WorldWideScience

Sample records for brain imaging study

  1. Brain imaging studies of sleep disorder

    International Nuclear Information System (INIS)

    Brain imaging studies of narcolepsy (NA)/cataplexy (CA), a typical sleep disorder, are summarized together with techniques of functional and structural imaging means. single photon emission CT (SPECT) is based on the distribution of tracers labeled by single photon emitters like 99mTc and 123I for seeing the blood flow and receptors. PET using positron emitters like 15O and 18F for blood flow and for glucose metabolism, respectively, is of higher resolution and more quantitative than SPECT. Functional MRI (fMRI) depicts the cerebral activity through signal difference by blood oxygenation level dependence (BOLD) effect, and MR spectroscopy (MRS) depicts and quantifies biomaterials through the difference of their nuclear chemical shifts in the magnetic field. Morphologic imaging studies involve the measurement of the volume of the region of interest by comparison with the reference region such as the whole brain volume. Voxel-based morphometry (VBM) has changed to its more advanced surface-based analysis (SBA) of T1-enhanced image. Diffusion tensor imaging (DTI) is based on the tissue water diffusion. Functional SPECT/PET studies have suggested the decrease of blood flow and metabolic activity in the hypothalamus (HT) and other related regions at the conscious resting state, and locally increased blood flow in cingulate gyrus (CG) and amygdaloid complex (AC) at affective CA/PA seizure. fMRI has suggested the hypoactivity of HT and hyperactivity of AC at the seizure. VBM-based studies have not given the consistent results, but DTI studies have suggested an important participation of AC at the seizure. (T.T.)

  2. Animal imaging studies of potential brain damage

    Science.gov (United States)

    Gatley, S. J.; Vazquez, M. E.; Rice, O.

    To date, animal studies have not been able to predict the likelihood of problems in human neurological health due to HZE particle exposure during space missions outside the Earth's magnetosphere. In ongoing studies in mice, we have demonstrated that cocaine stimulated locomotor activity is reduced by a moderate dose (120 cGy) of 1 GeV 56Fe particles. We postulate that imaging experiments in animals may provide more sensitive and earlier indicators of damage due to HZE particles than behavioral tests. Since the small size of the mouse brain is not well suited to the spatial resolution offered by microPET, we are now repeating some of our studies in a rat model. We anticipate that this will enable us to identify imaging correlates of behavioral endpoints. A specific hypothesis of our studies is that changes in the metabolic rate for glucose in striatum of animals will be correlated with alterations in locomotor activity. We will also evaluate whether the neuroprotective drug L-deprenyl reduces the effect of radiation on locomotor activity. In addition, we will conduct microPET studies of brain monoamine oxidase A and monoamine oxidase B in rats before and at various times after irradiation with HZE particles. The hypothesis is that monoamine oxidase A, which is located in nerve terminals, will be unchanged or decreased after irradiation, while monoamine oxidase B, which is located in glial cells, will be increased after irradiation. Neurochemical effects that could be measured using PET could in principle be applied in astronauts, in terms of detecting and monitoring subtle neurological damage that might have occurred during long space missions. More speculative uses of PET are in screening candidates for prolonged space missions (for example, for adequate reserve in critical brain circuits) and in optimizing medications to treat impairments after missions.

  3. Infrared Imaging System for Studying Brain Function

    Science.gov (United States)

    Mintz, Frederick; Mintz, Frederick; Gunapala, Sarath

    2007-01-01

    A proposed special-purpose infrared imaging system would be a compact, portable, less-expensive alternative to functional magnetic resonance imaging (fMRI) systems heretofore used to study brain function. Whereas a typical fMRI system fills a large room, and must be magnetically isolated, this system would fit into a bicycle helmet. The system would include an assembly that would be mounted inside the padding in a modified bicycle helmet or other suitable headgear. The assembly would include newly designed infrared photodetectors and data-acquisition circuits on integrated-circuit chips on low-thermal-conductivity supports in evacuated housings (see figure) arranged in multiple rows and columns that would define image coordinates. Each housing would be spring-loaded against the wearer s head. The chips would be cooled by a small Stirling Engine mounted contiguous to, but thermally isolated from, the portions of the assembly in thermal contact with the wearer s head. Flexible wires or cables for transmitting data from the aforementioned chips would be routed to an integrated, multichannel transmitter and thence through the top of the assembly to a patch antenna on the outside of the helmet. The multiple streams of data from the infrared-detector chips would be sent to a remote site, where they would be processed, by software, into a three-dimensional display of evoked potentials that would represent firing neuronal bundles and thereby indicate locations of neuronal activity associated with mental or physical activity. The 3D images will be analogous to current fMRI images. The data would also be made available, in real-time, for comparison with data in local or internationally accessible relational databases that already exist in universities and research centers. Hence, this system could be used in research on, and for the diagnosis of response from the wearer s brain to physiological, psychological, and environmental changes in real time. The images would also be

  4. Brain Imaging Studies of Developmental Stuttering.

    Science.gov (United States)

    Ingham, Roger J.

    2001-01-01

    A review of research on brain imaging of developmental stuttering concludes that findings increasingly point to a failure of normal temporal lobe activation during speech that may either contribute to (or is the result of) a breakdown in the sequencing of processing among premotor regions implicated in phonologic planning. (Contains references.)…

  5. Functional brain imaging studies on specificity of meridian and acupoints

    Institute of Scientific and Technical Information of China (English)

    Xuezhi Li; Xuguang Liu; Fanrong Liang

    2008-01-01

    At present,the specificity of meridians and acupoints has been studied using functional brain imaging techniques from many standpoints.including meridians,acupoints,and sham acupoints,as well as different meridians and acupoints,coordination of acupoints,and factors influencing meridian and acupoint specificity.Preliminary experimental data have demonstrated that acupuncture at meridians and acupoints is specific with regard to brain neural information.However,research findings are contradictory,which may be related to brain functional complexity,resolution of functional brain imaging techniques,and experimental design.Future studies should further improve study method,and should strictly control experimental conditions to better analyze experimental data and acquire more beneficial data.Because of its many advantages.the functional brain imaging technique is a promising method for studying meridian and acupoint specificity.

  6. New perspectives on using brain imaging to study CNS stimulants.

    Science.gov (United States)

    Lukas, Scott E

    2014-12-01

    While the recent application of brain imaging to study CNS stimulants has offered new insights into the fundamental factors that contribute to their use and abuse, many gaps remain. Brain circuits that mediate pleasure, dependence, craving and relapse are anatomically, neurophysiologically and neurochemically distinct from one another, which has guided the search for correlates of stimulant-seeking and taking behavior. However, unlike other drugs of abuse, metrics for tolerance and physical dependence on stimulants are not obvious. The dopamine theory of stimulant abuse does not sufficiently explain this disorder as serotonergic, GABAergic and glutamagergic circuits are clearly involved in stimulant pharmacology and so tracking the source of the "addictive" processes must adopt a more multimodal, multidisciplinary approach. To this end, both anatomical and functional magnetic resonance imaging (MRI), MR spectroscopy (MRS) and positron emission tomography (PET) are complementary and have equally contributed to our understanding of how stimulants affect the brain and behavior. New vistas in this area include nanotechnology approaches to deliver small molecules to receptors and use MRI to resolve receptor dynamics. Anatomical and blood flow imaging has yielded data showing that cognitive enhancers might be useful adjuncts in treating CNS stimulant dependence, while MRS has opened opportunities to examine the brain's readiness to accept treatment as GABA tone normalizes after detoxification. A desired outcome of the above approaches is being able to offer evidence-based rationales for treatment approaches that can be implemented in a more broad geographic area, where access to brain imaging facilities may be limited. This article is part of the Special Issue entitled 'CNS Stimulants'.

  7. Study of functional brain imaging for bilingual language cognition

    International Nuclear Information System (INIS)

    Bilingual and multilingual brain studies of language recognition is an interdisciplinary subject which needs to identify different levels involved in the neural representation of languages, such as neuroanatomical, neurofunctional, biochemical, psychological and linguistic levels. Furthermore, specific factor's such as age, manner of acquisition and environmental factors seem to affect the neural representation. Functional brain imaging, such as PET, SPECT and functional MRI can explore the neurolinguistics representation of bilingualism in the brain in subjects, and elucidate the neuronal mechanisms of bilingual language processing. Functional imaging methods show differences in the pattern of cerebral activation associated with a second language compared with the subject's native language. It shows that verbal memory processing in two unrelated languages is mediated by a common neural system with some distinct cortical areas. The different patterns of activation differ according to the language used. It also could be ascribed either to age of acquisition or to proficiency level. And attained proficiency is more important than age of acquisition as a determinant of the cortical representation of the second language. The study used PET and SPECT shows that sign and spoken language seem to be localized in the same brain areas, and elicit similar regional cerebral blood flow patterns. But for sign language perception, the functional anatomy overlaps that of language processing contain both auditory and visual components. And the sign language is dependent on spatial information too. (authors)

  8. Imaging study of brain damage from methanol intoxication of wine

    International Nuclear Information System (INIS)

    Objective: To investigate the imaging of CT and MRI in brain damage caused by methanol intoxication from false wine, and to study the relations between imaging manifestation and different degrees of the methanol intoxication. Method: Thirty nine cases with methanol intoxication from false wine were retrospectively reported, The latent period of these patients was 0-4 days, and the average latent period of these patients was 0.5 days, All cases were performed by serology examination, brain CT scan, and four cases performed by MRI scan after average 2.5 days (range, 1-6 days) the onset of methanol intoxication. Results: Six cases showed hyperintense signals in bilateral putamen, two cases also showed hyperintense signals in biolateral subcortex white substance regions. Four cases showed hyperintense signals in unilateral internal capsule. One case showed hyperintense changess in subcortex white substance regions. Our study showed the positive correlation between CT features and the amount of methanol and stage of clinic manifestation(χ2=4.232, P2=0.001, P>0.05). Conclusions: MRI was better than CT in finding early brain damage caused by methanol intoxication from false wine. The characteristic finding changes of the patients was showed mainly in in bilateral putamen, Prognosis for the patients combined with subcortex white substance lesion wasn't hopeful. (authors)

  9. Adapting Parcellation Schemes to Study Fetal Brain Connectivity in Serial Imaging Studies

    DEFF Research Database (Denmark)

    Cheng, Xi; Wilm, Jakob; Seshamani, Sharmishtaa;

    2013-01-01

    A crucial step in studying brain connectivity is the definition of the Regions Of Interest (ROI's) which are considered as nodes of a network graph. These ROI's identified in structural imaging reflect consistent functional regions in the anatomies being compared. However in serial studies...... demonstrate that the fetal brain network exhibits small-world characteristics and a pattern of increased cluster coefficients and decreased global efficiency. These findings may provide a route to creating a new biomarker for healthy fetal brain development....

  10. Memory networks in tinnitus: a functional brain image study.

    Directory of Open Access Journals (Sweden)

    Maura Regina Laureano

    Full Text Available Tinnitus is characterized by the perception of sound in the absence of an external auditory stimulus. The network connectivity of auditory and non-auditory brain structures associated with emotion, memory and attention are functionally altered in debilitating tinnitus. Current studies suggest that tinnitus results from neuroplastic changes in the frontal and limbic temporal regions. The objective of this study was to use Single-Photon Emission Computed Tomography (SPECT to evaluate changes in the cerebral blood flow in tinnitus patients with normal hearing compared with healthy controls.Twenty tinnitus patients with normal hearing and 17 healthy controls, matched for sex, age and years of education, were subjected to Single Photon Emission Computed Tomography using the radiotracer ethylenedicysteine diethyl ester, labeled with Technetium 99 m (99 mTc-ECD SPECT. The severity of tinnitus was assessed using the "Tinnitus Handicap Inventory" (THI. The images were processed and analyzed using "Statistical Parametric Mapping" (SPM8.A significant increase in cerebral perfusion in the left parahippocampal gyrus (pFWE <0.05 was observed in patients with tinnitus compared with healthy controls. The average total THI score was 50.8+18.24, classified as moderate tinnitus.It was possible to identify significant changes in the limbic system of the brain perfusion in tinnitus patients with normal hearing, suggesting that central mechanisms, not specific to the auditory pathway, are involved in the pathophysiology of symptoms, even in the absence of clinically diagnosed peripheral changes.

  11. Diffusion Tensor Imaging: Application to the Study of the Developing Brain

    Science.gov (United States)

    Cascio, Carissa J.; Gerig, Guido; Piven, Joseph

    2007-01-01

    Objective: To provide an overview of diffusion tensor imaging (DTI) and its application to the study of white matter in the developing brain in both healthy and clinical samples. Method: The development of DTI and its application to brain imaging of white matter tracts is discussed. Forty-eight studies using DTI to examine diffusion properties of…

  12. Multislice CT brain image registration for perfusion studies

    Science.gov (United States)

    Lin, Zhong Min; Pohlman, Scott; Chandra, Shalabh

    2002-04-01

    During the last several years perfusion CT techniques have been developed as an effective technique for clinically evaluating cerebral hemodynamics. Perfusion CT techniques are capable of measurings functional parameters such as tissue perfusion, blood flow, blood volume, and mean transit time and are commonly used to evaluate stroke patients. However, the quality of functional images of the brain frequently suffers from patient head motion. Because the time window for an effective treatment of stroke patient is narrow, a fast motion correction is required. The purpose of the paper is to present a fast and accurate registration technique for motion correction of multi-slice CT and to demonstrate the effects of the registration on perfusion calculation.

  13. Brain hypoxia imaging

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ho Chun [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-04-15

    The measurement of pathologically low levels of tissue pO{sub 2} is an important diagnostic goal for determining the prognosis of many clinically important diseases including cardiovascular insufficiency, stroke and cancer. The target tissues nowadays have mostly been tumors or the myocardium, with less attention centered on the brain. Radiolabelled nitroimidazole or derivatives may be useful in identifying the hypoxic cells in cerebrovascular disease or traumatic brain injury, and hypoxic-ischemic encephalopathy. In acute stroke, the target of therapy is the severely hypoxic but salvageable tissue. {sup 18}F-MISO PET and {sup 99m}Tc-EC-metronidazole SPECT in patients with acute ischemic stroke identified hypoxic tissues and ischemic penumbra, and predicted its outcome. A study using {sup 123}I-IAZA in patient with closed head injury detected the hypoxic tissues after head injury. Up till now these radiopharmaceuticals have drawbacks due to its relatively low concentration with hypoxic tissues associated with/without low blood-brain barrier permeability and the necessity to wait a long time to achieve acceptable target to background ratios for imaging in acute ischemic stroke. It is needed to develop new hypoxic marker exhibiting more rapid localization in the hypoxic region in the brain. And then, the hypoxic brain imaging with imidazoles or non-imidazoles may be very useful in detecting the hypoxic tissues, determining therapeutic strategies and developing therapeutic drugs in several neurological disease, especially, in acute ischemic stroke.

  14. Brain imaging and autism

    Energy Technology Data Exchange (ETDEWEB)

    Zilbovicius, M. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), INSERM CEA 0205, 91 - Orsay (France)

    2006-07-01

    Autism is a neuro-developmental disorder with a range of clinical presentations, from mild to severe, referred to as autism spectrum disorders (ASD). The most common clinical ASD sign is social interaction impairment, which is associated with verbal and non-verbal communication deficits and stereotyped and obsessive behaviors. Thanks to recent brain imaging studies, scientists are getting a better idea of the neural circuits involved in ASD. Indeed, functional brain imaging, such as positron emission tomography (PET), single positron emission tomograph y (SPECT) and functional MRI (fMRI) have opened a new perspective to study normal and pathological brain functions. Three independent studies have found anatomical and rest functional temporal abnormalities. These anomalies are localized in the superior temporal sulcus bilaterally which are critical for perception of key social stimuli. In addition, functional studies have shown hypo-activation of most areas implicated in social perception (face and voice perception) and social cognition (theory of mind). These data suggest an abnormal functioning of the social brain network. The understanding of such crucial abnormal mechanism may drive the elaboration of new and more adequate social re-educative strategies in autism. (author)

  15. Brain imaging and autism

    International Nuclear Information System (INIS)

    Autism is a neuro-developmental disorder with a range of clinical presentations, from mild to severe, referred to as autism spectrum disorders (ASD). The most common clinical ASD sign is social interaction impairment, which is associated with verbal and non-verbal communication deficits and stereotyped and obsessive behaviors. Thanks to recent brain imaging studies, scientists are getting a better idea of the neural circuits involved in ASD. Indeed, functional brain imaging, such as positron emission tomography (PET), single positron emission tomograph y (SPECT) and functional MRI (fMRI) have opened a new perspective to study normal and pathological brain functions. Three independent studies have found anatomical and rest functional temporal abnormalities. These anomalies are localized in the superior temporal sulcus bilaterally which are critical for perception of key social stimuli. In addition, functional studies have shown hypo-activation of most areas implicated in social perception (face and voice perception) and social cognition (theory of mind). These data suggest an abnormal functioning of the social brain network. The understanding of such crucial abnormal mechanism may drive the elaboration of new and more adequate social re-educative strategies in autism. (author)

  16. Brain imaging and human nutrition: which measures to use in intervention studies?

    Science.gov (United States)

    Sizonenko, Stéphane V; Babiloni, Claudio; de Bruin, Eveline A; Isaacs, Elizabeth B; Jönsson, Lena S; Kennedy, David O; Latulippe, Marie E; Mohajeri, M Hasan; Moreines, Judith; Pietrini, Pietro; Walhovd, Kristine B; Winwood, Robert J; Sijben, John W

    2013-08-01

    The present review describes brain imaging technologies that can be used to assess the effects of nutritional interventions in human subjects. Specifically, we summarise the biological relevance of their outcome measures, practical use and feasibility, and recommended use in short- and long-term nutritional studies. The brain imaging technologies described consist of MRI, including diffusion tensor imaging, magnetic resonance spectroscopy and functional MRI, as well as electroencephalography/magnetoencephalography, near-IR spectroscopy, positron emission tomography and single-photon emission computerised tomography. In nutritional interventions and across the lifespan, brain imaging can detect macro- and microstructural, functional, electrophysiological and metabolic changes linked to broader functional outcomes, such as cognition. Imaging markers can be considered as specific for one or several brain processes and as surrogate instrumental endpoints that may provide sensitive measures of short- and long-term effects. For the majority of imaging measures, little information is available regarding their correlation with functional endpoints in healthy subjects; therefore, imaging markers generally cannot replace clinical endpoints that reflect the overall capacity of the brain to behaviourally respond to specific situations and stimuli. The principal added value of brain imaging measures for human nutritional intervention studies is their ability to provide unique in vivo information on the working mechanism of an intervention in hypothesis-driven research. Selection of brain imaging techniques and target markers within a given technique should mainly depend on the hypothesis regarding the mechanism of action of the intervention, level (structural, metabolic or functional) and anticipated timescale of the intervention's effects, target population, availability and costs of the techniques.

  17. A survey of MRI-based medical image analysis for brain tumor studies

    Science.gov (United States)

    Bauer, Stefan; Wiest, Roland; Nolte, Lutz-P.; Reyes, Mauricio

    2013-07-01

    MRI-based medical image analysis for brain tumor studies is gaining attention in recent times due to an increased need for efficient and objective evaluation of large amounts of data. While the pioneering approaches applying automated methods for the analysis of brain tumor images date back almost two decades, the current methods are becoming more mature and coming closer to routine clinical application. This review aims to provide a comprehensive overview by giving a brief introduction to brain tumors and imaging of brain tumors first. Then, we review the state of the art in segmentation, registration and modeling related to tumor-bearing brain images with a focus on gliomas. The objective in the segmentation is outlining the tumor including its sub-compartments and surrounding tissues, while the main challenge in registration and modeling is the handling of morphological changes caused by the tumor. The qualities of different approaches are discussed with a focus on methods that can be applied on standard clinical imaging protocols. Finally, a critical assessment of the current state is performed and future developments and trends are addressed, giving special attention to recent developments in radiological tumor assessment guidelines.

  18. In vivo imaging of brain androgen receptors in rats: a [18F]FDHT PET study

    International Nuclear Information System (INIS)

    Introduction: Steroid hormones like androgens play an important role in the development and maintenance of several brain functions. Androgens can act through androgen receptors (AR) in the brain. This study aims to demonstrate the feasibility of positron emission tomography (PET) with 16β-[18F]fluoro-5α-dihydrotestosterone ([18F]FDHT) to image AR expression in the brain. Methods: Male Wistar rats were either orchiectomized to inhibit endogenous androgen production or underwent sham-surgery. Fifteen days after surgery, rats were subjected to a 90-min dynamic [18F]FDHT PET scan with arterial blood sampling. In a subset of orchiectomized rats, 1 mg/kg dihydrotestosterone was co-injected with the tracer in order to saturate the AR. Plasma samples were analyzed for the presence of radioactive metabolites by radio-TLC. Pharmacokinetic modeling was performed to quantify brain kinetics of the tracer. After the PET scan, the animals were terminated for ex-vivo biodistribution. Results: PET imaging and ex vivo biodistribution studies showed low [18F]FDHT uptake in all brain regions, except pituitary. [18F]FDHT uptake in the surrounding cranial bones was high and increased over time. [18F]FDHT was rapidly metabolized in rats. Metabolism was significantly faster in orchiectomized rats than in sham-orchiectomized rats. Quantitative analysis of PET data indicated substantial spill-over of activity from cranial bones into peripheral brain regions, which prevented further analysis of peripheral brain regions. Logan graphical analysis and kinetic modeling using 1- and 2-tissue compartment models showed reversible and homogenously distributed tracer uptake in central brain regions. [18F]FDHT uptake in the brain could not be blocked by endogenous androgens or administration of dihydrotestosterone. Conclusion: The results of this study indicate that imaging of AR availability in rat brain with [18F]FDHT PET is not feasible. The low AR expression in the brain, the rapid metabolism of

  19. Human brain imaging

    International Nuclear Information System (INIS)

    Just as there have been dramatic advances in the molecular biology of the human brain in recent years, there also have been remarkable advances in brain imaging. This paper reports on the development and broad application of microscopic imaging techniques which include the autoradiographic localization of receptors and the measurement of glucose utilization by autoradiography. These approaches provide great sensitivity and excellent anatomical resolution in exploring brain organization and function. The first noninvasive external imaging of receptor distributions in the living human brain was achieved by positron emission tomography (PET) scanning. Developments, techniques and applications continue to progress. Magnetic resonance imaging (MRI) is also becoming important. Its initial clinical applications were in examining the structure and anatomy of the brain. However, more recent uses, such as MRI spectroscopy, indicate the feasibility of exploring biochemical pathways in the brain, the metabolism of drugs in the brain, and also of examining some of these procedures at an anatomical resolution which is substantially greater than that obtainable by PET scanning. The issues will be discussed in greater detail

  20. Data quality in diffusion tensor imaging studies of the preterm brain : a systematic review

    NARCIS (Netherlands)

    Pieterman, Kay; Plaisier, Annemarie; Govaert, Paul; Leemans, A; Lequin, Maarten H.; Dudink, Jeroen

    2015-01-01

    BACKGROUND: To study early neurodevelopment in preterm infants, evaluation of brain maturation and injury is increasingly performed using diffusion tensor imaging, for which the reliability of underlying data is paramount. OBJECTIVE: To review the literature to evaluate acquisition and processing me

  1. Functional Brain Imaging

    Directory of Open Access Journals (Sweden)

    K. Vessal

    2005-08-01

    Full Text Available Introduction & Background: The historical evolution of concepts of the mind has had a tremendous impact on human civilization. Aside from Smith’s surgical papyrus, there exists practically no documentation down to the era of Hippocrates. While in Corpus, the seat of all sensations is put in the brain, there is an amazing regression, for many centuries thereafter notably influenced by Aristotle, to displace it to the heart. This erroneous diversion promulgated in De Anima with minor corrections by Galen, has per-petuated to our time when we say, for example, that we love something with our very hearts or “knowing by heart” when we mean to memorize something. Avicenna challenged many of Aristotle’s ideas in El-monnafs (psychology section of Al Shafa, paving the road for the later European Renaissance. Cartesian choice of pineal body as the seat of soul in the first half of the 7th century was a fundamental departure from brain-soul dichotomy. It was followed by Gall’s pseudo-science, phrenology, as the first attempt of brain mapping in ascribing “mental faculties” to the speculative “organs” of the brain. Brain mapping through Functional Brain Imaging has flourished ex-tensively in the past decades -starting from PET with later substitution by fMRI- as robust tools for interro-gating mysteries of the brain. With a surprising pace of development, Functional Brain Imaging heralds a welcome adjunct to the science of radiology in ex-ploring mind and human behavior. Given the multi-tude of appropriate MRI machines operating across the country, attention to this aspect of imaging can invigorate research in radiology and boost generation of knowledge in this rapidly growing field. Recent advances in MRI fast imaging, fMRI, as well as clini-cal and spectroscopic imaging with present clinical application and future trends are discussed.

  2. Psychosis and autism: magnetic resonance imaging study of brain anatomy.

    LENUS (Irish Health Repository)

    Toal, Fiona

    2009-05-01

    Autism-spectrum disorder is increasingly recognised, with recent studies estimating that 1% of children in South London are affected. However, the biology of comorbid mental health problems in people with autism-spectrum disorder is poorly understood.

  3. Brain Image Motion Correction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus;

    2015-01-01

    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  4. Data quality in diffusion tensor imaging studies of the preterm brain: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Pieterman, Kay; Plaisier, Annemarie; Dudink, Jeroen [Erasmus Medical Center - Sophia, Division of Neonatology, Department of Pediatrics, dr. Molewaterplein 60, GJ, Rotterdam (Netherlands); Department of Radiology, Erasmus Medical Center, Rotterdam (Netherlands); Govaert, Paul [Erasmus Medical Center - Sophia, Division of Neonatology, Department of Pediatrics, dr. Molewaterplein 60, GJ, Rotterdam (Netherlands); Department of Pediatrics, Koningin Paola Children' s Hospital, Antwerp (Belgium); Leemans, Alexander [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Lequin, Maarten H. [Department of Radiology, Erasmus Medical Center, Rotterdam (Netherlands)

    2015-08-15

    To study early neurodevelopment in preterm infants, evaluation of brain maturation and injury is increasingly performed using diffusion tensor imaging, for which the reliability of underlying data is paramount. To review the literature to evaluate acquisition and processing methodology in diffusion tensor imaging studies of preterm infants. We searched the Embase, Medline, Web of Science and Cochrane databases for relevant papers published between 2003 and 2013. The following keywords were included in our search: prematurity, neuroimaging, brain, and diffusion tensor imaging. We found 74 diffusion tensor imaging studies in preterm infants meeting our inclusion criteria. There was wide variation in acquisition and processing methodology, and we found incomplete reporting of these settings. Nineteen studies (26%) reported the use of neonatal hardware. Data quality assessment was not reported in 13 (18%) studies. Artefacts-correction and data-exclusion was not reported in 33 (45%) and 18 (24%) studies, respectively. Tensor estimation algorithms were reported in 56 (76%) studies but were often suboptimal. Diffusion tensor imaging acquisition and processing settings are incompletely described in current literature, vary considerably, and frequently do not meet the highest standards. (orig.)

  5. Functional brain imaging

    International Nuclear Information System (INIS)

    Functional magnetic resonance imaging (fMRI) is a non-invasive method that has become one of the major tools for understanding human brain function and in recent years has also been developed for clinical applications. Changes in hemodynamic signals correspond to changes in neuronal activity with good spatial and temporal resolution in fMRI. Using high-field MR systems and increasingly dedicated statistics and postprocessing, activated brain areas can be detected and superimposed on anatomical images. Currently, fMRI data are often combined in multimodal imaging, e. g. with diffusion tensor imaging (DTI) sequences. This method is helping to further understand the physiology of cognitive brain processes and is also being used in a number of clinical applications. In addition to the blood oxygenation level-dependent (BOLD) signals, this article deals with the construction of fMRI investigations, selection of paradigms and evaluation in the clinical routine. Clinically, this method is mainly used in the planning of brain surgery, analyzing the location of brain tumors in relation to eloquent brain areas and the lateralization of language processing. As the BOLD signal is dependent on the strength of the magnetic field as well as other limitations, an overview of recent developments is given. Increases of magnetic field strength (7 T), available head coils and advances in MRI analytical methods have led to constant improvement in fMRI signals and experimental design. Especially the depiction of eloquent brain regions can be done easily and quickly and has become an essential part of presurgical planning. (orig.)

  6. MRI brain imaging.

    Science.gov (United States)

    Skinner, Sarah

    2013-11-01

    General practitioners (GPs) are expected to be allowed to request MRI scans for adults for selected clinically appropriate indications from November 2013 as part of the expansion of Medicare-funded MRI services announced by the Federal Government in 2011. This article aims to give a brief overview of MRI brain imaging relevant to GPs, which will facilitate explanation of scan findings and management planning with their patients. Basic imaging techniques, common findings and terminology are presented using some illustrative case examples.

  7. Altered human brain anatomy in chronic smokers: a review of magnetic resonance imaging studies.

    Science.gov (United States)

    Wang, Chao; Xu, Xiaojun; Qian, Wei; Shen, Zhujing; Zhang, Minming

    2015-04-01

    Cigarette smoking is becoming more prevalent in developing countries, such as China, and is the largest single cause of preventable death worldwide. New emerging reports are highlighting how chronic cigarette smoking plays a role in neural dysfunctions, such as cognitive decline. Basic animal experimental studies have shown that rats undergo persistent pathological brain changes after being given chronic levels of nicotine. What is perhaps less appreciated is the fact that chronic cigarette smoking induces subtle anatomical changes in the human brain. Consequently, this chapter aims to summarize and integrate the existing magnetic resonance imaging studies on both gray- and white-matter marcostructural and microstructural changes. The reviewed studies demonstrate that chronic cigarette smoking results in discrete and localized alterations in brain region tissue (both the gray and white matter of different brain regions), which may, in part, be responsible for different neural dysfunctions. In addition, we further discuss the possible pathological and neurobiological mechanisms of these nicotinic effects on the brain tissue. We will also address the limitations of the current studies on this issue and identify opportunities for future research. PMID:25577510

  8. Acute ischaemic brain lesions in intracerebral haemorrhage: multicentre cross-sectional magnetic resonance imaging study.

    Science.gov (United States)

    Gregoire, Simone M; Charidimou, Andreas; Gadapa, Naveen; Dolan, Eamon; Antoun, Nagui; Peeters, Andre; Vandermeeren, Yves; Laloux, Patrice; Baron, Jean-Claude; Jäger, Hans R; Werring, David J

    2011-08-01

    Subclinical acute ischaemic lesions on brain magnetic resonance imaging have recently been described in spontaneous intracerebral haemorrhage, and may be important to understand pathophysiology and guide treatment. The underlying mechanisms are uncertain. We tested the hypothesis that ischaemic lesions are related to magnetic resonance imaging markers of the severity and type of small-vessel disease (hypertensive arteriopathy or cerebral amyloid angiopathy) in a multicentre, cross-sectional study. We studied consecutive patients with intracerebral haemorrhage from four specialist stroke centres, and age-matched stroke service referrals without intracerebral haemorrhage. Acute ischaemic lesions were assessed on magnetic resonance imaging (imaging. White matter changes and cerebral microbleeds were rated with validated scales. We investigated associations between diffusion-weighted imaging lesions, clinical and radiological characteristics. We included 114 patients with intracerebral haemorrhage (39 with clinically probable cerebral amyloid angiopathy) and 47 age-matched controls. The prevalence of diffusion-weighted imaging lesions was 9/39 (23%) in probable cerebral amyloid angiopathy-related intracerebral haemorrhage versus 6/75 (8%) in the remaining patients with intracerebral haemorrhage (P = 0.024); no diffusion-weighted imaging lesions were found in controls. Diffusion-weighted imaging lesions were mainly cortical and were associated with mean white matter change score (odds ratio 1.14 per unit increase, 95% confidence interval 1.02-1.28, P = 0.024) and the presence of strictly lobar cerebral microbleeds (odds ratio 3.85, 95% confidence interval 1.15-12.93, P = 0.029). Acute, subclinical ischaemic brain lesions are frequent but previously underestimated after intracerebral haemorrhage, and are three times more common in cerebral amyloid angiopathy-related intracerebral haemorrhage than in other intracerebral haemorrhage types. Ischaemic brain lesions are

  9. Electromagnetic brain imaging

    International Nuclear Information System (INIS)

    Present imaging methods of cerebral neuro-activity like brain functional MRI and positron emission tomography (PET) secondarily measure only average activities within a time of the second-order (low time-resolution). In contrast, the electromagnetic brain imaging (EMBI) directly measures the faint magnetic field (10-12-10-13 T) yielded by the cerebral activity with use of multiple arrayed sensors equipped on the head surface within a time of sub-millisecond order (high time-resolution). The sensor array technology to find the signal source from the measured data is common in wide areas like signal procession for radar, sonar, and epicenter detection by seismic wave. For estimating and reconstructing the active region in the brain in EMBI, the efficient method must be developed and this paper describes the direct and inverse problems concerned in signal and image processions of EMBI. The direct problem involves the cerebral magnetic field/lead field matrix and inverse problem for reconstruction of signal source, the MUSIC (multiple signal classification) algorithm, GLRT (generalized likelihood ratio test) scan, and adaptive beamformer. As an example, given are results of magnetic intensity changes (unit, fT) in the somatosensory cortex vs time (msec) measured by 160 sensors and of images reconstructed from EMBI and MRI during electric muscle afferent input from the hand. The real-time imaging is thus possible with EMBI and extremely, the EMBI image, the real-time cerebral signals, can inversely operate a machine, of which application directs toward the brain/machine interface development. (R.T.)

  10. Influence of type 2 diabetes on brain volumes and changes in brain volumes: Results from the Women's Health Initiative Magnetic Resonance Imaging Studies

    OpenAIRE

    Espeland, MA; Bryan, RN; Goveas, JS; Robinson, JG; Siddiqui, MS; Liu, S.; Hogan, PE; Casanova, R; Coker, LH; Yaffe, K.; Masaki, K.; Rossom, R; Resnick, SM

    2012-01-01

    OBJECTIVE - To study how type 2 diabetes adversely affects brain volumes, changes in volume, and cognitive function. RESEARCH DESIGN AND METHODS - Regional brain volumes and ischemic lesion volumes in 1,366 women, aged 72-89 years, were measured with structural brain magnetic resonance imaging (MRI). Repeat scans were collected an average of 4.7 years later in 698 women. Cross-sectional differences and changes with time between women with and without diabetes were compared. Relationships that...

  11. The use of magnetic resonance imaging to study the brain size of young children with autism

    Directory of Open Access Journals (Sweden)

    Farah Ashrafzadeh

    2016-07-01

    Full Text Available Introduction: Autism spectrum disorder (ASD is a syndrome of social communication deficits and repetitive behaviors or restricted interests. While the impairments associated with ASD tend to deteriorate from childhood into adulthood, it is of critical importance that the syndrome is diagnosed at an early age. One means of facilitating this is through understanding how the brain of people with ASD develops from early childhood. Magnetic resonance imaging (MRI is the method of choice for in vivo and non-invasive investigations of the morphology of the human brain, especially when the subjects are children. In this study, we conducted a systematic review of existing structural MRI studies that have investigated brain size in ASD children of up to 5 years old. Methods: In this study, we systematically reviewed published papers that describe research studies in which the brain size of ASD children has been examined. PubMed and Scopus databases were searched for all relevant original articles that described the use of MRI techniques to study ASD patients who were between 1 and 5 years old. To be included in the review, all studies needed to be cohort and case series that involved at least 10 patients. No time limitations were placed on the searched articles within the inclusion criteria. The exclusion criteria were non-English articles, case reports, and articles that described research involving subjects that were not within the qualifying age range of 1-5 years old.Result: After an initial screening process through which the title, abstracts, and full text of the articles were reviewed to confirm they met the inclusion criteria, a total of 10 relevant articles were studied in depth. All studies found that children with ASD who were within the selected age range had a larger brain size than children without ASD.Discussion: The findings of recent studies indicate that the vast majority of ASD patients exhibit an enlarged brain; however, the extent of

  12. Volumetric Magnetic Resonance Imaging Study of Brain and Cerebellum in Children with Cerebral Palsy.

    Science.gov (United States)

    Kułak, Piotr; Maciorkowska, Elżbieta; Gościk, Elżbieta

    2016-01-01

    Introduction. Quantitative magnetic resonance imaging (MRI) studies are rarely used in the diagnosis of patients with cerebral palsy. The aim of present study was to assess the relationships between the volumetric MRI and clinical findings in children with cerebral palsy compared to control subjects. Materials and Methods. Eighty-two children with cerebral palsy and 90 age- and sex-matched healthy controls were collected. Results. The dominant changes identified on MRI scans in children with cerebral palsy were periventricular leukomalacia (42%) and posthemorrhagic hydrocephalus (21%). The total brain and cerebellum volumes in children with cerebral palsy were significantly reduced in comparison to controls. Significant grey matter volume reduction was found in the total brain in children with cerebral palsy compared with the control subjects. Positive correlations between the age of the children of both groups and the grey matter volumes in the total brain were found. Negative relationship between width of third ventricle and speech development was found in the patients. Positive correlations were noted between the ventricles enlargement and motor dysfunction and mental retardation in children with cerebral palsy. Conclusions. By using the voxel-based morphometry, the total brain, cerebellum, and grey matter volumes were significantly reduced in children with cerebral palsy. PMID:27579318

  13. Volumetric Magnetic Resonance Imaging Study of Brain and Cerebellum in Children with Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Piotr Kułak

    2016-01-01

    Full Text Available Introduction. Quantitative magnetic resonance imaging (MRI studies are rarely used in the diagnosis of patients with cerebral palsy. The aim of present study was to assess the relationships between the volumetric MRI and clinical findings in children with cerebral palsy compared to control subjects. Materials and Methods. Eighty-two children with cerebral palsy and 90 age- and sex-matched healthy controls were collected. Results. The dominant changes identified on MRI scans in children with cerebral palsy were periventricular leukomalacia (42% and posthemorrhagic hydrocephalus (21%. The total brain and cerebellum volumes in children with cerebral palsy were significantly reduced in comparison to controls. Significant grey matter volume reduction was found in the total brain in children with cerebral palsy compared with the control subjects. Positive correlations between the age of the children of both groups and the grey matter volumes in the total brain were found. Negative relationship between width of third ventricle and speech development was found in the patients. Positive correlations were noted between the ventricles enlargement and motor dysfunction and mental retardation in children with cerebral palsy. Conclusions. By using the voxel-based morphometry, the total brain, cerebellum, and grey matter volumes were significantly reduced in children with cerebral palsy.

  14. Volumetric Magnetic Resonance Imaging Study of Brain and Cerebellum in Children with Cerebral Palsy

    Science.gov (United States)

    Maciorkowska, Elżbieta; Gościk, Elżbieta

    2016-01-01

    Introduction. Quantitative magnetic resonance imaging (MRI) studies are rarely used in the diagnosis of patients with cerebral palsy. The aim of present study was to assess the relationships between the volumetric MRI and clinical findings in children with cerebral palsy compared to control subjects. Materials and Methods. Eighty-two children with cerebral palsy and 90 age- and sex-matched healthy controls were collected. Results. The dominant changes identified on MRI scans in children with cerebral palsy were periventricular leukomalacia (42%) and posthemorrhagic hydrocephalus (21%). The total brain and cerebellum volumes in children with cerebral palsy were significantly reduced in comparison to controls. Significant grey matter volume reduction was found in the total brain in children with cerebral palsy compared with the control subjects. Positive correlations between the age of the children of both groups and the grey matter volumes in the total brain were found. Negative relationship between width of third ventricle and speech development was found in the patients. Positive correlations were noted between the ventricles enlargement and motor dysfunction and mental retardation in children with cerebral palsy. Conclusions. By using the voxel-based morphometry, the total brain, cerebellum, and grey matter volumes were significantly reduced in children with cerebral palsy. PMID:27579318

  15. Minireview of Stereoselective Brain Imaging

    DEFF Research Database (Denmark)

    Smith, Donald F.; Jakobsen, Steen

    2014-01-01

    Stereoselectivity is a fundamental principle in living systems. Stereoselectivity reflects the dependence of molecular processes on the spatial orientation of constituent atoms. Stereoselective processes govern many aspects of brain function and direct the course of many psychotropic drugs. Today......, modern imaging techniques such as SPECT and PET provide a means for studying stereoselective processes in the living brain. Chemists have prepared numerous radiolabelled stereoisomers for use in SPECT and PET in order to explore various molecular processes in the living brain of anesthetized laboratory...... animals and awake humans. The studies have demonstrated how many aspects of neurotransmission consist of crucial stereoselective events that can affect brain function in health and disease. Here, we present a brief account of those findings in hope of stimulating further interest in the vital topic....

  16. Imaging brain plasticity after trauma

    OpenAIRE

    Kou, Zhifeng; Iraji, Armin

    2014-01-01

    The brain is highly plastic after stroke or epilepsy; however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrated both structural reorganization as well as functional compensation by the recruitment of other brain regions. ...

  17. Initial study of magnetic resonance diffusion tensor imaging in brain white matter of early AIDS patients

    Institute of Scientific and Technical Information of China (English)

    XUAN Ang; WANG Guang-bin; SHI Da-peng; XU Jun-ling; LI Yong-li

    2013-01-01

    Background HIV is a neurotropic virus which can cause brain white matter demyelination,gliosis,and other pathological changes that appear as H IV encephalitis or AIDS dementia.The purpose of this study was to investigate the change of the diffused condition of water molecules in brain white matter in early acquired immune deficiency syndrome (AIDS) patients using MR diffusion tensor imaging (DTI).Methods DTI examinations were performed on a Siemens 3.0T MR scanner in 23 AIDS patients with normal brain appearance by conventional MRI and 20 healthy volunteers as the control group.Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were measured in nine regions; corpus callosum (CC) knee,CC body,CC splenium,periventricular white matter,frontal lobe white matter,parietal lobe white matter,occipital lobe white matter,and the anterior and posterior limbs of the internal capsule.The mean FA and ADC values from each region were compared in three groups:the symptomatic,asymptomatic and the control.Results The mean FA values were significantly lower and the mean ADC values were significantly higher in all nine regions in patients in the symptomatic group than in the asymptomatic and control group patients.In the asymptomatic group,the mean FA values were significantly lower and the mean ADC values were significantly higher at the CC knee,CC body,CC splenium,periventricular white matter,frontal lobe white matter and parietal lobe white matter,than in the control group.There were no significant differences at other regions between the two groups.Conclusions The diffused changes of water molecules in brain white matter in AIDS patients are related to brain white matter regions.DTI examination can detect the brain white matter lesions early in AIDS patients.

  18. Use of High resolution 3D Diffusion tensor imaging to study brain white matter development in live neonatal rats

    Directory of Open Access Journals (Sweden)

    Yu eCai

    2011-10-01

    Full Text Available High resolution diffusion tensor imaging (DTI can provide important information on brain development, yet it is challenging in live neonatal rats due to the small size of neonatal brain and motion-sensitive nature of DTI. Imaging in live neonatal rats has clear advantages over fixed brain scans, as longitudinal and functional studies would be feasible to understand neuro-developmental abnormalities. In this study, we developed imaging strategies that can be used to obtain high resolution 3D DTI images in live neonatal rats at postnatal day 5 (PND5 and postnatal day 14 (PND14, using only 3 hours of imaging acquisition time. An optimized 3D DTI pulse sequence and appropriate animal setup to minimize physiological motion artifacts are the keys to successful high resolution 3D DTI imaging. Thus, a 3D RARE DTI sequence with twin navigator echoes was implemented to accelerate imaging acquisition time and minimize motion artifacts. It has been suggested that neonatal mammals possess a unique ability to tolerate mild to moderate hypothermia and hypoxia without long term impact. Thus, we additionally utilized this ability to minimize motion artifacts in MR images by carefully suppressing the respiratory rate to around 15/min for PND5 and 30/min for PND14 using mild to moderate hypothermia. These imaging strategies have been successfully implemented to study how the effect of cocaine exposure in dams might affect brain development in their rat pups. Image quality resulting from this in vivo DTI study was comparable to ex vivo scans. FA values were also similar between the live and fixed brain scans. The capability of acquiring high quality in vivo DTI imaging offers a valuable opportunity to study many neurological disorders in brain development in an authentic living environment.

  19. Brain Imaging in Alzheimer Disease

    Science.gov (United States)

    Johnson, Keith A.; Fox, Nick C.; Sperling, Reisa A.; Klunk, William E.

    2012-01-01

    Imaging has played a variety of roles in the study of Alzheimer disease (AD) over the past four decades. Initially, computed tomography (CT) and then magnetic resonance imaging (MRI) were used diagnostically to rule out other causes of dementia. More recently, a variety of imaging modalities including structural and functional MRI and positron emission tomography (PET) studies of cerebral metabolism with fluoro-deoxy-d-glucose (FDG) and amyloid tracers such as Pittsburgh Compound-B (PiB) have shown characteristic changes in the brains of patients with AD, and in prodromal and even presymptomatic states that can help rule-in the AD pathophysiological process. No one imaging modality can serve all purposes as each have unique strengths and weaknesses. These modalities and their particular utilities are discussed in this article. The challenge for the future will be to combine imaging biomarkers to most efficiently facilitate diagnosis, disease staging, and, most importantly, development of effective disease-modifying therapies. PMID:22474610

  20. Magnetic-resonance-imaging-coupled broadband near-infrared tomography system for small animal brain studies

    Science.gov (United States)

    Xu, Heng; Springett, Roger; Dehghani, Hamid; Pogue, Brian W.; Paulsen, Keith D.; Dunn, Jeff F.

    2005-04-01

    A novel magnetic-resonance-coupled broadband near-infrared (NIR) tomography system for small animal brain studies is described. Several features of the image formation approach are new in NIR tomography and represent major advances in the path to recovering high-resolution hemoglobin and oxygen saturation images of tissue. The NIR data were broadband and continuous wave and were used along with a second-derivative-based estimation of the path length from water absorption. The path length estimation from water was then used along with the attenuation spectrum to recover absorption and reduced scattering coefficient images at multiple wavelengths and then to recover images of total hemoglobin and oxygen saturation. Going beyond these basics of NIR tomography, software has been developed to allow inclusion of structures derived from MR imaging (MRI) for the external and internal tissue boundaries, thereby improving the accuracy and spatial resolution of the properties in each tissue type. The system has been validated in both tissue-simulating phantoms, with 10% accuracy observed, and in a rat cranium imaging experiment. The latter experiment used variation in inspired oxygen (FiO2) to vary the observed hemoglobin and oxygen saturation images. Quantitative agreement was observed between the changes in deoxyhemoglobin values derived from NIR and the changes predicted with blood-oxygen-level-dependent (BOLD) MRI. This system represents the initial stage in what will likely be a larger role for NIR tomography, coupled to MRI, and illustrates that the technological challenges of using continuous-wave broadband data and inclusion of a priori structural information can be met with careful phantom studies.

  1. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants.

    Science.gov (United States)

    Dubois, J; Dehaene-Lambertz, G; Kulikova, S; Poupon, C; Hüppi, P S; Hertz-Pannier, L

    2014-09-12

    Studying how the healthy human brain develops is important to understand early pathological mechanisms and to assess the influence of fetal or perinatal events on later life. Brain development relies on complex and intermingled mechanisms especially during gestation and first post-natal months, with intense interactions between genetic, epigenetic and environmental factors. Although the baby's brain is organized early on, it is not a miniature adult brain: regional brain changes are asynchronous and protracted, i.e. sensory-motor regions develop early and quickly, whereas associative regions develop later and slowly over decades. Concurrently, the infant/child gradually achieves new performances, but how brain maturation relates to changes in behavior is poorly understood, requiring non-invasive in vivo imaging studies such as magnetic resonance imaging (MRI). Two main processes of early white matter development are reviewed: (1) establishment of connections between brain regions within functional networks, leading to adult-like organization during the last trimester of gestation, (2) maturation (myelination) of these connections during infancy to provide efficient transfers of information. Current knowledge from post-mortem descriptions and in vivo MRI studies is summed up, focusing on T1- and T2-weighted imaging, diffusion tensor imaging, and quantitative mapping of T1/T2 relaxation times, myelin water fraction and magnetization transfer ratio.

  2. Imaging of cerebritis, encephalitis, and brain abscess.

    Science.gov (United States)

    Rath, Tanya J; Hughes, Marion; Arabi, Mohammad; Shah, Gaurang V

    2012-11-01

    Imaging plays an important role in the diagnosis and treatment of brain abscess, pyogenic infection, and encephalitis. The role of CT and MRI in the diagnosis and management of pyogenic brain abscess and its complications is reviewed. The imaging appearances of several common and select uncommon infectious encephalitides are reviewed. Common causes of encephalitis in immunocompromised patients, and their imaging appearances, are also discussed. When combined with CSF, serologic studies and patient history, imaging findings can suggest the cause of encephalitis. PMID:23122258

  3. Brain Image Representation and Rendering: A Survey

    Directory of Open Access Journals (Sweden)

    Mudassar Raza

    2012-09-01

    Full Text Available Brain image representation and rendering processes are basically used for evaluation, development and investigation consent experimental examination and formation of brain images of a variety of modalities that includes the major brain types like MEG, EEG, PET, MRI, CT or microscopy. So, there is a need to conduct a study to review the existing work in this area. This paper provides a review of different existing techniques and methods regarding the brain image representation and rendering. Image Rendering is the method of generating an image by means of a model, through computer programs. The basic purpose of brain image representation and rendering processes is to analyze the brain images precisely in order to effectively diagnose and examine the diseases and problems. The basic objective of this study is to evaluate and discuss different techniques and approaches proposed in order to handle different brain imaging types. The paper provides a short overview of different methods, in the form of advantages and limitations, presented in the prospect of brain image representation and rendering along with their sub categories proposed by different authors.

  4. A numerical model for the study of photoacoustic imaging of brain tumours

    CERN Document Server

    Firouzi, Kamyar

    2015-01-01

    Photoacoustic imaging has shown great promise for medical imaging, where optical energy absorption by blood haemoglobin is used as the contrast mechanism. A numerical method was developed for the in-silico assessment of the photoacoustic image reconstruction of the brain. Image segmentation techniques were used to prepare a digital phantom from MR images. Light transport through brain tissue was modelled using a Finite Element approach. The resulting acoustic pressure was then estimated by pulsed photoacoustics considerations. The forward acoustic wave propagation was modelled by the linearized coupled first order wave equations and solved by an acoustic k-space method. Since skull bone is an elastic solid and strongly attenuates ultrasound (due to both scattering and absorption), a k-space method was developed for elastic media. To model scattering effects, a new approach was applied based on propagation in random media. In addition, absorption effects were incorporated using a power law. Finally, the acoust...

  5. High-resolution imaging of the large non-human primate brain using microPET: a feasibility study

    International Nuclear Information System (INIS)

    The neuroanatomy and physiology of the baboon brain closely resembles that of the human brain and is well suited for evaluating promising new radioligands in non-human primates by PET and SPECT prior to their use in humans. These studies are commonly performed on clinical scanners with 5 mm spatial resolution at best, resulting in sub-optimal images for quantitative analysis. This study assessed the feasibility of using a microPET animal scanner to image the brains of large non-human primates, i.e. papio hamadryas (baboon) at high resolution. Factors affecting image accuracy, including scatter, attenuation and spatial resolution, were measured under conditions approximating a baboon brain and using different reconstruction strategies. Scatter fraction measured 32% at the centre of a 10 cm diameter phantom. Scatter correction increased image contrast by up to 21% but reduced the signal-to-noise ratio. Volume resolution was superior and more uniform using maximum a posteriori (MAP) reconstructed images (3.2-3.6 mm3 FWHM from centre to 4 cm offset) compared to both 3D ordered subsets expectation maximization (OSEM) (5.6-8.3 mm3) and 3D reprojection (3DRP) (5.9-9.1 mm3). A pilot 18F-2-fluoro-2-deoxy-d-glucose ([18F]FDG) scan was performed on a healthy female adult baboon. The pilot study demonstrated the ability to adequately resolve cortical and sub-cortical grey matter structures in the baboon brain and improved contrast when images were corrected for attenuation and scatter and reconstructed by MAP. We conclude that high resolution imaging of the baboon brain with microPET is feasible with appropriate choices of reconstruction strategy and corrections for degrading physical effects. Further work to develop suitable correction algorithms for high-resolution large primate imaging is warranted

  6. Fueling and imaging brain activation

    Directory of Open Access Journals (Sweden)

    Gerald A Dienel

    2012-07-01

    Full Text Available Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models.

  7. Age-related degeneration of the fornix in the human brain: a diffusion tensor imaging study.

    Science.gov (United States)

    Jang, Sung Ho; Cho, Sang-Hyun; Chang, Min Cheol

    2011-02-01

    As a part of the Papez circuit, the fornix carries information on episodic memory. Several diffusion tensor imaging (DTI) studies have reported on changes in the fornix that occur with aging; however, these studies have been controversial. Using DTI, we attempted to investigate age-related changes of the fornix in the human brain. Sixty subjects (30 males, 30 females; mean age, 49.2 years; range, 20-78 years) were recruited. We categorized subjects into three groups, including young (20-39 years), middle-aged (40-59 years), and older (60-79 years) adults. DTIs were acquired using a sensitivity-encoding head coil on a 1.5 T. We divided the whole fornix into three parts (column, body, and crus) and constructed tractography for each part. We measured fractional anisotropy (FA), apparent diffusion coefficient (ADC), and tract number for each part of the fornix. In all three parts of the fornix, the FA value and tract number decreased, whereas ADC value increased with aging. In addition, a linear regression model was fitted to all three DTI parameters in each part of the fornix. Degenerative change of the fornix in the human brain appears to have occurred at a near constant rate from the 20s to the30s throughout the lifespan. PMID:21062216

  8. Love-related changes in the brain: A resting-state functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Hongwen eSong

    2015-02-01

    Full Text Available Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Studies with functional magnetic resonance imaging (fMRI have found activation increases in brain regions involved in processing of reward, emotion, motivation when romantic lovers view photographs of their partners. However, not much is known on whether romantic love affects the brain’s functional architecture during rest. In the present study, resting state functional magnetic resonance imaging (rsfMRI data was collected to compare the regional homogeneity (ReHo and functional connectivity (FC across a lover group (LG, N=34, currently intensely in love, ended-love group (ELG, N=34, romantic relationship ended recently, and single group (SG, N=32, never fallen in love.The results showed that:1 ReHo of the left dorsal anterior cingulate cortex (dACC was significantly increased in the LG (in comparison to the ELG and the SG; 2 ReHo of the left dACC was positively correlated with length of time in love in the LG, and negatively correlated with the lovelorn duration since breakup in the ELG; 3 functional connectivity (FC within the reward, motivation, and emotion network (dACC, insula, caudate, amygdala and nucleus accumbens and the social cognition network (temporo-parietal junction (TPJ, posterior cingulate cortex (PCC, medial prefrontal cortex (MPFC, inferior parietal, precuneus and temporal lobe was significantly increased in the LG (in comparison to the ELG and SG; 4 in most regions within both networks FC was positively correlated with the love duration in the LG but negatively correlated with the lovelorn duration in the ELG. This study provides first empirical evidence of love-related alterations of brain functional architecture. The results shed light on the underlying neural mechanisms of romantic love, and demonstrate the possibility of applying a resting state approach for investigating romantic love.

  9. The etiology of cirrhosis is a strong determinant of brain reserve: A multimodal magnetic resonance imaging study.

    Science.gov (United States)

    Ahluwalia, Vishwadeep; Wade, James B; Moeller, F Gerard; White, Melanie B; Unser, Ariel B; Gavis, Edith A; Sterling, Richard K; Stravitz, R Todd; Sanyal, Arun J; Siddiqui, Mohammad S; Puri, Puneet; Luketic, Velimir; Heuman, Douglas M; Fuchs, Michael; Matherly, Scott; Bajaj, Jasmohan S

    2015-09-01

    Poor brain reserve in alcoholic cirrhosis could worsen insight regarding disease severity and increase the patients' vulnerability toward further deterioration. The aim of this study was to analyze brain reserve in abstinent alcoholic cirrhotic (Alc) patients compared to nonalcoholic cirrhotic (Nalc) patients in the context of hepatic encephalopathy (HE) and to evaluate relative change in brain reserve between groups over time and before and after elective transjugular intrahepatic portosystemic shunt (TIPS) placement. The cross-sectional study included 46 Alc and 102 Nalc outpatients with or without HE. Cognitive tests were followed by magnetic resonance imaging (MRI), including proton magnetic resonance spectroscopy (1 H-MRS), diffusion tensor imaging, and T1-weighted imaging. The prospective study included 1H-MRS on a subset of 10 patients before and after TIPS placement. Another subset of 26 patients underwent (1) H-MRS at least 1 year apart. For the cross-sectional study, Alc patients were worse on cognitive tests than Nalc patients. MRI results suggest a greater effect of hyperammonemia, brain edema, and significantly higher cortical damage in Alc as compared to Nalc patients. The effect of HE status on cognitive tests and brain reserve was more marked in the Nalc than in the Alc group. For the TIPS study, Nalc patients showed a greater adverse relative change after TIPS compared to the Alc group. At 1-year follow-up, both groups remained stable between the 2 visits. However, Alc patients continued to show poor brain reserve compared to Nalc patients over time. In conclusion, Alc patients, despite abstinence, have a poor brain reserve, whereas Nalc patients have a greater potential for brain reserve deterioration after HE and TIPS. Information regarding the brain reserve in cirrhosis could assist medical teams to refine their communication and monitoring strategies for different etiologies.

  10. Imaging brain plasticity after trauma

    Institute of Scientific and Technical Information of China (English)

    Zhifeng Kou; Armin Iraji

    2014-01-01

    The brain is highly plastic after stroke or epilepsy;however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrat-ed both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the ifeld is still short of proper means on how to guide the choice of TBI rehabilitation or treat-ment plan to promote brain plasticity. The authors also point out the new direction of brain plas-ticity investigation.

  11. Imaging brain plasticity after trauma

    Science.gov (United States)

    Kou, Zhifeng; Iraji, Armin

    2014-01-01

    The brain is highly plastic after stroke or epilepsy; however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrated both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the field is still short of proper means on how to guide the choice of TBI rehabilitation or treatment plan to promote brain plasticity. The authors also point out the new direction of brain plasticity investigation. PMID:25206874

  12. Linking brain imaging signals to visual perception.

    Science.gov (United States)

    Welchman, Andrew E; Kourtzi, Zoe

    2013-11-01

    The rapid advances in brain imaging technology over the past 20 years are affording new insights into cortical processing hierarchies in the human brain. These new data provide a complementary front in seeking to understand the links between perceptual and physiological states. Here we review some of the challenges associated with incorporating brain imaging data into such "linking hypotheses," highlighting some of the considerations needed in brain imaging data acquisition and analysis. We discuss work that has sought to link human brain imaging signals to existing electrophysiological data and opened up new opportunities in studying the neural basis of complex perceptual judgments. We consider a range of approaches when using human functional magnetic resonance imaging to identify brain circuits whose activity changes in a similar manner to perceptual judgments and illustrate these approaches by discussing work that has studied the neural basis of 3D perception and perceptual learning. Finally, we describe approaches that have sought to understand the information content of brain imaging data using machine learning and work that has integrated multimodal data to overcome the limitations associated with individual brain imaging approaches. Together these approaches provide an important route in seeking to understand the links between physiological and psychological states.

  13. Pet imaging of two monoaminergic neurotransmitter systems in brain : studies of the norepinephrine transporter and dopamine D©ü receptor

    OpenAIRE

    Seneca, Nicholas

    2006-01-01

    Positron emission tomography (PET) has been widely used to study non-invasively function of the brain, pathophysiology of disease and aid in the development of new drugs. PET and selective radiolabeled molecules allow imaging of certain critical components of neurotransmission, such as pre-synaptic transporters and post-synaptic receptors in living brain. The general aim of the present thesis was (i) to measure neuropharmacological interventions using PET (e.g., competition ...

  14. THE STUDY OF THE BRAIN IN A PATIENT WITH TYPE 1 DIABETES MELLITUS USING TECHNIQUES OF MAGNETIC RESONANCE IMAGING

    Directory of Open Access Journals (Sweden)

    Yu. G. Samoylova

    2015-12-01

    Full Text Available Type 1 diabetes mellitus (T1DM is now widely distributed worldwide and in theRussian Federation, it is an important medical and social problem in connection with the development of serious, disabling complications. Some of these complications could make changes in the brain which are accompanied by cognitive impairments that decrease quality of life and worsening disease compensation. The diagnosis of these disorders to date, possible by using modern methods of magnetic resonance imaging, which describe not only the morphological changes of the brain, but also the metabolism of nervous tissue. The study of the brain, namely structural and metabolic manifestations of diabetes, is one of the priority problem of modern medical science.The aim of the study was to evaluate dynamics in the different techniques of magnetic resonance imaging in the diagnosis of brain changes in patients with T1DM.Research methods included physical examination, in accordance with the diagnostic algorithm of patients with T1DM, a neurologist consultation, an assessment of cognitive function, analysis of brain changes using standard magnetic resonance imaging and spectroscopy. Statistical processing was performed using software package R-system. This publication presents a clinical case of a patient with T1DM and severe cognitive impairments are associated with changes in the brain, diagnosed using standard magnetic resonance imaging and spectroscopy. The study shows the positive role of correction of carbohydrate metabolism in improving cognitive function in a patient with T1DM.In addition, the process analysis revealed the absence of dynamic changes in the brain of a patient with T1DM according to standard magnetic resonance imaging. This required the use of additional techniques – magnetic resonance spectroscopy, which revealed changes of metabolism in the thalamus N-acetyl aspartate, choline and creatinine.

  15. Automated Atlas-Based Segmentation of Brain Structures in MR Images: Application to a Population-Based Imaging Study

    NARCIS (Netherlands)

    F. van der Lijn (Fedde)

    2010-01-01

    textabstractThe final type of segmentationmethod is atlas-based segmentation (sometimes also called label propagation). In this approach, additional knowledge is introduced through an atlas image, in which an expert has labeled the brain structures of interest. The atlas is first registered to the t

  16. Disruption of brain anatomical networks in schizophrenia: A longitudinal, diffusion tensor imaging based study.

    Science.gov (United States)

    Sun, Yu; Chen, Yu; Lee, Renick; Bezerianos, Anastasios; Collinson, Simon L; Sim, Kang

    2016-03-01

    Despite convergent neuroimaging evidence indicating a wide range of brain abnormalities in schizophrenia, our understanding of alterations in the topological architecture of brain anatomical networks and how they are modulated over time, is still rudimentary. Here, we employed graph theoretical analysis of longitudinal diffusion tensor imaging data (DTI) over a 5-year period to investigate brain network topology in schizophrenia and its relationship with clinical manifestations of the illness. Using deterministic tractography, weighted brain anatomical networks were constructed from 31 patients experiencing schizophrenia and 28 age- and gender-matched healthy control subjects. Although the overall small-world characteristics were observed at both baseline and follow-up, a scan-point independent significant deficit of global integration was found in patients compared to controls, suggesting dysfunctional integration of the brain and supporting the notion of schizophrenia as a disconnection syndrome. Specifically, several brain regions (e.g., the inferior frontal gyrus and the bilateral insula) that are crucial for cognitive and emotional integration were aberrant. Furthermore, a significant group-by-longitudinal scan interaction was revealed in the characteristic path length and global efficiency, attributing to a progressive aberration of global integration in patients compared to healthy controls. Moreover, the progressive disruptions of the brain anatomical network topology were associated with the clinical symptoms of the patients. Together, our findings provide insights into the substrates of anatomical dysconnectivity patterns for schizophrenia and highlight the potential for connectome-based metrics as neural markers of illness progression and clinical change with treatment.

  17. Diffusion Tensor Imaging for Outcome Prediction in Mild Traumatic Brain Injury: A TRACK-TBI Study

    Science.gov (United States)

    Yuh, Esther L.; Cooper, Shelly R.; Mukherjee, Pratik; Yue, John K.; Lingsma, Hester F.; Gordon, Wayne A.; Valadka, Alex B.; Okonkwo, David O.; Schnyer, David M.; Vassar, Mary J.; Maas, Andrew I.R.; Casey, Scott S.; Cheong, Maxwell; Dams-O'Connor, Kristen; Hricik, Allison J.; Inoue, Tomoo; Menon, David K.; Morabito, Diane J.; Pacheco, Jennifer L.; Puccio, Ava M.; Sinha, Tuhin K.

    2014-01-01

    Abstract We evaluated 3T diffusion tensor imaging (DTI) for white matter injury in 76 adult mild traumatic brain injury (mTBI) patients at the semiacute stage (11.2±3.3 days), employing both whole-brain voxel-wise and region-of-interest (ROI) approaches. The subgroup of 32 patients with any traumatic intracranial lesion on either day-of-injury computed tomography (CT) or semiacute magnetic resonance imaging (MRI) demonstrated reduced fractional anisotropy (FA) in numerous white matter tracts, compared to 50 control subjects. In contrast, 44 CT/MRI-negative mTBI patients demonstrated no significant difference in any DTI parameter, compared to controls. To determine the clinical relevance of DTI, we evaluated correlations between 3- and 6-month outcome and imaging, demographic/socioeconomic, and clinical predictors. Statistically significant univariable predictors of 3-month Glasgow Outcome Scale-Extended (GOS-E) included MRI evidence for contusion (odds ratio [OR] 4.9 per unit decrease in GOS-E; p=0.01), ≥1 ROI with severely reduced FA (OR, 3.9; p=0.005), neuropsychiatric history (OR, 3.3; p=0.02), age (OR, 1.07/year; p=0.002), and years of education (OR, 0.79/year; p=0.01). Significant predictors of 6-month GOS-E included ≥1 ROI with severely reduced FA (OR, 2.7; p=0.048), neuropsychiatric history (OR, 3.7; p=0.01), and years of education (OR, 0.82/year; p=0.03). For the subset of 37 patients lacking neuropsychiatric and substance abuse history, MRI surpassed all other predictors for both 3- and 6-month outcome prediction. This is the first study to compare DTI in individual mTBI patients to conventional imaging, clinical, and demographic/socioeconomic characteristics for outcome prediction. DTI demonstrated utility in an inclusive group of patients with heterogeneous backgrounds, as well as in a subset of patients without neuropsychiatric or substance abuse history. PMID:24742275

  18. Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function.

    Science.gov (United States)

    Boas, David A; Dale, Anders M

    2005-04-01

    Diffuse optical imaging can measure brain activity noninvasively in humans through the scalp and skull by measuring the light intensity modulation arising from localized-activity-induced absorption changes within the cortex. Spatial resolution and localization accuracy are currently limited by measurement geometry to approximately 3 cm in the plane parallel to the scalp. Depth resolution is a more significant challenge owing to the limited angle tomography permitted by reflectance-only measurements. We combine previously established concepts for improving image quality and demonstrate, through simulation studies, their application for improving the image quality of adult human brain function. We show in a three-dimensional human head model that localization accuracy is significantly improved by the addition of measurements that provide overlapping samples of brain tissue. However, the reconstructed absorption contrast is significantly underestimated because its depth is underestimated. We show that the absorption contrast amplitude accuracy can be significantly improved by providing a cortical spatial constraint in the image reconstruction to obtain a better depth localization. The cortical constraint makes physiological sense since the brain-activity-induced absorption changes are occurring in the cortex and not in the scalp, skull, and cerebral spinal fluid. This spatial constraint is provided by segmentation of coregistered structural magnetic resonance imaging (MRI). However, the absorption contrast deep within the cortex is reconstructed superficially, resulting in an underestimation of the absorption contrast. The synthesis of techniques described here indicates that multimodality imaging of brain function with diffuse optical imaging and MRI has the potential to provide more quantitative estimates of the total and deoxyhemoglobin response to brain activation, which is currently not provided by either method independently. However, issues of depth resolution

  19. Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function

    Science.gov (United States)

    Boas, David A.; Dale, Anders M.

    2005-04-01

    Diffuse optical imaging can measure brain activity noninvasively in humans through the scalp and skull by measuring the light intensity modulation arising from localized-activity-induced absorption changes within the cortex. Spatial resolution and localization accuracy are currently limited by measurement geometry to approximately 3 cm in the plane parallel to the scalp. Depth resolution is a more significant challenge owing to the limited angle tomography permitted by reflectance-only measurements. We combine previously established concepts for improving image quality and demonstrate, through simulation studies, their application for improving the image quality of adult human brain function. We show in a three-dimensional human head model that localization accuracy is significantly improved by the addition of measurements that provide overlapping samples of brain tissue. However, the reconstructed absorption contrast is significantly underestimated because its depth is underestimated. We show that the absorption contrast amplitude accuracy can be significantly improved by providing a cortical spatial constraint in the image reconstruction to obtain a better depth localization. The cortical constraint makes physiological sense since the brain-activity-induced absorption changes are occurring in the cortex and not in the scalp, skull, and cerebral spinal fluid. This spatial constraint is provided by segmentation of coregistered structural magnetic resonance imaging (MRI). However, the absorption contrast deep within the cortex is reconstructed superficially, resulting in an underestimation of the absorption contrast. The synthesis of techniques described here indicates that multimodality imaging of brain function with diffuse optical imaging and MRI has the potential to provide more quantitative estimates of the total and deoxyhemoglobin response to brain activation, which is currently not provided by either method independently. However, issues of depth resolution

  20. Brain MR imaging in dietarily treated phenylketonuria

    Energy Technology Data Exchange (ETDEWEB)

    Breysem, L. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Smet, M.H. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Johannik, K. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Hecke, P. van [Dept. of Radiology, University Hospitals, Leuven (Belgium); Francois, B. [L. Willems Inst., Diepenbeek (Belgium); Wilms, G. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Bosmans, H. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Marchal, G. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Jaeken, J. [Dept. of Pediatrics, University Hospitals, Leuven (Belgium); Demaerel, P. [Dept. of Radiology, University Hospitals, Leuven (Belgium)

    1994-08-01

    Magnetic resonance imaging is the most efficient imaging modality to evaluate brain gray and white matter of patients with metabolic diseases. The main purpose of our study was to investigate the relation between brain MRI abnormalities and the phenylalanine (phe) and tyrosine (tyr) blood levels in 38 phenylketonuria (PKU) patients. Increased periventricular white matter intensity on T2-weighted brain images was the only pathologic finding in 24 patients. Brain MRI abnormalities were scored (4) and correlated with the individual mean phe and phe/tyr levels during 1 year preceding MR examination and with phe tolerance. The residual activity of phenylalanine hydroxylase was defined for each patient by an oral phe tolerance. The appearance of MRI abnormalities on brain T2-weighted images correlates with a threshold mean phe level (averaged over the year preceding the examination). (orig.)

  1. Quantitative imaging of brain chemistry

    International Nuclear Information System (INIS)

    We can now measure how chemicals affect different regions of the human brain. One area involves the study of drugs - in-vivo neuro-pharmacology; another involves the study of toxic chemical effects - in vivo neurotoxicology. The authors approach is to label drugs with positron-emitting radioactive tracers - chiefly carbon-11 with a half-life of 20 minutes and fluorine-18 with a half-life of 110 minutes. The labeled drugs are injected intravenously and a positron emission tomography (PET) scanner is used to map out the distribution of the radioactivity within the brain from the moment of injection until about 90 minutes later. Mathematical models are used to calculate receptor concentrations and the affinity of the receptors for the injected radioactive tracer. By means of PET scanning, they look at cross sections or visual slices throughout the human brain, obtaining computer-generated images in any plane. The authors are investigating the functions of specific drugs or specific receptors, as well as looking at the metabolic activity in different parts of the brain as revealed in glucose metabolism. For example, the authors are studying opiate receptors in patients with a variety of conditions: those who suffer from chronic pain, those who are congenitally insensitive to pain and drug addicts. They are studying patients with schizophrenia, tardive dyskinesia, Parkinson's disease, Huntington's disease, depressed patients and sex-offenders. They are relating the state of the neurotransmitter/neuroreceptor systems to behavior. In essence, they believe that they can now examine in living human beings what relates the structure of the brain to the function of the mind that is chemistry

  2. Application of a semi-automatic ROI setting system for brain PET images to animal PET studies

    International Nuclear Information System (INIS)

    ProASSIST, a semi-automatic ROI (region of interest) setting system for human brain PET images, has been modified for use with the canine brain, and the performance of the obtained system was evaluated by comparing the operational simplicity for ROI setting and the consistency of ROI values obtained with those by a conventional manual procedure. Namely, we created segment maps for the canine brain by making reference to the coronal section atlas of the canine brain by Lim et al., and incorporated them into the ProASSIST system. For the performance test, CBF (cerebral blood flow) and CMRglc (cerebral metabolic rate in glucose) images in dogs with or without focal cerebral ischemia were used. In ProASSIST, brain contours were defined semiautomatically. In the ROI analysis of the test image, manual modification of the contour was necessary in half cases examined (8/16). However, the operation was rather simple so that the operation time per one brain section was significantly shorter than that in the manual operation. The ROI values determined by the system were comparable with those by the manual procedure, confirming the applicability of the system to these animal studies. The use of the system like the present one would also merit the more objective data acquisition for the quantitative ROI analysis, because no manual procedure except for some specifications of the anatomical features is required for ROI setting. (author)

  3. 99Tcm-ECD brain imaging in epilepsy - a case study

    International Nuclear Information System (INIS)

    Full text: A 33-year-old male presented with a 20 year history of epilepsy, consisting of three to four seizures per day, and was enrolled in the St Vincents Epilepsy study for surgical evaluation. 99Tcm-ECD (99Tcm-ethyl cysteinate diethylester), or Bicisate, is a new radiopharmaceutical used for the assessment of cerebral perfusion. It has a very important application in ictal imaging in epilepsy patients, as it is chemically stable for eight hours following reconstitution. This enables patients to be injected immediately at the time of their seizures, and results in a higher incidence of true ictal studies. The patient was admitted to the 99Tcm-ECD study for EEG monitoring, MRI imaging, and SPECT scanning. He was injected with 99Tcm-ECD during a 30 second seizure and underwent an ictal SPECT scan, followed by an inter ictal SPECT scan two days later. The MRI and EEG findings were inconclusive, yet suggested a right sided lesion. The ictal and inter ictal SPECT studies were compared and analysed using the SISCOM technique which allows a subtraction of the inter ictal from the ictal SPECT, and co-registration with MRI. This demonstrated that the epileptogenic focus was situated in the right frontal lobe, and the patient subsequently underwent successful surgical removal of this area. At his six month follow up, the patient is seizure free. This case study emphasises the suitability of 99Tcm-ECD in epilepsy brain scanning, particularly in patients with seizures of very short duration, helping to evaluate them for localisation of their epileptogenic focus prior to definitive surgical resection. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  4. Brain regions involved in moxibustion-induced analgesia in irritable bowel syndrome with diarrhea: a functional magnetic resonance imaging study

    OpenAIRE

    Zhu, Yi; Wu, Zhiyuan; Ma, Xiaopeng; Liu, Huirong; Bao, Chunhui; YANG, LING; Cui, Yunhua; Zhou, Cili; Wang, Xiaomei; Wang, Yuemin; Zhang, Zhongwei; Zhang, Huan; Jia, Haipeng; Wu, Huangan

    2014-01-01

    Background Moxibustion is one of the most commonly used therapies in acupuncture practice, and is demonstrated to be beneficial for patients with diarrhea from irritable bowel syndrome (D-IBS). But its mechanism remains unclear. Because visceral hypersensitivity in IBS patients has been documented by evaluation of perceived stimulations through functional magnetic resonance imaging (fMRI) studies, we focused on observing brain imaging changes in D-IBS patients during rectal balloon distention...

  5. FUNCTIONAL MAGNETIC RESONANCE IMAGING STUDY OF THE BRAIN IN PATIENTS WITH AMYOTROPHIC LATERAL SCLEROSIS

    Institute of Scientific and Technical Information of China (English)

    Jing Han; Lin Ma

    2006-01-01

    Objective To study the activation changes of the brain in patients with amyotrophic lateral sclerosis (ALS) while executing sequential finger tapping movement using the method of blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI).Methods Fifteen patients with definite or probable ALS and fifteen age and gender matched normal controls were enrolled.MRI was performed on a 3.0 Tesla scanner with standard headcoil.The functional images were acquired using a gradient echo single shot echo planar imaging (EPI) sequence.All patients and normal subjects executed sequential finger tapping movement at the frequency of 1-2 Hz during a block-design motor task.Structural MRI was acquired using a three-dimensional fast spoiled gradient echo (3D-FSPGR) sequence.The fMRI data were analyzed by statistical parametric mapping(SPM).Results Bilateral primary sensorimotor cortex (PSM),bilateral premotor area (PA),bilateral supplementary motor area (SMA),bilateral parietal region (PAR),contralateral inferior lateral premotor area (ILPA),and ipsilateral cerebellum showed activation in both ALS patients and normal controls when executing the same motor task.The activation areas in bilateral PSM,bilateral PA,bilateral SMA,and ipsilateral cerebellum were significantly larger in ALS patients than those in normal controls (P<0.05).Extra activation areas including ipsilateral ILPA,bilateral posterior limb of internal capsule,and contralateral cerebellum were only detected in ALS patients.Conclusions Similar activation areas are activated in ALS patients and normal subjects while executing the same motor task.The increased activation areas in ALS patients may represent neural reorganization,while the extra activation areas in ALS patients may indicate functional compensation.

  6. Recovery mechanisms of somatosensory function in stroke patients: implications of brain imaging studies

    Institute of Scientific and Technical Information of China (English)

    Sung Ho Jang

    2013-01-01

    Somatosensory dysfunction is associated with a high incidence of functional impairment and safety in patients with stroke.With developments in brain mapping techniques,many studies have addressed the recovery of various functions in such patients.However,relatively little is known about the mechanisms of recovery of somatosensory function.Based on the previous human studies,a review of 11 relevant studies on the mechanisms underlying the recovery of somatosensory function in stroke patients was conducted based on the following topics:(1) recovery of an injured somatosensory pathway,(2) peri-lesional reorganization,(3) contribution of the unaffected somatosensory cortex,(4) contribution of the secondary somatosensory cortex,and (5)mechanisms of recovery in patients with thalamic lesions.We believe that further studies in this field using combinations of diffusion tensor imaging,functional neuroimaging,and magnetoencephalography are needed.In addition,the clinical significance,critical period,and facilitatory strategies for each recovery mechanism should be clarified.

  7. Brain imaging in type 2 diabetes.

    Science.gov (United States)

    Brundel, Manon; Kappelle, L Jaap; Biessels, Geert Jan

    2014-12-01

    Type 2 diabetes mellitus (T2DM) is associated with cognitive dysfunction and dementia. Brain imaging may provide important clues about underlying processes. This review focuses on the relationship between T2DM and brain abnormalities assessed with different imaging techniques: both structural and functional magnetic resonance imaging (MRI), including diffusion tensor imaging and magnetic resonance spectroscopy, as well as positron emission tomography and single-photon emission computed tomography. Compared to people without diabetes, people with T2DM show slightly more global brain atrophy, which increases gradually over time compared with normal aging. Moreover, vascular lesions are seen more often, particularly lacunar infarcts. The association between T2DM and white matter hyperintensities and microbleeds is less clear. T2DM has been related to diminished cerebral blood flow and cerebrovascular reactivity, particularly in more advanced disease. Diffusion tensor imaging is a promising technique with respect to subtle white matter involvement. Thus, brain imaging studies show that T2DM is associated with both degenerative and vascular brain damage, which develops slowly over the course of many years. The challenge for future studies will be to further unravel the etiology of brain damage in T2DM, and to identify subgroups of patients that will develop distinct progressive brain damage and cognitive decline.

  8. Progressive gender differences of structural brain networks in healthy adults: a longitudinal, diffusion tensor imaging study.

    Directory of Open Access Journals (Sweden)

    Yu Sun

    Full Text Available Sexual dimorphism in the brain maturation during childhood and adolescence has been repeatedly documented, which may underlie the differences in behaviors and cognitive performance. However, our understanding of how gender modulates the development of structural connectome in healthy adults is still not entirely clear. Here we utilized graph theoretical analysis of longitudinal diffusion tensor imaging data over a five-year period to investigate the progressive gender differences of brain network topology. The brain networks of both genders showed prominent economical "small-world" architecture (high local clustering and short paths between nodes. Additional analysis revealed a more economical "small-world" architecture in females as well as a greater global efficiency in males regardless of scan time point. At the regional level, both increased and decreased efficiency were found across the cerebral cortex for both males and females, indicating a compensation mechanism of cortical network reorganization over time. Furthermore, we found that weighted clustering coefficient exhibited significant gender-time interactions, implying different development trends between males and females. Moreover, several specific brain regions (e.g., insula, superior temporal gyrus, cuneus, putamen, and parahippocampal gyrus exhibited different development trajectories between males and females. Our findings further prove the presence of sexual dimorphism in brain structures that may underlie gender differences in behavioral and cognitive functioning. The sex-specific progress trajectories in brain connectome revealed in this work provide an important foundation to delineate the gender related pathophysiological mechanisms in various neuropsychiatric disorders, which may potentially guide the development of sex-specific treatments for these devastating brain disorders.

  9. Cognitive impairment after traumatic brain injury: a functional magnetic resonance imaging study using the Stroop task

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Akio; Iwama, Toru [Gifu University School of Medicine, Department of Neurosurgery, Gifu City (Japan); Nakashima, Toshihiko; Okumura, Ayumi; Shinoda, Jun [Kizawa Memorial Hospital, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Department of Neurosurgery, Minokamo (Japan); Kuwata, Kazuo [Gifu University School of Medicine, Department of Biochemistry and Biophysics, Gifu (Japan)

    2005-07-01

    The anterior cingulate cortex (ACC) plays a key role in cognition, motor function, and emotion processing. However, little is known about how traumatic brain injury (TBI) affects the ACC system. Our purpose was to compare, by functional magnetic resonance imaging (fMRI) studies, the patterns of cortical activation in patients with cognitive impairment after TBI and those of normal subjects. Cortical activation maps of 11 right-handed healthy control subjects and five TBI patients with cognitive impairment were recorded in response to a Stroop task during a block-designed fMRI experiment. Statistical parametric mapping (SPM99) was used for individual subjects and group analysis. In TBI patients and controls, cortical activation, found in similar regions of the frontal, occipital, and parietal lobes, resembled patterns of activation documented in previous neuroimaging studies of the Stroop task in healthy controls. However, the TBI patients showed a relative decrease in ACC activity compared with the controls. Cognitive impairment in TBI patients seems to be associated with alterations in functional cerebral activity, especially less activation of the ACC. These changes are probably the result of destruction of neural networks after diffuse axonal injury and may reflect cortical disinhibition attributable to disconnection or compensation for an inefficient cognitive process. (orig.)

  10. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    Science.gov (United States)

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…

  11. Clinical studies of brain functional images by motor activation using single photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Masahiro [Gifu Univ. (Japan). School of Medicine

    1998-09-01

    Thirty participants (10 normal controls; group A, 5 patients with brain tumors located near central sulcus without hemiparesis; group B, 10 patients with brain tumors located near central sulcus with hemiparesis; group C, and 5 patients with brain tumors besides the central regions with hemiparesis; group D) were enrolled. The images were performed by means of split-dose method with {sup 99m}Tc-ECD at rest condition (SPECT 1) and during hand grasping (SPECT 2). The activation SPECT were obtained by subtracting SPECT 1 from SPECT 2, and the functional mapping was made by the strict registration of the activation SPECT with 3D MRI. To evaluate the changes of CBF (%{Delta}CBF) of the sensorimotor and supplementary motor areas on the functional mapping, ratio of the average counts of SPECT 1 and SPECT 2 was calculated and statistically compared. The functional activation paradigms caused a significant increase of CBF in the sensorimotor area contra-lateral to the stimulated hand, although the sensorimotor area and the central sulcus in groups B and C were dislocated, compared with hemisphere of non-tumor side. The sensorimotor area ipsi-lateral to the stimulated hand could be detected in almost of all subjects. The supplementary motor area could be detected in all subjects. In group A, the average %{Delta}CBF were up 24.1{+-}4.3% in the contra-lateral sensorimotor area, and 22.3{+-}3.6% in the supplementary motor area, respectively. The average %{Delta}CBF in the contra-lateral sensorimotor area of group D was significantly higher than that of group A. The brain functional mapping by motor activation using SPECT could localize the area of cortical motor function in normal volunteers and patients with brain tumors. The changes of regional CBF by activation SPECT precisely assess the cortical motor function even in patients with brain tumors located near central sulcus. (K.H.)

  12. Physiological neuronal decline in healthy aging human brain - An in vivo study with MRI and short echo-time whole-brain (1)H MR spectroscopic imaging.

    Science.gov (United States)

    Ding, Xiao-Qi; Maudsley, Andrew A; Sabati, Mohammad; Sheriff, Sulaiman; Schmitz, Birte; Schütze, Martin; Bronzlik, Paul; Kahl, Kai G; Lanfermann, Heinrich

    2016-08-15

    Knowledge of physiological aging in healthy human brain is increasingly important for neuroscientific research and clinical diagnosis. To investigate neuronal decline in normal aging brain eighty-one healthy subjects aged between 20 and 70years were studied with MRI and whole-brain (1)H MR spectroscopic imaging. Concentrations of brain metabolites N-acetyl-aspartate (NAA), choline (Cho), total creatine (tCr), myo-inositol (mI), and glutamine+glutamate (Glx) in ratios to internal water, and the fractional volumes of brain tissue were estimated simultaneously in eight cerebral lobes and in cerebellum. Results demonstrated that an age-related decrease in gray matter volume was the largest contribution to changes in brain volume. Both lobar NAA and the fractional volume of gray matter (FVGM) decreased with age in all cerebral lobes, indicating that the decreased NAA was predominantly associated with decreased gray matter volume and neuronal density or metabolic activity. In cerebral white matter Cho, tCr, and mI increased with age in association with increased fractional volume, showing altered cellular membrane turn-over, energy metabolism, and glial activity in human aging white matter. In cerebellum tCr increased while brain tissue volume decreased with age, showing difference to cerebral aging. The observed age-related metabolic and microstructural variations suggest that physiological neuronal decline in aging human brain is associated with a reduction of gray matter volume and neuronal density, in combination with cellular aging in white matter indicated by microstructural alterations and altered energy metabolism in the cerebellum. PMID:27164326

  13. Novel optical system for neonatal brain imaging

    Science.gov (United States)

    Chen, Yu; Zhou, Shuoming; Nioka, Shoko; Chance, Britton; Anday, Endla; Ravishankar, Sudha; Delivoria-Papadopoulos, Maria

    1999-03-01

    A highly portable, fast, safe and affordable imaging system that provides interpretable images of brain function in full- and pre-term neonates within a few seconds has been applied to neonates with normal and pathological states. We have used a uniquely sensitive optical tomography system, termed phased array, which has revealed significant functional responses, particularly to parietal stimulation in neonate brain. This system can indicate the blood concentration and oxygenation change during the parietal brain activation in full- and pre-term neonates. The preliminary clinical results, especially a longitudinal study of a cardiac arrest neonate, suggest a variety of future applications.

  14. Quantitative magnetic resonance imaging and studies of degenerative diseases of the developing human brain

    Energy Technology Data Exchange (ETDEWEB)

    Caviness, V.S. Jr. (Massachusetts General Hospital, Boston, MA (United States)); Phil, D.; Filipek, P.A.; Kennedy, D.N.

    1992-05-01

    The Rett syndrome is a progressive disorder which is associated with regression of psychomotor development and precipitous deceleration of brain growth during the first year of life. General histopathological surveys in postmortem specimens have identified degeneration of subpopulations of neurons of the nigrostriatal system but no other evidence of degenerative process. Magnetic resonance imaging-based morphometry may usefully guide application of rigorous but demanding quantitative histologic search for evidence of neuronal degeneration. The volumes of the principal set of cortical and nuclear structures of principal interest in the disorder may be measured by currently avaiable MRI-based methods. Opimized levels of precision now allow detection of volumetric changes over time in the same brain of approximately 10% at the 95% confidence level. (author).

  15. Magnetic resonance imaging of brain death

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.H.; Nathanson, J.A.; Fox, A.J.; Pelz, D.M.; Lownie, S.P.

    1995-06-01

    In order to demonstrate the magnetic resonance imaging (MRI) appearance of the brain in patients with clinical brain death, high-field MRI was performed on 5 patients using conventional T1-weighted and T2-weighted imaging. The study showed MRI exhibited similar features for all of the patients, features which were not found in MRI of comatose patients who were not clinically brain dead. It was stated that up to now the most important limitation in MRI of patients with suspected brain death has been the extreme difficulty of moving them out of the intensive care setting. If this problem can be overcome, and it appears possible with with the advent of MRI-compatible ventilators and noninvasive monitoring, MRI could become an excellent alternative for confirming clinical diagnosis of brain death for such patients. 15 refs., 3 figs.

  16. Unique roles of SPET brain imaging in clinical and research studies

    International Nuclear Information System (INIS)

    The increasing availability of PET imaging in Nuclear medicine expands the armamentarium of clinical and research tools for improving diagnosis and treatment of neuropsychiatric disorders. Nonetheless, the role of SPEC imaging remains critical to both research and clinical practice. The development of rational strategies for guiding the selection of imaging modalities flows from primarily the nature of the clinical or research question and the availability of appropriate radiopharmaceuticals. There has been extensive SPECT and PET work in Parkinson's disease (PD) which highlights the value of both these scintigraphic modalities. Three main areas of interest in PD include imaging for improving diagnostic accuracy, for monitoring the progression of disease, and for assessing the therapeutic efficacy of drugs with neoroprotective potential. The demands of the clinical or research question posed to imaging dictates the selection of radiotracer and imaging modality. Diagnosis of PD represents the easiest challenge with many imaging bio markers showing high sensitivity for detecting abnormal reduction of dopaminergic function based on qualitative review of images. On the other hand, using imaging to evaluate treatments which purportedly slow the rate of disease progression, indicated by the reduction of the rate of loss in a quantitative imaging signal in patients studied over time, represents the most rigorous requirement of the imaging measure. In each of these applications presynaptic markers of dopaminergic function using SPECT and PET have been extremely valuable. Review of neuroimaging studies of PD provides a useful example of optimized approaches to clinical and research studies in neuropsychiatric disorders

  17. Writing affects the brain network of reading in Chinese: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Cao, Fan; Vu, Marianne; Chan, Derek Ho Lung; Lawrence, Jason M; Harris, Lindsay N; Guan, Qun; Xu, Yi; Perfetti, Charles A

    2013-07-01

    We examined the hypothesis that learning to write Chinese characters influences the brain's reading network for characters. Students from a college Chinese class learned 30 characters in a character-writing condition and 30 characters in a pinyin-writing condition. After learning, functional magnetic resonance imaging collected during passive viewing showed different networks for reading Chinese characters and English words, suggesting accommodation to the demands of the new writing system through short-term learning. Beyond these expected differences, we found specific effects of character writing in greater activation (relative to pinyin writing) in bilateral superior parietal lobules and bilateral lingual gyri in both a lexical decision and an implicit writing task. These findings suggest that character writing establishes a higher quality representation of the visual-spatial structure of the character and its orthography. We found a greater involvement of bilateral sensori-motor cortex (SMC) for character-writing trained characters than pinyin-writing trained characters in the lexical decision task, suggesting that learning by doing invokes greater interaction with sensori-motor information during character recognition. Furthermore, we found a correlation of recognition accuracy with activation in right superior parietal lobule, right lingual gyrus, and left SMC, suggesting that these areas support the facilitative effect character writing has on reading. Finally, consistent with previous behavioral studies, we found character-writing training facilitates connections with semantics by producing greater activation in bilateral middle temporal gyri, whereas pinyin-writing training facilitates connections with phonology by producing greater activation in right inferior frontal gyrus.

  18. Microstructural changes of whole brain in patients with comitant strabismus: evidence from a diffusion tensor imaging study

    Directory of Open Access Journals (Sweden)

    Huang X

    2016-08-01

    Full Text Available Xin Huang,1,2,* Hai-Jun Li,3,* Ying Zhang,1 De-Chang Peng,3 Pei-Hong Hu,1 Yu-Lin Zhong,1 Fu-Qing Zhou,3 Yi Shao1 1Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 2Department of Ophthalmology, The First People’s Hospital of Jiujiang City, Jiujiang, 3Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China*These authors contributed equally to this work Objective: The aim of this study was to investigate the fractional anisotropy (FA and mean diffusivity (MD using a diffusion tensor imaging technique and whole-brain voxel-based analysis in patients with comitant strabismus.Patients and methods: A total of 19 (nine males and ten females patients with comitant strabismus and 19 age-, sex-, and education-matched healthy controls (HCs underwent magnetic resonance imaging examination. Imaging data were analyzed using two-sample t-tests to identify group differences in FA and MD values. Patients with comitant strabismus were distinguishable from HCs by receiver operating characteristic curves.Results: Compared with HCs, patients with comitant strabismus exhibited significantly decreased FA values in the brain regions of the left superior temporal gyrus and increased values in the bilateral medial frontal gyrus, right globus pallidus/brainstem, and bilateral precuneus. Meanwhile, MD value was significantly reduced in the brain regions of the bilateral cerebellum posterior lobe and left middle frontal gyrus but increased in the brain regions of the right middle frontal gyrus and left anterior cingulate.Conclusion: These results suggest significant brain abnormalities in comitant strabismus, which may underlie the pathologic mechanisms of fusion defects and ocular motility disorders in patients with comitant strabismus. Keywords: comitant strabismus, diffusion tensor imaging, mean diffusivity, fractional anisotropy, resting state

  19. NIH Conference. Brain imaging: aging and dementia

    International Nuclear Information System (INIS)

    The brain imaging techniques of positron emission tomography using [18F]-fluoro-2-deoxy-D-glucose, and computed tomography, together with neuropsychological tests, were used to examine overall brain function and anatomy in three study populations: healthy men at different ages, patients with presumptive Alzheimer's disease, and adults with Down's syndrome. Brain glucose use did not differ with age, whereas an age-related decrement in gray matter volume was found on computed tomographic assessment in healthy subjects. Memory deficits were found to precede significant reductions in brain glucose utilization in mild to moderate Alzheimer's dementia. Furthermore, differences between language and visuoconstructive impairments in patients with mild to moderate Alzheimer's disease were related to hemispheric asymmetry of brain metabolism. Brain glucose utilization was found to be significantly elevated in young adults with Down's syndrome, compared with controls. The importance of establishing strict criteria for selecting control subjects and patients is explained in relation to the findings

  20. Functional Brain Imaging: A Comprehensive Survey

    CERN Document Server

    Sarraf, Saman

    2016-01-01

    Functional brain imaging allows measuring dynamic functionality in all brain regions. It is broadly used in clinical cognitive neuroscience as, well as in research. It will allow the observation of neural activities in the brain simultaneously. From the beginning when functional brain imaging was initiated by the mapping of brain functions proposed by phrenologists, many scientists were asking why we need to image brain functionality since we have already structural information. Simply, their important question was including a great answer. Functional information of the human brain would definitely complement structural information, helping to have a better understanding of what is happening in the brain. This paper, which could be useful to those who have an interest in functional brain imaging, such as engineers, will present a quick review of modalities used in functional brain imaging. We will concentrate on the most used techniques in functional imaging which are functional magnetic resonance imaging (fM...

  1. Imaging the Addicted Human Brain

    OpenAIRE

    Fowler, Joanna S.; Volkow, Nora D.; Kassed, Cheryl A; Chang, Linda

    2007-01-01

    Modern imaging techniques enable researchers to observe drug actions and consequences as they occur and persist in the brains of abusing and addicted individuals. This article presents the five most commonly used techniques, explains how each produces images, and describes how researchers interpret them. The authors give examples of key findings illustrating how each technique has extended and deepened our knowledge of the neurobiological bases of drug abuse and addiction, and they address po...

  2. Advantages in functional imaging of the brain

    Directory of Open Access Journals (Sweden)

    Walter eMier

    2015-05-01

    Full Text Available As neuronal pathologies cause only minor morphological alterations, molecular imaging techniques are a prerequisite for the study of diseases of the brain. The development of molecular probes that specifically bind biochemical markers and the advances of instrumentation have revolutionized the possibilities to gain insight into the human brain organization and beyond this visualize structure-function and brain-behavior relationships. The review describes the development and current applications of functional brain imaging techniques with a focus on applications in psychiatry. A historical overview of the development of functional imaging is followed by the portrayal of the principles and applications of positron emission tomography (PET and functional magnetic resonance imaging (fMRI, two key molecular imaging techniques that have revolutionized the ability to image molecular processes in the brain. In the juxtaposition of PET and fMRI in hybrid PET/MRI scanners enhances the significance of both modalities for research in neurology and psychiatry and might pave the way for a new area of personalized medicine.

  3. Classification of Medical Brain Images

    Institute of Scientific and Technical Information of China (English)

    Pan Haiwei(潘海为); Li Jianzhong; Zhang Wei

    2003-01-01

    Since brain tumors endanger people's living quality and even their lives, the accuracy of classification becomes more important. Conventional classifying techniques are used to deal with those datasets with characters and numbers. It is difficult, however, to apply them to datasets that include brain images and medical history (alphanumeric data), especially to guarantee the accuracy. For these datasets, this paper combines the knowledge of medical field and improves the traditional decision tree. The new classification algorithm with the direction of the medical knowledge not only adds the interaction with the doctors, but also enhances the quality of classification. The algorithm has been used on real brain CT images and a precious rule has been gained from the experiments. This paper shows that the algorithm works well for real CT data.

  4. Perfusion harmonic imaging of the human brain

    Science.gov (United States)

    Metzler, Volker H.; Seidel, Guenter; Wiesmann, Martin; Meyer, Karsten; Aach, Til

    2003-05-01

    The fast visualisation of cerebral microcirculation supports diagnosis of acute cerebrovascular diseases. However, the commonly used CT/MRI-based methods are time consuming and, moreover, costly. Therefore we propose an alternative approach to brain perfusion imaging by means of ultrasonography. In spite of the low signal/noise-ratio of transcranial ultrasound and the high impedance of the skull, flow images of cerebral blood flow can be derived by capturing the kinetics of appropriate contrast agents by harmonic ultrasound image sequences. In this paper we propose three different methods for human brain perfusion imaging, each of which yielding flow images indicating the status of the patient's cerebral microcirculation by visualising local flow parameters. Bolus harmonic imaging (BHI) displays the flow kinetics of bolus injections, while replenishment (RHI) and diminution harmonic imaging (DHI) compute flow characteristics from contrast agent continuous infusions. RHI measures the contrast agents kinetics in the influx phase and DHI displays the diminution kinetics of the contrast agent acquired from the decay phase. In clinical studies, BHI- and RHI-parameter images were found to represent comprehensive and reproducible distributions of physiological cerebral blood flow. For DHI it is shown, that bubble destruction and hence perfusion phenomena principally can be displayed. Generally, perfusion harmonic imaging enables reliable and fast bedside imaging of human brain perfusion. Due to its cost efficiency it complements cerebrovascular diagnostics by established CT/MRI-based methods.

  5. Parameters of glucose metabolism and the aging brain: a magnetization transfer imaging study of brain macro- and micro-structure in older adults without diabetes.

    Science.gov (United States)

    Akintola, Abimbola A; van den Berg, Annette; Altmann-Schneider, Irmhild; Jansen, Steffy W; van Buchem, Mark A; Slagboom, P Eline; Westendorp, Rudi G; van Heemst, Diana; van der Grond, Jeroen

    2015-08-01

    Given the concurrent, escalating epidemic of diabetes mellitus and neurodegenerative diseases, two age-related disorders, we aimed to understand the relation between parameters of glucose metabolism and indices of pathology in the aging brain. From the Leiden Longevity Study, 132 participants (mean age 66 years) underwent a 2-h oral glucose tolerance test to assess glucose tolerance (fasted and area under the curve (AUC) glucose), insulin sensitivity (fasted and AUC insulin and homeostatic model assessment of insulin sensitivity (HOMA-IS)) and insulin secretion (insulinogenic index). 3-T brain MRI was used to detect macro-structural damage (atrophy, white matter hyper-intensities, infarcts and/or micro-bleeds) and magnetization transfer imaging (MTI) to detect loss of micro-structural homogeneity that remains otherwise invisible on conventional MRI. Macro-structurally, higher fasted glucose was significantly associated with white matter atrophy (P = 0.028). Micro-structurally, decreased magnetization transfer ratio (MTR) peak height in gray matter was associated with higher fasted insulin (P = 0.010), AUCinsulin (P = 0.001), insulinogenic index (P = 0.008) and lower HOMA-IS index (P macro-structural damage, impaired insulin action was associated more strongly with reduced micro-structural brain parenchymal homogeneity. These findings offer some insight into the association between different parameters of glucose metabolism (impairment of which is characteristic of diabetes mellitus) and brain aging.

  6. ROC [Receiver Operating Characteristics] study of maximum likelihood estimator human brain image reconstructions in PET [Positron Emission Tomography] clinical practice

    International Nuclear Information System (INIS)

    This paper will report on the progress to date in carrying out Receiver Operating Characteristics (ROC) studies comparing Maximum Likelihood Estimator (MLE) and Filtered Backprojection (FBP) reconstructions of normal and abnormal human brain PET data in a clinical setting. A previous statistical study of reconstructions of the Hoffman brain phantom with real data indicated that the pixel-to-pixel standard deviation in feasible MLE images is approximately proportional to the square root of the number of counts in a region, as opposed to a standard deviation which is high and largely independent of the number of counts in FBP. A preliminary ROC study carried out with 10 non-medical observers performing a relatively simple detectability task indicates that, for the majority of observers, lower standard deviation translates itself into a statistically significant detectability advantage in MLE reconstructions. The initial results of ongoing tests with four experienced neurologists/nuclear medicine physicians are presented. Normal cases of 18F -- fluorodeoxyglucose (FDG) cerebral metabolism studies and abnormal cases in which a variety of lesions have been introduced into normal data sets have been evaluated. We report on the results of reading the reconstructions of 90 data sets, each corresponding to a single brain slice. It has become apparent that the design of the study based on reading single brain slices is too insensitive and we propose a variation based on reading three consecutive slices at a time, rating only the center slice. 9 refs., 2 figs., 1 tab

  7. ROC (Receiver Operating Characteristics) study of maximum likelihood estimator human brain image reconstructions in PET (Positron Emission Tomography) clinical practice

    Energy Technology Data Exchange (ETDEWEB)

    Llacer, J.; Veklerov, E.; Nolan, D. (Lawrence Berkeley Lab., CA (USA)); Grafton, S.T.; Mazziotta, J.C.; Hawkins, R.A.; Hoh, C.K.; Hoffman, E.J. (California Univ., Los Angeles, CA (USA))

    1990-10-01

    This paper will report on the progress to date in carrying out Receiver Operating Characteristics (ROC) studies comparing Maximum Likelihood Estimator (MLE) and Filtered Backprojection (FBP) reconstructions of normal and abnormal human brain PET data in a clinical setting. A previous statistical study of reconstructions of the Hoffman brain phantom with real data indicated that the pixel-to-pixel standard deviation in feasible MLE images is approximately proportional to the square root of the number of counts in a region, as opposed to a standard deviation which is high and largely independent of the number of counts in FBP. A preliminary ROC study carried out with 10 non-medical observers performing a relatively simple detectability task indicates that, for the majority of observers, lower standard deviation translates itself into a statistically significant detectability advantage in MLE reconstructions. The initial results of ongoing tests with four experienced neurologists/nuclear medicine physicians are presented. Normal cases of {sup 18}F -- fluorodeoxyglucose (FDG) cerebral metabolism studies and abnormal cases in which a variety of lesions have been introduced into normal data sets have been evaluated. We report on the results of reading the reconstructions of 90 data sets, each corresponding to a single brain slice. It has become apparent that the design of the study based on reading single brain slices is too insensitive and we propose a variation based on reading three consecutive slices at a time, rating only the center slice. 9 refs., 2 figs., 1 tab.

  8. Where do neurologists look when viewing brain CT images? An eye-tracking study involving stroke cases.

    Directory of Open Access Journals (Sweden)

    Hideyuki Matsumoto

    Full Text Available The aim of this study was to investigate where neurologists look when they view brain computed tomography (CT images and to evaluate how they deploy their visual attention by comparing their gaze distribution with saliency maps. Brain CT images showing cerebrovascular accidents were presented to 12 neurologists and 12 control subjects. The subjects' ocular fixation positions were recorded using an eye-tracking device (Eyelink 1000. Heat maps were created based on the eye-fixation patterns of each group and compared between the two groups. The heat maps revealed that the areas on which control subjects frequently fixated often coincided with areas identified as outstanding in saliency maps, while the areas on which neurologists frequently fixated often did not. Dwell time in regions of interest (ROI was likewise compared between the two groups, revealing that, although dwell time on large lesions was not different between the two groups, dwell time in clinically important areas with low salience was longer in neurologists than in controls. Therefore it appears that neurologists intentionally scan clinically important areas when reading brain CT images showing cerebrovascular accidents. Both neurologists and control subjects used the "bottom-up salience" form of visual attention, although the neurologists more effectively used the "top-down instruction" form.

  9. Incidental findings are frequent in young healthy individuals undergoing magnetic resonance imaging in brain research imaging studies

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Siebner, Hartwig R; Deuschl, Günther;

    2010-01-01

    There is an ongoing debate about how to handle incidental findings (IF) detected in healthy individuals who participate in research-driven magnetic resonance imaging (MRI) studies. There are currently no established guidelines regarding their management.......There is an ongoing debate about how to handle incidental findings (IF) detected in healthy individuals who participate in research-driven magnetic resonance imaging (MRI) studies. There are currently no established guidelines regarding their management....

  10. Neuropsychological correlates of brain atrophy in Huntington's disease: a magnetic resonance imaging study

    International Nuclear Information System (INIS)

    Magnetic resonance imaging and a comprehensive cognitive evaluation were carried out in a series of 29 patients with mild to moderate Huntington's disease (HD). A factor analysis of the neuropsychological test scores provided three factors: A memory/speed-of-processing factor, a 'frontal' factor, and a response inhibition factor. The memory/speed factor correlated significantly with measures of caudate atrophy, frontal atrophy, and atrophy of the left (but not the right) sylvian cistern. There were no significant correlations between the 'frontal' or response inhibition factors and measures of cortical or subcortical brain atrophy. Our findings confirm that subcortical atrophy is significantly correlated with specific cognitive deficits in HD, and demonstrate that cortical atrophy also has important association with the cognitive deficits of patients with HD. (orig.)

  11. Neuropsychological correlates of brain atrophy in Huntington's disease: a magnetic resonance imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Starkstein, S.E. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States). Dept. of Psychiatry Inst. of Neurological Investigation ' Dr. Raul Carrea' , Buenos Aires (Argentina)); Brandt, J.; Bylsma, F.; Peyser, C.; Folstein, M.; Folstein, S.E. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States). Dept. of Psychiatry)

    1992-11-01

    Magnetic resonance imaging and a comprehensive cognitive evaluation were carried out in a series of 29 patients with mild to moderate Huntington's disease (HD). A factor analysis of the neuropsychological test scores provided three factors: A memory/speed-of-processing factor, a 'frontal' factor, and a response inhibition factor. The memory/speed factor correlated significantly with measures of caudate atrophy, frontal atrophy, and atrophy of the left (but not the right) sylvian cistern. There were no significant correlations between the 'frontal' or response inhibition factors and measures of cortical or subcortical brain atrophy. Our findings confirm that subcortical atrophy is significantly correlated with specific cognitive deficits in HD, and demonstrate that cortical atrophy also has important association with the cognitive deficits of patients with HD. (orig.).

  12. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: An FTIR microspectroscopic imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Cakmak G.; Miller L.; Zorlu, F.; Severcan, F.

    2012-03-03

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH{sub 2} groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH{sub 3} groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems.

  13. A stereotaxic method of anatomical localization by means of H{sub 2}{sup 15}O positron emission tomography applicable to the brain activation study in cats. Registration of images of cerebral blood flow to brain atlas

    Energy Technology Data Exchange (ETDEWEB)

    Sakiyama, Yojiro; Toyama, Hinako; Oda, Keiichi; Ishii, Shin-ichi; Ishiwata, Kiichi; Ishii, Kenji; Suzuki, Atsuko; Nakayama, Hitomi; Senda, Michio [Tokyo Metropolitan Inst. of Gerontology (Japan)

    1997-11-01

    In the neuronal activation study of normal animals, precise anatomical correlation, preferentially to a detailed brain atlas, is required for the activation foci co-registration. To obtain precise regional correlation between H{sub 2}{sup 15}O-PET images and the brain atlas, a method of stereotaxic image reorientation was applied to an activation study with vibrotactile stimulation. Cats anesthetized with halothane underwent repeated measurements of regional cerebral blood flow (rCBF) in the resting condition and during vibration of the right forepaw. The image set was adjusted three-dimensionally to the atlas. The postmortem brain was sectioned according to the atlas planes. The activated areas were determined by the stimulus-minus-resting subtraction images, and the areas were projected to the atlas. The PET images of the cat brain were compatible both to the postmortem brain slices and to the brain atlas. The activation foci obtained from the subtraction images corresponded to the area around the coronal sulcus, which is electrophysiologically known as the primary sensory area as described in the atlas. There were precise regional correlations between the PET image and anatomy in a PET activation study of the cat by means of stereotaxic image reorientation. (author)

  14. Sleep deprivation disturbed regional brain activity in healthy subjects: evidence from a functional magnetic resonance-imaging study

    Directory of Open Access Journals (Sweden)

    Wang L

    2016-04-01

    Full Text Available Li Wang, Yin Chen, Ying Yao, Yu Pan, Yi Sun Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China Objective: The aim of this study was to use amplitude of low-frequency fluctuation (ALFF to explore regional brain activities in healthy subjects after sleep deprivation (SD.Materials and methods: A total of 16 healthy subjects (eight females, eight males underwent the session twice: once was after normal sleep (NS, and the other was after SD. ALFF was used to assess local brain features. The mean ALFF-signal values of the different brain areas were evaluated to investigate relationships with clinical features and were analyzed with a receiver-operating characteristic curve.Results: Compared with NS subjects, SD subjects showed a lower response-accuracy rate, longer response time, and higher lapse rate. Compared with NS subjects, SD subjects showed higher ALFF area in the right cuneus and lower ALFF area in the right lentiform nucleus, right claustrum, left dorsolateral prefrontal cortex, and left inferior parietal cortex. ALFF differences in regional brain areas showed high sensitivity and specificity. In the SD group, mean ALFF of the right claustrum showed a significant positive correlation with accuracy rate (r=0.687, P=0.013 and a negative correlation with lapse rate (r=-0.706, P=0.01. Mean ALFF of the dorsolateral prefrontal cortex showed a significant positive correlation with response time (r=0.675, P=0.016.Conclusion: SD disturbed the regional brain activity of the default-mode network, its anticorrelated “task-positive” network, and the advanced cognitive function brain areas. Keywords: sleep deprivation, amplitude of low-frequency fluctuation, default-mode network, functional magnetic resonance imaging

  15. Brain imaging studies of the cocaine addict: Implications for reinforcement and addiction

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Fowler, J.S. [Brookhaven National Lab., Upton, NY (United States)]|[SUNY, Stony Brook, Stony Brook, NY (United States). Dept. of Psychiatry

    1995-07-01

    These studies document dopaminergic abnormalities in cocaine abusers. They also suggest a regulatory role of Dopamine (DA) in frontal metabolism. The correlation of striatal D{sub 2} receptor availability with metabolism was strongest for orbital frontal cortex (OFC) cingulate and prefrontal cortices. In cocaine abusers tested during early withdrawal (<1 week) the OFC was found to be hypermetabolic and metabolism in OFC and prefrontal cortices were found to be significantly associated with cocaine craving . Thus, we postulate that repeated and intermittent DA stimulation, as seen during a cocaine binge, activates the prefrontal and OFC cortices increasing the drive to compulsively self-administer cocaine. During cocaine discontinuation and protracted withdrawal and with decreased DA stimulation, these frontal cortical regions become hyponietabolic. Dopaminergic stimulation by a DA-enhancing drug and/or environmental conditioning will reactivate these frontal regions resetting the compulsion to self-administer cocaine and the inability to terminate this behavior. The pharmacokionetic studies with [11C]cocaine are consistent with behavioral and pharmacological studies in animals as well as in vitro studies which have revealed that while the mechanisms for cocaine`s reinforcing properties are complex, they partly involve the brain`s dopamine system and also highlight the importance of cocaine`s pharmacokinetic on its unique reinforcing properties.

  16. Brain and heart disease studies

    International Nuclear Information System (INIS)

    Highlights of important studies completed during the past year using the Donner 280-crystal positron ring tomograph are summarized in this article. Using rubidium-82, images of a brain tumor and an arteriovenous malformation are described. An image demonstrating methionine uptake in a patient with schizophrenia and an image reflecting sugar metabolism in the brain of a man with Alzheimer's disease are also included. Uptake of rubidium-82 in subjects before and after exercise is being investigated. The synthesis of new radiopharmaceuticals and the development of a new synthesis for C-taurine for use in the study of metabolism in the human heart are also being studied

  17. Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: A longitudinal study

    DEFF Research Database (Denmark)

    Sidaros, A.; Engberg, A.W.; Sidaros, K.;

    2008-01-01

    Diffusion tensor imaging (DTI) has been proposed as a sensitive biomarker of traumatic white matter injury, which could potentially serve as a tool for prognostic assessment and for studying microstructural changes during recovery from traumatic brain injury (TBI). However, there is a lack....... At the initial scan, fractional anisotropy was reduced in all the investigated white matter regions in patients compared to controls (P ≤ 0.01) due to decreased diffusivity parallel (λ∥) and increased diffusivity perpendicular (λ⊥) to axonal fibre direction. Fractional anisotropy in the cerebral peduncle...... is a clinically relevant biomarker in TBI, which may have prognostic value and also might serve as a tool for revealing changes in the neural tissue during recovery. © Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved....

  18. Reproducibility study of 3D SSFP phase-based brain conductivity imaging

    NARCIS (Netherlands)

    Stehning, C.; Katscher, U.; Keupp, J.

    2012-01-01

    Noninvasive MR-based Electric Properties Tomography (EPT) forms a framework for an accurate determination of local SAR, and may providea diagnostic parameter in oncology. 3D SSFP sequences were found tobe a promising candidate for fast volumetric conductivity imaging. In this work, an in vivo study

  19. Chronic cocaine administration causes extensive white matter damage in brain: diffusion tensor imaging and immunohistochemistry studies.

    Science.gov (United States)

    Narayana, Ponnada A; Herrera, Juan J; Bockhorst, Kurt H; Esparza-Coss, Emilio; Xia, Ying; Steinberg, Joel L; Moeller, F Gerard

    2014-03-30

    The effect of chronic cocaine exposure on multiple white matter structures in rodent brain was examined using diffusion tensor imaging (DTI), locomotor behavior, and end point histology. The animals received either cocaine at a dose of 100mg/kg (N=19), or saline (N=17) for 28 days through an implanted osmotic minipump. The animals underwent serial DTI scans, locomotor assessment, and end point histology for determining the expressions of myelin basic protein (MBP), neurofilament-heavy protein (NF-H), proteolipid protein (PLP), Nogo-A, aquaporin-4 (AQP-4), and growth associated protein-43 (GAP-43). Differences in the DTI measures were observed in the splenium (scc) and genu (gcc) of the corpus callosum (cc), fimbria (fi), and the internal capsule (ic). A significant increase in the activity in the fine motor movements and a significant decrease in the number of rearing events were observed in the cocaine-treated animals. Reduced MBP and Nogo-A and increased GAP-43 expressions were most consistently observed in these structures. A decrease in the NF-H expression was observed in fi and ic. The reduced expression of Nogo-A and the increased expression of GAP-43 may suggest destabilization of axonal connectivity and increased neurite growth with aberrant connections. Increased GAP-43 suggests drug-induced plasticity or a possible repair mechanism response. The findings indicated that multiple white matter tracts are affected following chronic cocaine exposure. PMID:24507117

  20. Simultaneous functional near-infrared brain imaging and event-related potential studies of Stroop effect

    Science.gov (United States)

    Zhai, Jiahuan; Li, Ting; Zhang, Zhongxing; Gong, Hui

    2009-02-01

    Functional near-infrared brain imaging (fNIRI) and event-related potential (ERP) were used simultaneous to detect the prefrontal cortex (PFC) which is considered to execute cognitive control of the subjects while performing the Chinese characters color-word matching Stroop task with event-related design. The fNIRI instrument is a portable system operating at three wavelengths (735nm & 805nm &850nm) with continuous-wave. The event-related potentials were acquired by Neuroscan system. The locations of optodes corresponding to the electrodes were defined four areas symmetrically. In nine native Chinese-speaking fit volunteers, fNIRI measured the hemodynamic parameters (involving oxy-/deoxy- hemoglobin) changes when the characteristic waveforms (N500/P600) were recorded by ERP. The interference effect was obvious as a longer reaction time for incongruent than congruent and neutral stimulus. The responses of hemodynamic and electrophysiology were also stronger during incongruent compared to congruent and neutral trials, and these results are similar to those obtained with fNIRI or ERP separately. There are high correlations, even linear relationship, in the two kinds of signals. In conclusion, the multi-modality approach combining of fNIRI and ERP is feasible and could obtain more cognitive function information with hemodynamic and electrophysiology signals. It also provides a perspective to prove the neurovascular coupling mechanism.

  1. Statistical analysis of maximum likelihood estimator images of human brain FDG PET studies

    International Nuclear Information System (INIS)

    The work presented in this paper evaluates the statistical characteristics of regional bias and expected error in reconstructions of real PET data of human brain fluorodeoxiglucose (FDG) studies carried out by the maximum likelihood estimator (MLE) method with a robust stopping rule, and compares them with the results of filtered backprojection (FBP) reconstructions and with the method of sieves. The task that the authors have investigated is that of quantifying radioisotope uptake in regions-of-interest (ROI's). They first describe a robust methodology for the use of the MLE method with clinical data which contains only one adjustable parameter: the kernel size for a Gaussian filtering operation that determines final resolution and expected regional error. Simulation results are used to establish the fundamental characteristics of the reconstructions obtained by out methodology, corresponding to the case in which the transition matrix is perfectly known. Then, data from 72 independent human brain FDG scans from four patients are used to show that the results obtained from real data are consistent with the simulation, although the quality of the data and of the transition matrix have an effect on the final outcome

  2. Functional brain imaging; Funktionelle Hirnbildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Gizewski, E.R. [Medizinische Universitaet Innsbruck, Universitaetsklinik fuer Neuroradiologie, Innsbruck (Austria)

    2016-02-15

    Functional magnetic resonance imaging (fMRI) is a non-invasive method that has become one of the major tools for understanding human brain function and in recent years has also been developed for clinical applications. Changes in hemodynamic signals correspond to changes in neuronal activity with good spatial and temporal resolution in fMRI. Using high-field MR systems and increasingly dedicated statistics and postprocessing, activated brain areas can be detected and superimposed on anatomical images. Currently, fMRI data are often combined in multimodal imaging, e. g. with diffusion tensor imaging (DTI) sequences. This method is helping to further understand the physiology of cognitive brain processes and is also being used in a number of clinical applications. In addition to the blood oxygenation level-dependent (BOLD) signals, this article deals with the construction of fMRI investigations, selection of paradigms and evaluation in the clinical routine. Clinically, this method is mainly used in the planning of brain surgery, analyzing the location of brain tumors in relation to eloquent brain areas and the lateralization of language processing. As the BOLD signal is dependent on the strength of the magnetic field as well as other limitations, an overview of recent developments is given. Increases of magnetic field strength (7 T), available head coils and advances in MRI analytical methods have led to constant improvement in fMRI signals and experimental design. Especially the depiction of eloquent brain regions can be done easily and quickly and has become an essential part of presurgical planning. (orig.) [German] Mittlerweile ist die funktionelle MRT (fMRT) eine Methode, die nicht mehr nur in der neurowissenschaftlichen Routine verwendet wird. Die fMRT ermoeglicht die nichtinvasive Darstellung der Hirnaktivitaet in guter raeumlicher und zeitlicher Aufloesung unter Ausnutzung der Durchblutungsaenderung aufgrund der erhoehten Nervenzellaktivitaet. Unter

  3. Analysis of Dynamic Brain Imaging Data

    CERN Document Server

    Mitra, P

    1998-01-01

    Modern imaging techniques for probing brain function, including functional Magnetic Resonance Imaging, intrinsic and extrinsic contrast optical imaging, and magnetoencephalography, generate large data sets with complex content. In this paper we develop appropriate techniques of analysis and visualization of such imaging data, in order to separate the signal from the noise, as well as to characterize the signal. The techniques developed fall into the general category of multivariate time series analysis, and in particular we extensively use the multitaper framework of spectral analysis. We develop specific protocols for the analysis of fMRI, optical imaging and MEG data, and illustrate the techniques by applications to real data sets generated by these imaging modalities. In general, the analysis protocols involve two distinct stages: `noise' characterization and suppression, and `signal' characterization and visualization. An important general conclusion of our study is the utility of a frequency-based repres...

  4. STRATEGIES FOR QUANTIFYING PET IMAGING DATA FROM TRACER STUDIES OF BRAIN RECEPTORS AND ENZYMES.

    Energy Technology Data Exchange (ETDEWEB)

    Logan, J.

    2001-04-02

    A description of some of the methods used in neuroreceptor imaging to distinguish changes in receptor availability has been presented in this chapter. It is necessary to look beyond regional uptake of the tracer since uptake generally is affected by factors other than the number of receptors for which the tracer has affinity. An exception is the infusion method producing an equilibrium state. The techniques vary in complexity some requiring arterial blood measurements of unmetabolized tracer and multiple time uptake data. Others require only a few plasma and uptake measurements and those based on a reference region require no plasma measurements. We have outlined some of the limitations of the different methods. Laruelle (1999) has pointed out that test/retest studies to which various methods can be applied are crucial in determining the optimal method for a particular study. The choice of method will also depend upon the application. In a clinical setting, methods not involving arterial blood sampling are generally preferred. In the future techniques for externally measuring arterial plasma radioactivity with only a few blood samples for metabolite correction will extend the modeling options of clinical PET. Also since parametric images can provide information beyond that of ROI analysis, improved techniques for generating such images will be important, particularly for ligands requiring more than a one-compartment model. Techniques such as the wavelet transform proposed by Turkheimer et al. (2000) may prove to be important in reducing noise and improving quantitation.

  5. Monte Carlo simulation studies on scintillation detectors and image reconstruction of brain-phantom tumors in TOFPET

    Directory of Open Access Journals (Sweden)

    Mondal Nagendra

    2009-01-01

    Full Text Available This study presents Monte Carlo Simulation (MCS results of detection efficiencies, spatial resolutions and resolving powers of a time-of-flight (TOF PET detector systems. Cerium activated Lutetium Oxyorthosilicate (Lu 2 SiO 5 : Ce in short LSO, Barium Fluoride (BaF 2 and BriLanCe 380 (Cerium doped Lanthanum tri-Bromide, in short LaBr 3 scintillation crystals are studied in view of their good time and energy resolutions and shorter decay times. The results of MCS based on GEANT show that spatial resolution, detection efficiency and resolving power of LSO are better than those of BaF 2 and LaBr 3 , although it possesses inferior time and energy resolutions. Instead of the conventional position reconstruction method, newly established image reconstruction (talked about in the previous work method is applied to produce high-tech images. Validation is a momentous step to ensure that this imaging method fulfills all purposes of motivation discussed by reconstructing images of two tumors in a brain phantom.

  6. Altered Functional Connectivity within and between Brain Modules in Absence Epilepsy: A Resting-State Functional Magnetic Resonance Imaging Study

    Directory of Open Access Journals (Sweden)

    Cui-Ping Xu

    2013-01-01

    Full Text Available Functional connectivity has been correlated with a patient’s level of consciousness and has been found to be altered in several neuropsychiatric disorders. Absence epilepsy patients, who experience a loss of consciousness, are assumed to suffer from alterations in thalamocortical networks; however, previous studies have not explored the changes at a functional module level. We used resting-state functional magnetic resonance imaging to examine the alteration in functional connectivity that occurs in absence epilepsy patients. By parcellating the brain into 90 brain regions/nodes, we uncovered an altered functional connectivity within and between functional modules. Some brain regions had a greater number of altered connections and therefore behaved as key nodes in the changed network pattern; these regions included the superior frontal gyrus, the amygdala, and the putamen. In particular, the superior frontal gyrus demonstrated both an increased value of connections with other nodes of the frontal default mode network and a decreased value of connections with the limbic system. This divergence is positively correlated with epilepsy duration. These findings provide a new perspective and shed light on how functional connectivity and the balance of within/between module connections may contribute to both the state of consciousness and the development of absence epilepsy.

  7. Handedness- and hemisphere-related differences in small-world brain networks: a diffusion tensor imaging tractography study.

    Science.gov (United States)

    Li, Meiling; Chen, Heng; Wang, Junping; Liu, Feng; Long, Zhiliang; Wang, Yifeng; Iturria-Medina, Yasser; Zhang, Jiang; Yu, Chunshui; Chen, Huafu

    2014-03-01

    Previous behavioral and scanning studies have suggested that handedness is associated with differences in brain morphology as well as in anatomical and functional lateralization. However, little is known about the topological organization of the white matter (WM) structural networks related to handedness. We employed diffusion tensor imaging tractography to investigate handedness- and hemisphere-related differences in the topological organization of the human cortical anatomical network. After constructing left hemispheric/right hemispheric weighted structural networks in 32 right-handed and 24 left-handed healthy individuals, we analyzed the networks by graph theoretic analysis. We found that both the right and left hemispheric WM structural networks in the two groups possessed small-world attributes (high local clustering and short paths between nodes), findings which are consistent with recent results from whole-brain structural networks. In addition, the right hemisphere tended to be more efficient than the left hemisphere, suggesting a high efficiency of general information processing in the right hemisphere. Finally, we found that the right-handed subjects had significant asymmetries in small-world properties (normalized clustering coefficient γ, normalized path length λ, and small-worldness σ), while left-handed subjects had fewer asymmetries. Our findings from large-scale brain networks aid in understanding the structural substrates underlying handedness-related and hemisphere-related differences in cognition and behavior. PMID:24564422

  8. Brain imaging studies of the cocaine addict: Implications for reinforcement and addiction

    International Nuclear Information System (INIS)

    These studies document dopaminergic abnormalities in cocaine abusers. They also suggest a regulatory role of Dopamine (DA) in frontal metabolism. The correlation of striatal D2 receptor availability with metabolism was strongest for orbital frontal cortex (OFC) cingulate and prefrontal cortices. In cocaine abusers tested during early withdrawal (<1 week) the OFC was found to be hypermetabolic and metabolism in OFC and prefrontal cortices were found to be significantly associated with cocaine craving . Thus, we postulate that repeated and intermittent DA stimulation, as seen during a cocaine binge, activates the prefrontal and OFC cortices increasing the drive to compulsively self-administer cocaine. During cocaine discontinuation and protracted withdrawal and with decreased DA stimulation, these frontal cortical regions become hyponietabolic. Dopaminergic stimulation by a DA-enhancing drug and/or environmental conditioning will reactivate these frontal regions resetting the compulsion to self-administer cocaine and the inability to terminate this behavior. The pharmacokionetic studies with [11C]cocaine are consistent with behavioral and pharmacological studies in animals as well as in vitro studies which have revealed that while the mechanisms for cocaine's reinforcing properties are complex, they partly involve the brain's dopamine system and also highlight the importance of cocaine's pharmacokinetic on its unique reinforcing properties

  9. Transferring cognitive tasks between brain imaging modalities: implications for task design and results interpretation in FMRI studies.

    Science.gov (United States)

    Warbrick, Tracy; Reske, Martina; Shah, N Jon

    2014-01-01

    As cognitive neuroscience methods develop, established experimental tasks are used with emerging brain imaging modalities. Here transferring a paradigm (the visual oddball task) with a long history of behavioral and electroencephalography (EEG) experiments to a functional magnetic resonance imaging (fMRI) experiment is considered. The aims of this paper are to briefly describe fMRI and when its use is appropriate in cognitive neuroscience; illustrate how task design can influence the results of an fMRI experiment, particularly when that task is borrowed from another imaging modality; explain the practical aspects of performing an fMRI experiment. It is demonstrated that manipulating the task demands in the visual oddball task results in different patterns of blood oxygen level dependent (BOLD) activation. The nature of the fMRI BOLD measure means that many brain regions are found to be active in a particular task. Determining the functions of these areas of activation is very much dependent on task design and analysis. The complex nature of many fMRI tasks means that the details of the task and its requirements need careful consideration when interpreting data. The data show that this is particularly important in those tasks relying on a motor response as well as cognitive elements and that covert and overt responses should be considered where possible. Furthermore, the data show that transferring an EEG paradigm to an fMRI experiment needs careful consideration and it cannot be assumed that the same paradigm will work equally well across imaging modalities. It is therefore recommended that the design of an fMRI study is pilot tested behaviorally to establish the effects of interest and then pilot tested in the fMRI environment to ensure appropriate design, implementation and analysis for the effects of interest. PMID:25285453

  10. Fast optical imaging of human brain function

    Directory of Open Access Journals (Sweden)

    Gabriele Gratton

    2010-06-01

    Full Text Available Great advancements in brain imaging during the last few decades have opened a large number of new possibilities for neuroscientists. The most dominant methodologies (electrophysiological and magnetic resonance-based methods emphasize temporal and spatial information, respectively. However, theorizing about brain function has recently emphasized the importance of rapid (within 100 ms or so interactions between different elements of complex neuronal networks. Fast optical imaging, and in particular the event-related optical signal (EROS, a technology that has emerged over the last 15 years may provide descriptions of localized (to sub-cm level brain activity with a temporal resolution of less than 100 ms. The main limitations of EROS are its limited penetration, which allows us to image cortical structures not deeper than 3 cm from the surface of the head, and its low signal-to-noise ratio. Advantages include the fact that EROS is compatible with most other imaging methods, including electrophysiological, magnetic resonance, and trans-cranial magnetic stimulation techniques, with which can be recorded concurrently. In this paper we present a summary of the research that has been conducted so far on fast optical imaging, including evidence for the possibility of recording neuronal signals with this method, the properties of the signals, and various examples of applications to the study of human cognitive neuroscience. Extant issues, controversies, and possible future developments are also discussed.

  11. Brain imaging, genetics and emotion

    NARCIS (Netherlands)

    Aleman, Andre; Swart, Marte; van Rijn, Sophie

    2008-01-01

    This paper reviews the published evidence on genetically driven variation in neurotransmitter function and brain circuits involved in emotion. Several studies point to a role of the serotonin transporter promoter polymorphism in amygdala activation during emotion perception. We also discuss other po

  12. FCM Clustering Algorithms for Segmentation of Brain MR Images

    Directory of Open Access Journals (Sweden)

    Yogita K. Dubey

    2016-01-01

    Full Text Available The study of brain disorders requires accurate tissue segmentation of magnetic resonance (MR brain images which is very important for detecting tumors, edema, and necrotic tissues. Segmentation of brain images, especially into three main tissue types: Cerebrospinal Fluid (CSF, Gray Matter (GM, and White Matter (WM, has important role in computer aided neurosurgery and diagnosis. Brain images mostly contain noise, intensity inhomogeneity, and weak boundaries. Therefore, accurate segmentation of brain images is still a challenging area of research. This paper presents a review of fuzzy c-means (FCM clustering algorithms for the segmentation of brain MR images. The review covers the detailed analysis of FCM based algorithms with intensity inhomogeneity correction and noise robustness. Different methods for the modification of standard fuzzy objective function with updating of membership and cluster centroid are also discussed.

  13. Brain changes in long-term zen meditators using proton magnetic resonance spectroscopy and diffusion tensor imaging: a controlled study.

    Directory of Open Access Journals (Sweden)

    Nicolás Fayed

    Full Text Available INTRODUCTION: This work aimed to determine whether (1H magnetic resonance imaging (MRI, magnetic resonance spectroscopy (MRS, diffusion-weighted imaging (DWI and diffusion tensor imaging (DTI are correlated with years of meditation and psychological variables in long-term Zen meditators compared to healthy non-meditator controls. MATERIALS AND METHODS: Design. Controlled, cross-sectional study. Sample. Meditators were recruited from a Zen Buddhist monastery. The control group was recruited from hospital staff. Meditators were administered questionnaires on anxiety, depression, cognitive impairment and mindfulness. (1H-MRS (1.5 T of the brain was carried out by exploring four areas: both thalami, both hippocampi, the posterior superior parietal lobule (PSPL and posterior cingulate gyrus. Predefined areas of the brain were measured for diffusivity (ADC and fractional anisotropy (FA by MR-DTI. RESULTS: Myo-inositol (mI was increased in the posterior cingulate gyrus and Glutamate (Glu, N-acetyl-aspartate (NAA and N-acetyl-aspartate/Creatine (NAA/Cr was reduced in the left thalamus in meditators. We found a significant positive correlation between mI in the posterior cingulate and years of meditation (r = 0.518; p = .019. We also found significant negative correlations between Glu (r = -0.452; p = .045, NAA (r = -0.617; p = .003 and NAA/Cr (r = -0.448; P = .047 in the left thalamus and years of meditation. Meditators showed a lower Apparent Diffusion Coefficient (ADC in the left posterior parietal white matter than did controls, and the ADC was negatively correlated with years of meditation (r = -0.4850, p = .0066. CONCLUSIONS: The results are consistent with the view that mI, Glu and NAA are the most important altered metabolites. This study provides evidence of subtle abnormalities in neuronal function in regions of the white matter in meditators.

  14. Magnetic resonance imaging of multiple sclerosis brain lesions: A semeiologic study by multiple spin-echo sequences

    International Nuclear Information System (INIS)

    Nuclear magnetic resonance imaging (MRI) if the brain is now known as a very sensitive tool for clearly revealing lesions in white matter, and has thus become important in the study of multiple sclerosis (MS). Since 1981, others have shown the best of MRI: we can see 6 x more lesions than CT. MRI contrast bases mainly on the spatial heterogeneity of the relaxation time of different tissues. The sensitivity depends on the longer T1 and/or T2 of the pathological tissues compared to those of normal tissues. In our series, the authors use mainly T2 weighted MR images and they evaluate their interest for the diagnosis of MS. They study the frequency of the abnormalities and their semeiology in a small number of transversal sections imaged at the level of the lateral ventricles. The authors' aim is to describe the NMR-derived morphological signs of MS and to prospect its interest in the physiopathological studies of this disease

  15. Visceral Afferent Pathways and Functional Brain Imaging

    Directory of Open Access Journals (Sweden)

    Stuart W.G. Derbyshire

    2003-01-01

    Full Text Available The application of functional imaging to study painful sensations has generated considerable interest regarding insight into brain dysfunction that may be responsible for functional pain such as that suffered in patients with irritable bowel syndrome (IBS. This review provides a brief introduction to the development of brain science as it relates to pain processing and a snapshot of recent functional imaging results with somatic and visceral pain. Particular emphasis is placed on current hypotheses regarding dysfunction of the brain-gut axis in IBS patients. There are clear and interpretable differences in brain activation following somatic as compared with visceral noxious sensation. Noxious visceral distension, particularly of the lower gastrointestinal tract, activates regions associated with unpleasant affect and autonomic responses. Noxious somatic sensation, in contrast, activates regions associated with cognition and skeletomotor responses. Differences between IBS patients and control subjects, however, were far less clear and interpretable. While this is in part due to the newness of this field, it also reflects weaknesses inherent within the current understanding of IBS. Future use of functional imaging to examine IBS and other functional disorders will be more likely to succeed by describing clear theoretical and clinical endpoints.

  16. Evaluation of the limits of visual detection of image misregistration in a brain fluorine-18 fluorodeoxyglucose PET-MRI study

    International Nuclear Information System (INIS)

    In routine clinical work, registration accuracy is assessed by visual inspection. However, the accuracy of visual assessment of registration has not been evaluated. This study establishes the limits of visual detection of misregistration in a registered brain fluorine-18 fluorodeoxyglucose positron emission tomography to magnetic resonance image volume. The ''best'' registered image volume was obtained by automatic registration using mutual information optimization. Translational movements by 1 mm, 2 mm, 3 mm and 4 mm, and rotational movements by 1 , 2 , 3 and 4 in the positive and negative directions in the x- (lateral), y- (anterior-posterior) and z- (axial) axes were introduced to this standard. These 48 images plus six ''best'' registered images were presented in random sequence to five observers for visual categorization of registration accuracy. No observer detected a definite misregistration in the ''best'' registered image. Evaluation for inter-observer variation using observer pairings showed a high percentage of agreement in assigned categories for both translational and rotational misregistrations. Assessment of the limits of detection of misregistration showed that a 2-mm translational misregistration was detectable by all observers in the x- and y-axes and 3-mm translational misregistration in the z-axis. With rotational misregistrations, rotation around the z-axis was detectable by all at 2 rotation whereas rotation around the y-axis was detected at 3-4 . Rotation around the x-axis was not symmetric with a positive rotation being identified at 2 whereas negative rotation was detected by all only at 4 . Therefore, visual analysis appears to be a sensitive and practical means to assess image misregistration accuracy. The awareness of the limits of visual detection of misregistration will lead to increase care when evaluating registration quality in both research and clinical settings. (orig.). With 6 figs., 3 tabs

  17. Cerebrovascular ischemic changes associated with fetal posterior cerebral artery- descriptive retrospective study with magnetic resonance imaging and angiography of brain

    Directory of Open Access Journals (Sweden)

    Venkatraman Indiran

    2016-04-01

    Full Text Available Objectives: Circle of Willis, the main collateral pathway for cerebral circulation, is complete in only a portion of the population. There are many variations in the Circle of Willis. Fetal posterior cerebral artery, which is defined as posterior cerebral artery arising from internal carotid artery, is a common variant of the Circle of Willis. Though association between the fetal posterior cerebral artery and ischemia have been studied, no specific study has been conducted in the Indian population. We aim to identify the incidence of small and large vessel strokes in patients with fetal posterior cerebral artery using Magnetic Resonance Imaging (MRI and Magnetic Resonance Angiography (MRA of brain in the Indian population. Materials and methods: We retrospectively reviewed MR angiographies of the brain performed in our institution, in order to assess the posterior cerebral circulation and its association with small ischemic changes and large vessel strokes. Results: 92 of the 140 patients (65% with fetal posterior cerebral artery (PCA had small vessel ischemic changes. 72 patients (51.4% had large vessel infarcts in any of the vascular territories. 35% of the patients included in this study showed infarcts in the middle cerebral artery (MCA territory and 15 % showed infarcts in the PCA territory. Conclusion: Higher incidence of MCA infarcts in our study probably suggests that PCA cannot aid in collateral formation cases of reduced flow across the internal carotid artery and that fetal PCA could be an important risk factor in cerebrovascular ischemic diseases.

  18. Advances in brain imaging of neuropathic pain

    Institute of Scientific and Technical Information of China (English)

    CHEN Fu-yong; TAO Wei; LI Yong-jie

    2008-01-01

    Objective To review the literature on the use of brain imaging,including functional magnetic resonance imaging(fMRI), positron emission tomography(PET),magnetic resonance spectroscopy(MRS)and voxel-based morphometry(VBM)in investigation of the activity in diverse brain regions that creates and modulates chronic neuropathic pain. Data sources English literatures from January 1,2000 to July 31,2007 that examined human brain activity in chronic neuropathic pain were accessed through MEDLINE/CD ROM,using PET,fMRI,VBM,MRS and receptor binding. Study selection Published articles about the application of fMRI,PET,VBM,MRS and chronic neuropathic pain were selected. Data extraction Data were mainly extracted from 40 representative articles as the research basis. Results The PET studies suggested that spontaneous neuropathic pain is associated with changes in thalamic activity. Both PET and fMRI have been used to investigate the substrate of allodynia.The VBM demonstrated that brain structural changes are involved in chronic neuropathic pain,which is not seen in a matched control group.However,the results obtained had a large variety,which may be due to different pain etiology,pain distribution,lesion tomography,symptoms and stimulation procedures. Conclusions Application of the techniques of brain imaging plays a very important role in the study of structural and functional reorganization In patients with neuropathic pain.However,a unique"pain matrix" has not been defined.Future studies should be conducted using a prospective longitudinal research design,which would guarantee the control for many confounding factors.

  19. Impact of Inhaled Nitric Oxide on the Sulfatide Profile of Neonatal Rat Brain Studied by TOF-SIMS Imaging

    OpenAIRE

    Hanane Kadar; Hoa Pham; David Touboul; Alain Brunelle; Olivier Baud

    2014-01-01

    Despite advances in neonatal intensive care leading to an increased survival rate in preterm infants, brain lesions and subsequent neurological handicaps following preterm birth remain a critical issue. To prevent brain injury and/or enhance repair, one of the most promising therapies investigated in preclinical models is inhaled nitric oxide (iNO). We have assessed the effect of this therapy on brain lipid content in air- and iNO-exposed rat pups by mass spectrometry imaging using a time-of...

  20. Globally conditioned Granger causality in brain-brain and brain-heart interactions: a combined heart rate variability/ultra-high-field (7 T) functional magnetic resonance imaging study.

    Science.gov (United States)

    Duggento, Andrea; Bianciardi, Marta; Passamonti, Luca; Wald, Lawrence L; Guerrisi, Maria; Barbieri, Riccardo; Toschi, Nicola

    2016-05-13

    The causal, directed interactions between brain regions at rest (brain-brain networks) and between resting-state brain activity and autonomic nervous system (ANS) outflow (brain-heart links) have not been completely elucidated. We collected 7 T resting-state functional magnetic resonance imaging (fMRI) data with simultaneous respiration and heartbeat recordings in nine healthy volunteers to investigate (i) the causal interactions between cortical and subcortical brain regions at rest and (ii) the causal interactions between resting-state brain activity and the ANS as quantified through a probabilistic, point-process-based heartbeat model which generates dynamical estimates for sympathetic and parasympathetic activity as well as sympathovagal balance. Given the high amount of information shared between brain-derived signals, we compared the results of traditional bivariate Granger causality (GC) with a globally conditioned approach which evaluated the additional influence of each brain region on the causal target while factoring out effects concomitantly mediated by other brain regions. The bivariate approach resulted in a large number of possibly spurious causal brain-brain links, while, using the globally conditioned approach, we demonstrated the existence of significant selective causal links between cortical/subcortical brain regions and sympathetic and parasympathetic modulation as well as sympathovagal balance. In particular, we demonstrated a causal role of the amygdala, hypothalamus, brainstem and, among others, medial, middle and superior frontal gyri, superior temporal pole, paracentral lobule and cerebellar regions in modulating the so-called central autonomic network (CAN). In summary, we show that, provided proper conditioning is employed to eliminate spurious causalities, ultra-high-field functional imaging coupled with physiological signal acquisition and GC analysis is able to quantify directed brain-brain and brain-heart interactions reflecting

  1. Thermoacoustic tomography arising in brain imaging

    CERN Document Server

    Stefanov, Plamen

    2010-01-01

    We study the mathematical model of thermoacoustic and photoacoustic tomography when the sound speed has a jump across a smooth surface. This models the change of the sound speed in the skull when trying to image the human brain. We derive an explicit inversion formula in the form of a convergent Neumann series under the assumptions that all singularities from the support of the source reach the boundary.

  2. Functional brain imaging of gastrointestinal sensation in health and disease

    Institute of Scientific and Technical Information of China (English)

    Lukas Van Oudenhove; Steven J Coen; Qasim Aziz

    2007-01-01

    It has since long been known, from everyday experience as well as from animal and human studies, that psychological processes-both affective and cognitiveexert an influence on gastrointestinal sensorimotor function. More specifically, a link between psychological factors and visceral hypersensitivity has been suggested,mainly based on research in functional gastrointestinal disorder patients. However, until recently, the exact nature of this putative relationship remained unclear,mainly due to a lack of non-invasive methods to study the (neurobiological) mechanisms underlying this relationship in non-sleeping humans. As functional brain imaging, introduced in visceral sensory neuroscience some 10 years ago, does provide a method for in vivo study of brain-gut interactions, insight into the neurobiological mechanisms underlying visceral sensation in general and the influence of psychological factors more particularly,has rapidly grown. In this article, an overview of brain imaging evidence on gastrointestinal sensation will be given, with special emphasis on the brain mechanisms underlying the interaction between affective & cognitive processes and visceral sensation. First, the reciprocal neural pathways between the brain and the gut (braingut axis) will be briefly outlined, including brain imaging evidence in healthy volunteers. Second, functional brain imaging studies assessing the influence of psychological factors on brain processing of visceral sensation in healthy humans will be discussed in more detail.Finally, brain imaging work investigating differences in brain responses to visceral distension between healthy volunteers and functional gastrointestinal disorder patients will be highlighted.

  3. Functional differentiation of the premotor cortex : Behavioural and brain imaging studies in humans

    NARCIS (Netherlands)

    Potgieser, Adriaan Remco Ewoud

    2015-01-01

    The premotor cortex is a brain structure that is involved in the preparation of movements. It has an important role in the final integration of task-related information and to funnel this to the primary motor cortex, which subsequently causes the execution of a movement. Premotor areas can also infl

  4. Study on the application of MRF and the D-S theory to image segmentation of the human brain and quantitative analysis of the brain tissue

    Science.gov (United States)

    Guan, Yihong; Luo, Yatao; Yang, Tao; Qiu, Lei; Li, Junchang

    2012-01-01

    The features of the spatial information of Markov random field image was used in image segmentation. It can effectively remove the noise, and get a more accurate segmentation results. Based on the fuzziness and clustering of pixel grayscale information, we find clustering center of the medical image different organizations and background through Fuzzy cmeans clustering method. Then we find each threshold point of multi-threshold segmentation through two dimensional histogram method, and segment it. The features of fusing multivariate information based on the Dempster-Shafer evidence theory, getting image fusion and segmentation. This paper will adopt the above three theories to propose a new human brain image segmentation method. Experimental result shows that the segmentation result is more in line with human vision, and is of vital significance to accurate analysis and application of tissues.

  5. Correlation between the Effects of Acupuncture at Taichong (LR3) and Functional Brain Areas: A Resting-State Functional Magnetic Resonance Imaging Study Using True versus Sham Acupuncture

    OpenAIRE

    Chunxiao Wu; Shanshan Qu; Jiping Zhang; Junqi Chen; Shaoqun Zhang; Zhipeng Li; Jiarong Chen; Huailiang Ouyang; Yong Huang; Chunzhi Tang

    2014-01-01

    Functional magnetic resonance imaging (fMRI) has been shown to detect the specificity of acupuncture points, as proved by numerous studies. In this study, resting-state fMRI was used to observe brain areas activated by acupuncture at the Taichong (LR3) acupoint. A total of 15 healthy subjects received brain resting-state fMRI before acupuncture and after sham and true acupuncture, respectively, at LR3. Image data processing was performed using Data Processing Assistant for Resting-State fMRI ...

  6. Synaesthetic colour in the brain: beyond colour areas. A functional magnetic resonance imaging study of synaesthetes and matched controls.

    Directory of Open Access Journals (Sweden)

    Tessa M van Leeuwen

    Full Text Available BACKGROUND: In synaesthesia, sensations in a particular modality cause additional experiences in a second, unstimulated modality (e.g., letters elicit colour. Understanding how synaesthesia is mediated in the brain can help to understand normal processes of perceptual awareness and multisensory integration. In several neuroimaging studies, enhanced brain activity for grapheme-colour synaesthesia has been found in ventral-occipital areas that are also involved in real colour processing. Our question was whether the neural correlates of synaesthetically induced colour and real colour experience are truly shared. METHODOLOGY/PRINCIPAL FINDINGS: First, in a free viewing functional magnetic resonance imaging (fMRI experiment, we located main effects of synaesthesia in left superior parietal lobule and in colour related areas. In the left superior parietal lobe, individual differences between synaesthetes (projector-associator distinction also influenced brain activity, confirming the importance of the left superior parietal lobe for synaesthesia. Next, we applied a repetition suppression paradigm in fMRI, in which a decrease in the BOLD (blood-oxygenated-level-dependent response is generally observed for repeated stimuli. We hypothesized that synaesthetically induced colours would lead to a reduction in BOLD response for subsequently presented real colours, if the neural correlates were overlapping. We did find BOLD suppression effects induced by synaesthesia, but not within the colour areas. CONCLUSIONS/SIGNIFICANCE: Because synaesthetically induced colours were not able to suppress BOLD effects for real colour, we conclude that the neural correlates of synaesthetic colour experience and real colour experience are not fully shared. We propose that synaesthetic colour experiences are mediated by higher-order visual pathways that lie beyond the scope of classical, ventral-occipital visual areas. Feedback from these areas, in which the left parietal

  7. Positron emission tomography studies in eating disorders: multireceptor brain imaging, correlates with behavior and implications for pharmacotherapy

    International Nuclear Information System (INIS)

    Modern imaging techniques that visualize disease-specific organ neurotransmitter or protein receptor sites are increasingly able to define pathological processes on a molecular level. One of those imaging modalities, positron emission tomography (PET), for the assessment of brain neuroreceptor binding has revolutionized the in vivo assessment of biologic markers that may be related to human behavior. Such studies may help identify chemical targets that may be directly related to psychiatric pathology and, thus, opportunities for pharmacological intervention. In this review, we describe results from PET studies in eating disorders (EDs). Eating disorders are frequently debilitating illnesses that are quite homogeneous in their presentation. Those studies that identified particular serotonin and dopamine receptor alterations can distinguish recovered ED subjects from controls as well as ED subgroups. Furthermore, correlations of receptor binding with behavioral constructs, such as harm avoidance or novelty seeking, could be found. These recognized receptors may now help us to move away from rather nonspecific treatment approaches in psychiatric research and clinic to the possibility of more syndrome- and symptom-specific treatment approaches

  8. Positron emission tomography studies in eating disorders: multireceptor brain imaging, correlates with behavior and implications for pharmacotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Guido K. [Department of Child and Adolescent Psychiatry, Center for Eating Disorders Research, School of Medicine, University of California San Diego, San Diego, CA 92123 (United States); Kaye, Walter H. [Department of Psychiatry, Western Psychiatric Institute and Clinic, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2005-10-01

    Modern imaging techniques that visualize disease-specific organ neurotransmitter or protein receptor sites are increasingly able to define pathological processes on a molecular level. One of those imaging modalities, positron emission tomography (PET), for the assessment of brain neuroreceptor binding has revolutionized the in vivo assessment of biologic markers that may be related to human behavior. Such studies may help identify chemical targets that may be directly related to psychiatric pathology and, thus, opportunities for pharmacological intervention. In this review, we describe results from PET studies in eating disorders (EDs). Eating disorders are frequently debilitating illnesses that are quite homogeneous in their presentation. Those studies that identified particular serotonin and dopamine receptor alterations can distinguish recovered ED subjects from controls as well as ED subgroups. Furthermore, correlations of receptor binding with behavioral constructs, such as harm avoidance or novelty seeking, could be found. These recognized receptors may now help us to move away from rather nonspecific treatment approaches in psychiatric research and clinic to the possibility of more syndrome- and symptom-specific treatment approaches.

  9. Brain structure in diving players on MR imaging studied with voxel-based morphometry

    Institute of Scientific and Technical Information of China (English)

    Gaoxia Wei; Jing Luo; Youfa Li

    2009-01-01

    We adopted professional diving players as a typical subject pool to explore whether structural brain differences relative to motor skill acquisition exist between highly skilled athletes and non-athletes. Based on the voxel-based morphometric (VBM) technique, structural MRIs of the brains of 12 elite diving players with professional training were analyzed and compared with those of control subjects with-out any professional physical training. Diving players showed significantly increased gray matter density in the thalamus and left pre-central gyrus than control subjects. However, future researches are needed to prove the contribution of preposition and practice. It also suggests that athletes as the subject pool could form a new subject pool to explore plastic change induced by motor skill acquisition.

  10. Permeability imaging in pediatric brain tumors

    OpenAIRE

    Lam, Sandi; Lin, Yimo; Warnke, Peter C.

    2014-01-01

    While traditional computed tomography (CT) and magnetic resonance (MR) imaging illustrate the structural morphology of brain pathology, newer, dynamic imaging techniques are able to show the movement of contrast throughout the brain parenchyma and across the blood-brain barrier (BBB). These data, in combination with pharmacokinetic models, can be used to investigate BBB permeability, which has wide-ranging applications in the diagnosis and management of central nervous system (CNS) tumors in ...

  11. A combined neuropsychological and brain imaging study of obstructive sleep apnea.

    OpenAIRE

    Yaouhi, Khalid; Bertran, Françoise; Clochon, Patrice; Mézenge, Florence; Denise, Pierre; Foret, Jean; Eustache, Francis; Desgranges, Béatrice

    2009-01-01

    Patients with obstructive sleep apnea (OSA) show neuropsychological impairments ranging from vigilance decrements, attentional lapses and memory gaps to decreased motor coordination, but their cognitive profile, and the origin of the impairments, remain unclear. We sought to establish the neuropsychological profile of 16 newly diagnosed apneics and to highlight both their morphological and functional brain abnormalities. We used an extensive neuropsychological test battery to investigate atte...

  12. The social brain in adolescence: Evidence from functional magnetic resonance imaging and behavioural studies

    OpenAIRE

    Burnett, Stephanie; Sebastian, Catherine; Kadosh, Kathrin Cohen; Blakemore, Sarah-Jayne

    2010-01-01

    Social cognition is the collection of cognitive processes required to understand and interact with others. The term ‘social brain’ refers to the network of brain regions that underlies these processes. Recent evidence suggests that a number of social cognitive functions continue to develop during adolescence, resulting in age differences in tasks that assess cognitive domains including face processing, mental state inference and responding to peer influence and social evaluation. Concurrently...

  13. Functional differentiation of the premotor cortex: Behavioural and brain imaging studies in humans

    OpenAIRE

    Potgieser, Adriaan Remco Ewoud

    2015-01-01

    The premotor cortex is a brain structure that is involved in the preparation of movements. It has an important role in the final integration of task-related information and to funnel this to the primary motor cortex, which subsequently causes the execution of a movement. Premotor areas can also influence motor output through their direct interactions with both the spinal cord. Within the premotor cortex, the ventral premotor cortex (PMv), dorsal premotor cortex (PMd) and supplementary motor a...

  14. Is amyloid-β harmful to the brain? Insights from human imaging studies.

    Science.gov (United States)

    Jagust, William

    2016-01-01

    Although the amyloid-β protein associated with the Alzheimer's disease plaque has been detectable in living people for over a decade, its importance in the pathogenesis of Alzheimer's disease is still debated. The frequent presence of amyloid-β in the brains of cognitively healthy older people has been interpreted as evidence against a causative role. If amyloid-β is crucial to the development of Alzheimer's disease, it should be associated with other Alzheimer's disease-like neurological changes. This review examines whether amyloid-β is associated with other biomarkers indicative of early Alzheimer's disease in normal older people. The preponderance of evidence links amyloid-β to functional change, progressive brain atrophy, and cognitive decline. Individuals at greatest risk of decline seem to be those with evidence of both amyloid-β and findings suggestive of neurodegeneration. The crucial question is thus how amyloid-β is related to brain degeneration and how these two processes interact to cause cognitive decline and dementia.

  15. Brain 'imaging' in the Renaissance.

    Science.gov (United States)

    Paluzzi, Alessandro; Belli, Antonio; Bain, Peter; Viva, Laura

    2007-12-01

    During the Renaissance, a period of 'rebirth' for humanities and science, new knowledge and speculation began to emerge about the function of the human body, replacing ancient religious and philosophical dogma. The brain must have been a fascinating mystery to a Renaissance artist, but some speculation existed at that time on the function of its parts. Here we show how revived interest in anatomy and life sciences may have influenced the figurative work of Italian and Flemish masters, such as Rafael, Michelangelo and David. We present a historical perspective on the artists and the period in which they lived, their fascination for human anatomy and its symbolic use in their art. Prior to the 16th century, knowledge of the brain was limited and influenced in a dogmatic way by the teachings of Galen(1) who, as we now know, conducted his anatomical studies not on humans but on animals.(2) Nemesus, Bishop of Emesa, in around the year 400 was one of the first to attribute mental faculties to the brain, specifically to the ventricles. He identified two anterior (lateral) ventricles, to which he assigned perception, a middle ventricle responsible for cognition and a posterior ventricle for memory.(2,3) After a long period of stasis in the Middle Ages, Renaissance scholars realized the importance of making direct observations on dissected cadavers. Between 1504 and 1507, Leonardo da Vinci conducted experiments to reveal the anatomy of the ventricular system in the brain. He injected hot wax through a tube thrust into the ventricular cavities of an ox and then scraped the overlying brain off, thus obtaining, in a simple but ingenious way, an accurate cast of the ventricles.(2,4) Leonardo shared the belief promoted by scholarly Christians that the ventricles were the abode of rational soul. We have several examples of hidden symbolism in Renaissance paintings, but the influence of phrenology and this rudimentary knowledge of neuroanatomy on artists of that period is under

  16. Nuclear magnetic resonance imaging in brain tumors

    International Nuclear Information System (INIS)

    Full text: Magnetic resonance imaging (MRI) is a non-invasive imaging method based on the detecting signal from hydrogen nuclei of water molecules and fat. Performances of MRI are continuously increasing, and its domains of investigation of the human body are growing in both morphological and functional study. MRI also allows It also performing advanced management of tumours especially in the brain, by combining anatomical information (morphological MRI), functional (diffusion, perfusion and BOLD contrast) and metabolic (tissue composition in magnetic resonance spectroscopy (MRS)). The MRI techniques have an important role in cancerology. These techniques allow essential information for the diagnosis and answering therapist's questions before, during or after the treatment. The MR allows clarifying the localization of expanding processes, the differential diagnosis between brain tumour and a lesion confined by another structural aspect, the diagnosis of the tumoral aspect of a lesion, the histological ranking in case of glial tumour and the extension of its localization as well as the therapeutic follow-up (pre-therapeutic and post-therapeutics assessments). A better combination between the morphological, functional and metabolic studies, as well as integrating new technical developments, especially while using a multichannel bird cage coils the 3T magnet and suitable computing software, would allow significant improvements of the exploration strategies and management of brain tumors.

  17. A CT-ultrasound-coregistered augmented reality enhanced image-guided surgery system and its preliminary study on brain-shift estimation

    Science.gov (United States)

    Huang, C. H.; Hsieh, C. H.; Lee, J. D.; Huang, W. C.; Lee, S. T.; Wu, C. T.; Sun, Y. N.; Wu, Y. T.

    2012-08-01

    With the combined view on the physical space and the medical imaging data, augmented reality (AR) visualization can provide perceptive advantages during image-guided surgery (IGS). However, the imaging data are usually captured before surgery and might be different from the up-to-date one due to natural shift of soft tissues. This study presents an AR-enhanced IGS system which is capable to correct the movement of soft tissues from the pre-operative CT images by using intra-operative ultrasound images. First, with reconstructing 2-D free-hand ultrasound images to 3-D volume data, the system applies a Mutual-Information based registration algorithm to estimate the deformation between pre-operative and intra-operative ultrasound images. The estimated deformation transform describes the movement of soft tissues and is then applied to the pre-operative CT images which provide high-resolution anatomical information. As a result, the system thus displays the fusion of the corrected CT images or the real-time 2-D ultrasound images with the patient in the physical space through a head mounted display device, providing an immersive augmented-reality environment. For the performance validation of the proposed system, a brain phantom was utilized to simulate brain-shift scenario. Experimental results reveal that when the shift of an artificial tumor is from 5mm ~ 12mm, the correction rates can be improved from 32% ~ 45% to 87% ~ 95% by using the proposed system.

  18. Image Processing Technique for Brain Abnormality Detection

    Directory of Open Access Journals (Sweden)

    Ashraf Anwar

    2013-02-01

    Full Text Available Medical imaging is expensive and very much sophisticated because of proprietary software and expert personalities. This paper introduces an inexpensive, user friendly general-purpose image processing tool and visualization program specifically designed in MATLAB to detect much of the brain disorders as early as possible. The application provides clinical and quantitative analysis of medical images. Minute structural difference of brain gradually results in major disorders such as schizophrenia, Epilepsy, inherited speech and language disorder, Alzheimer's dementia etc. Here the main focusing is given to diagnose the disease related to the brain and its psychic nature (Alzheimer’s disease.

  19. Application of 5-hydroxytryptamine receptor imaging for study of neuropsychiatric disorders and brain functions

    International Nuclear Information System (INIS)

    In the central nervous system, the widely distributed 5-hydroxytryptamine (5-HT)receptors are involved in regulating a large number of psychological and physiological functions, including mood, sleep, endocrine and autonomic nervous system. Abnormal 5-HT transmission has been implicated in a variety of neuropsychiatric disorders, such as pain, depression and epilepsy. With the development of radioligands, non-invasive nuclear imaging technique with exquisite sensitivity and specificity has been applied for delineation of neurotransmitter function in vivo. It does great benefit for researches of these diseases and development of drugs. This review provided an overview of 5-HT receptors radioligands and recent findings. (authors)

  20. Electroencephalographic imaging of higher brain function

    Science.gov (United States)

    Gevins, A.; Smith, M. E.; McEvoy, L. K.; Leong, H.; Le, J.

    1999-01-01

    High temporal resolution is necessary to resolve the rapidly changing patterns of brain activity that underlie mental function. Electroencephalography (EEG) provides temporal resolution in the millisecond range. However, traditional EEG technology and practice provide insufficient spatial detail to identify relationships between brain electrical events and structures and functions visualized by magnetic resonance imaging or positron emission tomography. Recent advances help to overcome this problem by recording EEGs from more electrodes, by registering EEG data with anatomical images, and by correcting the distortion caused by volume conduction of EEG signals through the skull and scalp. In addition, statistical measurements of sub-second interdependences between EEG time-series recorded from different locations can help to generate hypotheses about the instantaneous functional networks that form between different cortical regions during perception, thought and action. Example applications are presented from studies of language, attention and working memory. Along with its unique ability to monitor brain function as people perform everyday activities in the real world, these advances make modern EEG an invaluable complement to other functional neuroimaging modalities.

  1. Spatial normalization of brain images and beyond.

    Science.gov (United States)

    Mangin, J-F; Lebenberg, J; Lefranc, S; Labra, N; Auzias, G; Labit, M; Guevara, M; Mohlberg, H; Roca, P; Guevara, P; Dubois, J; Leroy, F; Dehaene-Lambertz, G; Cachia, A; Dickscheid, T; Coulon, O; Poupon, C; Rivière, D; Amunts, K; Sun, Z Y

    2016-10-01

    The deformable atlas paradigm has been at the core of computational anatomy during the last two decades. Spatial normalization is the variant endowing the atlas with a coordinate system used for voxel-based aggregation of images across subjects and studies. This framework has largely contributed to the success of brain mapping. Brain spatial normalization, however, is still ill-posed because of the complexity of the human brain architecture and the lack of architectural landmarks in standard morphological MRI. Multi-atlas strategies have been developed during the last decade to overcome some difficulties in the context of segmentation. A new generation of registration algorithms embedding architectural features inferred for instance from diffusion or functional MRI is on the verge to improve the architectural value of spatial normalization. A better understanding of the architectural meaning of the cortical folding pattern will lead to use some sulci as complementary constraints. Improving the architectural compliance of spatial normalization may impose to relax the diffeomorphic constraint usually underlying atlas warping. A two-level strategy could be designed: in each region, a dictionary of templates of incompatible folding patterns would be collected and matched in a way or another using rare architectural information, while individual subjects would be aligned using diffeomorphisms to the closest template. Manifold learning could help to aggregate subjects according to their morphology. Connectivity-based strategies could emerge as an alternative to deformation-based alignment leading to match the connectomes of the subjects rather than images. PMID:27344104

  2. Functional brain imaging to investigate the higher brain dysfunction induced by diffuse brain injury

    International Nuclear Information System (INIS)

    Higher brain dysfunction is the major problem of patients who recover from neurotrauma the prevents them from returning to their previous social life. Many such patients do not have focal brain damage detected with morphological imaging. We focused on studying the focal brain dysfunction that can be detected only with functional imaging with positron emission tomography (PET) in relation to the score of various cognition batteries. Patients who complain of higher brain dysfunction without apparent morphological cortical damage were recruited for this study. Thirteen patients with diffuse axonal injury (DAI) or cerebral concussion was included. They underwent a PET study to image glucose metabolism by 18F-fluorodeoxyglucose (FDG), and central benodiazepine receptor (cBZD-R) (marker of neuronal body) by 11C-flumazenil, together with cognition measurement by WAIS-R, WMS-R, and WCST etc. PET data were compared with age matched normal controls using statistical parametric mapping (SPM)2. DAI patients had a significant decrease in glucose matabolism and cBZD-R distribution in the cingulated cortex than normal controls. Patients diagnosed with concussion because of shorter consciousness disturbance also had abnormal FDG uptake and cBZD-R distribution. Cognition test scores were variable among patients. Degree of decreased glucose metabolism and cBZD-R distribution in the dominant hemishphere corresponded well to the severity of cognitive disturbance. PET molecular imaging was useful to depict focal cortical dysfunction of neurotrauma patients even when morphological change was not apparent. This method may be promising to clarify the pathophysiology of higher brain dysfunction of patients with diffuse axonal injury or chronic traumatic encephalopathy. (author)

  3. THE STUDY OF THE BRAIN IN A PATIENT WITH TYPE 1 DIABETES MELLITUS USING TECHNIQUES OF MAGNETIC RESONANCE IMAGING

    OpenAIRE

    Yu. G. Samoylova; N. G. Zhukova; M. V. Matveyeva; M. A. Rotkank; O. S. Tonkikh

    2015-01-01

    Type 1 diabetes mellitus (T1DM) is now widely distributed worldwide and in theRussian Federation, it is an important medical and social problem in connection with the development of serious, disabling complications. Some of these complications could make changes in the brain which are accompanied by cognitive impairments that decrease quality of life and worsening disease compensation. The diagnosis of these disorders to date, possible by using modern methods of magnetic resonance imaging, wh...

  4. Diffuse Optical Tomography for Brain Imaging: Theory

    Science.gov (United States)

    Yuan, Zhen; Jiang, Huabei

    Diffuse optical tomography (DOT) is a noninvasive, nonionizing, and inexpensive imaging technique that uses near-infrared light to probe tissue optical properties. Regional variations in oxy- and deoxy-hemoglobin concentrations as well as blood flow and oxygen consumption can be imaged by monitoring spatiotemporal variations in the absorption spectra. For brain imaging, this provides DOT unique abilities to directly measure the hemodynamic, metabolic, and neuronal responses to cells (neurons), and tissue and organ activations with high temporal resolution and good tissue penetration. DOT can be used as a stand-alone modality or can be integrated with other imaging modalities such as fMRI/MRI, PET/CT, and EEG/MEG in studying neurophysiology and pathology. This book chapter serves as an introduction to the basic theory and principles of DOT for neuroimaging. It covers the major aspects of advances in neural optical imaging including mathematics, physics, chemistry, reconstruction algorithm, instrumentation, image-guided spectroscopy, neurovascular and neurometabolic coupling, and clinical applications.

  5. Search for PET probes for imaging the globus pallidus studied with rat brain ex vivo autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Ishiwata, Kiichi; Ogi, Nobuo; Wang, Wei-Fang; Ishii, Kenji; Senda, Michio [Tokyo Metropolitan Inst. of Gerontology (Japan). Positron Medical Center; Shimada, Junichi; Tanaka, Akira; Suzuki, Fumio

    2000-12-01

    We have evaluated the feasibility of using four positron emission tomography (PET) tracers for imaging the globus pallidus by ex vivo autoradiography in rats. The tracers investigated were [{sup 11}C]KF18446, [{sup 11}C]SCH23390 and [{sup 11}C]raclopride for mapping adenosine A{sub 2A}, dopamine D{sub 1} and dopamine D{sub 2} receptors, respectively, and [{sup 18}F]FDG. The highest uptake by the globus pallidus was found for [{sup 11}C]SCH23390, followed by [{sup 18}F]FDG, [{sup 11}C]KF18446 and [{sup 11}C]raclopride. The receptor-specific uptake by the globus pallidus was observed in [{sup 11}C]KF18446 and [{sup 11}C]SCH23390, but not in [{sup 11}C]raclopride. Uptake ratios of globus pallidus to the striatum for [{sup 18}F]FDG and [{sup 11}C]KF18446 were approximately 0.6, which was twice as large as that for [{sup 11}C]SCH 23390. In a rat model of degeneration of striatopallidal {gamma}-aminobutyric acid-ergic-enkephalin neurons induced by intrastriatal injection of quinolinic acid, the uptake of [{sup 11}C]KF18446 by the striatum and globus pallidus was remarkably reduced. To prove the visualization of the globus pallidus by PET with [{sup 18}F]FDG and [{sup 11}C]KF18446, PET-MRI registration technique and advances in PET technologies providing high-resolution PET scanner will be required. The metabolic activity of the globus pallidus could then be measured by PET with [{sup 18}F]FDG, and [{sup 11}C]KF18446 may be a candidate tracer for imaging the pallidal terminals projecting from the striatum. (author)

  6. Brain involvement in patients with inflammatory bowel disease: a voxel-based morphometry and diffusion tensor imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Zikou, Anastasia K.; Astrakas, Loukas G.; Tzarouchi, Loukia C.; Argyropoulou, Maria I. [University of Ioannina, Department of Radiology, Medical School, Ioannina (Greece); Kosmidou, Maria; Tsianos, Epameinondas [University of Ioannina, 1st Department of Internal Medicine (Hepato-Gastroenterology Unit), Medical School, Ioannina (Greece)

    2014-10-15

    To investigate structural brain changes in inflammatory bowel disease (IBD). Brain magnetic resonance imaging (MRI) was performed on 18 IBD patients (aged 45.16 ± 14.71 years) and 20 aged-matched control subjects. The imaging protocol consisted of a sagittal-FLAIR, a T1-weighted high-resolution three-dimensional spoiled gradient-echo sequence, and a multisession spin-echo echo-planar diffusion-weighted sequence. Differences between patients and controls in brain volume and diffusion indices were evaluated using the voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) methods, respectively. The presence of white-matter hyperintensities (WMHIs) was evaluated on FLAIR images. VBM revealed decreased grey matter (GM) volume in patients in the fusiform and the inferior temporal gyrus bilaterally, the right precentral gyrus, the right supplementary motor area, the right middle frontal gyrus and the left superior parietal gyrus (p < 0.05). TBSS showed decreased axial diffusivity (AD) in the right corticospinal tract and the right superior longitudinal fasciculus in patients compared with controls. A larger number of WMHIs was observed in patients (p < 0.05). Patients with IBD show an increase in WMHIs and GM atrophy, probably related to cerebral vasculitis and ischaemia. Decreased AD in major white matter tracts could be a secondary phenomenon, representing Wallerian degeneration. (orig.)

  7. Brain Imaging, Forward Inference, and Theories of Reasoning

    OpenAIRE

    Evan Heit

    2015-01-01

    This review focuses on the issue of how neuroimaging studies address theoretical accounts of reasoning, through the lens of the method of forward inference (Henson, 2005, 2006). After theories of deductive and inductive reasoning are briefly presented, the method of forward inference for distinguishing between psychological theories based on brain imaging evidence is critically reviewed. Brain imaging studies of reasoning, comparing deductive and inductive arguments, comparing meaningful ve...

  8. White Matter Changes in Posttraumatic Stress Disorder Following Mild Traumatic Brain Injury: A Prospective Longitudinal Diffusion Tensor Imaging Study

    Institute of Scientific and Technical Information of China (English)

    Li Li; Gang Sun; Kai Liu; Min Li; Bo Li; Shao-Wen Qian; Li-Li Yu

    2016-01-01

    Background:The ability to predict posttraumatic stress disorder (PTSD) is a critical issue in the management of patients with mild traumatic brain injury (mTBI),as early medical and rehabilitative interventions may reduce the risks of long-term cognitive changes.The aim of the present study was to investigate how diffusion tensor imaging (DTI) metrics changed in the transition from acute to chronic phases in patients with mTBI and whether the alteration relates to the development of PTSD.Methods:Forty-three patients with mTBI and 22 healthy volunteers were investigated.The patients were divided into two groups:successful recovery (SR,n =22) and poor recovery (PR,n =21),based on neurocognitive evaluation at 1 or 6 months after injury.All patients underwent magnetic resonance imaging investigation at acute (within 3 days),subacute (10-20 days),and chronic (1-6 months) phases after injury.Group differences of fractional anisotropy (FA) and mean diffusivity (MD) were analyzed using tract-based spatial statistics (TBSS).The accuracy of DTI metrics for classifying PTSD was estimated using Bayesian discrimination analysis.Results:TBSS showed white matter (WM) abnormalities in various brain regions.In the acute phase,FA values were higher for PR and SR patients than controls (all P < 0.05).In subacute phase,PR patients have higher mean MD than SR and controls (all P < 0.05).In the chronic phase,lower FA and higher MD were observed in PR compared with both SR and control groups (all P < 0.05).PR and SR groups could be discriminated with a sensitivity of 73%,specificity of 78%,and accuracy of 75.56%,in terms of MD value in subacute phase.Conclusions:Patients with mTBI have multiple abnormalities in various WM regions.DTI metrics change over time and provide a potential indicator at subacute stage for PTSD following mTBI.

  9. Brain dopaminergic systems : imaging with positron tomography

    International Nuclear Information System (INIS)

    Imaging of the dopaminergic system in the human brain with the in vivo use of Positron Emission Tomography emerged in the late 1980s as a tool of major importance in clinical neurosciences and pharmacology. The last few years have witnessed rapid development of new radiotracers specific to receptors, reuptake sites and enzymes of the dopamine system; the application of these radiotracers has led to major break-troughs in the pathophysiology and therapy of movement disorders and schizophrenic-like psychoses. This book is the first to collect, in a single volume, state-of-the-art contributions to the various aspects of this research. Its contents address methodological issues related to the design, labelling, quantitative imaging and compartmental modeli-sation of radioligands of the post-synaptic, pre-synaptic and enzyme sites of the dopamine system and to their use in clinical research in the fields of Parkinson's disease as well as other movement disorders, psychoses and neuroleptic receptor occupancy. The chapters were written by leading European scientists in the field of PET, gathered together in Caen (France, November 1990) under the aegis of the EEC Concerted Action on PET Investigations of Cellular Regeneration and Degeneration. This book provides a current and comprehensive overview on PET studies of the brain dopamine system which should aid and interest neurologists , psychiatrists, pharmacologists and medical imaging scientists. (author). refs.; figs.; tabs

  10. Cardiovascular risks and brain function: a functional magnetic resonance imaging study of executive function in older adults

    OpenAIRE

    Chuang, Yi-Fang; Eldreth, Dana; Kirk I Erickson; Varma, Vijay; Harris, Gregory; Fried, Linda P.; Rebok, George W.; Tanner, Elizabeth K.; Carlson, Michelle C.

    2013-01-01

    Cardiovascular (CV) risk factors, such as hypertension, diabetes, and hyperlipidemia are associated with cognitive impairment and risk of dementia in older adults. However, the mechanisms linking them are not clear. This study aims to investigate the association between aggregate CV risk, assessed by the Framingham general cardiovascular risk profile, and functional brain activation in a group of community-dwelling older adults. Sixty participants (mean age: 64.6 years) from the Brain Health ...

  11. Brain MR imaging in child abuse

    International Nuclear Information System (INIS)

    Intracranial injuries represent the most severe manifestation of child abuse. CT of the brain is the current standard for evaluation of these infants; however, MR imaging offers several potential advantages. MR imaging and CT were performed in ten infants who suffered intracranial trauma owing to child abuse. CT was slightly better at demonstrating subarachnoid hemorrhage and had definite advantages for defining fractures. MR imaging was superior in the demonstration of subacute extraaxial hemorrhage, deep brain injuries owing to shearing effects from shaking, and anoxic injuries. MR imaging has a definite complementary role in the evaluation of acute intracranial trauma in child abuse victims

  12. Experimental study on the rim-enhancing lesion of rabbit brain abscess : MR imaging and histopathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Jung; Suh, Soo Jhi; Kim, Sang Pyo; Joo, Yang Goo; Zeon, Seok Kil; Woo, Seong Ku [Keimyung Univ. School of Medicine, Taegu (Korea, Republic of)

    1996-11-01

    To evaluate on the basis of histopathologic carrelation the MR findings of mature brain abscess in the rabbit, with particular attention to rim-enhancing lesions. The evolution of abscess formation was obtained by the direct inoculation of Staphylococcus aureus into the gray-white matter junctions of the brains of 16 rabbits. The stages of brain abscesses were divided into four : early cerebritis (days 1 to 5 after inoculation of the organism);late cerebritis (days 6 to 14);early capsular (days 16 to 21);and late capsular (days 22 to 28). The available MR images showed 14 cases at the stage of early cerebritis, seven at the late cerebritis stage, three at the early capsular, and one at the late capsular stage. According to the known pathology of brain abscesses and on the basis of both MR imaging and histopathologic findings, the lesions were grouped according to whether they were found in the central necrotic, border, or peripheral zone. We analyzed the patterns of rim-enhancement (completeness of the rim, thickness, and margin) and the signal intensities of the abscess walls on MR images at each stage. Histopathologic correlation was performed in one case of each stage. We evaluated the presence or absence and degree of infiltration by inflammatory granulation tissue, microhemorrhage, reticulin, collagen, and hemosiderin of the abscess walls. Rim-enhancing lesions were present in three of 14 cases at the late cerebritis stage, in all three cases at the early capsular, in one at the late capsular, but in none at the early cerebritis stage. The enhancing pattern of the late cerebritis stage was irregular-margined incomplete rim-enhancement, with irregular thickness of the abscess walls (3/3). The enhancing pattern of the capsular stages was well-defined, complete rim-enhancement with uniform thickness of the abscess walls (3/4). The signal intensities of the abscess walls at the late cerebritis and early capsular stages were variable. The late capsular stage ws

  13. Experimental study on the rim-enhancing lesion of rabbit brain abscess : MR imaging and histopathologic correlation

    International Nuclear Information System (INIS)

    To evaluate on the basis of histopathologic carrelation the MR findings of mature brain abscess in the rabbit, with particular attention to rim-enhancing lesions. The evolution of abscess formation was obtained by the direct inoculation of Staphylococcus aureus into the gray-white matter junctions of the brains of 16 rabbits. The stages of brain abscesses were divided into four : early cerebritis (days 1 to 5 after inoculation of the organism);late cerebritis (days 6 to 14);early capsular (days 16 to 21);and late capsular (days 22 to 28). The available MR images showed 14 cases at the stage of early cerebritis, seven at the late cerebritis stage, three at the early capsular, and one at the late capsular stage. According to the known pathology of brain abscesses and on the basis of both MR imaging and histopathologic findings, the lesions were grouped according to whether they were found in the central necrotic, border, or peripheral zone. We analyzed the patterns of rim-enhancement (completeness of the rim, thickness, and margin) and the signal intensities of the abscess walls on MR images at each stage. Histopathologic correlation was performed in one case of each stage. We evaluated the presence or absence and degree of infiltration by inflammatory granulation tissue, microhemorrhage, reticulin, collagen, and hemosiderin of the abscess walls. Rim-enhancing lesions were present in three of 14 cases at the late cerebritis stage, in all three cases at the early capsular, in one at the late capsular, but in none at the early cerebritis stage. The enhancing pattern of the late cerebritis stage was irregular-margined incomplete rim-enhancement, with irregular thickness of the abscess walls (3/3). The enhancing pattern of the capsular stages was well-defined, complete rim-enhancement with uniform thickness of the abscess walls (3/4). The signal intensities of the abscess walls at the late cerebritis and early capsular stages were variable. The late capsular stage ws

  14. Increased brain temserotoneric transporter availability in adult migraineurs: ([18F]FP-CIT PET imaging pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eun Kyung [Dept. of Nuclear Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul (Korea, Republic of); Hwang, Yu Mi [Center for Research Information, Korea University, Seoul (Korea, Republic of); Chu, Min Kyung [Dept. of Neurology, Sacred Heart Hospital, Hallym University College of Medicine, Anyang (Korea, Republic of); Jung, Ki Young [Dept. of Neurology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2016-03-15

    Recent studies have proposed central serotonergic dysfunction as a major pathophysiology of migraine. We investigated serotonin transporter (SERT) availability in migraineurs using F-18-N-(3-fluoropropyl)-2β-carbomethoxy-3β-(4-iodophenyl) nortropane ([18F]FP-CIT) positron emission tomography (PET). Brain [18F]FP-CIT PET images were obtained in eight women with migraine during headache free phase and 12 healthy adult women, 120 min after injection of 185 MBq. Non-displaceable binding potential (BP ND) of [18F]FP-CIT, which is an estimate of SERT availability, was calculated at the brainstem and compared with clinical parameters. BP ND at the brainstem was significantly higher in adult migraineurs (n = 6, 1.15 ± 0.17) than healthy subjects (0.95 ± 0.14) (p = 0.04). Healthy subjects demonstrated negative correlation between brainstem BP ND and age (r = −0.64, p = 0.02), whereas this age-related decline pattern was not found in the migraineurs. Severity of migraine attack was significantly correlated with brainstem BP ND (r = 0.66, p = 0.02), when age and duration of illness were corrected. Increased SERT availability in the brainstem of adult migraineurs indicates low serotonin neurotransmission during headache-free phase. Patients who experience more painful headaches have lower serotonin neurotransmission. [18F]FP-CIT PET is a useful in vivo imaging technique for evaluating brainstem SERT availability in migraineurs.

  15. Identifying brain neoplasms using dye-enhanced multimodal confocal imaging

    Science.gov (United States)

    Wirth, Dennis; Snuderl, Matija; Sheth, Sameer; Kwon, Churl-Su; Frosch, Matthew P.; Curry, William; Yaroslavsky, Anna N.

    2012-02-01

    Brain tumors cause significant morbidity and mortality even when benign. Completeness of resection of brain tumors improves quality of life and survival; however, that is often difficult to accomplish. The goal of this study was to evaluate the feasibility of using multimodal confocal imaging for intraoperative detection of brain neoplasms. We have imaged different types of benign and malignant, primary and metastatic brain tumors. We correlated optical images with histopathology and evaluated the possibility of interpreting confocal images in a manner similar to pathology. Surgical specimens were briefly stained in 0.05 mg/ml aqueous solution of methylene blue (MB) and imaged using a multimodal confocal microscope. Reflectance and fluorescence signals of MB were excited at 642 nm. Fluorescence emission of MB was registered between 670 and 710 nm. After imaging, tissues were processed for hematoxylin and eosin (H&E) histopathology. The results of comparison demonstrate good correlation between fluorescence images and histopathology. Reflectance images provide information about morphology and vascularity of the specimens, complementary to that provided by fluorescence images. Multimodal confocal imaging has the potential to aid in the intraoperative detection of microscopic deposits of brain neoplasms. The application of this technique may improve completeness of resection and increase patient survival.

  16. Fuzzy object models for newborn brain MR image segmentation

    Science.gov (United States)

    Kobashi, Syoji; Udupa, Jayaram K.

    2013-03-01

    Newborn brain MR image segmentation is a challenging problem because of variety of size, shape and MR signal although it is the fundamental study for quantitative radiology in brain MR images. Because of the large difference between the adult brain and the newborn brain, it is difficult to directly apply the conventional methods for the newborn brain. Inspired by the original fuzzy object model introduced by Udupa et al. at SPIE Medical Imaging 2011, called fuzzy shape object model (FSOM) here, this paper introduces fuzzy intensity object model (FIOM), and proposes a new image segmentation method which combines the FSOM and FIOM into fuzzy connected (FC) image segmentation. The fuzzy object models are built from training datasets in which the cerebral parenchyma is delineated by experts. After registering FSOM with the evaluating image, the proposed method roughly recognizes the cerebral parenchyma region based on a prior knowledge of location, shape, and the MR signal given by the registered FSOM and FIOM. Then, FC image segmentation delineates the cerebral parenchyma using the fuzzy object models. The proposed method has been evaluated using 9 newborn brain MR images using the leave-one-out strategy. The revised age was between -1 and 2 months. Quantitative evaluation using false positive volume fraction (FPVF) and false negative volume fraction (FNVF) has been conducted. Using the evaluation data, a FPVF of 0.75% and FNVF of 3.75% were achieved. More data collection and testing are underway.

  17. Mechanism of Chronic Pain in Rodent Brain Imaging

    Science.gov (United States)

    Chang, Pei-Ching

    Chronic pain is a significant health problem that greatly impacts the quality of life of individuals and imparts high costs to society. Despite intense research effort in understanding of the mechanism of pain, chronic pain remains a clinical problem that has few effective therapies. The advent of human brain imaging research in recent years has changed the way that chronic pain is viewed. To further extend the use of human brain imaging techniques for better therapies, the adoption of imaging technique onto the animal pain models is essential, in which underlying brain mechanisms can be systematically studied using various combination of imaging and invasive techniques. The general goal of this thesis is to addresses how brain develops and maintains chronic pain in an animal model using fMRI. We demonstrate that nucleus accumbens, the central component of mesolimbic circuitry, is essential in development of chronic pain. To advance our imaging technique, we develop an innovative methodology to carry out fMRI in awake, conscious rat. Using this cutting-edge technique, we show that allodynia is assoicated with shift brain response toward neural circuits associated nucleus accumbens and prefrontal cortex that regulate affective and cognitive component of pain. Taken together, this thesis provides a deeper understanding of how brain mediates pain. It builds on the existing body of knowledge through maximizing the depth of insight into brain imaging of chronic pain.

  18. Correlation between the Effects of Acupuncture at Taichong (LR3) and Functional Brain Areas: A Resting-State Functional Magnetic Resonance Imaging Study Using True versus Sham Acupuncture.

    Science.gov (United States)

    Wu, Chunxiao; Qu, Shanshan; Zhang, Jiping; Chen, Junqi; Zhang, Shaoqun; Li, Zhipeng; Chen, Jiarong; Ouyang, Huailiang; Huang, Yong; Tang, Chunzhi

    2014-01-01

    Functional magnetic resonance imaging (fMRI) has been shown to detect the specificity of acupuncture points, as proved by numerous studies. In this study, resting-state fMRI was used to observe brain areas activated by acupuncture at the Taichong (LR3) acupoint. A total of 15 healthy subjects received brain resting-state fMRI before acupuncture and after sham and true acupuncture, respectively, at LR3. Image data processing was performed using Data Processing Assistant for Resting-State fMRI and REST software. The combination of amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) was used to analyze the changes in brain function during sham and true acupuncture. Acupuncture at LR3 can specifically activate or deactivate brain areas related to vision, movement, sensation, emotion, and analgesia. The specific alterations in the anterior cingulate gyrus, thalamus, and cerebellar posterior lobe have a crucial effect and provide a valuable reference. Sham acupuncture has a certain effect on psychological processes and does not affect brain areas related to function. PMID:24963329

  19. Impact of inhaled nitric oxide on the sulfatide profile of neonatal rat brain studied by TOF-SIMS imaging.

    Science.gov (United States)

    Kadar, Hanane; Pham, Hoa; Touboul, David; Brunelle, Alain; Baud, Olivier

    2014-01-01

    Despite advances in neonatal intensive care leading to an increased survival rate in preterm infants, brain lesions and subsequent neurological handicaps following preterm birth remain a critical issue. To prevent brain injury and/or enhance repair, one of the most promising therapies investigated in preclinical models is inhaled nitric oxide (iNO). We have assessed the effect of this therapy on brain lipid content in air- and iNO-exposed rat pups by mass spectrometry imaging using a time-of-flight secondary ion mass spectrometry (TOF-SIMS) method. This technique was used to map the variations in lipid composition of the rat brain and, particularly, of the white matter. Triplicate analysis showed a significant increase of sulfatides (25%-50%) in the white matter on Day 10 of life in iNO-exposed animals from Day 0-7 of life. These robust, repeatable and semi-quantitative data demonstrate a potent effect of iNO at the molecular level. PMID:24670476

  20. Impact of Inhaled Nitric Oxide on the Sulfatide Profile of Neonatal Rat Brain Studied by TOF-SIMS Imaging

    Directory of Open Access Journals (Sweden)

    Hanane Kadar

    2014-03-01

    Full Text Available Despite advances in neonatal intensive care leading to an increased survival rate in preterm infants, brain lesions and subsequent neurological handicaps following preterm birth remain a critical issue. To prevent brain injury and/or enhance repair, one of the most promising therapies investigated in preclinical models is inhaled nitric oxide (iNO. We have assessed the effect of this therapy on brain lipid content in air- and iNO-exposed rat pups by mass spectrometry imaging using a time-of-flight secondary ion mass spectrometry (TOF-SIMS method. This technique was used to map the variations in lipid composition of the rat brain and, particularly, of the white matter. Triplicate analysis showed a significant increase of sulfatides (25%–50% in the white matter on Day 10 of life in iNO-exposed animals from Day 0–7 of life. These robust, repeatable and semi-quantitative data demonstrate a potent effect of iNO at the molecular level.

  1. Are cocaine users too sensitive? Functional and structural brain imaging studies in regular cocaine users

    OpenAIRE

    Kaag, A.M.

    2016-01-01

    While previous research primarily focused on the involvement of the frontostriatal network in the etiology of substance use disorder, it has recently been suggested that the amygdala, and its interaction with the frontostriatal circuitry, may play a key role in habitual drug seeking, and therefore in the etiology of substance use disorder The studies described in this dissertation demonstrate that cocaine use disorder is associated with hyper-activity of the amygdala in response to negative e...

  2. MRI Brain Image Segmentation based on Thresholding

    Directory of Open Access Journals (Sweden)

    G. Evelin Sujji, Y.V.S. Lakshmi, G. Wiselin Jiji

    2013-03-01

    Full Text Available Medical Image processing is one of the mostchallenging topics in research field. The mainobjective of image segmentation is to extract variousfeatures of the image that are used foranalysing,interpretation and understanding of images.Medical Resonance Image plays a major role inMedical diagnostics. Image processing in MRI ofbrain is highlyessential due to accurate detection ofthe type of brain abnormality which can reduce thechance of fatal result. This paper outlines anefficient image segmentation technique that candistinguish the pathological tissues such asedemaandtumourfrom thenormal tissues such as WhiteMatter(WM,GreyMatter(GM, andCerebrospinal Fluid(CSF. Thresholding is simplerand most commonly used techniques in imagesegmentation. This technique can be used to detectthe contour of thetumourin brain.

  3. Brain and nervous system (image)

    Science.gov (United States)

    ... complicated and interconnected functions of the body and mind. Motor, sensory cognitive and autonomic function are all coordinated and driven by the brain and nerves. As people age, nerve cells deteriorated ...

  4. Computed tomographic imaging of the brain of normal neonatal foals

    Directory of Open Access Journals (Sweden)

    L Cabrera

    2015-01-01

    Full Text Available The aim of this study was to provide a more complete description of normal cross-sectional anatomy of the neonatal brain of the foal and associated structures by computed tomography (CT and gross anatomical sections. Using a fourth-generation CT scanner, 2-mm contiguous transverse images were acquired from two neonatal 5-days-old Quarter horse foals. After the study the animals were euthanised for reasons unrelated to head pathology. To assist in the accurate identification of brain and associated structures, transverse CT images were obtained and compared with the corresponding frozen cross-sections of the head. CT images matched well with their corresponding transverse gross sections and provided good differentiation between the bones and the soft tissues of the head. These CT images are intended to be a useful initial anatomic reference in the interpretation for clinical CT imaging studies of the brain and associated structures in live neonatal foals.

  5. In vivo calcium imaging of the aging and diseased brain

    Energy Technology Data Exchange (ETDEWEB)

    Eichhoff, Gerhard; Busche, Marc A.; Garaschuk, Olga [Technical University of Munich, Institute of Neuroscience, Munich (Germany)

    2008-03-15

    Over the last decade, in vivo calcium imaging became a powerful tool for studying brain function. With the use of two-photon microscopy and modern labelling techniques, it allows functional studies of individual living cells, their processes and their interactions within neuronal networks. In vivo calcium imaging is even more important for studying the aged brain, which is hard to investigate in situ due to the fragility of neuronal tissue. In this article, we give a brief overview of the techniques applicable to image aged rodent brain at cellular resolution. We use multicolor imaging to visualize specific cell types (neurons, astrocytes, microglia) as well as the autofluorescence of the ''aging pigment'' lipofuscin. Further, we illustrate an approach for simultaneous imaging of cortical cells and senile plaques in mouse models of Alzheimer's disease. (orig.)

  6. STEREOLOGICAL EVALUATION OF BRAIN MAGNETIC RESONANCE IMAGES OF SCHIZOPHRENIC PATIENTS

    Directory of Open Access Journals (Sweden)

    Amani Abdelrazag Elfaki

    2013-11-01

    Full Text Available Advances in neuroimaging have enabled studies of specific neuroanatomical abnormalities with relevance to schizophrenia. This study quantified structural alterations on brain magnetic resonance (MR images of patients with schizophrenia. MR brain imaging was done on 88 control and 57 schizophrenic subjects and Dicom images were analyzed with ImageJ software. The brain volume was estimated with the planimetric stereological technique. The volume fraction of brain structures was also estimated. The results showed that, the mean volume of right, left, and total hemispheres in controls were 551, 550, and 1101 cm³, respectively. The mean volumes of right, left, and total hemispheres in schizophrenics were 513, 512, and 1026 cm³, respectively. The schizophrenics’ brains were smaller than the controls (p < 0.05. The mean volume of total white matter of controls (516 cm³ was bigger than the schizophrenics’ volume (451 cm³, (p < 0.05. The volume fraction of total white matter was also lower in schizophrenics (p < 0.05. Volume fraction of the lateral ventricles was higher in schizophrenics (p < 0.05. According to the findings, the volumes of schizophrenics’ brain were smaller than the controls and the volume fractional changes in schizophrenics showed sex dependent differences. We conclude that stereological analysis of MR brain images is useful for quantifying schizophrenia related structural changes.

  7. Skull-stripping for Tumor-bearing Brain Images

    CERN Document Server

    Bauer, Stefan; Reyes, Mauricio

    2012-01-01

    Skull-stripping separates the skull region of the head from the soft brain tissues. In many cases of brain image analysis, this is an essential preprocessing step in order to improve the final result. This is true for both registration and segmentation tasks. In fact, skull-stripping of magnetic resonance images (MRI) is a well-studied problem with numerous publications in recent years. Many different algorithms have been proposed, a summary and comparison of which can be found in [Fennema-Notestine, 2006]. Despite the abundance of approaches, we discovered that the algorithms which had been suggested so far, perform poorly when dealing with tumor-bearing brain images. This is mostly due to additional difficulties in separating the brain from the skull in this case, especially when the lesion is located very close to the skull border. Additionally, images acquired according to standard clinical protocols, often exhibit anisotropic resolution and only partial coverage, which further complicates the task. There...

  8. New developments in the imaging of brains

    International Nuclear Information System (INIS)

    A review is given for the imaging techniques of brains. Separate paragraphs are devoted to echography, computerized tomography and magnetic resonance imaging. Special attention is payed to new developments such as magnetic resonance spectroscopy used for metabolic processes. (R.B.) 11 refs

  9. Do brain image databanks support understanding of normal ageing brain structure? A systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Dickie, David Alexander; Job, Dominic E.; Wardlaw, Joanna M. [University of Edinburgh, Division of Clinical Neurosciences, Western General Hospital, Brain Research Imaging Centre (BRIC), Edinburgh (United Kingdom); Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Edinburgh (United Kingdom); Poole, Ian [Toshiba Medical Visualisation Systems Europe, Ltd., Edinburgh (United Kingdom); Ahearn, Trevor S.; Staff, Roger T.; Murray, Alison D. [University of Aberdeen, Aberdeen Biomedical Imaging Centre, Aberdeen (United Kingdom); Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Edinburgh (United Kingdom)

    2012-07-15

    To document accessible magnetic resonance (MR) brain images, metadata and statistical results from normal older subjects that may be used to improve diagnoses of dementia. We systematically reviewed published brain image databanks (print literature and Internet) concerned with normal ageing brain structure. From nine eligible databanks, there appeared to be 944 normal subjects aged {>=}60 years. However, many subjects were in more than one databank and not all were fully representative of normal ageing clinical characteristics. Therefore, there were approximately 343 subjects aged {>=}60 years with metadata representative of normal ageing, but only 98 subjects were openly accessible. No databank had the range of MR image sequences, e.g. T2*, fluid-attenuated inversion recovery (FLAIR), required to effectively characterise the features of brain ageing. No databank supported random subject retrieval; therefore, manual selection bias and errors may occur in studies that use these subjects as controls. Finally, no databank stored results from statistical analyses of its brain image and metadata that may be validated with analyses of further data. Brain image databanks require open access, more subjects, metadata, MR image sequences, searchability and statistical results to improve understanding of normal ageing brain structure and diagnoses of dementia. (orig.)

  10. Altered sensorimotor activation patterns in idiopathic dystonia-an activation likelihood estimation meta-analysis of functional brain imaging studies

    DEFF Research Database (Denmark)

    Løkkegaard, Annemette; Herz, Damian M; Haagensen, Brian N;

    2016-01-01

    Dystonia is characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements or postures. Functional neuroimaging studies have yielded abnormal task-related sensorimotor activation in dystonia, but the results appear to be rather variable across studies....... Hum Brain Mapp 37:547-557, 2016. © 2015 Wiley Periodicals, Inc....

  11. Rapid and automatic detection of brain tumors in MR images

    Science.gov (United States)

    Wang, Zhengjia; Hu, Qingmao; Loe, KiaFock; Aziz, Aamer; Nowinski, Wieslaw L.

    2004-04-01

    An algorithm to automatically detect brain tumors in MR images is presented. The key concern is speed in order to process efficiently large brain image databases and provide quick outcomes in clinical setting. The method is based on study of asymmetry of the brain. Tumors cause asymmetry of the brain, so we detect brain tumors in 3D MR images using symmetry analysis of image grey levels with respect to the midsagittal plane (MSP). The MSP, separating the brain into two hemispheres, is extracted using our previously developed algorithm. By removing the background pixels, the normalized grey level histograms are calculated for both hemispheres. The similarity between these two histograms manifests the symmetry of the brain, and it is quantified by using four symmetry measures: correlation coefficient, root mean square error, integral of absolute difference (IAD), and integral of normalized absolute difference (INAD). A quantitative analysis of brain normality based on 42 patients with tumors and 55 normals is presented. The sensitivity and specificity of IAD and INAD were 83.3% and 89.1%, and 85.7% and 83.6%, respectively. The running time for each symmetry measure for a 3D 8bit MR data was between 0.1 - 0.3 seconds on a 2.4GHz CPU PC.

  12. Neurolight -astonishing advances in brain imaging.

    Science.gov (United States)

    Rojczyk-Gołębiewska, Ewa; Pałasz, Artur; Worthington, John J; Markowski, Grzegorz; Wiaderkiewicz, Ryszard

    2015-02-01

    In recent years, significant advances in basic neuroanatomical studies have taken place. Moreover, such classical, clinically-oriented human brain imaging methods such as MRI, PET and DTI have been applied to small laboratory animals allowing improvement in current experimental neuroscience. Contemporary structural neurobiology also uses various technologies based on fluorescent proteins. One of these is optogenetics, which integrates physics, genetics and bioengineering to enable temporal precise control of electrical activity of specific neurons. Another important challenge in the field is the accurate imaging of complicated neural networks. To address this problem, three-dimensional reconstruction techniques and retrograde labeling with modified viruses has been developed. However, a revolutionary step was the invention of the "Brainbow" system, utilizing gene constructs including the sequences of fluorescent proteins and the usage of Cre recombinase to create dozens of colour combinations, enabling visualization of neurons and their connections in extremely high resolution. Furthermore, the newly- introduced CLARITY method should make it possible to visualize three-dimensionally the structure of translucent brain tissue using the hydrogel polymeric network. This original technique is a big advance in neuroscience creating novel viewpoints completely different than standard glass slide immunostaining.

  13. Characterization of 4-[18F]-ADAM as an imaging agent for SERT in non-human primate brain using PET: a dynamic study

    International Nuclear Information System (INIS)

    Introduction: Serotonin transporter (SERT) has been associated with many psychiatric diseases. This study investigated the biodistribution of a serotonin transporter imaging agent, N,N-dimethyl-2-(2-amino-4-18F-fluorophenylthio)benzylamine (4-[18F]-ADAM), in nonhuman primate brain using positron emission tomography (PET). Methods: Six and four Macaca cyclopis monkeys were used to determine the transit time (i.e., time necessary to reach biodistribution equilibrium) and the reproducibility of 4-[18F]-ADAM biodistribution in the brain, respectively. The sensitivity and specificity of 4-[18F]-ADAM binding to SERT were evaluated in one monkey challenged with different doses of fluoxetine and one monkey treated with 3,4-methylendioxymethamphetamine (MDMA). Dynamic PET imaging was performed for 3 h after 4-[18F]-ADAM intravenous bolus injection. The specific uptake ratios (SURs) in the midbrain (MB), thalamus (TH), striatum (ST) and frontal cortex (FC) were calculated. Results: The distribution of 4-[18F]-ADAM reached equilibrium 120–150 min after injection. The mean SURs were 2.49±0.13 in MB, 1.59±0.17 in TH, 1.35±0.06 in ST and 0.34±0.03 in FC, and the minimum variability was shown 120–150 min after 4-[18F]-ADAM injection. Using SURs and intraclass coefficient of correlation, the test/retest variability was under 8% and above 0.8, respectively, in SERT-rich areas. Challenge with fluoxetin (0.75–2 mg) dose-dependently inhibited the SURs in various brain regions. 4-[18F]-ADAM binding was markedly reduced in the brain of an MDMA-treated monkey compared to that in brains of normal controls. Conclusion: 4-[18F]-ADAM appears to be a highly selective radioligand for imaging SERT in monkey brain.

  14. Parameters of glucose metabolism and the aging brain: a magnetization transfer imaging study of brain macro- and micro-structure in older adults without diabetes

    OpenAIRE

    Akintola, Abimbola A.; VAN DEN BERG, Annette; Altmann-Schneider, Irmhild; Jansen, Steffy W.; van Buchem, Mark A.; Slagboom, P. Eline; Westendorp, Rudi G.; van Heemst, Diana; van der Grond, Jeroen

    2015-01-01

    Given the concurrent, escalating epidemic of diabetes mellitus and neurodegenerative diseases, two age-related disorders, we aimed to understand the relation between parameters of glucose metabolism and indices of pathology in the aging brain. From the Leiden Longevity Study, 132 participants (mean age 66 years) underwent a 2-h oral glucose tolerance test to assess glucose tolerance (fasted and area under the curve (AUC) glucose), insulin sensitivity (fasted and AUC insulin and homeostatic mo...

  15. Brain MR imaging in systemic lupus erythematous

    International Nuclear Information System (INIS)

    To present MR imaging findings of intracranial lesions in systemic lupus erythematosus(SLE), a retrospective study was performed on MR images of 33 SLE patients with neurologic symptoms and signs. MR imaging was performed on either a 0.5 T (21 patients) or 2.0 T unit (12 patients), using T1-weighted, proton-density-weighted, and T2-weighted spin echo sequences in all patients. In seven patients, post-contrast T1-weighted images were also obtained after administration of gadopentetate dimeglumine. The main MR findings consisted of focal lesions suggesting ischemia/infarct (15 patients), diffuse brain atrophy (8), and findings associated with infection (4). The MR findings were normal in 11 patients (33%). The focal lesions suggesting ischemia/infarcts presumably secondary to vasculitis were distributed in the cortex or subcortical white matter (7 patients), deep periventricular white matter (3), or in both areas (5). Most of the focal lesions were multiple and small in size. The findings associated with infection were variable and included communicating hydrocephalus, meningeal enhancement, granuloma, etc. MR findings of SLE were non-specific and therefore clinical correlation is needed when evaluating SLE in MR

  16. Magnetic resonance imaging of a brain abscess

    International Nuclear Information System (INIS)

    Magnetic resonance imaging (MRI) was performed on 13 patients with brain abscesses, and the alternation of MRI findings, as correlated with the progression of brain-abscess formation, was reviewed. In the cerebritis stage, spin-echo images showed a high intensity, and inversion-recovery images, a low intensity, due to inflammation and edema. The spin-echo images were very sensitive in delineating the brain edema; however, it was difficult to distinguish the inflammation from the surrounding edema. In the capsule stage, due to the accumulation of purulent material, the central necrotic area was demonstrated as a low-intensity area, while the capsule of the abscess was revealed as an iso-intensity ring on the inversion-recovery images. The central necrotic area also decreased in intensity on spin-echo images in the later period of this stage. With contrast enhancement (Gd-DTPA), the SR image showed the capsule as a high-intensity ring. MRI was found to be a useful method for estimating the process of the formation of a brain abscess. (author)

  17. Magnetic resonance imaging of a brain abscess

    Energy Technology Data Exchange (ETDEWEB)

    Oikawa, Akihiro; Kagawa, Mizuo; Yatoh, Seiji; Izawa, Masahiro; Ujiie, Hiroshi; Sakaguchi, Jun; Onda, Hideaki; Kitamura, Kohichi

    1988-06-01

    Magnetic resonance imaging (MRI) was performed on 13 patients with brain abscesses, and the alternation of MRI findings, as correlated with the progression of brain-abscess formation, was reviewed. In the cerebritis stage, spin-echo images showed a high intensity, and inversion-recovery images, a low intensity, due to inflammation and edema. The spin-echo images were very sensitive in delineating the brain edema; however, it was difficult to distinguish the inflammation from the surrounding edema. In the capsule stage, due to the accumulation of purulent material, the central necrotic area was demonstrated as a low-intensity area, while the capsule of the abscess was revealed as an iso-intensity ring on the inversion-recovery images. The central necrotic area also decreased in intensity on spin-echo images in the later period of this stage. With contrast enhancement (Gd-DTPA), the SR image showed the capsule as a high-intensity ring. MRI was found to be a useful method for estimating the process of the formation of a brain abscess.

  18. Some Problems for Representations of Brain Organization Based on Activation in Functional Imaging

    Science.gov (United States)

    Sidtis, John J.

    2007-01-01

    Functional brain imaging has overshadowed traditional lesion studies in becoming the dominant approach to the study of brain-behavior relationships. The proponents of functional imaging studies frequently argue that this approach provides an advantage over lesion studies by observing normal brain activity in vivo without the disruptive effects of…

  19. The potential of using brain images for authentication.

    Science.gov (United States)

    Chen, Fanglin; Zhou, Zongtan; Shen, Hui; Hu, Dewen

    2014-01-01

    Biometric recognition (also known as biometrics) refers to the automated recognition of individuals based on their biological or behavioral traits. Examples of biometric traits include fingerprint, palmprint, iris, and face. The brain is the most important and complex organ in the human body. Can it be used as a biometric trait? In this study, we analyze the uniqueness of the brain and try to use the brain for identity authentication. The proposed brain-based verification system operates in two stages: gray matter extraction and gray matter matching. A modified brain segmentation algorithm is implemented for extracting gray matter from an input brain image. Then, an alignment-based matching algorithm is developed for brain matching. Experimental results on two data sets show that the proposed brain recognition system meets the high accuracy requirement of identity authentication. Though currently the acquisition of the brain is still time consuming and expensive, brain images are highly unique and have the potential possibility for authentication in view of pattern recognition. PMID:25126604

  20. Proton MRS imaging in pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Zarifi, Maria [Aghia Sophia Children' s Hospital, Department of Radiology, Athens (Greece); Tzika, A.A. [Harvard Medical School, Department of Surgery, Massachusetts General Hospital, Boston, MA (United States); Shriners Burn Hospital, Boston, MA (United States)

    2016-06-15

    Magnetic resonance (MR) techniques offer a noninvasive, non-irradiating yet sensitive approach to diagnosing and monitoring pediatric brain tumors. Proton MR spectroscopy (MRS), as an adjunct to MRI, is being more widely applied to monitor the metabolic aspects of brain cancer. In vivo MRS biomarkers represent a promising advance and may influence treatment choice at both initial diagnosis and follow-up, given the inherent difficulties of sequential biopsies to monitor therapeutic response. When combined with anatomical or other types of imaging, MRS provides unique information regarding biochemistry in inoperable brain tumors and can complement neuropathological data, guide biopsies and enhance insight into therapeutic options. The combination of noninvasively acquired prognostic information and the high-resolution anatomical imaging provided by conventional MRI is expected to surpass molecular analysis and DNA microarray gene profiling, both of which, although promising, depend on invasive biopsy. This review focuses on recent data in the field of MRS in children with brain tumors. (orig.)

  1. Natural image classification driven by human brain activity

    Science.gov (United States)

    Zhang, Dai; Peng, Hanyang; Wang, Jinqiao; Tang, Ming; Xue, Rong; Zuo, Zhentao

    2016-03-01

    Natural image classification has been a hot topic in computer vision and pattern recognition research field. Since the performance of an image classification system can be improved by feature selection, many image feature selection methods have been developed. However, the existing supervised feature selection methods are typically driven by the class label information that are identical for different samples from the same class, ignoring with-in class image variability and therefore degrading the feature selection performance. In this study, we propose a novel feature selection method, driven by human brain activity signals collected using fMRI technique when human subjects were viewing natural images of different categories. The fMRI signals associated with subjects viewing different images encode the human perception of natural images, and therefore may capture image variability within- and cross- categories. We then select image features with the guidance of fMRI signals from brain regions with active response to image viewing. Particularly, bag of words features based on GIST descriptor are extracted from natural images for classification, and a sparse regression base feature selection method is adapted to select image features that can best predict fMRI signals. Finally, a classification model is built on the select image features to classify images without fMRI signals. The validation experiments for classifying images from 4 categories of two subjects have demonstrated that our method could achieve much better classification performance than the classifiers built on image feature selected by traditional feature selection methods.

  2. Generating text from functional brain images

    Directory of Open Access Journals (Sweden)

    Francisco ePereira

    2011-08-01

    Full Text Available Recent work has shown that it is possible to take brain images acquired during viewing of a scene and reconstruct an approximation of the scene from those images. Here we show that it is also possible to generate text about the mental content reflected in brain images. We began with images collected as participants read names of concrete items (e.g., "Apartment" while also seeing line drawings of the item named. We built a model of the mental semantic representation of concrete concepts from text data and learned to map aspects of such representation to patterns of activation in the corresponding brain image. In order to validate this mapping, without accessing information about the items viewed for left-out individual brain images, we were able to generate from each one a collection of semantically pertinent words (e.g., "door," "window" for "Apartment". Furthermore, we show that the ability to generate such words allows us to perform a classification task and thus validate our method quantitatively.

  3. MR imaging of regional late brain development

    International Nuclear Information System (INIS)

    This paper reports, to complement current knowledge on brain development, late regional brain maturation assessed with quantitative MR imaging. Axial and coronal head spin-echo (SE) images were obtained in 60 healthy individuals aged 5--56 years, with a double-echo, flow compensated imaging sequence obtained with a 1.5-T Magnetom spectroscopy and imaging system. T2-weighted images were calculated from the intensity differences in SE images at echo times (TEs) of 15 and 90 msec (TR = 2.5 second). The mean T2 values were determined at 16 sites in each cerebral hemisphere. T2 values of the six frontal subcortical white matter (FSCWM) sites and of the internal capsule (IC) were evaluated. Mean T2 values in the IC decreased until age 10 years, whereas this decrease continued in the FSCWM past age 15 years before reaching a plateau. Differential age-dependent patterns of mean T2 values emerged between the six FSCWM sites. The spread of T2 values varied at different sites independent of the age of the individuals. T2- values have previously been shown to reflect the status of brain development. The authors' data on the six FSCWM sites and the IC extend these findings to specific substructures of the brain. Interindividual variations and technical issues are responsible for the observed spread of data

  4. IMAGING THE BRAIN AS SCHIZOPHRENIA DEVELOPS: DYNAMIC & GENETIC BRAIN MAPS.

    Science.gov (United States)

    Thompson, Paul; Rapoport, Judith L; Cannon, Tyrone D; Toga, Arthur W

    2002-01-01

    Schizophrenia is a chronic, debilitating psychiatric disorder that affects 0.2-2% of the population worldwide. Often striking without warning in the late teens or early twenties, its symptoms include auditory and visual hallucinations, psychotic outbreaks, bizarre or disordered thinking, depression and social withdrawal. To combat the disease, new antipsychotic drugs are emerging; these atypical neuroleptics target dopamine and serotonin pathways in the brain, offering increased therapeutic efficacy with fewer side effects. Despite their moderate success in controlling some patients' symptoms, little is known about the causes of schizophrenia, and what triggers the disease. Its peculiar age of onset raises key questions: What physical changes occur in the brain as a patient develops schizophrenia? Do these deficits spread in the brain, and can they be opposed? How do they relate to psychotic symptoms? As risk for the disease is genetically transmitted, do a patient's relatives exhibit similar brain changes? Recent advances in brain imaging and genetics provide exciting insight on these questions. Neuroimaging can now chart the emergence and progression of deficits in the brain, providing an exceptionally sharp scalpel to dissect the effects of genetic risk, environmental triggers, and susceptibility genes. Visualizing the dynamics of the disease, these techniques also offer new strategies to evaluate drugs that combat the unrelenting symptoms of schizophrenia.

  5. Four-view spect brain imaging detector

    International Nuclear Information System (INIS)

    This paper reports that with increasing use of single photon radiopharmaceuticals for brain imaging, there is a growing demand for efficient, economical SPECT brain imaging instrumentation. This new multiple view imaging detector design has the sensitivity advantages of an array of four discrete cameras, but functions essentially like a single camera head. Four separate flat crystals are surrounded with PMT's which perform as a single array for photon event detection. Unique windows on adjoining crystal edges are coupled to corner light pipe/PMT assemblies. Reduced edge packing range, and sharing of corner PMT's allows a compact assembly volume, even with 3 inch PMT's. The imaging volume is approximately a 23 centimeter cube, and the imaging electronics are nearly the same as used in a single 64 PMT gamma camera

  6. Exploring brain function with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Since its invention in the early 1990s, functional magnetic resonance imaging (fMRI) has rapidly assumed a leading role among the techniques used to localize brain activity. The spatial and temporal resolution provided by state-of-the-art MR technology and its non-invasive character, which allows multiple studies of the same subject, are some of the main advantages of fMRI over the other functional neuroimaging modalities that are based on changes in blood flow and cortical metabolism. This paper describes the basic principles and methodology of fMRI and some aspects of its application to functional activation studies. Attention is focused on the physiology of the blood oxygenation level-dependent (BOLD) contrast mechanism and on the acquisition of functional time-series with echo planar imaging (EPI). We also provide an introduction to the current strategies for the correction of signal artefacts and other image processing techniques. In order to convey an idea of the numerous applications of fMRI, we will review some of the recent results in the fields of cognitive and sensorimotor psychology and physiology

  7. Brain imaging of pain: state of the art

    Science.gov (United States)

    Morton, Debbie L; Sandhu, Javin S; Jones, Anthony KP

    2016-01-01

    Pain is a complex sensory and emotional experience that is heavily influenced by prior experience and expectations of pain. Before the development of noninvasive human brain imaging, our grasp of the brain’s role in pain processing was limited to data from postmortem studies, direct recording of brain activity, patient experience and stimulation during neurosurgical procedures, and animal models of pain. Advances made in neuroimaging have bridged the gap between brain activity and the subjective experience of pain and allowed us to better understand the changes in the brain that are associated with both acute and chronic pain. Additionally, cognitive influences on pain such as attention, anticipation, and fear can now be directly observed, allowing for the interpretation of the neural basis of the psychological modulation of pain. The use of functional brain imaging to measure changes in endogenous neurochemistry has increased our understanding of how states of increased resilience and vulnerability to pain are maintained. PMID:27660488

  8. Whole brain imaging with Serial Two-Photon Tomography

    Directory of Open Access Journals (Sweden)

    Stephen P Amato

    2016-03-01

    Full Text Available Imaging entire mouse brains at submicron resolution has historically been a challenging undertaking and largely confined to the province of dedicated atlasing initiatives. The has limited systematic investigations into important areas of neuroscience, such as neural circuits, brain mapping and neurodegeneration. In this paper, we describe in detail Serial Two-Photon (STP tomography, a robust, reliable method for imaging entire brains with histological detail. We provide examples of how the basic methodology can be extended to other imaging modalities, such as optical coherence tomography, in order to provide unique contrast mechanisms. Furthermore we provide a survey of the research that STP tomography has enabled in the field of neuroscience, provide examples of how this technology enables quantitative whole brain studies, and discuss the current limitations of STP tomography-based approaches

  9. Functional brain imaging - baric and clinical questions

    International Nuclear Information System (INIS)

    The advancing biological knowledge of disease processes plays a central part in the progress of modern psychiatry. An essential contribution comes from the functional and structural brain imaging techniques (CT, MRI, SPECT, PET). Their application is important for biological oriented research in psychiatry and there is also a growing relevance in clinical aspects. This development is taken into account by recent diagnostic classification systems in psychiatry. The capabilities and limitations of functional brain imaging in the context of research and clinic will be presented and discussed by examples and own investigations. (orig.)

  10. Cerebral Anatomy of the Spider Monkey Ateles Geoffroyi Studied Using Magnetic Resonance Imaging. First Report: a Comparative Study with the Human Brain Homo Sapiens

    Directory of Open Access Journals (Sweden)

    Fernando Chico-Ponce de León

    2009-04-01

    Full Text Available The objective of the present qualitative studywas to analyze the morphological aspects of theinner cerebral anatomy of two species of primates,using magnetic resonance images (MRI:spider monkey (A. geoffroyi and human (H.sapiens, on the basis of a comparative study ofthe cerebral structures of the two species, focusingupon the brain of the spider monkey and,primarily, its limbic system. In spite of beingan endemic Western hemisphere species, a factwhich is by its own right interesting for researchdue to this animal’s social organization and motorfunctions, the spider monkey (A. geoffroyihas hardly been studied in regard to its neuroanatomy.MRI was carried out, in one spidermonkey, employing a General Electric Signa1.5 T scanner. This investigation was carried inaccordance to international regulations for theprotection of animals in captivity, taking intoaccount all protective means utilized in experimentalhandling, and not leaving behind any residualeffects, either physiological or behavioral.From a qualitative point of view, the brains ofthe spider monkey and the human were found to have similar structures. In reference to shape,the most similar structures were found in thelimbic system; proportionally, however, cervical curvature, amygdala, hippocampus, anteriorcommissure and the colliculi, were larger in thespider monkey than in the human.

  11. Photoacoustic imaging for transvascular drug delivery to the rat brain

    Science.gov (United States)

    Watanabe, Ryota; Sato, Shunichi; Tsunoi, Yasuyuki; Kawauchi, Satoko; Takemura, Toshiya; Terakawa, Mitsuhiro

    2015-03-01

    Transvascular drug delivery to the brain is difficult due to the blood-brain barrier (BBB). Thus, various methods for safely opening the BBB have been investigated, for which real-time imaging methods are desired both for the blood vessels and distribution of a drug. Photoacoustic (PA) imaging, which enables depth-resolved visualization of chromophores in tissue, would be useful for this purpose. In this study, we performed in vivo PA imaging of the blood vessels and distribution of a drug in the rat brain by using an originally developed compact PA imaging system with fiber-based illumination. As a test drug, Evans blue (EB) was injected to the tail vein, and a photomechanical wave was applied to the targeted brain tissue to increase the permeability of the blood vessel walls. For PA imaging of blood vessels and EB distribution, nanosecond pulses at 532 nm and 670 nm were used, respectively. We clearly visualized blood vessels with diameters larger than 50 μm and the distribution of EB in the brain, showing spatiotemporal characteristics of EB that was transvascularly delivered to the target tissue in the brain.

  12. Use of automated image registration to generate mean brain SPECT image of Alzheimer's patients

    International Nuclear Information System (INIS)

    The purpose of this study was to compute and compare the group mean HMPAO brain SPECT images of patients with senile dementia of Alzheimer's type (SDAT) and age matched control subjects after transformation of the individual images to a standard size and shape. Ten patients with Alzheimer's disease (age 71.6±5.0 yr) and ten age matched normal subjects (age 71.0±6.1 yr) participated in this study. Tc-99m HMPAO brain SPECT and X-ray CT scans were acquired for each subject. SPECT images were normalized to an average activity of 100 counts/pixel. Individual brain images were transformed to a standard size and shape with the help of Automated Image Registration (AIR). Realigned brain SPECT images of both groups were used to generate mean and standard deviation images by arithmetic operations on voxel based numerical values. Mean images of both groups were compared by applying the unpaired t-test on a voxel by voxel basis to generate three dimensional T-maps. X-ray CT images of individual subjects were evaluated by means of a computer program for brain atrophy. A significant decrease in relative radioisotope (RI) uptake was present in the bilateral superior and inferior parietal lobules (p<0.05), bilateral inferior temporal gyri, and the bilateral superior and middle frontal gyri (p<0.001). The mean brain atrophy indices for patients and normal subjects were 0.853±0.042 and 0.933±0.017 respectively, the difference being statistically significant (p<0.001). The use of a brain image standardization procedure increases the accuracy of voxel based group comparisons. Thus, intersubject averaging enhances the capacity for detection of abnormalities in functional brain images by minimizing the influence of individual variation. (author)

  13. Metabolic Syndrome, Brain Magnetic Resonance Imaging, and Cognition

    OpenAIRE

    Cavalieri, Margherita; Ropele, Stefan; Petrovic, Katja; Pluta-Fuerst, Aga; Homayoon, Nina; Enzinger, Christian; Grazer, Anja; Katschnig, Petra; Schwingenschuh, Petra; Berghold, Andrea; Schmidt, Reinhold

    2010-01-01

    OBJECTIVE We explored cognitive impairment in metabolic syndrome in relation to brain magnetic resonance imaging (MRI) findings. RESEARCH DESIGN AND METHODS We studied 819 participants free of clinical stroke and dementia of the population-based Austrian Stroke Prevention Study who had undergone brain MRI, neuropsychological testing, and a risk factor assessment relevant to National Cholesterol Education Program Adult Treatment Panel III criteria–defined metabolic syndrome. High-sensitivity C...

  14. Study on brain dopamine D2R 131I-epidepride SPECT imaging in patients with early stage Parkinson's disease

    International Nuclear Information System (INIS)

    Objective: To evaluate the clinical application of dopamine D2 receptor (D2R) 131I-epidepride SPECT imaging in early stage Parkinson' disease (PD). Methods: Ten healthy controls and forty-six untreated patients with early stage PD [Hoehn and Yahr (H-Y) stage I 22 cases, H-Y stage II 24 cases] were observed with dopamine D2R 131I-epidepride SPECT imaging. Striatal specific uptake of 131I-epidepride was calculated with region of interest analysis according to the ratios of striatum to occipital cortex [(ST-OC)/OC] and of striatum to frontal cortex [(ST-FC)/FC]. Results: No obvious side-to-side differences were observed in controls. (ST-OC)/OC and (ST-FC)/FC in the striatum contralateral to the clinical symptom were significantly upgraded compared to ipsilateral side in PD of H-Y stage I and H-Y stage II. (ST-OC)/OC and (ST-FC)/FC in the striatum significantly rose as the severity increasing and all the increments were significantly higher compared with that in the controls. Conclusion: Dopamine D2R 131I-epidepride SPECT imaging in human brain will conduce to the diagnosing of early stage PD

  15. Clinical anatomy of the canine brain using magnetic resonance imaging.

    Science.gov (United States)

    Leigh, Edmund J; Mackillop, Edward; Robertson, Ian D; Hudson, Lola C

    2008-01-01

    The purpose of this study was to produce an magnetic resonsnce (MR) image atlas of clinically relevant brain anatomy and to relate this neuroanatomy to clinical signs. The brain of a large mixed breed dog was imaged in transverse, sagittal, and dorsal planes using a 1.5 T MR unit and the following pulse sequences: Turbo (fast) spin echo (TSE) T2, T1, and T2- weighted spatial and chemical shift-encoded excitation sequence. Relevant neuroanatomic structures were identified using anatomic texts, sectioned cadaver heads, and previously published atlases. Major subdivisions of the brain were mapped and the neurologic signs of lesions in these divisions were described. TSE T2-weighted images were found to be the most useful for identifying clinically relevant neuroanatomy. Relating clinical signs to morphology as seen on MR will assist veterinarians to better understand clinically relevant neuroanatomy in MR images. PMID:18418990

  16. Image reconstruction for brain CT slices

    Institute of Scientific and Technical Information of China (English)

    吴建明; 施鹏飞

    2004-01-01

    Different modalities in biomedical images, like CT, MRI and PET scanners, provide detailed cross-sectional views of human anatomy. This paper introduces three-dimensional brain reconstruction based on CT slices. It contains filtering, fuzzy segmentation, matching method of contours, cell array structure and image animation. Experimental results have shown its validity. The innovation is matching method of contours and fuzzy segmentation algorithm of CT slices.

  17. Differential MRI Diagnosis Between Brain Abscess and Necrotic or Cystic Brain Tumors Using Diffusion Weighted Images

    Directory of Open Access Journals (Sweden)

    Zinat Miabi

    2009-01-01

    Full Text Available "nIntroduction: Differentiating brain abscesses from cystic or necrotic tumors by CT or MR imaging can be difficult. Difficulties in the diagnosis of intracranial abscess are mainly due to the combination of often unspecified clinical findings and similarities in the morphologic appearance of some intracranial mass lesions, such as cystic gliomas, metastases, and brain abscesses. Diffusion-weighted imaging provides a way to evaluate the diffusion properties of water molecules in tissue and has been used for diseases such as ischemia, tumors, epilepsy, and white matter disorders. The goal of this study was to evaluate the diagnostic utility of diffusion MRI to differentiate between brain abscesses and necrotic or cystic brain tumors. "nMaterials and Methods: MRI was performed in 17 patients (12 men and five women; age range, 19–74 years [mean, 55 years] with necrotic lesions and MR imaging evidence of ring-shaped enhancement after the injection of contrast material .In addition to standard MR sequences diffusion weighted MRI with apparent coefficient (ADC maps. "nResults: Eleven patients had tumors, and six had pyogenic abscesses. The tumors were glioblastomas (five patients, anaplastic astrocytoma (three patients, metastases (three patients, and primary malignancy, including lung (2 and breast (1 cancer. Surgical or stereotactic biopsies were obtained, and histologic studies were performed in all except one case (case 5. In the cases of abscess, bacteriologic analysis was also conducted. None of these lesions appeared hemorrhagic on T1-weighted images. "nConclusion: Diffusion-weighted imaging is useful for differentiating brain abscess from cystic or necrotic brain tumor, which is often difficult with conventional MR imaging. Diffusion-weighted imaging is useful as an additional imaging technique for establishing the differential diagnosis between brain abscesses and cystic or necrotic brain tumors. It requires less imaging time and is more

  18. Simultaneous imaging of MR angiographic image and brain surface image using steady-state free precession

    Energy Technology Data Exchange (ETDEWEB)

    Takane, Atsushi; Tsuda, Munetaka (Hitachi Ltd., Katsuta, Ibaraki (Japan)); Koizumi, Hideaki; Koyama, Susumu; Yoshida, Takeyuki

    1993-09-01

    Synthesis of a brain surface image and an angiographic image representing brain surface vasculatures can be useful for pre-operational contemplation of brain surgery. Both brain surface images and brain surface vasculature images were successfully acquired simultaneously utilizing both FID signals and time-reversed FID signals created under steady-state free precession (SSFP). This simultaneous imaging method has several advantages. No positional discrepancies between both images and prolongation of scan time are anticipated because of concurrent acquisition of the two kinds of image data. Superimposition and stereo-display of both images enable understanding of their spatial relationship, and therefore afford a useful means for pre-operational simulation of brain surgery. (author).

  19. Brain Extraction and Fuzzy Tissue Segmentation in Cerebral 2D T1-Weigthed Magnetic Resonance Images

    OpenAIRE

    Bouchaib Cherradi; Omar Bouattane; Mohamed Youssfi; Abdelhadi Raihani

    2011-01-01

    In medical imaging, accurate segmentation of brain MR images is of interest for many brain manipulations. In this paper, we present a method for brain Extraction and tissues classification. An application of this method to the segmentation of simulated MRI cerebral images in three clusters will be made. The studied method is composed with different stages, first Brain Extraction from T1-weighted 2D MRI slices (TMBE) is performed as pre-processing procedure, then Histogram based centroids init...

  20. Magnetic resonance imaging research progress on brain functional reorganization after peripheral nerve injury

    International Nuclear Information System (INIS)

    In the recent years, with the development of functional magnetic resonance imaging technology the brain plasticity and functional reorganization are hot topics in the central nervous system imaging studies. Brain functional reorganization and rehabilitation after peripheral nerve injury may have certain regularity. In this paper, the progress of brain functional magnetic resonance imaging technology and its applications in the world wide clinical and experimental researches of the brain functional reorganization after peripheral nerve injury is are reviewed. (authors)

  1. Imaging biomarkers in primary brain tumours

    Energy Technology Data Exchange (ETDEWEB)

    Lopci, Egesta; Chiti, Arturo [Humanitas Clinical and Research Center, Nuclear Medicine Department, Rozzano, MI (Italy); Franzese, Ciro; Navarria, Pierina; Scorsetti, Marta [Humanitas Clinical and Research Center, Radiosurgery and Radiotherapy, Rozzano, MI (Italy); Grimaldi, Marco [Humanitas Clinical and Research Center, Radiology, Rozzano, MI (Italy); Zucali, Paolo Andrea; Simonelli, Matteo [Humanitas Clinical and Research Center, Medical Oncology, Rozzano, MI (Italy); Bello, Lorenzo [Humanitas Clinical and Research Center, Neurosurgery, Rozzano, MI (Italy)

    2015-04-01

    We are getting used to referring to instrumentally detectable biological features in medical language as ''imaging biomarkers''. These two terms combined reflect the evolution of medical imaging during recent decades, and conceptually comprise the principle of noninvasive detection of internal processes that can become targets for supplementary therapeutic strategies. These targets in oncology include those biological pathways that are associated with several tumour features including independence from growth and growth-inhibitory signals, avoidance of apoptosis and immune system control, unlimited potential for replication, self-sufficiency in vascular supply and neoangiogenesis, acquired tissue invasiveness and metastatic diffusion. Concerning brain tumours, there have been major improvements in neurosurgical techniques and radiotherapy planning, and developments of novel target drugs, thus increasing the need for reproducible, noninvasive, quantitative imaging biomarkers. However, in this context, conventional radiological criteria may be inappropriate to determine the best therapeutic option and subsequently to assess response to therapy. Integration of molecular imaging for the evaluation of brain tumours has for this reason become necessary, and an important role in this setting is played by imaging biomarkers in PET and MRI. In the current review, we describe most relevant techniques and biomarkers used for imaging primary brain tumours in clinical practice, and discuss potential future developments from the experimental context. (orig.)

  2. Imaging biomarkers in primary brain tumours

    International Nuclear Information System (INIS)

    We are getting used to referring to instrumentally detectable biological features in medical language as ''imaging biomarkers''. These two terms combined reflect the evolution of medical imaging during recent decades, and conceptually comprise the principle of noninvasive detection of internal processes that can become targets for supplementary therapeutic strategies. These targets in oncology include those biological pathways that are associated with several tumour features including independence from growth and growth-inhibitory signals, avoidance of apoptosis and immune system control, unlimited potential for replication, self-sufficiency in vascular supply and neoangiogenesis, acquired tissue invasiveness and metastatic diffusion. Concerning brain tumours, there have been major improvements in neurosurgical techniques and radiotherapy planning, and developments of novel target drugs, thus increasing the need for reproducible, noninvasive, quantitative imaging biomarkers. However, in this context, conventional radiological criteria may be inappropriate to determine the best therapeutic option and subsequently to assess response to therapy. Integration of molecular imaging for the evaluation of brain tumours has for this reason become necessary, and an important role in this setting is played by imaging biomarkers in PET and MRI. In the current review, we describe most relevant techniques and biomarkers used for imaging primary brain tumours in clinical practice, and discuss potential future developments from the experimental context. (orig.)

  3. Modelling Brain Tissue using Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Dyrby, Tim Bjørn

    2008-01-01

    Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking...... be used. Within a two year period, no statistical inter- or intra-brain difference in the diffusion coefficient was found in perfusion fixated minipig brains. However, a decreasing tendency in the diffusion coefficient was found at the last time points about 24 months post mortem and might be explained...... experiment. This includes the selection of independent anatomical data to be used to derive a gold standard, the selection of a gyrated animal model in place of the human brain, objective selection of the seed region to initiate, and a waypoint region to constrain the tractography results....

  4. MR imaging of acute hemorrhagic brain infarction

    International Nuclear Information System (INIS)

    Six patients with acute hemorrhagic brain infarct were imaged using spin-echo (SE) pulse sequences on a 1.5 Tesla MR scanner. Including two patients with repeated MR imaging, a total of eight examinations, all performed within 15 days after stroke, were analyzed retrospectively. Four patients revealed massive hemorrhages in the basal ganglia or cerebellum and three cases demonstrated multiple linear hemorrhages in the cerebral cortex. On T1-weighted images, hemorrhages were either mildly or definitely hyperintense relative to gray matter, while varied from mildly hypointense to hyperintense on T2-weighted images. T1-weighted images were superior to T2-weighted images in detection of hemorrhgage. CT failed to detect hemorrhage in two of five cases: indicative of MR superiority to CT in the diagnosis of acute hemorrhagic infarcts. (author)

  5. MR imaging of acute hemorrhagic brain infarction

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, Akira; Ohnari, Norihiro; Ohno, Masato (Kyushu Rosai Hospital, Fukuoka (Japan))

    1989-11-01

    Six patients with acute hemorrhagic brain infarct were imaged using spin-echo (SE) pulse sequences on a 1.5 Tesla MR scanner. Including two patients with repeated MR imaging, a total of eight examinations, all performed within 15 days after stroke, were analyzed retrospectively. Four patients revealed massive hemorrhages in the basal ganglia or cerebellum and three cases demonstrated multiple linear hemorrhages in the cerebral cortex. On T1-weighted images, hemorrhages were either mildly or definitely hyperintense relative to gray matter, while varied from mildly hypointense to hyperintense on T2-weighted images. T1-weighted images were superior to T2-weighted images in detection of hemorrhgage. CT failed to detect hemorrhage in two of five cases: indicative of MR superiority to CT in the diagnosis of acute hemorrhagic infarcts. (author).

  6. MR imaging of the neonatal brain: Pathologic features

    International Nuclear Information System (INIS)

    Seventy-three neonates, aged 29-43 weeks since conception, were studied. US and/or CT correlations were obtained in most infants with pathology. In the first 4-5 days after hemorrhage, US and CT were superior to MR imaging, but after that time MR imaging was the single best modality for imaging blood. In early premature infants with very watery white matter, US detected infarction and brain edema that were poorly seen on both MR imaging and CT. However, in late premature and full-term infants, MR imaging was better than CT in distinguishing between normal white matter and infarction. Only MR imaging disclosed delayed myelination in 13 term infants with hydrocephalus and severe asphyxia. MR imaging with play an important role in imaging neonates once MR imaging-compatible monitors and neonatal head coils become widely available

  7. Three-dimensional reconstruction of functional brain images

    International Nuclear Information System (INIS)

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  8. Three-dimensional reconstruction of functional brain images

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao [Kyoto Univ. (Japan)

    1999-08-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  9. Brain response to images of food varying in energy density is associated with body composition in 7- to 10-year-old children: Results of an exploratory study.

    Science.gov (United States)

    Fearnbach, S Nicole; English, Laural K; Lasschuijt, Marlou; Wilson, Stephen J; Savage, Jennifer S; Fisher, Jennifer O; Rolls, Barbara J; Keller, Kathleen L

    2016-08-01

    Energy balance is regulated by a multifaceted system of physiological signals that influence energy intake and expenditure. Therefore, variability in the brain's response to food may be partially explained by differences in levels of metabolically active tissues throughout the body, including fat-free mass (FFM) and fat mass (FM). The purpose of this study was to test the hypothesis that children's body composition would be related to their brain response to food images varying in energy density (ED), a measure of energy content per weight of food. Functional magnetic resonance imaging (fMRI) was used to measure brain response to High (>1.5kcal/g) and Low (reward processing. Pearson's correlations were then calculated between activation in these regions for various contrasts (High ED-Low ED, High ED-Control, Low ED-Control) and child body composition (FFM index, FM index, % body fat). Relative to Low ED foods, High ED foods elicited greater BOLD activation in the left thalamus. In the right substantia nigra, BOLD activation for the contrast of High ED-Low ED foods was positively associated with child FFM. There were no significant results for the High ED-Control or Low ED-Control contrasts. Our findings support literature on FFM as an appetitive driver, such that greater amounts of lean mass were associated with greater activation for High ED foods in an area of the brain associated with dopamine signaling and reward (substantia nigra). These results confirm our hypothesis that brain response to foods varying in energy content is related to measures of child body composition. PMID:26973134

  10. Brain Imaging, Forward Inference, and Theories of Reasoning

    Directory of Open Access Journals (Sweden)

    Evan eHeit

    2015-01-01

    Full Text Available This review focuses on the issue of how neuroimaging studies address theoretical accounts of reasoning, through the lens of the method of forward inference (Henson, 2005, 2006. After theories of deductive and inductive reasoning are briefly presented, the method of forward inference for distinguishing between psychological theories based on brain imaging evidence is critically reviewed. Brain imaging studies of reasoning, comparing deductive and inductive arguments, comparing meaningful versus non-meaningful material, investigating hemispheric localization, and comparing conditional and relational arguments, are assessed in light of the method of forward inference. Finally, conclusions are drawn with regard to future research opportunities.

  11. Brain imaging, forward inference, and theories of reasoning.

    Science.gov (United States)

    Heit, Evan

    2014-01-01

    This review focuses on the issue of how neuroimaging studies address theoretical accounts of reasoning, through the lens of the method of forward inference (Henson, 2005, 2006). After theories of deductive and inductive reasoning are briefly presented, the method of forward inference for distinguishing between psychological theories based on brain imaging evidence is critically reviewed. Brain imaging studies of reasoning, comparing deductive and inductive arguments, comparing meaningful versus non-meaningful material, investigating hemispheric localization, and comparing conditional and relational arguments, are assessed in light of the method of forward inference. Finally, conclusions are drawn with regard to future research opportunities. PMID:25620926

  12. Thresholding magnetic resonance images of human brain

    Institute of Scientific and Technical Information of China (English)

    Qing-mao HU; Wieslaw L NOWINSKI

    2005-01-01

    In this paper, methods are proposed and validated to determine low and high thresholds to segment out gray matter and white matter for MR images of different pulse sequences of human brain. First, a two-dimensional reference image is determined to represent the intensity characteristics of the original three-dimensional data. Then a region of interest of the reference image is determined where brain tissues are present. The non-supervised fuzzy c-means clustering is employed to determine: the threshold for obtaining head mask, the low threshold for T2-weighted and PD-weighted images, and the high threshold for T1-weighted, SPGR and FLAIR images. Supervised range-constrained thresholding is employed to determine the low threshold for T1-weighted, SPGR and FLAIR images. Thresholding based on pairs of boundary pixels is proposed to determine the high threshold for T2- and PD-weighted images. Quantification against public data sets with various noise and inhomogeneity levels shows that the proposed methods can yield segmentation robust to noise and intensity inhomogeneity. Qualitatively the proposed methods work well with real clinical data.

  13. MR imaging of the fetal brain

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, Orit A. [University of California, San Francisco, Department of Radiology, Neuroradiology Section, San Francisco, CA (United States)

    2010-01-15

    Fetal MRI is clinically performed to evaluate the brain in cases where an abnormality is detected by prenatal sonography. These most commonly include ventriculomegaly, abnormalities of the corpus callosum, and abnormalities of the posterior fossa. Fetal MRI is also increasingly performed to evaluate fetuses who have normal brain findings on prenatal sonogram but who are at increased risk for neurodevelopmental abnormalities, such as complicated monochorionic twin pregnancies. This paper will briefly discuss the common clinical conditions imaged by fetal MRI as well as recent advances in fetal MRI research. (orig.)

  14. Anatomical Brain Magnetic Resonance Imaging of Typically Developing Children and Adolescents

    Science.gov (United States)

    Giedd, Jay N.; Lalonde, Francois M.; Celano, Mark J.; White, Samantha L.; Wallace, Gregory L.; Lee, Nancy R.; Lenroot, Rhoshel K.

    2009-01-01

    Methodological issues relevant to magnetic resonance imaging studies of brain anatomy are discussed along with the findings on the neuroanatomic changes during childhood and adolescence. The development of the brain is also discussed.

  15. Brain magnetic resonance imaging of infants exposed prenatally to buprenorphine

    International Nuclear Information System (INIS)

    Purpose: To evaluate the brains of newborns exposed to buprenorphine prenatally. Material and Methods: Seven neonates followed up antenatally in connection with their mothers' buprenorphine replacement therapy underwent 1.5T magnetic resonance imaging (MRI) of the brain before the age of 2 months. The infants were born to heavy drug abusers. Four mothers were hepatitis C positive, and all were HIV negative. All mothers smoked tobacco and used benzodiazepines. All pregnancies were full term, and no perinatal asphyxia occurred. All but one neonate had abstinence syndrome and needed morphine replacement therapy. Results: Neither structural abnormalities nor abnormalities in signal intensity were recorded. Conclusion: Buprenorphine replacement therapy does not seem to cause any major structural abnormalities of the brain, and it may prevent known hypoxic-ischemic brain changes resulting from uncontrolled drug abuse. Longitudinal studies are needed to assess possible abnormalities in the brain maturation process

  16. Abnormalities of inter- and intrahemispheric functional connectivity in Autism Spectrum Disorders: A study using the Autism Brain Imaging Data Exchange database

    Directory of Open Access Journals (Sweden)

    Jung Min eLee

    2016-05-01

    Full Text Available Recently, the Autism Brain Imaging Data Exchange (ABIDE project revealed decreased functional connectivity in individuals with Autism Spectrum Disorders (ASD relative to the typically developing controls (TDCs. However, it is still questionable whether the source of functional underconnectivity in subjects with ASD is equally contributed by the ipsilateral and contralateral parts of the brain. In this study, we decomposed the inter- and intrahemispheric regions and compared the functional connectivity density (FCD between 458 subjects with ASD and 517 TDCs from the ABIDE database. We quantified the inter- and intrahemispheric FCDs in the brain by counting the number of functional connectivity with all voxels in the opposite and same hemispheric brain regions, respectively. Relative to TDCs, both inter- and intrahemispheric FCDs in the posterior cingulate cortex, lingual/parahippocampal gyrus, and postcentral gyrus were significantly decreased in subjects with ASD. Moreover, in the ASD group, the restricted and repetitive behavior subscore of the Autism Diagnostic Observation Schedule (ADOS-RRB score showed significant negative correlations with the average interhemispheric FCD and contralateral FCD in the lingual/parahippocampal gyrus cluster. Also, the ADOS-RRB score showed significant negative correlations with the average contralateral FCD in the default mode network regions such as the posterior cingulate cortex and precuneus. Taken together, our findings imply that a deficit of non-social functioning processing in ASD such as restricted and repetitive behaviors and sensory hypersensitivity could be determined via both inter- and intrahemispheric functional disconnections.

  17. Normal feline brain: clinical anatomy using magnetic resonance imaging.

    Science.gov (United States)

    Mogicato, G; Conchou, F; Layssol-Lamour, C; Raharison, F; Sautet, J

    2012-04-01

    The purpose of this study was to provide a clinical anatomy atlas of the feline brain using magnetic resonance imaging (MRI). Brains of twelve normal cats were imaged using a 1.5 T magnetic resonance unit and an inversion/recovery sequence (T1). Fourteen relevant MRI sections were chosen in transverse, dorsal, median and sagittal planes. Anatomic structures were identified and labelled using anatomical texts and Nomina Anatomica Veterinaria, sectioned specimen heads, and previously published articles. The MRI sections were stained according to the major embryological and anatomical subdivisions of the brain. The relevant anatomical structures seen on MRI will assist clinicians to better understand MR images and to relate this neuro-anatomy to clinical signs.

  18. Live cell imaging techniques to study T cell trafficking across the blood-brain barrier in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Coisne Caroline

    2013-01-01

    Full Text Available Abstract Background The central nervous system (CNS is an immunologically privileged site to which access for circulating immune cells is tightly controlled by the endothelial blood–brain barrier (BBB located in CNS microvessels. Under physiological conditions immune cell migration across the BBB is low. However, in neuroinflammatory diseases such as multiple sclerosis, many immune cells can cross the BBB and cause neurological symptoms. Extravasation of circulating immune cells is a multi-step process that is regulated by the sequential interaction of different adhesion and signaling molecules on the immune cells and on the endothelium. The specialized barrier characteristics of the BBB, therefore, imply the existence of unique mechanisms for immune cell migration across the BBB. Methods and design An in vitro mouse BBB model maintaining physiological barrier characteristics in a flow chamber and combined with high magnification live cell imaging, has been established. This model enables the molecular mechanisms involved in the multi-step extravasation of T cells across the in vitro BBB, to be defined with high-throughput analyses. Subsequently these mechanisms have been verified in vivo using a limited number of experimental animals and a spinal cord window surgical technique. The window enables live observation of the dynamic interaction between T cells and spinal cord microvessels under physiological and pathological conditions using real time epifluorescence intravital imaging. These in vitro and in vivo live cell imaging methods have shown that the BBB endothelium possesses unique and specialized mechanisms involved in the multi-step T cell migration across this endothelial barrier under physiological flow. The initial T cell interaction with the endothelium is either mediated by T cell capture or by T cell rolling. Arrest follows, and then T cells polarize and especially CD4+ T cells crawl over long distances against the direction of

  19. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    Science.gov (United States)

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  20. 99Tcm-Neurolite brain SPECT imaging as an outcome predictor after brain trauma: initial experience

    International Nuclear Information System (INIS)

    Full text: The aim of this study was to use semi-quantitative 99Tcm-ethylene cysteine dimer (Neurolite) cerebral blood flow (CBF) SPET brain imaging to assess its role in predicting outcome after brain trauma. Twelve adult patients (9 males, 3 females) who sustained moderate to severe brain trauma were studied by CBF/SPET within 4 weeks of the injury (scan A) and again after 1 year (scan B). Clinical assessment was also performed at these times and included extensive neuropsychometric testing. Patients received 800-850 MBq 99Tcm-Neurolite intravenously, and were imaged using a triple-headed gamma camera with LEUHR fan beam collimators. Processing, filtering, reconstruction and data set selection were identical for scans A and B. Semi-quantitative analysis was performed using 25 regions of interest in the cerebral cortex and deep structures in 2 coronal, 2 sagittal and 3 oblique planes. Normalized mean counts per pixel for the whole brain, and regional brain ratios were calculated. Scans A and B were compared and correlated to the clinical outcome data. Two patients with minimal CBF abnormalities made full recoveries. The remaining 10 had moderate to severe focal CBF defects, which showed no significant improvement at 12 months. Of these patients, 2 had moderate disability, 3 had severe to moderate disability and 2 had severe disability at 12 months. Patients with persisting focal abnormal CBF showed persisting neurological deficits. Neurolite brain CBF imaging is a useful method of predicting outcome after moderate to severe head injury

  1. Brain SPECT imaging in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Temporal lobe epilepsy is diagnosed by clinical symptoms and signs and by localization of an epileptogenic focus. A brain SPECT study of two patients with temporal lobe epilepsy, using 99mTc-HMPAO, was used to demonstrate a perfusion abnormality in the temporal lobe, while brain CT and MRI were non-contributory. The electroencephalogram, though abnormal, did not localize the diseased area. The potential role of the SPECT study in diagnosis and localization of temporal lobe epilepsy is discussed. (orig.)

  2. Optimized Discretization Schemes For Brain Images

    Directory of Open Access Journals (Sweden)

    USHA RANI.N,

    2011-02-01

    Full Text Available In medical image processing active contour method is the important technique in segmenting human organs. Geometric deformable curves known as levelsets are widely used in segmenting medical images. In this modeling , evolution of the curve is described by the basic lagrange pde expressed as a function of space and time. This pde can be solved either using continuous functions or discrete numerical methods.This paper deals with the application of numerical methods like finite diffefence and TVd-RK methods for brain scans. The stability and accuracy of these methods are also discussed. This paper also deals with the more accurate higher order non-linear interpolation techniques like ENO and WENO in reconstructing the brain scans like CT,MRI,PET and SPECT is considered.

  3. Modelling Brain Tissue using Magnetic Resonance Imaging

    OpenAIRE

    Dyrby, Tim Bjørn; Hansen, Lars Kai

    2008-01-01

    Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking models then use the directions of greatest diffusion as estimates of white matter fibre orientation. Several fibre tracking algorithms have emerged in the last few years that provide reproducible visu...

  4. Neuroelectric brain imaging during a real visit of a fine arts gallery: a neuroaesthetic study of XVII century Dutch painters.

    Science.gov (United States)

    Babiloni, F; Cherubino, P; Graziani, I; Trettel, A; Infarinato, F; Picconi, D; Borghini, G; Maglione, A G; Mattia, D; Vecchiato, G

    2013-01-01

    Neuroaesthetic is a scientific discipline founded more than a decade ago and it refers to the study of the neural bases of beauty perception in art. The aim of this paper is to investigate the neuroelectrical correlates of brain activity of the observation of real paintings showed in a national fine arts gallery (Scuderie del Quirinale) in Rome, Italy. In fact, the present study was designed to examine how motivational factors as indexed by EEG asymmetry over the prefrontal cortex (relative activity of the left and right hemispheres) could be related to the experience of viewing a series of figurative paintings. The fine arts gallery was visited by a group of 25 subjects during an exhibition of the XVII century Dutch painters. Results suggested a strict correlation of the estimated EEG asymmetry with the verbal pleasantness scores reported by the subjects (p<0,05) and an inverse correlation of the perceived pleasantness with the observed painting's surface dimensions (p<0,002).

  5. Non-FDG PET imaging of brain tumors

    Institute of Scientific and Technical Information of China (English)

    HUANG Zemin; GUAN Yihui; ZUO Chuantao; ZHANG Zhengwei; XUE Fangping; LIN Xiangtong

    2007-01-01

    Due to relatively high uptake of glucose in the brain cortex, the use of FDG PET imaging is greatly limited in brain tumor imaging, especially for low-grade gliomas and some metastatic tumours. More and more tracers with higher specificity were developed lately for brain tumor imaging. There are 3 main types of non-FDG PET tracers:amino acid tracers, choline tracers and nucleic acid tracers. These tracers are now widely applied in many aspects of brain tumor imaging. This article summarized the general use of non-FDG PET in different aspects of brain tumor imaging.

  6. Biochemical imaging of the human brain in development and disease

    International Nuclear Information System (INIS)

    The authors used positron emission tomography (PET) to image cerebral glucose metabolism in more than 140 children aged 5 days to 15 years. Twenty-nine children were studied during normal development and the remainder because of infantile spasm, seizure, Lennox-Gastaut syndrome, or cerebral palsy. This exhibit demonstrates the temporal course of normal function (metabolic) development of the brain, and compares the relative value of PET, MR imaging, and x-ray CT in abnormal cases

  7. Fetal trauma: brain imaging in four neonates

    International Nuclear Information System (INIS)

    The purpose of this paper is to describe brain pathology in neonates after major traffic trauma in utero during the third trimester. Our patient cohort consisted of four neonates born by emergency cesarean section after car accident in the third trimester of pregnancy. The median gestational age (n=4) was 36 weeks (range: 30-38). Immediate post-natal and follow-up brain imaging consisted of cranial ultrasound (n=4), computed tomography (CT) (n=1) and post-mortem magnetic resonance imaging (MRI) (n=1). Pathology findings were correlated with the imaging findings (n=3). Cranial ultrasound demonstrated a huge subarachnoidal hemorrhage (n=1), subdural hematoma (n=1), brain edema with inversion of the diastolic flow (n=1) and severe ischemic changes (n=1). In one case, CT demonstrated the presence and extension of the subarachnoidal hemorrhage, a parietal fracture and a limited intraventricular hemorrhage. Cerebellar hemorrhage and a small cerebral frontal contusion were seen on post-mortem MRI in a child with a major subarachnoidal hemorrhage on ultrasound. None of these four children survived (three children died within 2 days and one child died after 1 month). Blunt abdominal trauma during pregnancy can cause fetal cranial injury. In our cases, skull fracture, intracranial hemorrhage and hypoxic-ischemic encephalopathy were encountered. (orig.)

  8. Fetal trauma: brain imaging in four neonates

    Energy Technology Data Exchange (ETDEWEB)

    Breysem, Luc; Mussen, E.; Demaerel, P.; Smet, M. [Department of Radiology, University Hospitals, Herestraat 49, 3000, Leuven (Belgium); Cossey, V. [Department of Pediatrics, University Hospitals, Leuven (Belgium); Voorde, W. van de [Department of Forensic Medicine, University Hospitals, Leuven (Belgium)

    2004-09-01

    The purpose of this paper is to describe brain pathology in neonates after major traffic trauma in utero during the third trimester. Our patient cohort consisted of four neonates born by emergency cesarean section after car accident in the third trimester of pregnancy. The median gestational age (n=4) was 36 weeks (range: 30-38). Immediate post-natal and follow-up brain imaging consisted of cranial ultrasound (n=4), computed tomography (CT) (n=1) and post-mortem magnetic resonance imaging (MRI) (n=1). Pathology findings were correlated with the imaging findings (n=3). Cranial ultrasound demonstrated a huge subarachnoidal hemorrhage (n=1), subdural hematoma (n=1), brain edema with inversion of the diastolic flow (n=1) and severe ischemic changes (n=1). In one case, CT demonstrated the presence and extension of the subarachnoidal hemorrhage, a parietal fracture and a limited intraventricular hemorrhage. Cerebellar hemorrhage and a small cerebral frontal contusion were seen on post-mortem MRI in a child with a major subarachnoidal hemorrhage on ultrasound. None of these four children survived (three children died within 2 days and one child died after 1 month). Blunt abdominal trauma during pregnancy can cause fetal cranial injury. In our cases, skull fracture, intracranial hemorrhage and hypoxic-ischemic encephalopathy were encountered. (orig.)

  9. A clinical study to identify the possible etiology of complex partial seizures using magnetic resonance imaging brain findings and its implications on treatment

    Directory of Open Access Journals (Sweden)

    V Nancy Jeniffer

    2015-01-01

    Full Text Available Context: Epilepsy is one of the common neurological disorders worldwide. Fundamentally, there are two types of epilepsy—primary generalized epilepsy and localization-related epilepsy. Partial seizures account for about 40% of childhood seizures in some series and can be classified as simple or complex.[1] Partial seizures, more so the complex partial seizures (CPSs, are presumed to have a structural etiology. Aims: (1 To study the magnetic resonance imaging (MRI brain findings in CPSs in children aged 1–18 years. (2 To identify treatable causes of CPSs based on MRI findings and institute appropriate treatment. Statistical Analysis: Statistical analysis was performed using percentages and proportions. Methods: Hospital based prospective study in which MRI brain was done on all newly diagnosed children with complex partial seizures, aged 1 to 18 yrs, during the study period. Final diagnosis was made correlating clinical features, radiological features and other supportive evidences, and appropriate treatment instituted. Follow up of cases was done until the completion of treatment (maximum 6 months. Results: Among the 64 children who were clinically diagnosed to have CPSs and subjected to MRI study of the brain, 40(62.5% children were detected to have structural lesions, of which neurocysticercosis (NCC was noted in 17 (42.5%, tuberculoma in 12 (30%, hippocampal sclerosis (HS in 6 (15%, gliosis in 4 (10%, and tumor in 1 (2.5% patient. Sixty-two (96.8% children were treated medically, and 2 (3.2% children underwent surgery. Conclusions: Etiology of CPS based on MRI findings showed a substantial number of medically- and surgically-treatable pathologies. This study done on South Indian children showed neuro infections to be the most common cause of CPS, followed by HS, with NCC being the most common lesion noted. MRI not only identifies specific epileptogenic substrates, but also determines the specific treatment and predicts prognosis and should

  10. An attempt toward objective assessment of brain tumor vascularization using susceptibility weighted imaging and dedicated computer program – a preliminary study

    International Nuclear Information System (INIS)

    Susceptibility weighted imaging (SWI) is a novel MRI sequence which demonstrates the susceptibility differences between adjacent tissues and it is promising to be a sequence useful in the assessment of brain tumors vascularity. The aim of our study was to demonstrate usefulness of SWI in evaluation of intratumoral vessels in comparison to CET1 sequence in a standardized, objective manner. 10 patients with supratentorial brain tumors were included in the study. All of them underwent conventional MRI examination with a 1,5 T scanner. SWI sequence was additionally performed using the following parameters: TR 49 ms,TE 40 ms. We used authors’ personal computer software – Vessels View, to assess the vessels number. Comparison of SWI and CET1 sequences was performed using our program. Analysis of all 26 ROIs demonstrated predominance of SWI in the amount of white pixels (vessel cross-sectional) and a similar number of elongated structures (blood vessels). To conclude, the results of this study are encouraging; they confirm the added value of SWI as an appropriate and useful sequence in the process of evaluation of intratumoral vascularity. Using our program significantly improved visualization of blood vessels in cerebral tumors. The Vessel View application assists radiologists in demonstrating the vessels and facilitates distinguishing them from adjacent tissues in the image

  11. Brain imaging of mild cognitive impairment and Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Changhao Yin; Siou Li; Weina Zhao; Jiachun Feng

    2013-01-01

    The rapidly increasing prevalence of cognitive impairment and Alzheimer's disease has the potential to create a major worldwide healthcare crisis. Structural MRI studies in patients with Alzheimer's disease and mild cognitive impairment are currently attracting considerable interest. It is extremely important to study early structural and metabolic changes, such as those in the hippocampus, entorhinal cortex, and gray matter structures in the medial temporal lobe, to allow the early detection of mild cognitive impairment and Alzheimer's disease. The microstructural integrity of white matter can be studied with diffusion tensor imaging. Increased mean diffusivity and decreased fractional anisotropy are found in subjects with white matter damage. Functional imaging studies with positron emission tomography tracer compounds enable detection of amyloid plaques in the living brain in patients with Alzheimer's disease. In this review, we will focus on key findings from brain imaging studies in mild cognitive impairment and Alzheimer's disease, including structural brain changes studied with MRI and white matter changes seen with diffusion tensor imaging, and other specific imaging methodologies will also be discussed.

  12. Abnormal intrinsic brain activity in amnestic mild cognitive impairment revealed by amplitude of low-frequency fluctuation: a resting-state functional magnetic resonance imaging study

    Institute of Scientific and Technical Information of China (English)

    XI Qian; ZHAO Xiao-hu; WANG Pei-jun; GUO Qi-hao; HE Yong

    2013-01-01

    Background Previous studies have shown that brain functional activity in the resting state is impaired in Alzheimer's disease (AD) patients.However,alterations in intrinsic brain activity patterns in mild cognitive impairment (MCI) patients are poorly understood.This study aimed to explore the differences in regional intrinsic activities throughout the whole brain between aMCI patients and controls.Methods In the present study,resting-state functional magnetic resonance imaging (fMRI) was performed on 18 amnestic MCI (aMCI) patients,18 mild AD patients and 20 healthy elderly subjects.And amplitude of low-frequency fluctuation (ALFF) method was used.Results Compared with healthy elderly subjects,aMCI patients showed decreased ALFF in the right hippocampus and parahippocampal cortex,left lateral temporal cortex,and right ventral medial prefrontal cortex (vMPFC) and increased ALFF in the left temporal-parietal junction (TPJ) and inferior parietal Iobule (IPL).Mild AD patients showed decreased ALFF in the left TPJ,posterior IPL (plPL),and dorsolateral prefrontal cortex compared with aMCI patients.Mild AD patients also had decreased ALFF in the right posterior cingulate cortex,right vMPFC and bilateral dorsal MPFC (dMPFC) compared with healthy elderly subjects.Conclusions Decreased intrinsic activities in brain regions closely related to episodic memory were found in aMCI and AD patients.Increased TPJ and IPL activity may indicate compensatory mechanisms for loss of memory function in aMCI patients.These findings suggest that the fMRI based on ALFF analysis may provide a useful tool in the study of aMCI patients.

  13. Quantitation of brain tissue changes associated with white matter hyperintensities by diffusion-weighted and magnetization transfer imaging: the LADIS (Leukoaraiosis and Disability in the Elderly) study

    DEFF Research Database (Denmark)

    Ropele, Stefan; Seewann, Alexandra; Gouw, Alida A;

    2009-01-01

    PURPOSE: To explore the value of diffusion-weighted imaging (DWI) and magnetization transfer imaging (MTI) for the improved detection and quantification of cerebral tissue changes associated with ageing and white matter hyperintensities (WMH). MATERIALS AND METHODS: DWI (n = 340) and MTI (n = 177......) were performed in nine centers of the multinational Leukoaraiosis And DISability (LADIS) study investigating the impact of WMH on 65- to 85-year-old individuals without prior disability. We assessed the apparent diffusion coefficient (ADC) and magnetization transfer ratio (MTR) of normal appearing...... brain tissue (NABT) and within WMH and related them to subjects' age and WHM severity according to the Fazekas score. RESULTS: ADC and MTR values showed a significant inter-site variation, which was stronger for the MTR. After z-transformation multiple regression analysis revealed WMH severity and age...

  14. Disrupted Brain Functional Network in Internet Addiction Disorder: A Resting-State Functional Magnetic Resonance Imaging Study

    OpenAIRE

    Wee, Chong-Yaw; Zhao, Zhimin; Yap, Pew-Thian; Wu, Guorong; Shi, Feng; Price, True; Du, Yasong; Xu, Jianrong; Zhou, Yan; Shen, Dinggang

    2014-01-01

    Internet addiction disorder (IAD) is increasingly recognized as a mental health disorder, particularly among adolescents. The pathogenesis associated with IAD, however, remains unclear. In this study, we aim to explore the encephalic functional characteristics of IAD adolescents at rest using functional magnetic resonance imaging data. We adopted a graph-theoretic approach to investigate possible disruptions of functional connectivity in terms of network properties including small-worldness, ...

  15. Neuro-behavioral profile and brain imaging study of the 22q13.3 deletion syndrome in childhood

    Energy Technology Data Exchange (ETDEWEB)

    Philippe, A.; Malan, V.; De Blois, M.C.; Colleaux, L.; Munnich, A. [Hop Necker Enfants Malad, Assistance Publ Hop Paris, Natl Inst Hlth and Med Res, Paris (France); Philippe, A.; De Blois, M.C.; Colleaux, L.; Munnich, A. [HopNecker Enfants Malad, Assistance Publ Hop Paris, Dept Genet, Paris (France); Boddaert, N. [Natl Inst Hlth and Med Res, Mixed Unit Res 0205, Orsay (France); Vaivre-Douret, L.; Robel, L.; Golse, B. [Hop Necker Enfants Malad, Assistance Publ Hop Paris, Dept Psychiat, Paris (France); Vaivre-Douret, L. [Univ Paris 10, Mixed Unit Res S0669, Univ Paris 05, Univ Paris 11, Paris 10 (France); Vaivre-Douret, L. [Assistance Publ Hop Paris, Dept Obstet et Gynaecol, Paris (France); Danon-Boileau, L. [Natl Ctr Sci Res, Mixed Unit Res 7114, Paris (France); Heron, D. [Hop La Pitie Salpetriere, Assistance Publ HopParis, Dept Genet, Paris (France)

    2008-07-01

    The 22q13.3 deletion syndrome (Online Mendelian Inheritance in Man No. 606232) is a neuro-developmental disorder that includes hypotonia, severely impaired development of speech and language, autistic-like behavior, and minor dysmorphic features. Although the number of reported cases is increasing, the 22q13.3 deletion remains under-diagnosed because of failure in recognizing the clinical phenotype and detecting the 22qter deletion by routine chromosome analyses. Our goal is to contribute to the description of the neuro-behavioral phenotype and brain abnormalities of this micro-deletional syndrome. We assessed neuro-motor, sensory, language, communication, and social development and performed cerebral MRI and study of regional cerebral blood flow measured by positron emission tomography in 8 children carrying the 22q13.3 deletion. Despite variability in expression and severity, the children shared a common developmental profile characterized by hypotonia, sleep disorders, and poor response to their environment in early infancy; expressive language deficit contrasting with emergence of social reciprocity from ages similar to 3 to 5 years; sensory processing dysfunction; and neuro-motor disorders. Brain MRI findings were normal or showed a thin or morphologically atypical corpus callosum. Positron emission tomography study detected a localized dysfunction of the left temporal polar lobe and amygdala hypoperfusion. The developmental course of the 22q13.3 deletion syndrome belongs to pervasive developmental disorders but is distinct from autism. An improved description of the natural history of this syndrome should help in recognizing this largely under-diagnosed condition. (authors)

  16. Neuro-behavioral profile and brain imaging study of the 22q13.3 deletion syndrome in childhood

    International Nuclear Information System (INIS)

    The 22q13.3 deletion syndrome (Online Mendelian Inheritance in Man No. 606232) is a neuro-developmental disorder that includes hypotonia, severely impaired development of speech and language, autistic-like behavior, and minor dysmorphic features. Although the number of reported cases is increasing, the 22q13.3 deletion remains under-diagnosed because of failure in recognizing the clinical phenotype and detecting the 22qter deletion by routine chromosome analyses. Our goal is to contribute to the description of the neuro-behavioral phenotype and brain abnormalities of this micro-deletional syndrome. We assessed neuro-motor, sensory, language, communication, and social development and performed cerebral MRI and study of regional cerebral blood flow measured by positron emission tomography in 8 children carrying the 22q13.3 deletion. Despite variability in expression and severity, the children shared a common developmental profile characterized by hypotonia, sleep disorders, and poor response to their environment in early infancy; expressive language deficit contrasting with emergence of social reciprocity from ages similar to 3 to 5 years; sensory processing dysfunction; and neuro-motor disorders. Brain MRI findings were normal or showed a thin or morphologically atypical corpus callosum. Positron emission tomography study detected a localized dysfunction of the left temporal polar lobe and amygdala hypoperfusion. The developmental course of the 22q13.3 deletion syndrome belongs to pervasive developmental disorders but is distinct from autism. An improved description of the natural history of this syndrome should help in recognizing this largely under-diagnosed condition. (authors)

  17. Opioid receptor imaging and displacement studies with [6-O-[{sup 11}C]methyl]buprenorphine in baboon brain

    Energy Technology Data Exchange (ETDEWEB)

    Galynker, Igor; Schlyer, David J.; Dewey, Stephen L.; Fowler, Joanna S.; Logan, Jean; Gatley, S. John; MacGregor, Robert R.; Ferrieri, Richard A.; Holland, M. J.; Brodie, Jonathan; Simon, Eric; Wolf, Alfred P

    1996-04-01

    Buprenorphine (BPN) is a mixed opiate agonist-antagonist used as an analgesic and in the treatment of opiate addiction. We have used [6-O-[{sup 11}C]methyl]buprenorphine ([{sup 11}C]BPN) to measure the regional distribution in baboon brain, the test-retest stability of repeated studies in the same animal, the displacement of the labeled drug by naloxone in vivo, and the tissue distribution in mice. The regional distribution of radioactivity in baboon brain determined with PET was striatum > thalamus > cingulate gyrus > frontal cortex > parietal cortex > occipital cortex > cerebellum. This distribution corresponded to opiate receptor density and to previously published data (37). The tracer uptake in adult female baboons showed no significant variation in serial scans in the same baboon with no intervention in the same scanning session. HPLC analysis of baboon plasma showed the presence of labeled metabolites with 92% {+-} 2.2% and 43% {+-} 14.4% of the intact tracer remaining at 5 and 30 min, respectively. Naloxone, an opiate receptor antagonist, administered 30-40 min after tracer injection at a dose of 1.0 mg/kg i.v., reduced [{sup 11}C]BPN binding in thalamus, striatum, cingulate gyrus, and frontal cortex to values 0.25 to 0.60 of that with no intervention. There were minimal (< 15%) effects on cerebellum. Naloxone treatment significantly reduced the slope of the Patlak plot in receptor-containing regions. These results demonstrate that [{sup 11}C]BPN can be displaced by naloxone in vivo, and they affirm the feasibility of using this tracer and displacement methodology for short-term kinetics studies with PET. Mouse tissue distribution data were used to estimate the radiation dosimetry to humans. The critical organ was the small intestine, with a radiation dose estimate to humans of 117 nrad/mCi.

  18. Opioid receptor imaging and displacement studies with [6-O-[11C]methyl]buprenorphine in baboon brain

    International Nuclear Information System (INIS)

    Buprenorphine (BPN) is a mixed opiate agonist-antagonist used as an analgesic and in the treatment of opiate addiction. We have used [6-O-[11C]methyl]buprenorphine ([11C]BPN) to measure the regional distribution in baboon brain, the test-retest stability of repeated studies in the same animal, the displacement of the labeled drug by naloxone in vivo, and the tissue distribution in mice. The regional distribution of radioactivity in baboon brain determined with PET was striatum > thalamus > cingulate gyrus > frontal cortex > parietal cortex > occipital cortex > cerebellum. This distribution corresponded to opiate receptor density and to previously published data (37). The tracer uptake in adult female baboons showed no significant variation in serial scans in the same baboon with no intervention in the same scanning session. HPLC analysis of baboon plasma showed the presence of labeled metabolites with 92% ± 2.2% and 43% ± 14.4% of the intact tracer remaining at 5 and 30 min, respectively. Naloxone, an opiate receptor antagonist, administered 30-40 min after tracer injection at a dose of 1.0 mg/kg i.v., reduced [11C]BPN binding in thalamus, striatum, cingulate gyrus, and frontal cortex to values 0.25 to 0.60 of that with no intervention. There were minimal (11C]BPN can be displaced by naloxone in vivo, and they affirm the feasibility of using this tracer and displacement methodology for short-term kinetics studies with PET. Mouse tissue distribution data were used to estimate the radiation dosimetry to humans. The critical organ was the small intestine, with a radiation dose estimate to humans of 117 nrad/mCi

  19. Altered white matter in cocaine-dependent subjects with traumatic brain injury: a diffusion tensor imaging study*

    Science.gov (United States)

    Ma, Liangsuo; Steinberg, Joel L.; Keyser-Marcus, Lori; Ramesh, Divya; Narayana, Ponnada A.; Merchant, Randall E; Moeller, F. Gerard; Cifu, David X

    2015-01-01

    Background Diffusion tensor imaging (DTI) is a useful technique for non-invasively investigating the microstructural organization of white matter (WM), and the most consistent DTI finding regarding cocaine-related WM alterations is in the corpus callosum (CC). WM injury has also been observed in subjects with traumatic brain injury (TBI), including in the CC. Methods We used DTI to test if the WM microstructure is relatively more impaired in cocaine-dependent subjects who had suffered a mild TBI (mTBI). Fractional anisotropy (FA), which reflects the degree of alignment of cellular structures within fiber tracts and their structural integrity, was compared across cocaine-dependent subjects with mTBI (COCTBI group, n=9), matched cocaine-dependent subjects without TBI (COC group, n=12), and matched healthy controls (CTL group, n=12). Results The COCTBI group had significantly lower FA in the genu, body, and splenium of CC, than the CTL group whenever the education was controlled or not. The COC group had significantly lower FA in the left and right anterior corona radiata than the CTL group only when the education was controlled. There was no significant difference in FA between the COC and COCTBI groups. Conclusion Cocaine dependence (or mTBI) related WM impairments in the CC were not detectable in this small subject sample. The significant finding in the CC suggests that the concurrence of cocaine dependence and mTBI might result in more severe damage to the CC, which could even be detected in small sample size. PMID:25841982

  20. Multivariate imaging-genetics study of MRI gray matter volume and SNPs reveals biological pathways correlated with brain structural differences in Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Sabin Khadka

    2016-07-01

    Full Text Available Background: Attention Deficit Hyperactivity Disorder (ADHD is a prevalent neurodevelopmental disorder affecting children, adolescents, and adults. Its etiology is not well-understood, but it is increasingly believed to result from diverse pathophysiologies that affect the structure and function of specific brain circuits. Although one of the best-studied neurobiological abnormalities in ADHD is reduced fronto-striatal-cerebellar gray matter volume, its specific genetic correlates are largely unknown. Methods: In this study, T1-weighted MR images of brain structure were collected from 198 adolescents (63 ADHD-diagnosed. A multivariate parallel independent component analysis technique (Para-ICA identified imaging-genetic relationships between regional gray matter volume and single nucleotide polymorphism data. Results: Para-ICA analyses extracted 14 components from genetic data and 9 from MR data. An iterative cross-validation using randomly-chosen sub-samples indicated acceptable stability of these ICA solutions. A series of partial correlation analyses controlling for age, sex, and ethnicity revealed two genotype-phenotype component pairs significantly differed between ADHD and non-ADHD groups, after a Bonferroni correction for multiple comparisons. The brain phenotype component not only included structures frequently found to have abnormally low volume in previous ADHD studies, but was also significantly associated with ADHD differences in symptom severity and performance on cognitive tests frequently found to be impaired in patients diagnosed with the disorder. Pathway analysis of the genotype component identified several different biological pathways linked to these structural abnormalities in ADHD. Conclusions: Some of these pathways implicate well-known dopaminergic neurotransmission and neurodevelopment hypothesized to be abnormal in ADHD. Other more recently implicated pathways included glutamatergic and GABA-eric physiological systems

  1. The dynamic dielectric at a brain functional site and an EM wave approach to functional brain imaging.

    Science.gov (United States)

    Li, X P; Xia, Q; Qu, D; Wu, T C; Yang, D G; Hao, W D; Jiang, X; Li, X M

    2014-11-04

    Functional brain imaging has tremendous applications. The existing methods for functional brain imaging include functional Magnetic Resonant Imaging (fMRI), scalp electroencephalography (EEG), implanted EEG, magnetoencephalography (MEG) and Positron Emission Tomography (PET), which have been widely and successfully applied to various brain imaging studies. To develop a new method for functional brain imaging, here we show that the dielectric at a brain functional site has a dynamic nature, varying with local neuronal activation as the permittivity of the dielectric varies with the ion concentration of the extracellular fluid surrounding neurons in activation. Therefore, the neuronal activation can be sensed by a radiofrequency (RF) electromagnetic (EM) wave propagating through the site as the phase change of the EM wave varies with the permittivity. Such a dynamic nature of the dielectric at a brain functional site provides the basis for an RF EM wave approach to detecting and imaging neuronal activation at brain functional sites, leading to an RF EM wave approach to functional brain imaging.

  2. CT versus MR in neonatal brain imaging at term

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Richard L.; Robson, Caroline D.; Zurakowski, David; Antiles, Sharon; Strauss, Keith; Mulkern, Robert V. [Department of Radiology, Children' s Hospital Medical Center, Harvard Medical School, 300 Longwood Avenue, MA 02115, Boston (United States)

    2003-07-01

    Recent reports have highlighted the lifetime risk of malignancy from using ionizing radiation in pediatric imaging. Computed tomography (CT), which uses ionizing radiation, is employed extensively for neonatal brain imaging of term infants. Magnetic resonance (MR) provides an alternative that does not use ionizing radiation. The purpose of this study was to assess the cross-modality agreement and interobserver agreement of CT and MR brain imaging of the term or near-term neonate. Brain CT and MR images of 48 neonates were retrospectively reviewed by two pediatric neuroradiologists. CT and MR examinations had been obtained within 72 h of one another in all patients. CT was obtained with 5 mm collimation (KV=120, mAs=340). MR consisted of T1-weighted imaging (TR/TE=300/14; 4-mm slice thickness/1-mm gap), T2-weighted imaging (TR/TE/etl= 3000/126/16; 4-mm slice thickness/1-mm gap), and line scan diffusion imaging (LSDI) (TR/TE/b factor=1258/63/750; nominal 4-mm slice thickness/3-mm gap). The brain was categorized as normal or abnormal on both CT and MR. Ischemic injury was the most common brain abnormality demonstrated. McNemar's test indicated no significant difference between CT and MR test results for reader 1 (P=0.22) or reader 2 (P=0.45). The readers agreed on the presence or absence of abnormality on CT in 40 patients (83.3%) and on MR in 45 patients (93.8%). For CT, the kappa coefficient indicated excellent interobserver agreement ({kappa}=0.68), although the lower limit of the 95% confidence interval extends to {kappa}=0.55, which indicates only good-to-moderate agreement. For MR, the kappa coefficient indicated almost perfect interobserver agreement ({kappa}=0.88) with the 95% confidence interval extending to a lower limit of {kappa}=0.76, which represents excellent agreement. Because MR demonstrates findings similar to CT and has greater interobserver agreement, it appears that MR is a superior test to CT in determining brain abnormalities in the term

  3. Where in the brain is nonliteral language? A coordinate-based meta-analysis of functional magnetic resonance imaging studies.

    Science.gov (United States)

    Rapp, Alexander M; Mutschler, Dorothee E; Erb, Michael

    2012-10-15

    An increasing number of studies have investigated non-literal language, including metaphors, idioms, metonymy, or irony, with functional magnetic resonance imaging (fMRI). However, key questions regarding its neuroanatomy remain controversial. In this work, we used coordinate-based activation-likelihood estimations to merge available fMRI data on non-literal language. A literature search identified 38 fMRI studies on non-literal language (24 metaphor studies, 14 non-salient stimuli studies, 7 idiom studies, 8 irony studies, and 1 metonymy study). Twenty-eight studies with direct comparisons of non-literal and literal studies were included in the main meta-analysis. Sub-analyses for metaphors, idioms, irony, salient metaphors, and non-salient metaphors as well as studies on sentence level were conducted. Studies reported 409 activation foci, of which 129 (32%) were in the right hemisphere. These meta-analyses indicate that a predominantly left lateralised network, including the left and right inferior frontal gyrus; the left, middle, and superior temporal gyrus; and medial prefrontal, superior frontal, cerebellar, parahippocampal, precentral, and inferior parietal regions, is important for non-literal expressions. PMID:22759997

  4. Cannabis Use and Memory Brain Function in Adolescent Boys: A Cross-Sectional Multicenter Functional Magnetic Resonance Imaging Study

    NARCIS (Netherlands)

    Jager, G.; Block, R.I.; Luijten, M.; Ramsey, N.F.

    2010-01-01

    Early-onset cannabis use has been associated with later use/abuse, mental health problems (psychosis, depression), and abnormal development of cognition and brain function. During adolescence, ongoing neurodevelopmental maturation and experience shape the neural circuitry underlying complex cognitiv

  5. Predicting subsequent relapse by drug-related cue-induced brain activation in heroin addiction: an event-related functional magnetic resonance imaging study.

    Science.gov (United States)

    Li, Qiang; Li, Wei; Wang, Hanyue; Wang, Yarong; Zhang, Yi; Zhu, Jia; Zheng, Ying; Zhang, Dongsheng; Wang, Lina; Li, Yongbin; Yan, Xuejiao; Chang, Haifeng; Fan, Min; Li, Zhe; Tian, Jie; Gold, Mark S; Wang, Wei; Liu, Yijun

    2015-09-01

    Abnormal salience attribution is implicated in heroin addiction. Previously, combining functional magnetic resonance imaging (fMRI) and a drug cue-reactivity task, we demonstrated abnormal patterns of subjective response and brain reactivity in heroin-dependent individuals. However, whether the changes in cue-induced brain response were related to relapse was unknown. In a prospective study, we recruited 49 heroin-dependent patients under methadone maintenance treatment, a gold standard treatment (average daily dose 41.8 ± 16.0 mg), and 20 healthy subjects to perform the heroin cue-reactivity task during fMRI. The patients' subjective craving was evaluated. They participated in a follow-up assessment for 3 months, during which heroin use was assessed and relapse was confirmed by self-reported relapse or urine toxicology. Differences between relapsers and non-relapsers were analyzed with respect to the results from heroin-cue responses. Compared with healthy subjects, relapsers and non-relapsers commonly demonstrated significantly increased brain responses during the processing of heroin cues in the mesolimbic system, prefrontal regions and visuospatial-attention regions. However, compared with non-relapsers, relapsers demonstrated significantly greater cue-induced craving and the brain response mainly in the bilateral nucleus accumbens/subcallosal cortex and cerebellum. Although the cue-induced heroin craving was low in absolute measures, the change in craving positively correlated with the activation of the nucleus accumbens/subcallosal cortex among the patients. These findings suggest that in treatment-seeking heroin-dependent individuals, greater cue-induced craving and greater specific regional activations might be related to reward/craving and memory retrieval processes. These responses may predict relapse and represent important targets for the development of new treatment for heroin addiction.

  6. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging

    KAUST Repository

    Magistretti, Pierre J.

    2015-05-01

    The energy demands of the brain are high: they account for at least 20% of the body\\'s energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and pointat a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales. © 2015 Elsevier Inc.

  7. Optimization of Butterworth filter for brain SPECT imaging

    International Nuclear Information System (INIS)

    A method has been described to optimize the cutoff frequency of the Butterworth filter for brain SPECT imaging. Since a computer simulation study has demonstrated that separation between an object signal and the random noise in projection images in a spatial-frequency domain is influenced by the total number of counts, the cutoff frequency of the Butterworth filter should be optimized for individual subjects according to total counts in a study. To reveal the relationship between the optimal cutoff frequencies and total counts in brain SPECT study, we used a normal volunteer and 99mTc hexamethyl-propyleneamine oxime (HMPAO) to obtain projection sets with different total counts. High quality images were created from a projection set with an acquisition time of 300-seconds per projection. The filter was optimized by calculating mean square errors from high quality images visually inspecting filtered reconstructed images. Dependence between total counts and optimal cutoff frequencies was clearly demonstrated in a nomogram. Using this nomogram, the optimal cutoff frequency for each study can be estimated from total counts, maximizing visual image quality. The results suggest that the cutoff frequency of Butterworth filter should be determined by referring to total counts in each study. (author)

  8. Progress in clinical research and application of resting state functional brain imaging

    International Nuclear Information System (INIS)

    Resting state functional brain imaging experimental design is free of stimulus task and offers various parametric maps through different data-driven post processing methods with endogenous BOLD signal changes as the source of imaging. Mechanism of resting state brain activities could be extensively studied with improved patient compliance and clinical application compared with task related functional brain imaging. Also resting state functional brain imaging can be used as a method of data acquisition, with implicit neuronal activity as a kind of experimental design, to reveal characteristic brain activities of epileptic patient. Even resting state functional brain imaging data processing method can be used to analyze task related functional MRI data, opening new horizons of task related functional MRI study. (authors)

  9. Early Detection of Ventilation-Induced Brain Injury Using Magnetic Resonance Spectroscopy and Diffusion Tensor Imaging: An In Vivo Study in Preterm Lambs

    OpenAIRE

    Skiöld, Béatrice; Wu, Qizhu; Stuart B Hooper; Davis, Peter G; McIntyre, Richard; Tolcos, Mary; Pearson, James; Vreys, Ruth; Egan, Gary F.; Samantha K Barton; Jeanie L Y Cheong; Polglase, Graeme R.

    2014-01-01

    Background and Aim High tidal volume (VT) ventilation during resuscitation of preterm lambs results in brain injury evident histologically within hours after birth. We aimed to investigate whether magnetic resonance spectroscopy (MRS) and/or diffusion tensor imaging (DTI) can be used for early in vivo detection of ventilation-induced brain injury in preterm lambs. Methods Newborn lambs (0.85 gestation) were stabilized with a “protective ventilation” strategy (PROT, n = 7: prophylactic Curosur...

  10. Simulation of brain tumor resection in image-guided neurosurgery

    Science.gov (United States)

    Fan, Xiaoyao; Ji, Songbai; Fontaine, Kathryn; Hartov, Alex; Roberts, David; Paulsen, Keith

    2011-03-01

    Preoperative magnetic resonance images are typically used for neuronavigation in image-guided neurosurgery. However, intraoperative brain deformation (e.g., as a result of gravitation, loss of cerebrospinal fluid, retraction, resection, etc.) significantly degrades the accuracy in image guidance, and must be compensated for in order to maintain sufficient accuracy for navigation. Biomechanical finite element models are effective techniques that assimilate intraoperative data and compute whole-brain deformation from which to generate model-updated MR images (uMR) to improve accuracy in intraoperative guidance. To date, most studies have focused on early surgical stages (i.e., after craniotomy and durotomy), whereas simulation of more complex events at later surgical stages has remained to be a challenge using biomechanical models. We have developed a method to simulate partial or complete tumor resection that incorporates intraoperative volumetric ultrasound (US) and stereovision (SV), and the resulting whole-brain deformation was used to generate uMR. The 3D ultrasound and stereovision systems are complimentary to each other because they capture features deeper in the brain beneath the craniotomy and at the exposed cortical surface, respectively. In this paper, we illustrate the application of the proposed method to simulate brain tumor resection at three temporally distinct surgical stages throughout a clinical surgery case using sparse displacement data obtained from both the US and SV systems. We demonstrate that our technique is feasible to produce uMR that agrees well with intraoperative US and SV images after dural opening, after partial tumor resection, and after complete tumor resection. Currently, the computational cost to simulate tumor resection can be up to 30 min because of the need for re-meshing and the trial-and-error approach to refine the amount of tissue resection. However, this approach introduces minimal interruption to the surgical workflow

  11. Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging.

    Directory of Open Access Journals (Sweden)

    David A Feinberg

    Full Text Available Echo planar imaging (EPI is an MRI technique of particular value to neuroscience, with its use for virtually all functional MRI (fMRI and diffusion imaging of fiber connections in the human brain. EPI generates a single 2D image in a fraction of a second; however, it requires 2-3 seconds to acquire multi-slice whole brain coverage for fMRI and even longer for diffusion imaging. Here we report on a large reduction in EPI whole brain scan time at 3 and 7 Tesla, without significantly sacrificing spatial resolution, and while gaining functional sensitivity. The multiplexed-EPI (M-EPI pulse sequence combines two forms of multiplexing: temporal multiplexing (m utilizing simultaneous echo refocused (SIR EPI and spatial multiplexing (n with multibanded RF pulses (MB to achieve m×n images in an EPI echo train instead of the normal single image. This resulted in an unprecedented reduction in EPI scan time for whole brain fMRI performed at 3 Tesla, permitting TRs of 400 ms and 800 ms compared to a more conventional 2.5 sec TR, and 2-4 times reductions in scan time for HARDI imaging of neuronal fibertracks. The simultaneous SE refocusing of SIR imaging at 7 Tesla advantageously reduced SAR by using fewer RF refocusing pulses and by shifting fat signal out of the image plane so that fat suppression pulses were not required. In preliminary studies of resting state functional networks identified through independent component analysis, the 6-fold higher sampling rate increased the peak functional sensitivity by 60%. The novel M-EPI pulse sequence resulted in a significantly increased temporal resolution for whole brain fMRI, and as such, this new methodology can be used for studying non-stationarity in networks and generally for expanding and enriching the functional information.

  12. Identifying Brain Image Level Endophenotypes in Epilepsy

    CERN Document Server

    Cheng, Wei; Tian, Ge; Feng, Jianfeng; Wang, Zhengge; Zhang, Zhiqiang; Lu, GuangMing

    2012-01-01

    A brain wide association study (BWAS) based on the logistic regression was first developed and applied to a large population of epilepsy patients (168) and healthy controls (136). It was found that the most significant links associated with epilepsy are those bilateral links with regions mainly belonging to the default mode network and subcortex, such as amygdala, fusiform gyrus, inferior temporal gyrus, hippocampus, temporal pole, parahippocampal gyrus, insula, middle occipital gyrus, cuneus. These links were found to have much higher odd ratios than other links, and all of them showed reduced functional couplings in patients compared with controls. Interestingly, with the increasing of the seizure onset frequency or duration of illness, the functional connection between these bilateral regions became further reduced. On the other hand, as a functional compensation and brain plasticity, connections of these bilateral regions to other brain regions were abnormally enhanced and became even much stronger with t...

  13. A STUDY ON YIELD AND USEFULNESS OF NON-CONTRAST CT BRAIN IMAGING IN ACUTE STROKE AT A TERTIARY CARE INSTITUTE IN SOUTH INDIA

    Directory of Open Access Journals (Sweden)

    Jayanthi

    2016-05-01

    Full Text Available BACKGROUND Non-enhanced CT scanning of the head remains the first-line diagnostic test for the emergency evaluation of acute stroke because of its speed, its convenient availability at most hospitals and its ability to sensitively depict intracranial haemorrhage. [1] This is an observational study done to ascertain the yield and usefulness of non-contrast CT brain imaging in acute stroke in a tertiary care centre. METHODS This was a prospective observational study done from June 2015 - November 2015 in a tertiary care centre. The study included 75 patients above 18 years of age who presented with any new-onset neurological deficit to our hospital. CT imaging was done for all those patients. Pregnant patients and those with previous neurological deficits were excluded from this study. A detailed study on the sex, age of the patient, time of presentation to our hospital, types of stroke along with site of involvement were studied. Data was recorded and analysed. RESULTS Amongst the 75 patients we studied 56 were females, 44 were males, 64% of our patients had infarct, 21% had haemorrhage, 19% of our patients had normal study at the time of presentation. Amongst those who had evidence of CT proven infarct, 3 patients presented to us within 6 hours, 6 patients between 6-12 hours, 26 patients between 12-24 hours, 10 patients after 24 hours. Amongst the 19% who had no evidence of stroke in imaging studies, 85% presented within 6 hours to our hospital. CONCLUSIONS Our study concluded that females are predominant in patients presenting with stroke, most common cause of stroke was infarct with capsuloganglionic region being the most common site of involvement and radiological yield of evidence of plain CT had positive correlation with advancing age of infarct.

  14. Comparative studies of '18F-FDG PET/CT brain imaging and EEG in preoperative localization of temporal lobe epileptic focus

    International Nuclear Information System (INIS)

    Objective: To compare the value of 18F-FDG PET/CT brain imaging and EEG in preoperative localization of the epileptic focus at the temporal lobe. Methods: A total of 152 patients (108 males, 44 females, age ranged from 3 to 59 years old) with past history of temporal lobe epilepsy were included.All patients underwent 18F-FDG PET/CT brain imaging and long-range or video EEG, and 29 patients underwent intracranial electrode EEG due to the failure to localize the disease focus by non-invasive methods.Histopathologic findings after operative treatment were considered the gold standard for disease localization. All patients were followed up for at least six months after the operation. The accuracy of the 18F-FDG PET/CT brain imaging and long-range or video EEG examination were compared using χ2 test. Results: The accuracy of locating the epileptic focus was 80.92% (123/152) for 18F-FDG PET/CT brain imaging and 43.42% (66/152) for long-range or video EEG (χ2=22.72, P<0.01). The accuracy of locating the epileptic focus for the 29 cases with intracranial electrode EEG was 100%. Conclusions: Interictal 18F-FDG PET/CT brain imaging is a sensitive and effective method to locate the temporal lobe epileptic focus and is better than long-range or video EEG. The combination of 18F-FDG PET/CT brain imaging and intracranial electrode EEG examination can further improve the accuracy of locating the epileptic focus. (authors)

  15. Comparison of Hybrid Codes for MRI Brain Image Compression

    Directory of Open Access Journals (Sweden)

    G. Soundarya

    2012-12-01

    Full Text Available In general, medical images are compressed in a lossless manner in order to preserve details and to avoid wrong diagnosis. But this leads to a lower compression rate. Therefore, our aim is to improve the compression ratio by means of hybrid coding the MRI brain (tumor images. Hence we consider Region of Interest (ROI normally the abnormal region in the image and compress it without loss to achieve high compression ratio in par with maintaining high image quality and the Non-Region of Interest (Non-ROI of the image is compressed in a lossy manner. This study discusses two simple hybrid coding techniques (Hybrid A and Hybrid B on MRI human brain tumor image datasets. Also we evaluate their performance by comparing them with the standard lossless technique JPEG 2000 in terms of Compression Ratio (CR and Peak to Signal Noise Ratio (PSNR. Both hybrid codes have resulted in computationally economical scheme producing higher compression ratio than existing JPEG2000 and also meets the legal requirement of medical image archiving. The results obtained prove that our proposed hybrid schemes outperform existing schemes.

  16. Astrocytosis precedes amyloid plaque deposition in Alzheimer APPswe transgenic mouse brain: a correlative positron emission tomography and in vitro imaging study

    International Nuclear Information System (INIS)

    Pathological studies suggest that neuroinflammation is exacerbated by increased beta-amyloid (Aβ) levels in the brain early in Alzheimer's disease (AD). The time course and relationships between astrocytosis and Aβ deposition were examined using multitracer in vivo positron emission tomography (PET) imaging in an AD transgenic mouse model, followed by postmortem autoradiography and immunohistochemistry analysis. PET imaging with the amyloid plaque tracer 11C-AZD2184 and the astroglial tracer 11C-deuterium-L-deprenyl (11C-DED) was carried out in APPswe mice aged 6, 8-15 and 18-24 months (4-6 animals/group) and in wild-type (wt) mice aged 8-15 and 18-24 months (3-6 animals/group). Tracer uptake was quantified by region of interest analysis using PMOD software and a 3-D digital mouse brain atlas. Postmortem brain tissues from the same APPswe and wt mice in all age groups were analysed for Aβ deposition and astrocytosis by in vitro autoradiography using 3H-AZD2184, 3H-Pittsburgh compound B (PIB) and 3H-L-deprenyl and immunostaining performed with antibodies for Aβ42 and glial fibrillary acidic protein (GFAP) in sagittal brain sections. 11C-AZD2184 PET retention in the cerebral cortices of APPswe mice was significantly higher at 18-24 months than in age-matched wt mice. Cortical and hippocampal 11C-DED PET binding was significantly higher at 6 months than at 8-15 months or 18-24 months in APPswe mice, and it was also higher than at 8-15 months in wt mice. In vitro autoradiography 3H-AZD2184 and 3H-PIB binding confirmed the in vivo findings with 11C-AZD2184 and demonstrated age-dependent increases in Aβ deposition in APPswe cortex and hippocampus. There were no significant differences between APPswe and wt mice in 3H-L-deprenyl autoradiography binding across age groups. Immunohistochemical quantification demonstrated more Aβ42 deposits in the cortex and hippocampus and more GFAP+ reactive astrocytes in the hippocampus at 18-24 months than at 6 months in APPswe

  17. Astrocytosis precedes amyloid plaque deposition in Alzheimer APPswe transgenic mouse brain: a correlative positron emission tomography and in vitro imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Vieitez, Elena; Ni, Ruiqing; Voytenko, Larysa; Marutle, Amelia [Karolinska Institutet, Division of Translational Alzheimer Neurobiology, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Stockholm (Sweden); Gulyas, Balazs; Halldin, Christer [Karolinska Institutet, Centre for Psychiatric Research, Department of Clinical Neuroscience, Stockholm (Sweden); Nanyang Technological University, NTU - Imperial College, Lee Kong Chian School of Medicine, Singapore (Singapore); Toth, Miklos; Haeggkvist, Jenny [Karolinska Institutet, Centre for Psychiatric Research, Department of Clinical Neuroscience, Stockholm (Sweden); Nordberg, Agneta [Karolinska Institutet, Division of Translational Alzheimer Neurobiology, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Stockholm (Sweden); Karolinska University Hospital Huddinge, Department of Geriatric Medicine, Stockholm (Sweden)

    2015-04-17

    Pathological studies suggest that neuroinflammation is exacerbated by increased beta-amyloid (Aβ) levels in the brain early in Alzheimer's disease (AD). The time course and relationships between astrocytosis and Aβ deposition were examined using multitracer in vivo positron emission tomography (PET) imaging in an AD transgenic mouse model, followed by postmortem autoradiography and immunohistochemistry analysis. PET imaging with the amyloid plaque tracer {sup 11}C-AZD2184 and the astroglial tracer {sup 11}C-deuterium-L-deprenyl ({sup 11}C-DED) was carried out in APPswe mice aged 6, 8-15 and 18-24 months (4-6 animals/group) and in wild-type (wt) mice aged 8-15 and 18-24 months (3-6 animals/group). Tracer uptake was quantified by region of interest analysis using PMOD software and a 3-D digital mouse brain atlas. Postmortem brain tissues from the same APPswe and wt mice in all age groups were analysed for Aβ deposition and astrocytosis by in vitro autoradiography using {sup 3}H-AZD2184, {sup 3}H-Pittsburgh compound B (PIB) and {sup 3}H-L-deprenyl and immunostaining performed with antibodies for Aβ{sub 42} and glial fibrillary acidic protein (GFAP) in sagittal brain sections. {sup 11}C-AZD2184 PET retention in the cerebral cortices of APPswe mice was significantly higher at 18-24 months than in age-matched wt mice. Cortical and hippocampal {sup 11}C-DED PET binding was significantly higher at 6 months than at 8-15 months or 18-24 months in APPswe mice, and it was also higher than at 8-15 months in wt mice. In vitro autoradiography {sup 3}H-AZD2184 and {sup 3}H-PIB binding confirmed the in vivo findings with {sup 11}C-AZD2184 and demonstrated age-dependent increases in Aβ deposition in APPswe cortex and hippocampus. There were no significant differences between APPswe and wt mice in {sup 3}H-L-deprenyl autoradiography binding across age groups. Immunohistochemical quantification demonstrated more Aβ{sub 42} deposits in the cortex and hippocampus and more

  18. Cannabis Use and Memory Brain Function in Adolescent Boys: A Cross-Sectional Multicenter Functional Magnetic Resonance Imaging Study

    Science.gov (United States)

    Jager, Gerry; Block, Robert I.; Luijten, Maartje; Ramsey, Nick F.

    2010-01-01

    Objective: Early-onset cannabis use has been associated with later use/abuse, mental health problems (psychosis, depression), and abnormal development of cognition and brain function. During adolescence, ongoing neurodevelopmental maturation and experience shape the neural circuitry underlying complex cognitive functions such as memory and…

  19. Alteration of default mode network in high school football athletes due to repetitive subconcussive mild traumatic brain injury: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Abbas, Kausar; Shenk, Trey E; Poole, Victoria N; Breedlove, Evan L; Leverenz, Larry J; Nauman, Eric A; Talavage, Thomas M; Robinson, Meghan E

    2015-03-01

    Long-term neurological damage as a result of head trauma while playing sports is a major concern for football athletes today. Repetitive concussions have been linked to many neurological disorders. Recently, it has been reported that repetitive subconcussive events can be a significant source of accrued damage. Since football athletes can experience hundreds of subconcussive hits during a single season, it is of utmost importance to understand their effect on brain health in the short and long term. In this study, resting-state functional magnetic resonance imaging (rs-fMRI) was used to study changes in the default mode network (DMN) after repetitive subconcussive mild traumatic brain injury. Twenty-two high school American football athletes, clinically asymptomatic, were scanned using the rs-fMRI for a single season. Baseline scans were acquired before the start of the season, and follow-up scans were obtained during and after the season to track the potential changes in the DMN as a result of experienced trauma. Ten noncollision-sport athletes were scanned over two sessions as controls. Overall, football athletes had significantly different functional connectivity measures than controls for most of the year. The presence of this deviation of football athletes from their healthy peers even before the start of the season suggests a neurological change that has accumulated over the years of playing the sport. Football athletes also demonstrate short-term changes relative to their own baseline at the start of the season. Football athletes exhibited hyperconnectivity in the DMN compared to controls for most of the sessions, which indicates that, despite the absence of symptoms typically associated with concussion, the repetitive trauma accrued produced long-term brain changes compared to their healthy peers.

  20. Radionuclide brain imaging in acquired immunodeficiency syndrome (AIDS)

    Energy Technology Data Exchange (ETDEWEB)

    Costa, D.C.; Gacinovic, S.; Miller, R.F. [London University College Medical School, Middlesex Hospital, London (United Kingdom)

    1995-09-01

    Infection with the Human Immunodeficiency Virus type 1 (HIV-1) may produce a variety of central nervous system (CNS) symptoms and signs. CNS involvement in patients with the Acquired Immunodeficiency Syndrome (AIDS) includes AIDS dementia complex or HIV-1 associated cognitive/motor complex (widely known as HIV encephalopathy), progressive multifocal leucoencephalopathy (PML), opportunistic infections such as Toxoplasma gondii, TB, Cryptococcus and infiltration by non-Hodgkin`s B cell lymphoma. High resolution structural imaging investigations, either X-ray Computed Tomography (CT scan) or Magnetic Resonance Imaging (MRI) have contributed to the understanding and definition of cerebral damage caused by HIV encephalopathy. Atrophy and mainly high signal scattered white matter abnormalities are commonly seen with MRI. PML produces focal white matter high signal abnormalities due to multiple foci of demyelination. However, using structural imaging techniques there are no reliable parameters to distinguish focal lesions due to opportunistic infection (Toxoplasma gondii abscess) from neoplasm (lymphoma infiltration). It is studied the use of radionuclide brain imaging techniques in the investigation of HIV infected patients. Brain perfusion Single Photon Emission Tomography (SPET), neuroreceptor and Positron Emission Tomography (PET) studies are reviewed. Greater emphasis is put on the potential of some radiopharmaceuticals, considered to be brain tumour markers, to distinguish intracerebral lymphoma infiltration from Toxoplasma infection. SPET with {sup 201}Tl using quantification (tumour to non-tumour radioactivity ratios) appears a very promising technique to identify intracerebral lymphoma.

  1. Radionuclide brain imaging in acquired immunodeficiency syndrome (AIDS)

    International Nuclear Information System (INIS)

    Infection with the Human Immunodeficiency Virus type 1 (HIV-1) may produce a variety of central nervous system (CNS) symptoms and signs. CNS involvement in patients with the Acquired Immunodeficiency Syndrome (AIDS) includes AIDS dementia complex or HIV-1 associated cognitive/motor complex (widely known as HIV encephalopathy), progressive multifocal leucoencephalopathy (PML), opportunistic infections such as Toxoplasma gondii, TB, Cryptococcus and infiltration by non-Hodgkin's B cell lymphoma. High resolution structural imaging investigations, either X-ray Computed Tomography (CT scan) or Magnetic Resonance Imaging (MRI) have contributed to the understanding and definition of cerebral damage caused by HIV encephalopathy. Atrophy and mainly high signal scattered white matter abnormalities are commonly seen with MRI. PML produces focal white matter high signal abnormalities due to multiple foci of demyelination. However, using structural imaging techniques there are no reliable parameters to distinguish focal lesions due to opportunistic infection (Toxoplasma gondii abscess) from neoplasm (lymphoma infiltration). It is studied the use of radionuclide brain imaging techniques in the investigation of HIV infected patients. Brain perfusion Single Photon Emission Tomography (SPET), neuroreceptor and Positron Emission Tomography (PET) studies are reviewed. Greater emphasis is put on the potential of some radiopharmaceuticals, considered to be brain tumour markers, to distinguish intracerebral lymphoma infiltration from Toxoplasma infection. SPET with 201Tl using quantification (tumour to non-tumour radioactivity ratios) appears a very promising technique to identify intracerebral lymphoma

  2. Compact and mobile high resolution PET brain imager

    Science.gov (United States)

    Majewski, Stanislaw; Proffitt, James

    2011-02-08

    A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage.

  3. Diffusion tensor imaging: the normal evolution of ADC, RA, FA, and eigenvalues studied in multiple anatomical regions of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Loebel, Ulrike [University Hospital Jena, Institute of Diagnostic and Interventional Radiology, Jena (Germany); St. Jude Children' s Research Hospital, Department of Radiological Sciences, Memphis, TN (United States); Sedlacik, Jan [St. Jude Children' s Research Hospital, Department of Radiological Sciences, Memphis, TN (United States); University Hospital Jena, Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena (Germany); Guellmar, Daniel [University Hospital Jena, Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena (Germany); University Hospital Jena, Biomagnetic Center, Department of Neurology, Jena (Germany); Kaiser, Werner A.; Mentzel, Hans-Joachim [University Hospital Jena, Institute of Diagnostic and Interventional Radiology, Jena (Germany); Reichenbach, Juergen R. [University Hospital Jena, Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena (Germany)

    2009-04-15

    The aim of our work was to investigate the process of myelination in healthy patients using the diffusion parameters apparent diffusion coefficient (ADC), relative anisotropy (RA), fractional anisotropy (FA), and eigenvalues. Age-dependent changes were assessed using the slope m of the fit functions that best described the data. Seventy-two patients (3 weeks-19 years) without pathological magnetic resonance imaging findings were selected from all pediatric patients scanned with diffusion tensor imaging over a 5-year period at our institution. ADC, RA, FA, and eigenvalue maps were calculated and regions of interest were selected in anterior/posterior pons, genu/splenium of corpus callosum (CC), anterior/posterior limb of internal capsule (IC), and white matter (WM) regions (frontal, temporal, parietal, occipital WM). Statistical analysis was performed using Spearman correlation coefficient and regression analysis. Mean values ranged 71.6 x 10{sup -5} to 90.3 x 10{sup -5} mm{sup 2}/s (pons/parietal WM) for ADC, 0.32-0.94 (frontal WM/CC) for RA, and 0.36-0.81 (frontal WM/splenium) for FA. Logarithmic fit functions best described the data. Strong age influences were observed for CC, pons, and parietal/frontal WM and changes were significant for all three eigenvalues, most pronounced for perpendicular eigenvalues. Changes in RA and FA differed depending on the structure anisotropy. Changes observed for ADC, RA, FA, and eigenvalues with age were consistent with previous findings. Changes detected for RA and FA varied due to the different scaling of both parameters. We found that the use of the largely linear scaled RA adds more valuable information for the assessment of age-dependent structural changes as compared to FA. Additionally, we report normative values for the diffusion parameters studied. (orig.)

  4. FULLY AUTOMATIC FRAMEWORK FOR SEGMENTATION OF BRAIN MRI IMAGE

    Institute of Scientific and Technical Information of China (English)

    Lin Pan; Zheng Chongxun; Yang Yong; Gu Jianwen

    2005-01-01

    Objective To propose an automatic framework for segmentation of brain image in this paper. Methods The brain MRI image segmentation framework consists of three-step segmentation procedures. First, Non-brain structures removal by level set method. Then, the non-uniformity correction method is based on computing estimates of tissue intensity variation. Finally, it uses a statistical model based on Markov random filed for MRI brain image segmentation. The brain tissue can be classified into cerebrospinal fluid, white matter and gray matter. Results To evaluate the proposed our method, we performed two sets of experiments, one on simulated MR and another on real MR brain data. Conclusion The efficacy of the brain MRI image segmentation framework has been demonstrated by the extensive experiments. In the future, we are also planning on a large-scale clinical evaluation of this segmentation framework.

  5. PET imaging of the brain serotonin transporters (SERT) with N,N-dimethyl-2-(2-amino-4-[{sup 18}F]fluorophenylthio)benzylamine (4-[{sup 18}F]-ADAM) in humans: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wen-Sheng [PET Center, Tri-Service General Hospital, Department of Nuclear Medicine, Neihu, Taipei (China); Changhua Christian Hospital, Department of Nuclear Medicine, Changhua (China); Huang, San-Yuan; Ho, Pei-Shen; Yeh, Chin-Bin [Tri-Service General Hospital, Department of Psychiatry, Taipei (China); Ma, Kuo-Hsing [National Defense Medical Center, Department of Biology and Anatomy, Taipei (China); Huang, Ya-Yao; Shiue, Chyng-Yann [PET Center, Tri-Service General Hospital, Department of Nuclear Medicine, Neihu, Taipei (China); PET Center, National Taiwan University Hospital, Department of Nuclear Medicine, Taipei (China); Liu, Ren-Syuan [Taipei Veterans General Hospital, Department of Nuclear Medicine, Taipei (China); Cheng, Cheng-Yi [PET Center, Tri-Service General Hospital, Department of Nuclear Medicine, Neihu, Taipei (China)

    2013-01-15

    The aim of this study was to assess the feasibility of using 4-[{sup 18}F]-ADAM as a brain SERT imaging agent in humans. Enrolled in the study were 19 healthy Taiwanese subjects (11 men, 8 women; age 33 {+-} 9 years). The PET data were semiquantitatively analyzed and expressed as specific uptake ratios (SUR) and distribution volume ratios (DVR) using the software package PMOD. The SUR and DVR of 4-[{sup 18}F]-ADAM in the raphe nucleus (RN), midbrain (MB), thalamus (TH), striatum (STR) and prefrontal cortex (PFC) were determined using the cerebellum (CB) as the reference region. 4-[{sup 18}F]-ADAM bound to known SERT-rich regions in human brain. The order of the regional brain uptake was MB (RN) > TH > STR > PFC > CB. The DVR (n = 4, t* = 60 min) in the RN, TH, STR and PFC were 3.00 {+-} 0.50, 2.25 {+-} 0.45, 2.05 {+-} 0.31 and 1.40 {+-} 0.13, respectively. The optimal time for imaging brain SERT with 4-[{sup 18}F]-ADAM was 120-140 min after injection. At the optimal imaging time, the SURs (n = 15) in the MB, TH, STR, and PFC were 2.25 {+-} 0.20, 2.28 {+-} 0.20, 2.12 {+-} 0.18 and 1.47 {+-} 0.14, respectively. There were no significant differences in SERT availability between men and women (p < 0.05). The results of this study showed that 4-[{sup 18}F]-ADAM was safe for human studies and its distribution in human brain appeared to correlate well with the known distribution of SERT in the human brain. In addition, it had high specific binding and a reasonable optimal time for imaging brain SERT in humans. Thus, 4-[{sup 18}F]-ADAM may be feasible for assessing the status of brain SERT in humans. (orig.)

  6. Measurement of brain oxygenation changes using dynamic T1-weighted imaging

    DEFF Research Database (Denmark)

    Haddock, Bryan; Larsson, Henrik B W; Hansen, Adam E;

    2013-01-01

    Magnetic resonance imaging (MRI) has proven useful in evaluating oxygenation in several types of tissue and blood. This study evaluates brain tissue oxygenation changes between normoxia and hyperoxia in healthy subjects using dynamic T1 and T2*-weighted imaging sequences. The change in FiO2 induced...... in the brain with a potential to provide quantitative information on tissue oxygenation....

  7. Study on MRI findings in postresuscitation brains

    International Nuclear Information System (INIS)

    We evaluated chronological changes in T1/T2-weighted and diffusion-weighted magnetic resonance imaging (MRI) findings in patients with global cerebral ischemia compared to computed tomography (CT) and single photon emission computed tomography (SPECT) to determine the advantages this presents in determining a patient's prognosis. We retrospectively studied MRI in 28 patients resuscitated after cardiopulmonary arrest. Patients were divided by outcome into 4 groups -- good outcome in 5, moderate disability in 2, vegetative in 17, and 4 brain-dead. Those with good recovery had normal CT and MRI findings. Those with moderate disability demonstrated high signal intensity in basal ganglia and posterior cerebral cortex during the chronic period. All vegetative patients had abnormal CT findings and their T2-weighted images during the acute period demonstrated high signal intensity in the cerebral cortex and basal ganglia; T1-weighted image during the chronic period showed similar findings, while diffusion-weighted images indicated high signal intensity in the cerebral cortex from the very acute period, during which abnormal findings were seen in the cortex, putamen, and thalamus more frequently than in T2-weighted images. Moreover, regional cerebral blood flow significantly decreased during the chronic period. All brain-dead patients had CT findings of diffuse cerebral edema and loss of density difference between gray and white matter. T2-weighted images respectively showed an extraordinary high density difference between gray and white matter and diffusion-weighted images high signal density in the whole brain. MRI detects chronologic changes in postresuscitation brain damage better than CT findings. Diffusion-weighted images identify hypoxic-ischemic lesions during the very acute period. MRI thus appears useful in evaluating patient prognosis and care. (author)

  8. Imaging Monoamine Oxidase in the Human Brain

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets

  9. Imaging Monoamine Oxidase in the Human Brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  10. Visual image reconstruction from human brain activity: A modular decoding approach

    International Nuclear Information System (INIS)

    Brain activity represents our perceptual experience. But the potential for reading out perceptual contents from human brain activity has not been fully explored. In this study, we demonstrate constraint-free reconstruction of visual images perceived by a subject, from the brain activity pattern. We reconstructed visual images by combining local image bases with multiple scales, whose contrasts were independently decoded from fMRI activity by automatically selecting relevant voxels and exploiting their correlated patterns. Binary-contrast, 10 x 10-patch images (2100 possible states), were accurately reconstructed without any image prior by measuring brain activity only for several hundred random images. The results suggest that our approach provides an effective means to read out complex perceptual states from brain activity while discovering information representation in multi-voxel patterns.

  11. Modulation of P-glycoprotein at the Human Blood-Brain Barrier by Quinidine or Rifampin Treatment: A Positron Emission Tomography Imaging Study.

    Science.gov (United States)

    Liu, Li; Collier, Ann C; Link, Jeanne M; Domino, Karen B; Mankoff, David A; Eary, Janet F; Spiekerman, Charles F; Hsiao, Peng; Deo, Anand K; Unadkat, Jashvant D

    2015-11-01

    Permeability-glycoprotein (P-glycoprotein, P-gp), an efflux transporter at the human blood-brain barrier (BBB), is a significant obstacle to central nervous system (CNS) delivery of P-gp substrate drugs. Using positron emission tomography imaging, we investigated P-gp modulation at the human BBB by an approved P-gp inhibitor, quinidine, or the P-gp inducer, rifampin. Cerebral blood flow (CBF) and BBB P-gp activity were respectively measured by administration of (15)O-water followed by (11)C-verapamil. In a crossover design, healthy volunteers received quinidine and 11-29 days of rifampin treatment during different study periods. CBF and P-gp activity was measured in the absence (control; prior to quinidine treatment) and presence of P-gp modulation. At clinically relevant quinidine plasma concentrations, P-gp inhibition resulted in a 60% increase in (11)C-radioactivity distribution across the human BBB as measured by the brain extraction ratio (ER) of (11)C-radioactivity. Furthermore, the magnitude of BBB P-gp inhibition by quinidine was successfully predicted by a combination of in vitro and macaque data, but not by rat data. Although our findings demonstrated that quinidine did not completely inhibit P-gp at the human BBB, it has the potential to produce clinically significant CNS drug interactions with P-gp substrate drugs that exhibit a narrow therapeutic window and are significantly excluded from the brain by P-gp. Rifampin treatment induced systemic CYP3A metabolism of (11)C-verapamil; however, it reduced the ER by 6%. Therefore, we conclude that rifampin, at its usual clinical dose, cannot be used to induce P-gp at the human BBB to a clinically meaningful extent and is unlikely to cause inadvertent BBB-inductive drug interactions. PMID:26354948

  12. Dye-Enhanced Multimodal Confocal Imaging of Brain Cancers

    Science.gov (United States)

    Wirth, Dennis; Snuderl, Matija; Sheth, Sameer; Curry, William; Yaroslavsky, Anna

    2011-04-01

    Background and Significance: Accurate high resolution intraoperative detection of brain tumors may result in improved patient survival and better quality of life. The goal of this study was to evaluate dye enhanced multimodal confocal imaging for discriminating normal and cancerous brain tissue. Materials and Methods: Fresh thick brain specimens were obtained from the surgeries. Normal and cancer tissues were investigated. Samples were stained in methylene blue and imaged. Reflectance and fluorescence signals were excited at 658nm. Fluorescence emission and polarization were registered from 670 nm to 710 nm. The system provided lateral resolution of 0.6 μm and axial resolution of 7 μm. Normal and cancer specimens exhibited distinctively different characteristics. H&E histopathology was processed from each imaged sample. Results and Conclusions: The analysis of normal and cancerous tissues indicated clear differences in appearance in both the reflectance and fluorescence responses. These results confirm the feasibility of multimodal confocal imaging for intraoperative detection of small cancer nests and cells.

  13. Bacterial brain abscesses: prognostic value of an imaging severity index

    International Nuclear Information System (INIS)

    Aim: To assess the correlation between imaging findings [computed tomography (CT) or magnetic resonance imaging (MRI)] and neurological status before and after the treatment of bacterial brain abscesses. Materials and methods: CT and MRI images of 96 patients with brain abscesses were retrospectively evaluated in terms of the number, location and size of lesions, and the presence and extent of perilesional oedema and midline shift. An imaging severity index (ISI) based on these different radiological parameters was calculated. Initial Glasgow Coma Scale (GCS) scores and ISI were assessed and the prognostic value of these two indices was calculated. The Pearson correlation test, Mann-Whitney test, Chi-square test, receiver-operating characteristic (ROC) analysis, together with comparison of ROC analyses and Fisher's exact test were used. Results: There was a negative correlation between ISI and the initial GCS values: ISI increased as the GCS score decreased, indicating an inverse relationship (r = -0.51, p < 0.0001). There was a significant difference between the ISI and GCS scores of patients with an adverse event compared with patients with good recovery. Outcome was significantly worse in patients with initial ISI over the calculated cut-off values of 8 points or GCS scores under the cut-off value of 13 points. Conclusion: ISI is a useful prognostic indicator for bacterial brain abscess patients and correlates strongly with the patient outcome for all parameters studied. ISI score had a better prognostic value than GCS

  14. Imaging of Brain Dopamine Pathways: Implications for Understanding Obesity

    OpenAIRE

    Wang, Gene-Jack; Volkow, Nora D.; Panayotis K Thanos; Fowler, Joanna S.

    2009-01-01

    Obesity is typically associated with abnormal eating behaviors. Brain imaging studies in humans implicate the involvement of dopamine (DA)-modulated circuits in pathologic eating behavior(s). Food cues increase striatal extracellular DA, providing evidence for the involvement of DA in the nonhedonic motivational properties of food. Food cues also increase metabolism in the orbitofrontal cortex indicating the association of this region with the motivation for food consumption. Similar to drug-...

  15. Disrupted brain functional network in internet addiction disorder: a resting-state functional magnetic resonance imaging study.

    Directory of Open Access Journals (Sweden)

    Chong-Yaw Wee

    Full Text Available Internet addiction disorder (IAD is increasingly recognized as a mental health disorder, particularly among adolescents. The pathogenesis associated with IAD, however, remains unclear. In this study, we aim to explore the encephalic functional characteristics of IAD adolescents at rest using functional magnetic resonance imaging data. We adopted a graph-theoretic approach to investigate possible disruptions of functional connectivity in terms of network properties including small-worldness, efficiency, and nodal centrality on 17 adolescents with IAD and 16 socio-demographically matched healthy controls. False discovery rate-corrected parametric tests were performed to evaluate the statistical significance of group-level network topological differences. In addition, a correlation analysis was performed to assess the relationships between functional connectivity and clinical measures in the IAD group. Our results demonstrate that there is significant disruption in the functional connectome of IAD patients, particularly between regions located in the frontal, occipital, and parietal lobes. The affected connections are long-range and inter-hemispheric connections. Although significant alterations are observed for regional nodal metrics, there is no difference in global network topology between IAD and healthy groups. In addition, correlation analysis demonstrates that the observed regional abnormalities are correlated with the IAD severity and behavioral clinical assessments. Our findings, which are relatively consistent between anatomically and functionally defined atlases, suggest that IAD causes disruptions of functional connectivity and, importantly, that such disruptions might link to behavioral impairments.

  16. Imaging of brain activity by positron emission tomography

    International Nuclear Information System (INIS)

    Brain function is associated with regional energy metabolism and blood flow increase. Such brain activity is visualized by using external scintigraphy. Positron emission tomography (PET) is the currently available most superior technique, allowing three-dimensional imaging of subtle blood flow. In this article, imaging methods and application of PET are discussed in terms of the following items: (1) measurement of cerebral glucose consumption, (2) PET in persons with visual impairment, (3) association between brain function and regional cerebral blood flow, (4) measurement of cerebral blood flow, (5) method for decreasing noise in PET imaging, (6) anatomic standardization of PET images, and (7) speech load and regional cerebral activity images. (N.K.)

  17. Imaging findings of the brain abnormalities in acute lymphoblastic leukemia of children during and after treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Joo; Lee, Seung Rho; Park, Dong Woo; Joo, Kyung Bin; Kim, Jang Wook; Hahm, Chang Kok; Kim, Ki Joong; Lee, Hahng [College of Medicine, Hanyang Univ., Seoul (Korea, Republic of)

    2001-09-01

    We evaluated the imaging abnormalities of the brain observed during and after treatment of acute childhood lymphoblastic leukemia. The study group consisted of 30 patients (male : female=19 : 11 ; mean age, 64 months) with acute childhood lymphoblastic leukemia during the previous ten-year period who had undergone prophylaxis of the central nervous system. Irrespective of the CNS symptoms, base-line study of the brain involving CT and follow-up CT or MRI was undertaken more than once. We retrospectively evaluated the imaging findings, methods of treatment, associated CNS symptoms, and the interval between diagnosis and the time at which brain abnormalities were revealed by imaging studies. In 15 (50% ; male : female=9 : 6 ; mean age, 77 months) of 30 patients, brain abnormalities that included brain atrophy (n=9), cerebral infarctions (n=4), intracranial hemorrhage (n=1), mineralizing microangiopathy (n=2), and periventricular leukomalacia (n=3) were seen on follow-up CT or MR images. In four of nine patients with brain atrophy, imaging abnormalities such as periventricular leukomalacia (n=2), infarction (n=1) and microangiopathy (n=1) were demonstrated. Fourteen of the 15 patients underwent similar treatment ; the one excluded had leukemic cells in the CSF. Six patients had CNS symptoms. In the 15 patients with abnormal brain imaging findings, the interval between diagnosis and the demonstration of brain abnormalities was between one month and four years. After the cessation of treatment, imaging abnormalities remained in all patients except one with brain atrophy. Various imaging abnormalities of the brain may be seen during and after the treatment of acute childhood lymphoblastic leukemia and persist for a long time. In children with this condition, the assessment of brain abnormalities requires follow-up study of the brain.

  18. PET/SPECT imaging: From carotid vulnerability to brain viability

    Energy Technology Data Exchange (ETDEWEB)

    Meerwaldt, Robbert [Department of Surgery, Isala Clinics, Zwolle (Netherlands); Slart, Riemer H.J.A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands); Dam, Gooitzen M. van [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands); Luijckx, Gert-Jan [Department of Neurology, University Medical Center Groningen, Groningen (Netherlands); Tio, Rene A. [Department of Cardiology, University Medical Center Groningen, Groningen (Netherlands); Zeebregts, Clark J. [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands)], E-mail: czeebregts@hotmail.com

    2010-04-15

    Background: Current key issues in ischemic stroke are related to carotid plaque vulnerability, brain viability, and timing of intervention. The treatment of ischemic stroke has evolved into urgent active interventions, as 'time is brain'. Functional imaging such as positron emission tomography (PET)/single photon emission computed tomography (SPECT) could improve selection of patients with a vulnerable plaque and evaluation of brain viability in ischemic stroke. Objective: To describe the current applications of PET and SPECT as a diagnostic tool in relation to ischemic stroke. Methods: A literature search using PubMed identified articles. Manual cross-referencing was also performed. Results: Several papers, all observational studies, identified PET/SPECT to be used as a tool to monitor systemic atheroma modifying treatment and to select high-risk patients for surgery regardless of the degree of luminal stenosis in carotid lesions. Furthermore, PET/SPECT is able to quantify the penumbra region during ischemic stroke and in this way may identify those patients who may benefit from timely intervention. Discussion: Functional imaging modalities such as PET/SPECT may become important tools for risk-assessment and evaluation of treatment strategies in carotid plaque vulnerability and brain viability. Prospective clinical studies are needed to evaluate the diagnostic accuracy of PET/SPECT.

  19. Extratemporal abnormalities of brain parenchyma in young adults with temporal lobe epilepsy: A diffusion tensor imaging study

    International Nuclear Information System (INIS)

    Aim: To examine extratemporal abnormalities of the cerebral parenchyma in young adult temporal lobe epilepsy (TLE) patients using diffusion tensor imaging (DTI). Materials and methods: The study comprised 20 adults with unilateral TLE and 20 controls. The fractional anisotropy (FA), apparent diffusion coefficient (ADC), parallel eigenvalue (λ∥), and perpendicular eigenvalue (λ⊥) were calculated in the regions of interest (ROIs) using a 3 T MRI system. ROIs included the anterior/posterior limb of the internal capsule (AIC/PIC), external capsule (EC), head of caudate nucleus (HCN), lenticular nucleus (LN), thalamus (TL), and genu/body/splenium of the corpus callosum (GCC/BCC/SCC). Results: Compared to controls, TLE patients showed lower FA in all ROIs; higher ADC in bilateral ECs, HCNs, TLs, and BCC; lower λ∥ in the ipsilateral LN and bilateral AICs, TL, and GCC; and higher λ⊥ in all ROIs except the bilateral PICs. In TLE patients, the ipsilateral TL had decreased FA compared with the contralateral TL. Pearson correlation analysis revealed a negative correlation between the ADC of the GCC and the age at onset of epilepsy; the λ∥ of the ipsilateral PIC and age at onset of epilepsy; the λ⊥ of the contralateral AIC and duration of epilepsy, respectively; and a positive correlation between the ADC of the GCC and the duration of epilepsy and the λ⊥ of the GCC and the duration of epilepsy, respectively. Conclusion: The study revealed bilateral extratemporal abnormalities in young adult TLE patients compared with controls. In addition, TLE patients with younger age at onset or longer duration of epilepsy may have more serious extratemporal changes

  20. Two-photon deep imaging through skin and skull of Zebra finches: preliminary studies for in-vivo brain metabolism monitoring

    Science.gov (United States)

    Abi-Haidar, D.; Olivier, T.; Mottin, S.; Vignal, C.; Mathevon, N.

    2007-02-01

    Zebra Finches are songbirds which constitute a model for neuro-ethologists to study the neuro-mechanisms of vocal recognition. For this purpose, in vivo and non invasive monitoring of brain activity is required during acoustical stimulation. MRI (Magnetic Resonance Imaging) or NIRS (Near InfraRed Spectroscopy) are suitable methods for these measurements, even though MRI is difficult to link quantitatively with neural activity and NIRS suffers from a poor resolution. In the particular case of songbirds (whose skin is thin and quite transparent and whose skull structure is hollow), two-photon microscopy enables a quite deep penetration in tissues and could be an alternative. We present here preliminary studies on the feasability of two-photon microscopy in these conditions. To do so, we chose to image hollow fibers, filled with Rhodamine B, through the skin of Zebra finches in order to evaluate the spatial resolution we may expect in future in vivo experiments. Moreover, we used the reflectance-mode confocal configuration to evaluate the exponential decrease of backreflected light in skin and in skull samples. Following this procedure recently proposed by S.L. Jacques and co-workers, we planned to determine the scattering coefficient μ s and the anisotropy g of these tissues and make a comparison between fixed and fresh skin and skull samples for future Monte Carlo simulations of the scattering in our particular multi-layered structure.

  1. Altered intrinsic regional spontaneous brain activity in patients with optic neuritis: a resting-state functional magnetic resonance imaging study

    OpenAIRE

    Shao Y; Cai FQ; Zhong YL; Huang X; Zhang Y; Hu PH; Pei CG; Zhou FQ; Zeng XJ

    2015-01-01

    Yi Shao,1,* Feng-Qin Cai,2,* Yu-Lin Zhong,1 Xin Huang,1,3 Ying Zhang,1 Pei-Hong Hu,1 Chong-Gang Pei,1 Fu-Qing Zhou,2 Xian-Jun Zeng2 1Department of Ophthalmology, 2Department of Radiology, First Affiliated Hospital of Nanchang University, Nanchang, 3Department of Ophthalmology, First People’s Hospital of Jiujiang, Jiujiang, People’s Republic of China *These authors contributed equally to this work Objective: To investigate the underlying regional homogeneity (ReHo) in brain...

  2. Imaging synaptic density in the living human brain.

    Science.gov (United States)

    Finnema, Sjoerd J; Nabulsi, Nabeel B; Eid, Tore; Detyniecki, Kamil; Lin, Shu-Fei; Chen, Ming-Kai; Dhaher, Roni; Matuskey, David; Baum, Evan; Holden, Daniel; Spencer, Dennis D; Mercier, Joël; Hannestad, Jonas; Huang, Yiyun; Carson, Richard E

    2016-07-20

    Chemical synapses are the predominant neuron-to-neuron contact in the central nervous system. Presynaptic boutons of neurons contain hundreds of vesicles filled with neurotransmitters, the diffusible signaling chemicals. Changes in the number of synapses are associated with numerous brain disorders, including Alzheimer's disease and epilepsy. However, all current approaches for measuring synaptic density in humans require brain tissue from autopsy or surgical resection. We report the use of the synaptic vesicle glycoprotein 2A (SV2A) radioligand [(11)C]UCB-J combined with positron emission tomography (PET) to quantify synaptic density in the living human brain. Validation studies in a baboon confirmed that SV2A is an alternative synaptic density marker to synaptophysin. First-in-human PET studies demonstrated that [(11)C]UCB-J had excellent imaging properties. Finally, we confirmed that PET imaging of SV2A was sensitive to synaptic loss in patients with temporal lobe epilepsy. Thus, [(11)C]UCB-J PET imaging is a promising approach for in vivo quantification of synaptic density with several potential applications in diagnosis and therapeutic monitoring of neurological and psychiatric disorders. PMID:27440727

  3. Optical Methods and Instrumentation in Brain Imaging and Therapy

    CERN Document Server

    2013-01-01

    This book provides a comprehensive up-to-date review of optical approaches used in brain imaging and therapy. It covers a variety of imaging techniques including diffuse optical imaging, laser speckle imaging, photoacoustic imaging and optical coherence tomography. A number of laser-based therapeutic approaches are reviewed, including photodynamic therapy, fluorescence guided resection and photothermal therapy. Fundamental principles and instrumentation are discussed for each imaging and therapeutic technique. Represents the first publication dedicated solely to optical diagnostics and therapeutics in the brain Provides a comprehensive review of the principles of each imaging/therapeutic modality Reviews the latest advances in instrumentation for optical diagnostics in the brain Discusses new optical-based therapeutic approaches for brain diseases

  4. A Novel Approach for MRI Brain Images Segmentation

    OpenAIRE

    Abo-Eleneen Z. A; Gamil Abdel-Azim

    2013-01-01

    Segmentation of brain from magnetic resonance (MR) images has important applications in neuroimaging, in particular it facilitates in extracting different brain tissues such as cerebrospinal fluids, white matter and gray matter. That helps in determining the volume of the tissues in three-dimensional brain MR images, which yields in analyzing many neural disorders such as epilepsy and Alzheimer disease. The Fisher information is a measure of the fluctuations in the observations. In a sense, ...

  5. Whole-brain dynamic CT angiography and perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orrison, W.W. [CHW Nevada Imaging Company, Nevada Imaging Centers, Spring Valley, Las Vegas, NV (United States); College of Osteopathic Medicine, Touro University Nevada, Henderson, NV (United States); Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Department of Medical Education, University of Nevada School of Medicine, Reno, NV (United States); Snyder, K.V.; Hopkins, L.N. [Department of Neurosurgery, Millard Fillmore Gates Circle Hospital, Buffalo, NY (United States); Roach, C.J. [School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States); Ringdahl, E.N. [Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV (United States); Nazir, R. [Shifa International Hospital, Islamabad (Pakistan); Hanson, E.H., E-mail: eric.hanson@amigenics.co [College of Osteopathic Medicine, Touro University Nevada, Henderson, NV (United States); Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States)

    2011-06-15

    The availability of whole brain computed tomography (CT) perfusion has expanded the opportunities for analysing the haemodynamic parameters associated with varied neurological conditions. Examples demonstrating the clinical utility of whole-brain CT perfusion imaging in selected acute and chronic ischaemic arterial neurovascular conditions are presented. Whole-brain CT perfusion enables the detection and focused haemodynamic analyses of acute and chronic arterial conditions in the central nervous system without the limitation of partial anatomical coverage of the brain.

  6. Whole-brain dynamic CT angiography and perfusion imaging

    International Nuclear Information System (INIS)

    The availability of whole brain computed tomography (CT) perfusion has expanded the opportunities for analysing the haemodynamic parameters associated with varied neurological conditions. Examples demonstrating the clinical utility of whole-brain CT perfusion imaging in selected acute and chronic ischaemic arterial neurovascular conditions are presented. Whole-brain CT perfusion enables the detection and focused haemodynamic analyses of acute and chronic arterial conditions in the central nervous system without the limitation of partial anatomical coverage of the brain.

  7. A functional magnetic resonance imaging study of human brain in pain-related areas induced by electrical stimulation with different intensities

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2010-01-01

    Full Text Available Background: Pain-related studies have mainly been performed through traditional methods, which lack the rigorous analysis of anatomical locations. Functional magnetic resonance imaging (fMRI is a noninvasive method detecting neural activity, and has the ability to precisely locate related activations in vivo. Moreover, few studies have used painful stimulation of changed intensity to investigate relevant functioning nuclei in the human brain. Aim: This study mainly focused on the pain-related activations induced by electrical stimulation with different intensities using fMRI. Furthermore, the electrophysiological characteristics of different pain-susceptible-neurons were analyzed to construct the pain modulatory network, which was corresponding to painful stimulus of changed intensity. Materials and Methods: Twelve volunteers underwent functional scanning receiving different electrical stimulation. The data were collected and analyzed to generate the corresponding functional activation maps and response time curves related to pain. Results: The common activations were mainly located in several specific regions, including the secondary somatosensory cortex (SII, insula, anterior cingulate cortex (ACC, thalamus, and other cerebral regions. Moreover, innocuous electrical stimulation primarily activated the lateral portions of SII and thalamus, as well as the posterior insula, anterior ACC, whereas noxious electrical stimulation primarily activated the medial portions of SII and thalamus, as well as the anterior insula, the posterior ACC, with larger extensions and greater intensities. Conclusion: Several specified cerebral regions displayed different response patterns during electrical stimulation by means of fMRI, which implied that the corresponding pain-susceptible-neurons might process specific aspects of pain. Elucidation of functions on pain-related regions will help to understand the delicate pain modulation of human brain.

  8. Automated segmentation of three-dimensional MR brain images

    Science.gov (United States)

    Park, Jonggeun; Baek, Byungjun; Ahn, Choong-Il; Ku, Kyo Bum; Jeong, Dong Kyun; Lee, Chulhee

    2006-03-01

    Brain segmentation is a challenging problem due to the complexity of the brain. In this paper, we propose an automated brain segmentation method for 3D magnetic resonance (MR) brain images which are represented as a sequence of 2D brain images. The proposed method consists of three steps: pre-processing, removal of non-brain regions (e.g., the skull, meninges, other organs, etc), and spinal cord restoration. In pre-processing, we perform adaptive thresholding which takes into account variable intensities of MR brain images corresponding to various image acquisition conditions. In segmentation process, we iteratively apply 2D morphological operations and masking for the sequences of 2D sagittal, coronal, and axial planes in order to remove non-brain tissues. Next, final 3D brain regions are obtained by applying OR operation for segmentation results of three planes. Finally we reconstruct the spinal cord truncated during the previous processes. Experiments are performed with fifteen 3D MR brain image sets with 8-bit gray-scale. Experiment results show the proposed algorithm is fast, and provides robust and satisfactory results.

  9. Magnetic resonance images of the brain of a dwarf sperm whale (Kogia simus).

    Science.gov (United States)

    Marino, L; Sudheimer, K; Pabst, D A; McLellan, W A; Johnson, J I

    2003-07-01

    Cetacean (dolphin, whale and porpoise) brains are among the least studied mammalian brains because of the difficulty of collecting and histologically preparing such relatively rare and large specimens. Among cetaceans, there exist relatively few studies of the brain of the dwarf sperm whale (Kogia simus). Magnetic resonance imaging (MRI) offers a means of observing the internal structure of the brain when traditional histological procedures are not practical. Therefore, MRI has become a critical tool in the study of the brain of cetaceans and other large species. This paper represents the first MRI-based anatomically labelled three-dimensional description of the dwarf sperm whale brain. Coronal plane sections of the brain of a sub-adult dwarf sperm whale were originally acquired and used to produce virtual digital scans in the other two orthogonal spatial planes. A sequential set of images in all three planes has been anatomically labelled and displays the proportions and positions of major neuroanatomical features. PMID:12892406

  10. Three modality image registration of brain SPECT/CT and MR images for quantitative analysis of dopamine transporter imaging

    Science.gov (United States)

    Yamaguchi, Yuzuho; Takeda, Yuta; Hara, Takeshi; Zhou, Xiangrong; Matsusako, Masaki; Tanaka, Yuki; Hosoya, Kazuhiko; Nihei, Tsutomu; Katafuchi, Tetsuro; Fujita, Hiroshi

    2016-03-01

    Important features in Parkinson's disease (PD) are degenerations and losses of dopamine neurons in corpus striatum. 123I-FP-CIT can visualize activities of the dopamine neurons. The activity radio of background to corpus striatum is used for diagnosis of PD and Dementia with Lewy Bodies (DLB). The specific activity can be observed in the corpus striatum on SPECT images, but the location and the shape of the corpus striatum on SPECT images only are often lost because of the low uptake. In contrast, MR images can visualize the locations of the corpus striatum. The purpose of this study was to realize a quantitative image analysis for the SPECT images by using image registration technique with brain MR images that can determine the region of corpus striatum. In this study, the image fusion technique was used to fuse SPECT and MR images by intervening CT image taken by SPECT/CT. The mutual information (MI) for image registration between CT and MR images was used for the registration. Six SPECT/CT and four MR scans of phantom materials are taken by changing the direction. As the results of the image registrations, 16 of 24 combinations were registered within 1.3mm. By applying the approach to 32 clinical SPECT/CT and MR cases, all of the cases were registered within 0.86mm. In conclusions, our registration method has a potential in superimposing MR images on SPECT images.

  11. Intracranial Hemorrhage Annotation for CT Brain Images

    Directory of Open Access Journals (Sweden)

    Tong Hau Lee

    2011-01-01

    Full Text Available In this paper, we created a decision-making model to detect intracranial hemorrhage and adopted Expectation Maximization(EM segmentation to segment the Computed Tomography (CT images. In this work, basically intracranial hemorrhage is classified into two main types which are intra-axial hemorrhage and extra-axial hemorrhage. In order to ease classification, contrast enhancement is adopted to finetune the contrast of the hemorrhage. After that, k-means is applied to group the potential and suspicious hemorrhagic regions into one cluster. The decision-making process is to identify whether the suspicious regions are hemorrhagic regions or non-regions of interest. After the hemorrhagic detection, the images are segmented into brain matter and cerebrospinal fluid (CSF by using expectation-maximization (EM segmentation. The acquired experimental results are evaluated in terms of recall and precision. The encouraging results have been attained whereby the proposed system has yielded 0.9333 and 0.8880 precision for extra-axial and intra-axial hemorrhagic detection respectively, whereas recall rate obtained is 0.9245 and 0.8043 for extra-axial and intra-axial hemorrhagic detection respectively.

  12. Neuroelectrical brain imaging tools for the study of the efficacy of TV advertising stimuli and their application to neuromarketing

    CERN Document Server

    Vecchiato, Giovanni; Trettel, Arianna; Babiloni, Fabio

    2013-01-01

    In this book the authors describe their original research on the potential of both standard and high-resolution electroencephalography (EEG) for analyzing brain activity in response to TV advertising. When engineering techniques, neuroscience concepts and marketing stimuli converge in one research field, known as neuromarketing, various theoretical and practical aspects need to be considered. The book introduces and discusses those aspects in detail, while showing several experiments performed by the authors during their attempts to measure both the cognitive activity and emotional involvement of the test subjects. In these experiments, the authors apply simultaneous EEG, galvanic skin response and heart rate monitoring, and show how significant variations of these variables can be associated with attention to, memorization or enjoyment of the presented stimuli. In particular, this book shows the central role of statistical analysis in recovering significant information on the scalp and cortical areas involve...

  13. Round Randomized Learning Vector Quantization for Brain Tumor Imaging

    Science.gov (United States)

    2016-01-01

    Brain magnetic resonance imaging (MRI) classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ) is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function.

  14. Round Randomized Learning Vector Quantization for Brain Tumor Imaging

    Directory of Open Access Journals (Sweden)

    Siti Norul Huda Sheikh Abdullah

    2016-01-01

    Full Text Available Brain magnetic resonance imaging (MRI classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function.

  15. Musical training-induced functional reorganization of the adult brain: functional magnetic resonance imaging and transcranial magnetic stimulation study on amateur string players.

    Science.gov (United States)

    Kim, Dong-Eog; Shin, Min-Jung; Lee, Kyoung-Min; Chu, Kon; Woo, Sung Ho; Kim, Young Ro; Song, Eun-Cheol; Lee, Jun-Won; Park, Seong-Ho; Roh, Jae-Kyu

    2004-12-01

    We used the combined technique of functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) to observe changes that occur in adult brains after the practice of stringed musical instruments. We carried out fMRI on eight volunteers (aged 20-22 years): five novices and three individuals who had discontinued practice for more than 5 years. The motor paradigm contained a repetitive lift-abduction/fall-adduction movement of the left/right little finger, carried out with maximum efforts without pacing. The sensory paradigm was to stimulate the same little finger using a string. In parallel to the fMRI acquisition, TMS motor maps for the little finger were obtained using a frameless stereotactic neuronavigation system. After the baseline study, each participant began to learn a stringed instrument. Newly developed fMRI activations for the left little finger were observed 6 months after practice at multiple brain regions including inferior parietal lobule, premotor area (PMA), left precuneus, right anterior superior temporal gyrus, and posterior middle temporal gyrus. In contrast, new activations were rarely observed for the right little finger. The TMS study revealed new motor representation sites for the left little finger in the PMA or supplementary motor area (SMA). Unexpectedly, TMS motor maps for the right little finger were reduced significantly. Among new fMRI activations for sensory stimuli of the left little finger, the cluster of highest activation was located in the SMA. Collectively, these data provide insight into orchestrated reorganization of the sensorimotor and temporal association cortices contributing to the skillful fingering and musical processing after the practice of playing stringed instruments. PMID:15449354

  16. Brain Basics

    Medline Plus

    Full Text Available ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses ... depression experience when starting treatment. Gene Studies Advanced technologies are also making it faster, easier, and more ...

  17. Study of 99m Tc-TRODAT-1 Imaging on Human Brain with Children Autism by Single Photon Emission Computed Tomography

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: Evaluate the application values of 99mTc-2 β [ N, N'-bis( 2-mercaptoethy1 ) ethylenediamino ] methyl, 3 β -(4-chlorophenyl) tropane ( TRODAT-1 ) dopamine transporter (DAT) SPECT imaging in children autism, and offer the academic foundation to etiology, mechanism and clinical therapy of autism. Methods:Ten autistic children and ten healthy controls were examined with 99mTc-TRODAT-1 DAT SPECT imaging.Striatal specific uptake of 99mTc-TRODAT-1 was calculated with region of interest analysis according to the ratios between striatum and cerebellum [ (STR-BKG)/BKG]. Results:There was no difference in semiquantitative dopamine transporter between bilateral striatum in autistic children ( P = 0. 562) and in normal controls ( P = 0. 573 ); dopamine transporter in brain of patients with autism increased more significantly than that in normal controls ( P = 0. 017 ). Conclusion: Dopaminergic nervous system is dysfunction in human brain with children autism, and DAT 99mTc-TRODAT-1 SPECT imaging on human brain will help the imaging diagnosis of children autism.

  18. Diffusion Kurtosis Imaging Detects Microstructural Alterations in Brain of α-Synuclein Overexpressing Transgenic Mouse Model of Parkinson's Disease: A Pilot Study.

    Science.gov (United States)

    Khairnar, Amit; Latta, Peter; Drazanova, Eva; Ruda-Kucerova, Jana; Szabó, Nikoletta; Arab, Anas; Hutter-Paier, Birgit; Havas, Daniel; Windisch, Manfred; Sulcova, Alexandra; Starcuk, Zenon; Rektorova, Irena

    2015-11-01

    Evidence suggests that accumulation and aggregation of α-synuclein contribute to the pathogenesis of Parkinson's disease (PD). The aim of this study was to evaluate whether diffusion kurtosis imaging (DKI) will provide a sensitive tool for differentiating between α-synuclein-overexpressing transgenic mouse model of PD (TNWT-61) and wild-type (WT) littermates. This experiment was designed as a proof-of-concept study and forms a part of a complex protocol and ongoing translational research. Nine-month-old TNWT-61 mice and age-matched WT littermates underwent behavioral tests to monitor motor impairment and MRI scanning using 9.4 Tesla system in vivo. Tract-based spatial statistics (TBSS) and the DKI protocol were used to compare the whole brain white matter of TNWT-61 and WT mice. In addition, region of interest (ROI) analysis was performed in gray matter regions such as substantia nigra, striatum, hippocampus, sensorimotor cortex, and thalamus known to show higher accumulation of α-synuclein. For the ROI analysis, both DKI (6 b-values) protocol and conventional (2 b-values) diffusion tensor imaging (cDTI) protocol were used. TNWT-61 mice showed significant impairment of motor coordination. With the DKI protocol, mean, axial, and radial kurtosis were found to be significantly elevated, whereas mean and radial diffusivity were decreased in the TNWT-61 group compared to that in the WT controls with both TBSS and ROI analysis. With the cDTI protocol, the ROI analysis showed decrease in all diffusivity parameters in TNWT-61 mice. The current study provides evidence that DKI by providing both kurtosis and diffusivity parameters gives unique information that is complementary to cDTI for in vivo detection of pathological changes that underlie PD-like symptomatology in TNWT-61 mouse model of PD. This result is a crucial step in search for a candidate diagnostic biomarker with translational potential and relevance for human studies. PMID:26153486

  19. Quantitative analysis of human brain MR images at ultrahigh field strength

    OpenAIRE

    Doan, Nhat Trung

    2014-01-01

    T2*-weighted imaging provides a non-invasive means to study susceptibility changes of substances such as myelin and iron in the brain. Particularly, phase images show an increased sensitivity to magnetic susceptibility differences with increased field strengths. The primary goal of the thesis was to develop methods for quantitative analysis of human brain T2*-weighted images at ultrahigh field strength. Additionally, it was also aimed to investigate the use of textural features derived from w...

  20. Imaging of sodium in the brain: a brief review.

    Science.gov (United States)

    Shah, N Jon; Worthoff, Wieland A; Langen, Karl-Josef

    2016-02-01

    Sodium-based MRI plays a vital role in the study of metabolism and can unveil valuable information about emerging and existing pathology--in particular in the human brain. Sodium is the second most abundant MR active nucleus in living tissue and, due to its quadrupolar nature, has magnetic properties not common to conventional proton MRI, which can reveal further insights, such as information on the compartmental distribution of intra- and extracellular sodium. Nevertheless, the use of sodium nuclei for imaging comes at the expense of a lower sensitivity and significantly reduced relaxation times, making in vivo sodium studies feasible only at high magnetic field strength and by the use of dedicated pulse sequences. Hybrid imaging combining sodium MRI and positron emission tomography (PET) simultaneously is a novel and promising approach to access information on dynamic metabolism with much increased, PET-derived specificity. Application of this new methodology is demonstrated herein using examples from tumour imaging.

  1. Study of functional brain imaging for bilingual language cognition%双语认知的功能性脑显像研究

    Institute of Scientific and Technical Information of China (English)

    孙达

    2008-01-01

    双语和多语的大脑语言认知功能研究涉及语言神经表现,是一个跨学科的课题,需要神经解剖、神经功能、生物化学、精神和语言的不同水平的鉴别和区分.此外,特异的因素,如年龄、获得的方式和环境因素也影响神经表现.功能性脑显像,如PET、SPECT和功能性MRI可以探查双语受试者的语言神经表现,阐明大脑对双语认知的机制.功能性脑显像的研究显示,虽然两种语言的脑认知机制分享共同的成分,但与受试者母语比较,与第二语言有关的脑活性的类型不尽相同,表明两种不相关语言的词记忆处理既有共同的神经系统,也有不同的皮层区介导.不同的活性类型不仅与所使用的语言不同相关,也归因于获得的年龄或熟练水平,而达到熟练程度比获得的年龄更重要.PET研究显示,手语和口语似乎定位在同样的脑区,具有类似的局部脑血流类型;但手语还取决于空间信息,当健康正常的双语受试者用视觉方法感知手语时,功能解剖与既含有听觉又含有视觉成分的语言处理重叠.%Bilingual and multilingual brain studies of language recognition is an interdisciplinary subject which needs to identify different levels involved in the neural representation of languages, such as neuroanatomical, neurofunctional, biochemical, psychological and linguistic levels. Furthermore, specific factors such as age, manner of acquisition and environmental factors seem to affect the neural representation. Functional brain imaging, such as PET, SPECT and functional MRI can explore the neurelinguisties representation of bilingualism in the brain in subjects, and elucidate the neuronal mechanisms of bilingual language processing. Functional imaging methods show differences in the pattern of cerebral activation associated with a second language compared with the subject's native language. It shows that verbal memory processing in two unrelated languages is

  2. Pitfalls and Limitations of PET/CT in Brain Imaging.

    Science.gov (United States)

    Salmon, Eric; Bernard Ir, Claire; Hustinx, Roland

    2015-11-01

    Neurologic applications were at the forefront of PET imaging when the technique was developed in the mid-1970s. Although oncologic indications have become prominent in terms of number of studies performed worldwide, neurology remains a major field in which functional imaging provides unique information, both for clinical and research purposes. The evaluation of glucose metabolism using FDG remains the most frequent exploration, but in recent years, alternative radiotracers have been developed, including fluorinated amino acid analogues for primary brain tumor imaging and fluorinated compounds for assessing the amyloid deposits in patients with suspected Alzheimer disease. As the brain is enclosed in the skull, which presents fixed landmarks, it is relatively easy to coregister images obtained with various cross-sectional imaging methods, either functional or anatomical, with a relatively high accuracy and robustness. Nevertheless, PET in neurology has fully benefited from the advent of hybrid imaging. Attenuation and scatter correction is now much faster and equally accurate, using CT as compared with the traditional transmission scan using an external radioactive source. The perfect coregistration with the CT data, which is now systematically performed, also provides its own set of valuable information, for instance regarding cerebral atrophy. However, hybrid imaging in neurology comes with pitfalls and limitations, in addition to those that are well known, for example, blood glucose levels or psychotropic drugs that greatly affect the physiological FDG uptake. Movements of the patient's head, either during the PET acquisition or between the PET and the CT acquisitions will generate artifacts that may be very subtle yet lead to erroneous interpretation of the study. Similarly, quantitative analysis, such as voxel-based analyses, may prove very helpful in improving the diagnostic accuracy and the reproducibility of the reading, but a wide variety of artifacts may

  3. The fMRI analysis of brain activation in response to face image affected by background images

    International Nuclear Information System (INIS)

    The stimuli of a face images expressing fear induce the activation in the medial temporal lobe was reported in previous studies. In particular, it was reported that face image expressing fear activated the amygdala and hippo-campus area of brain. In these studies, no background images were used with facial stimuli. However, normal day-to-day images always have a background. We investigated the effect of combining face images expressing fear and different background images. As a result, strong activation was detected in the amygdala and hippocampus area when the lightning background image was used. But strong activation was not detected when the fire background image was used. From the results of questionnaire rating the impression of possibility of experiencing the situation of shown images, it is thought that this difference of impression of possibility made the difference of empathy and caused the difference of brain activation. (author)

  4. Diffusion Tensor Imaging Of the Brain in Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Jo Ann V. Antenor-Dorsey

    2014-10-01

    Full Text Available Individuals with Type 1 diabetes mellitus (T1DM are required to carefully manage their insulin dosing, dietary intake, and activity levels in order to maintain optimal blood sugar levels. Over time, exposure to hyperglycaemia is known to cause significant damage to the peripheral nervous system, but its impact on the central nervous system has been less well studied. Researchers have begun to explore the cumulative impact of commonly experienced blood glucose fluctuations on brain structure and function in patient populations. To date, these studies have typically used magnetic resonance imaging to measure regional grey and white matter volumes across the brain. However, newer methods, such as diffusion tensor imaging (DTI can measure the microstructural properties of white matter, which can be more sensitive to neurological effects than standard volumetric measures. Studies are beginning to use DTI to understand the impact of T1DM on white matter structure in the human brain. This work, its implications, future directions, and important caveats, are the focus of this review.

  5. Automated in situ brain imaging for mapping the Drosophila connectome.

    Science.gov (United States)

    Lin, Chi-Wen; Lin, Hsuan-Wen; Chiu, Mei-Tzu; Shih, Yung-Hsin; Wang, Ting-Yuan; Chang, Hsiu-Ming; Chiang, Ann-Shyn

    2015-01-01

    Mapping the connectome, a wiring diagram of the entire brain, requires large-scale imaging of numerous single neurons with diverse morphology. It is a formidable challenge to reassemble these neurons into a virtual brain and correlate their structural networks with neuronal activities, which are measured in different experiments to analyze the informational flow in the brain. Here, we report an in situ brain imaging technique called Fly Head Array Slice Tomography (FHAST), which permits the reconstruction of structural and functional data to generate an integrative connectome in Drosophila. Using FHAST, the head capsules of an array of flies can be opened with a single vibratome sectioning to expose the brains, replacing the painstaking and inconsistent brain dissection process. FHAST can reveal in situ brain neuroanatomy with minimal distortion to neuronal morphology and maintain intact neuronal connections to peripheral sensory organs. Most importantly, it enables the automated 3D imaging of 100 intact fly brains in each experiment. The established head model with in situ brain neuroanatomy allows functional data to be accurately registered and associated with 3D images of single neurons. These integrative data can then be shared, searched, visualized, and analyzed for understanding how brain-wide activities in different neurons within the same circuit function together to control complex behaviors.

  6. Meta-analysis of diffusion tensor imaging (DTI) studies shows altered fractional anisotropy occurring in distinct brain areas in association with depression

    LENUS (Irish Health Repository)

    Murphy, Melissa L

    2011-09-27

    Abstract Fractional anisotropy anomalies occurring in the white matter tracts in the brains of depressed patients may reflect microstructural changes underlying the pathophysiology of this disorder. We conducted a meta-analysis of fractional anisotropy abnormalities occurring in major depressive disorder using voxel-based diffusion tensor imaging studies. Using the Embase, PubMed and Google Scholar databases, 89 relevant data sets were identified, of which 7 (including 188 patients with major depressive disorder and 221 healthy controls) met our inclusion criteria. Authors were contacted to retrieve any additional data required. Coordinates were extracted from clusters of significant white matter fractional anisotropy differences between patients and controls. Relevant demographic, clinical and methodological variables were extracted from each study or obtained directly from authors. The meta-analysis was carried out using Signed Differential Mapping. Patients with depression showed decreased white matter fractional anisotropy values in the superior longitudinal fasciculus and increased fractional anisotropy values in the fronto-occipital fasciculus compared to controls. Using quartile and jackknife sensitivity analysis, we found that reduced fractional anisotropy in the left superior longitudinal fasciculus was very stable, with increases in the right fronto-occipital fasciculus driven by just one study. In conclusion, our meta-analysis revealed a significant reduction in fractional anisotropy values in the left superior longitudinal fasciculus, which may ultimately play an important role in the pathology of depression.

  7. Meta-analysis of diffusion tensor imaging studies shows altered fractional anisotropy occurring in distinct brain areas in association with depression.

    LENUS (Irish Health Repository)

    Murphy, Melissa L

    2011-09-01

    Fractional anisotropy anomalies occurring in the white matter tracts in the brains of depressed patients may reflect microstructural changes underlying the pathophysiology of this disorder. We conducted a meta-analysis of fractional anisotropy abnormalities occurring in major depressive disorder using voxel-based diffusion tensor imaging studies. Using the Embase, PubMed and Google Scholar databases, 89 relevant data sets were identified, of which 7 (including 188 patients with major depressive disorder and 221 healthy controls) met our inclusion criteria. Authors were contacted to retrieve any additional data required. Coordinates were extracted from clusters of significant white matter fractional anisotropy differences between patients and controls. Relevant demographic, clinical and methodological variables were extracted from each study or obtained directly from authors. The meta-analysis was carried out using Signed Differential Mapping. Patients with depression showed decreased white matter fractional anisotropy values in the superior longitudinal fasciculus and increased fractional anisotropy values in the fronto-occipital fasciculus compared to controls. Using quartile and jackknife sensitivity analysis, we found that reduced fractional anisotropy in the left superior longitudinal fasciculus was very stable, with increases in the right fronto-occipital fasciculus driven by just one study. In conclusion, our meta-analysis revealed a significant reduction in fractional anisotropy values in the left superior longitudinal fasciculus, which may ultimately play an important role in the pathology of depression.

  8. Effect of Harderian adenectomy on the statistical analyses of mouse brain imaging using positron emission tomography.

    Science.gov (United States)

    Kim, Minsoo; Woo, Sang-Keun; Yu, Jung Woo; Lee, Yong Jin; Kim, Kyeong Min; Kang, Joo Hyun; Eom, Kidong; Nahm, Sang-Soep

    2014-01-01

    Positron emission tomography (PET) using 2-deoxy-2-[(18)F] fluoro-D-glucose (FDG) as a radioactive tracer is a useful technique for in vivo brain imaging. However, the anatomical and physiological features of the Harderian gland limit the use of FDG-PET imaging in the mouse brain. The gland shows strong FDG uptake, which in turn results in distorted PET images of the frontal brain region. The purpose of this study was to determine if a simple surgical procedure to remove the Harderian gland prior to PET imaging of mouse brains could reduce or eliminate FDG uptake. Measurement of FDG uptake in unilaterally adenectomized mice showed that the radioactive signal emitted from the intact Harderian gland distorts frontal brain region images. Spatial parametric measurement analysis demonstrated that the presence of the Harderian gland could prevent accurate assessment of brain PET imaging. Bilateral Harderian adenectomy efficiently eliminated unwanted radioactive signal spillover into the frontal brain region beginning on postoperative Day 10. Harderian adenectomy did not cause any post-operative complications during the experimental period. These findings demonstrate the benefits of performing a Harderian adenectomy prior to PET imaging of mouse brains.

  9. Brains studying brains: look before you think in vision

    OpenAIRE

    Zhaoping, L.

    2016-01-01

    Using our own brains to study our brains is extraordinary. For example, in vision this makes us naturally blind to our own blindness, since our impression of seeing our world clearly is consistent with our ignorance of what we do not see. Our brain employs its 'conscious' part to reason and make logical deductions using familiar rules and past experience. However, human vision employs many 'subconscious' brain parts that follow rules alien to our intuition. Our blindness to our unknown unknow...

  10. Spontaneous brain activity in chronic smokers revealed by fractional amplitude of low frequency fluctuation analysis: a resting state functional magnetic resonance imaging study

    Institute of Scientific and Technical Information of China (English)

    Chu Shuilian; Xiao Dan; Wang Shuangkun; Peng Peng; Xie Teng; He Yong; Wang Chen

    2014-01-01

    Background Nicotine is primarily rsponsible for the highly addictive properties of cigarettes.Similar to other substances,nicotine dependence is related to many important brain regions,particular in mesolimbic reward circuit.This study was to further reveal the alteration of brain function activity during resting state in chronic smokers by fractional amplitude of low frequency fluctuation (fALFF) based on functional magnetic resonance imaging (fMRI),in order to provide the evidence of neurobiological mechanism of smoking.Methods This case control study involved twenty healthy smokers and nineteen healthy nonsmokers recruited by advertisement.Sociodemographic,smoking related characteristics and fMRI images were collected and the data analyzed.Results Compared with nonsmokers,smokers showed fALFF increased significantly in the left middle occipital gyrus,left limbic lobe and left cerebellum posterior lobe but decreases in the right middle frontal gyrus,right superior temporal gyrus,right extra nuclear,left postcentral gyrus and left cerebellum anterior lobe (cluster size >100 voxels).Compared with light smokers (pack years ≤20),heavy smokers (pack years >20) showed fALFF increased significantly in the right superior temporal gyrus,right precentral gyrus,and right occipital lobe/cuneus but decreased in the right/left limbic lobe/cingulate gyrus,right/left frontal lobe/sub gyral,right/left cerebellum posterior lobe (cluster size >50 voxels).Compared with nonsevere nicotine dependent smokers (Fagerstr(o)m test for nicotine dependence,score ≤6),severe nicotine dependent smokers (score >6) showed fALFF increased significantly in the right/left middle frontal gyrus,right superior frontal gyrus and left inferior parietal lobule but decreased in the left limbic lobe/cingulate gyrus (duster size >25 voxels).Conclusions In smokers during rest,the activity of addiction related regions were increased and the activity of smoking feeling,memory,related regions were

  11. A Novel Approach for MRI Brain Images Segmentation

    Directory of Open Access Journals (Sweden)

    Abo-Eleneen Z. A

    2013-03-01

    Full Text Available Segmentation of brain from magnetic resonance (MR images has important applications in neuroimaging, in particular it facilitates in extracting different brain tissues such as cerebrospinal fluids, white matter and gray matter. That helps in determining the volume of the tissues in three-dimensional brain MR images, which yields in analyzing many neural disorders such as epilepsy and Alzheimer disease. The Fisher information is a measure of the fluctuations in the observations. In a sense, the Fisher information of an image specifies the quality of the image. In this paper, we developed a new thresholding method using the Fisher information measure and intensity contrast to segment medical images. It is the weighted sum of the Fisher information measure and intensity contrast between the object and background. This technique is a powerful method for noisy image segmentation. The method applied on a normal MR brain images and a glioma MR brain images. Experimental results show that the use of the Fisher information effectively segmented MR brain images.

  12. Diffusion tensor imaging and 1H-MR spectroscopy study on radiation-induced injury of the brain after nasopharyngeal carcinoma radiotherapy

    International Nuclear Information System (INIS)

    Objective: To investigate the changes of brain tissue in bilateral temporal lobes at different stages after nasopharyngeal carcinoma radiotherapy by diffusion tensor imaging (DTI) and 1H-MR spectroscopy (1H-MRS). Methods: DTI and 1H-MRS were performed in 48 patients with nasopharyngeal carcinoma, in which conventional MRI revealed normal findings after radiotherapy. Twenty-four healthy controls were enrolled in this study and underwent the same MR scanning, After the image processing and spectral analysis, apparent diffusion coefficient (ADC), fractional anisotropy (FA) and 3 eigenvalue λ1, λ2, λ3 of DTI and the NAA/Cho, NAA/Cr, Cho/Cr of 1H-MRS were measured in bilateral temporal lobes. Forty-eight NPC patients were divided into 3 groups [less than 6 months (16 cases), 6 to 12 months (6 cases) and more than 12 months(26 cases) after radiotherapy] according to different stages of radiation- induced injury of brain, each group's DTI and 1H-MRS data were measured respectively and one-way ANOVA was applied to analyze each parameter. Results: The FA value of each test group (less than 6 months, 6 to 12 months and more than 12 months) and the control group were 0.445±0.017, 0.460± 0.016, 0.461±0.025, 0.473±0.023 respectively. The ADC values of each group were (8.51±0.43) × 10-4, (8.48±0.34) × 10-4, (8.40±0.33) × 10-4, (8.68±0.57) × 10-4 mm2/s respectively. And the maximum eigenvalue λ1 of each group were (1.251±0.065) × 10-3, (1.293±0.051) × 10-3, (1.317± 0.074) × 10-3, (1.350±0.091) × 10-3 mm2/s. The three indicators were significantly different among groups (F=10.873, 3.399, 9.750 respectively, P2, λ3 values showed no significant difference among the groups. The NAA/Cho of 1H-MRS of each groups were 0.910±0.112, 0.972±0.101, 1.060± 0.095, 1.261±0.105 respectively, and the NAA/Cr were 1.212±0.236, 1.208±0.183, 1.228± 0.236, 1.435±0.225 respectively. Both of them had significant differences among groups (F=52.840, 8.176 respectively, P1H

  13. A Comparative Study of Segmentation Methods for Brain tumor Detection

    OpenAIRE

    Smita Haribhau Zol

    2012-01-01

    This paper introduces a comparative study of three methods of automated medical image segmentation which can be used to locate volumetric objects such asbrain tumor in Magnetic Resonance Imaging (MRI) images and they are - Automated Medical Image Segmentation Using a New Deformable Surface Model, Brain Tumor Detection Using Segmentation Based on Neuro Fuzzy Technique, An Image Segmentation Method Based on a Discrete Version of the Topological Derivative.

  14. Automated delineation of stroke lesions using brain CT images

    Directory of Open Access Journals (Sweden)

    Céline R. Gillebert

    2014-01-01

    Full Text Available Computed tomographic (CT images are widely used for the identification of abnormal brain tissue following infarct and hemorrhage in stroke. Manual lesion delineation is currently the standard approach, but is both time-consuming and operator-dependent. To address these issues, we present a method that can automatically delineate infarct and hemorrhage in stroke CT images. The key elements of this method are the accurate normalization of CT images from stroke patients into template space and the subsequent voxelwise comparison with a group of control CT images for defining areas with hypo- or hyper-intense signals. Our validation, using simulated and actual lesions, shows that our approach is effective in reconstructing lesions resulting from both infarct and hemorrhage and yields lesion maps spatially consistent with those produced manually by expert operators. A limitation is that, relative to manual delineation, there is reduced sensitivity of the automated method in regions close to the ventricles and the brain contours. However, the automated method presents a number of benefits in terms of offering significant time savings and the elimination of the inter-operator differences inherent to manual tracing approaches. These factors are relevant for the creation of large-scale lesion databases for neuropsychological research. The automated delineation of stroke lesions from CT scans may also enable longitudinal studies to quantify changes in damaged tissue in an objective and reproducible manner.

  15. Pattern recognition on brain magnetic resonance imaging in alpha dystroglycanopathies

    Directory of Open Access Journals (Sweden)

    Bindu Parayil

    2010-01-01

    Full Text Available Alpha dystroglycanopathies are heterogeneous group of disorders both phenotypically and genetically. A subgroup of these patients has characteristic brain imaging findings. Four patients with typical imaging findings of alpha dystroglycanopathy are reported. Phenotypic features included: global developmental delay, contractures, hypotonia and oculomotor abnormalities in all. Other manifestations were consanguinity (3, seizures (3, macrocephaly (1, microcephaly (3, retinal changes (2 and hypogenitalism (2. Magnetic resonance imaging (MRI of the brain revealed polymicrogyria, white matter changes, pontine hypoplasia, and subcortical cerebellar cysts in all the patients, ventriculomegaly, callosal abnormalities, and absent septum pellucidum in two and Dandy -Walker variant malformation in three. Magnetic resonace imaging of the first cousin of one the patient had the same characteristic imaging features. Brain imaging findings were almost identical despite heterogeneity in clinical presentation and histopathological features. Pattern recognition of MR imaging features may serve as a clue to the diagnosis of alpha dystroglycanopathy.

  16. Role of Hybrid Brain Imaging in Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Amer M. Burhan

    2015-12-01

    Full Text Available This is a focused review of imaging literature to scope the utility of hybrid brain imaging in neuropsychiatric disorders. The review focuses on brain imaging modalities that utilize hybrid (fusion techniques to characterize abnormal brain molecular signals in combination with structural and functional changes that have been observed in neuropsychiatric disorders. An overview of clinical hybrid brain imaging technologies for human use is followed by a selective review of the literature that conceptualizes the use of these technologies in understanding basic mechanisms of major neuropsychiatric disorders and their therapeutics. Neuronal network abnormalities are highlighted throughout this review to scope the utility of hybrid imaging as a potential biomarker for each disorder.

  17. Visualizing the blind brain: brain imaging of visual field defects from early recovery to rehabilitation techniques.

    Science.gov (United States)

    Urbanski, Marika; Coubard, Olivier A; Bourlon, Clémence

    2014-01-01

    Visual field defects (VFDs) are one of the most common consequences observed after brain injury, especially after a stroke in the posterior cerebral artery territory. Less frequently, tumors, traumatic brain injury, brain surgery or demyelination can also determine various visual disabilities, from a decrease in visual acuity to cerebral blindness. Visual field defects is a factor of bad functional prognosis as it compromises many daily life activities (e.g., obstacle avoidance, driving, and reading) and therefore the patient's quality of life. Spontaneous recovery seems to be limited and restricted to the first 6 months, with the best chance of improvement at 1 month. The possible mechanisms at work could be partly due to cortical reorganization in the visual areas (plasticity) and/or partly to the use of intact alternative visual routes, first identified in animal studies and possibly underlying the phenomenon of blindsight. Despite processes of early recovery, which is rarely complete, and learning of compensatory strategies, the patient's autonomy may still be compromised at more chronic stages. Therefore, various rehabilitation therapies based on neuroanatomical knowledge have been developed to improve VFDs. These use eye-movement training techniques (e.g., visual search, saccadic eye movements), reading training, visual field restitution (the Vision Restoration Therapy, VRT), or perceptual learning. In this review, we will focus on studies of human adults with acquired VFDs, which have used different imaging techniques (Positron Emission Tomography, PET; Diffusion Tensor Imaging, DTI; functional Magnetic Resonance Imaging, fMRI; Magneto Encephalography, MEG) or neurostimulation techniques (Transcranial Magnetic Stimulation, TMS; transcranial Direct Current Stimulation, tDCS) to show brain activations in the course of spontaneous recovery or after specific rehabilitation techniques.

  18. Visualizing the blind brain: brain imaging of visual field defects from early recovery to rehabilitation techniques

    Directory of Open Access Journals (Sweden)

    Marika eUrbanski

    2014-09-01

    Full Text Available Visual field defects (VFDs are one of the most common consequences observed after brain injury, especially after a stroke in the posterior cerebral artery territory. Less frequently, tumours, traumatic brain injury, brain surgery or demyelination can also determine various visual disabilities, from a decrease in visual acuity to cerebral blindness. VFD is a factor of bad functional prognosis as it compromises many daily life activities (e.g., obstacle avoidance, driving, and reading and therefore the patient’s quality of life. Spontaneous recovery seems to be limited and restricted to the first six months, with the best chance of improvement at one month. The possible mechanisms at work could be partly due to cortical reorganization in the visual areas (plasticity and/or partly to the use of intact alternative visual routes, first identified in animal studies and possibly underlying the phenomenon of blindsight. Despite processes of early recovery, which is rarely complete, and learning of compensatory strategies, the patient’s autonomy may still be compromised at more chronic stages. Therefore, various rehabilitation therapies based on neuroanatomical knowledge have been developed to improve VFDs. These use eye-movement training techniques (e.g., visual search, saccadic eye movements, reading training, visual field restitution (the Vision Restoration Therapy, VRT, or perceptual learning. In this review, we will focus on studies of human adults with acquired VFDs, which have used different imaging techniques (Positron Emission Tomography: PET, Diffusion Tensor Imaging: DTI, functional Magnetic Resonance Imaging: fMRI, MagnetoEncephalography: MEG or neurostimulation techniques (Transcranial Magnetic Stimulation: TMS; transcranial Direct Current Stimulation, tDCS to show brain activations in the course of spontaneous recovery or after specific rehabilitation techniques.

  19. Change over time in brain computed tomographic and magnetic resonance imaging findings in healthy elderly persons. A 10 year prospective study

    International Nuclear Information System (INIS)

    Early detection, treatment and prevention of dementia have become increasingly important as the population ages. I have performed a follow-up study of changes in the brains of healthy elderly persons with computed tomography (CT) and magnetic resonance imaging (MRI) since 1982. One hundred thirty-three healthy elderly volunteers were first examined in 1982 with CT or MRI, electroencephalography, the Benton Visual Retention Test (BVRT), blood pressure measurement, and interview. Subsequent examinations were done in 1986, 1989, and 1992. On CT, microinfarctions were found in 15.0% of subjects in 1982 and in 13.0% in 1986, and periventricular lucency (PVL) was found in 6.0% and 8.3%. The most frequent findings were vascular changes, which were observed in six persons (5.6%), followed by PVL, which was found in four persons (3.7%). Thus, vascular changes became more pronounced during the follow-up period. Lesions with high signal intensity on T2-weighted images (T2HSI) were found in 69.5% of subjects and increased in prevalence with age in the 1989 study. Such T2HSI lesions were found most frequently in the basal ganglia (61.9%), followed by the thalamus (39.0%), parietal lobe (37.0%), temporal lobe (12.7%), and the pons (8.5%). Of these lesions, lacunar infarctions showed low signal intensity on T1-weighted images and were found in 24.6% of subjects; their prevalence also increased with age. Results of BVRT were closely correlated with T2HSI lesions, suggesting that T2HSIs lesions may affect cognitive function. By 1992, 10 years after the start of the study, 34 (25.6%) of subjects had died and 19 (14.3%) had become demented. Subjects were divided into surviving and dead groups and dementia and non-dementia groups. Findings on CT and BVRT in this study have provided clear clinical indices of death and dementia, especially maximal width of third ventricule in impairment of the diagnosis of dementia. (author)

  20. Serotonin transporter and dopamine transporter imaging in the canine brain

    Energy Technology Data Exchange (ETDEWEB)

    Peremans, Kathelijne [Department of Medical Imaging, Faculty of Veterinary Sciences, Ghent University, B-9000 Ghent (Belgium); Goethals, Ingeborg [Division of Nuclear Medicine, University Hospital Ghent, B-9000 Ghent (Belgium); De Vos, Filip [Laboratory of Radiopharmacy, Pharmaceutical Sciences, Ghent University, B-9000 Ghent (Belgium); Dobbeleir, A. [Department of Medical Imaging, Faculty of Veterinary Sciences, Ghent University, B-9000 Ghent (Belgium); Ham, Hamphrey [Division of Nuclear Medicine, University Hospital Ghent, B-9000 Ghent (Belgium); Van Bree, Henri [Department of Medical Imaging, Faculty of Veterinary Sciences, Ghent University, B-9000 Ghent (Belgium); Heeringen, Cees van [Department of Psychiatry and Medical Psychology, Faculty of Medical and Health Sciences, Ghent University, B-9000, Ghent (Belgium); Audenaert, Kurt [Division of Nuclear Medicine, University Hospital Ghent, B-9000 Ghent (Belgium) and Department of Psychiatry and Medical Psychology, Faculty of Medical and Health Sciences, Ghent University, B-9000, Ghent (Belgium)]. E-mail: kurt.audenaert@ugent.be

    2006-10-15

    The serotonergic and dopaminergic systems are involved in a wide range of emotional and behavioral aspects of animals and humans and are involved in many neuropsychiatric disorders. Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are designed to block the 5-HT transporter (SERT), thereby increasing the available 5-HT in the brain. Functional imaging with specific SERT and dopamine transporter (DAT) ligands contributes to the study of the SSRI-transporter interaction. First, we evaluated the feasibility of a canine model in the study of the SERT and DAT with the radioligands [{sup 123}I]-{beta}-CIT and [{sup 123}I]-FP-CIT as well as single-photon emission computed tomography imaging. Second, we studied the effect of SSRIs (sertraline, citalopram and escitalopram) on the SERT and DAT in two dogs. The position of the canine model in the study of the SERT and DAT is discussed and compared with other animal models.

  1. Design of brain imaging agents for positron emission tomography: do large bioconjugates provide an opportunity for in vivo brain imaging?

    Science.gov (United States)

    Schirrmacher, Ralf; Bernard-Gauthier, Vadim; Reader, Andrew; Soucy, Jean-Paul; Schirrmacher, Esther; Wängler, Björn; Wängler, Carmen

    2013-09-01

    The development of brain imaging agents for positron emission tomography and other in vivo imaging modalities mostly relies on small compounds of low MW as a result of the restricted transport of larger molecules, such as peptides and proteins, across the blood-brain barrier. Besides passive transport, only a few active carrier mechanisms, such as glucose transporters and amino acid transporters, have so far been exploited to mediate the accumulation of imaging probes in the brain. An important question for the future is whether some of the abundant active carrier systems located at the blood-brain barrier can be used to shuttle potential, but non-crossing, imaging agents into the brain. What are the biological and chemical constrictions toward such bioconjugates and is it worthwhile to persue such a delivery strategy?

  2. High-resolution in vivo Wistar rodent brain atlas based on T1 weighted image

    Science.gov (United States)

    Huang, Su; Lu, Zhongkang; Huang, Weimin; Seramani, Sankar; Ramasamy, Boominathan; Sekar, Sakthivel; Guan, Cuntai; Bhakoo, Kishore

    2016-03-01

    Image based atlases for rats brain have a significant impact on pre-clinical research. In this project we acquired T1-weighted images from Wistar rodent brains with fine 59μm isotropical resolution for generation of the atlas template image. By applying post-process procedures using a semi-automatic brain extraction method, we delineated the brain tissues from source data. Furthermore, we applied a symmetric group-wise normalization method to generate an optimized template of T1 image of rodent brain, then aligned our template to the Waxholm Space. In addition, we defined several simple and explicit landmarks to corresponding our template with the well known Paxinos stereotaxic reference system. Anchoring at the origin of the Waxholm Space, we applied piece-wise linear transformation method to map the voxels of the template into the coordinates system in Paxinos' stereotoxic coordinates to facilitate the labelling task. We also cross-referenced our data with both published rodent brain atlas and image atlases available online, methodologically labelling the template to produce a Wistar brain atlas identifying more than 130 structures. Particular attention was paid to the cortex and cerebellum, as these areas encompass the most researched aspects of brain functions. Moreover, we adopted the structure hierarchy and naming nomenclature common to various atlases, so that the names and hierarchy structure presented in the atlas are readily recognised for easy use. It is believed the atlas will present a useful tool in rodent brain functional and pharmaceutical studies.

  3. Appropriate Contrast Enhancement Measures for Brain and Breast Cancer Images

    Directory of Open Access Journals (Sweden)

    Suneet Gupta

    2016-01-01

    Full Text Available Medical imaging systems often produce images that require enhancement, such as improving the image contrast as they are poor in contrast. Therefore, they must be enhanced before they are examined by medical professionals. This is necessary for proper diagnosis and subsequent treatment. We do have various enhancement algorithms which enhance the medical images to different extents. We also have various quantitative metrics or measures which evaluate the quality of an image. This paper suggests the most appropriate measures for two of the medical images, namely, brain cancer images and breast cancer images.

  4. Injury and repair in perinatal brain injury: Insights from non-invasive MR perfusion imaging.

    Science.gov (United States)

    Wintermark, Pia

    2015-03-01

    Injury to the developing brain remains an important complication in critically ill newborns, placing them at risk for future neurodevelopment impairments. Abnormal brain perfusion is often a key mechanism underlying neonatal brain injury. A better understanding of how alternations in brain perfusion can affect normal brain development will permit the development of therapeutic strategies that prevent and/or minimize brain injury and improve the neurodevelopmental outcome of these high-risk newborns. Recently, non-invasive MR perfusion imaging of the brain has been successfully applied to the neonatal brain, which is known to be smaller and have lower brain perfusion compared to older children and adults. This article will present an overview of the potential role of non-invasive perfusion imaging by MRI to study maturation, injury, and repair in perinatal brain injury and demonstrate why this perfusion sequence is an important addition to current neonatal imaging protocols, which already include different sequences to assess the anatomy and metabolism of the neonatal brain.

  5. Magnetic resonance elastography in normal human brain: preliminary study

    International Nuclear Information System (INIS)

    Objective: To study the application of magnetic resonance elastography (MRE) in the human brain. Methods: An external force actuator was developed. The actuator was fixed to the head coil. During MRE scan, one side of the actuator was attached to the volunteers' head. Low frequency oscillation was produced by the actuator and generated shear waves propagating into brain tissue. The pulse sequence of MRE was designed. A modified gradient echo sequence was developed with motion sensitizing gradient (MSG) imposed along X, Y or Z direction. Cyclic displacement within brain tissue induced by shear waves caused a measurable phase shift in the received MR signal. From the measured phase shift, the displacement at each voxel could be calculated, and the shear waves within the brain were directly imaged. By adjusting the phase offset, the dynamic propagation of shear waves in a wave cycle was obtained. Phase images were processed with local frequency estimation (LFE) technique to obtain the elasticity images. Shear waves at 100 Hz, 150 Hz, and 200 Hz were applied. Results: The phase images of MRE directly imaged the propagating shear waves within the brain. The direction of the propagation was from surface of the brain to the center. The wavelength of shear waves varied with the change of actuating frequency. The change of wavelength of shear waves in gray and white matter of the brain was identified. The wavelength of shear waves in gray matter was shorter than that in white matter. The elasticity image of the brain revealed that the shear modulus of the white matter was higher than that of gray matter. Conclusion: The phase images of MRE can directly visualize the propagation of shear waves in the brain tissue. The elasticity image of the brain can demonstrate the change of elasticity between gray and white matter. (authors)

  6. Study of technetium chemistry. Pt.9: Stability of the structure and valence of the brain imagings belonging to the analogues of 99Tcm(v)O-BAT

    International Nuclear Information System (INIS)

    The transformation process of valence of the brain imagings belonging to the analogues of Tc(v)O-BAT is studied with the improved CNDO/2 method. It has been proposed that ion X for coordination balance probably exists after the complexation of N2S2 derivatives with the TcO3+ core. Then symmetrical 99Tcm-complex with one positive charge may be formed due to the prior decomplexation of X in solution. Immediately, it will automatically transform to the unsymmetrical and relatively more stable neutral 99Tcm-complex. Therefore, the process of transformation results, in the fact that only one coordinating nitrogen atom retains a proton. The concept of decreasing percent of bond order is suggested as an indicator of retention property of the proton linked to the coordinating nitrogen atom in the process of coordination. The essential factor of different retention property of the protons between two coordinating nitrogen atoms of 99Tcm(v)O-N2S2 complexes and that of 99Tcm(v) complexes is well explained. The results may give some theoretical information for designing the structure of 99Tcm-complex with different valences

  7. Brain Basics

    Medline Plus

    Full Text Available ... Research Modern research tools and techniques are giving scientists a more detailed understanding of the brain than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies ...

  8. Magnetic resonance imaging safety of deep brain stimulator devices.

    Science.gov (United States)

    Oluigbo, Chima O; Rezai, Ali R

    2013-01-01

    Magnetic resonance imaging (MRI) has become the standard of care for the evaluation of different neurological disorders of the brain and spinal cord due to its multiplanar capabilities and excellent soft tissue resolution. With the large and increasing population of patients with implanted deep brain stimulation (DBS) devices, a significant proportion of these patients with chronic neurological diseases require evaluation of their primary neurological disease processes by MRI. The presence of an implanted DBS device in a magnetic resonance environment presents potential hazards. These include the potential for induction of electrical currents or heating in DBS devices, which can result in neurological tissue injury, magnetic field-induced device migration, or disruption of the operational aspects of the devices. In this chapter, we review the basic physics of potential interactions of the MRI environment with implanted DBS devices, summarize results from phantom studies and clinical series, and discuss present recommendations for safe MRI in patients with implanted DBS devices. PMID:24112886

  9. CT and MRI imaging of the brain in MELAS syndrome

    International Nuclear Information System (INIS)

    MELAS syndrome (mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes) is a rare, multisystem disorder which belongs to a group of mitochondrial metabolic diseases. As other diseases in this group, it is inherited in the maternal line. In this report, we discussed a case of a 10-year-old girl with clinical and radiological picture of MELAS syndrome. We would like to describe characteristic radiological features of MELAS syndrome in CT, MRI and MR spectroscopy of the brain and differential diagnosis. The rarity of this disorder and the complexity of its clinical presentation make MELAS patients among the most difficult to diagnose. Brain imaging studies require a wide differential diagnosis, primarily to distinguish between MELAS and ischemic stroke. Particularly helpful are the MRI and MR spectroscopy techniques

  10. Magnetic resonance imaging safety of deep brain stimulator devices.

    Science.gov (United States)

    Oluigbo, Chima O; Rezai, Ali R

    2013-01-01

    Magnetic resonance imaging (MRI) has become the standard of care for the evaluation of different neurological disorders of the brain and spinal cord due to its multiplanar capabilities and excellent soft tissue resolution. With the large and increasing population of patients with implanted deep brain stimulation (DBS) devices, a significant proportion of these patients with chronic neurological diseases require evaluation of their primary neurological disease processes by MRI. The presence of an implanted DBS device in a magnetic resonance environment presents potential hazards. These include the potential for induction of electrical currents or heating in DBS devices, which can result in neurological tissue injury, magnetic field-induced device migration, or disruption of the operational aspects of the devices. In this chapter, we review the basic physics of potential interactions of the MRI environment with implanted DBS devices, summarize results from phantom studies and clinical series, and discuss present recommendations for safe MRI in patients with implanted DBS devices.

  11. Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans

    Science.gov (United States)

    Objective: In animals, intracerebroventricular glucose and fructose have opposing effects on appetite and weight regulation. In humans, functional brain magnetic resonance imaging (fMRI) studies during carbohydrate ingestion suggest that glucose may regulate HT signaling but are potentially confoun...

  12. Brain Imaging Predicts Psychotherapy Success in Patients with Social Anxiety Disorder

    Science.gov (United States)

    ... brain imaging can provide neuromarkers to predict whether traditional options such as cognitive behavioral therapy will work ... schizophrenia and the likelihood of relapse in drug addiction. In this study, Gabrieli, at the Massachusetts Institute ...

  13. Grid Computing Application for Brain Magnetic Resonance Image Processing

    International Nuclear Information System (INIS)

    This work emphasizes the use of grid computing and web technology for automatic post-processing of brain magnetic resonance images (MRI) in the context of neuropsychiatric (Alzheimer's disease) research. Post-acquisition image processing is achieved through the interconnection of several individual processes into pipelines. Each process has input and output data ports, options and execution parameters, and performs single tasks such as: a) extracting individual image attributes (e.g. dimensions, orientation, center of mass), b) performing image transformations (e.g. scaling, rotation, skewing, intensity standardization, linear and non-linear registration), c) performing image statistical analyses, and d) producing the necessary quality control images and/or files for user review. The pipelines are built to perform specific sequences of tasks on the alphanumeric data and MRIs contained in our database. The web application is coded in PHP and allows the creation of scripts to create, store and execute pipelines and their instances either on our local cluster or on high-performance computing platforms. To run an instance on an external cluster, the web application opens a communication tunnel through which it copies the necessary files, submits the execution commands and collects the results. We present result on system tests for the processing of a set of 821 brain MRIs from the Alzheimer's Disease Neuroimaging Initiative study via a nonlinear registration pipeline composed of 10 processes. Our results show successful execution on both local and external clusters, and a 4-fold increase in performance if using the external cluster. However, the latter's performance does not scale linearly as queue waiting times and execution overhead increase with the number of tasks to be executed.

  14. Evaluation of brain metastases with dynamic susceptibility-contrast MR imaging

    International Nuclear Information System (INIS)

    Objective: To study the characteristics of dynamic susceptibility-contrast (DSC) MR perfusion curves, color images and perfusion values in pre-operative brain metastasis. Methods: Twenty- eight brain metastases underwent DSC MR perfusion imaging by using a first-pass T2* echo-planar sequence. The patients' data were transferred to on-line workstation. Time-signal intensity curves, color perfusion maps and rCBV, rMTT values in both tumor parenchyma and peri-tumor edema were analyzed, and independent t- test was used and P0.05). Conclusion: Different originated brain metastases have nearly same characteristics in DSC MR perfusion imaging. (authors)

  15. Functional brain fluorescence plurimetry in rat by implantable concatenated CMOS imaging system.

    Science.gov (United States)

    Kobayashi, Takuma; Masuda, Hiroyuki; Kitsumoto, Chikara; Haruta, Makito; Motoyama, Mayumi; Ohta, Yasumi; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Shiosaka, Sadao; Ohta, Jun

    2014-03-15

    Measurement of brain activity in multiple areas simultaneously by minimally invasive methods contributes to the study of neuroscience and development of brain machine interfaces. However, this requires compact wearable instruments that do not inhibit natural movements. Application of optical potentiometry with voltage-sensitive fluorescent dye using an implantable image sensor is also useful. However, the increasing number of leads required for the multiple wired sensors to measure larger domains inhibits natural behavior. For imaging broad areas by numerous sensors without excessive wiring, a web-like sensor that can wrap the brain was developed. Kaleidoscopic potentiometry is possible using the imaging system with concatenated sensors by changing the alignment of the sensors. This paper describes organization of the system, evaluation of the system by a fluorescence imaging, and finally, functional brain fluorescence plurimetry by the sensor. The recorded data in rat somatosensory cortex using the developed multiple-area imaging system compared well with electrophysiology results.

  16. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    Science.gov (United States)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-07-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  17. Computed tomographical imaging of the brain in post hypoglycemic coma

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, A.; Sakamoto, T.; Kinoshita, Y.; Yokota, J.I.; Yoshioka, T.; Sugimoto, T.

    1987-07-01

    A case of post severe hypoglycemic coma was studied by sequential Computed Tomographic Imaging (CT) of the brain. The CT 1) was normal in the early stage, 2) subsequently showed a low density area, which was enhanced by the contrast medium, in the cerebral cortex and the boundary zone between the major cerebral arteries, and 3) revealed marked enhancement in the entire cortical region and hypodensity in the periventricular region in the late stage. These CT findings, representing the course of neural cell damage by severe hypoglycemia, are discussed from the pathophysiological viewpoint.

  18. Computed tomographical imaging of the brain in post hypoglycemic coma

    International Nuclear Information System (INIS)

    A case of post severe hypoglycemic coma was studied by sequential Computed Tomographic Imaging (CT) of the brain. The CT 1) was normal in the early stage, 2) subsequently showed a low density area, which was enhanced by the contrast medium, in the cerebral cortex and the boundary zone between the major cerebral arteries, and 3) revealed marked enhancement in the entire cortical region and hypodensity in the periventricular region in the late stage. These CT findings, representing the course of neural cell damage by severe hypoglycemia, are discussed from the pathophysiological viewpoint. (orig.)

  19. The Center for Integrated Molecular Brain Imaging (Cimbi) database

    DEFF Research Database (Denmark)

    Knudsen, Gitte M.; Jensen, Peter S.; Erritzoe, David;

    2016-01-01

    We here describe a multimodality neuroimaging containing data from healthy volunteers and patients, acquired within the Lundbeck Foundation Center for Integrated Molecular Brain Imaging (Cimbi) in Copenhagen, Denmark. The data is of particular relevance for neurobiological research questions...

  20. Imaging of brain tumors with histological correlations. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Drevelegas, Antonios (ed.)

    2011-07-01

    This volume provides a deeper understanding of the diagnosis of brain tumors by correlating radiographic imaging features with the underlying pathological abnormalities. All modern imaging modalities are used to complete a diagnostic overview of brain tumors with emphasis on recent advances in diagnostic neuroradiology. High-quality illustrations depicting common and uncommon imaging characteristics of a wide range of brain tumors are presented and analysed, drawing attention to the ways in which these characteristics reflect different aspects of pathology. Important theoretical considerations are also discussed. Since the first edition, chapters have been revised and updated and new material has been added, including detailed information on the clinical application of functional MRI and diffusion tensor imaging. Radiologists and other clinicians interested in the current diagnostic approach to brain tumors will find this book to be an invaluable and enlightening clinical tool. (orig.)

  1. Automated morphometry of transgenic mouse brains in MR images

    NARCIS (Netherlands)

    Scheenstra, Alize Elske Hiltje

    2011-01-01

    Quantitative and local morphometry of mouse brain MRI is a relatively new field of research, where automated methods can be exploited to rapidly provide accurate and repeatable results. In this thesis we reviewed several existing methods and applications of quantitative morphometry to brain MR image

  2. Quantitative assessment of brain perfusion with magnetic resonance imaging

    NARCIS (Netherlands)

    Bleeker, Egbert Jan Willem

    2011-01-01

    This thesis focuses on assessing blood supply to brain tissue using MRI. For Dynamic Susceptibility Contrast-MRI a series of images is acquired during the passage of a bolus contrast agent through the brain up to the point that the contrast agent is equally mixed within the total blood pool. The tis

  3. Structural brain imaging in diabetes : A methodological perspective

    NARCIS (Netherlands)

    Jongen, Cynthia; Biessels, Geert Jan

    2008-01-01

    Brain imaging provides information on brain anatomy and function and progression of cerebral abnormalities can be monitored. This may provide insight into the aetiology of diabetes related cerebral disorders. This paper focuses on the methods for the assessment of white matter hyperintensities and b

  4. Development and Application of Tools for MRI Analysis - A Study on the Effects of Exercise in Patients with Alzheimer's Disease and Generative Models for Bias Field Correction in MR Brain Imaging

    DEFF Research Database (Denmark)

    Larsen, Christian Thode

    Magnetic resonance imaging (MRI) is the de facto modality in neuroimaging studies, due to its superior image contrast in soft tissue. These studies often employ automated software pipelines that segments the image into structures and tissue. This reduces the time needed for analysis as well...... in several cognitive performance measures, including mental speed, attention and verbal uency. MRI suffers from an image artifact often referred to as the "bias field”. This effect complicates automatized analysis of the images. For this reason, bias field correction is typical an early preprocessing step...... for longitudinal correction of the bias field, as well as a model that does not require brain masking or probabilistic, anatomical atlases in order to perform well. Finally, the thesis presents the realization of these models in the software package "Intensity Inhomogeneity Correction”, which will be made publicly...

  5. Cluster imaging of multi-brain networks (CIMBN: a general framework for hyperscanning and modeling a group of interacting brains

    Directory of Open Access Journals (Sweden)

    Lian eDuan

    2015-07-01

    Full Text Available Studying the neural basis of human social interactions is a key topic in the field of social neuroscience. Brain imaging studies in this field usually focus on the neural correlates of the social interactions between two participants. However, as the participant number further increases, even by a small amount, great difficulties raise. One challenge is how to concurrently scan all the interacting brains with high ecological validity, especially for a large number of participants. The other challenge is how to effectively model the complex group interaction behaviors emerging from the intricate neural information exchange among a group of socially organized people. Confronting these challenges, we propose a new approach called Cluster Imaging of Multi-brain Networks (CIMBN. CIMBN consists of two parts. The first part is a cluster imaging technique with high ecological validity based on multiple functional near-infrared spectroscopy (fNIRS systems. Using this technique, we can easily extend the simultaneous imaging capacity of social neuroscience studies up to dozens of participants. The second part of CIMBN is a multi-brain network (MBN modeling method based on graph theory. By taking each brain as a network node and the relationship between any two brains as a network edge, one can construct a network model for a group of interacting brains. The emergent group social behaviors can then be studied using the network’s properties, such as its topological structure and information exchange efficiency. Although there is still much work to do, as a general framework for hyperscanning and modeling a group of interacting brains, CIMBN can provide new insights into the neural correlates of group social interactions, and advance social neuroscience and social psychology.

  6. Foreign Language Study and the Brain.

    Science.gov (United States)

    LeLoup, Jean W.; Ponterio, Robert

    2003-01-01

    Provides information on foreign language study and the brain and highlights a Web site called Foreign Language Study and the Brain. The Web site is in Spanish and English and provides information on brain-sensitive activities that foster memory storage and language retrieval. Recent research on the brain and general recommendations for classroom…

  7. Unsupervised Neural Techniques Applied to MR Brain Image Segmentation

    Directory of Open Access Journals (Sweden)

    A. Ortiz

    2012-01-01

    Full Text Available The primary goal of brain image segmentation is to partition a given brain image into different regions representing anatomical structures. Magnetic resonance image (MRI segmentation is especially interesting, since accurate segmentation in white matter, grey matter and cerebrospinal fluid provides a way to identify many brain disorders such as dementia, schizophrenia or Alzheimer’s disease (AD. Then, image segmentation results in a very interesting tool for neuroanatomical analyses. In this paper we show three alternatives to MR brain image segmentation algorithms, with the Self-Organizing Map (SOM as the core of the algorithms. The procedures devised do not use any a priori knowledge about voxel class assignment, and results in fully-unsupervised methods for MRI segmentation, making it possible to automatically discover different tissue classes. Our algorithm has been tested using the images from the Internet Brain Image Repository (IBSR outperforming existing methods, providing values for the average overlap metric of 0.7 for the white and grey matter and 0.45 for the cerebrospinal fluid. Furthermore, it also provides good results for high-resolution MR images provided by the Nuclear Medicine Service of the “Virgen de las Nieves” Hospital (Granada, Spain.

  8. AN ANN BASED BRAIN ABNORMALITY DETECTION USING MR IMAGES

    Directory of Open Access Journals (Sweden)

    K.V. Kulhalli

    2013-02-01

    Full Text Available The Main purpose of this paper is to design, implement and evaluate a strong automatic diagnostic system that increases the accuracy of tumor diagnosis in brain using MR images. This presented work classifies the brain tissues as normal or abnormal automatically, using computer vision. This saves lot of radiologist time to carryout monotonous repeated job. The acquired MR images are processed using image preprocessing techniques. The preprocessed images are then segmented, and the various features are extracted. The extracted features are fed to the artificial neural network as input that trains the network using error back propagation algorithm for correct decision making.

  9. Admission criteria to the Danish Brain Cancer Program are moderately associated with magnetic resonance imaging findings

    DEFF Research Database (Denmark)

    Hill, Thomas Winther; Nielsen, Mie Kiszka; Nepper-Rasmussen, Jørgen

    2013-01-01

    The objective of this study was to evaluate the Danish Brain Cancer Program by examining the criteria for admission to the program and the results of magnetic resonance imaging (MRI) of the brain in 359 patients referred to the program at the Odense University Hospital during one year...

  10. Functional connectivity of the rodent brain using optical imaging

    Science.gov (United States)

    Guevara Codina, Edgar

    The aim of this thesis is to apply functional connectivity in a variety of animal models, using several optical imaging modalities. Even at rest, the brain shows high metabolic activity: the correlation in slow spontaneous fluctuations identifies remotely connected areas of the brain; hence the term "functional connectivity". Ongoing changes in spontaneous activity may provide insight into the neural processing that takes most of the brain metabolic activity, and so may provide a vast source of disease related changes. Brain hemodynamics may be modified during disease and affect resting-state activity. The thesis aims to better understand these changes in functional connectivity due to disease, using functional optical imaging. The optical imaging techniques explored in the first two contributions of this thesis are Optical Imaging of Intrinsic Signals and Laser Speckle Contrast Imaging, together they can estimate the metabolic rate of oxygen consumption, that closely parallels neural activity. They both have adequate spatial and temporal resolution and are well adapted to image the convexity of the mouse cortex. In the last article, a depth-sensitive modality called photoacoustic tomography was used in the newborn rat. Optical coherence tomography and laminar optical tomography were also part of the array of imaging techniques developed and applied in other collaborations. The first article of this work shows the changes in functional connectivity in an acute murine model of epileptiform activity. Homologous correlations are both increased and decreased with a small dependence on seizure duration. These changes suggest a potential decoupling between the hemodynamic parameters in resting-state networks, underlining the importance to investigate epileptic networks with several independent hemodynamic measures. The second study examines a novel murine model of arterial stiffness: the unilateral calcification of the right carotid. Seed-based connectivity analysis

  11. MR image-guided portal verification for brain treatment field

    International Nuclear Information System (INIS)

    Purpose: To investigate a method for the generation of digitally reconstructed radiographs directly from MR images (DRR-MRI) to guide a computerized portal verification procedure. Methods and Materials: Several major steps were developed to perform an MR image-guided portal verification procedure. Initially, a wavelet-based multiresolution adaptive thresholding method was used to segment the skin slice-by-slice in MR brain axial images. Some selected anatomical structures, such as target volume and critical organs, were then manually identified and were reassigned to relatively higher intensities. Interslice information was interpolated with a directional method to achieve comparable display resolution in three dimensions. Next, a ray-tracing method was used to generate a DRR-MRI image at the planned treatment position, and the ray tracing was simply performed on summation of voxels along the ray. The skin and its relative positions were also projected to the DRR-MRI and were used to guide the search of similar features in the portal image. A Canny edge detector was used to enhance the brain contour in both portal and simulation images. The skin in the brain portal image was then extracted using a knowledge-based searching technique. Finally, a Chamfer matching technique was used to correlate features between DRR-MRI and portal image. Results: The MR image-guided portal verification method was evaluated using a brain phantom case and a clinical patient case. Both DRR-CT and DRR-MRI were generated using CT and MR phantom images with the same beam orientation and then compared. The matching result indicated that the maximum deviation of internal structures was less than 1 mm. The segmented results for brain MR slice images indicated that a wavelet-based image segmentation technique provided a reasonable estimation for the brain skin. For the clinical patient case with a given portal field, the MR image-guided verification method provided an excellent match between

  12. Optimising rigid motion compensation for small animal brain PET imaging

    Science.gov (United States)

    Spangler-Bickell, Matthew G.; Zhou, Lin; Kyme, Andre Z.; De Laat, Bart; Fulton, Roger R.; Nuyts, Johan

    2016-10-01

    Motion compensation (MC) in PET brain imaging of awake small animals is attracting increased attention in preclinical studies since it avoids the confounding effects of anaesthesia and enables behavioural tests during the scan. A popular MC technique is to use multiple external cameras to track the motion of the animal’s head, which is assumed to be represented by the motion of a marker attached to its forehead. In this study we have explored several methods to improve the experimental setup and the reconstruction procedures of this method: optimising the camera-marker separation; improving the temporal synchronisation between the motion tracker measurements and the list-mode stream; post-acquisition smoothing and interpolation of the motion data; and list-mode reconstruction with appropriately selected subsets. These techniques have been tested and verified on measurements of a moving resolution phantom and brain scans of an awake rat. The proposed techniques improved the reconstructed spatial resolution of the phantom by 27% and of the rat brain by 14%. We suggest a set of optimal parameter values to use for awake animal PET studies and discuss the relative significance of each parameter choice.

  13. Heritability of regional and global brain structure at the onset of puberty: a magnetic resonance imaging study in 9-year-old twin pairs.

    Science.gov (United States)

    Peper, Jiska S; Schnack, Hugo G; Brouwer, Rachel M; Van Baal, G Caroline M; Pjetri, Eneda; Székely, Eszter; van Leeuwen, Marieke; van den Berg, Stéphanie M; Collins, D Louis; Evans, Alan C; Boomsma, Dorret I; Kahn, René S; Hulshoff Pol, Hilleke E

    2009-07-01

    Puberty represents the phase of sexual maturity, signaling the change from childhood into adulthood. During childhood and adolescence, prominent changes take place in the brain. Recently, variation in frontal, temporal, and parietal areas was found to be under varying genetic control between 5 and 19 years of age. However, at the onset of puberty, the extent to which variation in brain structures is influenced by genetic factors (heritability) is not known. Moreover, whether a direct link between human pubertal development and brain structure exists has not been studied. Here, we studied the heritability of brain structures at 9 years of age in 107 monozygotic and dizygotic twin pairs (N = 210 individuals) using volumetric MRI and voxel-based morphometry. Children showing the first signs of secondary sexual characteristics (N = 47 individuals) were compared with children without these signs, based on Tanner-stages. High heritabilities of intracranial, total brain, cerebellum, and gray and white matter volumes (up to 91%) were found. Regionally, the posterior fronto-occipital, corpus callosum, and superior longitudinal fascicles (up to 93%), and the amygdala, superior frontal and middle temporal cortices (up to 83%) were significantly heritable. The onset of secondary sexual characteristics of puberty was associated with decreased frontal and parietal gray matter densities. Thus, in 9-year-old children, global brain volumes, white matter density in fronto-occipital and superior longitudinal fascicles, and gray matter density of (pre-)frontal and temporal areas are highly heritable. Pubertal development may be directly involved in the decreases in gray matter areas that accompany the transition of our brains from childhood into adulthood.

  14. Advanced techniques in magnetic resonance imaging of the brain in children with ADHD

    Energy Technology Data Exchange (ETDEWEB)

    Pastura, Giuseppe, E-mail: giuseppe.pastura@terra.com.b [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Pediatria; Mattos, Paulo [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Psiquiatria; Gasparetto, Emerson Leandro [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Radiologia; Araujo, Alexandra Prufer de Queiroz Campos [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Neuropediatria

    2011-04-15

    Attention deficit hyperactivity disorder (ADHD) affects about 5% of school-aged child. Previous published works using different techniques of magnetic resonance imaging (MRI) have demonstrated that there may be some differences between the brain of people with and without this condition. This review aims at providing neurologists, pediatricians and psychiatrists an update on the differences between the brain of children with and without ADHD using advanced techniques of magnetic resonance imaging such as diffusion tensor imaging, brain volumetry and cortical thickness, spectroscopy and functional MRI. Data was obtained by a comprehensive, non-systematic review of medical literature. The regions with a greater number of abnormalities are splenium of the corpus callosum, cingulated gyrus, caudate nucleus, cerebellum, striatum, frontal and temporal cortices. The brain regions where abnormalities are observed in studies of diffusion tensor, volumetry, spectroscopy and cortical thickness are the same involved in neurobiological theories of ADHD coming from studies with functional magnetic resonance imaging. (author)

  15. Atypical pyogenic brain abscess evaluation by diffusion-weighted imaging: diagnosis with multimodality MR imaging.

    Science.gov (United States)

    Ozbayrak, Mustafa; Ulus, Ozden Sila; Berkman, Mehmet Zafer; Kocagoz, Sesin; Karaarslan, Ercan

    2015-10-01

    Whether a brain abscess is apparent by imaging depends on the stage of the abscess at the time of imaging, as well as the etiology of the infection. Because conventional magnetic resonance imaging (MRI) is limited in its ability to distinguish brain abscesses from necrotic tumors, advanced techniques are required. The management of these two disease entities differs and can potentially affect the clinical outcome. We report a case having atypical imaging features of a pyogenic brain abscess on advanced MRI, in particular, on diffusion-weighted and perfusion imaging, in a patient with osteosarcoma undergoing chemotherapy.

  16. Brain imaging and psychotherapy: methodological considerations and practical implications.

    Science.gov (United States)

    Linden, David E J

    2008-11-01

    The development of psychotherapy has been based on psychological theories and clinical effects. However, an investigation of the neurobiological mechanisms of psychological interventions is also needed in order to improve indication and prognosis, inform the choice of parallel pharmacotherapy, provide outcome measures and potentially even aid the development of new treatment protocols. This neurobiological investigation can be informed by animal models, for example of learning and conditioning, but will essentially need the non-invasive techniques of functional neuroimaging in order to assess psychotherapy effects on patients' brains, which will be reviewed here. Most research so far has been conducted in obsessive compulsive disorder (OCD), anxiety disorders and depression. Effects in OCD were particularly exciting in that both cognitive behavioural therapy and medication with a selective serotonin inhibitor led to a reduction in blood flow in the caudate nucleus. In phobia, brief courses of behavioural therapy produced marked reductions of paralimbic responses to offensive stimuli in line with the clinical improvement. Findings in depression are less consistent, with both increases and decreases in prefrontal metabolism being reported. However, they are important in pointing to different mechanisms for the clinical effects of pharmacotherapy (more "bottom up") and psychotherapy (more "top down"). For the future it would be desirable if the findings of psychotherapy changes to brain activation patterns were confirmed in larger groups with homogenous imaging protocols. Functional imaging has already made great contributions to the understanding of the neural correlates of psychopathology. For example, evidence converges to suggest that the subgenual cingulate is crucial for mood regulation. One current clinical application of these findings is deep brain stimulation in areas highlighted by such imaging studies. I will discuss their initial application in depression

  17. Diffusion-weighted imaging in normal fetal brain maturation

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, J.F. [University Children' s Hospital UKBB, Department of Pediatric Radiology, Basel (Switzerland); Confort-Gouny, S.; Le Fur, Y.; Viout, P.; Cozzone, P. [UMR-CNRS 6612, Faculte de Medecine, Universite de la Mediterranee, Centre de Resonance Magnetique Biologique et Medicale, Marseille (France); Bennathan, M.; Chapon, F.; Fogliarini, C.; Girard, N. [Universite de la Mediterranee, Department of Neuroradiology AP-HM Timone, Marseille (France)

    2007-09-15

    Diffusion-weighted imaging (DWI) provides information about tissue maturation not seen on conventional magnetic resonance imaging. The aim of this study is to analyze the evolution over time of the apparent diffusion coefficient (ADC) of normal fetal brain in utero. DWI was performed on 78 fetuses, ranging from 23 to 37 gestational weeks (GW). All children showed at follow-up a normal neurological evaluation. ADC values were obtained in the deep white matter (DWM) of the centrum semiovale, the frontal, parietal, occipital and temporal lobe, in the cerebellar hemisphere, the brainstem, the basal ganglia (BG) and the thalamus. Mean ADC values in supratentorial DWM areas (1.68 {+-} 0.05 mm{sup 2}/s) were higher compared with the cerebellar hemisphere (1.25 {+-} 0.06 mm{sup 2}/s) and lowest in the pons (1.11 {+-} 0.05 mm{sup 2}/s). Thalamus and BG showed intermediate values (1.25 {+-} 0.04 mm{sup 2}/s). Brainstem, cerebellar hemisphere and thalamus showed a linear negative correlation with gestational age. Supratentorial areas revealed an increase in ADC values, followed by a decrease after the 30th GW. This study provides a normative data set that allows insights in the normal fetal brain maturation in utero, which has not yet been observed in previous studies on premature babies. (orig.)

  18. Preliminary study of MR elastography in brain tumors

    International Nuclear Information System (INIS)

    Objective: To investigate the potential values of magnetic resonance elastography (MRE) for evaluating the brain tumor consistency in vivo. Methods: Fourteen patients with known solid brain tumor (5 male, 9 female; age range: 16-63 years) underwent brain MRE studies. Informed consent was obtained from all patients. A dedicated external force actuator for brain MRE study was developed. The actuator was fixed to the head coil. During scan, one side of the actuator was attached to the patients' head. Low frequency oscillation was produced by the actuator and caused shear waves propagating into brain tissue. The pulse sequence used in the study was phase-contrast gradient-echo sequence. Phase images of the brain were obtained and the shear waves within the brain were directly imaged. Phase images were processed with local frequency estimation (LFE) technique to obtain the elasticity image. Consistency of brain tumors was evaluated at surgery and was classified as soft, intermediate, or hard with comparison to the white matter of the brain. Correspondence of MRE evaluation with operative results was studied. Results: The elastic modulus of the tumor was lower than that of white matter in 1 patient, higher in 11 patients, and similar in 2 patients. At surgery, the tumor manifested a soft consistency in 1 patient, hard consistency in 11 patients, intermediate consistency in 2 patients. The elasticity of tumors in 14 patients evaluated by MRE was correlated with the tumor consistency on the operation. Conclusion: MRE can noninvasively display the elasticity of brain tumors in vivo, and evaluate the brain tumor consistency before operation. (authors)

  19. Computational Analysis of Brain Images: Towards a Useful Tool in Clinical Practice

    DEFF Research Database (Denmark)

    Puonti, Oula

    Due to its excellent soft tissue contrast and versatility, magnetic resonance imaging (MRI) has become arguably the most important tool for studying the structure and disorders of the human brain. Although in recent years tremendous advances have been made in automatic segmentation of brain MRI...... generative modeling, which combines detailed prior models of the human neuroanatomy and pathologies with models of the MRI imaging process. This approach allows us to describe the observed MRI data in a principled manner, and to integrate explicit models of different disease effects and imaging artifacts...... this framework can be extended with models of brain lesions. This results in a set of fast, robust and fully automatic tools for segmenting MRI brain scans of both healthy subjects and subjects suffering from brain disorders such as multiple sclerosis. Having access to quantitative measures of both lesions...

  20. Three-dimensional microtomographic imaging of human brain cortex

    CERN Document Server

    Mizutania, Ryuta; Uesugi, Kentaro; Ohyama, Masami; Takekoshi, Susumu; Osamura, R Yoshiyuki; Suzuki, Yoshio

    2016-01-01

    This paper describes an x-ray microtomographic technique for imaging the three-dimensional structure of the human cerebral cortex. Neurons in the brain constitute a neural circuit as a three-dimensional network. The brain tissue is composed of light elements that give little contrast in a hard x-ray transmission image. The contrast was enhanced by staining neural cells with metal compounds. The obtained structure revealed the microarchitecture of the gray and white matter regions of the frontal cortex, which is responsible for the higher brain functions.

  1. Imaging neuroreceptors in the human brain in health and disease

    International Nuclear Information System (INIS)

    For nearly a century it has been known that chemical activity accompanies mental activity, but only recently has it been possible to begin to examine its exact nature. Positron-emitting radioactive tracers have made it possible to study the chemistry of the human brain in health and disease, using chiefly cyclotron-produced radionuclides, carbon-11, fluorine-18 and oxygen-15. It is now well established that measurable increases in regional cerebral blood flow, and glucose and oxygen metabolism accompany the mental functions of perception, cognition, emotion and motion. On 25 May 1983 the first imaging of a neuroreceptor in the human brain was accomplished with carbon-11 N-methyl spiperone, a ligand that binds preferentially to dopamine-2 receptors, 80% of which are located in the caudate nucleus and putamen. Quantitative imaging of serotonin-2, opiate, benzodiazapine and muscarinic cholinergic receptors has subsequently been accomplished. In studies of normal men and women, it has been found that dopamine and serotonin receptor activity decreases dramatically with age, such a decrease being more pronounced in men than in women and greater in the case of dopamine-2 receptors than in serotonin-2 receptors. Preliminary studies of patients with neuropsychiatric disorders suggest that dopamine-2 receptor activity is diminished in the caudate nucleus of patients with Huntington's disease. Positron tomography permits a quantitative assay of picomolar quantities of neuroreceptors within the living human brain. Studies of patients with Parkinson's disease, Alzheimer's disease, depression, anxiety, schizophrenia, acute and chronic pain states and drug addiction are now in progress. (author)

  2. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging.

    Science.gov (United States)

    Yan, Chao-Gan; Wang, Xin-Di; Zuo, Xi-Nian; Zang, Yu-Feng

    2016-07-01

    Brain imaging efforts are being increasingly devoted to decode the functioning of the human brain. Among neuroimaging techniques, resting-state fMRI (R-fMRI) is currently expanding exponentially. Beyond the general neuroimaging analysis packages (e.g., SPM, AFNI and FSL), REST and DPARSF were developed to meet the increasing need of user-friendly toolboxes for R-fMRI data processing. To address recently identified methodological challenges of R-fMRI, we introduce the newly developed toolbox, DPABI, which was evolved from REST and DPARSF. DPABI incorporates recent research advances on head motion control and measurement standardization, thus allowing users to evaluate results using stringent control strategies. DPABI also emphasizes test-retest reliability and quality control of data processing. Furthermore, DPABI provides a user-friendly pipeline analysis toolkit for rat/monkey R-fMRI data analysis to reflect the rapid advances in animal imaging. In addition, DPABI includes preprocessing modules for task-based fMRI, voxel-based morphometry analysis, statistical analysis and results viewing. DPABI is designed to make data analysis require fewer manual operations, be less time-consuming, have a lower skill requirement, a smaller risk of inadvertent mistakes, and be more comparable across studies. We anticipate this open-source toolbox will assist novices and expert users alike and continue to support advancing R-fMRI methodology and its application to clinical translational studies.

  3. Development of image-processing software for automatic segmentation of brain tumors in MR images

    International Nuclear Information System (INIS)

    Most of the commercially available software for brain tumor segmentation have limited functionality and frequently lack the careful validation that is required for clinical studies. We have developed an image-analysis software package called 'Prometheus,' which performs neural system-based segmentation operations on MR images using pre-trained information. The software also has the capability to improve its segmentation performance by using the training module of the neural system. The aim of this article is to present the design and modules of this software. The segmentation module of Prometheus can be used primarily for image analysis in MR images. Prometheus was validated against manual segmentation by a radiologist and its mean sensitivity and specificity was found to be 85. 7 4.89% and 93. 2±2.87%, respectively. Similarly, the mean segmentation accuracy and mean correspondence ratio was found to be 92. 35±3. 37% and 0. 78±0. 046, respectively. (author)

  4. Retractor-induced brain shift compensation in image-guided neurosurgery

    Science.gov (United States)

    Fan, Xiaoyao; Ji, Songbai; Hartov, Alex; Roberts, David; Paulsen, Keith

    2013-03-01

    In image-guided neurosurgery, intraoperative brain shift significantly degrades the accuracy of neuronavigation that is solely based on preoperative magnetic resonance images (pMR). To compensate for brain deformation and to maintain the accuracy in image guidance achieved at the start of surgery, biomechanical models have been developed to simulate brain deformation and to produce model-updated MR images (uMR) to compensate for brain shift. To-date, most studies have focused on shift compensation at early stages of surgery (i.e., updated images are only produced after craniotomy and durotomy). Simulating surgical events at later stages such as retraction and tissue resection are, perhaps, clinically more relevant because of the typically much larger magnitudes of brain deformation. However, these surgical events are substantially more complex in nature, thereby posing significant challenges in model-based brain shift compensation strategies. In this study, we present results from an initial investigation to simulate retractor-induced brain deformation through a biomechanical finite element (FE) model where whole-brain deformation assimilated from intraoperative data was used produce uMR for improved accuracy in image guidance. Specifically, intensity-encoded 3D surface profiles at the exposed cortical area were reconstructed from intraoperative stereovision (iSV) images before and after tissue retraction. Retractor-induced surface displacements were then derived by coregistering the surfaces and served as sparse displacement data to drive the FE model. With one patient case, we show that our technique is able to produce uMR that agrees well with the reconstructed iSV surface after retraction. The computational cost to simulate retractor-induced brain deformation was approximately 10 min. In addition, our approach introduces minimal interruption to the surgical workflow, suggesting the potential for its clinical application.

  5. Effect of slice thickness on brain magnetic resonance image texture analysis

    OpenAIRE

    Heinonen Tomi; Luukkaala Tiina; Harrison Lara CV; Savio Sami J; Dastidar Prasun; Soimakallio Seppo; Eskola Hannu J

    2010-01-01

    Abstract Background The accuracy of texture analysis in clinical evaluation of magnetic resonance images depends considerably on imaging arrangements and various image quality parameters. In this paper, we study the effect of slice thickness on brain tissue texture analysis using a statistical approach and classification of T1-weighted images of clinically confirmed multiple sclerosis patients. Methods We averaged the intensities of three consecutive 1-mm slices to simulate 3-mm slices. Two h...

  6. Brain Extraction and Fuzzy Tissue Segmentation in Cerebral 2D T1-Weigthed Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Bouchaib Cherradi

    2011-05-01

    Full Text Available In medical imaging, accurate segmentation of brain MR images is of interest for many brain manipulations. In this paper, we present a method for brain Extraction and tissues classification. An application of this method to the segmentation of simulated MRI cerebral images in three clusters will be made. The studied method is composed with different stages, first Brain Extraction from T1-weighted 2D MRI slices (TMBE is performed as pre-processing procedure, then Histogram based centroids initialization is done, and finally the fuzzy c-means clustering algorithm is applied on the results to segment the image in three clusters. The introduction of this pre-processing procedure has been made in the goal to have a targeted segmentation method. The convergence speed for tissues classification has been considerably improved by avoiding a random initialization of the cluster centres and reduction of the volume of data processing.

  7. Imaging plasma docosahexaenoic acid (dha incorporation into the brain in vivo, as a biomarker of brain DHA: Metabolism and neurotransmission

    Directory of Open Access Journals (Sweden)

    Rapoport Stanley I.

    2011-09-01

    Full Text Available Docosahexaenoic acid (DHA is critical for normal brain structure and function, and its brain concentration depends on dietary DHA content and hepatic conversion from its dietary derived n-3 precursor, a-linolenic acid (α-LNA. We developed an in vivo method in rats using quantitative autoradiography to image incorporation into brain of unesterified plasma DHA, and showed that the incorporation rate equals the rate of brain metabolic DHA consumption. Thus, quantitative imaging of DHA incorporation from plasma into brain can be used as a biomarker of brain DHA metabolism and neurotransmission. The method has been extended to humans with the use of positron emission tomography (PET. Furthermore, imaging in unanesthetized rats using DHA incorporation as a biomarker in response to N-methyl-D-aspartate (NMDA administration confirms that regional DHA signaling is independent of extracellular calcium, and likely mediated by a calcium-independent phospholipase A2 (iPLA2. Studies in mice in which iPLA2-VIA (β was knocked out confirmed that this enzyme is critical for baseline and muscarinic cholinergic signaling involving DHA.

  8. Comparative mouse brain tractography of diffusion magnetic resonance imaging

    Science.gov (United States)

    Moldrich, Randal X.; Pannek, Kerstin; Hoch, Renee; Rubenstein, John L.; Kurniawan, Nyoman D.; Richards, Linda J.

    2010-01-01

    Diffusion magnetic resonance imaging (dMRI) tractography can be employed to simultaneously analyse three-dimensional white matter tracts in the brain. Numerous methods have been proposed to model diffusion-weighted magnetic resonance data for tractography, and we have explored the functionality of some of these for studying white and grey matter pathways in ex vivo mouse brain. Using various deterministic and probabilistic algorithms across a range of regions of interest we found that probabilistic tractography provides a more robust means of visualizing both white and grey matter pathways than deterministic tractography. Importantly, we demonstrate the sensitivity of probabilistic tractography profiles to streamline number, step size, curvature, fiber orientation distribution, and whole-brain versus region of interest seeding. Using anatomically well-defined cortico-thalamic pathways, we show how density maps can permit the topographical assessment of probabilistic tractography. Finally, we show how different tractography approaches can impact on dMRI assessment of tract changes in a mouse deficient for the frontal cortex morphogen, fibroblast growth factor 17. In conclusion, probabilistic tractography can elucidate the phenotypes of mice with neurodegenerative or neurodevelopmental disorders in a quantitative manner. PMID:20303410

  9. Wavelet Based Image Fusion for Detection of Brain Tumor

    Directory of Open Access Journals (Sweden)

    CYN Dwith

    2013-01-01

    Full Text Available Brain tumor, is one of the major causes for the increase in mortality among children and adults. Detecting the regions of brain is the major challenge in tumor detection. In the field of medical image processing, multi sensor images are widely being used as potential sources to detect brain tumor. In this paper, a wavelet based image fusion algorithm is applied on the Magnetic Resonance (MR images and Computed Tomography (CT images which are used as primary sources to extract the redundant and complementary information in order to enhance the tumor detection in the resultant fused image. The main features taken into account for detection of brain tumor are location of tumor and size of the tumor, which is further optimized through fusion of images using various wavelet transforms parameters. We discuss and enforce the principle of evaluating and comparing the performance of the algorithm applied to the images with respect to various wavelets type used for the wavelet analysis. The performance efficiency of the algorithm is evaluated on the basis of PSNR values. The obtained results are compared on the basis of PSNR with gradient vector field and big bang optimization. The algorithms are analyzed in terms of performance with respect to accuracy in estimation of tumor region and computational efficiency of the algorithms.

  10. Early detection of ventilation-induced brain injury using magnetic resonance spectroscopy and diffusion tensor imaging: an in vivo study in preterm lambs.

    Directory of Open Access Journals (Sweden)

    Béatrice Skiöld

    Full Text Available BACKGROUND AND AIM: High tidal volume (VT ventilation during resuscitation of preterm lambs results in brain injury evident histologically within hours after birth. We aimed to investigate whether magnetic resonance spectroscopy (MRS and/or diffusion tensor imaging (DTI can be used for early in vivo detection of ventilation-induced brain injury in preterm lambs. METHODS: Newborn lambs (0.85 gestation were stabilized with a "protective ventilation" strategy (PROT, n = 7: prophylactic Curosurf, sustained inflation, VT 7 mL/kg, positive end expiratory pressure (PEEP 5 cmH2O or an initial 15 minutes of "injurious ventilation" (INJ, n = 10: VT 12 mL/kg, no PEEP, late Curosurf followed by PROT ventilation for the remainder of the experiment. At 1 hour, lambs underwent structural magnetic resonance imaging (Siemens, 3 Tesla. For measures of mean/axial/radial diffusivity (MD, AD, RD and fractional anisotropy (FA, 30 direction DTI was performed. Regions of interests encompassed the thalamus, internal capsule, periventricular white matter and the cerebellar vermis. MRS was performed using a localized single-voxel (15×15×20 mm3, echo time 270 ms encompassing suptratentorial deep nuclear grey matter and central white matter. Peak-area ratios for lactate (Lac relative to N-acetylaspartate (NAA, choline (Cho and creatine (Cr were calculated. Groups were compared using 2-way RM-ANOVA, Mann-Whitney U-test and Spearman's correlations. RESULTS: No cerebral injury was seen on structural MR images. Lambs in the INJ group had higher mean FA and lower mean RD in the thalamus compared to PROT lambs, but not in the other regions of interest. Peak-area lactate ratios >1.0 was only seen in INJ lambs. A trend of higher mean peak-area ratios for Lac/Cr and Lac/Cho was seen, which correlated with lower pH in both groups. CONCLUSION: Acute changes in brain diffusion measures and metabolite peak-area ratios were observed after injurious ventilation. Early MRS/DTI is

  11. Imaging Findings of Brain Death on 3-Tesla MRI

    International Nuclear Information System (INIS)

    To demonstrate the usefulness of 3-tesla (3T) magnetic resonance imaging (MRI) including T2-weighted imaging (T2WI), diffusion weighted imaging (DWI), time-of-flight (TOF) magnetic resonance angiography (MRA), T2*-weighted gradient recalled echo (GRE), and susceptibility weighted imaging (SWI) in diagnosing brain death. Magnetic resonance imaging findings for 10 patients with clinically verified brain death (group I) and seven patients with comatose or stuporous mentality who did not meet the clinical criteria of brain death (group II) were retrospectively reviewed. Tonsilar herniation and loss of intraarterial flow signal voids (LIFSV) on T2WI were highly sensitive and specific findings for the diagnosis of brain death (p < 0.001 and < 0.001, respectively). DWI, TOF-MRA, and GRE findings were statistically different between the two groups (p = 0.015, 0.029, and 0.003, respectively). However, cortical high signal intensities in T2WI and SWI findings were not statistically different between the two group (p = 0.412 and 1.0, respectively). T2-weighted imaging, DWI, and MRA using 3T MRI may be useful for diagnosing brain death. However, SWI findings are not specific due to high false positive findings.

  12. Imaging Findings of Brain Death on 3-Tesla MRI

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Chul Ho [Dept. of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Hwa Pyung [Dept. of Occupational and Environmental Medicine, CHA Gumi Medical Center, CHA University, Gumi (Korea, Republic of); Park, Jun Beom [Dept. of Radiology, Korean Armed Force Daejeon Hospital, Daejeon (Korea, Republic of); Chang, Hyuk Won; Kim, Easlmaan; Park, Ui Jun; Kim, Hyoung Tae [Keimyung University College of Medicine, Dongsan Medical Center, Daegu (Korea, Republic of); Kim, Eun Hee [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Ku, Jeong Hun [Dept. of Biomedical Engineering, Keimyung University College of Medicine, Daegu (Korea, Republic of)

    2012-09-15

    To demonstrate the usefulness of 3-tesla (3T) magnetic resonance imaging (MRI) including T2-weighted imaging (T2WI), diffusion weighted imaging (DWI), time-of-flight (TOF) magnetic resonance angiography (MRA), T2*-weighted gradient recalled echo (GRE), and susceptibility weighted imaging (SWI) in diagnosing brain death. Magnetic resonance imaging findings for 10 patients with clinically verified brain death (group I) and seven patients with comatose or stuporous mentality who did not meet the clinical criteria of brain death (group II) were retrospectively reviewed. Tonsilar herniation and loss of intraarterial flow signal voids (LIFSV) on T2WI were highly sensitive and specific findings for the diagnosis of brain death (p < 0.001 and < 0.001, respectively). DWI, TOF-MRA, and GRE findings were statistically different between the two groups (p = 0.015, 0.029, and 0.003, respectively). However, cortical high signal intensities in T2WI and SWI findings were not statistically different between the two group (p = 0.412 and 1.0, respectively). T2-weighted imaging, DWI, and MRA using 3T MRI may be useful for diagnosing brain death. However, SWI findings are not specific due to high false positive findings.

  13. Fuzzy local Gaussian mixture model for brain MR image segmentation.

    Science.gov (United States)

    Ji, Zexuan; Xia, Yong; Sun, Quansen; Chen, Qiang; Xia, Deshen; Feng, David Dagan

    2012-05-01

    Accurate brain tissue segmentation from magnetic resonance (MR) images is an essential step in quantitative brain image analysis. However, due to the existence of noise and intensity inhomogeneity in brain MR images, many segmentation algorithms suffer from limited accuracy. In this paper, we assume that the local image data within each voxel's neighborhood satisfy the Gaussian mixture model (GMM), and thus propose the fuzzy local GMM (FLGMM) algorithm for automated brain MR image segmentation. This algorithm estimates the segmentation result that maximizes the posterior probability by minimizing an objective energy function, in which a truncated Gaussian kernel function is used to impose the spatial constraint and fuzzy memberships are employed to balance the contribution of each GMM. We compared our algorithm to state-of-the-art segmentation approaches in both synthetic and clinical data. Our results show that the proposed algorithm can largely overcome the difficulties raised by noise, low contrast, and bias field, and substantially improve the accuracy of brain MR image segmentation.

  14. PET imaging reveals brain functional changes in internet gaming disorder

    International Nuclear Information System (INIS)

    Internet gaming disorder is an increasing problem worldwide, resulting in critical academic, social, and occupational impairment. However, the neurobiological mechanism of internet gaming disorder remains unknown. The aim of this study is to assess brain dopamine D2 (D2)/Serotonin 2A (5-HT2A) receptor function and glucose metabolism in the same subjects by positron emission tomography (PET) imaging approach, and investigate whether the correlation exists between D2 receptor and glucose metabolism. Twelve drug-naive adult males who met criteria for internet gaming disorder and 14 matched controls were studied with PET and 11C-N-methylspiperone (11C-NMSP) to assess the availability of D2/5-HT2A receptors and with 18F-fluoro-D-glucose (18F-FDG) to assess regional brain glucose metabolism, a marker of brain function. 11C-NMSP and 18F-FDG PET imaging data were acquired in the same individuals under both resting and internet gaming task states. In internet gaming disorder subjects, a significant decrease in glucose metabolism was observed in the prefrontal, temporal, and limbic systems. Dysregulation of D2 receptors was observed in the striatum, and was correlated to years of overuse. A low level of D2 receptors in the striatum was significantly associated with decreased glucose metabolism in the orbitofrontal cortex. For the first time, we report the evidence that D2 receptor level is significantly associated with glucose metabolism in the same individuals with internet gaming disorder, which indicates that D2/5-HT2A receptor-mediated dysregulation of the orbitofrontal cortex could underlie a mechanism for loss of control and compulsive behavior in internet gaming disorder subjects. (orig.)

  15. PET imaging reveals brain functional changes in internet gaming disorder

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Mei; Zhang, Ying; Du, Fenglei; Hou, Haifeng; Chao, Fangfang; Zhang, Hong [The Second Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); Chen, Qiaozhen [The Second Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Psychiatry, Hangzhou (China)

    2014-07-15

    Internet gaming disorder is an increasing problem worldwide, resulting in critical academic, social, and occupational impairment. However, the neurobiological mechanism of internet gaming disorder remains unknown. The aim of this study is to assess brain dopamine D{sub 2} (D{sub 2})/Serotonin 2A (5-HT{sub 2A}) receptor function and glucose metabolism in the same subjects by positron emission tomography (PET) imaging approach, and investigate whether the correlation exists between D{sub 2} receptor and glucose metabolism. Twelve drug-naive adult males who met criteria for internet gaming disorder and 14 matched controls were studied with PET and {sup 11}C-N-methylspiperone ({sup 11}C-NMSP) to assess the availability of D{sub 2}/5-HT{sub 2A} receptors and with {sup 18}F-fluoro-D-glucose ({sup 18}F-FDG) to assess regional brain glucose metabolism, a marker of brain function. {sup 11}C-NMSP and {sup 18}F-FDG PET imaging data were acquired in the same individuals under both resting and internet gaming task states. In internet gaming disorder subjects, a significant decrease in glucose metabolism was observed in the prefrontal, temporal, and limbic systems. Dysregulation of D{sub 2} receptors was observed in the striatum, and was correlated to years of overuse. A low level of D{sub 2} receptors in the striatum was significantly associated with decreased glucose metabolism in the orbitofrontal cortex. For the first time, we report the evidence that D{sub 2} receptor level is significantly associated with glucose metabolism in the same individuals with internet gaming disorder, which indicates that D{sub 2}/5-HT{sub 2A} receptor-mediated dysregulation of the orbitofrontal cortex could underlie a mechanism for loss of control and compulsive behavior in internet gaming disorder subjects. (orig.)

  16. Fetal magnetic resonance imaging of the brain: technical considerations and normal brain development

    Energy Technology Data Exchange (ETDEWEB)

    Huisman, Thierry A.G.M.; Kubik-Huch, Rahel; Marincek, Borut [Institute of Diagnostic Radiology, University Hospital Zurich, 8091 Zurich (Switzerland); Martin, Ernst [Department of Neuroradiology and Magnetic Resonance, University Children' s Hospital, 8091 Zurich (Switzerland)

    2002-08-01

    Fetal MRI examines non-invasively the unborn fetus. Ultrafast MRI sequences effectively suppress fetal motion. Multiple case reports and studies have shown that fetal MRI is particularly helpful in the evaluation of the central nervous system. The high contrast-to-noise ratio, the high spatial resolution, the multiplanar capabilities, the large field of view and the simultaneous visualisation of fetal and maternal structures have proven to be advantageous. Fetal MRI is particularly helpful in the evaluation of the normal and pathological development of the brain. Despite the fact that no side effects have been reported or are to be expected, the use of MRI during pregnancy is still limited to the second and third trimester of pregnancy. Magnetic resonance imaging contrast media are not to be used as it passes the placenta. Ultrasound remains the primary screening modality for fetal pathology; fetal MRI can serve as an adjunct or second-line imaging modality. (orig.)

  17. Methods and considerations for longitudinal structural brain imaging analysis across development

    Directory of Open Access Journals (Sweden)

    Kathryn L. Mills

    2014-07-01

    Full Text Available Magnetic resonance imaging (MRI has allowed the unprecedented capability to measure the human brain in vivo. This technique has paved the way for longitudinal studies exploring brain changes across the entire life span. Results from these studies have given us a glimpse into the remarkably extended and multifaceted development of our brain, converging with evidence from anatomical and histological studies. Ever-evolving techniques and analytical methods provide new avenues to explore and questions to consider, requiring researchers to balance excitement with caution. This review addresses what MRI studies of structural brain development in children and adolescents typically measure and how. We focus on measurements of brain morphometry (e.g., volume, cortical thickness, surface area, folding patterns, as well as measurements derived from diffusion tensor imaging (DTI. By integrating finding from multiple longitudinal investigations, we give an update on current knowledge of structural brain development and how it relates to other aspects of biological development and possible underlying physiological mechanisms. Further, we review and discuss current strategies in image processing, analysis techniques and modeling of brain development. We hope this review will aid current and future longitudinal investigations of brain development, as well as evoke a discussion amongst researchers regarding best practices.

  18. Suitability of helical multislice acquisition technique for routine unenhanced brain CT: an image quality study using a 16-row detector configuration

    International Nuclear Information System (INIS)

    Subjective and objective image quality (IQ) criteria, radiation doses, and acquisition times were compared using incremental monoslice, incremental multislice, and helical multislice acquisition techniques for routine unenhanced brain computed tomography (CT). Twenty-four patients were examined by two techniques in the same imaging session using a 16-row CT system equipped with 0.75-width detectors. Contiguous ''native'' 3-mm-thick slices were reconstructed for all acquisitions from four detectors for each slice (4 x 0.75 mm), with one channel available per detector. Two protocols were tailored to compare: (1) one-slice vs four-slice incremental images; (2) incremental vs helical four-slice images. Two trained observers independently scored 12 subjective items of IQ. Preference for the technique was assessed by one-tailed t test and the interobserver variation by two-tailed t test. The two observers gave very close IQ scores for the three techniques without significant interobserver variations. Measured IQ parameters failed to reveal any difference between techniques, and an approximate half radiation dose reduction was obtained by using the full 16-row configuration. Acquisition times were cumulatively shortened by using the multislice and the helical modality. (orig.)

  19. In vivo high-resolution diffusion tensor imaging of the mouse brain.

    Science.gov (United States)

    Wu, Dan; Xu, Jiadi; McMahon, Michael T; van Zijl, Peter C M; Mori, Susumu; Northington, Frances J; Zhang, Jiangyang

    2013-12-01

    Diffusion tensor imaging (DTI) of the laboratory mouse brain provides important macroscopic information for anatomical characterization of mouse models in basic research. Currently, in vivo DTI of the mouse brain is often limited by the available resolution. In this study, we demonstrate in vivo high-resolution DTI of the mouse brain using a cryogenic probe and a modified diffusion-weighted gradient and spin echo (GRASE) imaging sequence at 11.7 T. Three-dimensional (3D) DTI of the entire mouse brain at 0.125 mm isotropic resolution could be obtained in approximately 2 h. The high spatial resolution, which was previously only available with ex vivo imaging, enabled non-invasive examination of small structures in the adult and neonatal mouse brains. Based on data acquired from eight adult mice, a group-averaged DTI atlas of the in vivo adult mouse brain with 60 structure segmentations was developed. Comparisons between in vivo and ex vivo mouse brain DTI data showed significant differences in brain morphology and tissue contrasts, which indicate the importance of the in vivo DTI-based mouse brain atlas.

  20. Towards the routine use of brain imaging to aid the clinical diagnosis of disorders of consciousness.

    Science.gov (United States)

    Coleman, M R; Davis, M H; Rodd, J M; Robson, T; Ali, A; Owen, A M; Pickard, J D

    2009-09-01

    Clinical audits have highlighted the many challenges and dilemmas faced by clinicians assessing persons with disorders of consciousness (vegetative state and minimally conscious state). The diagnostic decision-making process is highly subjective, dependent upon the skills of the examiner and invariably dictated by the patients' ability to move or speak. Whilst a considerable amount has been learnt since Jennett and Plum coined the term 'vegetative state', the assessment process remains largely unchanged; conducted at the bedside, using behavioural assessment tools, which are susceptible to environmental and physiological factors. This has created a situation where the rate of misdiagnosis is unacceptably high (up to 43%). In order to address these problems, various functional brain imaging paradigms, which do not rely upon the patient's ability to move or speak, have been proposed as a source of additional information to inform the diagnostic decision making process. Although accumulated evidence from brain imaging, particularly functional magnetic resonance imaging (fMRI), has been encouraging, the empirical evidence is still based on relatively small numbers of patients. It remains unclear whether brain imaging is capable of informing the diagnosis beyond the behavioural assessment and whether brain imaging has any prognostic utility. In this study, we describe the functional brain imaging findings from a group of 41 patients with disorders of consciousness, who undertook a hierarchical speech processing task. We found, contrary to the clinical impression of a specialist team using behavioural assessment tools, that two patients referred to the study with a diagnosis of vegetative state did in fact demonstrate neural correlates of speech comprehension when assessed using functional brain imaging. These fMRI findings were found to have no association with the patient's behavioural presentation at the time of investigation and thus provided additional diagnostic

  1. [Imaging the brain, from the cell to the organ].

    Science.gov (United States)

    Cabanis, Emmanuel Alain; Iba-Zizen, Marie-Thérèse; Habas, Christophe; Istoc, Adrian; Stievenart, Jean-Louis; Yoshida, Masaki; Nguyen, Thien Huong; Goepel, Roland

    2009-04-01

    Brain imaging has progressed over the centuries, from prehistory (surgical and sculptural empiricism), through the Middle Ages (dissection and drawings), the Renaissance (printing) and the 18th century (Spallanzani and ultrasounds), to the 19th century and the discovery of piezoelectricity by the Curie brothers and X-rays by Röntgen in 1895. The head had finally become transparent! The microscope was used by Ramon Y Cajal for histological and neuropathological brain studies. Marie Curie's discovery of radioisotopes paved the way for advances in in vivo neurophysiology. In the 20th century, technical progress accelerated with the advent of computed tomography. Injected contrast products were initially negative (air for ventriculography and pneumo-encephalography), and subsequently positive (intraventricular then intraarterial iodine, cerebral arteriography, increasingly hyperselective). Neurology and neurosurgery were followed by neuroradiology, stereotaxy, and interventional neuroradiology. G.N. Hounsfield's EMI CT scanner replaced silver salts crystals with computed pixels and voxels. Magnetic resonance imaging (MRI, 1981), which dispenses with the need for X-rays, is evolving at the same pace as computer science itself (Moore's Law) in the form of nanometric biophotonics for example. Diffusion MRI is providing precious information on neuroanatomy (axonal organization of the white matter and neuro-tractography, vascular anatomy), neurochemistry (MRS) and neurophysiology. Functional MRI of sensory activation and resting connectivity, the substrate of thought, is giving fascinating results. Functional stereotactic neurosurgery (for epilepsy, abnormal movements, etc.), stereotactic radiosurgery and endovascular interventional neuroradiology are among the latest approaches. PMID:20120272

  2. A template of rat brain based on fMRI T2* imaging

    Institute of Scientific and Technical Information of China (English)

    HU Zhenghui; WU Yigen; WANG Xiaochuan; WANG Jianzhi; CHEN Feiyan; TANG Xiaowei

    2005-01-01

    The development of functional magnetic resonance imaging (fMRI) technology has made it possible to carry out functional brain imaging experiments in small animals. Usually, group data is required to form the assessment of population, which can not only increase the sensitivity of the overall experiment, but also allow the generalization of the conclusion to the whole population. In order to average the signals of functional brain images from different subjects, it is necessary to put all the mapping images into the same standard space (template image). However, up to now, most animal brain templates remain unavailable and it must be done by ourselves. In this study, a template image based on the brains of eight male Wistar rats is obtained, and it is successfully used in our present Alzheimer disease (AD)-like rat model studies as template for spatially normalizing images to the same stereotaxical space. The fMRI results processed with statistical parametric mapping (SPM99) software are in agreement with the results from immunohistochemical experiment, which proves that this method is universally applicable to the pathologic models of other small animals and to human brain lesion studies.

  3. Sleep studies (image)

    Science.gov (United States)

    During a sleep study the sleep cycles and stages of sleep are monitored. Electrodes are placed to monitor continuous recordings of brain waves, electrical activity of muscles, eye movement, respiratory ...

  4. Brain MR imaging finding in patients with central vertigo

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chun Keun; Kim, Sang Joon; Kim, You Me; Cha, Min Jung; Lee, Young Seok; Kim, Jae Il; Lee, Geun Ho; Rhee, Chung Koo; Park, Hyun Min [Dankook Univ. College of Medicine, Chonan (Korea, Republic of)

    1998-11-01

    To investigate brain lesions and their locations in patients with central vertigo, as seen on MR imaging. We retrospectively reviewed MR images of 85 patients with central type vertigo diagnosed on the basis of clinical symptoms and vestibular function test(VFT), and analyzed lesions fand their locations. Those located along the known central vestibular pathway were included in our study. In 29 of 85 patients(34%), lesions considered to be associated with central vertigo were detected on MR imaging. These included infarction(18 patients), hemorrhage(5), tumor(2), cavernous angioma(1), cerebellopontine angle cyst(1), tuberous sclerosis(1) and olivopontocerebellar atrophy (1);they were located in the parietal lobe(6 patients), the lateral medulla(5), the pons(5), the middle cerebellar peduncle(4), the corona radiata(3), and the cerebellar vermis(3). Thirty-eight cases showed high signal intensity lesions in deep cerebral matter, the basal ganglia, and pons but these were considered to be unrelated to central vertigo. MR imaging could be a useful tool for the evaluation of patients with central vertigo.=20.

  5. Multichannel optical brain imaging to separate cerebral vascular, tissue metabolic, and neuronal effects of cocaine

    Science.gov (United States)

    Ren, Hugang; Luo, Zhongchi; Yuan, Zhijia; Pan, Yingtian; Du, Congwu

    2012-02-01

    Characterization of cerebral hemodynamic and oxygenation metabolic changes, as well neuronal function is of great importance to study of brain functions and the relevant brain disorders such as drug addiction. Compared with other neuroimaging modalities, optical imaging techniques have the potential for high spatiotemporal resolution and dissection of the changes in cerebral blood flow (CBF), blood volume (CBV), and hemoglobing oxygenation and intracellular Ca ([Ca2+]i), which serves as markers of vascular function, tissue metabolism and neuronal activity, respectively. Recently, we developed a multiwavelength imaging system and integrated it into a surgical microscope. Three LEDs of λ1=530nm, λ2=570nm and λ3=630nm were used for exciting [Ca2+]i fluorescence labeled by Rhod2 (AM) and sensitizing total hemoglobin (i.e., CBV), and deoxygenated-hemoglobin, whereas one LD of λ1=830nm was used for laser speckle imaging to form a CBF mapping of the brain. These light sources were time-sharing for illumination on the brain and synchronized with the exposure of CCD camera for multichannel images of the brain. Our animal studies indicated that this optical approach enabled simultaneous mapping of cocaine-induced changes in CBF, CBV and oxygenated- and deoxygenated hemoglobin as well as [Ca2+]i in the cortical brain. Its high spatiotemporal resolution (30μm, 10Hz) and large field of view (4x5 mm2) are advanced as a neuroimaging tool for brain functional study.

  6. Brains studying brains: look before you think in vision

    Science.gov (United States)

    Zhaoping, Li

    2016-06-01

    Using our own brains to study our brains is extraordinary. For example, in vision this makes us naturally blind to our own blindness, since our impression of seeing our world clearly is consistent with our ignorance of what we do not see. Our brain employs its ‘conscious’ part to reason and make logical deductions using familiar rules and past experience. However, human vision employs many ‘subconscious’ brain parts that follow rules alien to our intuition. Our blindness to our unknown unknowns and our presumptive intuitions easily lead us astray in asking and formulating theoretical questions, as witnessed in many unexpected and counter-intuitive difficulties and failures encountered by generations of scientists. We should therefore pay a more than usual amount of attention and respect to experimental data when studying our brain. I show that this can be productive by reviewing two vision theories that have provided testable predictions and surprising insights.

  7. A quantitative MRI method for imaging blood-brain barrier leakage in experimental traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Blood-brain barrier (BBB disruption is common following traumatic brain injury (TBI. Dynamic contrast enhanced (DCE MRI can longitudinally measure the transport coefficient Ktrans which reflects BBB permeability. Ktrans measurements however are not widely used in TBI research because it is generally considered to be noisy and possesses low spatial resolution. We improved spatiotemporal resolution and signal sensitivity of Ktrans MRI in rats by using a high-sensitivity surface transceiver coil. To overcome the signal drop off profile of the surface coil, a pre-scan module was used to map the flip angle (B1 field and magnetization (M0 distributions. A series of T1-weighted gradient echo images were acquired and fitted to the extended Kety model with reversible or irreversible leakage, and the best model was selected using F-statistics. We applied this method to study the rat brain one hour following controlled cortical impact (mild to moderate TBI, and observed clear depiction of the BBB damage around the impact regions, which matched that outlined by Evans Blue extravasation. Unlike the relatively uniform T2 contrast showing cerebral edema, Ktrans shows a pronounced heterogeneous spatial profile in and around the impact regions, displaying a nonlinear relationship with T2. This improved Ktrans MRI method is also compatible with the use of high-sensitivity surface coil and the high-contrast two-coil arterial spin-labeling method for cerebral blood flow measurement, enabling more comprehensive investigation of the pathophysiology in TBI.

  8. Structural MRI studies of language function in the undamaged brain

    OpenAIRE

    Richardson, F. M.; Price, C.J.

    2009-01-01

    In recent years, the demonstration that structural changes can occur in the human brain beyond those associated with development, ageing and neuropathology has revealed a new approach to studying the neural basis of behaviour. In this review paper, we focus on structural imaging studies of language that have utilised behavioural measures in order to investigate the neural correlates of language skills in the undamaged brain. We report studies that have used two different techniques: voxel-bas...

  9. Usefulness of double dose contrast-enhanced magnetic resonance imaging for clear delineation of gross tumor volume in stereotactic radiotherapy treatment planning of metastatic brain tumors. A dose comparison study

    International Nuclear Information System (INIS)

    The purpose of this study was to compare the size and clearness of gross tumor volumes (GTVs) of metastatic brain tumors on T1-weighted magnetic resonance images between a single dose contrast administration protocol and a double dose contrast administration protocol to determine the optimum dose of contrast-enhancement for clear delineation of GTV in stereotactic radiotherapy (SRT). A total of 28 small metastatic brain tumors were evaluated in 13 patients by intra-individual comparison of GTV measurements using single dose and double dose contrast-enhanced thin-slice (1-mm) magnetic resonance imaging (MRI). All patients had confirmed histological types of primary tumors and had undergone hypo-fractionated SRT for metastatic brain tumors. The mean tumor diameter with single dose and double dose contrast-enhancement was 12.0 ± 1.1 mm and 13.2 ± 1.1 mm respectively (P 1ml volume was 41.8 ± 0.05% and 12.4 ± 0.03% respectively (P < 0.001). We conclude that double dose contrast-enhanced thin-slice MRI is a more useful technique than single dose contrast-enhanced thin-slice MRI, especially for clear delineation of GTVs of small metastatic brain tumors in treatment planning of highly precise SRT. (author)

  10. Usefulness of double dose contrast-enhanced magnetic resonance imaging for clear delineation of gross tumor volume in stereotactic radiotherapy treatment planning of metastatic brain tumors: a dose comparison study

    Science.gov (United States)

    Subedi, Kalloo Sharma; Takahashi, Takeo; Yamano, Takafumi; Saitoh, Jun-ichi; Nishimura, Keiichiro; Suzuki, Yoshiyuki; Ohno, Tatsuya; Nakano, Takashi

    2013-01-01

    The purpose of this study was to compare the size and clearness of gross tumor volumes (GTVs) of metastatic brain tumors on T1-weighted magnetic resonance images between a single dose contrast administration protocol and a double dose contrast administration protocol to determine the optimum dose of contrast-enhancement for clear delineation of GTV in stereotactic radiotherapy (SRT). A total of 28 small metastatic brain tumors were evaluated in 13 patients by intra-individual comparison of GTV measurements using single dose and double dose contrast-enhanced thin-slice (1-mm) magnetic resonance imaging (MRI). All patients had confirmed histological types of primary tumors and had undergone hypo-fractionated SRT for metastatic brain tumors. The mean tumor diameter with single dose and double dose contrast-enhancement was 12.0 ± 1.1 mm and 13.2 ± 1.1 mm respectively (P 1ml volume was 41.8 ± 0.05 % and 12.4 ± 0.03 % respectively (P < 0.001). We conclude that double dose contrast-enhanced thin-slice MRI is a more useful technique than single dose contrast-enhanced thin-slice MRI, especially for clear delineation of GTVs of small metastatic brain tumors in treatment planning of highly precise SRT. PMID:22843378

  11. In vivo PET imaging of brain nicotinic cholinergic receptors

    International Nuclear Information System (INIS)

    Neuronal acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system where they modulate a number of CNS functions including neurotransmitter release, cognitive function, anxiety, analgesia and control of cerebral blood flow. In the brain, a major subtype is composed of the α4β2 subunit combination. Density of this subtype has been shown to be decreased in patients with neuro-degenerative disease such as Alzheimer and Parkinson's disease (AD and PD), and mutated receptors has been described in some familial epilepsy. Thus, in vivo mapping of the nicotinic nAChRs by Positron Emission Tomography (PET) are of great interest to monitor the evolution of these pathologies and changes in the neuronal biochemistry induced by therapeutic agents. Recently, a new compound, 3-[2(S)-2-azetidinyl-methoxy]pyridine (A-85380) has been synthesised and labelled with fluorine-18, [18F]fluoro-A-85380 (Dolle et al., 1999). The [18F]fluoro-A-85380 has been shown to bind with high affinity t o nAChRs in vitro (Saba et al., 2004), and its toxicity was low and compatible with it s use at tracer dose in human PET studies (Valette, 2002). PET studies in baboons showed that, after in vivo administration of [ 18F]fluoro-A-85380 at a tracer dose, the distribution of the radioactivity in the brain reflect the distribution of the 18F]fluoro-A-8538 0 combined with its low toxicity make possible the imaging of the nicotinic receptor s in human by PET (Bottlaender 2003). Studies were performed in healthy non-smoker volunteers to evaluate the brain kinetics of [18F]fluoro-A-85380 and to assess the quantification of its nAChRs binding in the human brain with PET (Gallezot et a., 2005). The [18F]fluoro-A-85380 was also used in epileptic patients to whom a mutation in the α4 or β2 nAChRs subunit have been identified. We found that, in these patients, the pattern of the brain distribution of the radiotracer was found different when compared to the healthy subjects

  12. Multi circular-cavity surface coil for magnetic resonance imaging of monkey's brain at 4 Tesla

    Science.gov (United States)

    Osorio, A. I.; Solis-Najera, S. E.; Vázquez, F.; Wang, R. L.; Tomasi, D.; Rodriguez, A. O.

    2014-11-01

    Animal models in medical research has been used to study humans diseases for several decades. The use of different imaging techniques together with different animal models offers a great advantage due to the possibility to study some human pathologies without the necessity of chirurgical intervention. The employ of magnetic resonance imaging for the acquisition of anatomical and functional images is an excellent tool because its noninvasive nature. Dedicated coils to perform magnetic resonance imaging experiments are obligatory due to the improvement on the signal-to-noise ratio and reduced specific absorption ratio. A specifically designed surface coil for magnetic resonance imaging of monkey's brain is proposed based on the multi circular-slot coil. Numerical simulations of the magnetic and electric fields were also performed using the Finite Integration Method to solve Maxwell's equations for this particular coil design and, to study the behavior of various vector magnetic field configurations and specific absorption ratio. Monkey's brain images were then acquired with a research-dedicated magnetic resonance imaging system at 4T, to evaluate the anatomical images with conventional imaging sequences. This coil showed good quality images of a monkey's brain and full compatibility with standard pulse sequences implemented in research-dedicated imager.

  13. Hypnosis and imaging of the living human brain.

    Science.gov (United States)

    Landry, Mathieu; Raz, Amir

    2015-01-01

    Over more than two decades, studies using imaging techniques of the living human brain have begun to explore the neural correlates of hypnosis. The collective findings provide a gripping, albeit preliminary, account of the underlying neurobiological mechanisms involved in hypnotic phenomena. While substantial advances lend support to different hypotheses pertaining to hypnotic modulation of attention, control, and monitoring processes, the complex interactions among the many mediating variables largely hinder our ability to isolate robust commonalities across studies. The present account presents a critical integrative synthesis of neuroimaging studies targeting hypnosis as a function of suggestion. Specifically, hypnotic induction without task-specific suggestion is examined, as well as suggestions concerning sensation and perception, memory, and ideomotor response. The importance of carefully designed experiments is highlighted to better tease apart the neural correlates that subserve hypnotic phenomena. Moreover, converging findings intimate that hypnotic suggestions seem to induce specific neural patterns. These observations propose that suggestions may have the ability to target focal brain networks. Drawing on evidence spanning several technological modalities, neuroimaging studies of hypnosis pave the road to a more scientific understanding of a dramatic, yet largely evasive, domain of human behavior.

  14. Quantitative analysis of human brain MR images at ultrahigh field strength

    NARCIS (Netherlands)

    Doan, Nhat Trung

    2014-01-01

    T2*-weighted imaging provides a non-invasive means to study susceptibility changes of substances such as myelin and iron in the brain. Particularly, phase images show an increased sensitivity to magnetic susceptibility differences with increased field strengths. The primary goal of the thesis was to

  15. Imaging of Age-related Brain Changes: A Population-based Approach

    NARCIS (Netherlands)

    M.W. Vernooij (Meike)

    2009-01-01

    textabstractThe objective of the studies described in this thesis was to investigate with magnetic resonance imaging (MRI) brain changes that may function as preclinical imaging markers for neurodegenerative and cerebrovascular disease. For this goal, advanced MRI techniques were applied in the Rott

  16. Brain imaging in lung cancer patients without symptoms of brain metastases: a national survey of current practice in England

    International Nuclear Information System (INIS)

    Aim: To determine current practice regarding brain imaging for newly diagnosed lung cancer patients without symptoms of brain metastases. Materials and methods: A survey questionnaire was sent by e-mail to all the lung cancer lead clinicians in England currently on the National Cancer Intelligence Network database. The survey asked whether brain imaging was used in new lung cancer patients without symptoms or signs to suggest brain metastases; and if so, which patient subgroups were imaged according to cell type, stage of disease, and intention to treat, and which techniques were used to image these patients. Responses were received between February and May 2014. Results: Fifty-nine of 154 centres replied to the survey (38%). Thirty of the 59 centres (51%) did not image the brain in these patients. Twenty-nine of the 59 (49%) centres imaged the brain in at least certain subgroups. Of those centres that did image the brain 21 (72%) used CT as the first-line imaging technique and six (20%) used MRI. Twenty-five of 59 (42%) centres stated that the 2011 NICE guidelines had led to a change in their practice. Conclusion: There is wide variation in practice regarding brain imaging in this patient group in England, with no brain imaging at all in approximately half of centres and a spectrum of imaging in the other half. When the brain is imaged, CT is the technique most commonly used. The 2011 NICE guidelines have led to some change in practice but not to national uniformity. - Highlights: • Ascertain current practice in brain imaging for staging asymptomatic lung cancer patients. • Survey questionnaire sent to all the lung cancer lead clinicians in England. • Wide variation in practice with regard to brain imaging in this patient group. • No brain imaging at all in approximately half of centres and a spectrum of imaging in the other half • The 2011 NICE guidelines have led to some change in practice but not to national uniformity

  17. Creation and evaluation of complementary composite three-dimensional image in various brain diseases. An application of three-dimensional brain SPECT image and three-dimensional CT image

    Energy Technology Data Exchange (ETDEWEB)

    Seiki, Yoshikatsu; Shibata, Iekado; Mito, Toshiaki; Sugo, Nobuo [Toho Univ., Tokyo (Japan). School of Medicine

    2000-09-01

    The purpose of this study was to develop 3D composite images for use in functional and anatomical evaluation of various cerebral pathologies. Imaging studies were performed in normal volunteers, patients with hydrocephalus and patients with brain tumor (meningioma and metastatic tumor) using a three-detector SPECT system (Prism 3000) and helical CT scanner (Xvigor). {sup 123}I-IMP was used in normal volunteers and patients with hydrocephalus, and {sup 201}TLCL in patients with brain tumor. An Application Visualization System-Medical Viewer (AVS-MV) was used on a workstation (Titan 2) to generate 3D images. A new program was developed by synthesizing surface rendering and volume rendering techniques. The clinical effects of shunt operations were successfully evaluated in patients with hydrocephalus by means of translucent 3D images of the deep brain. Changes in the hypoperfusion area around the cerebral ventricle were compared with morphological changes in the cerebral ventricle on CT. In addition to the information concerning the characteristics of brain tumors and surrounding edemas, hemodynamic changes and changeable hypoperfusion areas around the tumors were visualized on 3D composite CT and SPECT images. A new method of generating 3D composite images of CT and SPECT was developed by combining graphic data from different systems on the same workstation. Complementary 3D composite images facilitated quantitative analysis of brain volume and functional analysis in various brain diseases. (author)

  18. Brain activation and inhibition after acupuncture at Taichong and Taixi: resting-state functional magnetic resonance imaging

    OpenAIRE

    Shao-qun Zhang; Yan-jie Wang; Ji-ping Zhang; Jun-qi Chen; Chun-xiao Wu; Zhi-peng Li; Jia-rong Chen; Huai-liang Ouyang; Yong Huang; Chun-zhi Tang

    2015-01-01

    Acupuncture can induce changes in the brain. However, the majority of studies to date have focused on a single acupoint at a time. In the present study, we observed activity changes in the brains of healthy volunteers before and after acupuncture at Taichong (LR3) and Taixi (KI3) using resting-state functional magnetic resonance imaging. Fifteen healthy volunteers underwent resting-state functional magnetic resonance imaging of the brain 15 minutes before acupuncture, then received acupunctur...

  19. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping.

    Science.gov (United States)

    Studholme, Colin

    2011-08-15

    The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.

  20. Brain imaging changes associated with risk factors for cardiovascular and cerebrovascular disease in asymptomatic patients.

    Science.gov (United States)

    Friedman, Joseph I; Tang, Cheuk Y; de Haas, Hans J; Changchien, Lisa; Goliasch, Georg; Dabas, Puneet; Wang, Victoria; Fayad, Zahi A; Fuster, Valentin; Narula, Jagat

    2014-10-01

    Reviews of imaging studies assessing the brain effects of vascular risk factors typically include a substantial number of studies with subjects with a history of symptomatic cardiovascular or cerebrovascular disease and/or events, limiting our ability to disentangle the primary brain effects of vascular risk factors from those of resulting brain and cardiac damage. The objective of this study was to perform a systematic review of brain changes from imaging studies in patients with vascular risk factors but without clinically manifest cardiovascular or cerebrovascular disease or events. The 77 studies included in this review demonstrate that in persons without symptomatic cardiovascular, cerebrovascular, or peripheral vascular disease, the vascular risk factors of hypertension, diabetes mellitus, obesity, hyperlipidemia, and smoking are all independently associated with brain imaging changes before the clinical manifestation of cardiovascular or cerebrovascular disease. We conclude that the identification of brain changes associated with vascular risk factors, before the manifestation of clinically significant cerebrovascular damage, presents a window of opportunity wherein adequate treatment of these modifiable vascular risk factors may prevent the development of irreversible deleterious brain changes and potentially alter patients' clinical course.

  1. In vivo photoacoustic neuronal imaging of odor-evoked calcium signals in the drosophila brain (Conference Presentation)

    Science.gov (United States)

    Zhang, Ruiying; Rao, Bin; Rong, Haoyang; Raman, Baranidharan; Wang, Lihong V.

    2016-03-01

    Neural scientists can benefit greatly from imaging tools that can penetrate thick brain tissue. Compared with traditional optical microscopy methods, photoacoustic imaging can beat the optical diffusion limit and achieve such deep tissue imaging with high spatial resolution. In this study, we used an optical-resolution photoacoustic microscope to image the odor-evoked neuronal activities in a drosophila model. Drosophila brain neurons stably express GCaMP5G, a calcium-sensitive fluorescent protein whose optical absorption coefficient changes with calcium influx during action potentials. We recorded an ~20% odor-evoked fractional photoacoustic signal increase at all depths of the drosophila brain in vivo, with and without removal of the brain cuticle, at a recording rate of 1 kHz. Our results were confirmed by concurrent fluorescent recordings. Furthermore, by performing fast 2D scanning, we imaged the antenna lobe region, which is of particular interest in neuroscience, at a volumetric rate of ~1 Hz with a sub-neuron resolution of 3 μm. Unlike optical imaging, which requires surgical removal of the scattering brain cuticle, our photoacoustic system can image through the cuticle and measure neuronal signals of the whole drosophila brain without invasive surgery, enabling minimal disturbance to the animal's behaviors. In conclusion, we have demonstrated photoacoustic imaging of calcium signals in drosophila brains for the first time. Utilizing the deep imaging capability of photoacoustic tomography, our methods could potentially be extended to in vivo imaging of neuronal activities from deep brains in other animal models.

  2. Cerenkov and radioluminescence imaging of brain tumor specimens during neurosurgery

    Science.gov (United States)

    Spinelli, Antonello Enrico; Schiariti, Marco P.; Grana, Chiara M.; Ferrari, Mahila; Cremonesi, Marta; Boschi, Federico

    2016-05-01

    We presented the first example of Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI) of human tumor specimens. A patient with a brain meningioma localized in the left parietal region was injected with 166 MBq of Y90-DOTATOC the day before neurosurgery. The specimens of the tumor removed during surgery were imaged using both CLI and RLI using an optical imager prototype developed in our laboratory. The system is based on a cooled electron multiplied charge coupled device coupled with an f/0.95 17-mm C-mount lens. We showed for the first time the possibility of obtaining CLI and RLI images of fresh human brain tumor specimens removed during neurosurgery.

  3. Non-oncological positron emission tomography (PET): brain imaging

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) allows evaluation of the central nervous system function. Imaging of regional cerebral blood flow and metabolism, and of several neurotransmission systems may be obtained using PET. PET quantification is accurate and has good test-retest reliability. For research purposes, PET has been used to study brain physiology, to explore neurological and psychiatric diseases pathophysiology and for the new drugs research and development. F.D.G. is the only PET radioligand with clinical application. Following criteria of evidence-based medicine, the clinical indications of F.D.G.-PET are: evaluation of treated gliomas, pre surgical study of partial refractory epilepsy and diagnosis of Alzheimer's disease when it is impossible to differentiate clinically from fronto-temporal dementia

  4. Brain functional changes in facial expression recognition in patients with major depressive disorder before and after antidepressant treatment A functional magnetic resonance imaging study

    Institute of Scientific and Technical Information of China (English)

    Wenyan Jiang; Zhongmin Yin; Yixin Pang; Feng Wu; Lingtao Kong; Ke Xu

    2012-01-01

    Functional magnetic resonance imaging was used during emotion recognition to identify changes in functional brain activation in 21 first-episode, treatment-naive major depressive disorder patients before and after antidepressant treatment. Following escitalopram oxalate treatment, patients exhibited decreased activation in bilateral precentral gyrus, bilateral middle frontal gyrus, left middle temporal gyrus, bilateral postcentral gyrus, left cingulate and right parahippocampal gyrus, and increased activation in right superior frontal gyrus, bilateral superior parietal lobule and left occipital gyrus during sad facial expression recognition. After antidepressant treatment, patients also exhibited decreased activation in the bilateral middle frontal gyrus, bilateral cingulate and right parahippocampal gyrus, and increased activation in the right inferior frontal gyrus, left fusiform gyrus and right precuneus during happy facial expression recognition. Our experimental findings indicate that the limbic-cortical network might be a key target region for antidepressant treatment in major depressive disorder.

  5. The psychopath magnetized: insights from brain imaging

    OpenAIRE

    Anderson, Nathaniel E.; Kiehl, Kent A.

    2011-01-01

    Psychopaths commit a disproportionate amount of violent crime, and this places a substantial economic and emotional burden on society. Elucidation of the neural correlates of psychopathy may lead to improved management and treatment of the condition. Although some methodological issues remain, the neuroimaging literature is generally converging on a set of brain regions and circuits that are consistently implicated in the condition: the orbitofrontal cortex, amygdala, and the anterior and pos...

  6. Advanced MR brain imaging in preterm infants

    OpenAIRE

    Bruine, Francisca Teresa de

    2013-01-01

    The aim of the thesis is to investigate the diagnostic value of MRI performed around term equivalent age in evaluating brain injury and predicting neurodevelopmental outcome at two years corrected age in very preterm infants with a gestational age of less than 32 weeks. MRI is a powerful tool to diagnose all types of white matter injury and is more sensitive than ultrasound in detecting punctate white matter lesions which are associated with developmental delay and cerebral palsy. The positiv...

  7. Brain Connectivity Studies in Schizophrenia: Unravelling the Effects of Antipsychotics

    DEFF Research Database (Denmark)

    Nejad, A.B.; Ebdrup, Bjørn Hylsebeck; Glenthøj, Birte Yding;

    2012-01-01

    Impaired brain connectivity is a hallmark of schizophrenia brain dysfunction. However, the effect of drug treatment and challenges on the dysconnectivity of functional networks in schizophrenia is an understudied area. In this review, we provide an overview of functional magnetic resonance imaging...... studies examining dysconnectivity in schizophrenia and discuss the few studies which have also attempted to probe connectivity changes with antipsychotic drug treatment. We conclude with a discussion of possible avenues for further investigation....

  8. Increased self-diffusion of brain water in hydrocephalus measured by MR imaging

    DEFF Research Database (Denmark)

    Gideon, P; Thomsen, C; Gjerris, F;

    1994-01-01

    We used MR imaging to measure the apparent brain water self-diffusion in 5 patients with normal pressure hydrocephalus (NPH), in 2 patients with high pressure hydrocephalus (HPH), and in 8 age-matched controls. In all patients with NPH significant elevations of the apparent diffusion coefficients...... white matter, and in one patient reexamined one year after surgery, ADCs were unchanged in nearly all brain regions. The increased ADC values in hydrocephalus patients may be caused by factors such as changes in myelin-associated bound water, increased Virchow-Robin spaces, and increased extracellular...... brain water fraction. For further studies of brain water diffusion in hydrocephalus patients, echo-planar imaging techniques with imaging times of a few seconds may be valuable....

  9. Towards brain-activity-controlled information retrieval: Decoding image relevance from MEG signals.

    Science.gov (United States)

    Kauppi, Jukka-Pekka; Kandemir, Melih; Saarinen, Veli-Matti; Hirvenkari, Lotta; Parkkonen, Lauri; Klami, Arto; Hari, Riitta; Kaski, Samuel

    2015-05-15

    We hypothesize that brain activity can be used to control future information retrieval systems. To this end, we conducted a feasibility study on predicting the relevance of visual objects from brain activity. We analyze both magnetoencephalographic (MEG) and gaze signals from nine subjects who were viewing image collages, a subset of which was relevant to a predetermined task. We report three findings: i) the relevance of an image a subject looks at can be decoded from MEG signals with performance significantly better than chance, ii) fusion of gaze-based and MEG-based classifiers significantly improves the prediction performance compared to using either signal alone, and iii) non-linear classification of the MEG signals using Gaussian process classifiers outperforms linear classification. These findings break new ground for building brain-activity-based interactive image retrieval systems, as well as for systems utilizing feedback both from brain activity and eye movements.

  10. Brain computer tomography in critically ill patients -- a prospective cohort study

    OpenAIRE

    Purmer Ilse M; van Iperen Erik P; Beenen Ludo F M; Kuiper Michael J; Binnekade Jan M; Vandertop Peter W; Schultz Marcus J; Horn Janneke

    2012-01-01

    Abstract Background Brain computer tomography (brain CT) is an important imaging tool in patients with intracranial disorders. In ICU patients, a brain CT implies an intrahospital transport which has inherent risks. The proceeds and consequences of a brain CT in a critically ill patient should outweigh these risks. The aim of this study was to critically evaluate the diagnostic and therapeutic yield of brain CT in ICU patients. Methods In a prospective observational study data were collected ...

  11. In-vivo human brain molecular imaging with a brain-dedicated PET/MRI system.

    Science.gov (United States)

    Cho, Zang Hee; Son, Young Don; Choi, Eun Jung; Kim, Hang Keun; Kim, Jeong Hee; Lee, Sang Yoon; Ogawa, Seiji; Kim, Young Bo

    2013-02-01

    Advances in the new-generation of ultra-high-resolution, brain-dedicated positron emission tomography-magnetic resonance imaging (PET/MRI) systems have begun to provide many interesting insights into the molecular dynamics of the brain. First, the finely delineated structural information from ultra-high-field MRI can help us to identify accurate landmark structures, thereby making it easier to locate PET activation sites that are anatomically well-correlated with metabolic or ligand-specific organs in the neural structures in the brain. This synergistic potential of PET/MRI imaging is discussed in terms of neuroscience and neurological research from both translational and basic research perspectives. Experimental results from the hippocampus, thalamus, and brainstem obtained with (18)F-fluorodeoxyglucose and (11)C-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)benzonitrile are used to demonstrate the potential of this new brain PET/MRI system.

  12. Magnetic resonance imaging based volumetry: a primary approach to unravelling the brain

    Institute of Scientific and Technical Information of China (English)

    Huang Xiaoqi; Lü Su; Li Dongming; Gong Qiyong

    2007-01-01

    Magnetic resonance (MR) imaging based volumetry is recognized as an important technique for studying the brain. In this review, two principle volumetric methods using high resolution MR images were introduced, namely the Cavalieri method and the voxel based morphometry (VBM). The Cavalieri method represents a manual technique that allows the volume of brain structures to be estimated efficiently with no systematic error or sampling bias, whereby the VBM represents an automated image analysis which involves the use of statistical parametric mapping of the MR imaging data. Both methods have been refined and applied extensively in recent neuroscience research. The present paper aims to describe the development of methodologies and also to update the knowledge of their applications in studying the normal and diseased brain.

  13. Usefulness of three-dimensional MR images of brain tumors for surgical simulation

    International Nuclear Information System (INIS)

    The purpose of this study was to determine the usefulness of three-dimensional (3D) MR imaging of brain tumors for surgical planning. Sixty-nine patients with various tumors of the brain were included in the present study. Using a volume-rendering (VR) method on an independent workstation, 3D-MR images were obtained with the fast-spoiled gradient recalled acquisition in the steady state (SPGR) sequence after Gd-DTPA administration. VR images could show an exact relationship between the surface of the brain and major vessels. However, in patients with deeply located tumors, VR images did not necessarily provide sufficient information as to the relationship between the tumor and vessels. In combination with a surface-rendering method, 3D-MR imaging could demonstrate the exact relationships among the tumors, major vessels, and surface of the brain. In tumors without contrast enhancement, this method was able to show 3D images of tumors with surrounding structures. For neurosurgeons, 3D-MR images were useful for understanding the surface anatomy and surrounding structures of the tumors prior to surgery. These images were also helpful in explaining the condition of the disease to patients and their families. (author)

  14. Potential new approaches for the development of brain imaging agents for single-photon applications

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, F.F. Jr.; Srivastava, P.C.

    1984-01-01

    This paper describes new strategies for the brain-specific delivery of radionuclides that can be used to evaluate regional cerebral perfusion by single photon imaging techniques. A description of several examples of interesting new strategies that have recently been reported is presented. A new approach at this institution for the brain-specific delivery of radioiodinated iodophenylalkyl-substituted dihyronicotinamide systems is described which shows good brain uptake and retention in preliminary studies in rats. Following transport into the brain these agents appear to undergo facile intracerebral oxidation to the quaternized analogues which do not recross the intact blood-brain barrier and so are effectively trapped in the brain. 49 refs., 9 figs., 1 tab.

  15. Lesion detection in magnetic resonance brain images by hyperspectral imaging algorithms

    Science.gov (United States)

    Xue, Bai; Wang, Lin; Li, Hsiao-Chi; Chen, Hsian Min; Chang, Chein-I.

    2016-05-01

    Magnetic Resonance (MR) images can be considered as multispectral images so that MR imaging can be processed by multispectral imaging techniques such as maximum likelihood classification. Unfortunately, most multispectral imaging techniques are not particularly designed for target detection. On the other hand, hyperspectral imaging is primarily developed to address subpixel detection, mixed pixel classification for which multispectral imaging is generally not effective. This paper takes advantages of hyperspectral imaging techniques to develop target detection algorithms to find lesions in MR brain images. Since MR images are collected by only three image sequences, T1, T2 and PD, if a hyperspectral imaging technique is used to process MR images it suffers from the issue of insufficient dimensionality. To address this issue, two approaches to nonlinear dimensionality expansion are proposed, nonlinear correlation expansion and nonlinear band ratio expansion. Once dimensionality is expanded hyperspectral imaging algorithms are readily applied. The hyperspectral detection algorithm to be investigated for lesion detection in MR brain is the well-known subpixel target detection algorithm, called Constrained Energy Minimization (CEM). In order to demonstrate the effectiveness of proposed CEM in lesion detection, synthetic images provided by BrainWeb are used for experiments.

  16. 3T MR imaging of the brain.

    Science.gov (United States)

    DeLano, Mark C; Fisher, Charles

    2006-02-01

    The advent of very high field clinical scanners that operate at 3T is taking structural and functional imaging to new levels and is reinvigorating clinical spectroscopy, fMR imaging, and noncontrast-enhanced methods of MRA. Most of the challenges that are related to 3T imaging have been addressed to facilitate routine clinical imaging. An awareness of the complexities that underlie the solutions to these challenges is important to the continued improvements to the 3T platform so that its maximal potential can be reached. The development of the multichannel-head coils and the improvement in the design of body coils, concurrently with the development of multichannel capabilities that enable parallel imaging, have benefited all field platforms. Perhaps the added value of parallel imaging has been greatest at 3T where the additional signal can be exploited. The definition of very high field is a moving target, and may be well on its way to 7.0 T, although in terms of the current clinical state of the art, 3T is our current reference. PMID:16530636

  17. Preparation and Biological Evaluation of Radioiodinated Risperidone and Lamotrigine as Models for Brain Imaging

    International Nuclear Information System (INIS)

    Brain imaging technology is becoming an important tool in both research and clinical care. Due to the sensitivity of brain imaging technology, neuroscientists are able to visualize brain structure and function from the level of individual molecules to the whole brain, recognize and diagnose neurological disorders, develop new strategies for treatment and determine how therapies work. The study aimed to take advantages from drugs that are able to cross the brain barrier for the development of potential radiopharmaceuticals for non-invasive brain imaging. Risperidone and lamotrigine were successfully labeled with 125I via direct electrophilic substitution reaction at 80 degree C. The reaction parameters affecting the preparation process were studied. 125I-risperidone and 125I-lamotrigine gave maximum labeling yield of 89 % ± 3.75 and 97.5 % ± 1.0 %, respectively and their stability were up to 6 and 24 h, respectively. Biodistribution studies showed that maximum uptake of 125I-risperidone and 125I-lamotrigine in the brain of mice were 4.27 % ± 0.38 and 2.45 % ± 0.18 of the injected activity/g tissue organ, at 10

  18. Obsessive-compulsive disorder: advances in brain imaging

    International Nuclear Information System (INIS)

    In the past twenty years functional brain imaging has advanced to the point of tackling the differential diagnosis, prognosis and therapeutic response in Neurology and Psychiatry. Psychiatric disorders were rendered 'functional' a century ago; however nowadays they can be seen by means of brain imaging. Functional images in positron emission tomography (PET) and single photon emission tomography (NEUROSPET) show in non-invasive fashion the state of brain functioning. PET does this assessing glucose metabolism and NEUROSPET by putting cerebral blood flow in images. Prevalence of OCD is clearly low (2 to 3%), but comorbidity with depression, psychoses, bipolar disorder and schizophrenia is high. Furthermore, it is not infrequent with autism, attention disorder, tichotillomany, borderline personality disorders, in pathological compulsive spending, sexual compulsion and in pathological gambling, in tics, and in Gilles de la Tourette disorder, NEUROSPET and PET show hypoperfusion in both frontal lobes, in their prefrontal dorsolateral aspects, in their inferior zone and premotor cortex, with hyperperfusion in the posterior cingulum and hypoperfusion in basal ganglia (caudate nucleus). Cummings states that hyperactivity of the limbic system might be involved in OCD. Thus, brain imaging in OCD is a diagnostic aid, allows us to see clinical imagenological evolution and therapeutic response and, possibly, it is useful predict therapeutic response (Au)

  19. Improved tumor identification using dual tracer molecular imaging in fluorescence guided brain surgery

    Science.gov (United States)

    Xu, Xiaochun; Torres, Veronica; Straus, David; Brey, Eric M.; Byrne, Richard W.; Tichauer, Kenneth M.

    2015-03-01

    Brain tumors represent a leading cause of cancer death for people under the age of 40 and the probability complete surgical resection of brain tumors remains low owing to the invasive nature of these tumors and the consequences of damaging healthy brain tissue. Molecular imaging is an emerging approach that has the potential to improve the ability for surgeons to correctly discriminate between healthy and cancerous tissue; however, conventional molecular imaging approaches in brain suffer from significant background signal in healthy tissue or an inability target more invasive sections of the tumor. This work presents initial studies investigating the ability of novel dual-tracer molecular imaging strategies to be used to overcome the major limitations of conventional "single-tracer" molecular imaging. The approach is evaluated in simulations and in an in vivo mice study with animals inoculated orthotopically using fluorescent human glioma cells. An epidermal growth factor receptor (EGFR) targeted Affibody-fluorescent marker was employed as a targeted imaging agent, and the suitability of various FDA approved untargeted fluorescent tracers (e.g. fluorescein & indocyanine green) were evaluated in terms of their ability to account for nonspecific uptake and retention of the targeted imaging agent. Signal-to-background ratio was used to measure and compare the amount of reporter in the tissue between targeted and untargeted tracer. The initial findings suggest that FDA-approved fluorescent imaging agents are ill-suited to act as untargeted imaging agents for dual-tracer fluorescent guided brain surgery as they suffer from poor delivery to the healthy brain tissue and therefore cannot be used to identify nonspecific vs. specific uptake of the targeted imaging agent where current surgery is most limited.

  20. Prenatal magnetic resonance imaging: brain normal linear biometric values below 24 gestational weeks

    International Nuclear Information System (INIS)

    Prenatal magnetic resonance (MR) imaging is currently used to measure quantitative data concerning brain structural development. At present, morphometric MR imaging studies have been focused mostly on the third trimester of gestational age. However, in many countries, because of legal restriction on abortion timing, the majority of MR imaging fetal examination has to be carried out during the last part of the second trimester of pregnancy (i.e., before the 24th week of gestation). Accurate and reliable normative data of the brain between 20 and 24 weeks of gestation is not available. This report provides easy and practical parametric support to assess those normative data. From a database of 1,200 fetal MR imaging studies, we retrospectively selected 84 studies of the brain of fetuses aged 20-24 weeks of gestation that resulted normal on clinical and radiological follow-up. Fetuses with proved or suspected infections, twin pregnancy, and fetuses of mothers affected by pathology that might have influenced fetal growth were excluded. Linear biometrical measurements of the main cerebral structures were obtained by three experienced pediatric neuroradiologists. A substantial interobserver agreement for each measurements was reached, and normative data with median, maximum, and minimum value were obtained for brain structures. The knowledge of a range of normality and interindividual variability of linear biometrical values for the developing brain between 20th and 24th weeks of gestation may be valuable in assessing normal brain development in clinical settings. (orig.)

  1. Prenatal magnetic resonance imaging: brain normal linear biometric values below 24 gestational weeks

    Energy Technology Data Exchange (ETDEWEB)

    Parazzini, C.; Righini, A.; Triulzi, F. [Children' s Hospital ' ' V. Buzzi' ' , Department of Radiology and Neuroradiology, Milan (Italy); Rustico, M. [Children' s Hospital ' ' V. Buzzi' ' , Department of Obstetrics and Gynecology, Milan (Italy); Consonni, D. [Fondazione IRCCS Ospedale Maggiore Policlinico, Unit of Epidemiology, Milan (Italy)

    2008-10-15

    Prenatal magnetic resonance (MR) imaging is currently used to measure quantitative data concerning brain structural development. At present, morphometric MR imaging studies have been focused mostly on the third trimester of gestational age. However, in many countries, because of legal restriction on abortion timing, the majority of MR imaging fetal examination has to be carried out during the last part of the second trimester of pregnancy (i.e., before the 24th week of gestation). Accurate and reliable normative data of the brain between 20 and 24 weeks of gestation is not available. This report provides easy and practical parametric support to assess those normative data. From a database of 1,200 fetal MR imaging studies, we retrospectively selected 84 studies of the brain of fetuses aged 20-24 weeks of gestation that resulted normal on clinical and radiological follow-up. Fetuses with proved or suspected infections, twin pregnancy, and fetuses of mothers affected by pathology that might have influenced fetal growth were excluded. Linear biometrical measurements of the main cerebral structures were obtained by three experienced pediatric neuroradiologists. A substantial interobserver agreement for each measurements was reached, and normative data with median, maximum, and minimum value were obtained for brain structures. The knowledge of a range of normality and interindividual variability of linear biometrical values for the developing brain between 20th and 24th weeks of gestation may be valuable in assessing normal brain development in clinical settings. (orig.)

  2. Mathematical Models of Visual Information Processing in the Human Brain and Applications to Image Processing

    OpenAIRE

    Arai, Hitoshi

    2013-01-01

    In this lecture I give a survey of joint works of Hitoshi Arai and Shinobu Arai. The main purpose of our study is to construct mathematical models of visual information processing in the brain, and to give applications to image processing. On the past few decades, several studies have been made on mathematical models of visual information processing in the human brain. Our new models are constructed by using simple pinwheel framelets ([4]) and pinwheel framelets ([6]), which are a new class o...

  3. Magnetic resonance imaging acquisition techniques intended to decrease movement artefact in paediatric brain imaging: a systematic review.

    Science.gov (United States)

    Woodfield, Julie; Kealey, Susan

    2015-08-01

    Attaining paediatric brain images of diagnostic quality can be difficult because of young age or neurological impairment. The use of anaesthesia to reduce movement in MRI increases clinical risk and cost, while CT, though faster, exposes children to potentially harmful ionising radiation. MRI acquisition techniques that aim to decrease movement artefact may allow diagnostic paediatric brain imaging without sedation or anaesthesia. We conducted a systematic review to establish the evidence base for ultra-fast sequences and sequences using oversampling of k-space in paediatric brain MR imaging. Techniques were assessed for imaging time, occurrence of movement artefact, the need for sedation, and either image quality or diagnostic accuracy. We identified 24 relevant studies. We found that ultra-fast techniques had shorter imaging acquisition times compared to standard MRI. Techniques using oversampling of k-space required equal or longer imaging times than standard MRI. Both ultra-fast sequences and those using oversampling of k-space reduced movement artefact compared with standard MRI in unsedated children. Assessment of overall diagnostic accuracy was difficult because of the heterogeneous patient populations, imaging indications, and reporting methods of the studies. In children with shunt-treated hydrocephalus there is evidence that ultra-fast MRI is sufficient for the assessment of ventricular size.

  4. Magnetic resonance imaging acquisition techniques intended to decrease movement artefact in paediatric brain imaging: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Woodfield, Julie [University of Edinburgh, Child Life and Health, Edinburgh (United Kingdom); Kealey, Susan [Western General Hospital, Department of Neuroradiology, Edinburgh (United Kingdom)

    2015-08-15

    Attaining paediatric brain images of diagnostic quality can be difficult because of young age or neurological impairment. The use of anaesthesia to reduce movement in MRI increases clinical risk and cost, while CT, though faster, exposes children to potentially harmful ionising radiation. MRI acquisition techniques that aim to decrease movement artefact may allow diagnostic paediatric brain imaging without sedation or anaesthesia. We conducted a systematic review to establish the evidence base for ultra-fast sequences and sequences using oversampling of k-space in paediatric brain MR imaging. Techniques were assessed for imaging time, occurrence of movement artefact, the need for sedation, and either image quality or diagnostic accuracy. We identified 24 relevant studies. We found that ultra-fast techniques had shorter imaging acquisition times compared to standard MRI. Techniques using oversampling of k-space required equal or longer imaging times than standard MRI. Both ultra-fast sequences and those using oversampling of k-space reduced movement artefact compared with standard MRI in unsedated children. Assessment of overall diagnostic accuracy was difficult because of the heterogeneous patient populations, imaging indications, and reporting methods of the studies. In children with shunt-treated hydrocephalus there is evidence that ultra-fast MRI is sufficient for the assessment of ventricular size. (orig.)

  5. In vivo whole brain, cellular and molecular imaging in nonhuman primate models of neuropathology.

    Science.gov (United States)

    Huang, Lieven; Merson, Tobias D; Bourne, James A

    2016-07-01

    Rodents have been the principal model to study brain anatomy and function due to their well-mapped brain architecture, rapid reproduction and amenability to genetic modification. However, there are clear limitations, for example their simpler neocortex, necessitating the need to adopt a model that is closer to humans in order to understand human cognition and brain conditions. Nonhuman primates (NHPs) are ideally suited as they are our closest relatives in the animal kingdom but in vivo imaging technologies to study brain structure and function in these species can be challenging. With the surge in NHP research in recent years, scientists have begun adapting imaging technologies, such as two-photon microscopy, for these species. Here we review the various NHP models that exist as well as their use in advanced microscopic and mesoscopic studies. We discuss the challenges in the field and investigate the opportunities that lie ahead. PMID:27151822

  6. Brain magnetic resonance imaging with contrast dependent on blood oxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W. (AT and T Bell Laboratories, Murray Hill, NJ (United States))

    1990-12-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity.

  7. Brain magnetic resonance imaging with contrast dependent on blood oxygenation

    International Nuclear Information System (INIS)

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity

  8. MR imaging of brain metastases. Pt. 1

    International Nuclear Information System (INIS)

    Sensitifity and specificity of plain T2-WI and Gd-DTPA enhanced T1-WI were compared by evaluating MR exams of 30 patients with brain metastases. Large lesions with high signal on T2-WI always enhanced (43/43) when a structure (perifocal edema, tumor tissue, centralnecrosis) was found. Large lesions nearly always enhanced (53/55) even if no such structure was found. 65% of small unstructured white matter lesions with high signal on T2-WI, which are generally considered vascular, did not enhance. Surprisingly, 35% did enhance. Demonstration of blood brain barrier disturbance in these lesions suggested a metastatic origin. In 3 patients with multiple metastases, Gd-DTPA enhanced T1-WI disclosed more than 140 lesions not seen on T2-WI. All of them were located in or adjacent to grey matter. Our results indicate that enhanced T1-WI should be obtained even if T1-WI are normal or show only small white matter lesions. (orig.)

  9. Utility of susceptibility-weighted imaging and arterial spin perfusion imaging in pediatric brain arteriovenous shunting

    Energy Technology Data Exchange (ETDEWEB)

    Nabavizadeh, Seyed Ali; Edgar, J.C.; Vossough, Arastoo [University of Pennsylvania, Department of Radiology, Philadelphia, PA (United States); Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2014-10-15

    The objectives of the study are to investigate the application of susceptibility-weighted imaging (SWI) and arterial spin labeling (ASL) imaging in the assessment of shunting and the draining veins in pediatric patients with arteriovenous shunting and compare the utility of SWI and ASL with conventional MR and digital subtraction angiography (DSA). This study is a retrospective study of 19 pediatric patients with arteriovenous shunting on brain MRI who were also evaluated with DSA. We assessed the ability of conventional MRI sequences, susceptibility magnitude images, phase-filtered SWI images, and pulsed ASL images in the detection of arteriovenous (AV) shunting, number of draining veins and drainage pathways in comparison to DSA. The mean number of detected draining veins on DSA (3.63) was significantly higher compared to SWI phase-filtered image (mean = 2.72), susceptibility magnitude image (mean = 2.92), ASL (mean = 1.76) and conventional MRI (2.47) (p < 0.05). Pairwise comparison of DSA difference scores (i.e., difference between MR modalities in the number of missed draining veins) revealed no difference between the MR modalities (p > 0.05). ASL was the only method that correctly identified superficial and deep venous drainage in all patients. Regarding detection of shunting, ASL, SWI phase-filtered, and magnitude images demonstrated shunting in 100, 83, and 84 % of patients, respectively. SWI depicts a higher number of draining vein compared to conventional MR pulse sequences. ASL is a sensitive approach in showing 100 % sensitivity in the detection of AV shunting and in the diagnosis of the pattern of venous drainage. The present findings suggest the added utility of both SWI and ASL in the assessment of AV shunting. (orig.)

  10. Positron Emission Tomography and Magnetic Resonance Imaging of the Brain in Fabry Disease

    DEFF Research Database (Denmark)

    Korsholm, Kirsten; Feldt-Rasmussen, Ulla; Granqvist, Henrik;

    2015-01-01

    risk of cerebrovascular disease at a young age in addition to heart and kidney failure. OBJECTIVE: The objective of this study was to assess brain function and structure in the Danish cohort of patients with Fabry disease in a prospective way using 18-fluoro-deoxyglucose (F-18 FDG) positron emission...... tomography (PET) and magnetic resonance imaging (MRI). PATIENTS: Forty patients with Fabry disease (14 males, 26 females, age at inclusion: 10-66 years, median: 39 years) underwent a brain F-18-FDG-PET-scan at inclusion, and 31 patients were followed with FDG-PET biannually for up to seven years. All...... patients (except one) had a brain MRI-scan at inclusion, and 34 patients were followed with MRI biannually for up to nine years. IMAGE ANALYSIS: The FDG-PET-images were inspected visually and analysed using a quantitative 3-dimensional stereotactic surface projection analysis (Neurostat). MRI images were...

  11. MR to CT Registration of Brains using Image Synthesis

    OpenAIRE

    Roy, Snehashis; Carass, Aaron; Jog, Amod; Prince, Jerry L.; Lee, Junghoon

    2014-01-01

    Computed tomography (CT) is the standard imaging modality for patient dose calculation for radiation therapy. Magnetic resonance (MR) imaging (MRI) is used along with CT to identify brain structures due to its superior soft tissue contrast. Registration of MR and CT is necessary for accurate delineation of the tumor and other structures, and is critical in radiotherapy planning. Mutual information (MI) or its variants are typically used as a similarity metric to register MRI to CT. However, u...

  12. Brain Imaging and Brain Privacy: A Realistic Concern?

    Science.gov (United States)

    Farah, Martha J.; Smith, M. Elizabeth; Gawuga, Cyrena; Lindsell, Dennis; Foster, Dean

    2009-01-01

    Functional neuroimaging has been used to study a wide array of psychological traits, including aspects of personality and intelligence. Progress in identifying the neural correlates of individual differences in such traits, for the sake of basic science, has moved us closer to the applied science goal of measuring them and thereby raised ethical…

  13. Functional connectivity in the mouse brain imaged by B-mode photoacoustic microscopy

    Science.gov (United States)

    Nasiriavanaki, Mohammadreza; Xing, Wenxin; Xia, Jun; Wang, Lihong V.

    2014-03-01

    The increasing use of mouse models for human brain disease studies, coupled with the fact that existing functional imaging modalities cannot be easily applied to mice, presents an emerging need for a new functional imaging modality. Utilizing acoustic-resolution photoacoustic microscopy (AR-PAM), we imaged spontaneous cerebral hemodynamic fluctuations and their associated functional connections in the mouse brain. The images were acquired noninvasively in B-scan mode with a fast frame rate, a large field of view, and a high spatial resolution. At a location relative to the bregma 0, correlations were investigated inter-hemispherically between bilaterally homologous regions, as well as intra-hemispherically within the same functional regions. The functional connectivity in different functional regions was studied. The locations of these regions agreed well with the Paxinos mouse brain atlas. The functional connectivity map obtained in this study can then be used in the investigation of brain disorders such as stroke, Alzheimer's, schizophrenia, multiple sclerosis, autism, and epilepsy. Our experiments show that photoacoustic microscopy is capable to detect connectivities between different functional regions in B-scan mode, promising a powerful functional imaging modality for future brain research.

  14. Brain size and brain organization of the whale shark, Rhincodon typus, using magnetic resonance imaging.

    Science.gov (United States)

    Yopak, Kara E; Frank, Lawrence R

    2009-01-01

    Very little is known about the brain organization of the suction filter feeder, Rhincodon typus, and how it compares to other orectolobiforms in light of its specialization as a plankton-feeder. Brain size and overall brain organization was assessed in two specimens of R. typus in relation to both phylogeny and ecology, using magnetic resonance imaging (MRI). In comparison to over 60 other chondrichthyan species, R. typus demonstrated a relatively small brain for its body size (expressed in terms of encephalization quotients and residuals), similar to the lamniforms Carcharodon carcharias, Cetorhinus maximus, and Carcharias taurus. R. typus possessed a relatively small telencephalon with some development of the dorsal pallium, which was suggestive of moderate social behavior, in addition to a relatively large diencephalon and a relatively reduced mesencephalon. The most notable characteristic of the brain of Rhincodon was a large and highly foliated cerebellum, one of the largest cerebellums within the chondrichthyan clade. Early development of the brain was qualitatively assessed using an in situ MRI scan of the brain and chondrocranium of a neonate specimen of R. typus. There was evidence that folding of the cerebellar corpus appeared in early development, although the depth and number of folds might vary ontogenetically in this species. Hierarchical cluster analysis and multidimensional scaling ordinations showed evidence of convergent evolution with the basking shark, Cetorhinus maximus, another large-bodied filter feeding elasmobranch, supporting the claim that organization of the brain is more similar in species with analogous but independently evolved lifestyles than those that share taxonomic classification.

  15. A REVIEW ON INFLUENCE OF MUSIC ON BRAIN ACTIVITY USING SIGNAL PROCESSING AND IMAGING SYSTEM

    Directory of Open Access Journals (Sweden)

    Dr. K. ADALARASU,

    2011-04-01

    Full Text Available As per clinical neuroscience, listening to music involves many brain activities and its study has advanced greatly in the last thirty years. Research shows that music has significant effect on our body and mind. Music has a positive effect on the hormone system and allows the brain to concentrate more easily and assimilate more information in less time, thereby boosting learning and information intake and thus augmenting cognitive skills. Studies have found that the silence between two musical notes triggers brain cells and neurons which are responsible for the development of sharp memory. Music at different pitches (for example, Madhyamavati, Sankarabarnam raga and so on elicits exceptionally emotions and is capable ofreliably affecting the mood of individuals, which in turn changes the brain activity. This article provides a brief overview of currently available signal processing and imaging techniques to study the influence of different music on human brain activity.

  16. Evaluation of image quality of MRI data for brain tumor surgery

    Science.gov (United States)

    Heckel, Frank; Arlt, Felix; Geisler, Benjamin; Zidowitz, Stephan; Neumuth, Thomas

    2016-03-01

    3D medical images are important components of modern medicine. Their usefulness for the physician depends on their quality, though. Only high-quality images allow accurate and reproducible diagnosis and appropriate support during treatment. We have analyzed 202 MRI images for brain tumor surgery in a retrospective study. Both an experienced neurosurgeon and an experienced neuroradiologist rated each available image with respect to its role in the clinical workflow, its suitability for this specific role, various image quality characteristics, and imaging artifacts. Our results show that MRI data acquired for brain tumor surgery does not always fulfill the required quality standards and that there is a significant disagreement between the surgeon and the radiologist, with the surgeon being more critical. Noise, resolution, as well as the coverage of anatomical structures were the most important criteria for the surgeon, while the radiologist was mainly disturbed by motion artifacts.

  17. Data-driven forward model inference for EEG brain imaging

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Hauberg, Søren; Hansen, Lars Kai

    2016-01-01

    . Combined with only a recorded EEG signal, we are able to estimate both the brain sources and a person-specific forward model by optimizing this parametrization. We thus not only solve an inverse problem, but also optimize over its specification. Our work demonstrates that personalized EEG brain imaging......Electroencephalography (EEG) is a flexible and accessible tool with excellent temporal resolution but with a spatial resolution hampered by volume conduction. Reconstruction of the cortical sources of measured EEG activity partly alleviates this problem and effectively turns EEG into a brain...... imaging device. The quality of the source reconstruction depends on the forward model which details head geometry and conductivities of different head compartments. These person-specific factors are complex to determine, requiring detailed knowledge of the subject’s anatomy and physiology. In this proof...

  18. Fungal Infection in the Brain: What We Learned from Intravital Imaging.

    Science.gov (United States)

    Shi, Meiqing; Mody, Christopher H

    2016-01-01

    Approximately 1.2 billion people suffer from fungal diseases worldwide. Arguably, the most serious manifestation occurs when pathogenic fungi infect the brain, often causing fatal meningoencephalitis. For most fungi, infection occurs via the vascular route. The organism must first be arrested in the brain microvasculature and transmigrate into the brain parenchyma across the blood-brain barrier. As a result, host immune cells are recruited into the brain to contain the fungi. However, it remains poorly understood how fungi traffic to, and migrate into the brain and how immune cells interact with invading fungi in the brain. A new era of intravital fluorescence microscopy has begun to provide insights. We are able to employ this powerful approach to study dynamic interactions of disseminating fungi with brain endothelial cells as well as resident and recruited immune cells during the brain infection. In this review, with a focus on Cryptococcus neoformans, we will provide an overview of the application of intravital imaging in fungal infections in the brain, discuss recent findings and speculate on possible future research directions. PMID:27532000

  19. Apparatus and method for motion tracking in brain imaging

    DEFF Research Database (Denmark)

    2013-01-01

    Disclosed is apparatus and method for motion tracking of a subject in medical brain imaging. The method comprises providing a light projector and a first camera; projecting a first pattern sequence (S1) onto a surface region of the subject with the light projector, wherein the subject is positioned...

  20. Reliability and Accuracy of Brain Volume Measurement on MR Imaging

    DEFF Research Database (Denmark)

    Yamagchii, Kechiro; Lassen, Anders; Ring, Poul

    1998-01-01

    Yamaguchi, K., Lassen, A. And Ring, P. Reliability and Accuracy of Brain Volume Measurement on MR Imaging. Abstract at ESMRMB98 European Society for Magnetic Resonance in Medicine and Biology, Geneva, Sept 17-20, 1998 Danish Research Center for Magnetic Resonance, Hvidovre University Hospital...

  1. Power of the metaphor: forty signs on brain imaging.

    Science.gov (United States)

    Gocmen, Rahsan; Guler, Ezgi; Kose, Ilgaz Cagatay; Oguz, Kader K

    2015-01-01

    We retrospectively reviewed neuroradiology database at our tertiary-care hospital to search for patients with metaphoric or descriptive signs on brain computed tomography or magnetic resonance imaging. Only patients who had clinical or pathological definitive diagnosis were included in this review.

  2. Methylmalonic acidemia: brain imaging findings in 52 children and a review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Radmanesh, Alireza [Brigham and Women' s Hospital, Harvard Medical School, Department of Radiology, Boston, MA (United States); Zaman, Talieh [Tehran University of Medical Sciences, Department of Pediatric Metabolic Disorders, Tehran (Iran); Ghanaati, Hossein [Tehran University of Medical Sciences, Department of Radiology, Tehran (Iran); Molaei, Sanaz [Shahid Beheshti University of Medical Sciences, Department of Radiology, Tehran (Iran); Robertson, Richard L. [Children' s Hospital Boston, Department of Radiology, Boston, MA (United States); Zamani, Amir A. [Harvard Medical School, Department of Radiology, Brigham and Women' s Hospital, Boston, MA (United States)

    2008-10-15

    Methylmalonic acidemia (MMA) is an autosomal-recessive inborn error of metabolism. To recognize the CT and MR brain sectional imaging findings in children with MMA. Brain imaging studies (47 MR and 5 CT studies) from 52 children were reviewed and reported by a neuroradiologist. The clinical data were collected for each patient. The most common findings were ventricular dilation (17 studies), cortical atrophy (15), periventricular white matter abnormality (12), thinning of the corpus callosum (8), subcortical white matter abnormality (6), cerebellar atrophy (4), basal ganglionic calcification (3), and myelination delay (3). The brain images in 14 patients were normal. Radiological findings of MMA are nonspecific. A constellation of common clinical and radiological findings should raise the suspicion of MMA. (orig.)

  3. Methylmalonic acidemia: brain imaging findings in 52 children and a review of the literature

    International Nuclear Information System (INIS)

    Methylmalonic acidemia (MMA) is an autosomal-recessive inborn error of metabolism. To recognize the CT and MR brain sectional imaging findings in children with MMA. Brain imaging studies (47 MR and 5 CT studies) from 52 children were reviewed and reported by a neuroradiologist. The clinical data were collected for each patient. The most common findings were ventricular dilation (17 studies), cortical atrophy (15), periventricular white matter abnormality (12), thinning of the corpus callosum (8), subcortical white matter abnormality (6), cerebellar atrophy (4), basal ganglionic calcification (3), and myelination delay (3). The brain images in 14 patients were normal. Radiological findings of MMA are nonspecific. A constellation of common clinical and radiological findings should raise the suspicion of MMA. (orig.)

  4. In vivo PET imaging of brain nicotinic cholinergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bottlaender, M.; Valette, H.; Saba, W.; Schollhorn-Peyronneau, M.A.; Dolle, F.; Syrota, A. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), 91 - Orsay (France)

    2006-07-01

    Neuronal acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system where they modulate a number of CNS functions including neurotransmitter release, cognitive function, anxiety, analgesia and control of cerebral blood flow. In the brain, a major subtype is composed of the {alpha}4{beta}2 subunit combination. Density of this subtype has been shown to be decreased in patients with neuro-degenerative disease such as Alzheimer and Parkinson's disease (AD and PD), and mutated receptors has been described in some familial epilepsy. Thus, in vivo mapping of the nicotinic nAChRs by Positron Emission Tomography (PET) are of great interest to monitor the evolution of these pathologies and changes in the neuronal biochemistry induced by therapeutic agents. Recently, a new compound, 3-[2(S)-2-azetidinyl-methoxy]pyridine (A-85380) has been synthesised and labelled with fluorine-18, [{sup 18}F]fluoro-A-85380 (Dolle et al., 1999). The [{sup 18}F]fluoro-A-85380 has been shown to bind with high affinity t o nAChRs in vitro (Saba et al., 2004), and its toxicity was low and compatible with it s use at tracer dose in human PET studies (Valette, 2002). PET studies in baboons showed that, after in vivo administration of [ {sup 18}F]fluoro-A-85380 at a tracer dose, the distribution of the radioactivity in the brain reflect the distribution of the < 4R2 nAChRs. Competition and pre-blocking studies, using nicotinic agonists, confirm that the radiotracer binds specifically to the heteromeric nAChRs in the brain (Valette et al., 1999). The in vivo, characteristics of the [{sup 18}F]fluoro-A-8538 0 combined with its low toxicity make possible the imaging of the nicotinic receptor s in human by PET (Bottlaender 2003). Studies were performed in healthy non-smoker volunteers to evaluate the brain kinetics of [{sup 18}F]fluoro-A-85380 and to assess the quantification of its nAChRs binding in the human brain with PET (Gallezot et a., 2005). The [{sup 18}F

  5. A New Measure of Imagination Ability: Anatomical Brain Imaging Correlates.

    Science.gov (United States)

    Jung, Rex E; Flores, Ranee A; Hunter, Dan

    2016-01-01

    Imagination involves episodic memory retrieval, visualization, mental simulation, spatial navigation, and future thinking, making it a complex cognitive construct. Prior studies of imagination have attempted to study various elements of imagination (e.g., visualization), but none have attempted to capture the entirety of imagination ability in a single instrument. Here we describe the Hunter Imagination Questionnaire (HIQ), an instrument designed to assess imagination over an extended period of time, in a naturalistic manner. We hypothesized that the HIQ would be related to measures of creative achievement and to a network of brain regions previously identified to be important to imagination/creative abilities. Eighty subjects were administered the HIQ in an online format; all subjects were administered a broad battery of tests including measures of intelligence, personality, and aptitude, as well as structural Magnetic Resonance Imaging (sMRI). Responses of the HIQ were found to be normally distributed, and exploratory factor analysis yielded four factors. Internal consistency of the HIQ ranged from 0.76 to 0.79, and two factors ("Implementation" and "Learning") were significantly related to measures of Creative Achievement (Scientific-r = 0.26 and Writing-r = 0.31, respectively), suggesting concurrent validity. We found that the HIQ and its factors were related to a broad network of brain volumes including increased bilateral hippocampi, lingual gyrus, and caudal/rostral middle frontal lobe, and decreased volumes within the nucleus accumbens and regions within the default mode network (e.g., precuneus, posterior cingulate, transverse temporal lobe). The HIQ was found to be a reliable and valid measure of imagination in a cohort of normal human subjects, and was related to brain volumes previously identified as central to imagination including episodic memory retrieval (e.g., hippocampus). We also identified compelling evidence suggesting imagination ability

  6. Assessment of vessel diameters for MR brain angiography processed images

    Science.gov (United States)

    Moraru, Luminita; Obreja, Cristian-Dragos; Moldovanu, Simona

    2015-12-01

    The motivation was to develop an assessment method to measure (in)visible differences between the original and the processed images in MR brain angiography as a method of evaluation of the status of the vessel segments (i.e. the existence of the occlusion or intracerebral vessels damaged as aneurysms). Generally, the image quality is limited, so we improve the performance of the evaluation through digital image processing. The goal is to determine the best processing method that allows an accurate assessment of patients with cerebrovascular diseases. A total of 10 MR brain angiography images were processed by the following techniques: histogram equalization, Wiener filter, linear contrast adjustment, contrastlimited adaptive histogram equalization, bias correction and Marr-Hildreth filter. Each original image and their processed images were analyzed into the stacking procedure so that the same vessel and its corresponding diameter have been measured. Original and processed images were evaluated by measuring the vessel diameter (in pixels) on an established direction and for the precise anatomic location. The vessel diameter is calculated using the plugin ImageJ. Mean diameter measurements differ significantly across the same segment and for different processing techniques. The best results are provided by the Wiener filter and linear contrast adjustment methods and the worst by Marr-Hildreth filter.

  7. Faster permutation inference in brain imaging.

    OpenAIRE

    Winkler, AM; Ridgway, GR; Douaud, G; Nichols, TE; Smith, SM

    2016-01-01

    Permutation tests are increasingly being used as a reliable method for inference in neuroimaging analysis. However, they are computationally intensive. For small, non-imaging datasets, recomputing a model thousands of times is seldom a problem, but for large, complex models this can be prohibitively slow, even with the availability of inexpensive computing power. Here we exploit properties of statistics used with the general linear model (GLM) and their distributions to obtain accelerations i...

  8. Intracranial Hemorrhage Annotation for CT Brain Images

    OpenAIRE

    Tong Hau Lee; Mohammad Faizal Ahmad Fauzi; Su-Cheng Haw

    2011-01-01

    In this paper, we created a decision-making model to detect intracranial hemorrhage and adopted Expectation Maximization(EM) segmentation to segment the Computed Tomography (CT) images. In this work, basically intracranial hemorrhage is classified into two main types which are intra-axial hemorrhage and extra-axial hemorrhage. In order to ease classification, contrast enhancement is adopted to finetune the contrast of the hemorrhage. After that, k-means is applied to group the potential and s...

  9. Study on Control of Brain Temperature for Brain Hypothermia Treatment

    Science.gov (United States)

    Gaohua, Lu; Wakamatsu, Hidetoshi

    The brain hypothermia treatment is an attractive therapy for the neurologist because of its neuroprotection in hypoxic-ischemic encephalopathy patients. The present paper deals with the possibility of controlling the brain and other viscera in different temperatures from the viewpoint of system control. It is theoretically attempted to realize the special brain hypothermia treatment to cool only the head but to warm the body by using the simple apparatus such as the cooling cap, muffler and warming blanket. For this purpose, a biothermal system concerning the temperature difference between the brain and the other thoracico-abdominal viscus is synthesized from the biothermal model of hypothermic patient. The output controllability and the asymptotic stability of the system are examined on the basis of its structure. Then, the maximum temperature difference to be realized is shown dependent on the temperature range of the apparatus and also on the maximum gain determined from the coefficient matrices A, B and C of the biothermal system. Its theoretical analysis shows the realization of difference of about 2.5°C, if there is absolutely no constraint of the temperatures of the cooling cap, muffler and blanket. It is, however, physically unavailable. Those are shown by simulation example of the optimal brain temperature regulation using a standard adult database. It is thus concluded that the surface cooling and warming apparatus do no make it possible to realize the special brain hypothermia treatment, because the brain temperature cannot be cooled lower than those of other viscera in an appropriate temperature environment. This study shows that the ever-proposed good method of clinical treatment is in principle impossible in the actual brain hypothermia treatment.

  10. Molecular imaging of the brain. Using multi-quantum coherence and diagnostics of brain disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kaila, M.M. [New South Wales Univ., Sydney, NSW (Australia). School of Physics; Kaila, Rakhi [Univ. of New South Wales, Sydney (Australia). School of Medicine

    2013-11-01

    Explains the basics of the MRI and its use in the diagnostics and the treatment of the human brain disorders. Examines multi-quantum magnetic resonance imaging methods and the diagnostics of brain disorders. Covers how in a non-invasive manner one can diagnose diseases of the brain. This book examines multi-quantum magnetic resonance imaging methods and the diagnostics of brain disorders. It consists of two Parts. The part I is initially devoted towards the basic concepts of the conventional single quantum MRI techniques. It is supplemented by the basic knowledge required to understand multi-quantum MRI. Practical illustrations are included both on recent developments in conventional MRI and the MQ-MRI. This is to illustrate the connection between theoretical concepts and their scope in the clinical applications. The Part II initially sets out the basic details about quadrupole charge distribution present in certain nuclei and their importance about the functions they perform in our brain. Some simplified final mathematical expressions are included to illustrate facts about the basic concepts of the quantum level interactions between magnetic dipole and the electric quadrupole behavior of useful nuclei present in the brain. Selected practical illustrations, from research and clinical practices are included to illustrate the newly emerging ideas and techniques. The reader should note that the two parts of the book are written with no interdependence. One can read them quite independently.

  11. Time-difference imaging of magnetic induction tomography in a three-layer brain physical phantom

    International Nuclear Information System (INIS)

    Magnetic induction tomography (MIT) is a contactless and noninvasive technique to reconstruct the conductivity distribution in a human cross-section. In this paper, we want to study the feasibility of imaging the low-contrast perturbation and small volume object in human brains. We construct a three-layer brain physical phantom which mimics the real conductivity distribution of brains by introducing an artificial skull layer. Using our MIT data acquisition system on this phantom and differential algorithm, we have obtained a series of reconstructed images of conductivity perturbation objects. All of the conductivity perturbation objects in the brain phantom can be clearly distinguished in the reconstructed images. The minimum detectable conductivity difference between the object and the background is 0.03 S m−1 (12.5%). The minimum detectable inner volume of the objects is 3.4 cm3. The three-layer brain physical phantom is able to simulate the conductivity distribution of the main structures of a human brain. The images of the low-contrast perturbation and small volume object show the prospect of MIT in the future. (paper)

  12. Evaluation of accuracy in target positions of multmodality imaging using brain phantom

    International Nuclear Information System (INIS)

    Determination of target positions in radiation therapy or radiosurgery is critical to the successful treatment. It is often difficult to recognize the target position only from single image modality since each image modality has unique image pattern and image distortion problem. The purpose of this study is to evaluate the accuracy of target positions with multimodality brain phantom. We obtained CT, MR, and SPECT scan images with the specially designed brain phantom. Brain phantom consists of brain for images and frame for localization. The phantom was a water fillable cylinder containing 58 axial layers of 2.0 mm thickness. Each layer allows water to permeate various regions to match gray matter to white matter of 1:1 ratio. Localization frame with 5mm inner diameter and 150/160 mm length were attached to the outside of the brain slice and inside of the phantom cylinder. The phantom was filled with 0.16 M CuSO4 solution for MRI scan, and distilled water for CT and 15mCi (555 MBq) Tc-99m for SPECT. Axial slice images and volume images including the targets and localizer were obtained for each modality. To evaluate the errors in target positions, the position of localization and target balls measured in SPECT were compared with MR and CT. Transformation parameters for translation, rotation and scaling were determined by surface matching each SPECT with MR and CT images. Multimodality phantom was very useful to evaluate the accuracy of target positions among the different types of image modality such as CT, MR and SPECT

  13. Transport, monitoring, and successful brain MR imaging in unsedated neonates

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Amit M. [St. Louis Children' s Hospital at the Washington University School of Medicine, Department of Pediatrics and Newborn Medicine, St. Louis, MO (United States); St. Louis Children' s Hospital, Division of Newborn Medicine, St. Louis, MO (United States); Neil, Jeffrey J. [St. Louis Children' s Hospital at the Washington University School of Medicine, Department of Neurology, St. Louis, MO (United States); Mallinckrodt Institute of Radiology, St. Louis, MO (United States); McKinstry, Robert C. [Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Inder, Terrie E. [St. Louis Children' s Hospital at the Washington University School of Medicine, Department of Pediatrics and Newborn Medicine, St. Louis, MO (United States); St. Louis Children' s Hospital at the Washington University School of Medicine, Department of Neurology, St. Louis, MO (United States); Mallinckrodt Institute of Radiology, St. Louis, MO (United States)

    2008-03-15

    Neonatal cerebral MR imaging is a sensitive technique for evaluating brain injury in the term and preterm infant. In term encephalopathic infants, MR imaging reliably detects not only the pattern of brain injury but might also provide clues about the timing of injury. In premature infants, MR imaging has surpassed US in the detection of white matter injury, a common lesion in this population. Concerns remain about the safety and transport of sedated neonates for MR examination to radiology suites, which are usually located at a distance from neonatal intensive care units. We present our own institutional experience and guidelines used to optimize the performance of cerebral MR examinations in neonates without sedation or anesthesia. (orig.)

  14. Magnetic resonance imaging of the brain in patients with migraine

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, H.; Sakai, F.; Kan, S.; Okada, J.; Tazaki, Y. (Kitasato Univ., Sagamihara, Kanagawa (Japan). School of Medicine)

    1991-05-01

    Magnetic resonance imaging (MRI) was studied in 91 patients with migraine and in 98 controls. Risk factors known to cause MRI lesions were carefully examined. In 36 patients with migraine (39.6%), small foci of high intensity on T{sub 2}-weighted and proton-density-weighted images were seen in the white matter. Of patients with migraine who were less than 40 years old and without any risk factor, 29.4% showed lesions on MRI; this was singificantly higher than the 11.2% for the group of age-matched controls (n=98). The lesions were distributed predominantly in the centrum semiovale and frontal white matter in young patients, but extended to the deeper white matter at the level of basal ganglia in the older age group. The side of the MRI lesions did not always correspond to the side of usual aura or headache. Migraine-related variables such as type of migraine, frequency, duration or intensity of headache or consumption of ergotamine showed no significant correlation with the incidence om MRI abnormalities. The data indicated that migraine may be associated with early pathologic changes in the brain. 26 refs., 4 figs., 3 tabs.

  15. Twenty-year brain magnetic resonance imaging follow-up study in Systemic Lupus Erythematosus: Factors associated with accrual of damage and central nervous system involvement.

    Science.gov (United States)

    Piga, Matteo; Peltz, Maria Teresa; Montaldo, Carlo; Perra, Daniela; Sanna, Giovanni; Cauli, Alberto; Mathieu, Alessandro

    2015-06-01

    To evaluate the long-term progression of cerebral MRI abnormalities in patients with longstanding SLE, 30 patients (age 53.5 ± 11.3) underwent brain MRI at baseline (b-MRI) and after 19.4 ± 3.7 years of follow-up (fu-MRI). Two neuroradiologists visually analyzed the MRIs comparing: 1) white matter hyperintensities (WMHIs), 2) cerebral volume, and 3) parenchymal defects; these outcomes were also built in a modified MRI scoring system (mMSS) to estimate the cumulative parenchymal damage. The independent risk factors for accrual of MRI brain damage, as well as the association between MRI abnormalities and the development of new neuropsychiatric (NP) manifestations classified according to the 1999 ACR case definition were also analyzed. Twenty-three patients (76.7%) showed worsening of mMSS; 19 (63.3%) had increased number and volume of WMHIs, 8 (26.7%) had significant cerebral volume loss, and 6 (20%) showed new ischemic parenchymal lesions. Only 6 patients had normal MRI. Antimalarial agents (p=0.006; OR 0.08) were protective against worsening of WMHIs. High cumulative dose of corticosteroids (p=0.026; OR 8.8) and dyslipidemia (p=0.044; OR 10.1) were associated with increased mMSS and cerebral volume loss, respectively. Higher mMSS score at baseline was independently associated with worsening of WMHIs (p=0.001; OR 5.7) and development of new NP events (p=0.019; OR 2.0); higher load of deep WMHIs at b-MRI (p=0.018; OR 2.0) was independently associated with stroke risk. This study shows that MRI brain damage in SLE patients progresses independently from NP involvement as effect of potentially modifiable risk factors and it is associated with increased risk of new NP events. PMID:25617815

  16. Analysis of the brain-stem white-matter tracts with diffusion tensor imaging

    International Nuclear Information System (INIS)

    The authors have reviewed the diffusion tensor imaging (DTI) of the brain stem in 19 subjects, consisting of 15 normal volunteers and four multi-system atrophy patients. The study was performed with 1.5 T MRI scanners. DTI was correlated with an automated program allowing superposition of the structural anatomy. Axial, sagittal, and coronal images demonstrated major white-matter fibers within the brain stem, including cortico-spinal tracts, transverse pontine fibers, and medial lemniscus. Smaller fibers, such as medial longitudinal fascicles and central tegmental tracts are difficult to visualize. To identify the anatomical orientation of the brain stem, white-matter fibers will help us understand the different functional disease processes, and DTI will play an important role for the evaluation of the different white matter fibers in the brain stem. (orig.)

  17. Evaluation of improvement of diffuse optical imaging of brain function by high-density probe arrangements and imaging algorithms

    Science.gov (United States)

    Sakakibara, Yusuke; Kurihara, Kazuki; Okada, Eiji

    2016-04-01

    Diffuse optical imaging has been applied to measure the localized hemodynamic responses to brain activation. One of the serious problems with diffuse optical imaging is the limitation of the spatial resolution caused by the sparse probe arrangement and broadened spatial sensitivity profile for each probe pair. High-density probe arrangements and an image reconstruction algorithm considering the broadening of the spatial sensitivity can improve the spatial resolution of the image. In this study, the diffuse optical imaging of the absorption change in the brain is simulated to evaluate the effect of the high-density probe arrangements and imaging methods. The localization error, equivalent full-width half maximum and circularity of the absorption change in the image obtained by the mapping and reconstruction methods from the data measured by five probe arrangements are compared to quantitatively evaluate the imaging methods and probe arrangements. The simple mapping method is sufficient for the density of the measurement points up to the double-density probe arrangement. The image reconstruction method considering the broadening of the spatial sensitivity of the probe pairs can effectively improve the spatial resolution of the image obtained from the probe arrangements higher than the quadruple density, in which the distance between the neighboring measurement points is 10.6 mm.

  18. Development of image and information management system for Korean standard brain

    Science.gov (United States)

    Chung, Soon Cheol; Choi, Do Young; Tack, Gye Rae; Sohn, Jin Hun

    2004-04-01

    The purpose of this study is to establish a reference for image acquisition for completing a standard brain for diverse Korean population, and to develop database management system that saves and manages acquired brain images and personal information of subjects. 3D MP-RAGE (Magnetization Prepared Rapid Gradient Echo) technique which has excellent Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR) as well as reduces image acquisition time was selected for anatomical image acquisition, and parameter values were obtained for the optimal image acquisition. Using these standards, image data of 121 young adults (early twenties) were obtained and stored in the system. System was designed to obtain, save, and manage not only anatomical image data but also subjects' basic demographic factors, medical history, handedness inventory, state-trait anxiety inventory, A-type personality inventory, self-assessment depression inventory, mini-mental state examination, intelligence test, and results of personality test via a survey questionnaire. Additionally this system was designed to have functions of saving, inserting, deleting, searching, and printing image data and personal information of subjects, and to have accessibility to them as well as automatic connection setup with ODBC. This newly developed system may have major contribution to the completion of a standard brain for diverse Korean population since it can save and manage their image data and personal information.

  19. Reversible acute methotrexate leukoencephalopathy: atypical brain MR imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Ziereisen, France; Damry, Nash; Christophe, Catherine [Queen Fabiola Children' s University Hospital, Department of Radiology, Brussels (Belgium); Dan, Bernard [Queen Fabiola Children' s University Hospital, Department of Neurology, Brussels (Belgium); Azzi, Nadira; Ferster, Alina [Queen Fabiola Children' s University Hospital, Department of Paediatrics, Brussels (Belgium)

    2006-03-15

    Unusual acute symptomatic and reversible early-delayed leukoencephalopathy has been reported to be induced by methotrexate (MTX). We aimed to identify the occurrence of such atypical MTX neurotoxicity in children and document its MR presentation. We retrospectively reviewed the clinical findings and brain MRI obtained in 90 children treated with MTX for acute lymphoblastic leukaemia or non-B malignant non-Hodgkin lymphoma. All 90 patients had normal brain imaging before treatment. In these patients, brain imaging was performed after treatment completion and/or relapse and/or occurrence of neurological symptoms. Of the 90 patients, 15 (16.7%) showed signs of MTX neurotoxicity on brain MRI, 9 (10%) were asymptomatic, and 6 (6.7%) showed signs of acute leukoencephalopathy. On the routine brain MRI performed at the end of treatment, all asymptomatic patients had classical MR findings of reversible MTX neurotoxicity, such as abnormal high-intensity areas localized in the deep periventricular white matter on T2-weighted images. In contrast, the six symptomatic patients had atypical brain MRI characterized by T2 high-intensity areas in the supratentorial cortex and subcortical white matter (n=6), cerebellar cortex and white matter (n=4), deep periventricular white matter (n=2) and thalamus (n=1). MR normalization occurred later than clinical recovery in these six patients. In addition to mostly asymptomatic classical MTX neurotoxicity, MTX may induce severe but reversible unusual leukoencephalopathy. It is important to recognize this clinicoradiological presentation in the differential diagnosis of acute neurological deterioration in children treated with MTX. (orig.)

  20. A new versatile clearing method for brain imaging

    Science.gov (United States)

    Costantini, Irene; Di Giovanna, Antonino Paolo; Allegra Mascaro, Anna Letizia; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Sacconi, Leonardo; Pavone, Francesco S.

    2015-03-01

    Light scattering inside biological tissue is a limitation for large volumes imaging with microscopic resolution. Based on refractive index matching, different approaches have been developed to reduce scattering in fixed tissue. High refractive index organic solvents and water-based optical clearing agents, such as Sca/e, SeeDB and CUBIC have been used for optical clearing of entire mouse brain. Although these methods guarantee high transparency and preservation of the fluorescence, though present other non-negligible limitations. Tissue transformation by CLARITY allows high transparency, whole brain immunolabelling and structural and molecular preservation. This method however requires a highly expensive refractive index matching solution limiting practical applicability to large volumes. In this work we investigate the effectiveness of a water-soluble clearing agent, the 2,2'-thiodiethanol (TDE) to clear mouse and human brain. TDE does not quench the fluorescence signal, is compatible with immunostaining and does not introduce any deformation at sub-cellular level. The not viscous nature of the TDE make it a suitable agent to perform brain slicing during serial two-photon (STP) tomography. In fact, by improving penetration depth it reduces tissue slicing, decreasing the acquisition time and cutting artefacts. TDE can also be used as a refractive index medium for CLARITY. The potential of this method has been explored by imaging blocks of dysplastic human brain transformed with CLARITY, immunostained and cleared with the TDE. This clearing approach significantly expands the application of single and two-photon imaging, providing a new useful method for quantitative morphological analysis of structure in mouse and human brain.

  1. In vivo bioluminescence imaging of Ca signalling in the brain of Drosophila.

    Directory of Open Access Journals (Sweden)

    Jean-René Martin

    Full Text Available Many different cells' signalling pathways are universally regulated by Ca(2+ concentration [Ca(2+] rises that have highly variable amplitudes and kinetic properties. Optical imaging can provide the means to characterise both the temporal and spatial aspects of Ca(2+ signals involved in neurophysiological functions. New methods for in vivo imaging of Ca(2+ signalling in the brain of Drosophila are required for probing the different dynamic aspects of this system. In studies here, whole brain Ca(2+ imaging was performed on transgenic flies with targeted expression of the bioluminescent Ca(2+ reporter GFP-aequorin (GA in different neural structures. A photon counting based technique was used to undertake continuous recordings of cytosolic [Ca(2+] over hours. Time integrals for reconstructing images and analysis of the data were selected offline according to the signal intensity. This approach allowed a unique Ca(2+ response associated with cholinergic transmission to be identified by whole brain imaging of specific neural structures. Notably, [Ca(2+] transients in the Mushroom Bodies (MBs following nicotine stimulation were accompanied by a delayed secondary [Ca(2+] rise (up to 15 min. later in the MB lobes. The delayed response was sensitive to thapsigargin, suggesting a role for intra-cellular Ca(2+ stores. Moreover, it was reduced in dunce mutant flies, which are impaired in learning and memory. Bioluminescence imaging is therefore useful for studying Ca(2+ signalling pathways and for functional mapping of neurophysiological processes in the fly brain.

  2. In vivo bioluminescence imaging of Ca signalling in the brain of Drosophila.

    Science.gov (United States)

    Martin, Jean-René; Rogers, Kelly L; Chagneau, Carine; Brûlet, Philippe

    2007-03-07

    Many different cells' signalling pathways are universally regulated by Ca(2+) concentration [Ca(2+)] rises that have highly variable amplitudes and kinetic properties. Optical imaging can provide the means to characterise both the temporal and spatial aspects of Ca(2+) signals involved in neurophysiological functions. New methods for in vivo imaging of Ca(2+) signalling in the brain of Drosophila are required for probing the different dynamic aspects of this system. In studies here, whole brain Ca(2+) imaging was performed on transgenic flies with targeted expression of the bioluminescent Ca(2+) reporter GFP-aequorin (GA) in different neural structures. A photon counting based technique was used to undertake continuous recordings of cytosolic [Ca(2+)] over hours. Time integrals for reconstructing images and analysis of the data were selected offline according to the signal intensity. This approach allowed a unique Ca(2+) response associated with cholinergic transmission to be identified by whole brain imaging of specific neural structures. Notably, [Ca(2+)] transients in the Mushroom Bodies (MBs) following nicotine stimulation were accompanied by a delayed secondary [Ca(2+)] rise (up to 15 min. later) in the MB lobes. The delayed response was sensitive to thapsigargin, suggesting a role for intra-cellular Ca(2+) stores. Moreover, it was reduced in dunce mutant flies, which are impaired in learning and memory. Bioluminescence imaging is therefore useful for studying Ca(2+) signalling pathways and for functional mapping of neurophysiological processes in the fly brain.

  3. In vivo Bioluminescence Imaging of Ca2+ Signalling in the Brain of Drosophila

    Science.gov (United States)

    Chagneau, Carine; Brûlet, Philippe

    2007-01-01

    Many different cells' signalling pathways are universally regulated by Ca2+ concentration [Ca2+] rises that have highly variable amplitudes and kinetic properties. Optical imaging can provide the means to characterise both the temporal and spatial aspects of Ca2+ signals involved in neurophysiological functions. New methods for in vivo imaging of Ca2+ signalling in the brain of Drosophila are required for probing the different dynamic aspects of this system. In studies here, whole brain Ca2+ imaging was performed on transgenic flies with targeted expression of the bioluminescent Ca2+ reporter GFP-aequorin (GA) in different neural structures. A photon counting based technique was used to undertake continuous recordings of cytosolic [Ca2+] over hours. Time integrals for reconstructing images and analysis of the data were selected offline according to the signal intensity. This approach allowed a unique Ca2+ response associated with cholinergic transmission to be identified by whole brain imaging of specific neural structures. Notably, [Ca2+] transients in the Mushroom Bodies (MBs) following nicotine stimulation were accompanied by a delayed secondary [Ca2+] rise (up to 15 min. later) in the MB lobes. The delayed response was sensitive to thapsigargin, suggesting a role for intra-cellular Ca2+ stores. Moreover, it was reduced in dunce mutant flies, which are impaired in learning and memory. Bioluminescence imaging is therefore useful for studying Ca2+ signalling pathways and for functional mapping of neurophysiological processes in the fly brain. PMID:17342209

  4. ROLE OF MAGNETIC RESONANCE IMAGING BRAIN IN EVALUATION OF SEIZURES

    Directory of Open Access Journals (Sweden)

    Athira

    2015-09-01

    Full Text Available BACKGROUND AND OBJECTIVES: In patients with seizures a dedicated MRI protocol is a useful tool in the detection of an epileptogenic focus, including congenital, neoplastic and degenerative. Resection of these lesions can lead to seizure freedom in most patients. In this context, a prospective study was conducted to evaluate the etiology of seizures using MRI brain. METHODOLOGY: 120 patients presenting with seizures, above the age of 2years, referred to the Department of Radio - diagnosis were included in this study. RESULTS: In this study, the MR examination revealed pathological findi ngs i n 32.50% (39 out of 120 patients which includes: mesial temporal sclerosis - 14.2% (17, cerebral infarct with gliosis - 6.6% (8, meningioma - 2.5% (3, hypoxic ischemic encephalopathy - 1.6% (2, cortical dysplasia - 1.6% (2, tuberous sclerosis - 11.6% (2, nodula r heterotopias - 0.83% (1, neurocysticercosis - 0.83% (1%, metastasis - 0.83% (1, Dyke Davidoff Maison syndrome - 0.83% (1 and Arnold Chiari Malformation 0.83% (1. CONCLUSION: This study concludes that MR imaging plays a pivotal role in the evaluation of pati ents with seizures using a dedicated MRI seizure protocol to confirm or rule out any organic or developmental lesions. The most common abnormality seen in this study was mesial temporal sclerosis.

  5. Diffusion tensor imaging and fiber tractography in brain malformations

    Energy Technology Data Exchange (ETDEWEB)

    Poretti, Andrea; Meoded, Avner; Huisman, Thierry A.G.M. [The Johns Hopkins University School of Medicine, Division of Pediatric Radiology, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Rossi, Andrea [G. Gaslini Institue, Pediatric Neuroradiology, Genova (Italy); Raybaud, Charles [University of Toronto, Department of Neuroradiology, Hospital for Sick Children, Toronto, ON (Canada)

    2013-01-15

    Diffusion tensor imaging (DTI) is an advanced MR technique that provides qualitative and quantitative information about the micro-architecture of white matter. DTI and its post-processing tool fiber tractography (FT) have been increasingly used in the last decade to investigate the microstructural neuroarchitecture of brain malformations. This article aims to review the use of DTI and FT in the evaluation of a variety of common, well-described brain malformations, in particular by pointing out the additional information that DTI and FT renders compared with conventional MR sequences. In addition, the relevant existing literature is summarized. (orig.)

  6. Radiopharmaceuticals for single-photon emission computed tomography brain imaging.

    Science.gov (United States)

    Kung, Hank F; Kung, Mei-Ping; Choi, Seok Rye

    2003-01-01

    In the past 10 years, significant progress on the development of new brain-imaging agents for single-photon emission computed tomography has been made. Most of the new radiopharmaceuticals are designed to bind specific neurotransmitter receptor or transporter sites in the central nervous system. Most of the site-specific brain radiopharmaceuticals are labeled with (123)I. Results from imaging of benzodiazepine (gamma-aminobutyric acid) receptors by [(123)I]iomazenil are useful in identifying epileptic seizure foci and changes of this receptor in psychiatric disorders. Imaging of dopamine D2/D3 receptors ([(123)I]iodobenzamide and [(123)I]epidepride) and transporters [(123)I]CIT (2-beta-carboxymethoxy-3-beta(4-iodophenyl)tropane) and [(123)I]FP-beta-CIT (N-propyl-2-beta-carboxymethoxy-3-beta(4-iodophenyl)-nortropane has proven to be a simple but powerful tool for differential diagnosis of Parkinson's and other neurodegenerative diseases. A (99m)Tc-labeled agent, [(99m)Tc]TRODAT (technetium, 2-[[2-[[[3-(4-chlorophenyl)-8-methyl-8-azabicyclo [3,2,1]oct-2-yl]methyl](2-mercaptoethyl)amino]ethyl]amino] ethanethiolato(3-)]oxo-[1R-(exo-exo)]-), for imaging dopamine transporters in the brain has been successfully applied in the diagnosis of Parkinson's disease. Despite the fact that (123)I radiopharmaceuticals have been widely used in Japan and in Europe, clinical application of (123)I-labeled brain radiopharmaceuticals in the United States is limited because of the difficulties in supplying such agents. Development of (99m)Tc agents will likely extend the application of site-specific brain radiopharmaceuticals for routine applications in aiding the diagnosis and monitoring treatments of various neurologic and psychiatric disorders. PMID:12605353

  7. Age-related changes of normal adult brain structure: analysed with diffusion tensor imaging

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun-ting; ZHANG Chun-yan; ZHANG Jing; LI Wei

    2005-01-01

    Background It is known that the brain structure changes with normal aging. The objective of this study was to quantify the anisotropy and average diffusion coefficient (DCavg) of the brain in normal adults to demonstrate the microstructure changes of brain with aging.Methods One hundred and six normal adults were examined with diffusion tensor imaging (DTI). The fractional anisotropy (FA), 1-volume ratio (1-VR), relative anisotropy (RA) and average diffusion coefficient (DCavg) of different anatomic sites of brain were measured, correlated with age and compared among three broad age groups.Results Except in lentiform nucleus, the anisotropy increased and DCavg decreased with aging. Both anisotropy and DCavg of lentiform nucleus increased with aging. The normal reference values of DTI parameters of normal Chinese adult in major anatomic sites were acquired. Conclusions DTI data obtained noninvasively can reflect the microstructural changes with aging. The normal reference values acquired can serve as reference standards in differentiation of brain white matter diseases.

  8. Rapid hybrid encoding for high-resolution whole-brain fluid-attenuated imaging.

    Science.gov (United States)

    Lee, Hoonjae; Sohn, Chul-Ho; Park, Jaeseok

    2013-12-01

    Single-slab three-dimensional (3D) turbo spin-echo (TSE) imaging combined with inversion recovery (IR), which employs short, spatially non-selective refocusing pulses and signal prescription based variable refocusing flip angles (VFA) to increase imaging efficiency, was recently introduced to produce fluid-attenuated brain images for lesion detection. Despite the advantages, the imaging efficiency in this approach still remains limited because a substantially long time of inversion is needed to selectively suppress the signal intensity of cerebrospinal fluid (CSF) while fully recovering that of brain tissues. The purpose of this work is to develop a novel, rapid hybrid encoding method for highly efficient whole-brain fluid-attenuated imaging. In each time of repetition, volumetric data are continuously encoded using the hybrid modular acquisition in a sequential fashion even during IR signal transition, wherein reversed fast imaging with steady-state free precession (PSIF) is employed to encode intermediate-to-high spatial frequency signals prior to CSF nulling, while VFA-TSE is used to collect low-to-intermediate spatial frequency signals afterwards. Gradient-induced spin de-phasing between a pair of neighboring radio-frequency (RF) pulses in both PSIF and TSE modules is kept identical to avoid the occurrence of multiple echoes in a single acquisition window. Additionally, a two-step, alternate RF phase-cycling scheme is employed in the low spatial frequency region to eliminate free induction decay induced edge artifacts. Numerical simulations of the Bloch equations were performed to evaluate signal evolution of brain tissues along the echo train while optimizing imaging parameters. In vivo studies demonstrate that the proposed technique produces high-resolution isotropic fluid-attenuated whole-brain images in a clinically acceptable imaging time with substantially high signal-to-noise ratio for white matter while retaining lesion conspicuity.

  9. Cortical region of interest definition on SPECT brain images using X-ray CT registration

    Energy Technology Data Exchange (ETDEWEB)

    Tzourio, N.; Sutton, D. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot); Joliot, M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot INSERM, Orsay (France)); Mazoyer, B.M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot Antenne d' Information Medicale, C.H.U. Bichat, Paris (France)); Charlot, V. (Hopital Louis Mourier, Colombes (France). Service de Psychiatrie); Salamon, G. (CHU La Timone, Marseille (France). Service de Neuroradiologie)

    1992-11-01

    We present a method for brain single photon emission computed tomography (SPECT) analysis based on individual registration of anatomical (CT) and functional ([sup 133]Xe regional cerebral blood flow) images and on the definition of three-dimensional functional regions of interest. Registration of CT and SPECT is performed through adjustment of CT-defined cortex limits to the SPECT image. Regions are defined by sectioning a cortical ribbon on the CT images, copied over the SPECT images and pooled through slices to give 3D cortical regions of interest. The proposed method shows good intra- and interobserver reproducibility (regional intraclass correlation coefficient [approx equal]0.98), and good accuracy in terms of repositioning ([approx equal]3.5 mm) as compared to the SPECT image resolution (14 mm). The method should be particularly useful for analysing SPECT studies when variations in brain anatomy (normal or abnormal) must be accounted for. (orig.).

  10. Evaluation of 2D multiband EPI imaging for high-resolution, whole-brain, task-based fMRI studies at 3T: Sensitivity and slice leakage artifacts.

    Science.gov (United States)

    Todd, Nick; Moeller, Steen; Auerbach, Edward J; Yacoub, Essa; Flandin, Guillaume; Weiskopf, Nikolaus

    2016-01-01

    Functional magnetic resonance imaging (fMRI) studies that require high-resolution whole-brain coverage have long scan times that are primarily driven by the large number of thin slices acquired. Two-dimensional multiband echo-planar imaging (EPI) sequences accelerate the data acquisition along the slice direction and therefore represent an attractive approach to such studies by improving the temporal resolution without sacrificing spatial resolution. In this work, a 2D multiband EPI sequence was optimized for 1.5mm isotropic whole-brain acquisitions at 3T with 10 healthy volunteers imaged while performing simultaneous visual and motor tasks. The performance of the sequence was evaluated in terms of BOLD sensitivity and false-positive activation at multiband (MB) factors of 1, 2, 4, and 6, combined with in-plane GRAPPA acceleration of 2× (GRAPPA 2), and the two reconstruction approaches of Slice-GRAPPA and Split Slice-GRAPPA. Sensitivity results demonstrate significant gains in temporal signal-to-noise ratio (tSNR) and t-score statistics for MB 2, 4, and 6 compared to MB 1. The MB factor for optimal sensitivity varied depending on anatomical location and reconstruction method. When using Slice-GRAPPA reconstruction, evidence of false-positive activation due to signal leakage between simultaneously excited slices was seen in one instance, 35 instances, and 70 instances over the ten volunteers for the respective accelerations of MB 2×GRAPPA 2, MB 4×GRAPPA 2, and MB 6×GRAPPA 2. The use of Split Slice-GRAPPA reconstruction suppressed the prevalence of false positives significantly, to 1 instance, 5 instances, and 5 instances for the same respective acceleration factors. Imaging protocols using an acceleration factor of MB 2×GRAPPA 2 can be confidently used for high-resolution whole-brain imaging to improve BOLD sensitivity with very low probability for false-positive activation due to slice leakage. Imaging protocols using higher acceleration factors (MB 3 or MB 4

  11. A Primer on Brain Imaging in Developmental Psychopathology: What Is It Good For?

    Science.gov (United States)

    Pine, Daniel S.

    2006-01-01

    This primer introduces a Special Section on brain imaging, which includes a commentary and 10 data papers presenting applications of brain imaging to questions on developmental psychopathology. This primer serves two purposes. First, the article summarizes the strength and weaknesses of various brain-imaging techniques typically employed in…

  12. Ventricles of brain: A morphometric study by computerized tomography

    Directory of Open Access Journals (Sweden)

    Brij Raj Singh, Ujwal Gajbe, Amit Agrawal, Anilkumar Reddy Y, Sunita Bhartiya

    2014-04-01

    Full Text Available Introduction: As the human brain ages, characteristic structural changes occur that are considered to be normal and are expected. Thus the thorough knowledge of the age related normal changes that occur in the brain is required before any abnormal findings are analyzed. As ageing advances, the brain undergoes many gross and histopathological changes with regression of the brain tissue leading to the enlargement of the ventricles. To understand these changes the knowledge of normal morphometry and size of normal ventricular system of brain is important. Materials & Methods: For the present study 358 (Males – 207 and Females – 151 individuals Computerized Tomography (CT images of brain studied. Measurements of fourth ventricle, third ventricle and lateral ventricle were noted down from CT images and it was statistically analyzed. Results: After analysis it was observed that the height and width of the fourth ventricle was larger in males as compared to females. The length of the third ventricle was observed to be greater in females than in males. The width of the third ventricle it was observed to be greater in males than in females. Antero-posterior extent of the left frontal horn (males = 26.26 ± 2.94, 95% CI 25.86 – 26.66 mm and females = 26.53 ± 3.38, 95% CI 25.99 – 27.08 mm was greater than that of the right ones (males = 25.00 ± 3.18, 95% CI 24.57 – 25.44 mm and females = 25.34 ± 3.50, 95% CI 24.78 – 25.90 mm. Conclusion: Advances in sensitive imaging techniques like the Computerized Tomography helps in dramatic expansion of our understanding of the normal structure of brain. The present study has defined the morphometric measurements of the lateral ventricles, third ventricle, and fourth ventricle of the brain which has clinical correlations in diagnosis and for further line of treatment.

  13. Baseline and cognition activated brain SPECT imaging in depression

    International Nuclear Information System (INIS)

    Purpose: To evaluate the regional cerebral blood flow (rCBF) abnormalities through the semiquantitative analysis of the baseline and cognition activated rCBF imaging in unmedicated depressed patients. Methods: 27 depressed patients unmedicated by anti-depressants were enrolled. The diagnosis (depression of moderate degree with somatization) was confirmed by the ICD-10 criteria. 15 age matched normal controls were studied under identical conditions. Baseline and cognition activated 99mTc-ECD SPECT were performed on 21 of the 27 patients with depression and 13 of the 15 normal controls. Baseline 99mTc-ECD SPECT alone were performed on the rest 6 patients with depression and 2 normal controls. The cognitive activation is achieved by Wisconsin Card Sorting Test (WCST). 1110 MBq of 99mTc-ECD was administered by intravenous bolus injection 5 minutes after the onset of the WCST. Semi-quantitative analysis was conducted with the 7th, 8th, 9th, 10th, 11th slices of the transaxial imaging. rCBF ratios of every ROI were calculated using the average tissue activity in the region divided by the maximum activity in the cerebellum. Results: 1) The baseline rCBF of left frontal (0.720) and left temporal lobe (0.720) were decreased significantly in depressed patients comparing with those of the control subjects. 2) The activated rCBF of left frontal lobe (0.719) and left temporal lobe (0.690), left parietal lobe (0.701) were decreased evidently than those of the controls. Conclusions: 1) Hypoperfusions of left frontal and left temporal cortexes were identified in patients with depression. 2) The hypoperfusion of left frontal and left temporal cortexes may be the cause of cognition disorder and depressed mood in patients with depression. 3) Cognition activated brain perfusion imaging is helpful for making a more accurate diagnosis of depression

  14. Magnetic Resonance Perfusion Imaging in the Study of Language

    Science.gov (United States)

    Hillis, Argye E.

    2007-01-01

    This paper provides a brief review of various uses of magnetic resonance perfusion imaging in the investigation of brain/language relationships. The reviewed studies illustrate how perfusion imaging can reveal areas of brain where dysfunction due to low blood flow is associated with specific language deficits, and where restoration of blood flow…

  15. Disturbed spontaneous brain-activity pattern in patients with optic neuritis using amplitude of low-frequency fluctuation: a functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Huang X

    2015-12-01

    Full Text Available Xin Huang,1,2,* Feng-Qin Cai,3,* Pei-Hong Hu,1 Yu-Lin Zhong,1 Ying Zhang,1 Rong Wei,1 Chong-Gang Pei,1 Fu-Qing Zhou,3 Yi Shao1 1Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, First Affiliated Hospital of Nanchang University, Nanchang, 2Department of Ophthalmology, First People’s Hospital of Jiujiang, Jiujiang, 3Department of Radiology, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China *These authors contributed equally to this work Objective: To use the amplitude of low-frequency fluctuation (ALFF technique to investigate the local features of spontaneous brain activity in optic neuritis (ON and their relationship with behavioral performance.Materials and methods: Twelve patients with ON (four male, eight female and twelve age-, sex-, and education status-matched healthy controls (HCs (four male, eight female underwent resting-state functional magnetic resonance imaging (rs-fMRI scans. The ALFF technique was used to assess local features of spontaneous brain activity. Correlation analysis was used to explore the relationship between the observed mean ALFF values of the different areas and visual evoked potentials (VEPs in patients with ON.Results: Compared with HCs, patients with ON had significantly decreased ALFF values in the posterior and anterior lobes of the right cerebellum, right putamen, right inferior frontal gyrus, right insula, right supramarginal gyrus, right inferior parietal lobule, left medial frontal gyrus, left superior temporal gyrus, bilateral anterior cingulate/medial frontal gyrus, and bilateral precuneus, and significantly increased ALFF values in the posterior lobes of the left and right cerebellum, right inferior temporal gyrus, right inferior temporal/fusiform gyrus, left parahippocampal gyrus, left fusiform gyrus, left calcarine fissure, left inferior parietal lobule, and left cuneus. We found negative correlations between the mean ALFF signal

  16. Brain surface maps from 3-D medical images

    Science.gov (United States)

    Lu, Jiuhuai; Hansen, Eric W.; Gazzaniga, Michael S.

    1991-06-01

    The anatomic and functional localization of brain lesions for neurologic diagnosis and brain surgery is facilitated by labeling the cortical surface in 3D images. This paper presents a method which extracts cortical contours from magnetic resonance (MR) image series and then produces a planar surface map which preserves important anatomic features. The resultant map may be used for manual anatomic localization as well as for further automatic labeling. Outer contours are determined on MR cross-sectional images by following the clear boundaries between gray matter and cerebral-spinal fluid, skipping over sulci. Carrying this contour below the surface by shrinking it along its normal produces an inner contour that alternately intercepts gray matter (sulci) and white matter along its length. This procedure is applied to every section in the set, and the image (grayscale) values along the inner contours are radially projected and interpolated onto a semi-cylindrical surface with axis normal to the slices and large enough to cover the whole brain. A planar map of the cortical surface results by flattening this cylindrical surface. The projection from inner contour to cylindrical surface is unique in the sense that different points on the inner contour correspond to different points on the cylindrical surface. As the outer contours are readily obtained by automatic segmentation, cortical maps can be made directly from an MR series.

  17. Automatic segmentation of brain images: selection of region extraction methods

    Science.gov (United States)

    Gong, Leiguang; Kulikowski, Casimir A.; Mezrich, Reuben S.

    1991-07-01

    In automatically analyzing brain structures from a MR image, the choice of low level region extraction methods depends on the characteristics of both the target object and the surrounding anatomical structures in the image. The authors have experimented with local thresholding, global thresholding, and other techniques, using various types of MR images for extracting the major brian landmarks and different types of lesions. This paper describes specifically a local- binary thresholding method and a new global-multiple thresholding technique developed for MR image segmentation and analysis. The initial testing results on their segmentation performance are presented, followed by a comparative analysis of the two methods and their ability to extract different types of normal and abnormal brain structures -- the brain matter itself, tumors, regions of edema surrounding lesions, multiple sclerosis lesions, and the ventricles of the brain. The analysis and experimental results show that the global multiple thresholding techniques are more than adequate for extracting regions that correspond to the major brian structures, while local binary thresholding is helpful for more accurate delineation of small lesions such as those produced by MS, and for the precise refinement of lesion boundaries. The detection of other landmarks, such as the interhemispheric fissure, may require other techniques, such as line-fitting. These experiments have led to the formulation of a set of generic computer-based rules for selecting the appropriate segmentation packages for particular types of problems, based on which further development of an innovative knowledge- based, goal directed biomedical image analysis framework is being made. The system will carry out the selection automatically for a given specific analysis task.

  18. Magnetoencephalography in the study of brain dynamics.

    Science.gov (United States)

    Pizzella, Vittorio; Marzetti, Laura; Della Penna, Stefania; de Pasquale, Francesco; Zappasodi, Filippo; Romani, Gian Luca

    2014-01-01

    To progress toward understanding of the mechanisms underlying the functional organization of the human brain, either a bottom-up or a top-down approach may be adopted. The former starts from the study of the detailed functioning of a small number of neuronal assemblies, while the latter tries to decode brain functioning by considering the brain as a whole. This review discusses the top-down approach and the use of magnetoencephalography (MEG) to describe global brain properties. The main idea behind this approach is that the concurrence of several areas is required for the brain to instantiate a specific behavior/functioning. A central issue is therefore the study of brain functional connectivity and the concept of brain networks as ensembles of distant brain areas that preferentially exchange information. Importantly, the human brain is a dynamic device, and MEG is ideally suited to investigate phenomena on behaviorally relevant timescales, also offering the possibility of capturing behaviorally-related brain connectivity dynamics.

  19. The balance between cognitive reserve and brain imaging biomarkers of cerebrovascular and Alzheimer's diseases.

    Science.gov (United States)

    Murray, Alison D; Staff, Roger T; McNeil, Christopher J; Salarirad, Sima; Ahearn, Trevor S; Mustafa, Nazahah; Whalley, Lawrence J

    2011-12-01

    The cognitive reserve hypothesis explains the disparity between clinical and pathological phenotypes and why, in two individuals with the same extent of neuropathology, one may be demented while the other remains cognitively intact. We examined the balance between brain magnetic resonance imaging measures of the two most common pathologies associated with brain ageing, cerebrovascular disease and Alzheimer's disease, and parameters of cerebral reserve in well-characterized participants born in 1936, for whom childhood intelligence is known. Brain magnetic resonance imaging was carried out at 1.5T using fluid attenuation inversion recovery and T(1)-weighted volumetric sequences in 249 participants. Cerebrovascular disease was quantified by measuring brain white matter hyperintensities on fluid attenuation inversion recovery images using Scheltens' scale and Alzheimer's disease was measured from volumetric data using FreeSurfer to extract whole brain volume and hippocampal volumes in turn. The effect of these measures of brain burden on life-long cognitive ageing from the age of 11 to 68 years was compared with the effect of educational attainment and occupational grade using structural equation modelling. Complete brain burden and reserve data were available in 224 participants. We found that educational attainment, but not occupation, has a measurable and positive effect, with a standardized regression weight of +0.23, on late life cognitive ability in