of the 2D images embedded with depth maps and find that satisfactory quality could be achieved.

  9. [Novel endoscopic techniques to image the upper gastrointestinal tract].

    Science.gov (United States)

    Quénéhervé, Lucille; Neunlist, Michel; Bruley des Varannes, Stanislas; Tearney, Guillermo; Coron, Emmanuel

    2015-01-01

    Novel endoscopic techniques for the analysis of the digestive wall have recently been developed to allow investigating digestive diseases beyond standard "white-light" macroscopic imaging of the mucosal surface. Among innovative techniques under clinical evaluation, confocal endomicroscopy and optical frequency domain imaging (OFDI) are the most promising. Indeed, these techniques allow performing in vivo microscopy with different levels in terms of depths and magnification, as well as functional assessment of structures. Some of these techniques, such as capsule-based OFDI, are also less invasive than traditional endoscopy and might help screening large groups of patients for specific disorders, for instance oesophageal precancerous diseases. In this review, we will focus on the results obtained with these techniques in precancerous, inflammatory and neuromuscular disorders.

  10. Functional brain imaging in the dementias: role in early detection, differential diagnosis, and longitudinal studies

    Energy Technology Data Exchange (ETDEWEB)

    Devous, M.D. Sr. [Nuclear Medicine Center and Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX (United States)

    2002-12-01

    This review considers the role of functional brain imaging techniques in the dementias. The substantial assistance that especially single-photon emission tomography and positron emission tomography can play in the initial diagnosis of dementia and in the differential diagnosis of the specific dementing disorder is discussed. These techniques alone essentially match the sensitivity and specificity of clinical diagnoses in distinguishing Alzheimer's dementia (AD) from age-matched controls, from frontal lobe dementia and vascular dementia, and even from Lewy body dementia. Newer analytic techniques such as voxel-based correlational analyses and discriminant function analyses enhance the power of such differential diagnoses. Functional brain imaging techniques can also significantly assist in patient screening for clinical trials. The correlation of the observed deficits with specific patterns of cognitive abnormalities permits enhanced patient management and treatment planning and improved longitudinal assessment of outcome. It is also noteworthy that the classic abnormalities of temporoparietal and posterior cingulate hypoperfusion or hypometabolism appear to be present prior to symptom onset. These abnormalities predict progression to AD in the presence of the earliest of symptoms, and are present even in cognitively normal but at-risk subjects, with a severity proportional to the risk status. Even greater predictive ability for progression to AD is obtained by combining measures of perfusion or metabolism with risk factors, tau protein levels, hippocampal N-Acetyl aspartate concentrations, or hippocampal volume measures. (orig.)

  11. Magnetic resonance imaging safety of deep brain stimulator devices.

    Science.gov (United States)

    Oluigbo, Chima O; Rezai, Ali R

    2013-01-01

    Magnetic resonance imaging (MRI) has become the standard of care for the evaluation of different neurological disorders of the brain and spinal cord due to its multiplanar capabilities and excellent soft tissue resolution. With the large and increasing population of patients with implanted deep brain stimulation (DBS) devices, a significant proportion of these patients with chronic neurological diseases require evaluation of their primary neurological disease processes by MRI. The presence of an implanted DBS device in a magnetic resonance environment presents potential hazards. These include the potential for induction of electrical currents or heating in DBS devices, which can result in neurological tissue injury, magnetic field-induced device migration, or disruption of the operational aspects of the devices. In this chapter, we review the basic physics of potential interactions of the MRI environment with implanted DBS devices, summarize results from phantom studies and clinical series, and discuss present recommendations for safe MRI in patients with implanted DBS devices.

  12. Establishment of C6 brain glioma models through stereotactic technique for laser interstitial thermotherapy research

    Directory of Open Access Journals (Sweden)

    Jian Shi

    2015-01-01

    Conclusion: The rat C6 brain glioma model established in the study was a perfect model to study LITT of glioma. Infrared thermograph technique measured temperature conveniently and effectively. The technique is noninvasive, and the obtained data could be further processed using software used in LITT research. To measure deep-tissue temperature, combining thermocouple with infrared thermograph technique would present better results.

  13. Intraoperative fluorescence imaging for personalized brain tumor resection: Current state and future directions

    Directory of Open Access Journals (Sweden)

    Evgenii Belykh

    2016-10-01

    Full Text Available Introduction: Fluorescence-guided surgery is one of the rapidly emerging methods of surgical theranostics. In this review, we summarize current fluorescence techniques used in neurosurgical practice for brain tumor patients, as well as future applications of recent laboratory and translational studies.Methods: Review of the literature.Results: A wide spectrum of fluorophores that have been tested for brain surgery is reviewed. Beginning with a fluorescein sodium application in 1948 by Moore, fluorescence guided brain tumor surgery is either routinely applied in some centers or is under active study in clinical trials. Besides the trinity of commonly used drugs (fluorescein sodium, 5-ALA and ICG, less studied fluorescent stains, such as tetracyclines, cancer-selective alkylphosphocholine analogs, cresyl violet, acridine orange, and acriflavine can be used for rapid tumor detection and pathological tissue examination. Other emerging agents such as activity-based probes and targeted molecular probes that can provide biomolecular specificity for surgical visualization and treatment are reviewed. Furthermore, we review available engineering and optical solutions for fluorescent surgical visualization. Instruments for fluorescent-guided surgery are divided into wide-field imaging systems and hand-held probes. Recent advancements in quantitative fluorescence-guided surgery are discussed.Conclusion: We are standing on the doorstep of the era of marker-assisted tumor management. Innovations in the fields of surgical optics, computer image analysis, and molecular bioengineering are advancing fluorescence-guided tumor resection paradigms, leading to cell-level approaches to visualization and resection of brain tumors.

  14. Pattern recognition software and techniques for biological image analysis.

    Directory of Open Access Journals (Sweden)

    Lior Shamir

    Full Text Available The increasing prevalence of automated image acquisition systems is enabling new types of microscopy experiments that generate large image datasets. However, there is a perceived lack of robust image analysis systems required to process these diverse datasets. Most automated image analysis systems are tailored for specific types of microscopy, contrast methods, probes, and even cell types. This imposes significant constraints on experimental design, limiting their application to the narrow set of imaging methods for which they were designed. One of the approaches to address these limitations is pattern recognition, which was originally developed for remote sensing, and is increasingly being applied to the biology domain. This approach relies on training a computer to recognize patterns in images rather than developing algorithms or tuning parameters for specific image processing tasks. The generality of this approach promises to enable data mining in extensive image repositories, and provide objective and quantitative imaging assays for routine use. Here, we provide a brief overview of the technologies behind pattern recognition and its use in computer vision for biological and biomedical imaging. We list available software tools that can be used by biologists and suggest practical experimental considerations to make the best use of pattern recognition techniques for imaging assays.

  15. Pattern recognition software and techniques for biological image analysis.

    Science.gov (United States)

    Shamir, Lior; Delaney, John D; Orlov, Nikita; Eckley, D Mark; Goldberg, Ilya G

    2010-11-24

    The increasing prevalence of automated image acquisition systems is enabling new types of microscopy experiments that generate large image datasets. However, there is a perceived lack of robust image analysis systems required to process these diverse datasets. Most automated image analysis systems are tailored for specific types of microscopy, contrast methods, probes, and even cell types. This imposes significant constraints on experimental design, limiting their application to the narrow set of imaging methods for which they were designed. One of the approaches to address these limitations is pattern recognition, which was originally developed for remote sensing, and is increasingly being applied to the biology domain. This approach relies on training a computer to recognize patterns in images rather than developing algorithms or tuning parameters for specific image processing tasks. The generality of this approach promises to enable data mining in extensive image repositories, and provide objective and quantitative imaging assays for routine use. Here, we provide a brief overview of the technologies behind pattern recognition and its use in computer vision for biological and biomedical imaging. We list available software tools that can be used by biologists and suggest practical experimental considerations to make the be