WorldWideScience

Sample records for brain imaging agents

  1. Characteristics of meningioma scintigraphy with multiple brain imaging agents

    International Nuclear Information System (INIS)

    Purpose: To clarify the characteristics of meningioma scintigraphy with multiple brain imaging agents and to evaluate their roles in diagnosis of meningiomas. Methods: Blood flow, 99mTc-ECD, 99mTc-DTPA, and/or 99mTc-MIBI brain imagings were performed in 21 patients with meningiomas (3 malignant, 18 benign) proved by surgery and pathology. CT/MRI examinations were also made within one month. Characteristics of meningioma images were analyzed and uptake ratios were calculated. Results: In 16 of 20 patients, increased radioactivity during the arterial phase in the blood flow image was seen. Concave round or oval defects with smooth contour in the cerebral cortex were observed in 17 of 19 patients with 99mTc-ECD, depression of frontoparietal cortex was found in one case and no abnormality in the other. A homogeneous accumulation of radioactivity in area corresponding to the defect in 99mTc-ECD image was found in 17/17 patients with 99mTc-DTPA and in 14/14 patients with 99mTc-MIBI study. No correlation was found between uptake ratios of the three tracers, but 99mTc-ECD uptake ratio was significantly lower in malignant meningioma than in benign one. Conclusions: The combined use of 99mTc-ECD and 99mTc-DTPA and/or 99mTc-MIBI brain imaging is useful in making the diagnosis of meningiomas. Whether the 99mTc-ECD uptake ratio will be valuable to differentiate malignant from benign meningioma needs further studies

  2. Solvation effects on brain uptakes of isomers of 99mTc brain imaging agents

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Analysis of electrostatic hydration free energies of the isomers of the 99mTc-BAT and 99mTc-DADT complexes is carried out using the computer simulation technique. The results show that not only a correlation exists between the logarithm of the brain uptake and the electrostatic hydration free energy for the isomers of 99mTc-brain radiopharmaceuticals, but also a linear relationship exists between the logarithm of the ratio of the brain uptake of the syn isomer to that of the anti one and the difference between the electrostatic hydration free energy of the syn-isomer and that of the anti one. Furthermore, the investigation on the important factors influencing the brain uptakes of 99mTc-radiopharmaceuticals and the reasons of the different biodistribution of the isomers of the 99mTc-complexes is explored at the molecular level. The results may provide a reference for the rational drug design of brain imaging agents.

  3. Radiochemical evaluation of a new brain receptor imaging agent

    International Nuclear Information System (INIS)

    We report about the radiochemical evaluation of a new serotonin-1A (5-HT1A) receptor imaging agent. The new derivative of WAY 100635, viz. C1-(2 methoxyphenyl)-(4- mercaptoethyl)-piperazine, was labelled with technetium-99m using thiocresol through 99mTc(V)-glucoheptonate precursor. The labelling was carried out at room temperature within 10 minutes using 370-740 MBq of 99mTc-pertechnetate. The specific activity of the '2+1+1' mixed ligand complex was about 40 GBq/ml. The labelling efficiency and the stability of the labelled compound were monitored by ITLC-SG, solvent extraction and reverse-phase HPLC. The labelling efficiency exceeded 95% and remained high about 4 hours if stored at room temperature or in a refrigerator at 4 deg C. The results give evidence of a high labelling efficiency and stability of the ligand used. The labelled ligand seems to hold promise within the family of existing radiopharmaceuticals

  4. Potential new approaches for the development of brain imaging agents for single-photon applications

    International Nuclear Information System (INIS)

    This paper describes new strategies for the brain-specific delivery of radionuclides that can be used to evaluate regional cerebral perfusion by single photon imaging techniques. A description of several examples of interesting new strategies that have recently been reported is presented. A new approach at this institution for the brain-specific delivery of radioiodinated iodophenylalkyl-substituted dihyronicotinamide systems is described which shows good brain uptake and retention in preliminary studies in rats. Following transport into the brain these agents appear to undergo facile intracerebral oxidation to the quaternized analogues which do not recross the intact blood-brain barrier and so are effectively trapped in the brain. 49 refs., 9 figs., 1 tab

  5. Potential new approaches for the development of brain imaging agents for single-photon applications

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, F.F. Jr.; Srivastava, P.C.

    1984-01-01

    This paper describes new strategies for the brain-specific delivery of radionuclides that can be used to evaluate regional cerebral perfusion by single photon imaging techniques. A description of several examples of interesting new strategies that have recently been reported is presented. A new approach at this institution for the brain-specific delivery of radioiodinated iodophenylalkyl-substituted dihyronicotinamide systems is described which shows good brain uptake and retention in preliminary studies in rats. Following transport into the brain these agents appear to undergo facile intracerebral oxidation to the quaternized analogues which do not recross the intact blood-brain barrier and so are effectively trapped in the brain. 49 refs., 9 figs., 1 tab.

  6. Brain nuclear magnetic resonance imaging enhanced by a paramagnetic nitroxide contrast agent: preliminary report. [Dogs

    Energy Technology Data Exchange (ETDEWEB)

    Brasch, R.C. (Univ. of California, San Francisco); Nitecki, D.E.; Brant-Zawadzki, M.; Enzmann, D.R.; Wesbey, G.E.; Tozer, T.N.; Tuck, L.D.; Cann, C.E.; Fike, J.R.; Sheldon, P.

    1983-11-01

    Contrast-enhancing agents for demonstrating abnormalities of the blood-brain barrier may extend the diagnostic utility of proton nuclear magnetic resonance (NMR) imaging. TES, a nitroxide stable free radical derivative, was tested as a central nervous system contrast enhancer in dogs with experimentally induced unilateral cerebritis or radiation cerebral damage. After intravenous injection of TES, the normal brain showed no change in NMR appearance, but areas of disease demonstrated a dramatic increase (up to 45%) in spin-echo intensity and a decrease in T/sub 1/, relaxation times. The areas of disease defined by TES enhancement were either not evident on the nonenhanced NMR images or were better defined after contrast administration. In-depth tests of toxicity, stability, and metabolism of this promising NMR contrast agent are now in progress.

  7. Brain nuclear magnetic resonance imaging enhanced by a paramagnetic nitroxide contrast agent: preliminary report

    International Nuclear Information System (INIS)

    Contrast-enhancing agents for demonstrating abnormalities of the blood-brain barrier may extend the diagnostic utility of proton nuclear magnetic resonance (NMR) imaging. TES, a nitroxide stable free radical derivative, was tested as a central nervous system contrast enhancer in dogs with experimentally induced unilateral cerebritis or radiation cerebral damage. After intravenous injection of TES, the normal brain showed no change in NMR appearance, but areas of disease demonstrated a dramatic increase (up to 45%) in spin-echo intensity and a decrease in T1, relaxation times. The areas of disease defined by TES enhancement were either not evident on the nonenhanced NMR images or were better defined after contrast administration. In-depth tests of toxicity, stability, and metabolism of this promising NMR contrast agent are now in progress

  8. [18F]-labeled 2-methoxyphenylpiperazine derivative as a potential brain positron emission tomography imaging agent

    International Nuclear Information System (INIS)

    This study reports the synthesis and characterization of N-(3-(4-(2-methoxyphenyl)piperazin-1-yl)propyl-4-[18F]fluorobenzamide ([18F]MPP3F). The total reaction time for [18F]MPP3F, including final high-performance liquid chromatography purification, was about 3 h. Typical decay-corrected radiochemical yield was 18.4±3.1%. The radiochemical purity was >98%. Biodistribution in mice showed that [18F]MPP3F is a potential brain imaging agent for positron emission tomography. The brain uptake of [18F]MPP3F was 6.59±0.77% Injected Dose/g at 2 min post-injection time. A brain-to-blood ratio of 3.67 was reached at 15 min after injection.

  9. Preparation of new technetium-99m NNS/X complexes and selection for brain imaging agent

    Institute of Scientific and Technical Information of China (English)

    HE; Qiange; CHEN; Xiangji; MIAO; Yubin; LIU; Boli

    2004-01-01

    Based on excellent experiment results of 99mTcO-MPBDA-Cl, two new ligands MPTDA and MPDAA are synthesized. Then series of 99mTcO3+ complexes are prepared through adding different halide anions, followed by tests of physical chemistry qualities and biodistribution experiments. And results of these experiments show that complexes formed with MPTDA and MPDAA have better lipophilicity than those formed with MPBDA, still maintain the good brain retention ability of this type of compounds, but radioactivity uptake in blood is higher than that of 99mTcO-MPBDA and ratios of brain/blood are reduced. Obvious affections are fetched out on brain uptake and retention if fluoride, bromide or iodide anions are added. Results of experiments can be explained in reason with theoretic computation. It is confirmed that 99mTcO-MPBDA-Cl has potential to develop a new type of brain imaging agent considering integrated factors such as brain uptake, retention and toxicity.

  10. F-18 Polyethyleneglycol stilbenes as PET imaging agents targeting Aβ aggregates in the brain

    International Nuclear Information System (INIS)

    This paper describes a novel series of 18F-labeled polyethyleneglycol (PEG)-stilbene derivatives as potential β-amyloid (Aβ) plaque-specific imaging agents for positron emission tomography (PET). In these series of compounds, 18F is linked to the stilbene through a PEG chain, of which the number of ethoxy groups ranges from 2 to 5. The purpose of adding PEG groups is to lower the lipophilicity and improve bioavailability. The syntheses of the 'cold' compounds and the 18F-labeled PEG stilbene derivatives are successfully achieved. All of the fluorinated stilbenes displayed high binding affinities in an assay using postmortem AD brain homogenates (K i=2.9-6.7 nM). Labeling was successfully performed by a substitution of the mesylate group of 10a-d by [18F]fluoride giving the target compounds [18F]12a-d (EOS, specific activity, 900-1500 Ci/mmol; radiochemical purity >99%). In vivo biodistribution of these novel 18F ligands in normal mice exhibited excellent brain penetrations and rapid washouts after an intravenous injection (6.6-8.1 and 1.2-2.6% dose/g at 2 and 60 min, respectively). Autoradiography of postmortem AD brain sections of [18F]12a-d confirmed the specific binding related to the presence of Aβ plaques. In addition, in vivo plaque labeling can be clearly demonstrated with these 18F-labeled agents in transgenic mice (Tg2576), a useful animal model for Alzheimer's disease. In conclusion, the preliminary results strongly suggest these fluorinated PEG stilbene derivatives are suitable candidates as Aβ plaque imaging agents for studying patients with Alzheimer's disease

  11. Development of NMR imaging using CEST agents: application to brain tumor in a rodent model

    International Nuclear Information System (INIS)

    The study aimed at developing saturation transfer imaging of lipoCEST contrast agents for the detection of angiogenesis in a U87 mouse brain tumor model. A lipoCEST with a sensitivity threshold of 100 pM in vitro was optimized in order to make it compatible with CEST imaging in vivo. Thanks to the development of an experimental setup dedicated to CEST imaging, we evaluated lipoCEST to detect specifically tumor angiogenesis. We demonstrated for the first time that lipoCEST visualization was feasible in vivo in a mouse brain after intravenous injection. Moreover, the integrin αvβ3 over expressed during tumor angiogenesis can be specifically targeted using a functionalized lipoCEST with RGD peptide. The specific association between the RGD-lipoCEST and its target αvβ3 was confirmed by immunohistochemical data and fluorescence microscopy. Finally, in order to tend to a molecular imaging protocol by CEST-MRI, we developed a quantification tool of lipoCEST contrast agents. This tool is based on modeling of proton exchange processes in vivo. By taking into account both B0 and B1 fields inhomogeneities which can dramatically alter CEST contrast, we showed that the accuracy of our quantification tool was 300 pM in vitro. The tool was applied on in vivo data acquired on the U87 mouse model and the maximum concentration of RGD-lipoCEST linked to their molecular targets was evaluated to 1.8 nM. (author)

  12. Iodine-123-labeled pH shift brain-imaging agents

    International Nuclear Information System (INIS)

    HIPDM is an 123I-labeled agent with a distribution in brain reflecting regional perfusion. This compound is neutral and lipid soluble at blood pH and freely crosses the blood-brain barrier. At the lower pH in brain, it picks up a hydrogen ion and becomes positively charged. In this form the molecule is not lipid soluble and it is trapped in brain

  13. Radiochemical and biological evaluation of a new brain serotonin1A receptor imaging agent

    International Nuclear Information System (INIS)

    Radiochemical and biological evaluations are made of a new bidentate radioligand as a potential brain serotonin1A (5-HT1A) receptor imaging agent. The bidentate part of the complex was a derivative of the well known serotonin1A receptor antagonist molecule, namely WAY 100635; the monodentate parts were thiocresol, thiosalicylic acid and thio-2-naphthol. The labelling procedure was performed through the 99mTc(V)-glucoheptonate precursor. The bidentate + monodentate complex formed during the reaction in the case of thiocresol was identified as 99TcO(o-CH3-C6H4-N(CH2-CH2)2N-CH2CH2S)( p-C6H4CH3)2 (99mTc-1). Its labelling efficiency and stability were determined by thin layer chromatography, the organic solvent extraction method and high performance liquid chromagraphy. The biodistribution of the labelled compound was found by using male Wistar rats. On the basis of these data, kinetic curves were constructed for different organs and the dosimetry for humans was calculated. The brain uptake and pharmacokinetics were followed by planar and single photon emission computed tomography (SPECT) imaging in rats. Average brain count density was calculated and different regional count densities (counts/gram tissue) were obtained for the hippocampus and other receptor-rich regions. A detailed SPECT study was carried out after administration of 99mTc-1 to a cynomolgus monkey (Macaca cynomolgus). The results found show that, of three investigated aromatic thiol compounds, the labelling efficiency was the highest in the case of thiocresol as the monodentate part. Therefore all further studies were carried out using thiocresol. The labelling efficiency of this bidentate complex was about 80%, and the molecule was stable for up to one hour. The biodistribution data show that more than 0.1% of the injected dose is present in the rat brains a few minutes after administration, and the metabolic pathway is through the hepatobiliary system. From the results obtained with the study of the

  14. Brain imaging

    International Nuclear Information System (INIS)

    The techniques of brain imaging and results in perfusion studies and delayed images are outlined. An analysis of the advantages and disadvantages of the brain scan in a variety of common problems is discussed, especially as compared with other available procedures. Both nonneoplastic and neoplastic lesions are considered. (Auth/C.F.)

  15. Uncertainty analysis for absorbed dose from a brain receptor imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Aydogan, B.; Miller, L.F. [Univ. of Tennessee, Knoxville, TN (United States). Nuclear Engineering Dept.; Sparks, R.B. [Oak Ridge Inst. for Science and Education, TN (United States); Stubbs, J.B. [Radiation Dosimetry Systems of Oak Ridge, Inc., Knoxville, TN (United States)

    1999-01-01

    Absorbed dose estimates are known to contain uncertainties. A recent literature search indicates that prior to this study no rigorous investigation of uncertainty associated with absorbed dose has been undertaken. A method of uncertainty analysis for absorbed dose calculations has been developed and implemented for the brain receptor imaging agent {sup 123}I-IPT. The two major sources of uncertainty considered were the uncertainty associated with the determination of residence time and that associated with the determination of the S values. There are many sources of uncertainty in the determination of the S values, but only the inter-patient organ mass variation was considered in this work. The absorbed dose uncertainties were determined for lung, liver, heart and brain. Ninety-five percent confidence intervals of the organ absorbed dose distributions for each patient and for a seven-patient population group were determined by the ``Latin Hypercube Sampling`` method. For an individual patient, the upper bound of the 95% confidence interval of the absorbed dose was found to be about 2.5 times larger than the estimated mean absorbed dose. For the seven-patient population the upper bound of the 95% confidence interval of the absorbed dose distribution was around 45% more than the estimated population mean. For example, the 95% confidence interval of the population liver dose distribution was found to be between 1.49E+0.7 Gy/MBq and 4.65E+07 Gy/MBq with a mean of 2.52E+07 Gy/MBq. This study concluded that patients in a population receiving {sup 123}I-IPT could receive absorbed doses as much as twice as large as the standard estimated absorbed dose due to these uncertainties.

  16. Human brain tumor imaging with a protein-binding MR contrast agent: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Essig, Marco; Giesel, Frederik; Weber, Marc-Andre; Gerigk, Lars [German Cancer Research Center, Department of Radiology, Heidelberg (Germany); Rohrer, Martin [University of Applied Science Berlin, Berlin (Germany); Tuettenberg, Jochen [University of Heidelberg, Department of Neurosurgery, Klinikum Mannheim (Germany); Michaely, Hendrik; Voth, Matthias [University of Heidelberg, Department of Radiology, Klinikum Mannheim (Germany)

    2010-01-15

    Gadofosveset is a Gd-based protein-binding blood pool agent with increased relaxivities and blood half-life compared with conventional Gd-based contrast agents (GBCAs). No experience exists about the use of gadofosveset as an extracellular agent. In this report we present the first clinical experience with gadofosveset in enhancing intracranial tumors. Ten patients with different intracranial tumors were examined with a standard dose (0.03 mmol/kg) of gadofosveset compared with a standard dose (0.1 mmol/kg) of conventional GBCA. As a result of its significantly higher relaxivity, gadofosveset could, despite its low dose, achieve a sufficient contrast enhancement. The visual rating of the intensity of enhancement and the contrast to noise ratios were comparable to conventional agents. The detection and delineation of more complex lesions was rated equal. In one nonenhancing low grade astrocytoma an enhancing nodule became visible only 5 h after gadofosvesest injection. As shown in this initial report, contrast-enhanced intracranial tumor imaging is possible with the protein-binding blood pool agent gadofosveset. The agent gives a significant tumor contrast in early postcontrast imaging comparable with conventional agents. As a result of its unique longer lasting contrast, the use of gadofosveset might enable a new approach to imaging mild or nonenhancing tumors. (orig.)

  17. Small and neutral TcvO BAT, bisaminoethanethiol (N2S2) complexes for developing new brain imaging agents

    International Nuclear Information System (INIS)

    Bisaminoethanethiol (BAT) ligands with various gem-dimethyl and amide groups were prepared, and the corresponding neutral Tc-99m complexes were prepared and evaluated for their relative stabilities by ligand-exchange reactions. It was demonstrated that technetium complexes containing gem-dimethyl substituents have higher lipophilicities, whereas those with an amide group possess greater stability, which enhances ligand-exchange reaction. The most interesting observation was that the brain uptake in rats is not determined only by lipophilicity. Apparently, Tc-99m complexes with an amide functional group display lower brain uptakes in rats compared to those without an amide group. The brain uptake was strongly influenced by substituents on the BAT ligand. These factors are critically important and should be taken into consideration when designing Tc-99m-labeled agents for CNS receptor imaging

  18. Preparation and quality control of a new brain perfusion imaging agent 99mTc-ECD kit

    International Nuclear Information System (INIS)

    99mTc-ECD is a valuable brain imaging agent. It is prepared by ligand exchange reaction between 99mTc-GH and ECD. The best labelling conditions are pH 5 ∼ 7, ECD over 0.1 mg, SnCl2 · 2H2O over 0.005 mg and Na-GH over 5 mg. It is consisted of two kits, one is ECD (0.5 mg) and supplements cryodesiccation, another is Na-GH (8 mg). SnCl2 · 2H2O (0.08 mg) and supplements cryodesiccation. The methods of quality control were reported

  19. Evaluation of technetium 99m cyclobutylpropylene amine oxime as a potential brain perfusion imaging agent for SPET

    International Nuclear Information System (INIS)

    99mTc-labelled d,l-cyclobutylpropylene amine oxime (99mTc-CBPAO) has been developed as a brain imaging agent for single photon emission tomography (SPET). 99mTc-CBPAO can be prepared using a simple labelling procedure suitable for routine clinical use. It has a high in vitro stability, as has been demonstrated by high-pressure liquid chromatography (HPCL) analysis. This shows that 3 h after labelling, less than 5% of the primary lipophilic complex which is capable of crossing the blood-brain barrier (BBB) converts to a secondary hydrophilic complex. Brain uptake (% dose/g wet tissue) of 99mTc-CBPAO, determined at 5 and 30 min after injection in two groups of six adult male Sprague-Dawley rats, was found to be 0.74±0.06 and 0.73±0.13 (mean±SD), respectively. These values are not significantly different from those obtained repeating the experiment with 99mTc-labelled hexamethylpropylene amine oxime (99mTc-HMPAO) (0.72±0.15 at 5 min and 0.88±0.24 at 30 min after injection). Since the rat brain uptake of 99mTc-CBPAO remained unchanged for a period of time suitable for tomographic study, the comparison of the two tracers was extended to two groups of ten patients. The latter were affected by neurological and psychiatric disorders and were studied with SPET. Human brain uptake (% dose/cc cortical grey matter) of 99mTc-CBPAO and 99mTc-HMPAO were 3.04±0.57 and 4.22±0.46 (mean x 10-3±SD x 10-3), respectively, with a 32% significant difference. In two other groups of five patients, the first transit time-activity curves of the two tracers were compared. From the analysis of these curves we suggest that 99mTc-CBPAO has a higher binding effect on blood components and/or a higher degradation rate in blood than that of 99mTc-HMPAO. This may account for the reduced human brain uptake. In conclusion, SPET images of 99mTc-CBPAO reflect blood perfusion, and they have a good diagnostic quality. The main advantage of 99mTc-CBPAO is its in vitro stability; however, 99m

  20. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: An FTIR microspectroscopic imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Cakmak G.; Miller L.; Zorlu, F.; Severcan, F.

    2012-03-03

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH{sub 2} groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH{sub 3} groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems.

  1. Design, synthesis and evaluation of redox radiopharmaceuticals: a potential new approach for the development of brain imaging agents

    International Nuclear Information System (INIS)

    The fabrication and complete evaluation are described of a dihydropyridine in equilibrium pyridinium salt type redox system for the delivery of radioiodinated agents to the brain. The pivotal intermediate, N-succinimidyl (1-methylpyridinium iodide)-3-carboxylate was prepared by condensation of nicotinic acid and N-hydroxysuccinimide in the presence of dicyclohexylcarbodimide, followed by quaternization of III with methyl iodide. Tissue distribution studies of 125I-labeled 4-iodoaniline and the redox agents were performed in rats. [125I]Iodoaniline initially showed moderate (0.58% dose/gm) brain uptake with subsequent release of the radioactivity from the brain. [125I]Iodoaniline, when coupled to a dihydropyridine carrier showed higher uptake and retention in the brain. The [125I]iodophenylethyl analogue showed uptake and retention in the brain to be very similar. Apparently the lipophilic agents cross the blood-brain barrier and are oxidized (quaternized) within the brain. The blood-brain barrier then prevents their release resulting in high uptake and retention in the brain and high brain:blood ratios. 11 refs., 3 figs

  2. Synthesis and biodistribution of nitrido technetium-99m radiopharmaceuticals with dithiophosphinate ligands: a class of brain imaging agents

    International Nuclear Information System (INIS)

    The symmetrical complexes [99mTc][TcN(R2PS2)2] [R = CH3, CH2CH3, CH2CH2CH3, CH2(CH3)2], and the unsymmetrical complex [99mTc][TcN(Me2PS2)(Et2PS2)] have been prepared, at tracer level, through a two-step procedure involving the preliminary formation of a prereduced technetium nitrido intermediate followed by substitution reaction onto this species by the appropriate dithiophosphinate ligand [R2PS2]Na. The chemical identity of the resulting complexes have been established by comparison with the corresponding 99Tc-analogs prepared, at macroscopic level, by reacting the complex [99TcNCl4] [n-Bu4N] (n-Bu = n-butyl) with an excess of ligand in methanol, and characterized by elemental analyses and spectroscopic techniques. The complexes are neutral and lipophilic, and possess a square pyramidal geometry, with an apical Tc N group and two dithiophosphinate ligands spanning the four positions on the basal plane through the four sulfur atoms of the >PS2 group. In vitro studies showed that these radiopharmaceuticals are stable in solution and that their chemical identity was not altered after incubation with rat blood. Biodistribution studies have been carried out in rats and primates. The results demonstrate that these compounds are significantly retained into the brain of these animals for a prolonged time. Planar gamma camera images have been obtained in monkeys showing a good visualization of the cerebral region. However, the existence of persistent blood activity yields a brain/blood ratio lower than that observed with other 99mTc-based brain perfusion imaging agents

  3. Brain imaging and brain function

    International Nuclear Information System (INIS)

    This book is a survey of the applications of imaging studies of regional cerebral blood flow and metabolism to the investigation of neurological and psychiatric disorders. Contributors review imaging techniques and strategies for measuring regional cerebral blood flow and metabolism, for mapping functional neural systems, and for imaging normal brain functions. They then examine the applications of brain imaging techniques to the study of such neurological and psychiatric disorders as: cerebral ischemia; convulsive disorders; cerebral tumors; Huntington's disease; Alzheimer's disease; depression and other mood disorders. A state-of-the-art report on magnetic resonance imaging of the brain and central nervous system rounds out the book's coverage

  4. Adrenal imaging agents

    International Nuclear Information System (INIS)

    The goals of this proposal are the development of selenium-containing analogs of the aromatic amino acids as imaging agents for the pancreas and of the adrenal cortex enzyme inhibitors as imaging agents for adrenal pathology. The objects for this year include (a) the synthesis of methylseleno derivatives of phenylalanine and tryptophan, and (b) the preparation and evaluation of radiolabeled iodobenzoyl derivatives of the selenazole and thiazole analogs of metyrapone and SU-9055

  5. Development of radioactive agent for image diagnosis of brain dopamine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Motoi; Kitamura, Hideaki; Nakajima, Takashi [Saigata National Hospital, Niigata (Japan)

    2000-02-01

    Recently, MRI is often used to examine pathological degeneration of intracerebellar neurons of patients with Parkinson's disease, Huntington's chorea, spinocerebellar degeneration, etc. However, the efficacy of MRI is still unsatisfactory at present. In this project, the efficacy of SPECT was examined to evaluate the cerebellar functions in the previous year and it was found that the benzodiazepin receptor in CNS was detectable using SPECT with {sup 125}I iomazenil. In this year, ocular movements as one of cerebellar functions was attempted using functional MRI and patients' ocular movements were analyzed on the basis of the saccade during functional MRI imaging by Ober2 (Permobil Sweden). Image of an activated region in the frontal eye field (FEF), supplementary eye field (SEF), parietal eye field (PEF), posterior lobe or cerebellum was obtainable by Ober2-attached functional MRI. Especially, vermis 5, 6 and 7 lobules in the cerebellum were activated and random saccade was much stronger than regular saccade in the cerebellum. These results indicated that functional MRI was usable for clinical evaluation of patients with central nervous degeneration. (M.N.)

  6. Development of radioactive agent for image diagnosis of brain dopamine receptor

    International Nuclear Information System (INIS)

    Recently, MRI is often used to examine pathological degeneration of intracerebellar neurons of patients with Parkinson's disease, Huntington's chorea, spinocerebellar degeneration, etc. However, the efficacy of MRI is still unsatisfactory at present. In this project, the efficacy of SPECT was examined to evaluate the cerebellar functions in the previous year and it was found that the benzodiazepin receptor in CNS was detectable using SPECT with 125I iomazenil. In this year, ocular movements as one of cerebellar functions was attempted using functional MRI and patients' ocular movements were analyzed on the basis of the saccade during functional MRI imaging by Ober2 (Permobil Sweden). Image of an activated region in the frontal eye field (FEF), supplementary eye field (SEF), parietal eye field (PEF), posterior lobe or cerebellum was obtainable by Ober2-attached functional MRI. Especially, vermis 5, 6 and 7 lobules in the cerebellum were activated and random saccade was much stronger than regular saccade in the cerebellum. These results indicated that functional MRI was usable for clinical evaluation of patients with central nervous degeneration. (M.N.)

  7. Design, synthesis and evaluation of 2-deoxy-2-iodovinyl-branched carbohydrates as potential brain imaging agents

    International Nuclear Information System (INIS)

    Radioiodinated carbohydrates such as 2-deoxy-2-iodo-D-glucose and 3-deoxy-3-iodo-D-glucose undergo facile chemical or in vivo deiodination which precludes their use as radiotracers of glucose metabolism in tissues. To overcome the problems resulting from in vivo deiodination, we explored the concept of stabilizing radioiodide on a model carbohydrate, (E)-C-3-iodovinyl-D-allose (10) as an iodovinyl moiety. This agent did not exhibit brain specificity but showed low in vivo deiodination which demonstrated for the first time that radioiodide can be stabilized on a carbohydrate. The goal of this study was to develop a deoxy-branched carbohydrate with radioiodide stabilized as a vinyliodide with the objective of achieving high brain uptake. 10 refs., 1 fig., 1 tab

  8. Design, synthesis and evaluation of 2-deoxy-2-iodovinyl-branched carbohydrates as potential brain imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, M.M.; Callahan, A.P.; Knapp, F.F. Jr.

    1986-01-01

    Radioiodinated carbohydrates such as 2-deoxy-2-iodo-D-glucose and 3-deoxy-3-iodo-D-glucose undergo facile chemical or in vivo deiodination which precludes their use as radiotracers of glucose metabolism in tissues. To overcome the problems resulting from in vivo deiodination, we explored the concept of stabilizing radioiodide on a model carbohydrate, (E)-C-3-iodovinyl-D-allose (10) as an iodovinyl moiety. This agent did not exhibit brain specificity but showed low in vivo deiodination which demonstrated for the first time that radioiodide can be stabilized on a carbohydrate. The goal of this study was to develop a deoxy-branched carbohydrate with radioiodide stabilized as a vinyliodide with the objective of achieving high brain uptake. 10 refs., 1 fig., 1 tab.

  9. Brain imaging and schizophrenia

    International Nuclear Information System (INIS)

    Brain structures and brain function have been investigated by the new brain imaging techniques for more than ten years. In Psychiatry, these techniques could afford a new understanding of mental diseases. In schizophrenic patients, CAT scanner and RMI pointed out statistically significant ventricular enlargments which are presently considered as evidence for abnormalities in brain maturation. Functional imaging techniques reported metabolic dysfunctions in the cortical associative areas which are probably linked to the cognitive features of schizophrenics

  10. Characterization of 4-[18F]-ADAM as an imaging agent for SERT in non-human primate brain using PET: a dynamic study

    International Nuclear Information System (INIS)

    Introduction: Serotonin transporter (SERT) has been associated with many psychiatric diseases. This study investigated the biodistribution of a serotonin transporter imaging agent, N,N-dimethyl-2-(2-amino-4-18F-fluorophenylthio)benzylamine (4-[18F]-ADAM), in nonhuman primate brain using positron emission tomography (PET). Methods: Six and four Macaca cyclopis monkeys were used to determine the transit time (i.e., time necessary to reach biodistribution equilibrium) and the reproducibility of 4-[18F]-ADAM biodistribution in the brain, respectively. The sensitivity and specificity of 4-[18F]-ADAM binding to SERT were evaluated in one monkey challenged with different doses of fluoxetine and one monkey treated with 3,4-methylendioxymethamphetamine (MDMA). Dynamic PET imaging was performed for 3 h after 4-[18F]-ADAM intravenous bolus injection. The specific uptake ratios (SURs) in the midbrain (MB), thalamus (TH), striatum (ST) and frontal cortex (FC) were calculated. Results: The distribution of 4-[18F]-ADAM reached equilibrium 120–150 min after injection. The mean SURs were 2.49±0.13 in MB, 1.59±0.17 in TH, 1.35±0.06 in ST and 0.34±0.03 in FC, and the minimum variability was shown 120–150 min after 4-[18F]-ADAM injection. Using SURs and intraclass coefficient of correlation, the test/retest variability was under 8% and above 0.8, respectively, in SERT-rich areas. Challenge with fluoxetin (0.75–2 mg) dose-dependently inhibited the SURs in various brain regions. 4-[18F]-ADAM binding was markedly reduced in the brain of an MDMA-treated monkey compared to that in brains of normal controls. Conclusion: 4-[18F]-ADAM appears to be a highly selective radioligand for imaging SERT in monkey brain.

  11. The role of dopamine transporter imaging agent [99mTc]TRODAT-1 in hemi-parkinsonism rat brain

    International Nuclear Information System (INIS)

    This study aims to investigate the relationship between the determination of dopamine level by high performance liquid chromatography (HPLC) with electrochemical detection (ECD) and the detection of dopamine transporter (DAT) counts using autoradiography with DAT image agent [99mTc]TRODAT-1. For striatal lesions, pretreatment of 6-hydroxydopamine (6-OHDA) in the medial forebrain bundle shows that autoradiogaphic labeling of striatum region is reduced to near-background level. Using HPLC with ECD, unilateral 6-OHDA treatment is associated with significant (p99mTc]TRODAT-1 for the evaluation of animal DAT

  12. The new PET imaging agent [11C]AFE is a selective serotonin transporter ligand with fast brain uptake kinetics

    International Nuclear Information System (INIS)

    A new positron emission tomography (PET) radioligand for the serotonin transporter (SERT), [11C]2-[2-[[(dimethylamino)methyl]phenyl]thio]-5-(2-fluoroethyl)phenylamine ([11C]AFE, 12), was synthesized and evaluated in vivo in rats and baboons. [11C]AFE (12) was prepared from its monomethylamino precursor 11 by reaction with high specific activity [11C]methyl triflate. Radiochemical yield was 32±17% based on [11C]methyl triflate (n=6) and specific activity was 1670±864 Ci/mmol at end of synthesis (EOS, n=6). Binding assays indicated that AFE displays high affinity for SERT (Ki=1.80 nM for hSERT) and lower affinity for norepinephrine transporter (Ki=946 nM for hNET) or dopamine transporter (Ki>10,000 nM for hDAT). In addition, AFE displays negligible binding affinities for other serotonin and dopamine receptors, indicating an excellent binding selectivity in vitro. Biodistribution studies in rats indicated that [11C]AFE enters the brain readily and localizes in regions known to contain high concentrations of SERT, such as the thalamus, hypothalamus, frontal cortex and striatum. Moreover, such binding in SERT-rich brain regions is reduced significantly by pretreatment with either citalopram or the cold compound itself, but not by nisoxetine or GBR 12935, thus demonstrating that [11C]AFE binding in the rat brain is saturable, specific and selective for the SERT. Imaging experiments in baboons indicated that the uptake pattern of [11C]AFE is consistent with the known distribution of SERT in the baboon brain, with high levels of radioactivity detected in the midbrain and thalamus, moderate levels in the hippocampus and striatum and low levels in the cortical regions. The uptake kinetics of [11C]AFE in the baboon brain is rapid, with activity in the midbrain and thalamus peaking at 15-40 min postinjection. Pretreatment of the baboon with citalopram (4 mg/kg) 20 min before radioactivity injection reduced the binding of [11C]AFE in all SERT-containing brain regions to the

  13. Safety of the Gadolinium-Based Contrast Agents for Magnetic Resonance Imaging, Focusing in Part on Their Accumulation in the Brain and Especially the Dentate Nucleus.

    Science.gov (United States)

    Runge, Val M

    2016-05-01

    The established class of intravenous contrast media for magnetic resonance imaging is the gadolinium chelates, more generally referred to as the gadolinium-based contrast agents (GBCAs). These can be differentiated on the basis of stability in vivo, with safety and tolerability of the GBCAs dependent upon chemical and biologic inertness. This review discusses first the background in terms of development of these agents and safety discussions therein, and second their relative stability based both on in vitro studies and clinical observations before and including the advent of nephrogenic systemic fibrosis. This sets the stage for the subsequent focus of the review, the current knowledge regarding accumulation of gadolinium in the brain and specifically the dentate nucleus after intravenous administration of the GBCAs and differentiation among agents on this basis. The information available to date, from the initial conception of these agents in 1981 to the latest reports concerning safety, demonstrates a significant difference between the macrocyclic and linear chelates. The review concludes with a discussion of the predictable future, which includes, importantly, a reassessment of the use of the linear GBCAs or a subset thereof. PMID:26945278

  14. In Vivo CEST MR imaging of U87 mice brain tumor angiogenesis using targeted LipoCEST contrast agent at 7 T

    International Nuclear Information System (INIS)

    LipoCEST are liposome-encapsulating paramagnetic contrast agents (CA) based on chemical exchange saturation transfer with applications in bio-molecular MRI. Their attractive features include biocompatibility, sub-nanomolar sensitivity, and amenability to functionalization for targeting bio-markers. We demonstrate MR imaging using a targeted lipoCEST, injected intravenously. A lipoCEST carrying Tm(III)-complexes was conjugated to RGD tripeptide (RGD-lipoCEST), to target integrin αv,β3 receptors involved in tumor angiogenesis and was compared with an unconjugated lipoCEST. Brain tumors were induced in athymic nude mice by intracerebral injection of U87MG cells and were imaged at 7 T after intravenous injection of either of the two contrast agents (n = 12 for each group). Chemical exchange saturation transfer-MSME sequence was applied over 2 h with an average acquisition time interval of 13.5 min. The chemical exchange saturation transfer signal was ∼1% in the tumor and controlateral regions, and decreased to ∼0.3% after 2 h; while RGD-lipoCEST signal was ∼1.4% in the tumor region and persisted for up to 2 h. Immunohistochemical staining revealed a persistent co-localization of RGD-lipoCEST with αv,β3 receptors in the tumor region. These results constitute an encouraging step toward in vivo MRI imaging of tumor angiogenesis using intravenously injected lipoCEST. (authors)

  15. Human brain imaging

    International Nuclear Information System (INIS)

    Just as there have been dramatic advances in the molecular biology of the human brain in recent years, there also have been remarkable advances in brain imaging. This paper reports on the development and broad application of microscopic imaging techniques which include the autoradiographic localization of receptors and the measurement of glucose utilization by autoradiography. These approaches provide great sensitivity and excellent anatomical resolution in exploring brain organization and function. The first noninvasive external imaging of receptor distributions in the living human brain was achieved by positron emission tomography (PET) scanning. Developments, techniques and applications continue to progress. Magnetic resonance imaging (MRI) is also becoming important. Its initial clinical applications were in examining the structure and anatomy of the brain. However, more recent uses, such as MRI spectroscopy, indicate the feasibility of exploring biochemical pathways in the brain, the metabolism of drugs in the brain, and also of examining some of these procedures at an anatomical resolution which is substantially greater than that obtainable by PET scanning. The issues will be discussed in greater detail

  16. Functional Brain Imaging

    Directory of Open Access Journals (Sweden)

    K. Vessal

    2005-08-01

    Full Text Available Introduction & Background: The historical evolution of concepts of the mind has had a tremendous impact on human civilization. Aside from Smith’s surgical papyrus, there exists practically no documentation down to the era of Hippocrates. While in Corpus, the seat of all sensations is put in the brain, there is an amazing regression, for many centuries thereafter notably influenced by Aristotle, to displace it to the heart. This erroneous diversion promulgated in De Anima with minor corrections by Galen, has per-petuated to our time when we say, for example, that we love something with our very hearts or “knowing by heart” when we mean to memorize something. Avicenna challenged many of Aristotle’s ideas in El-monnafs (psychology section of Al Shafa, paving the road for the later European Renaissance. Cartesian choice of pineal body as the seat of soul in the first half of the 7th century was a fundamental departure from brain-soul dichotomy. It was followed by Gall’s pseudo-science, phrenology, as the first attempt of brain mapping in ascribing “mental faculties” to the speculative “organs” of the brain. Brain mapping through Functional Brain Imaging has flourished ex-tensively in the past decades -starting from PET with later substitution by fMRI- as robust tools for interro-gating mysteries of the brain. With a surprising pace of development, Functional Brain Imaging heralds a welcome adjunct to the science of radiology in ex-ploring mind and human behavior. Given the multi-tude of appropriate MRI machines operating across the country, attention to this aspect of imaging can invigorate research in radiology and boost generation of knowledge in this rapidly growing field. Recent advances in MRI fast imaging, fMRI, as well as clini-cal and spectroscopic imaging with present clinical application and future trends are discussed.

  17. Brain imaging in dementia.

    Science.gov (United States)

    Bonifacio, Guendalina; Zamboni, Giovanna

    2016-06-01

    The introduction of MRI and positron emission tomography (PET) brain imaging has contributed significantly to the understanding of different dementia syndromes. Over the past 20 years these imaging techniques have been increasingly used for clinical characterisation and differential diagnosis, and to provide insight into the effects on functional capacity of the brain, patterns of spatial distribution of different dementia syndromes and their natural history and evolution over time. Brain imaging is also increasingly used in clinical trials, as part of inclusion criteria and/or as a surrogate outcome measure. Here we review all the relatively specific findings that can be identified with different MRI and PET techniques in each of the most frequent dementing disorders. PMID:26933232

  18. Brain Image Motion Correction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus;

    2015-01-01

    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  19. Functional brain imaging

    International Nuclear Information System (INIS)

    Functional magnetic resonance imaging (fMRI) is a non-invasive method that has become one of the major tools for understanding human brain function and in recent years has also been developed for clinical applications. Changes in hemodynamic signals correspond to changes in neuronal activity with good spatial and temporal resolution in fMRI. Using high-field MR systems and increasingly dedicated statistics and postprocessing, activated brain areas can be detected and superimposed on anatomical images. Currently, fMRI data are often combined in multimodal imaging, e. g. with diffusion tensor imaging (DTI) sequences. This method is helping to further understand the physiology of cognitive brain processes and is also being used in a number of clinical applications. In addition to the blood oxygenation level-dependent (BOLD) signals, this article deals with the construction of fMRI investigations, selection of paradigms and evaluation in the clinical routine. Clinically, this method is mainly used in the planning of brain surgery, analyzing the location of brain tumors in relation to eloquent brain areas and the lateralization of language processing. As the BOLD signal is dependent on the strength of the magnetic field as well as other limitations, an overview of recent developments is given. Increases of magnetic field strength (7 T), available head coils and advances in MRI analytical methods have led to constant improvement in fMRI signals and experimental design. Especially the depiction of eloquent brain regions can be done easily and quickly and has become an essential part of presurgical planning. (orig.)

  20. Brain temperature and pH measured by 1H chemical shift imaging of a thulium agent

    OpenAIRE

    Coman, Daniel; Trubel, Hubert K.; Rycyna, Robert E.; Hyder, Fahmeed

    2009-01-01

    Temperature and pH are two of the most important physiological parameters and are believed to be tightly regulated because they are intricately related to energy metabolism in living organisms. Temperature and/or pH data in mammalian brain are scarce, however, mainly due to lack of precise and non-invasive methods. At 11.7T, we demonstrate that a thulium-based macrocyclic complex infused through the blood stream can be used to obtain temperature and pH maps of rat brain in vivo by 1H chemical...

  1. Synthesis and evaluation of ether containing {sup 99m}Tc-nitrido dithiocarbamate complexes as brain perfusion imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Mallia, Madhava B. [Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mathur, Anupam [Medical and Biological Products Program, Board of Radiation and Isotope Technology, Mumbai 400094 (India); Subramanian, Suresh [Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Banerjee, Sharmila [Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kothari, Kanchan [Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Koiry, S.P. [TechnicalPhysics and Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sarma, H.D. [Radiation Biology and Health Science Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Venkatesh, Meera [Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085 (India) and Medical and Biological Products Program, Board of Radiation and Isotope Technology, Mumbai 400094 (India)]. E-mail: meerav@apsara.barc.ernet.in

    2006-03-15

    In the present study, a series of {sup 99m}Tc-nitrido dithiocarbamate complexes containing ether linkages have been prepared and their brain perfusion characteristics studied. Two primary dithiocarbamates and two secondary dithiocarbamates were synthesized in >80% yield and were characterized by elemental analyses. The ligands were then labeled using a {sup 99m}Tc-nitrido intermediate, prepared from sodium pertechnetate using commercially available nitrido kit-vials, at a low ligand concentration of 0.1 mg. The prepared complexes were obtained in more than 95% yield and were characterized by paper electrophoresis and HPLC. All the complexes were found to be neutral and eluted out as a single species in HPLC. Biodistribution studies were carried out in normal Swiss mice. All the complexes showed uptake in the brain. {sup 99m}TcN complexes of secondary dithiocarbamates showed higher initial brain uptake (5 min p.i.) than their primary amine counterparts. However, all the complexes exhibited rapid washout from the brain.

  2. Synthesis and evaluation of ether containing 99mTc-nitrido dithiocarbamate complexes as brain perfusion imaging agent

    International Nuclear Information System (INIS)

    In the present study, a series of 99mTc-nitrido dithiocarbamate complexes containing ether linkages have been prepared and their brain perfusion characteristics studied. Two primary dithiocarbamates and two secondary dithiocarbamates were synthesized in >80% yield and were characterized by elemental analyses. The ligands were then labeled using a 99mTc-nitrido intermediate, prepared from sodium pertechnetate using commercially available nitrido kit-vials, at a low ligand concentration of 0.1 mg. The prepared complexes were obtained in more than 95% yield and were characterized by paper electrophoresis and HPLC. All the complexes were found to be neutral and eluted out as a single species in HPLC. Biodistribution studies were carried out in normal Swiss mice. All the complexes showed uptake in the brain. 99mTcN complexes of secondary dithiocarbamates showed higher initial brain uptake (5 min p.i.) than their primary amine counterparts. However, all the complexes exhibited rapid washout from the brain

  3. Synthesis and evaluation of [/sup 125/I]iodothienoperidol as a potential receptor site directed brain imaging agent

    International Nuclear Information System (INIS)

    This study was undertaken to design and evaluate radioligands for the noninvasive quantification of dopamine receptors in the brain. The approach involved the preparation of the iodothienyl analog I of haloperidol II, a well characterized dopamine antagonist which has been labeled with F-18 and C-11. The synthesis involved the addition of 5-trimethylstannyl-2-thienyllithium so the piperidone intermediate. The product was characterized by spectroscopic and analytic methods and radioiodinated via electrophilic iododestannylation to yield the product in 75-85% isolated yield. The tissue distribution of the radiochemical was evaluated in rats as a function of time, 0.25-2 hrs, and in the presence or absence of haloperidol (1 mg/kg) to measure receptor binding. The results indicated that the 0.25 h uptake in the brain was high (2.2% ID) and that the washout of the activity was relatively slow, 1.3% ID present at 2 hr. The Br/B1 values remained relatively constant over that time interval (9.3-12.1:1). Coadministration of 1 mg/kg haloperidol markedly reduced the uptake in the brain at 0.25 and 2 hr (55% and 62%) with much less of an effect on the nontarget tissues. The study indicates that the authors have prepared a radiotracer, labeled with iodine, that demonstrates both good brain uptake and selectivity as well as a specific binding site component

  4. Brain hypoxia imaging

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ho Chun [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-04-15

    The measurement of pathologically low levels of tissue pO{sub 2} is an important diagnostic goal for determining the prognosis of many clinically important diseases including cardiovascular insufficiency, stroke and cancer. The target tissues nowadays have mostly been tumors or the myocardium, with less attention centered on the brain. Radiolabelled nitroimidazole or derivatives may be useful in identifying the hypoxic cells in cerebrovascular disease or traumatic brain injury, and hypoxic-ischemic encephalopathy. In acute stroke, the target of therapy is the severely hypoxic but salvageable tissue. {sup 18}F-MISO PET and {sup 99m}Tc-EC-metronidazole SPECT in patients with acute ischemic stroke identified hypoxic tissues and ischemic penumbra, and predicted its outcome. A study using {sup 123}I-IAZA in patient with closed head injury detected the hypoxic tissues after head injury. Up till now these radiopharmaceuticals have drawbacks due to its relatively low concentration with hypoxic tissues associated with/without low blood-brain barrier permeability and the necessity to wait a long time to achieve acceptable target to background ratios for imaging in acute ischemic stroke. It is needed to develop new hypoxic marker exhibiting more rapid localization in the hypoxic region in the brain. And then, the hypoxic brain imaging with imidazoles or non-imidazoles may be very useful in detecting the hypoxic tissues, determining therapeutic strategies and developing therapeutic drugs in several neurological disease, especially, in acute ischemic stroke.

  5. Electromagnetic brain imaging

    International Nuclear Information System (INIS)

    Present imaging methods of cerebral neuro-activity like brain functional MRI and positron emission tomography (PET) secondarily measure only average activities within a time of the second-order (low time-resolution). In contrast, the electromagnetic brain imaging (EMBI) directly measures the faint magnetic field (10-12-10-13 T) yielded by the cerebral activity with use of multiple arrayed sensors equipped on the head surface within a time of sub-millisecond order (high time-resolution). The sensor array technology to find the signal source from the measured data is common in wide areas like signal procession for radar, sonar, and epicenter detection by seismic wave. For estimating and reconstructing the active region in the brain in EMBI, the efficient method must be developed and this paper describes the direct and inverse problems concerned in signal and image processions of EMBI. The direct problem involves the cerebral magnetic field/lead field matrix and inverse problem for reconstruction of signal source, the MUSIC (multiple signal classification) algorithm, GLRT (generalized likelihood ratio test) scan, and adaptive beamformer. As an example, given are results of magnetic intensity changes (unit, fT) in the somatosensory cortex vs time (msec) measured by 160 sensors and of images reconstructed from EMBI and MRI during electric muscle afferent input from the hand. The real-time imaging is thus possible with EMBI and extremely, the EMBI image, the real-time cerebral signals, can inversely operate a machine, of which application directs toward the brain/machine interface development. (R.T.)

  6. Whole-body biodistribution and brain PET imaging with [18F]AV-45, a novel amyloid imaging agent - a pilot study

    International Nuclear Information System (INIS)

    Purpose: The compound (E)-4-(2-(6-(2-(2-(2-18F-fluoroethoxy)ethoxy)ethoxy) pyridin-3-yl)vinyl)-N-methylbenzenamine ([18F]AV-45) is a novel radiopharmaceutical capable of selectively binding to β-amyloid (Aβ) plaques. This pilot study reports the safety, biodistribution, and radiation dosimetry of [18F]AV-45 in human subjects. Methods: In vitro autoradiography and fluorescent staining of postmortem brain tissue from patients with Alzheimer's disease (AD) and cognitively healthy subjects were performed to assess the specificity of the tracer. Biodistribution was assessed in three healthy elderly subjects (mean age: 60.0±5.2 years) who underwent 3-h whole-body positron emission tomography (PET)/computed tomographic (CT) scans after a bolus injection of 381.9±13.9 MBq of [18F]AV-45. Another six subjects (three AD patients and three healthy controls, mean age: 67.7±13.6 years) underwent brain PET studies. Source organs were delineated on PET/CT. All subjects underwent magnetic resonance imaging (MRI) for obtaining structural information. Results: In vitro autoradiography revealed exquisitely high specific binding of [18F]AV-45 to postmortem AD brain sections, but not to the control sections. There were no serious adverse events throughout the study period. The peak uptake of the tracer in the brain was 5.12±0.41% of the injected dose. The highest absorbed organ dose was to the gallbladder wall (184.7±78.6 μGy/MBq, 4.8 h voiding interval). The effective dose equivalent and effective dose values for [18F]AV-45 were 33.8±3.4 μSv/MBq and 19.3±1.3 μSv/MBq, respectively. Conclusion: [18F]AV-45 binds specifically to Aβ in vitro, and is a safe PET tracer for studying Aβ distribution in human brain. The dosimetry is suitable for clinical and research application.

  7. Synthesis characterization and biological evaluation of a novel mixed ligand 99mTc complex as potential brain imaging agent

    International Nuclear Information System (INIS)

    One approach in the design of neutral oxotechnetium complexes is based on the simultaneous substitution of a tridentate dianionic ligand and a monodentate monoanionic coligand on a [Tc(V)O]+3 precursor. Following this ''mixed ligand'' concept, a novel 99mTc complex with N,N-bis(2-mercaptoethyl)-N'N'-diethylethylenediamine as ligand and 1-octanethiol as coligand is prepared and evaluated as potential brain radiopharmaceutical. Preparation of the complex at tracer level was accomplished by using 99mTc-glucoheptonate as precursor. The substitution was optimized and a coligand/ligand ratio of 5 was selected. Under this conditions the labeling yield was over 80% and a major product (with radiochemical purity > 80%) was isolated by HPLC methods and used for biological evaluation. Chemical characterization at carrier level was developed using the corresponding rhenium complex as structural model. The Re complex was also prepared by substitution method and isolated as a crystalline product. The crystals were characterized by UV-vis and IR spectra and elemental analysis. Results were consistent with the expected ReOLC structure. X ray crystallographic study demonstrated that the complex adopts a distorted trigonal bipyramidal geometry. The basal plane is defined by the SS atoms of the ligand and the oxo group, while the N of the ligand and the S of the colligand occupy the two apical positions. All sulphur atoms underwent ionization leading to the formation of a neutral compound. 99Tc complex was also prepared. Although it was not isolated due to the small amount of reagents employed, the HPLC profile was identical to the one observed for the rhenium complex suggesting the same chemical structure. Biodistribution in mice demonstrated early brain uptake, fast blood clearance, excretion through hepatobiliary system and a brain/blood ratio that increased significantly with time. (author)

  8. Quantitative kinetic analysis of PET amyloid imaging agents [11C]BF227 and [18F]FACT in human brain

    International Nuclear Information System (INIS)

    Introduction: The purpose of this study was to compare two amyloid imaging agents, [11C]BF227 and [18F]FACT (derivative from [11C]BF227) through quantitative pharmacokinetics analysis in human brain. Methods: Positron emission tomography studies were performed on six elderly healthy control (HC) subjects and seven probable Alzheimer’s disease (AD) patients with [11C]BF227 and 10 HC subjects and 10 probable AD patients with [18F]FACT. Data from nine regions of interest were analyzed by several approaches, namely non-linear least-squared fitting methods with arterial input functions (one-tissue compartment model(1TCM), two-tissue compartment model (2TCM)), Logan plot, and linearized methods with reference region (Reference Logan plot (RefLogan), MRTM0, MRTM2). We also evaluated SUV and SUVR for both tracers. The parameters estimated by several approaches were compared between two tracers for detectability of differences between HC and AD patients. Results: For [11C]BF227, there were no significant difference of VT (2TCM, 1TCM) and SUV in all regions (Student t-test; p < 0.05) and significant differences in the DVRs (Logan, RefLogan, and MRTM2) and SUVRs in six neocortical regions (p < 0.05) between the HC and AD groups. For [18F]FACT, significant differences in DVRs (RefLogan, MRTM0, and MRTM2) were observed in more than four neocortical regions between the HC and AD groups (p < 0.05), and the significant differences were found in SUVRs for two neocortical regions (inferior frontal coretex and lateral temporal coretex). Our results showed that both tracers can clearly distinguish between HC and AD groups although the pharmacokinetics and distribution patterns in brain for two tracers were substantially different. Conclusion: This study revealed that although the PET amyloid imaging agents [11C]BF227 and [18F]FACT have similar chemical and biological properties, they have different pharmacokinetics, and caution must be paid for usage of the tracers

  9. Brain imaging and autism

    Energy Technology Data Exchange (ETDEWEB)

    Zilbovicius, M. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), INSERM CEA 0205, 91 - Orsay (France)

    2006-07-01

    Autism is a neuro-developmental disorder with a range of clinical presentations, from mild to severe, referred to as autism spectrum disorders (ASD). The most common clinical ASD sign is social interaction impairment, which is associated with verbal and non-verbal communication deficits and stereotyped and obsessive behaviors. Thanks to recent brain imaging studies, scientists are getting a better idea of the neural circuits involved in ASD. Indeed, functional brain imaging, such as positron emission tomography (PET), single positron emission tomograph y (SPECT) and functional MRI (fMRI) have opened a new perspective to study normal and pathological brain functions. Three independent studies have found anatomical and rest functional temporal abnormalities. These anomalies are localized in the superior temporal sulcus bilaterally which are critical for perception of key social stimuli. In addition, functional studies have shown hypo-activation of most areas implicated in social perception (face and voice perception) and social cognition (theory of mind). These data suggest an abnormal functioning of the social brain network. The understanding of such crucial abnormal mechanism may drive the elaboration of new and more adequate social re-educative strategies in autism. (author)

  10. Brain imaging and autism

    International Nuclear Information System (INIS)

    Autism is a neuro-developmental disorder with a range of clinical presentations, from mild to severe, referred to as autism spectrum disorders (ASD). The most common clinical ASD sign is social interaction impairment, which is associated with verbal and non-verbal communication deficits and stereotyped and obsessive behaviors. Thanks to recent brain imaging studies, scientists are getting a better idea of the neural circuits involved in ASD. Indeed, functional brain imaging, such as positron emission tomography (PET), single positron emission tomograph y (SPECT) and functional MRI (fMRI) have opened a new perspective to study normal and pathological brain functions. Three independent studies have found anatomical and rest functional temporal abnormalities. These anomalies are localized in the superior temporal sulcus bilaterally which are critical for perception of key social stimuli. In addition, functional studies have shown hypo-activation of most areas implicated in social perception (face and voice perception) and social cognition (theory of mind). These data suggest an abnormal functioning of the social brain network. The understanding of such crucial abnormal mechanism may drive the elaboration of new and more adequate social re-educative strategies in autism. (author)

  11. High resolution susceptibility weighted MR-imaging of brain tumors during the application of a gaseous agent

    Energy Technology Data Exchange (ETDEWEB)

    Rauscher, A. [Inst. fuer Diagnostische und Interventionelle Radiologie, Friedrich Schiller Univ. Jena (Germany); Exzellenzzentrum Hochfeld-Magnetresonanz, Medizinische Univ. Wien (Austria); Sedlacik, J.; Fitzek, C.; Kaiser, W.A.; Reichenbach, J.R. [Inst. fuer Diagnostische und Interventionelle Radiologie, Friedrich Schiller Univ. Jena (Germany); Walter, B.; Hochstetter, A.; Kalff, R. [Klinik fuer Neurochirurgie, Friedrich Schiller Univ. Jena (Germany)

    2005-08-01

    Purpose: to employ a high resolution blood oxygenation level dependent (BOLD) method called susceptibility weighted imaging (SWI) together with the breathing of carbogen to investigate the response of cerebral tumors to this breathing gas and to assess tumor anatomy at high resolution. Methods: five patients with cerebral tumors (four glioblastoma multiforme, one astrocytoma [WHO grade II]) were studied using a susceptibility weighted 3D gradient echo, first order velocity compensated sequence (TE = 45 ms, TR = 67 ms, {alpha} = 25 , FOV = 256 x 192 x 64 mm{sup 3}, typical matrix = 512 x 192 x 64), on a 1.5 T MR scanner while they were breathing air and carbogen. Signal changes between the two breathing conditions were investigated. Results: the glioblastomas showed strong but heterogeneous signal changes between carbogen and air breathing, with changes between + 22.4 {+-} 4.9% at the perimeter of the tumors and -5.0 {+-} 0.4% in peritumoral areas that appeared hyperintense on T{sub 2}-weighted images. The astrocytoma displayed a signal decrease during carbogen breathing (-4.1 {+-} 0.1% to -6.8 {+-} 0.3% in peritumoral areas that correspond to hyperintense regions on T{sub 2}-weighted images, and -3.1 {+-} 0.1% in the tumor-center). Conclusions: SWI provides high resolution images of cerebral anatomy and venous vascularization. Combined with hypercapnia it allows for regional assessment of tumor activity. (orig.)

  12. Imaging brain plasticity after trauma

    OpenAIRE

    Kou, Zhifeng; Iraji, Armin

    2014-01-01

    The brain is highly plastic after stroke or epilepsy; however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrated both structural reorganization as well as functional compensation by the recruitment of other brain regions. ...

  13. A preclinical murine model for the early detection of radiation-induced brain injury using magnetic resonance imaging and behavioral tests for learning and memory: with applications for the evaluation of possible stem cell imaging agents and therapies.

    Science.gov (United States)

    Ngen, Ethel J; Wang, Lee; Gandhi, Nishant; Kato, Yoshinori; Armour, Michael; Zhu, Wenlian; Wong, John; Gabrielson, Kathleen L; Artemov, Dmitri

    2016-06-01

    Stem cell therapies are being developed for radiotherapy-induced brain injuries (RIBI). Magnetic resonance imaging (MRI) offers advantages for imaging transplanted stem cells. However, most MRI cell-tracking techniques employ superparamagnetic iron oxide particles (SPIOs), which are difficult to distinguish from hemorrhage. In current preclinical RIBI models, hemorrhage occurs concurrently with other injury markers. This makes the evaluation of the recruitment of transplanted SPIO-labeled stem cells to injury sites difficult. Here, we developed a RIBI model, with early injury markers reflective of hippocampal dysfunction, which can be detected noninvasively with MRI and behavioral tests. Lesions were generated by sub-hemispheric irradiation of mouse hippocampi with single X-ray beams of 80 Gy. Lesion formation was monitored with anatomical and contrast-enhanced MRI and changes in memory and learning were assessed with fear-conditioning tests. Early injury markers were detected 2 weeks after irradiation. These included an increase in the permeability of the blood-brain barrier, demonstrated by a 92 ± 20 % contrast enhancement of the irradiated versus the non-irradiated brain hemispheres, within 15 min of the administration of an MRI contrast agent. A change in short-term memory was also detected, as demonstrated by a 40.88 ± 5.03 % decrease in the freezing time measured during the short-term memory context test at this time point, compared to that before irradiation. SPIO-labeled stem cells transplanted contralateral to the lesion migrated toward the lesion at this time point. No hemorrhage was detected up to 10 weeks after irradiation. This model can be used to evaluate SPIO-based stem cell-tracking agents, short-term. PMID:27021492

  14. Tc-99m imaging agents

    International Nuclear Information System (INIS)

    A wide range of pharmaceuticals for labeling with Tc-99m, developed by the Soreq Radiopharmaceuticals Department, is described. Details of the production and quality control of 13 kits are given, as well as the range of results required for consistently high quality imaging agents

  15. Brain tumor (image)

    Science.gov (United States)

    Brain tumors are classified depending on the exact site of the tumor, the type of tissue involved, benign ... tendencies of the tumor, and other factors. Primary brain tumors can arise from the brain cells, the meninges ( ...

  16. Imaging brain plasticity after trauma

    Science.gov (United States)

    Kou, Zhifeng; Iraji, Armin

    2014-01-01

    The brain is highly plastic after stroke or epilepsy; however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrated both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the field is still short of proper means on how to guide the choice of TBI rehabilitation or treatment plan to promote brain plasticity. The authors also point out the new direction of brain plasticity investigation. PMID:25206874

  17. Imaging brain plasticity after trauma

    Institute of Scientific and Technical Information of China (English)

    Zhifeng Kou; Armin Iraji

    2014-01-01

    The brain is highly plastic after stroke or epilepsy;however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrat-ed both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the ifeld is still short of proper means on how to guide the choice of TBI rehabilitation or treat-ment plan to promote brain plasticity. The authors also point out the new direction of brain plas-ticity investigation.

  18. [{sup 11}C]SMe-ADAM, an imaging agent for the brain serotonin transporter: synthesis, pharmacological characterization and microPET studies in rats

    Energy Technology Data Exchange (ETDEWEB)

    Zessin, Joerg [Institut fuer Bioanorganische und Radiopharmazeutische Chemie, Forschungszentrum Rossendorf, 01314 Dresden (Germany)]. E-mail: j.zessin@fz-rossendorf.de; Deuther-Conrad, Winnie [Institut fuer Interdisziplinaere Isotopenforschung, 04318 Leipzig (Germany); Kretzschmar, Marion [Institut fuer Bioanorganische und Radiopharmazeutische Chemie, Forschungszentrum Rossendorf, 01314 Dresden (Germany); Wuest, Frank [Institut fuer Bioanorganische und Radiopharmazeutische Chemie, Forschungszentrum Rossendorf, 01314 Dresden (Germany); Pawelke, Beate [Institut fuer Bioanorganische und Radiopharmazeutische Chemie, Forschungszentrum Rossendorf, 01314 Dresden (Germany); Brust, Peter [Institut fuer Interdisziplinaere Isotopenforschung, 04318 Leipzig (Germany); Steinbach, Joerg [Institut fuer Interdisziplinaere Isotopenforschung, 04318 Leipzig (Germany); Bergmann, Ralf [Institut fuer Bioanorganische und Radiopharmazeutische Chemie, Forschungszentrum Rossendorf, 01314 Dresden (Germany)

    2006-01-15

    N,N-Dimethyl-2-(2-amino-4-methylthiophenylthio)benzylamine (S Me-Adam, 1) is a highly potent and selective inhibitor of the serotonin transporter (SPERT). This compound was labeled with carbon-11 by methylation of the S-desmethyl precursor 10 with [{sup 11}C]methyl iodide to obtain the potential positron emission tomography (PET) radioligand [{sup 11}C]S Me-Adam. The radiochemical yield was 27{+-}5%, and the specific radioactivity was 26-40 GBq/{mu}mol at the end of synthesis. Ex vivo and in vivo biodistribution experiments in rats demonstrated a rapid accumulation of the radiotracer in brain regions known to be rich in SPERT, such as the thalamus/hypothalamus region (3.59{+-}0.41%ID/g at 5 min after injection). The specific uptake reached a thalamus to cerebellum ratio of 6.74{+-}0.95 at 60 min postinjection. The [{sup 11}C]SMe-ADAM uptake in the thalamus was significantly decreased by pretreatment with fluoxetine to 38{+-}11% of the control value. Furthermore, no metabolites of [{sup 11}C]SMe-ADAM could be detected in the SERT-rich regions of the rat brain. It is concluded that [{sup 11}C]SMe-ADAM may be a suitable PET ligand for SERT imaging in the living brain.

  19. [11C]SMe-ADAM, an imaging agent for the brain serotonin transporter: synthesis, pharmacological characterization and microPET studies in rats

    International Nuclear Information System (INIS)

    N,N-Dimethyl-2-(2-amino-4-methylthiophenylthio)benzylamine (S Me-Adam, 1) is a highly potent and selective inhibitor of the serotonin transporter (SPERT). This compound was labeled with carbon-11 by methylation of the S-desmethyl precursor 10 with [11C]methyl iodide to obtain the potential positron emission tomography (PET) radioligand [11C]S Me-Adam. The radiochemical yield was 27±5%, and the specific radioactivity was 26-40 GBq/μmol at the end of synthesis. Ex vivo and in vivo biodistribution experiments in rats demonstrated a rapid accumulation of the radiotracer in brain regions known to be rich in SPERT, such as the thalamus/hypothalamus region (3.59±0.41%ID/g at 5 min after injection). The specific uptake reached a thalamus to cerebellum ratio of 6.74±0.95 at 60 min postinjection. The [11C]SMe-ADAM uptake in the thalamus was significantly decreased by pretreatment with fluoxetine to 38±11% of the control value. Furthermore, no metabolites of [11C]SMe-ADAM could be detected in the SERT-rich regions of the rat brain. It is concluded that [11C]SMe-ADAM may be a suitable PET ligand for SERT imaging in the living brain

  20. Future of functional brain imaging

    International Nuclear Information System (INIS)

    To examine the living human brain's sensory, motor and cognitive interactions and to understand how activities in anatomically distinct neural processing regions are orchestrated to perform complex tasks represents a future challenge to neuroscientists. Until recently, functional brain imaging data have been constrained by the severely limited spatial (5-15 mm) and temporal resolution (from a few seconds to minutes) of the nuclear medicine methods, single-photon emission tomography (SPET) and positron emission tomography (PET). The advent of new non-invasive, fast imaging methods - functional magnetic resonance imaging (fMRI), serial X-ray computed tomography ('cine' CT) and magnetoencephalography (MEG) - has created a need for a survey to compare these techniques with conventional SPET and PET. Each technique has unique advantages and simultaneously serious limitations. No method has achieved a clear supremacy in functional brain imaging. (orig.)

  1. The new PET imaging agent [{sup 11}C]AFE is a selective serotonin transporter ligand with fast brain uptake kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Zhihong [Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032 (United States); Guo Ningning [Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032 (United States); Narendran, Raj [Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032 (United States)] [and others

    2004-11-01

    A new positron emission tomography (PET) radioligand for the serotonin transporter (SERT), [{sup 11}C]2-[2-[[(dimethylamino)methyl]phenyl]thio]-5-(2-fluoroethyl)phenylamine ([{sup 11}C]AFE, 12), was synthesized and evaluated in vivo in rats and baboons. [{sup 11}C]AFE (12) was prepared from its monomethylamino precursor 11 by reaction with high specific activity [{sup 11}C]methyl triflate. Radiochemical yield was 32{+-}17% based on [{sup 11}C]methyl triflate (n=6) and specific activity was 1670{+-}864 Ci/mmol at end of synthesis (EOS, n=6). Binding assays indicated that AFE displays high affinity for SERT (K{sub i}=1.80 nM for hSERT) and lower affinity for norepinephrine transporter (K{sub i}=946 nM for hNET) or dopamine transporter (K{sub i}>10,000 nM for hDAT). In addition, AFE displays negligible binding affinities for other serotonin and dopamine receptors, indicating an excellent binding selectivity in vitro. Biodistribution studies in rats indicated that [{sup 11}C]AFE enters the brain readily and localizes in regions known to contain high concentrations of SERT, such as the thalamus, hypothalamus, frontal cortex and striatum. Moreover, such binding in SERT-rich brain regions is reduced significantly by pretreatment with either citalopram or the cold compound itself, but not by nisoxetine or GBR 12935, thus demonstrating that [{sup 11}C]AFE binding in the rat brain is saturable, specific and selective for the SERT. Imaging experiments in baboons indicated that the uptake pattern of [{sup 11}C]AFE is consistent with the known distribution of SERT in the baboon brain, with high levels of radioactivity detected in the midbrain and thalamus, moderate levels in the hippocampus and striatum and low levels in the cortical regions. The uptake kinetics of [{sup 11}C]AFE in the baboon brain is rapid, with activity in the midbrain and thalamus peaking at 15-40 min postinjection. Pretreatment of the baboon with citalopram (4 mg/kg) 20 min before radioactivity injection

  2. Brain tumors imaging

    International Nuclear Information System (INIS)

    At the beginning of the illness, we should use an anatomical technique for brain exploration (CT scan or MRI) to see the boundaries of the lesion before the diagnostic biopsy. After treatment (chemotherapy and/or radiotherapy and/or surgery), the evolution of the lesion can be observed with functional techniques (SPECT Thallium or MIBI or PET scan). (author)

  3. Brain image Compression, a brief survey

    Directory of Open Access Journals (Sweden)

    Saleha Masood

    2013-01-01

    Full Text Available Brain image compression is known as a subfield of image compression. It allows the deep analysis and measurements of brain images in different modes. Brain images are compressed to analyze and diagnose in an effective manner while reducing the image storage space. This survey study describes the different existing techniques regarding brain image compression. The techniques come under different categories. The study also discusses these categories.

  4. Functional Brain Imaging: A Comprehensive Survey

    CERN Document Server

    Sarraf, Saman

    2016-01-01

    Functional brain imaging allows measuring dynamic functionality in all brain regions. It is broadly used in clinical cognitive neuroscience as, well as in research. It will allow the observation of neural activities in the brain simultaneously. From the beginning when functional brain imaging was initiated by the mapping of brain functions proposed by phrenologists, many scientists were asking why we need to image brain functionality since we have already structural information. Simply, their important question was including a great answer. Functional information of the human brain would definitely complement structural information, helping to have a better understanding of what is happening in the brain. This paper, which could be useful to those who have an interest in functional brain imaging, such as engineers, will present a quick review of modalities used in functional brain imaging. We will concentrate on the most used techniques in functional imaging which are functional magnetic resonance imaging (fM...

  5. Imaging the Addicted Human Brain

    OpenAIRE

    Fowler, Joanna S.; Volkow, Nora D.; Kassed, Cheryl A; Chang, Linda

    2007-01-01

    Modern imaging techniques enable researchers to observe drug actions and consequences as they occur and persist in the brains of abusing and addicted individuals. This article presents the five most commonly used techniques, explains how each produces images, and describes how researchers interpret them. The authors give examples of key findings illustrating how each technique has extended and deepened our knowledge of the neurobiological bases of drug abuse and addiction, and they address po...

  6. Synthesis and evaluation of [{sup 125}I]I-TSA as a brain nicotinic acetylcholine receptor {alpha}{sub 7} subtype imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Mikako [Laboratory of Genome Bio-Photonics, Photon Medical Research Center, Hamamatsu Medical University, Hamamatsu 431-3192 (Japan); Tatsumi, Ryo [Pharmaceuticals Research Unit, Research and Development Division, Mitsubishi Pharma Corporation, Yokohama 227-0033 (Japan); Fujio, Masakazu [Pharmaceuticals Research Unit, Research and Development Division, Mitsubishi Pharma Corporation, Yokohama 227-0033 (Japan); Katayama, Jiro [Pharmaceuticals Research Unit, Research and Development Division, Mitsubishi Pharma Corporation, Yokohama 227-0033 (Japan); Magata, Yasuhiro [Laboratory of Genome Bio-Photonics, Photon Medical Research Center, Hamamatsu Medical University, Hamamatsu 431-3192 (Japan)]. E-mail: magata@hama-med.ac.jp

    2006-04-15

    Introduction: Some in vitro investigations have suggested that the nicotinic acetylcholine receptor (nAChR) {alpha}{sub 7} subtype is implicated in Alzheimer's disease, schizophrenia and others. Recently, we developed (R)-3'-(5-bromothiophen-2-yl)spiro[1-azabicyclo[2.2.2]octane-3,5'-[1',3'] oxazolidin]-2'-one (Br-TSA), which has a high affinity and selectivity for {alpha}{sub 7} nAChRs. Therefore we synthesized (R)-3'-(5-[{sup 125}I]iodothiophen-2-yl)spiro[1-azabicyclo[2.2.2]octane-3,5'- [1',3']oxazolidin]-2'-one ([{sup 125}I]I-TSA) and evaluated its potential for the in vivo detection of {alpha}{sub 7} nAChR in brain. Methods: In vitro binding affinity of I-TSA was measured in rat brain homogenates. Radioiodination was accomplished by a Br-I exchange reaction. Biodistribution studies were undertaken in mice by tail vein injection of [{sup 125}I]I-TSA. In vivo receptor blocking studies were carried out by treating mice with methyllycaconitine (MLA; 5 nmol/5 {mu}l, i.c.v.) or nonradioactive I-TSA (50 {mu}mol/kg, i.v.). Results: I-TSA exhibited a high affinity and selectivity for the {alpha}{sub 7} nAChR (K {sub i} for {alpha}{sub 7} nAChR=0.54 nM). Initial uptake in the brain was high (4.42 %dose/g at 5 min), and the clearance of radioactivity was relatively slow in the hippocampus ({alpha}{sub 7} nAChR-rich region) and was rather rapid in the cerebellum ({alpha}{sub 7} nAChR poor region). The hippocampus to cerebellum uptake ratio was 0.9 at 5 min postinjection, but it was increased to 1.8 at 60 min postinjection. Although the effect was not statistically significant, administration of I-TSA and MLA decreased the accumulation of radioactivity in hippocampus. Conclusion: Despite its high affinity and selectivity, [{sup 125}I]I-TSA does not appear to be a suitable tracer for in vivo {alpha}{sub 7} nAChR receptor imaging studies due to its high nonspecific binding. Further structural optimization is needed.

  7. Minireview of Stereoselective Brain Imaging

    DEFF Research Database (Denmark)

    Smith, Donald F.; Jakobsen, Steen

    2014-01-01

    Stereoselectivity is a fundamental principle in living systems. Stereoselectivity reflects the dependence of molecular processes on the spatial orientation of constituent atoms. Stereoselective processes govern many aspects of brain function and direct the course of many psychotropic drugs. Today......, modern imaging techniques such as SPECT and PET provide a means for studying stereoselective processes in the living brain. Chemists have prepared numerous radiolabelled stereoisomers for use in SPECT and PET in order to explore various molecular processes in the living brain of anesthetized laboratory...... animals and awake humans. The studies have demonstrated how many aspects of neurotransmission consist of crucial stereoselective events that can affect brain function in health and disease. Here, we present a brief account of those findings in hope of stimulating further interest in the vital topic....

  8. Classification of Medical Brain Images

    Institute of Scientific and Technical Information of China (English)

    Pan Haiwei(潘海为); Li Jianzhong; Zhang Wei

    2003-01-01

    Since brain tumors endanger people's living quality and even their lives, the accuracy of classification becomes more important. Conventional classifying techniques are used to deal with those datasets with characters and numbers. It is difficult, however, to apply them to datasets that include brain images and medical history (alphanumeric data), especially to guarantee the accuracy. For these datasets, this paper combines the knowledge of medical field and improves the traditional decision tree. The new classification algorithm with the direction of the medical knowledge not only adds the interaction with the doctors, but also enhances the quality of classification. The algorithm has been used on real brain CT images and a precious rule has been gained from the experiments. This paper shows that the algorithm works well for real CT data.

  9. Demeclocycline as a contrast agent for detecting brain neoplasms using confocal microscopy

    Science.gov (United States)

    Wirth, Dennis; Smith, Thomas W.; Moser, Richard; Yaroslavsky, Anna N.

    2015-04-01

    Complete resection of brain tumors improves life expectancy and quality. Thus, there is a strong need for high-resolution detection and microscopically controlled removal of brain neoplasms. The goal of this study was to test demeclocycline as a contrast enhancer for the intraoperative detection of brain tumors. We have imaged benign and cancerous brain tumors using multimodal confocal microscopy. The tumors investigated included pituitary adenoma, meningiomas, glioblastomas, and metastatic brain cancers. Freshly excised brain tissues were stained in 0.75 mg ml-1 aqueous solution of demeclocyline. Reflectance images were acquired at 402 nm. Fluorescence signals were excited at 402 nm and registered between 500 and 540 nm. After imaging, histological sections were processed from the imaged specimens and compared to the optical images. Fluorescence images highlighted normal and cancerous brain cells, while reflectance images emphasized the morphology of connective tissue. The optical and histological images were in accordance with each other for all types of tumors investigated. Demeclocyline shows promise as a contrast agent for intraoperative detection of brain tumors.

  10. Contrast Agent in Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Vu-Quang, Hieu

    2015-01-01

    Nanoparticles have been employed as contrast agent in magnetic resonance imaging (MRI) in order to improve sensitivity and accuracy in diagnosis. In addition, these contrast agents are potentially combined with other therapeutic compounds or near infrared bio-imaging (NIR) fluorophores to obtain...... theranostic or dual imaging purposes, respectively. There were two main types of MRI contrast agent that were synthesized during this PhD project including fluorine containing nanoparticles and magnetic nanoparticles. In regard of fluorine containing nanoparticles, there were two types contrast agent...... cancer cells for cancer diagnosis in MRI. F127-Folate coated SPION were stable in various types of suspension medium for over six months. They could specifically target folate receptor of cancer cells in vitro and in vivo thus enhancing the contrast in MRI T2/T2* weighted images. These are preliminary...

  11. Fueling and imaging brain activation

    Directory of Open Access Journals (Sweden)

    Gerald A Dienel

    2012-07-01

    Full Text Available Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models.

  12. Liposome imaging agents in personalized medicine

    DEFF Research Database (Denmark)

    Petersen, Anncatrine Luisa; Hansen, Anders Elias; Gabizon, Alberto;

    2012-01-01

    that selectively localize in tumor tissue can transport both drugs and imaging agents, which allows for a theranostic approach with great potential in personalized medicine. Radiolabeling of liposomes have for many years been used in preclinical studies for evaluating liposome in vivo performance and...... arena where we start to consider how to use imaging for patient selection and treatment monitoring in connection to nanocarrier based medicines. Nanocarrier imaging agents could furthermore have interesting properties for disease diagnostics and staging. Here, we review the major advances in the...... development of radiolabeled liposomes for imaging as a tool in personalized medicine....

  13. Agent Based Image Segmentation Method : A Review

    OpenAIRE

    Pooja Mishra; Navita Srivastava; Shukla, K. K.; Achintya Singlal

    2011-01-01

    Image segmentation is an important research area in computer vision and many segmentation methods have been proposed. This paper attempts to provide a brief overview of elemental segmentation techniques based on boundary or regional approaches. It focuses mainly on the agent based image segmentation techniques

  14. Functional brain imaging; Funktionelle Hirnbildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Gizewski, E.R. [Medizinische Universitaet Innsbruck, Universitaetsklinik fuer Neuroradiologie, Innsbruck (Austria)

    2016-02-15

    Functional magnetic resonance imaging (fMRI) is a non-invasive method that has become one of the major tools for understanding human brain function and in recent years has also been developed for clinical applications. Changes in hemodynamic signals correspond to changes in neuronal activity with good spatial and temporal resolution in fMRI. Using high-field MR systems and increasingly dedicated statistics and postprocessing, activated brain areas can be detected and superimposed on anatomical images. Currently, fMRI data are often combined in multimodal imaging, e. g. with diffusion tensor imaging (DTI) sequences. This method is helping to further understand the physiology of cognitive brain processes and is also being used in a number of clinical applications. In addition to the blood oxygenation level-dependent (BOLD) signals, this article deals with the construction of fMRI investigations, selection of paradigms and evaluation in the clinical routine. Clinically, this method is mainly used in the planning of brain surgery, analyzing the location of brain tumors in relation to eloquent brain areas and the lateralization of language processing. As the BOLD signal is dependent on the strength of the magnetic field as well as other limitations, an overview of recent developments is given. Increases of magnetic field strength (7 T), available head coils and advances in MRI analytical methods have led to constant improvement in fMRI signals and experimental design. Especially the depiction of eloquent brain regions can be done easily and quickly and has become an essential part of presurgical planning. (orig.) [German] Mittlerweile ist die funktionelle MRT (fMRT) eine Methode, die nicht mehr nur in der neurowissenschaftlichen Routine verwendet wird. Die fMRT ermoeglicht die nichtinvasive Darstellung der Hirnaktivitaet in guter raeumlicher und zeitlicher Aufloesung unter Ausnutzung der Durchblutungsaenderung aufgrund der erhoehten Nervenzellaktivitaet. Unter

  15. Quantitative imaging of brain chemistry

    International Nuclear Information System (INIS)

    We can now measure how chemicals affect different regions of the human brain. One area involves the study of drugs - in-vivo neuro-pharmacology; another involves the study of toxic chemical effects - in vivo neurotoxicology. The authors approach is to label drugs with positron-emitting radioactive tracers - chiefly carbon-11 with a half-life of 20 minutes and fluorine-18 with a half-life of 110 minutes. The labeled drugs are injected intravenously and a positron emission tomography (PET) scanner is used to map out the distribution of the radioactivity within the brain from the moment of injection until about 90 minutes later. Mathematical models are used to calculate receptor concentrations and the affinity of the receptors for the injected radioactive tracer. By means of PET scanning, they look at cross sections or visual slices throughout the human brain, obtaining computer-generated images in any plane. The authors are investigating the functions of specific drugs or specific receptors, as well as looking at the metabolic activity in different parts of the brain as revealed in glucose metabolism. For example, the authors are studying opiate receptors in patients with a variety of conditions: those who suffer from chronic pain, those who are congenitally insensitive to pain and drug addicts. They are studying patients with schizophrenia, tardive dyskinesia, Parkinson's disease, Huntington's disease, depressed patients and sex-offenders. They are relating the state of the neurotransmitter/neuroreceptor systems to behavior. In essence, they believe that they can now examine in living human beings what relates the structure of the brain to the function of the mind that is chemistry

  16. Technetium-99m myocardial imaging agents

    International Nuclear Information System (INIS)

    A major focus of cardiovascular radiopharmaceutical research over the past decade has been the search for a Tc-99m agent that could replace Tl-201, the current agent of choice for myocardial perfusion imaging. Recent advances in the inorganic chemistry of technetium, and in the translation of this chemistry to radiopharmaceutical development, make it very likely that this search will soon be successfully completed

  17. Brain magnetic resonance imaging with contrast dependent on blood oxygenation

    International Nuclear Information System (INIS)

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity

  18. Brain magnetic resonance imaging with contrast dependent on blood oxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W. (AT and T Bell Laboratories, Murray Hill, NJ (United States))

    1990-12-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity.

  19. Development of (F-18)-Labeled Amyloid Imaging Agents for PET

    International Nuclear Information System (INIS)

    The applicant proposes to design and synthesize a series of fluorine-18-labeled radiopharmaceuticals to be used as amyloid imaging agents for positron emission tomography (PET). The investigators will conduct comprehensive iterative in vitro and in vivo studies based upon well defined acceptance criteria in order to identify lead agents suitable for human studies. The long term goals are to apply the selected radiotracers as potential diagnostic agents of Alzheimer's disease (AD), as surrogate markers of amyloid in the brain to determine the efficacy of anti-amyloid therapeutic drugs, and as tools to help address basic scientific questions regarding the progression of the neuropathology of AD, such as testing the 'amyloid cascade hypothesis' which holds that amyloid accumulation is the primary cause of AD.

  20. Development of [F-18]-Labeled Amyloid Imaging Agents for PET

    Energy Technology Data Exchange (ETDEWEB)

    Mathis, CA

    2007-05-09

    The applicant proposes to design and synthesize a series of fluorine-18-labeled radiopharmaceuticals to be used as amyloid imaging agents for positron emission tomography (PET). The investigators will conduct comprehensive iterative in vitro and in vivo studies based upon well defined acceptance criteria in order to identify lead agents suitable for human studies. The long term goals are to apply the selected radiotracers as potential diagnostic agents of Alzheimer's disease (AD), as surrogate markers of amyloid in the brain to determine the efficacy of anti-amyloid therapeutic drugs, and as tools to help address basic scientific questions regarding the progression of the neuropathology of AD, such as testing the "amyloid cascade hypothesis" which holds that amyloid accumulation is the primary cause of AD.

  1. Contrast agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    The origine of nuclear magnetic resonance signal is reminded and different ways for contrast enhancement in magnetic resonance imaging are presented, especially, modifications of tissus relaxation times. Investigations have focused on development of agents incorporating either paramagnetic ions or stable free radicals. Pharmacological and toxicological aspects are developed. The diagnostic potential of these substances is illustrated by the example of gadolinium complexes

  2. Development of Tc-99m Imaging Agents for Abeta Plaques

    International Nuclear Information System (INIS)

    Development of SPECT imaging agents based on Tc-99m targeting Aβ plaques is useful for diagnosis of Alzheimer's disease (AD). A stilbene derivative, [11C]SB-13, showing promise in detecting senile plaques present in AD patients has been reported previously. Based on the 4(prime)-amino-stilbene core structure we have added substituted groups through which a chelating group, N2S2, was conjugated. We report herein a series of Tc-99m labeled stilbene derivative conjugated with a TcO[N2S2] core. The syntheses of stilbenes containing a N2S2 chelating ligand are achieved by a scheme shown. Lipophilic 99mTc stilbene complexes were successfully prepared and purified through HPLC. Preliminary results of in vitro labeling of brain sections from transgenic mice showed very promising plaque labeling. These 99mTc stilbene derivatives are warranted for further evaluations as potential imaging agents targeting amyloid plaques.

  3. Imaging of cerebritis, encephalitis, and brain abscess.

    Science.gov (United States)

    Rath, Tanya J; Hughes, Marion; Arabi, Mohammad; Shah, Gaurang V

    2012-11-01

    Imaging plays an important role in the diagnosis and treatment of brain abscess, pyogenic infection, and encephalitis. The role of CT and MRI in the diagnosis and management of pyogenic brain abscess and its complications is reviewed. The imaging appearances of several common and select uncommon infectious encephalitides are reviewed. Common causes of encephalitis in immunocompromised patients, and their imaging appearances, are also discussed. When combined with CSF, serologic studies and patient history, imaging findings can suggest the cause of encephalitis. PMID:23122258

  4. Return Migration After Brain Drain: An Agent Based Simulation Approach

    CERN Document Server

    Biondo, A E; Rapisarda, A

    2012-01-01

    The Brain Drain phenomenon is particularly heterogeneous and is characterized by peculiar specifications. It influences the economic fundamentals of both the country of origin and the host one in terms of human capital accumulation. Here, the brain drain is considered from a microeconomic perspective: more precisely we focus on the individual rational decision to return, referring it to the social capital owned by the worker. The presented model, restricted to the case of academic personnel, compares utility levels to justify agent's migration conduct and to simulate several scenarios with a NetLogo agent based model. In particular, we developed a simulation framework based on two fundamental individual features, i.e. risk aversion and initial expectation, which characterize the dynamics of different agents according to the random evolution of their personal social networks. Our main result is that, according to the value of risk aversion and initial expectation, the probability of return migration depends on...

  5. Effects of anesthetic agents on brain blood oxygenation level revealed with ultra-high field MRI.

    Directory of Open Access Journals (Sweden)

    Luisa Ciobanu

    Full Text Available During general anesthesia it is crucial to control systemic hemodynamics and oxygenation levels. However, anesthetic agents can affect cerebral hemodynamics and metabolism in a drug-dependent manner, while systemic hemodynamics is stable. Brain-wide monitoring of this effect remains highly challenging. Because T(2*-weighted imaging at ultra-high magnetic field strengths benefits from a dramatic increase in contrast to noise ratio, we hypothesized that it could monitor anesthesia effects on brain blood oxygenation. We scanned rat brains at 7T and 17.2T under general anesthesia using different anesthetics (isoflurane, ketamine-xylazine, medetomidine. We showed that the brain/vessels contrast in T(2*-weighted images at 17.2T varied directly according to the applied pharmacological anesthetic agent, a phenomenon that was visible, but to a much smaller extent at 7T. This variation is in agreement with the mechanism of action of these agents. These data demonstrate that preclinical ultra-high field MRI can monitor the effects of a given drug on brain blood oxygenation level in the absence of systemic blood oxygenation changes and of any neural stimulation.

  6. Permeability imaging in pediatric brain tumors

    OpenAIRE

    Lam, Sandi; Lin, Yimo; Warnke, Peter C.

    2014-01-01

    While traditional computed tomography (CT) and magnetic resonance (MR) imaging illustrate the structural morphology of brain pathology, newer, dynamic imaging techniques are able to show the movement of contrast throughout the brain parenchyma and across the blood-brain barrier (BBB). These data, in combination with pharmacokinetic models, can be used to investigate BBB permeability, which has wide-ranging applications in the diagnosis and management of central nervous system (CNS) tumors in ...

  7. Nicotinic α4β2 receptor imaging agents

    International Nuclear Information System (INIS)

    The α4β2 nicotinic acetylcholine receptor (nAChR) has been implicated in various neurodegenerative diseases. Optimal positron emission tomography (PET) imaging agents are therefore highly desired for this receptor. We report here the development and initial evaluation of 2-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine (nifene). In vitro binding affinity of nifene in rat brain homogenate using 3H-cytisine exhibited a K i=0.50 nM for the α4β2 sites. The radiosynthesis of 2-18F-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine (18F-nifene) was accomplished in 2.5 h with an overall radiochemical yield of 40-50%, decay corrected. The specific activity was estimated to be approx. 37-185 GBq/μmol. In vitro autoradiography in rat brain slices indicated selective binding of 18F-nifene to anteroventral thalamic (AVT) nucleus, thalamus, subiculum, striata, cortex and other regions consistent with α4β2 receptor distribution. Rat cerebellum showed some binding, whereas regions in the hippocampus had the lowest binding. The highest ratio of >13 between AVT and cerebellum was measured for 18F-nifene in rat brain slices. The specific binding was reduced (>95%) by 300 μM nicotine in these brain regions. Positron emission tomography imaging study of 18F-nifene (130 MBq) in anesthetized rhesus monkey was carried out using an ECAT EXACT HR+ scanner. PET study showed selective maximal uptake in the regions of the anterior medial thalamus, ventro-lateral thalamus, lateral geniculate, cingulate gyrus, temporal cortex including the subiculum. The cerebellum in the monkeys showed lower binding than the other regions. Thalamus-to-cerebellum ratio peaked at 30-35 min postinjection to a value of 2.2 and subsequently reduced. The faster binding profile of 18F-nifene indicates promise as a PET imaging agent and thus needs further evaluation

  8. Radiopharmaceuticals for single-photon emission computed tomography brain imaging.

    Science.gov (United States)

    Kung, Hank F; Kung, Mei-Ping; Choi, Seok Rye

    2003-01-01

    In the past 10 years, significant progress on the development of new brain-imaging agents for single-photon emission computed tomography has been made. Most of the new radiopharmaceuticals are designed to bind specific neurotransmitter receptor or transporter sites in the central nervous system. Most of the site-specific brain radiopharmaceuticals are labeled with (123)I. Results from imaging of benzodiazepine (gamma-aminobutyric acid) receptors by [(123)I]iomazenil are useful in identifying epileptic seizure foci and changes of this receptor in psychiatric disorders. Imaging of dopamine D2/D3 receptors ([(123)I]iodobenzamide and [(123)I]epidepride) and transporters [(123)I]CIT (2-beta-carboxymethoxy-3-beta(4-iodophenyl)tropane) and [(123)I]FP-beta-CIT (N-propyl-2-beta-carboxymethoxy-3-beta(4-iodophenyl)-nortropane has proven to be a simple but powerful tool for differential diagnosis of Parkinson's and other neurodegenerative diseases. A (99m)Tc-labeled agent, [(99m)Tc]TRODAT (technetium, 2-[[2-[[[3-(4-chlorophenyl)-8-methyl-8-azabicyclo [3,2,1]oct-2-yl]methyl](2-mercaptoethyl)amino]ethyl]amino] ethanethiolato(3-)]oxo-[1R-(exo-exo)]-), for imaging dopamine transporters in the brain has been successfully applied in the diagnosis of Parkinson's disease. Despite the fact that (123)I radiopharmaceuticals have been widely used in Japan and in Europe, clinical application of (123)I-labeled brain radiopharmaceuticals in the United States is limited because of the difficulties in supplying such agents. Development of (99m)Tc agents will likely extend the application of site-specific brain radiopharmaceuticals for routine applications in aiding the diagnosis and monitoring treatments of various neurologic and psychiatric disorders. PMID:12605353

  9. Brain MR imaging in dietarily treated phenylketonuria

    Energy Technology Data Exchange (ETDEWEB)

    Breysem, L. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Smet, M.H. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Johannik, K. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Hecke, P. van [Dept. of Radiology, University Hospitals, Leuven (Belgium); Francois, B. [L. Willems Inst., Diepenbeek (Belgium); Wilms, G. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Bosmans, H. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Marchal, G. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Jaeken, J. [Dept. of Pediatrics, University Hospitals, Leuven (Belgium); Demaerel, P. [Dept. of Radiology, University Hospitals, Leuven (Belgium)

    1994-08-01

    Magnetic resonance imaging is the most efficient imaging modality to evaluate brain gray and white matter of patients with metabolic diseases. The main purpose of our study was to investigate the relation between brain MRI abnormalities and the phenylalanine (phe) and tyrosine (tyr) blood levels in 38 phenylketonuria (PKU) patients. Increased periventricular white matter intensity on T2-weighted brain images was the only pathologic finding in 24 patients. Brain MRI abnormalities were scored (4) and correlated with the individual mean phe and phe/tyr levels during 1 year preceding MR examination and with phe tolerance. The residual activity of phenylalanine hydroxylase was defined for each patient by an oral phe tolerance. The appearance of MRI abnormalities on brain T2-weighted images correlates with a threshold mean phe level (averaged over the year preceding the examination). (orig.)

  10. Clinical application of several tumor imaging agents

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Neoplasms is one of the main diseases for harming health.It is difficult to prevent the neoplasms because the factors of bringing out them are complex.To raise survival rate the early diagnosis of tumors is very important.Radionuclide imaging is useful to detect recurrent or residual diseaseand to identificate benign or malignant tumor.Several tumorimaging agents as following have clinical significance indiagnosing tumors.

  11. [Imaging of brain changes in chronic pain].

    Science.gov (United States)

    Vartiainen, Nuutti; Forss, Nina

    2014-01-01

    Modern methods of brain imaging have enabled objective measurements of functional and structural brain changes associated with chronic pain conditions. According to recent investigations, chronic pain is not only associated with abnormally strong or prolonged activity of regions processing acute pain, but also with activation of brain networks that are characteristic for each pain state, changes in cortical remodeling, as well as local reduction of grey matter in several regions of the brain. Brain changes associated with chronic pain facilitate the understanding of mechanisms of various chronic pain conditions. PMID:25211820

  12. A New F-18 Labeled PET Agent For Imaging Alzheimer's Plaques

    International Nuclear Information System (INIS)

    Amyloid plaques and neurofibrillary tangles are hallmarks of Alzheimer's disease (AD). Advances in development of imaging agents have focused on targeting amyloid plaques. Notable success has been the development of C-11 labeled PIB (Pittsburgh Compound) and a number of studies have demonstrated the utility of this agent. However, the short half life of C-11 (t1/2: 20 min), is a limitation, thus has prompted the development of F-18 labeled agents. Most of these agents are derivatives of amyloid binding dyes; Congo red and Thioflavin. Some of these agents are in clinical trials with encouraging results. We have been exploring new class of agents based on 8-hydroxy quinoline, a weak metal chelator, targeting elevated levels of metals in plaques. Iodine-123 labeled clioquinol showed affinity for amyloid plaques however, it had limited brain uptake and was not successful in imaging in intact animals and humans. We have been successful in synthesizing F-18 labeled 8-hydroxy quinoline. Small animal PET/CT imaging studies with this agent showed high (7-10% ID/g), rapid brain uptake and fast washout of the agent from normal mice brains and delayed washout from transgenic Alzheimer's mice. These promising results encouraged us in further evaluation of this class of compounds for imaging AD plaques.

  13. Image Processing Technique for Brain Abnormality Detection

    Directory of Open Access Journals (Sweden)

    Ashraf Anwar

    2013-02-01

    Full Text Available Medical imaging is expensive and very much sophisticated because of proprietary software and expert personalities. This paper introduces an inexpensive, user friendly general-purpose image processing tool and visualization program specifically designed in MATLAB to detect much of the brain disorders as early as possible. The application provides clinical and quantitative analysis of medical images. Minute structural difference of brain gradually results in major disorders such as schizophrenia, Epilepsy, inherited speech and language disorder, Alzheimer's dementia etc. Here the main focusing is given to diagnose the disease related to the brain and its psychic nature (Alzheimer’s disease.

  14. Elemental imaging of MRI contrast agents: benchmarking of LA-ICP-MS to MRI

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, J.A.T. [University of Sheffield, Centre for Analytical Sciences, Sheffield (United Kingdom); University of Sheffield, Department of Chemical and Biological Engineering, Sheffield (United Kingdom); Cox, A.G.; McLeod, C.W. [University of Sheffield, Centre for Analytical Sciences, Sheffield (United Kingdom); Bunch, J. [University of Birmingham, School of Chemistry, Birmingham (United Kingdom); Writer, M.J.; Hart, S.L. [UCL Institute of Child Health, Wolfson Centre for Gene Therapy of Childhood Disease, London (United Kingdom); Bienemann, A.; White, E. [University of Bristol, School of Clinical Sciences, Southmead Hospital, Bristol (United Kingdom); Bell, J. [Hammersmith Hospital, Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Imperial College London, London (United Kingdom)

    2012-06-15

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been used to map the spatial distribution of magnetic resonance imaging (MRI) contrast agents (Gd-based) in histological sections in order to explore synergies with in vivo MRI. Images from respective techniques are presented for two separate studies namely (1) convection enhanced delivery of a Gd nanocomplex (developmental therapeutic) into rat brain and (2) convection enhanced delivery, with co-infusion of Magnevist (commercial Gd contrast agent) and Carboplatin (chemotherapy drug), into pig brain. The LA technique was shown to be a powerful compliment to MRI not only in offering improved sensitivity, spatial resolution and signal quantitation but also in giving added value regarding the fate of administered agents (Gd and Pt agents). Furthermore simultaneous measurement of Fe enabled assignment of an anomalous contrast enhancement region in rat brain to haemorrhage at the infusion site. (orig.)

  15. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    Science.gov (United States)

    Sinharay, Sanhita; Pagel, Mark D.

    2016-06-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection.

  16. Imaging Brain Development: Benefiting from Individual Variability

    OpenAIRE

    Megha Sharda; Nicholas E.V. Foster; Hyde, Krista L.

    2015-01-01

    Human brain development is a complex process that evolves from early childhood to young adulthood. Major advances in brain imaging are increasingly being used to characterize the developing brain. These advances have further helped to elucidate the dynamic maturational processes that lead to the emergence of complex cognitive abilities in both typical and atypical development. However, conventional approaches involve categorical group comparison models and tend to disregard the role of widesp...

  17. A new versatile clearing method for brain imaging

    Science.gov (United States)

    Costantini, Irene; Di Giovanna, Antonino Paolo; Allegra Mascaro, Anna Letizia; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Sacconi, Leonardo; Pavone, Francesco S.

    2015-03-01

    Light scattering inside biological tissue is a limitation for large volumes imaging with microscopic resolution. Based on refractive index matching, different approaches have been developed to reduce scattering in fixed tissue. High refractive index organic solvents and water-based optical clearing agents, such as Sca/e, SeeDB and CUBIC have been used for optical clearing of entire mouse brain. Although these methods guarantee high transparency and preservation of the fluorescence, though present other non-negligible limitations. Tissue transformation by CLARITY allows high transparency, whole brain immunolabelling and structural and molecular preservation. This method however requires a highly expensive refractive index matching solution limiting practical applicability to large volumes. In this work we investigate the effectiveness of a water-soluble clearing agent, the 2,2'-thiodiethanol (TDE) to clear mouse and human brain. TDE does not quench the fluorescence signal, is compatible with immunostaining and does not introduce any deformation at sub-cellular level. The not viscous nature of the TDE make it a suitable agent to perform brain slicing during serial two-photon (STP) tomography. In fact, by improving penetration depth it reduces tissue slicing, decreasing the acquisition time and cutting artefacts. TDE can also be used as a refractive index medium for CLARITY. The potential of this method has been explored by imaging blocks of dysplastic human brain transformed with CLARITY, immunostained and cleared with the TDE. This clearing approach significantly expands the application of single and two-photon imaging, providing a new useful method for quantitative morphological analysis of structure in mouse and human brain.

  18. Comparison of two brain tumor-localizing MRI agent. GD-BOPTA and GD-DTPA. MRI and ICP study of rat brain tumor model

    International Nuclear Information System (INIS)

    In this study, we compared the behavior of Gd-BOPTA as a brain tumor selective contrast agent with Gd-DTPA in a common dose of 0.1 mmol/kg. We performed a MRI study using those two agent as contrast material, and we measured tissue Gd-concentrations by ICP-AES. As a result, Gd-BOPTA showed a better MRI enhancement in brain tumor. ICP showed significantly greater uptake of Gd-BOPTA in tumor samples, at all time course peaked at 5 minutes after administration, Gd being retained for a longer time in brain tumor till 2 hours, without rapid elimination as Gd-DTPA. We conclude that Gd-BOPTA is a new useful contrast material for MR imaging in brain tumor and an effective absorption agent for neutron capture therapy for further research. (author)

  19. Brain MR imaging in child abuse

    International Nuclear Information System (INIS)

    Intracranial injuries represent the most severe manifestation of child abuse. CT of the brain is the current standard for evaluation of these infants; however, MR imaging offers several potential advantages. MR imaging and CT were performed in ten infants who suffered intracranial trauma owing to child abuse. CT was slightly better at demonstrating subarachnoid hemorrhage and had definite advantages for defining fractures. MR imaging was superior in the demonstration of subacute extraaxial hemorrhage, deep brain injuries owing to shearing effects from shaking, and anoxic injuries. MR imaging has a definite complementary role in the evaluation of acute intracranial trauma in child abuse victims

  20. Detection of brain tumors using fluorescence diffuse optical tomography and nanoparticles as contrast agents

    Science.gov (United States)

    Fortin, Pierre-Yves; Genevois, Coralie; Koenig, Anne; Heinrich, Emilie; Texier, Isabelle; Couillaud, Franck

    2012-12-01

    Near-infrared fluorescence-enhanced diffuse optical tomography (fDOT) is used to localize tumors in mice using fluorescent nanoparticles as a blood pool contrast agent. The infrared dye DiR is loaded in the lipid core of nontargeted nanoparticles (DiR-lipidots) and injected systemically via the tail vein in mice bearing U87 tumors. Distribution and time-course of DiR-lipidots are followed using in vivo fluorescence reflectance imaging and reveal enhanced fluorescent signal within the subcutaneous tumors up to seven days due to the enhanced permeability and retention effect. Tumor growth into the brain is followed using bioluminescent imaging, and tumor localization is further determined by magnetic resonance imaging. The fDOT provides three-dimensional fluorescent maps that allow for consistent localization for both subcutaneous and brain tumors.

  1. Intraoperative imaging using intravascular contrast agent

    Science.gov (United States)

    Watson, Jeffrey R.; Martirosyan, Nikolay; Garland, Summer; Lemole, G. Michael; Romanowski, Marek

    2016-03-01

    Near-infrared (NIR) contrast agents are becoming more frequently studied in medical imaging due to their advantageous characteristics, most notably the ability to capture near-infrared signal across the tissue and the safety of the technique. This produces a need for imaging technology that can be specific for both the NIR dye and medical application. Indocyanine green (ICG) is currently the primary NIR dye used in neurosurgery. Here we report on using the augmented microscope we described previously for image guidance in a rat glioma resection. Luc-C6 cells were implanted in a rat in the left-frontal lobe and grown for 22 days. Surgical resection was performed by a neurosurgeon using augmented microscopy guidance with ICG contrast. Videos and images were acquired to evaluate image quality and resection margins. ICG accumulated in the tumor tissue due to enhanced permeation and retention from the compromised bloodbrain- barrier. The augmented microscope was capable of guiding the rat glioma resection and intraoperatively highlighted tumor tissue regions via ICG fluorescence under normal illumination of the surgical field.

  2. Consecutive acquisition of time-resolved contrast-enhanced MR angiography and perfusion MR imaging with added dose of gadolinium-based contrast agent Aids diagnosis of suspected brain metastasis

    International Nuclear Information System (INIS)

    Time-resolved contrast-enhanced magnetic resonance (MR) angiography (TCMRA) and perfusion MR imaging (PWI) have been used to assess the hemodynamics of brain tumors. We assessed the feasibility and value of consecutive performance of these techniques to evaluate suspected brain metastasis following supplementary injection of gadolinium-based contrast medium. In 69 patients with suspected brain metastasis, we obtained precontrast MR images followed by TCMRA and postcontrast T1-weighted images after administration of 0.1 mmol/kg gadoteridol. When findings were negative or equivocal, we injected an additional 0.1-mmol/kg dose of gadoteridol and obtained PWI and second postcontrast T1-weighted images. We used a 3-point scale to grade perfusion maps and TCMRA and assessed whether these techniques added information to conventional MR imaging in the differential diagnosis. We also evaluated whether the second contrast injection improved the conspicuity and/or number of enhancing lesions and used a 4-point scoring system to quantitatively analyze diagnostic yield of TCMRA and PWI. We could assess tumor hemodynamics on PWI maps and TCMRA images in all 69 patients. In 14 cases (20%), PWI and/or TCMRA added information to conventional MR findings. After second injection of contrast medium, lesion conspicuity improved in 58 of the 69 cases (84%), and the number of detected lesions increased in 11 of 31 cases diagnosed with metastatic disease (36%). Quantitative analysis revealed TCMRA and PWI provided significant additional diagnostic information (Kruskal-Wallis test, P<0.0001). Consecutive acquisition of TCMRA and PWI using supplementary contrast injection can facilitate differential diagnosis of suspected brain metastasis and improve the number and conspicuity of detected lesions. (author)

  3. Brain and nervous system (image)

    Science.gov (United States)

    The nervous system controls the many complicated and interconnected functions of the body and mind. Motor, sensory cognitive and autonomic function are all coordinated and driven by the brain and nerves. As people age, nerve ...

  4. Brain and nervous system (image)

    Science.gov (United States)

    ... complicated and interconnected functions of the body and mind. Motor, sensory cognitive and autonomic function are all coordinated and driven by the brain and nerves. As people age, nerve cells deteriorated ...

  5. Research progress of magnetic resonance imaging contrast agents

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Magnetic resonance imaging (MRI) is a clinical diagnostic modality, which has become popular in hospitals around the world. Approximately 30% of MRI exams include the use of contrast agents. The research progress of the paramagnetic resonance imaging contrast agents was described briefly. Three important approaches in the soluble paramagnetic resonance imaging contrast agents design including nonionic, tissue-specific and macromolecular contrast agents were investigated. In addition, the problems in the research and development in future were discussed.

  6. Brain water mapping with MR imaging

    International Nuclear Information System (INIS)

    This paper reports on a recently developed MR imaging technique to determine the spatial distribution of brain water to healthy volunteers. A noninvasive MR imaging technique to obtain absolute measurements of brain water has been developed and validated with phantom and animal studies. Patient confirmation was obtained from independent gravimetric measurements of brain tissue samples harvested by biopsy. This approach entails the production of accurate T1 maps from multiple inversion recovery images of a selected anatomic section and their subsequent conversion into an absolute water image by means of a previously determined calibration curve. Twenty healthy volunteers were studied and their water distribution was determined in a standard section. The following brain water values means and SD grams of water per gram of tissue) were obtained for selected brain regions; white matter, 68.9% ± 1.0; corpus callosum, 67.4% ± 1.1; thalamus, 75.3% ± 1.4; and caudate nucleus, 80.3% ± 1.4. MR imaging water mapping is a valid means of determining water content in a variety of brain tissues

  7. MRI Brain Image Segmentation based on Thresholding

    Directory of Open Access Journals (Sweden)

    G. Evelin Sujji, Y.V.S. Lakshmi, G. Wiselin Jiji

    2013-03-01

    Full Text Available Medical Image processing is one of the mostchallenging topics in research field. The mainobjective of image segmentation is to extract variousfeatures of the image that are used foranalysing,interpretation and understanding of images.Medical Resonance Image plays a major role inMedical diagnostics. Image processing in MRI ofbrain is highlyessential due to accurate detection ofthe type of brain abnormality which can reduce thechance of fatal result. This paper outlines anefficient image segmentation technique that candistinguish the pathological tissues such asedemaandtumourfrom thenormal tissues such as WhiteMatter(WM,GreyMatter(GM, andCerebrospinal Fluid(CSF. Thresholding is simplerand most commonly used techniques in imagesegmentation. This technique can be used to detectthe contour of thetumourin brain.

  8. NIH Conference. Brain imaging: aging and dementia

    International Nuclear Information System (INIS)

    The brain imaging techniques of positron emission tomography using [18F]-fluoro-2-deoxy-D-glucose, and computed tomography, together with neuropsychological tests, were used to examine overall brain function and anatomy in three study populations: healthy men at different ages, patients with presumptive Alzheimer's disease, and adults with Down's syndrome. Brain glucose use did not differ with age, whereas an age-related decrement in gray matter volume was found on computed tomographic assessment in healthy subjects. Memory deficits were found to precede significant reductions in brain glucose utilization in mild to moderate Alzheimer's dementia. Furthermore, differences between language and visuoconstructive impairments in patients with mild to moderate Alzheimer's disease were related to hemispheric asymmetry of brain metabolism. Brain glucose utilization was found to be significantly elevated in young adults with Down's syndrome, compared with controls. The importance of establishing strict criteria for selecting control subjects and patients is explained in relation to the findings

  9. Brain Magnetic Resonance Imaging in Tyrosinemia

    International Nuclear Information System (INIS)

    A 3.5-year-old girl with tyrosinemia is reported. A computed tomography scan of the abdomen revealed multiple hepatic nodules. Brain magnetic resonance imaging revealed bilateral high-signal changes confined to the globus pallidus on T2-weighted images. Globus pallidus lesions likely represented neuropathologic changes such as astocytosis, delayed myelination, and status spongiosus (myelin splitting and vacuolation)

  10. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    Science.gov (United States)

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…

  11. New developments in the imaging of brains

    International Nuclear Information System (INIS)

    A review is given for the imaging techniques of brains. Separate paragraphs are devoted to echography, computerized tomography and magnetic resonance imaging. Special attention is payed to new developments such as magnetic resonance spectroscopy used for metabolic processes. (R.B.) 11 refs

  12. Advantages in functional imaging of the brain

    Directory of Open Access Journals (Sweden)

    Walter Mier

    2015-05-01

    Full Text Available As neuronal pathologies cause only minor morphological alterations, molecular imaging techniques are a prerequisite for the study of diseases of the brain. The development of molecular probes that specifically bind biochemical markers and the advances of instrumentation have revolutionized the possibilities to gain insight into the human brain organization and beyond this visualize structure-function and brain-behavior relationships. The review describes the development and current applications of functional brain imaging techniques with a focus on applications in psychiatry. A historical overview of the development of functional imaging is followed by the portrayal of the principles and applications of positron emission tomography (PET and functional magnetic resonance imaging (fMRI, two key molecular imaging techniques that have revolutionized the ability to image molecular processes in the brain. In the juxtaposition of PET and fMRI in hybrid PET/MRI scanners enhances the significance of both modalities for research in neurology and psychiatry and might pave the way for a new area of personalized medicine.

  13. Nicotinic {alpha}4{beta}2 receptor imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Pichika, Rama [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States); Easwaramoorthy, Balasubramaniam [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States); Collins, Daphne [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States); Christian, Bradley T. [Department of Nuclear Medicine, Kettering Medical Center, Dayton, OH 45429 (United States); Shi, Bingzhi [Department of Nuclear Medicine, Kettering Medical Center, Dayton, OH 45429 (United States); Narayanan, Tanjore K. [Department of Nuclear Medicine, Kettering Medical Center, Dayton, OH 45429 (United States); Potkin, Steven G. [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States); Mukherjee, Jogeshwar [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States)]. E-mail: j.mukherjee@uci.edu

    2006-04-15

    The {alpha}4{beta}2 nicotinic acetylcholine receptor (nAChR) has been implicated in various neurodegenerative diseases. Optimal positron emission tomography (PET) imaging agents are therefore highly desired for this receptor. We report here the development and initial evaluation of 2-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine (nifene). In vitro binding affinity of nifene in rat brain homogenate using {sup 3}H-cytisine exhibited a K {sub i}=0.50 nM for the {alpha}4{beta}2 sites. The radiosynthesis of 2-{sup 18}F-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine ({sup 18}F-nifene) was accomplished in 2.5 h with an overall radiochemical yield of 40-50%, decay corrected. The specific activity was estimated to be approx. 37-185 GBq/{mu}mol. In vitro autoradiography in rat brain slices indicated selective binding of {sup 18}F-nifene to anteroventral thalamic (AVT) nucleus, thalamus, subiculum, striata, cortex and other regions consistent with {alpha}4{beta}2 receptor distribution. Rat cerebellum showed some binding, whereas regions in the hippocampus had the lowest binding. The highest ratio of >13 between AVT and cerebellum was measured for {sup 18}F-nifene in rat brain slices. The specific binding was reduced (>95%) by 300 {mu}M nicotine in these brain regions. Positron emission tomography imaging study of {sup 18}F-nifene (130 MBq) in anesthetized rhesus monkey was carried out using an ECAT EXACT HR+ scanner. PET study showed selective maximal uptake in the regions of the anterior medial thalamus, ventro-lateral thalamus, lateral geniculate, cingulate gyrus, temporal cortex including the subiculum. The cerebellum in the monkeys showed lower binding than the other regions. Thalamus-to-cerebellum ratio peaked at 30-35 min postinjection to a value of 2.2 and subsequently reduced. The faster binding profile of {sup 18}F-nifene indicates promise as a PET imaging agent and thus needs further evaluation.

  14. Magnetic resonance imaging of a brain abscess

    International Nuclear Information System (INIS)

    Magnetic resonance imaging (MRI) was performed on 13 patients with brain abscesses, and the alternation of MRI findings, as correlated with the progression of brain-abscess formation, was reviewed. In the cerebritis stage, spin-echo images showed a high intensity, and inversion-recovery images, a low intensity, due to inflammation and edema. The spin-echo images were very sensitive in delineating the brain edema; however, it was difficult to distinguish the inflammation from the surrounding edema. In the capsule stage, due to the accumulation of purulent material, the central necrotic area was demonstrated as a low-intensity area, while the capsule of the abscess was revealed as an iso-intensity ring on the inversion-recovery images. The central necrotic area also decreased in intensity on spin-echo images in the later period of this stage. With contrast enhancement (Gd-DTPA), the SR image showed the capsule as a high-intensity ring. MRI was found to be a useful method for estimating the process of the formation of a brain abscess. (author)

  15. Magnetic resonance imaging of a brain abscess

    Energy Technology Data Exchange (ETDEWEB)

    Oikawa, Akihiro; Kagawa, Mizuo; Yatoh, Seiji; Izawa, Masahiro; Ujiie, Hiroshi; Sakaguchi, Jun; Onda, Hideaki; Kitamura, Kohichi

    1988-06-01

    Magnetic resonance imaging (MRI) was performed on 13 patients with brain abscesses, and the alternation of MRI findings, as correlated with the progression of brain-abscess formation, was reviewed. In the cerebritis stage, spin-echo images showed a high intensity, and inversion-recovery images, a low intensity, due to inflammation and edema. The spin-echo images were very sensitive in delineating the brain edema; however, it was difficult to distinguish the inflammation from the surrounding edema. In the capsule stage, due to the accumulation of purulent material, the central necrotic area was demonstrated as a low-intensity area, while the capsule of the abscess was revealed as an iso-intensity ring on the inversion-recovery images. The central necrotic area also decreased in intensity on spin-echo images in the later period of this stage. With contrast enhancement (Gd-DTPA), the SR image showed the capsule as a high-intensity ring. MRI was found to be a useful method for estimating the process of the formation of a brain abscess.

  16. Brain imaging, genetics and emotion

    NARCIS (Netherlands)

    Aleman, Andre; Swart, Marte; van Rijn, Sophie

    2008-01-01

    This paper reviews the published evidence on genetically driven variation in neurotransmitter function and brain circuits involved in emotion. Several studies point to a role of the serotonin transporter promoter polymorphism in amygdala activation during emotion perception. We also discuss other po

  17. Proton MRS imaging in pediatric brain tumors.

    Science.gov (United States)

    Zarifi, Maria; Tzika, A Aria

    2016-06-01

    Magnetic resonance (MR) techniques offer a noninvasive, non-irradiating yet sensitive approach to diagnosing and monitoring pediatric brain tumors. Proton MR spectroscopy (MRS), as an adjunct to MRI, is being more widely applied to monitor the metabolic aspects of brain cancer. In vivo MRS biomarkers represent a promising advance and may influence treatment choice at both initial diagnosis and follow-up, given the inherent difficulties of sequential biopsies to monitor therapeutic response. When combined with anatomical or other types of imaging, MRS provides unique information regarding biochemistry in inoperable brain tumors and can complement neuropathological data, guide biopsies and enhance insight into therapeutic options. The combination of noninvasively acquired prognostic information and the high-resolution anatomical imaging provided by conventional MRI is expected to surpass molecular analysis and DNA microarray gene profiling, both of which, although promising, depend on invasive biopsy. This review focuses on recent data in the field of MRS in children with brain tumors. PMID:27233788

  18. Learning by Observation of Agent Software Images

    OpenAIRE

    Costa, Paulo Roberto; Botelho, Luís Miguel

    2014-01-01

    Learning by observation can be of key importance whenever agents sharing similar features want to learn from each other. This paper presents an agent architecture that enables software agents to learn by direct observation of the actions executed by expert agents while they are performing a task. This is possible because the proposed architecture displays information that is essential for observation, making it possible for software agents to observe each other. The agent architecture support...

  19. Recent advances in imaging of brain tumors

    OpenAIRE

    D A Sanghvi

    2009-01-01

    The recent advances in brain tumor imaging offer unique anatomical as well as pathophysiological information that provides new insights on brain tumors, directed at facilitating therapeutic decisions and providing information regarding prognosis. This information is presently utilized in clinical practice for initial diagnosis and noninvasive, preoperative grading of tumors, biopsy planning, surgery, and radiation portal planning, as well as, prognostication. The newer advances described in t...

  20. Study and application of imaging agents for infection and inflammation

    International Nuclear Information System (INIS)

    Situation of current study and clinic application of main imaging agents for infection and inflammation is summarized. These agents include radiolabelled small molecular compounds, leucocytes, large molecular proteins, liposomes, antibiotics, biotins and etc

  1. Formulations for Intranasal Delivery of Pharmacological Agents to Combat Brain Disease: A New Opportunity to Tackle GBM?

    Directory of Open Access Journals (Sweden)

    Stefaan W. van Gool

    2013-08-01

    Full Text Available Despite recent advances in tumor imaging and chemoradiotherapy, the median overall survival of patients diagnosed with glioblastoma multiforme does not exceed 15 months. Infiltration of glioma cells into the brain parenchyma, and the blood-brain barrier are important hurdles to further increase the efficacy of classic therapeutic tools. Local administration methods of therapeutic agents, such as convection enhanced delivery and intracerebral injections, are often associated with adverse events. The intranasal pathway has been proposed as a non-invasive alternative route to deliver therapeutics to the brain. This route will bypass the blood-brain barrier and limit systemic side effects. Upon presentation at the nasal cavity, pharmacological agents reach the brain via the olfactory and trigeminal nerves. Recently, formulations have been developed to further enhance this nose-to-brain transport, mainly with the use of nanoparticles. In this review, the focus will be on formulations of pharmacological agents, which increase the nasal permeation of hydrophilic agents to the brain, improve delivery at a constant and slow release rate, protect therapeutics from degradation along the pathway, increase mucoadhesion, and facilitate overall nasal transport. A mounting body of evidence is accumulating that the underexplored intranasal delivery route might represent a major breakthrough to combat glioblastoma.

  2. Generating text from functional brain images

    Directory of Open Access Journals (Sweden)

    Francisco ePereira

    2011-08-01

    Full Text Available Recent work has shown that it is possible to take brain images acquired during viewing of a scene and reconstruct an approximation of the scene from those images. Here we show that it is also possible to generate text about the mental content reflected in brain images. We began with images collected as participants read names of concrete items (e.g., "Apartment" while also seeing line drawings of the item named. We built a model of the mental semantic representation of concrete concepts from text data and learned to map aspects of such representation to patterns of activation in the corresponding brain image. In order to validate this mapping, without accessing information about the items viewed for left-out individual brain images, we were able to generate from each one a collection of semantically pertinent words (e.g., "door," "window" for "Apartment". Furthermore, we show that the ability to generate such words allows us to perform a classification task and thus validate our method quantitatively.

  3. MR imaging of regional late brain development

    International Nuclear Information System (INIS)

    This paper reports, to complement current knowledge on brain development, late regional brain maturation assessed with quantitative MR imaging. Axial and coronal head spin-echo (SE) images were obtained in 60 healthy individuals aged 5--56 years, with a double-echo, flow compensated imaging sequence obtained with a 1.5-T Magnetom spectroscopy and imaging system. T2-weighted images were calculated from the intensity differences in SE images at echo times (TEs) of 15 and 90 msec (TR = 2.5 second). The mean T2 values were determined at 16 sites in each cerebral hemisphere. T2 values of the six frontal subcortical white matter (FSCWM) sites and of the internal capsule (IC) were evaluated. Mean T2 values in the IC decreased until age 10 years, whereas this decrease continued in the FSCWM past age 15 years before reaching a plateau. Differential age-dependent patterns of mean T2 values emerged between the six FSCWM sites. The spread of T2 values varied at different sites independent of the age of the individuals. T2- values have previously been shown to reflect the status of brain development. The authors' data on the six FSCWM sites and the IC extend these findings to specific substructures of the brain. Interindividual variations and technical issues are responsible for the observed spread of data

  4. Four-view spect brain imaging detector

    International Nuclear Information System (INIS)

    This paper reports that with increasing use of single photon radiopharmaceuticals for brain imaging, there is a growing demand for efficient, economical SPECT brain imaging instrumentation. This new multiple view imaging detector design has the sensitivity advantages of an array of four discrete cameras, but functions essentially like a single camera head. Four separate flat crystals are surrounded with PMT's which perform as a single array for photon event detection. Unique windows on adjoining crystal edges are coupled to corner light pipe/PMT assemblies. Reduced edge packing range, and sharing of corner PMT's allows a compact assembly volume, even with 3 inch PMT's. The imaging volume is approximately a 23 centimeter cube, and the imaging electronics are nearly the same as used in a single 64 PMT gamma camera

  5. Advance of Molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy

    Directory of Open Access Journals (Sweden)

    Zhi-Yi Chen

    2014-01-01

    Full Text Available Molecular imaging is an emerging field that integrates advanced imaging technology with cellular and molecular biology. It can realize noninvasive and real time visualization, measurement of physiological or pathological process in the living organism at the cellular and molecular level, providing an effective method of information acquiring for diagnosis, therapy, and drug development and evaluating treatment of efficacy. Molecular imaging requires high resolution and high sensitive instruments and specific imaging agents that link the imaging signal with molecular event. Recently, the application of new emerging chemical technology and nanotechnology has stimulated the development of imaging agents. Nanoparticles modified with small molecule, peptide, antibody, and aptamer have been extensively applied for preclinical studies. Therapeutic drug or gene is incorporated into nanoparticles to construct multifunctional imaging agents which allow for theranostic applications. In this review, we will discuss the characteristics of molecular imaging, the novel imaging agent including targeted imaging agent and multifunctional imaging agent, as well as cite some examples of their application in molecular imaging and therapy.

  6. Content Based Image Retrieval with Mobile Agents and Steganography

    OpenAIRE

    Thampi, Sabu M.; Sekaran, K. Chandra

    2004-01-01

    In this paper we present an image retrieval system based on Gabor texture features, steganography, and mobile agents.. By employing the information hiding technique, the image attributes can be hidden in an image without degrading the image quality. Thus the image retrieval process becomes simple. Java based mobile agents manage the query phase of the system. Based on the simulation results, the proposed system not only shows the efficiency in hiding the attributes but also provides other adv...

  7. Brain 'imaging' in the Renaissance.

    Science.gov (United States)

    Paluzzi, Alessandro; Belli, Antonio; Bain, Peter; Viva, Laura

    2007-12-01

    During the Renaissance, a period of 'rebirth' for humanities and science, new knowledge and speculation began to emerge about the function of the human body, replacing ancient religious and philosophical dogma. The brain must have been a fascinating mystery to a Renaissance artist, but some speculation existed at that time on the function of its parts. Here we show how revived interest in anatomy and life sciences may have influenced the figurative work of Italian and Flemish masters, such as Rafael, Michelangelo and David. We present a historical perspective on the artists and the period in which they lived, their fascination for human anatomy and its symbolic use in their art. Prior to the 16th century, knowledge of the brain was limited and influenced in a dogmatic way by the teachings of Galen(1) who, as we now know, conducted his anatomical studies not on humans but on animals.(2) Nemesus, Bishop of Emesa, in around the year 400 was one of the first to attribute mental faculties to the brain, specifically to the ventricles. He identified two anterior (lateral) ventricles, to which he assigned perception, a middle ventricle responsible for cognition and a posterior ventricle for memory.(2,3) After a long period of stasis in the Middle Ages, Renaissance scholars realized the importance of making direct observations on dissected cadavers. Between 1504 and 1507, Leonardo da Vinci conducted experiments to reveal the anatomy of the ventricular system in the brain. He injected hot wax through a tube thrust into the ventricular cavities of an ox and then scraped the overlying brain off, thus obtaining, in a simple but ingenious way, an accurate cast of the ventricles.(2,4) Leonardo shared the belief promoted by scholarly Christians that the ventricles were the abode of rational soul. We have several examples of hidden symbolism in Renaissance paintings, but the influence of phrenology and this rudimentary knowledge of neuroanatomy on artists of that period is under

  8. Functional brain imaging - baric and clinical questions

    International Nuclear Information System (INIS)

    The advancing biological knowledge of disease processes plays a central part in the progress of modern psychiatry. An essential contribution comes from the functional and structural brain imaging techniques (CT, MRI, SPECT, PET). Their application is important for biological oriented research in psychiatry and there is also a growing relevance in clinical aspects. This development is taken into account by recent diagnostic classification systems in psychiatry. The capabilities and limitations of functional brain imaging in the context of research and clinic will be presented and discussed by examples and own investigations. (orig.)

  9. In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging

    OpenAIRE

    Barrio, Jorge R.; Small, Gary W.; Wong, Koon-Pong; Huang, Sung-Cheng; Liu, Jie; Merrill, David A.; Giza, Christopher C.; Fitzsimmons, Robert P.; Omalu, Bennet; Bailes, Julian; Kepe, Vladimir

    2015-01-01

    Mild traumatic brain injuries are frequent events in the general population and are associated with a severe neurodegenerative disease, chronic traumatic encephalopathy (CTE). This disease is characterized by abnormal accumulation of protein aggregates, primarily tau proteins, which accumulate in brain areas responsible for mood, fear, stress, and cognition. There is no definitive clinical diagnosis of CTE at the present time, and this new work shows how a tau-sensitive brain imaging agent, [...

  10. Image reconstruction for brain CT slices

    Institute of Scientific and Technical Information of China (English)

    吴建明; 施鹏飞

    2004-01-01

    Different modalities in biomedical images, like CT, MRI and PET scanners, provide detailed cross-sectional views of human anatomy. This paper introduces three-dimensional brain reconstruction based on CT slices. It contains filtering, fuzzy segmentation, matching method of contours, cell array structure and image animation. Experimental results have shown its validity. The innovation is matching method of contours and fuzzy segmentation algorithm of CT slices.

  11. Brain activation study during urine withhold by 99Tcm-HMPAO SPECT brain imaging

    International Nuclear Information System (INIS)

    Objective: Lose of urinary continence control is related with the pathological process of many brain damages. The aim of this study was to identify cerebral activation areas during withholding urine in healthy subjects with cerebral perfusion agent [99Tcm-hexamethylpropylene amine oxime (HMPAO)]. Methods: Fifteen right-handed healthy male volunteers (age ranged 24 to 45 years old) was recruited. All had two brain perfusion SPECT scans (15 volunteers with 30 scans). One was at resting state with empty bladder and the other was at urine withholding state with full bladder. The images were analyzed by neurological statistical image analysis software (NEUROSTAT) and was displayed on Z-score images at a significance threshold of P<0.05 with correction for multiple comparisons. Results: As compared with resting, the urine withholding state showed a significant increase cerebral perfusion in bilateral inferior frontal gyri, the right superior and middle temporal gyri, with the most significant in the right inferior frontal gyms. Conclusions: Although the control of urinary continence in healthy men was associated with bilateral inferior frontal gyri and the right superior and middle temporal gyri, the results showed that the right inferior frontal gyms might also be important. Moreover, the combination of brain perfusion SPECT and NEUROSTAT was a rather easy method for further understanding the mechanism of urinary control in brain and could be popularized as a research tool for clinical use. (authors)

  12. Imaging biomarkers in primary brain tumours

    Energy Technology Data Exchange (ETDEWEB)

    Lopci, Egesta; Chiti, Arturo [Humanitas Clinical and Research Center, Nuclear Medicine Department, Rozzano, MI (Italy); Franzese, Ciro; Navarria, Pierina; Scorsetti, Marta [Humanitas Clinical and Research Center, Radiosurgery and Radiotherapy, Rozzano, MI (Italy); Grimaldi, Marco [Humanitas Clinical and Research Center, Radiology, Rozzano, MI (Italy); Zucali, Paolo Andrea; Simonelli, Matteo [Humanitas Clinical and Research Center, Medical Oncology, Rozzano, MI (Italy); Bello, Lorenzo [Humanitas Clinical and Research Center, Neurosurgery, Rozzano, MI (Italy)

    2015-04-01

    We are getting used to referring to instrumentally detectable biological features in medical language as ''imaging biomarkers''. These two terms combined reflect the evolution of medical imaging during recent decades, and conceptually comprise the principle of noninvasive detection of internal processes that can become targets for supplementary therapeutic strategies. These targets in oncology include those biological pathways that are associated with several tumour features including independence from growth and growth-inhibitory signals, avoidance of apoptosis and immune system control, unlimited potential for replication, self-sufficiency in vascular supply and neoangiogenesis, acquired tissue invasiveness and metastatic diffusion. Concerning brain tumours, there have been major improvements in neurosurgical techniques and radiotherapy planning, and developments of novel target drugs, thus increasing the need for reproducible, noninvasive, quantitative imaging biomarkers. However, in this context, conventional radiological criteria may be inappropriate to determine the best therapeutic option and subsequently to assess response to therapy. Integration of molecular imaging for the evaluation of brain tumours has for this reason become necessary, and an important role in this setting is played by imaging biomarkers in PET and MRI. In the current review, we describe most relevant techniques and biomarkers used for imaging primary brain tumours in clinical practice, and discuss potential future developments from the experimental context. (orig.)

  13. Imaging biomarkers in primary brain tumours

    International Nuclear Information System (INIS)

    We are getting used to referring to instrumentally detectable biological features in medical language as ''imaging biomarkers''. These two terms combined reflect the evolution of medical imaging during recent decades, and conceptually comprise the principle of noninvasive detection of internal processes that can become targets for supplementary therapeutic strategies. These targets in oncology include those biological pathways that are associated with several tumour features including independence from growth and growth-inhibitory signals, avoidance of apoptosis and immune system control, unlimited potential for replication, self-sufficiency in vascular supply and neoangiogenesis, acquired tissue invasiveness and metastatic diffusion. Concerning brain tumours, there have been major improvements in neurosurgical techniques and radiotherapy planning, and developments of novel target drugs, thus increasing the need for reproducible, noninvasive, quantitative imaging biomarkers. However, in this context, conventional radiological criteria may be inappropriate to determine the best therapeutic option and subsequently to assess response to therapy. Integration of molecular imaging for the evaluation of brain tumours has for this reason become necessary, and an important role in this setting is played by imaging biomarkers in PET and MRI. In the current review, we describe most relevant techniques and biomarkers used for imaging primary brain tumours in clinical practice, and discuss potential future developments from the experimental context. (orig.)

  14. Recent advances in imaging of brain tumors

    Directory of Open Access Journals (Sweden)

    D A Sanghvi

    2009-01-01

    The next decade will witness further sophistication of these techniques, with data available from larger studies. It is expected that imaging will continue to provide new and unique insights in neuro-oncology, which should hopefully contribute to the better management of patients with brain tumors.

  15. MR brain scan tissues and structures segmentation: local cooperative Markovian agents and Bayesian formulation

    International Nuclear Information System (INIS)

    Accurate magnetic resonance brain scan segmentation is critical in a number of clinical and neuroscience applications. This task is challenging due to artifacts, low contrast between tissues and inter-individual variability that inhibit the introduction of a priori knowledge. In this thesis, we propose a new MR brain scan segmentation approach. Unique features of this approach include (1) the coupling of tissue segmentation, structure segmentation and prior knowledge construction, and (2) the consideration of local image properties. Locality is modeled through a multi-agent framework: agents are distributed into the volume and perform a local Markovian segmentation. As an initial approach (LOCUS, Local Cooperative Unified Segmentation), intuitive cooperation and coupling mechanisms are proposed to ensure the consistency of local models. Structures are segmented via the introduction of spatial localization constraints based on fuzzy spatial relations between structures. In a second approach, (LOCUS-B, LOCUS in a Bayesian framework) we consider the introduction of a statistical atlas to describe structures. The problem is reformulated in a Bayesian framework, allowing a statistical formalization of coupling and cooperation. Tissue segmentation, local model regularization, structure segmentation and local affine atlas registration are then coupled in an EM framework and mutually improve. The evaluation on simulated and real images shows good results, and in particular, a robustness to non-uniformity and noise with low computational cost. Local distributed and cooperative MRF models then appear as a powerful and promising approach for medical image segmentation. (author)

  16. Imaging assessment of traumatic brain injury.

    Science.gov (United States)

    Currie, Stuart; Saleem, Nayyar; Straiton, John A; Macmullen-Price, Jeremy; Warren, Daniel J; Craven, Ian J

    2016-01-01

    Traumatic brain injury (TBI) constitutes injury that occurs to the brain as a result of trauma. It should be appreciated as a heterogeneous, dynamic pathophysiological process that starts from the moment of impact and continues over time with sequelae potentially seen many years after the initial event. Primary traumatic brain lesions that may occur at the moment of impact include contusions, haematomas, parenchymal fractures and diffuse axonal injury. The presence of extra-axial intracranial lesions such as epidural and subdural haematomas and subarachnoid haemorrhage must be anticipated as they may contribute greatly to secondary brain insult by provoking brain herniation syndromes, cranial nerve deficits, oedema and ischaemia and infarction. Imaging is fundamental to the management of patients with TBI. CT remains the imaging modality of choice for initial assessment due to its ease of access, rapid acquisition and for its sensitivity for detection of acute haemorrhagic lesions for surgical intervention. MRI is typically reserved for the detection of lesions that may explain clinical symptoms that remain unresolved despite initial CT. This is especially apparent in the setting of diffuse axonal injury, which is poorly discerned on CT. Use of particular MRI sequences may increase the sensitivity of detecting such lesions: diffusion-weighted imaging defining acute infarction, susceptibility-weighted imaging affording exquisite data on microhaemorrhage. Additional advanced MRI techniques such as diffusion tensor imaging and functional MRI may provide important information regarding coexistent structural and functional brain damage. Gaining robust prognostic information for patients following TBI remains a challenge. Advanced MRI sequences are showing potential for biomarkers of disease, but this largely remains at the research level. Various global collaborative research groups have been established in an effort to combine imaging data with clinical and

  17. MR imaging of acute hemorrhagic brain infarction

    International Nuclear Information System (INIS)

    Six patients with acute hemorrhagic brain infarct were imaged using spin-echo (SE) pulse sequences on a 1.5 Tesla MR scanner. Including two patients with repeated MR imaging, a total of eight examinations, all performed within 15 days after stroke, were analyzed retrospectively. Four patients revealed massive hemorrhages in the basal ganglia or cerebellum and three cases demonstrated multiple linear hemorrhages in the cerebral cortex. On T1-weighted images, hemorrhages were either mildly or definitely hyperintense relative to gray matter, while varied from mildly hypointense to hyperintense on T2-weighted images. T1-weighted images were superior to T2-weighted images in detection of hemorrhgage. CT failed to detect hemorrhage in two of five cases: indicative of MR superiority to CT in the diagnosis of acute hemorrhagic infarcts. (author)

  18. MR imaging of acute hemorrhagic brain infarction

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, Akira; Ohnari, Norihiro; Ohno, Masato (Kyushu Rosai Hospital, Fukuoka (Japan))

    1989-11-01

    Six patients with acute hemorrhagic brain infarct were imaged using spin-echo (SE) pulse sequences on a 1.5 Tesla MR scanner. Including two patients with repeated MR imaging, a total of eight examinations, all performed within 15 days after stroke, were analyzed retrospectively. Four patients revealed massive hemorrhages in the basal ganglia or cerebellum and three cases demonstrated multiple linear hemorrhages in the cerebral cortex. On T1-weighted images, hemorrhages were either mildly or definitely hyperintense relative to gray matter, while varied from mildly hypointense to hyperintense on T2-weighted images. T1-weighted images were superior to T2-weighted images in detection of hemorrhgage. CT failed to detect hemorrhage in two of five cases: indicative of MR superiority to CT in the diagnosis of acute hemorrhagic infarcts. (author).

  19. Three-dimensional reconstruction of functional brain images

    International Nuclear Information System (INIS)

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  20. Three-dimensional reconstruction of functional brain images

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao [Kyoto Univ. (Japan)

    1999-08-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  1. Improved tumor identification using dual tracer molecular imaging in fluorescence guided brain surgery

    Science.gov (United States)

    Xu, Xiaochun; Torres, Veronica; Straus, David; Brey, Eric M.; Byrne, Richard W.; Tichauer, Kenneth M.

    2015-03-01

    Brain tumors represent a leading cause of cancer death for people under the age of 40 and the probability complete surgical resection of brain tumors remains low owing to the invasive nature of these tumors and the consequences of damaging healthy brain tissue. Molecular imaging is an emerging approach that has the potential to improve the ability for surgeons to correctly discriminate between healthy and cancerous tissue; however, conventional molecular imaging approaches in brain suffer from significant background signal in healthy tissue or an inability target more invasive sections of the tumor. This work presents initial studies investigating the ability of novel dual-tracer molecular imaging strategies to be used to overcome the major limitations of conventional "single-tracer" molecular imaging. The approach is evaluated in simulations and in an in vivo mice study with animals inoculated orthotopically using fluorescent human glioma cells. An epidermal growth factor receptor (EGFR) targeted Affibody-fluorescent marker was employed as a targeted imaging agent, and the suitability of various FDA approved untargeted fluorescent tracers (e.g. fluorescein & indocyanine green) were evaluated in terms of their ability to account for nonspecific uptake and retention of the targeted imaging agent. Signal-to-background ratio was used to measure and compare the amount of reporter in the tissue between targeted and untargeted tracer. The initial findings suggest that FDA-approved fluorescent imaging agents are ill-suited to act as untargeted imaging agents for dual-tracer fluorescent guided brain surgery as they suffer from poor delivery to the healthy brain tissue and therefore cannot be used to identify nonspecific vs. specific uptake of the targeted imaging agent where current surgery is most limited.

  2. Fast optical imaging of human brain function

    Directory of Open Access Journals (Sweden)

    Gabriele Gratton

    2010-06-01

    Full Text Available Great advancements in brain imaging during the last few decades have opened a large number of new possibilities for neuroscientists. The most dominant methodologies (electrophysiological and magnetic resonance-based methods emphasize temporal and spatial information, respectively. However, theorizing about brain function has recently emphasized the importance of rapid (within 100 ms or so interactions between different elements of complex neuronal networks. Fast optical imaging, and in particular the event-related optical signal (EROS, a technology that has emerged over the last 15 years may provide descriptions of localized (to sub-cm level brain activity with a temporal resolution of less than 100 ms. The main limitations of EROS are its limited penetration, which allows us to image cortical structures not deeper than 3 cm from the surface of the head, and its low signal-to-noise ratio. Advantages include the fact that EROS is compatible with most other imaging methods, including electrophysiological, magnetic resonance, and trans-cranial magnetic stimulation techniques, with which can be recorded concurrently. In this paper we present a summary of the research that has been conducted so far on fast optical imaging, including evidence for the possibility of recording neuronal signals with this method, the properties of the signals, and various examples of applications to the study of human cognitive neuroscience. Extant issues, controversies, and possible future developments are also discussed.

  3. Imaging visual function of the human brain

    International Nuclear Information System (INIS)

    Imaging of human brain structure and activity with particular reference to visual function is reviewed along with methods of obtaining the data including computed tomographic (CT) scan, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET). The literature is reviewed and the potential for a new understanding of brain visual function is discussed. PET is reviewed from basic physical principles to the most recent visual brain findings with oxygen-15. It is shown that there is a potential for submillimeter localization of visual functions with sequentially different visual stimuli designed for the temporal separation of the responses. Single photon emission computed tomography (SPECT), a less expensive substitute for PET, is also discussed. MRS is covered from basic physical principles to the current state of the art of in vivo biochemical analysis. Future possible clinical applications are discussed. Improved understanding of the functional neural organization of vision and brain will open a window to maps and circuits of human brain function.119 references

  4. Thresholding magnetic resonance images of human brain

    Institute of Scientific and Technical Information of China (English)

    Qing-mao HU; Wieslaw L NOWINSKI

    2005-01-01

    In this paper, methods are proposed and validated to determine low and high thresholds to segment out gray matter and white matter for MR images of different pulse sequences of human brain. First, a two-dimensional reference image is determined to represent the intensity characteristics of the original three-dimensional data. Then a region of interest of the reference image is determined where brain tissues are present. The non-supervised fuzzy c-means clustering is employed to determine: the threshold for obtaining head mask, the low threshold for T2-weighted and PD-weighted images, and the high threshold for T1-weighted, SPGR and FLAIR images. Supervised range-constrained thresholding is employed to determine the low threshold for T1-weighted, SPGR and FLAIR images. Thresholding based on pairs of boundary pixels is proposed to determine the high threshold for T2- and PD-weighted images. Quantification against public data sets with various noise and inhomogeneity levels shows that the proposed methods can yield segmentation robust to noise and intensity inhomogeneity. Qualitatively the proposed methods work well with real clinical data.

  5. MR imaging of the fetal brain

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, Orit A. [University of California, San Francisco, Department of Radiology, Neuroradiology Section, San Francisco, CA (United States)

    2010-01-15

    Fetal MRI is clinically performed to evaluate the brain in cases where an abnormality is detected by prenatal sonography. These most commonly include ventriculomegaly, abnormalities of the corpus callosum, and abnormalities of the posterior fossa. Fetal MRI is also increasingly performed to evaluate fetuses who have normal brain findings on prenatal sonogram but who are at increased risk for neurodevelopmental abnormalities, such as complicated monochorionic twin pregnancies. This paper will briefly discuss the common clinical conditions imaged by fetal MRI as well as recent advances in fetal MRI research. (orig.)

  6. Intelligent Design of Nano-Scale Molecular Imaging Agents

    Directory of Open Access Journals (Sweden)

    Takeaki Ozawa

    2012-12-01

    Full Text Available Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs, biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents.

  7. System a amino acid transport-targeted brain and systemic tumor PET imaging agents 2-amino-3-[18 F]fluoro-2-methylpropanoic acid and 3-[18 F]fluoro-2-methyl-2-(methylamino)propanoic acid

    International Nuclear Information System (INIS)

    Introduction: Amino acid based radiotracers target tumor cells through increased uptake by membrane-associated amino acid transport (AAT) systems. In the present study, four structurally related non-natural 18 F-labeled amino acids, (R)- and (S)-[18 F]FAMP 1 and (R)- and (S)-[18 F]MeFAMP 2 have been prepared and evaluated in vitro and in vivo for their potential utility in brain and systemic tumor imaging based upon primarily system A transport with positron emission tomography (PET). Methods: The transport of enantiomers of [18 F]FAMP 1 and [18 F]MeFAMP 2 was measured through in vitro uptake assays in human derived cancer cells including A549 (lung), DU145 (prostate), SKOV3 (ovary), MDA MB468 (breast) and U87 (brain) in the presence and absence of amino acid transporter inhibitors. The in vivo biodistribution of these tracers was evaluated using tumor mice xenografts at 15, 30, 60 and 120 min post injection. Results: All four tracers showed moderate to high levels of uptake (1–9%ID/5 × 105 cells) by the cancer cell lines tested in vitro. AAT cell inhibition assays demonstrated that (R)-[18 F]1 and (S)-[18 F]1 entered these tumor cells via mixed AATs, likely but not limited to system A and system L. In contrast, (R)-[18 F]2 and (S)-[18 F]2 showed high selectivity for system A AAT. Similar to the results of in vitro cell studies, the tumor uptake of all four tracers was good to high and persisted over the 2 hours time course of in vivo studies. The accumulation of these tracers was higher in tumor than most normal tissues including blood, brain, muscle, bone, heart, and lung, and the tracers with the highest in vitro selectivity for system A AAT generally demonstrated the best tumor imaging properties. Higher uptake of these tracers was observed in the pancreas, kidney and spleen compared to tumors. Conclusions: These preclinical studies demonstrate good imaging properties in a wide range of tumors for all four amino acids evaluated with (R)-[18 F]2 having the

  8. Ultrasound Imaging Beyond the Vasculature with New Generation Contrast Agents

    OpenAIRE

    Perera, Reshani H.; Hernandez, Christopher; Zhou, Haoyan; Kota, Pavan; Burke, Alan; Exner, Agata A.

    2015-01-01

    Current commercially available ultrasound contrast agents are gas-filled, lipid- or protein-stabilized microbubbles larger than 1 μm in diameter. Because the signal generated by these agents is highly dependent on their size, small yet highly echogenic particles have been historically difficult to produce. This has limited the molecular imaging applications of ultrasound to the blood pool. In the area of cancer imaging, microbubble applications have been constrained to imaging molecular signa...

  9. Advances in brain imaging of neuropathic pain

    Institute of Scientific and Technical Information of China (English)

    CHEN Fu-yong; TAO Wei; LI Yong-jie

    2008-01-01

    Objective To review the literature on the use of brain imaging,including functional magnetic resonance imaging(fMRI), positron emission tomography(PET),magnetic resonance spectroscopy(MRS)and voxel-based morphometry(VBM)in investigation of the activity in diverse brain regions that creates and modulates chronic neuropathic pain. Data sources English literatures from January 1,2000 to July 31,2007 that examined human brain activity in chronic neuropathic pain were accessed through MEDLINE/CD ROM,using PET,fMRI,VBM,MRS and receptor binding. Study selection Published articles about the application of fMRI,PET,VBM,MRS and chronic neuropathic pain were selected. Data extraction Data were mainly extracted from 40 representative articles as the research basis. Results The PET studies suggested that spontaneous neuropathic pain is associated with changes in thalamic activity. Both PET and fMRI have been used to investigate the substrate of allodynia.The VBM demonstrated that brain structural changes are involved in chronic neuropathic pain,which is not seen in a matched control group.However,the results obtained had a large variety,which may be due to different pain etiology,pain distribution,lesion tomography,symptoms and stimulation procedures. Conclusions Application of the techniques of brain imaging plays a very important role in the study of structural and functional reorganization In patients with neuropathic pain.However,a unique"pain matrix" has not been defined.Future studies should be conducted using a prospective longitudinal research design,which would guarantee the control for many confounding factors.

  10. Magnetic resonance imaging in diffuse brain injury

    International Nuclear Information System (INIS)

    Forty cases diagnosed as diffuse brain injury (DBI) were studied by magnetic resonance imaging (MRI) performed within 3 days after injury. These cases were divided into two groups, which were the concussion group and diffuse axonal injury (DAI) group established by Gennarelli. There were no findings on computerized tomography (CT) in the concussion group except for two cases which had a brain edema or subarachnoid hemorrhage. But on MRI, high intensity areas on T2 weighted imaging were demonstrated in the cerebral white matter in this group. Many lesions in this group were thought to be edemas of the cerebral white matter, because of the fact that on serial MRI, they were isointense. In mild types of DAI, the lesions on MRI were located only in the cerebral white matter, whereas, in the severe types of DAI, lesions were located in the basal ganglia, the corpus callosum, the dorsal part of the brain stem as well as in the cerebral white matter. As for CT findings, parenchymal lesions were not visualized especially in mild DAI. Our results suggested that the lesions in cerebral concussion were edemas in cerebral white matter. In mild DAI they were non-hemorrhagic contusion; and in severe DAI they were hemorrhagic contusions in the cerebral white matter, the basal ganglia, the corpus callosum or the dorsal part of the brain stem. (author)

  11. Magnetic resonance imaging in diffuse brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Hiroyuki; Yasuda, Kazuhiro; Mashiko, Kunihiro; Henmi, Hiroshi; Otsuka, Toshibumi; Kobayashi, Shiro; Nakazawa, Shozo (Nippon Medical School, Tokyo (Japan))

    1992-01-01

    Forty cases diagnosed as diffuse brain injury (DBI) were studied by magnetic resonance imaging (MRI) performed within 3 days after injury. These cases were divided into two groups, which were the concussion group and diffuse axonal injury (DAI) group established by Gennarelli. There were no findings on computerized tomography (CT) in the concussion group except for two cases which had a brain edema or subarachnoid hemorrhage. But on MRI, high intensity areas on T2 weighted imaging were demonstrated in the cerebral white matter in this group. Many lesions in this group were thought to be edemas of the cerebral white matter, because of the fact that on serial MRI, they were isointense. In mild types of DAI, the lesions on MRI were located only in the cerebral white matter, whereas, in the severe types of DAI, lesions were located in the basal ganglia, the corpus callosum, the dorsal part of the brain stem as well as in the cerebral white matter. As for CT findings, parenchymal lesions were not visualized especially in mild DAI. Our results suggested that the lesions in cerebral concussion were edemas in cerebral white matter. In mild DAI they were non-hemorrhagic contusion; and in severe DAI they were hemorrhagic contusions in the cerebral white matter, the basal ganglia, the corpus callosum or the dorsal part of the brain stem. (author).

  12. Brain CT image and handedness of schizophrenia

    International Nuclear Information System (INIS)

    Brain CT images were reviewed of 98 schizophrenic patients and 90 healthy persons in relation to handedness and aging. CT images were further reconstructed to examine morphologically subtle changes in each region. Schizophrenic patients had progressive brain atrophy and dilated lateral ventricles, especially on the left side and in the posterior part of the lateral ventricle. These findings were more marked in left-handed than in right-handed schizophrenic patients. According to age groups, there were significant differences between schizophrenic and normal persons over the age of 40. The incidence of left handedness was significantly higher in schizophrenic patients in their fourties than the age-matched normal persons (31.4% vs 15.1%). Morphological abnormality and laterality might be due to the same pathologic consequences. (N.K.)

  13. Optimized Discretization Schemes For Brain Images

    Directory of Open Access Journals (Sweden)

    USHA RANI.N,

    2011-02-01

    Full Text Available In medical image processing active contour method is the important technique in segmenting human organs. Geometric deformable curves known as levelsets are widely used in segmenting medical images. In this modeling , evolution of the curve is described by the basic lagrange pde expressed as a function of space and time. This pde can be solved either using continuous functions or discrete numerical methods.This paper deals with the application of numerical methods like finite diffefence and TVd-RK methods for brain scans. The stability and accuracy of these methods are also discussed. This paper also deals with the more accurate higher order non-linear interpolation techniques like ENO and WENO in reconstructing the brain scans like CT,MRI,PET and SPECT is considered.

  14. Imaging Brain Mechanisms in Chronic Visceral Pain

    OpenAIRE

    Mayer, Emeran A.; Gupta, Arpana; Kilpatrick, Lisa A.; Hong, Jui-Yang

    2015-01-01

    Chronic visceral pain syndromes are important clinical problems with largely unmet medical needs. Based on the common overlap with other chronic disorders of visceral or somatic pain, mood and affect, and their responsiveness to centrally targeted treatments, an important role of central nervous system in their pathophysiology is likely. A growing number of brain imaging studies in irritable bowel syndrome, functional dyspepsia and bladder pain syndrome/interstitial cystitis has identified ab...

  15. Modelling Brain Tissue using Magnetic Resonance Imaging

    OpenAIRE

    Dyrby, Tim Bjørn; Hansen, Lars Kai

    2008-01-01

    Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking models then use the directions of greatest diffusion as estimates of white matter fibre orientation. Several fibre tracking algorithms have emerged in the last few years that provide reproducible visu...

  16. Cerebral infarction mimicking brain tumor on Tc-99m tetrofosmin brain SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soon [College of Medicine, Dongguk Univ., Gyeongju (Korea, Republic of); Zeon, Seok Kil; Won, Kyoung Sook [School of Medicine, Keimyung Univ., Daegu (Korea, Republic of)

    2004-06-01

    A 43-year-old man was presented with persistent headache for two weeks. T2 weighted MR imaging showed high signal intensity with surrounding edema in the left frontal lobe. These findings were considered with intracranial tumor such as glioma or metastasis. Tc-99m tetrofosmin SPECT showed focal radiotracer accumulation in the left frontal lobe. The operative specimen contained cerebral infarction with organizing leptomeningeal hematoma by pathologist. Another 73-year-old man was hospitalized for chronic headache. Initial CT showed ill-defined hypodensity with mass effect in the right parietal lobe. Tc-99m tetrofosmin SPECT showed focal radiotracer uptake in the right parietal lobe. These findings were considered with low-grade glioma or infarction. Follow-up CT after 5 months showed slightly decreased in size of low density in the right parietal lobe, and cerebral infarction is more likely than others. Tc-99m tetrofosmin has been proposed as a cardiotracer of myocardial perfusion imaging and an oncotropic radiotracer. Tc-99 tetrofosmin SPECT image provides a better attractive alternative agent than TI-201 as a tumor-imaging agent, with characteristics such as high-energy flux, short half-life, favorable biodistribution, dosimetry and lower background radioactivity. We have keep in mind on the analysis of Tc-99m tetrofosmin imaging when cerebral infarction is being differentiated from brain tumor.

  17. Different impressions of other agents obtained through social interaction uniquely modulate dorsal and ventral pathway activities in the social human brain

    OpenAIRE

    Takahashi, Hideyuki; TERADA, Kazunori; Morita, Tomoyo; Suzuki, Shinsuke; Haji, Tomoki; Kozima, Hideki; Yoshikawa, Masahiro; Matsumoto, Yoshio; Omori, Takashi; Asada, Minoru; Naito, Eiichi

    2014-01-01

    Internal (neuronal) representations in the brain are modified by our experiences, and this phenomenon is not unique to sensory and motor systems. Here, we show that different impressions obtained through social interaction with a variety of agents uniquely modulate activity of dorsal and ventral pathways of the brain network that mediates human social behavior. We scanned brain activity with functional magnetic resonance imaging (fMRI) in 16 healthy volunteers when they performed a simple...

  18. Non-FDG PET imaging of brain tumors

    Institute of Scientific and Technical Information of China (English)

    HUANG Zemin; GUAN Yihui; ZUO Chuantao; ZHANG Zhengwei; XUE Fangping; LIN Xiangtong

    2007-01-01

    Due to relatively high uptake of glucose in the brain cortex, the use of FDG PET imaging is greatly limited in brain tumor imaging, especially for low-grade gliomas and some metastatic tumours. More and more tracers with higher specificity were developed lately for brain tumor imaging. There are 3 main types of non-FDG PET tracers:amino acid tracers, choline tracers and nucleic acid tracers. These tracers are now widely applied in many aspects of brain tumor imaging. This article summarized the general use of non-FDG PET in different aspects of brain tumor imaging.

  19. Fetal trauma: brain imaging in four neonates

    International Nuclear Information System (INIS)

    The purpose of this paper is to describe brain pathology in neonates after major traffic trauma in utero during the third trimester. Our patient cohort consisted of four neonates born by emergency cesarean section after car accident in the third trimester of pregnancy. The median gestational age (n=4) was 36 weeks (range: 30-38). Immediate post-natal and follow-up brain imaging consisted of cranial ultrasound (n=4), computed tomography (CT) (n=1) and post-mortem magnetic resonance imaging (MRI) (n=1). Pathology findings were correlated with the imaging findings (n=3). Cranial ultrasound demonstrated a huge subarachnoidal hemorrhage (n=1), subdural hematoma (n=1), brain edema with inversion of the diastolic flow (n=1) and severe ischemic changes (n=1). In one case, CT demonstrated the presence and extension of the subarachnoidal hemorrhage, a parietal fracture and a limited intraventricular hemorrhage. Cerebellar hemorrhage and a small cerebral frontal contusion were seen on post-mortem MRI in a child with a major subarachnoidal hemorrhage on ultrasound. None of these four children survived (three children died within 2 days and one child died after 1 month). Blunt abdominal trauma during pregnancy can cause fetal cranial injury. In our cases, skull fracture, intracranial hemorrhage and hypoxic-ischemic encephalopathy were encountered. (orig.)

  20. MR imaging of late radiation brain injury

    International Nuclear Information System (INIS)

    One hundred and four patients treated with radiotherapy for intracranial tumors and their related conditions were reviewed to evaluate the usefulness of magnetic resonance (MR) imaging in demonstrating increased signal intensity areas on T2-weighted images that were considered to be late adverse effects of irradiation of the brain. High signal intensity areas of the white matter were divided into five patterns according to their size and extension. Severity was found to increase with age and irradiation doses of more than 50 Gy. In patients with irradiation doses of more than 60 Gy, the severity of increased with shorter interval after radiotherapy than in those given low irradiation doses. Clinical findings such as mental deterioration, motor abnormality, and visual defect were observed in 12 patients. These findings were closely correlated with the severity of the MR pattern. In most patients, high signal intensity areas were stable or progressive during the course of follow-up. However, these areas were regressive in three patients. Imaging with Gd-DTPA was performed in 36 patients, six of whom showed enhancement. Pathological findings on enhancement included astrocyte proliferation and coalescing vacuoles in neural tissue. MR imaging is an excellent method with which to monitor the adverse effects of radiotherapy of the brain. (author)

  1. Preclinical study of dopamine D2 receptor imaging agent 131I-epidepride

    International Nuclear Information System (INIS)

    Objective: To study the radioactivity distribution and the characteristic of imaging with dopamine D2 receptor imaging agent-epidepride. Methods: 131I-epidepride was prepared using hydrogen peroxide as the oxidant. The authors chose SD rats to study the characteristics of 131I-epidepride distribution in vivo and in brain. Two rabbits were used in SPECT imaging. Dynamic acquisition was performed in one rabbit after rapid injection of 370 MBq 131I-epidepride, and time-activity curve was obtained with Region of Interesting (ROI) technique. The other rabbit had brain tomography imaging and whole body imaging according to the result of time-activity curve. Results: The radiolabeling yield (RLY) of 131I-epidepride with hydrogen peroxide was over 95%. In vivo, the uptake of heart and lung was the fastest, so was the clearance of the two organs. The clearance of 131I-epidepride from the body was mainly through liver, stomach and intestines. The striatum uptake was concentrated and stable, while the cerebellum clearance was rapid. Conclusion: The hydrogen peroxide method is simple and fast with high RLY. The striatum uptake is concentrated and stable. 131I-epidepride is an effective agent suitable for dopamine D2 receptor imaging and may be a promising agent for clinical application

  2. Brain image fusion: Co-registration error

    International Nuclear Information System (INIS)

    Semi automatic and manually fused brain image registration using anatomical magnetic resonance (MR) and functional single photon emission tomography (SPECT) have been used to quantify the spatial registration error. An internal quality assurance protocol is employed to reject studies whose image quality was bad or the acquisition parameters were wrong. At the beginning when this technique was started, a training programme was carried out using fiducial markers in phantom and patients to estimate the co-registration error. The brain Hoffman phantom (Data Spectrum Model BR-3D-P), with 3 fiducial markers containing 2 μCi 99mTc99m as SPECT marker and Gadodiamide MR marker. SPECT data were acquired with a dual head camera (ADAC) with ultra high resolution collimators and 128x128 matrix size, 64 projections and post filter using iterative reconstruction method (number of iteration 12), with attenuation correction. MR images were acquired using 1.5T GE SIGNA 3D spoiled-gradient sequence with 20 minimum TR, TE 6.24, matrix size 256x256 and 124 axial slices separated by 1.6 mm. The same acquisition protocol was used for the 13 patient studies. They have been injected with 740 MBq of 99mTc-MIBI, radioisotope that provides functional information which can be used to detect tumour regrowth with higher specificity than post Gadolinium I.V administration imaging brain MR. Woods's Automatic Image Registration method for intermodality rigid transformations has been used for fusion. Fine tuning of this transformation to achieve good fit converts the methodology in semi automatic. The algorithms could be classified as linear when alignment transformation (translation, rotation and scaling) is computed between both 3D volumes. Manual fusion of both images was also accomplished without landmarks using anatomical structures as reference. Using visualization techniques for both methods, it is possible to combine color and gray scale image for each pixel using 16 bits display. Such

  3. Imaging brain mechanisms in chronic visceral pain.

    Science.gov (United States)

    Mayer, Emeran A; Gupta, Arpana; Kilpatrick, Lisa A; Hong, Jui-Yang

    2015-04-01

    Chronic visceral pain syndromes are important clinical problems with largely unmet medical needs. Based on the common overlap with other chronic disorders of visceral or somatic pain, mood and affect, and their responsiveness to centrally targeted treatments, an important role of central nervous system in their pathophysiology is likely. A growing number of brain imaging studies in irritable bowel syndrome, functional dyspepsia, and bladder pain syndrome/interstitial cystitis has identified abnormalities in evoked brain responses, resting state activity, and connectivity, as well as in gray and white matter properties. Structural and functional alterations in brain regions of the salience, emotional arousal, and sensorimotor networks, as well as in prefrontal regions, are the most consistently reported findings. Some of these changes show moderate correlations with behavioral and clinical measures. Most recently, data-driven machine-learning approaches to larger data sets have been able to classify visceral pain syndromes from healthy control subjects. Future studies need to identify the mechanisms underlying the altered brain signatures of chronic visceral pain and identify targets for therapeutic interventions. PMID:25789437

  4. Spatial normalization of brain images and beyond.

    Science.gov (United States)

    Mangin, J-F; Lebenberg, J; Lefranc, S; Labra, N; Auzias, G; Labit, M; Guevara, M; Mohlberg, H; Roca, P; Guevara, P; Dubois, J; Leroy, F; Dehaene-Lambertz, G; Cachia, A; Dickscheid, T; Coulon, O; Poupon, C; Rivière, D; Amunts, K; Sun, Z Y

    2016-10-01

    The deformable atlas paradigm has been at the core of computational anatomy during the last two decades. Spatial normalization is the variant endowing the atlas with a coordinate system used for voxel-based aggregation of images across subjects and studies. This framework has largely contributed to the success of brain mapping. Brain spatial normalization, however, is still ill-posed because of the complexity of the human brain architecture and the lack of architectural landmarks in standard morphological MRI. Multi-atlas strategies have been developed during the last decade to overcome some difficulties in the context of segmentation. A new generation of registration algorithms embedding architectural features inferred for instance from diffusion or functional MRI is on the verge to improve the architectural value of spatial normalization. A better understanding of the architectural meaning of the cortical folding pattern will lead to use some sulci as complementary constraints. Improving the architectural compliance of spatial normalization may impose to relax the diffeomorphic constraint usually underlying atlas warping. A two-level strategy could be designed: in each region, a dictionary of templates of incompatible folding patterns would be collected and matched in a way or another using rare architectural information, while individual subjects would be aligned using diffeomorphisms to the closest template. Manifold learning could help to aggregate subjects according to their morphology. Connectivity-based strategies could emerge as an alternative to deformation-based alignment leading to match the connectomes of the subjects rather than images. PMID:27344104

  5. Nuclear magnetic resonance imaging in brain tumors

    International Nuclear Information System (INIS)

    Full text: Magnetic resonance imaging (MRI) is a non-invasive imaging method based on the detecting signal from hydrogen nuclei of water molecules and fat. Performances of MRI are continuously increasing, and its domains of investigation of the human body are growing in both morphological and functional study. MRI also allows It also performing advanced management of tumours especially in the brain, by combining anatomical information (morphological MRI), functional (diffusion, perfusion and BOLD contrast) and metabolic (tissue composition in magnetic resonance spectroscopy (MRS)). The MRI techniques have an important role in cancerology. These techniques allow essential information for the diagnosis and answering therapist's questions before, during or after the treatment. The MR allows clarifying the localization of expanding processes, the differential diagnosis between brain tumour and a lesion confined by another structural aspect, the diagnosis of the tumoral aspect of a lesion, the histological ranking in case of glial tumour and the extension of its localization as well as the therapeutic follow-up (pre-therapeutic and post-therapeutics assessments). A better combination between the morphological, functional and metabolic studies, as well as integrating new technical developments, especially while using a multichannel bird cage coils the 3T magnet and suitable computing software, would allow significant improvements of the exploration strategies and management of brain tumors.

  6. Clinics in diagnostic imaging (153). Severe hypoxic ischaemic brain injury.

    OpenAIRE

    Chua, Wynne; Lim, Boon Keat; Lim, Tchoyoson Choie Cheio

    2014-01-01

    A 58-year-old Indian woman presented with asystole after an episode of haemetemesis, with a patient downtime of 20 mins. After initial resuscitation efforts, computed tomography of the brain, obtained to evaluate neurological injury, demonstrated evidence of severe hypoxic ischaemic brain injury. The imaging features of hypoxic ischaemic brain injury and the potential pitfalls with regard to image interpretation are herein discussed.

  7. Chitosan-based formulations of drugs, imaging agents and biotherapeutics

    NARCIS (Netherlands)

    Amidi, M.; Hennink, W.E.

    2010-01-01

    This preface is part of the Advanced Drug Delivery Reviews theme issue on “Chitosan-Based Formulations of Drugs, Imaging Agents and Biotherapeutics”. This special Advanced Drug Delivery Reviews issue summarizes recent progress and different applications of chitosanbased formulations.

  8. Several new imaging agents for central dopamine transporter

    International Nuclear Information System (INIS)

    123I-β-CIT (2β-carbomethoxy-3β-[4-iodophenyl]-tropane), a promising agent for imaging central dopamine transporter, has been successfully used in clinical and differential diagnosis and assessment of the magnitude of degeneration of nigra-striatum in Parkinson's disease. However, due to its poor selectivity for dopamine transporter and prolonged imaging interval (usually 20h after injection), and therefore limits its clinical use. Several new imaging agents have been developed for dopamine transporter in recent years, and significantly improved the characterization for imaging dopamine transporter

  9. Neurosurgical confocal endomicroscopy: A review of contrast agents, confocal systems, and future imaging modalities

    Directory of Open Access Journals (Sweden)

    Aqib H Zehri

    2014-01-01

    Full Text Available Background: The clinical application of fluorescent contrast agents (fluorescein, indocyanine green, and aminolevulinic acid with intraoperative microscopy has led to advances in intraoperative brain tumor imaging. Their properties, mechanism of action, history of use, and safety are analyzed in this report along with a review of current laser scanning confocal endomicroscopy systems. Additional imaging modalities with potential neurosurgical utility are also analyzed. Methods: A comprehensive literature search was performed utilizing PubMed and key words: In vivo confocal microscopy, confocal endomicroscopy, fluorescence imaging, in vivo diagnostics/neoplasm, in vivo molecular imaging, and optical imaging. Articles were reviewed that discussed clinically available fluorophores in neurosurgery, confocal endomicroscopy instrumentation, confocal microscopy systems, and intraoperative cancer diagnostics. Results: Current clinically available fluorescent contrast agents have specific properties that provide microscopic delineation of tumors when imaged with laser scanning confocal endomicroscopes. Other imaging modalities such as coherent anti-Stokes Raman scattering (CARS microscopy, confocal reflectance microscopy, fluorescent lifetime imaging (FLIM, two-photon microscopy, and second harmonic generation may also have potential in neurosurgical applications. Conclusion: In addition to guiding tumor resection, intraoperative fluorescence and microscopy have the potential to facilitate tumor identification and complement frozen section analysis during surgery by providing real-time histological assessment. Further research, including clinical trials, is necessary to test the efficacy of fluorescent contrast agents and optical imaging instrumentation in order to establish their role in neurosurgery.

  10. Hindered diffusion of MRI contrast agents in rat brain extracellular micro-environment assessed by acquisition of dynamic T1 and T2 maps

    International Nuclear Information System (INIS)

    The knowledge of brain tissues characteristics (such as extracellular space and tortuosity) represents valuable information for the design of optimal MR probes for specific bio-markers targeting. This work proposes a methodology based on dynamic acquisition of relaxation time maps to quantify in vivo MRI contrast agent concentration after intracerebral injection in rat brain. It was applied to estimate the hindered diffusion in brain tissues of five contrast agents with different hydrodynamic diameters (DotaremW1 nm, P8464 nm, P7927 nm, P90422 nm and Gd-based emulsion 170 nm). In vivo apparent diffusion coefficients were compared with those estimated in an obstacle-free medium to determine brain extracellular space and tortuosity. At a 2 h imaging timescale, all contrast agents except the Gd-based emulsion exhibited significant diffusion through brain tissues, with characteristic times compatible with MR molecular imaging (≤70 min to diffuse between two capillaries). In conclusion, our experiments indicate that MRI contrast agents with sizes up to 22 nm can be used to perform molecular imaging on intra-cerebral bio-markers. Our quantification methodology allows a precise estimation of apparent diffusion coefficients, which is helpful to calibrate optimal timing between contrast agent injection and MRI observation for molecular imaging studies. (authors)

  11. Diffuse Optical Tomography for Brain Imaging: Theory

    Science.gov (United States)

    Yuan, Zhen; Jiang, Huabei

    Diffuse optical tomography (DOT) is a noninvasive, nonionizing, and inexpensive imaging technique that uses near-infrared light to probe tissue optical properties. Regional variations in oxy- and deoxy-hemoglobin concentrations as well as blood flow and oxygen consumption can be imaged by monitoring spatiotemporal variations in the absorption spectra. For brain imaging, this provides DOT unique abilities to directly measure the hemodynamic, metabolic, and neuronal responses to cells (neurons), and tissue and organ activations with high temporal resolution and good tissue penetration. DOT can be used as a stand-alone modality or can be integrated with other imaging modalities such as fMRI/MRI, PET/CT, and EEG/MEG in studying neurophysiology and pathology. This book chapter serves as an introduction to the basic theory and principles of DOT for neuroimaging. It covers the major aspects of advances in neural optical imaging including mathematics, physics, chemistry, reconstruction algorithm, instrumentation, image-guided spectroscopy, neurovascular and neurometabolic coupling, and clinical applications.

  12. Brain dopaminergic systems : imaging with positron tomography

    International Nuclear Information System (INIS)

    Imaging of the dopaminergic system in the human brain with the in vivo use of Positron Emission Tomography emerged in the late 1980s as a tool of major importance in clinical neurosciences and pharmacology. The last few years have witnessed rapid development of new radiotracers specific to receptors, reuptake sites and enzymes of the dopamine system; the application of these radiotracers has led to major break-troughs in the pathophysiology and therapy of movement disorders and schizophrenic-like psychoses. This book is the first to collect, in a single volume, state-of-the-art contributions to the various aspects of this research. Its contents address methodological issues related to the design, labelling, quantitative imaging and compartmental modeli-sation of radioligands of the post-synaptic, pre-synaptic and enzyme sites of the dopamine system and to their use in clinical research in the fields of Parkinson's disease as well as other movement disorders, psychoses and neuroleptic receptor occupancy. The chapters were written by leading European scientists in the field of PET, gathered together in Caen (France, November 1990) under the aegis of the EEC Concerted Action on PET Investigations of Cellular Regeneration and Degeneration. This book provides a current and comprehensive overview on PET studies of the brain dopamine system which should aid and interest neurologists , psychiatrists, pharmacologists and medical imaging scientists. (author). refs.; figs.; tabs

  13. Brain imaging studies of sleep disorder

    International Nuclear Information System (INIS)

    Brain imaging studies of narcolepsy (NA)/cataplexy (CA), a typical sleep disorder, are summarized together with techniques of functional and structural imaging means. single photon emission CT (SPECT) is based on the distribution of tracers labeled by single photon emitters like 99mTc and 123I for seeing the blood flow and receptors. PET using positron emitters like 15O and 18F for blood flow and for glucose metabolism, respectively, is of higher resolution and more quantitative than SPECT. Functional MRI (fMRI) depicts the cerebral activity through signal difference by blood oxygenation level dependence (BOLD) effect, and MR spectroscopy (MRS) depicts and quantifies biomaterials through the difference of their nuclear chemical shifts in the magnetic field. Morphologic imaging studies involve the measurement of the volume of the region of interest by comparison with the reference region such as the whole brain volume. Voxel-based morphometry (VBM) has changed to its more advanced surface-based analysis (SBA) of T1-enhanced image. Diffusion tensor imaging (DTI) is based on the tissue water diffusion. Functional SPECT/PET studies have suggested the decrease of blood flow and metabolic activity in the hypothalamus (HT) and other related regions at the conscious resting state, and locally increased blood flow in cingulate gyrus (CG) and amygdaloid complex (AC) at affective CA/PA seizure. fMRI has suggested the hypoactivity of HT and hyperactivity of AC at the seizure. VBM-based studies have not given the consistent results, but DTI studies have suggested an important participation of AC at the seizure. (T.T.)

  14. Safety of Gadoterate Meglumine (Gd-DOTA) as a Contrast Agent for Magnetic Resonance Imaging

    OpenAIRE

    Ishiguchi, Tsuneo; Takahashi, Shoki

    2012-01-01

    Background: Safety is a primary concern with contrast agents used for MRI. If precautions could be taken before the repeated administration of gadolinium-based contrast media, then the awareness and management of adverse reactions would be more efficient. Objectives: To assess the safety and efficacy of gadoterate meglumine (Gd-DOTA) [Magnescope® in Japan, Dotarem® in other countries], a gadolinium-based contrast agent, in patients undergoing imaging of the brain/spinal cord and/or trunk/limb...

  15. Progress in imaging of brain radiation injury

    International Nuclear Information System (INIS)

    The mechanisms of brain radiation injury mainly include three hypotheses: vascular injury, glial cells damage and immune response. Most scholars' studies have recently supported the former two ones. Vascular injury plays a major role in the effect of delayed radiation injury. Focal brain injury and diffuse white matter injury can be definitely diagnosed by CT and MRI. T2-weighted imaging (T2WI) in MRI shows high sensitivity in water contents, and is not affected by the beam hardening artifacts from the cranial base. Compared with CT, the sensitivity of MR for detecting white matter lesions is two to threefold higher. When lesions occurs at the site of an irradiated cerebral tumor, tumor recurrence and focal cerebral necrosis cannot be differentiated by CT or MR, PET and MRS now present a certain advantage of differential diagnosis. Tumor presents high metabolism and necrosis demonstrates low metabolism by utilizing PET scanning, however PET's sensitivity and specificity are far from satisfactory. The amount or ratio of metabolic products in the region of interest measured by MRS contributes to the deferential diagnosis. In addition, PET functional imaging and MRS can also predict the early asymptomatic reversible radiation injury so as to allow the early therapy of steroids and possibly other drugs, prior to the development of irreversible changes

  16. Animal imaging studies of potential brain damage

    Science.gov (United States)

    Gatley, S. J.; Vazquez, M. E.; Rice, O.

    To date, animal studies have not been able to predict the likelihood of problems in human neurological health due to HZE particle exposure during space missions outside the Earth's magnetosphere. In ongoing studies in mice, we have demonstrated that cocaine stimulated locomotor activity is reduced by a moderate dose (120 cGy) of 1 GeV 56Fe particles. We postulate that imaging experiments in animals may provide more sensitive and earlier indicators of damage due to HZE particles than behavioral tests. Since the small size of the mouse brain is not well suited to the spatial resolution offered by microPET, we are now repeating some of our studies in a rat model. We anticipate that this will enable us to identify imaging correlates of behavioral endpoints. A specific hypothesis of our studies is that changes in the metabolic rate for glucose in striatum of animals will be correlated with alterations in locomotor activity. We will also evaluate whether the neuroprotective drug L-deprenyl reduces the effect of radiation on locomotor activity. In addition, we will conduct microPET studies of brain monoamine oxidase A and monoamine oxidase B in rats before and at various times after irradiation with HZE particles. The hypothesis is that monoamine oxidase A, which is located in nerve terminals, will be unchanged or decreased after irradiation, while monoamine oxidase B, which is located in glial cells, will be increased after irradiation. Neurochemical effects that could be measured using PET could in principle be applied in astronauts, in terms of detecting and monitoring subtle neurological damage that might have occurred during long space missions. More speculative uses of PET are in screening candidates for prolonged space missions (for example, for adequate reserve in critical brain circuits) and in optimizing medications to treat impairments after missions.

  17. Functional brain imaging to investigate the higher brain dysfunction induced by diffuse brain injury

    International Nuclear Information System (INIS)

    Higher brain dysfunction is the major problem of patients who recover from neurotrauma the prevents them from returning to their previous social life. Many such patients do not have focal brain damage detected with morphological imaging. We focused on studying the focal brain dysfunction that can be detected only with functional imaging with positron emission tomography (PET) in relation to the score of various cognition batteries. Patients who complain of higher brain dysfunction without apparent morphological cortical damage were recruited for this study. Thirteen patients with diffuse axonal injury (DAI) or cerebral concussion was included. They underwent a PET study to image glucose metabolism by 18F-fluorodeoxyglucose (FDG), and central benodiazepine receptor (cBZD-R) (marker of neuronal body) by 11C-flumazenil, together with cognition measurement by WAIS-R, WMS-R, and WCST etc. PET data were compared with age matched normal controls using statistical parametric mapping (SPM)2. DAI patients had a significant decrease in glucose matabolism and cBZD-R distribution in the cingulated cortex than normal controls. Patients diagnosed with concussion because of shorter consciousness disturbance also had abnormal FDG uptake and cBZD-R distribution. Cognition test scores were variable among patients. Degree of decreased glucose metabolism and cBZD-R distribution in the dominant hemishphere corresponded well to the severity of cognitive disturbance. PET molecular imaging was useful to depict focal cortical dysfunction of neurotrauma patients even when morphological change was not apparent. This method may be promising to clarify the pathophysiology of higher brain dysfunction of patients with diffuse axonal injury or chronic traumatic encephalopathy. (author)

  18. Brain MR imaging in systemic lupus erythematous

    International Nuclear Information System (INIS)

    To present MR imaging findings of intracranial lesions in systemic lupus erythematosus(SLE), a retrospective study was performed on MR images of 33 SLE patients with neurologic symptoms and signs. MR imaging was performed on either a 0.5 T (21 patients) or 2.0 T unit (12 patients), using T1-weighted, proton-density-weighted, and T2-weighted spin echo sequences in all patients. In seven patients, post-contrast T1-weighted images were also obtained after administration of gadopentetate dimeglumine. The main MR findings consisted of focal lesions suggesting ischemia/infarct (15 patients), diffuse brain atrophy (8), and findings associated with infection (4). The MR findings were normal in 11 patients (33%). The focal lesions suggesting ischemia/infarcts presumably secondary to vasculitis were distributed in the cortex or subcortical white matter (7 patients), deep periventricular white matter (3), or in both areas (5). Most of the focal lesions were multiple and small in size. The findings associated with infection were variable and included communicating hydrocephalus, meningeal enhancement, granuloma, etc. MR findings of SLE were non-specific and therefore clinical correlation is needed when evaluating SLE in MR

  19. FULLY AUTOMATIC FRAMEWORK FOR SEGMENTATION OF BRAIN MRI IMAGE

    Institute of Scientific and Technical Information of China (English)

    Lin Pan; Zheng Chongxun; Yang Yong; Gu Jianwen

    2005-01-01

    Objective To propose an automatic framework for segmentation of brain image in this paper. Methods The brain MRI image segmentation framework consists of three-step segmentation procedures. First, Non-brain structures removal by level set method. Then, the non-uniformity correction method is based on computing estimates of tissue intensity variation. Finally, it uses a statistical model based on Markov random filed for MRI brain image segmentation. The brain tissue can be classified into cerebrospinal fluid, white matter and gray matter. Results To evaluate the proposed our method, we performed two sets of experiments, one on simulated MR and another on real MR brain data. Conclusion The efficacy of the brain MRI image segmentation framework has been demonstrated by the extensive experiments. In the future, we are also planning on a large-scale clinical evaluation of this segmentation framework.

  20. Biocompatible KMnF3 nanoparticular contrast agent with proper plasma retention time for in vivo magnetic resonance imaging

    International Nuclear Information System (INIS)

    Nanoparticular MRI contrast agents are rapidly becoming suitable for use in clinical diagnosis. An ideal nanoparticular contrast agent should be endowed with high relaxivity, biocompatibility, proper plasma retention time, and tissue-specific or tumor-targeting imaging. Herein we introduce PEGylated KMnF3 nanoparticles as a new type of T1 contrast agent. Studies showed that the nanoparticular contrast agent revealed high bio-stability with bovine serum albumin in PBS buffer solution, and presented excellent biocompatibility (low cytotoxicity, undetectable hemolysis and hemagglutination). Meanwhile the new contrast agent possessed proper plasma retention time (circulation half-life t1/2 is approximately 2 h) in the body of the administrated mice. It can be delivered into brain vessels and maintained there for hours, and is mostly cleared from the body within 48 h, as demonstrated by time-resolved MRI and Mn-biodistribution analysis. Those distinguishing features make it suitable to obtain contrast-enhanced brain magnetic resonance angiography. Moreover, through the process of passive targeting delivery, the T1 contrast agent clearly illuminates a brain tumor (glioma) with high contrast image and defined shape. This study demonstrates that PEGylated KMnF3 nanoparticles represent a promising biocompatible vascular contrast agent for magnetic resonance angiography and can potentially be further developed into an active targeted tumor MRI contrast agent. (paper)

  1. Compact and mobile high resolution PET brain imager

    Science.gov (United States)

    Majewski, Stanislaw; Proffitt, James

    2011-02-08

    A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage.

  2. FCM Clustering Algorithms for Segmentation of Brain MR Images

    Directory of Open Access Journals (Sweden)

    Yogita K. Dubey

    2016-01-01

    Full Text Available The study of brain disorders requires accurate tissue segmentation of magnetic resonance (MR brain images which is very important for detecting tumors, edema, and necrotic tissues. Segmentation of brain images, especially into three main tissue types: Cerebrospinal Fluid (CSF, Gray Matter (GM, and White Matter (WM, has important role in computer aided neurosurgery and diagnosis. Brain images mostly contain noise, intensity inhomogeneity, and weak boundaries. Therefore, accurate segmentation of brain images is still a challenging area of research. This paper presents a review of fuzzy c-means (FCM clustering algorithms for the segmentation of brain MR images. The review covers the detailed analysis of FCM based algorithms with intensity inhomogeneity correction and noise robustness. Different methods for the modification of standard fuzzy objective function with updating of membership and cluster centroid are also discussed.

  3. Recent progress of imaging agents for Parkinson's disease.

    Science.gov (United States)

    Wu, Xiaoai; Cai, Huawei; Ge, Ran; Li, Lin; Jia, Zhiyun

    2014-12-01

    Parkinson's disease (PD) is a common progressive, neurodegenerative brain disease that is promoted by mitochondrial dysfunction, oxidative stress, protein aggregation and proteasome dysfunction in the brain. Compared with computer tomography (CT) or magnetic resonance imaging (MRI), non-invasive nuclear radiopharmaceuticals have great significance for the early diagnosis of PD due to their high sensitivity and specificity in atypical and preclinical cases. Based on the development of coordination chemistry and chelator design, radionuclides may be delivered to lesions by attaching to PD-related transporters and receptors, such as dopamine, serotonin, and others. In this review, we comprehensively detailed the current achievements in radionuclide imaging in Parkinson's disease. PMID:25977680

  4. The role of magnetic resonance imaging in the management of brain metastases: diagnosis to prognosis

    OpenAIRE

    Zakaria, Rasheed; Das, Kumar; Bhojak, Maneesh; Radon, Mark; Walker, Carol; Jenkinson, Michael D

    2014-01-01

    This article reviews the different MRI techniques available for the diagnosis, treatment and monitoring of brain metastases with a focus on applying advanced MR techniques to practical clinical problems. Topics include conventional MRI sequences and contrast agents, functional MR imaging, diffusion weighted MR, MR spectroscopy and perfusion MR. The role of radiographic biomarkers is discussed as well as future directions such as molecular imaging and MR guided high frequency ultrasound.

  5. DNA repair modulates the vulnerability of the developing brain to alkylating agents

    OpenAIRE

    Kisby, G.E.; Olivas, A.; Park, T.; Churchwell, M.; Doerge, D; Samson, L. D.; Gerson, S L; Turker, M.S.

    2008-01-01

    Neurons of the developing brain are especially vulnerable to environmental agents that damage DNA (i.e., genotoxicants), but the mechanism is poorly understood. The focus of the present study is to demonstrate that DNA damage plays a key role in disrupting neurodevelopment. To examine this hypothesis, we compared the cytotoxic and DNA damaging properties of the methylating agents methylazoxymethanol (MAM) and dimethyl sulfate (DMS) and the mono- and bifunctional alkylating agents chloroethyla...

  6. Exploring brain function with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Since its invention in the early 1990s, functional magnetic resonance imaging (fMRI) has rapidly assumed a leading role among the techniques used to localize brain activity. The spatial and temporal resolution provided by state-of-the-art MR technology and its non-invasive character, which allows multiple studies of the same subject, are some of the main advantages of fMRI over the other functional neuroimaging modalities that are based on changes in blood flow and cortical metabolism. This paper describes the basic principles and methodology of fMRI and some aspects of its application to functional activation studies. Attention is focused on the physiology of the blood oxygenation level-dependent (BOLD) contrast mechanism and on the acquisition of functional time-series with echo planar imaging (EPI). We also provide an introduction to the current strategies for the correction of signal artefacts and other image processing techniques. In order to convey an idea of the numerous applications of fMRI, we will review some of the recent results in the fields of cognitive and sensorimotor psychology and physiology

  7. Imaging of brain activity by positron emission tomography

    International Nuclear Information System (INIS)

    Brain function is associated with regional energy metabolism and blood flow increase. Such brain activity is visualized by using external scintigraphy. Positron emission tomography (PET) is the currently available most superior technique, allowing three-dimensional imaging of subtle blood flow. In this article, imaging methods and application of PET are discussed in terms of the following items: (1) measurement of cerebral glucose consumption, (2) PET in persons with visual impairment, (3) association between brain function and regional cerebral blood flow, (4) measurement of cerebral blood flow, (5) method for decreasing noise in PET imaging, (6) anatomic standardization of PET images, and (7) speech load and regional cerebral activity images. (N.K.)

  8. Molecular imaging of hypoxia with radiolabelled agents

    International Nuclear Information System (INIS)

    Tissue hypoxia results from an inadequate supply of oxygen (O2) that compromises biological functions. Structural and functional abnormalities of the tumour vasculature together with altered diffusion conditions inside the tumour seem to be the main causes of tumour hypoxia. Evidence from experimental and clinical studies points to a role for tumour hypoxia in tumour propagation, resistance to therapy and malignant progression. This has led to the development of assays for the detection of hypoxia in patients in order to predict outcome and identify patients with a worse prognosis and/or patients that would benefit from appropriate treatments. A variety of invasive and non-invasive approaches have been developed to measure tumour oxygenation including oxygen-sensitive electrodes and hypoxia marker techniques using various labels that can be detected by different methods such as positron emission tomography (PET), single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), autoradiography and immunohistochemistry. This review aims to give a detailed overview of non-invasive molecular imaging modalities with radiolabelled PET and SPECT tracers that are available to measure tumour hypoxia. (orig.)

  9. Modelling Brain Tissue using Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Dyrby, Tim Bjørn

    2008-01-01

    an ongoing chemical reaction due to the fixative used. Short-term instabilities within the first 15 hours of DWI scanning were observed and found likely to be caused by the preparation of the postmortem tissue prior to MR scanning. This artefact can be avoided e.g. by simply excluding DW......Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking...... environment differs from that of in vivo both due to a lowered environmental temperature and due to the fixation process itself. We argue that the perfusion fixation procedure employed in this thesis ensures that the postmortem tissue is as close to that of in vivo as possible. Different fibre reconstruction...

  10. User-agent cooperation in multiagent IVUS image segmentation.

    Science.gov (United States)

    Bovenkamp, E G P; Dijkstra, J; Bosch, J G; Reiber, J H C

    2009-01-01

    Automated interpretation of complex images requires elaborate knowledge and model-based image analysis, but often needs interaction with an expert as well. This research describes expert interaction with a multiagent image interpretation system using only a restricted vocabulary of high-level user interactions. The aim is to minimize inter- and intra-observer variability by keeping the total number of interactions as low and simple as possible. The multiagent image interpretation system has elaborate high-level knowledge-based control over low-level image segmentation algorithms. Agents use contextual knowledge to keep the number of interactions low but, when in doubt, present the user with the most likely interpretation of the situation. The user, in turn, can correct, supplement, and/or confirm the results of image-processing agents. This is done at a very high level of abstraction such that no knowledge of the underlying segmentation methods, parameters or agent functioning is needed. High-level interaction thereby replaces more traditional contour correction methods like inserting points and/or (re)drawing contours. This makes it easier for the user to obtain good results, while inter- and intra-observer variability are kept minimal, since the image segmentation itself remains under control of image-processing agents. The system has been applied to intravascular ultrasound (IVUS) images. Experiments show that with an average of 2-3 high-level user interactions per correction, segmentation results substantially improve while the variation is greatly reduced. The achieved level of accuracy and repeatability is equivalent to that of manual drawing by an expert. PMID:19116192

  11. Whole Mouse Brain Image Reconstruction from Serial Coronal Sections Using FIJI (ImageJ).

    Science.gov (United States)

    Paletzki, Ronald; Gerfen, Charles R

    2015-01-01

    Whole-brain reconstruction of the mouse enables comprehensive analysis of the distribution of neurochemical markers, the distribution of anterogradely labeled axonal projections or retrogradely labeled neurons projecting to a specific brain site, or the distribution of neurons displaying activity-related markers in behavioral paradigms. This unit describes a method to produce whole-brain reconstruction image sets from coronal brain sections with up to four fluorescent markers using the freely available image-processing program FIJI (ImageJ). PMID:26426384

  12. Whole-brain dynamic CT angiography and perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orrison, W.W. [CHW Nevada Imaging Company, Nevada Imaging Centers, Spring Valley, Las Vegas, NV (United States); College of Osteopathic Medicine, Touro University Nevada, Henderson, NV (United States); Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Department of Medical Education, University of Nevada School of Medicine, Reno, NV (United States); Snyder, K.V.; Hopkins, L.N. [Department of Neurosurgery, Millard Fillmore Gates Circle Hospital, Buffalo, NY (United States); Roach, C.J. [School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States); Ringdahl, E.N. [Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV (United States); Nazir, R. [Shifa International Hospital, Islamabad (Pakistan); Hanson, E.H., E-mail: eric.hanson@amigenics.co [College of Osteopathic Medicine, Touro University Nevada, Henderson, NV (United States); Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States)

    2011-06-15

    The availability of whole brain computed tomography (CT) perfusion has expanded the opportunities for analysing the haemodynamic parameters associated with varied neurological conditions. Examples demonstrating the clinical utility of whole-brain CT perfusion imaging in selected acute and chronic ischaemic arterial neurovascular conditions are presented. Whole-brain CT perfusion enables the detection and focused haemodynamic analyses of acute and chronic arterial conditions in the central nervous system without the limitation of partial anatomical coverage of the brain.

  13. Whole-brain dynamic CT angiography and perfusion imaging

    International Nuclear Information System (INIS)

    The availability of whole brain computed tomography (CT) perfusion has expanded the opportunities for analysing the haemodynamic parameters associated with varied neurological conditions. Examples demonstrating the clinical utility of whole-brain CT perfusion imaging in selected acute and chronic ischaemic arterial neurovascular conditions are presented. Whole-brain CT perfusion enables the detection and focused haemodynamic analyses of acute and chronic arterial conditions in the central nervous system without the limitation of partial anatomical coverage of the brain.

  14. A Novel Approach for MRI Brain Images Segmentation

    OpenAIRE

    Abo-Eleneen Z. A; Gamil Abdel-Azim

    2013-01-01

    Segmentation of brain from magnetic resonance (MR) images has important applications in neuroimaging, in particular it facilitates in extracting different brain tissues such as cerebrospinal fluids, white matter and gray matter. That helps in determining the volume of the tissues in three-dimensional brain MR images, which yields in analyzing many neural disorders such as epilepsy and Alzheimer disease. The Fisher information is a measure of the fluctuations in the observations. In a sense, ...

  15. Optical fine-needle imaging biopsy of the brain

    OpenAIRE

    Kim, Jun Ki; Choi, Jin Woo; Yun, Seok H.

    2013-01-01

    We demonstrate optical fine-needle imaging biopsy (FNIB), combining a fine needle (22 gauge) and a high-resolution side-view probe (350-μm diameter) for minimally invasive interrogation of brain tissue in situ. We apply this technique to examine pathogenesis in murine models of neurodegeneration, brain metastasis of melanoma, and arterial occlusion, respectively. The demonstrated ability to obtain cellular images in the deep brain without craniotomy may be useful in the longitudinal studies o...

  16. Optical Methods and Instrumentation in Brain Imaging and Therapy

    CERN Document Server

    2013-01-01

    This book provides a comprehensive up-to-date review of optical approaches used in brain imaging and therapy. It covers a variety of imaging techniques including diffuse optical imaging, laser speckle imaging, photoacoustic imaging and optical coherence tomography. A number of laser-based therapeutic approaches are reviewed, including photodynamic therapy, fluorescence guided resection and photothermal therapy. Fundamental principles and instrumentation are discussed for each imaging and therapeutic technique. Represents the first publication dedicated solely to optical diagnostics and therapeutics in the brain Provides a comprehensive review of the principles of each imaging/therapeutic modality Reviews the latest advances in instrumentation for optical diagnostics in the brain Discusses new optical-based therapeutic approaches for brain diseases

  17. Brain abscesses in diffusion-weighted imaging (DWI) - comparison to cystic brain tumors

    International Nuclear Information System (INIS)

    The clinical usefulness of diffusion-weighted imaging (DWI) was evaluated in patients with brain abscesses in comparison to patients with cystic brain tumors. Five patients with surgically confirmed brain abscesses underwent beside a brain MRI examination with contrast media application diffusion weighted imaging. Apparent diffusion coefficients (rADC) in three orthogonal diffusion gradient were calculated. The same protocol was used to examine 5 patients with cystic brain tumors. Showing an rADC of 0.33 x 10-3/mm2/s abscesses have a highly restricted diffusion in comparison to cystic brain tumors with an rADC of 1,67 x 10-3/mm2/s. Diffusion weighted imaging is a usefull diagnostic tool in the work up of brain abscesses. (orig.)

  18. Functional brain imaging of gastrointestinal sensation in health and disease

    Institute of Scientific and Technical Information of China (English)

    Lukas Van Oudenhove; Steven J Coen; Qasim Aziz

    2007-01-01

    It has since long been known, from everyday experience as well as from animal and human studies, that psychological processes-both affective and cognitiveexert an influence on gastrointestinal sensorimotor function. More specifically, a link between psychological factors and visceral hypersensitivity has been suggested,mainly based on research in functional gastrointestinal disorder patients. However, until recently, the exact nature of this putative relationship remained unclear,mainly due to a lack of non-invasive methods to study the (neurobiological) mechanisms underlying this relationship in non-sleeping humans. As functional brain imaging, introduced in visceral sensory neuroscience some 10 years ago, does provide a method for in vivo study of brain-gut interactions, insight into the neurobiological mechanisms underlying visceral sensation in general and the influence of psychological factors more particularly,has rapidly grown. In this article, an overview of brain imaging evidence on gastrointestinal sensation will be given, with special emphasis on the brain mechanisms underlying the interaction between affective & cognitive processes and visceral sensation. First, the reciprocal neural pathways between the brain and the gut (braingut axis) will be briefly outlined, including brain imaging evidence in healthy volunteers. Second, functional brain imaging studies assessing the influence of psychological factors on brain processing of visceral sensation in healthy humans will be discussed in more detail.Finally, brain imaging work investigating differences in brain responses to visceral distension between healthy volunteers and functional gastrointestinal disorder patients will be highlighted.

  19. Multi-agent Remote Sensing Image Segmentation Algorithm

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2014-05-01

    Full Text Available Due to fractal network evolution algorithm (FNEA in the treatment of the high spatial resolution remote sensing image (HSRI using a parallel global control strategies which limited when the objects in each cycle by traversal of and not good use the continuity of homogenous area on the space and lead to problems such as bad image segmentation, therefore puts forward the remote sensing image segmentation algorithm based on multi-agent. The algorithm in the merger guidelines, combining the image spectral and shape information, and by using region merging process of multi-agent parallel control integral, its global merger control strategy can ensure algorithm has the advantages of parallel computing and fully considering the regional homogeneity, and continuity. Finally simulation experiment was performed with FNEA algorithms, experimental results show that the proposed algorithm is better than FNEA algorithm in dividing the overall effect, has a good stability

  20. Software Agent with Reinforcement Learning Approach for Medical Image Segmentation

    Institute of Scientific and Technical Information of China (English)

    Mahsa Chitsaz; Chaw Seng Woo

    2011-01-01

    Many image segmentation solutions are problem-based. Medical images have very similar grey level and texture among the interested objects. Therefore, medical image segmentation requires improvements although there have been researches done since the last few decades. We design a self-learning framework to extract several objects of interest simultaneously from Computed Tomography (CT) images. Our segmentation method has a learning phase that is based on reinforcement learning (RL) system. Each RL agent works on a particular sub-image of an input image to find a suitable value for each object in it. The RL system is define by state, action and reward. We defined some actions for each state in the sub-image. A reward function computes reward for each action of the RL agent. Finally, the valuable information, from discovering all states of the interest objects, will be stored in a Q-matrix and the final result can be applied in segmentation of similar images. The experimental results for cranial CT images demonstrated segmentation accuracy above 95%.

  1. Preparation of a novel potential perfusion imaging agent and animal study

    International Nuclear Information System (INIS)

    To search for a novel potential SPECT cerebral blood flow perfusion imaging agent of our country knowledge property right, and to prove its SPECT cerebral perfusion imaging characteristics by animal studies. Tridentated MBPDA with N2S obtained form chemical synthesis and characterized by IR, 1H, 13C NMR, element analysis and MS, and ECD provided by Shanghai Hongqi Medicinal Factory were labeled with technetium-99m under optional conditions, respectively. Biodistribution in 40 Kung Ming mice was measured at different time points after intravenous injection of 555 ∼ 740 KBq 99Tcm-MBPDA. The uptake percent dose per organ (%ID/organ) and per gram tissue (%ID/g) were calculated. Dynamic imaging of 30 scintigrams at a rate of 2 s/frame 28 at 30 s/frame, and 50 at 60 s/frame using GE Starcam 400 AC/4000i SPECT in 2 monkeys was immediately acquired after rapid injection of 218.3 ∼ 333 MBq of 99Tcm-MBPDA or 99Tcm-ECD, and SPECT monkey whole body and cerebral tomographic imaging were performed at 70 min postinjection, and images were processed and reconstructred to be transverse, coronal and sagittal sections. Acute toxic animal trials using 2 groups of mice (n=5, each group) and apyrogen experiment in 3 rabbits were studied respectively. The radiochemical purity of 99Tcm-MBPDA abd 99Tcm-ECD was more than 95% and 97% Biodistribution results in mice showed high brain uptake and good retention, and the brain uptake percents at 2, 5, 15, 30 and 60 min postinjection were 1.85 ± 0.38, 1.80±0.02, 1.32±0.02, 1.16±0.23, and 1.17±0.05 %ID. Sixty-three point two percent of initial activity remained in brain 60 min postinjection. The blood clearance half time was less than 15 min (6.19±0.07%ID). The brain/blood ratio was 7.3 at 60 min postinjection. The cerebral dynamic blood flow perfusion imaging in monkey demonstrated at 2 min after administration to attain the maximum radioactivity of 99Tcm-MBPDA in the brain. In comparison with activity at 2 min (99Tcm-MBPDA) and 5 min

  2. Intracranial Hemorrhage Annotation for CT Brain Images

    Directory of Open Access Journals (Sweden)

    Tong Hau Lee

    2011-01-01

    Full Text Available In this paper, we created a decision-making model to detect intracranial hemorrhage and adopted Expectation Maximization(EM segmentation to segment the Computed Tomography (CT images. In this work, basically intracranial hemorrhage is classified into two main types which are intra-axial hemorrhage and extra-axial hemorrhage. In order to ease classification, contrast enhancement is adopted to finetune the contrast of the hemorrhage. After that, k-means is applied to group the potential and suspicious hemorrhagic regions into one cluster. The decision-making process is to identify whether the suspicious regions are hemorrhagic regions or non-regions of interest. After the hemorrhagic detection, the images are segmented into brain matter and cerebrospinal fluid (CSF by using expectation-maximization (EM segmentation. The acquired experimental results are evaluated in terms of recall and precision. The encouraging results have been attained whereby the proposed system has yielded 0.9333 and 0.8880 precision for extra-axial and intra-axial hemorrhagic detection respectively, whereas recall rate obtained is 0.9245 and 0.8043 for extra-axial and intra-axial hemorrhagic detection respectively.

  3. Contrast Agent Mass Spectrometry Imaging Reveals Tumor Heterogeneity.

    Science.gov (United States)

    Tata, Alessandra; Zheng, Jinzi; Ginsberg, Howard J; Jaffray, David A; Ifa, Demian R; Zarrine-Afsar, Arash

    2015-08-01

    Mapping intratumoral heterogeneity such as vasculature and margins is important during intraoperative applications. Desorption electrospray ionization mass spectrometry (DESI-MS) has demonstrated potential for intraoperative tumor imaging using validated MS profiles. The clinical translation of DESI-MS into a universal label-free imaging technique thus requires access to MS profiles characteristic to tumors and healthy tissues. Here, we developed contrast agent mass spectrometry imaging (CA-MSI) that utilizes a magnetic resonance imaging (MRI) contrast agent targeted to disease sites, as a label, to reveal tumor heterogeneity in the absence of known MS profiles. Human breast cancer tumors grown in mice were subjected to CA-MSI using Gadoteridol revealing tumor margins and vasculature from the localization of [Gadoteridol+K](+) and [Gadoteridol+Na](+) adducts, respectively. The localization of the [Gadoteridol+K](+) adduct as revealed through DESI-MS complements the in vivo MRI results. DESI-MS imaging is therefore possible for tumors for which no characteristic MS profiles are established. Further DESI-MS imaging of the flux of the contrast agent through mouse kidneys was performed indicating secretion of the intact label. PMID:26138213

  4. The clinical use of brain SPECT imaging in neuropsychiatry

    International Nuclear Information System (INIS)

    This article reviews the literature on brain SPECT imaging in brain trauma, dementia, and temporal lobe epilepsy. Brain SPECT allows clinicians the ability to view cerebral areas of healthy, low, and excessive perfusion. This information can be correlated with what is known about the function or dysfunction of each area. SPECT has a number of advantages over other imaging techniques, including wider availability, lower cost, and high quality resolution with multi-headed cameras. There are a number of issues that compromise the effective use of SPECT, including low quality of some imaging cameras, and variability of image rendering and readings (Au)

  5. RNA aptamer probes as optical imaging agents for the detection of amyloid plaques.

    Directory of Open Access Journals (Sweden)

    Christian T Farrar

    Full Text Available Optical imaging using multiphoton microscopy and whole body near infrared imaging has become a routine part of biomedical research. However, optical imaging methods rely on the availability of either small molecule reporters or genetically encoded fluorescent proteins, which are challenging and time consuming to develop. While directly labeled antibodies can also be used as imaging agents, antibodies are species specific, can typically not be tagged with multiple fluorescent reporters without interfering with target binding, and are bioactive, almost always eliciting a biological response and thereby influencing the process that is being studied. We examined the possibility of developing highly specific and sensitive optical imaging agents using aptamer technology. We developed a fluorescently tagged anti-Aβ RNA aptamer, β55, which binds amyloid plaques in both ex vivo human Alzheimer's disease brain tissue and in vivo APP/PS1 transgenic mice. Diffuse β55 positive halos, attributed to oligomeric Aβ, were observed surrounding the methoxy-XO4 positive plaque cores. Dot blots of synthetic Aβ aggregates provide further evidence that β55 binds both fibrillar and non-fibrillar Aβ. The high binding affinity, the ease of probe development, and the ability to incorporate multiple and multimodal imaging reporters suggest that RNA aptamers may have complementary and perhaps advantageous properties compared to conventional optical imaging probes and reporters.

  6. Differential uptake of MRI contrast agents indicates charge-selective blood-brain interface in the crayfish.

    Science.gov (United States)

    Otopalik, Adriane G; Shin, Jane; Beltz, Barbara S; Sandeman, David C; Kolodny, Nancy H

    2012-08-01

    This study provides a new perspective on the long-standing problem of the nature of the decapod crustacean blood-brain interface. Previous studies of crustacean blood-brain interface permeability have relied on invasive histological, immunohistochemical and electrophysiological techniques, indicating a leaky non-selective blood-brain barrier. The present investigation involves the use of magnetic resonance imaging (MRI), a method for non-invasive longitudinal tracking of tracers in real-time. Differential uptake rates of two molecularly distinct MRI contrast agents, namely manganese (Mn(II)) and Magnevist® (Gd-DTPA), were observed and quantified in the crayfish, Cherax destructor. Contrast agents were injected into the pericardium and uptake was observed with longitudinal MRI for approximately 14.5 h. Mn(II) was taken up quickly into neural tissue (within 6.5 min), whereas Gd-DTPA was not taken up into neural tissue and was instead restricted to the intracerebral vasculature or excreted into nearby sinuses. Our results provide evidence for a charge-selective intracerebral blood-brain interface in the crustacean nervous system, a structural characteristic once considered too complex for a lower-order arthropod. PMID:22526631

  7. Laser Doppler imaging for intraoperative human brain mapping

    OpenAIRE

    Raabe, A; Van De Ville, D.; Leutenegger, M.; Szelényi, A; Hattingen, E; R. Gerlach; Seifert, V.; Hauger, C.; Lopez, A; Leitgeb, R.; Unser, M.; Martin-Williams, E.J.; Lasser, T.

    2009-01-01

    The identification and accurate location of centers of brain activity are vital both in neuro-surgery and brain research. This study aimed to provide a non-invasive, non-contact, accurate, rapid and user-friendly means of producing functional images intraoperatively. To this end a full field Laser Doppler imager was developed and integrated within the surgical microscope and perfusion images of the cortical surface were acquired during awake surgery whilst the patient performed a predet...

  8. Evaluation of the Efficacy of Targeted Imaging Agents.

    Science.gov (United States)

    Graham, Michael M; Weber, Wolfgang A

    2016-04-01

    This paper presents our adaptation of Fryback and Thornbury's hierarchical scheme for modeling the efficacy of diagnostic imaging systems. The original scheme was designed to evaluate new medical imaging systems but is less successful when applied to evaluate new radiopharmaceuticals. The proposed adaptation, which is specifically directed toward evaluating targeted imaging agents, has 6 levels: in vitro characterization, in vivo animal studies, initial human studies, impact on clinical care (change in management), impact on patient outcome, and societal efficacy. These levels, particularly the first four, implicitly define the sequence of studies needed to move an agent from the radiochemistry synthesis laboratory to the clinic. Completion of level 4 (impact on clinical care) should be sufficient for initial approval and reimbursement. We hope that the adapted scheme will help streamline the process and assist in bringing new targeted radiopharmaceuticals to approval over the next few years. PMID:26769867

  9. Functional imaging in treatment planning of brain lesions

    International Nuclear Information System (INIS)

    Purpose: Explore the use of functional imaging data in radiation treatment planning of brain lesions. Methods and Materials: Compare the treatment-planning process with and without the use of functional brain imaging for clinical cases where functional studies using either single photon emission computed tomography or magnetic resonance imaging are available. Results: A method to register functional image data with planning image studies is needed for functional treatment planning. Functional volumes are not simply connected regions. One activation study may produce many isolated functional areas. After finding the functional volumes and registering the functional information with the planning imaging data, the tools used for conventional three-dimensional treatment planning are sufficient for functional treatment planning. However, the planning system must provide dose-volume histograms for volumes of interest that consist of isolated pieces. Treatment plans that spare functional brain while providing identical target coverage can be constructed for lesions situated near the functional volume. However, the dose to other areas of the brain may be increased. Conclusions: Functional imaging will make determination of dose response of eloquent areas of the brain possible when combined with volumetric dose information and neuropsychological evaluation prior to and after radiation therapy. Realizing the full potential of functional imaging studies will require improved delineation of activated volumes and determination of the uncertainties in functional volume delineation. Optimization of treatment plans by minimizing dose to volumes activated during functional imaging studies should be used cautiously, because the dose to ''silent,'' but possibly eloquent, brain may be increased

  10. A Novel Approach for MRI Brain Images Segmentation

    Directory of Open Access Journals (Sweden)

    Abo-Eleneen Z. A

    2013-03-01

    Full Text Available Segmentation of brain from magnetic resonance (MR images has important applications in neuroimaging, in particular it facilitates in extracting different brain tissues such as cerebrospinal fluids, white matter and gray matter. That helps in determining the volume of the tissues in three-dimensional brain MR images, which yields in analyzing many neural disorders such as epilepsy and Alzheimer disease. The Fisher information is a measure of the fluctuations in the observations. In a sense, the Fisher information of an image specifies the quality of the image. In this paper, we developed a new thresholding method using the Fisher information measure and intensity contrast to segment medical images. It is the weighted sum of the Fisher information measure and intensity contrast between the object and background. This technique is a powerful method for noisy image segmentation. The method applied on a normal MR brain images and a glioma MR brain images. Experimental results show that the use of the Fisher information effectively segmented MR brain images.

  11. Automatic segmentation and classification of human brain image based on a fuzzy brain atlas

    Science.gov (United States)

    Tan, Ou; Jia, Chunguang; Duan, Huilong; Lu, Weixue

    1998-09-01

    It is difficult to automatically segment and classify tomograph images of actual patient's brain. Therefore, many interactive operations are performed. It is very time consuming and its precision is much depended on the user. In this paper, we combine a brain atlas and 3D fuzzy image segmentation into the image matching. It can not only find out the precise boundary of anatomic structure but also save time of the interactive operation. At first, the anatomic information of atlas is mapped into tomograph images of actual brain with a two step image matching method. Then, based on the mapping result, a 3D fuzzy structure mask is calculated. With the fuzzy information of anatomic structure, a new method of fuzzy clustering based on genetic algorithm is used to segment and classify the real brain image. There is only a minimum requirement of interaction in the whole process, including removing the skull and selecting some intrinsic point pairs.

  12. Assessment of brain retraction injury from tumor operation with 99Tcm-ECD brain SPECT imaging

    International Nuclear Information System (INIS)

    Objective: To evaluate the rCBF of brain retraction injury by 99Tcm-ECD SPECT imaging. Methods: The 99Tcm-ECD SPECT brain imaging was performed in 21 patients with brain tumor before and after operation. To compare the rCBF of peripheral tumor region with that of retraction injury region by semi-quantitative analysis. The rCBF levels of the central and peripheral areas of brain retraction injury were also studied. Results: Both the peripheral tumor region before operation and retraction region after operation were ischemic, but the difference between them was significant (P99Tcm-ECD SPECT brain imaging is a useful technique in detecting retraction injury come from brain tumor operation

  13. Fast and Accurate Brain Image Retrieval Using Gabor Wavelet Algorithm

    Directory of Open Access Journals (Sweden)

    J.Esther

    2014-01-01

    Full Text Available CBIR in medical image databases are used to assist physician in diagnosis the diseases and also used to aid diagnosis by identifying similar past cases. In order to retrieve a fast, accurate and an effective similarity of images from the large data set. The pre-processing step is extraction of brain. It removes the unwanted non-brain areas like scalp, skull, neck, eyes, ear etc from the MRI Head scan images. After removing the unwanted areas of non-brain region, it is very effective to retrieve the similar images. In this paper it is proposed a brain extraction technique using fuzzy morphological operators. For the experimental results 1200 MRI images are taken from scan centre and some brain images are collected from web and these have been implemented with popular brain extraction algorithm of Graph- Cut Algorithm (GCUT and Expectation Maximization algorithm (EMA. The experiment result shows that the proposed algorithm fuzzy morphological operator algorithm (FMOA is prompting the best promising results. Using this FMOA result retrieved the brain image from the large collection of databases using Gabor-Wavelet Transform.

  14. Functional magnetic resonance imaging of higher brain activity

    International Nuclear Information System (INIS)

    Functional magnetic resonance images (fMRIs) exhibit small differences in the magnetic resonance signal intensity in positions corresponding to focal areas of brain activation. These signal are caused by variation in the oxygenation state of the venous vasculature. Using this non-invasive and dynamic method, it is possible to localize functional brain activation, in vivo, in normal individuals, with an accuracy of millimeters and a temporal resolution of seconds. Though a series of technical difficulties remain, fMRI is increasingly becoming a key method for visualizing the working brain, and uncovering the topographical organization of the human brain, and understanding the relationship between brain and the mind

  15. Functional imaging of the lungs with gas agents.

    Science.gov (United States)

    Kruger, Stanley J; Nagle, Scott K; Couch, Marcus J; Ohno, Yoshiharu; Albert, Mitchell; Fain, Sean B

    2016-02-01

    This review focuses on the state-of-the-art of the three major classes of gas contrast agents used in magnetic resonance imaging (MRI)-hyperpolarized (HP) gas, molecular oxygen, and fluorinated gas--and their application to clinical pulmonary research. During the past several years there has been accelerated development of pulmonary MRI. This has been driven in part by concerns regarding ionizing radiation using multidetector computed tomography (CT). However, MRI also offers capabilities for fast multispectral and functional imaging using gas agents that are not technically feasible with CT. Recent improvements in gradient performance and radial acquisition methods using ultrashort echo time (UTE) have contributed to advances in these functional pulmonary MRI techniques. The relative strengths and weaknesses of the main functional imaging methods and gas agents are compared and applications to measures of ventilation, diffusion, and gas exchange are presented. Functional lung MRI methods using these gas agents are improving our understanding of a wide range of chronic lung diseases, including chronic obstructive pulmonary disease, asthma, and cystic fibrosis in both adults and children. PMID:26218920

  16. In vivo PET imaging of brain nicotinic cholinergic receptors

    International Nuclear Information System (INIS)

    Neuronal acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system where they modulate a number of CNS functions including neurotransmitter release, cognitive function, anxiety, analgesia and control of cerebral blood flow. In the brain, a major subtype is composed of the α4β2 subunit combination. Density of this subtype has been shown to be decreased in patients with neuro-degenerative disease such as Alzheimer and Parkinson's disease (AD and PD), and mutated receptors has been described in some familial epilepsy. Thus, in vivo mapping of the nicotinic nAChRs by Positron Emission Tomography (PET) are of great interest to monitor the evolution of these pathologies and changes in the neuronal biochemistry induced by therapeutic agents. Recently, a new compound, 3-[2(S)-2-azetidinyl-methoxy]pyridine (A-85380) has been synthesised and labelled with fluorine-18, [18F]fluoro-A-85380 (Dolle et al., 1999). The [18F]fluoro-A-85380 has been shown to bind with high affinity t o nAChRs in vitro (Saba et al., 2004), and its toxicity was low and compatible with it s use at tracer dose in human PET studies (Valette, 2002). PET studies in baboons showed that, after in vivo administration of [ 18F]fluoro-A-85380 at a tracer dose, the distribution of the radioactivity in the brain reflect the distribution of the 18F]fluoro-A-8538 0 combined with its low toxicity make possible the imaging of the nicotinic receptor s in human by PET (Bottlaender 2003). Studies were performed in healthy non-smoker volunteers to evaluate the brain kinetics of [18F]fluoro-A-85380 and to assess the quantification of its nAChRs binding in the human brain with PET (Gallezot et a., 2005). The [18F]fluoro-A-85380 was also used in epileptic patients to whom a mutation in the α4 or β2 nAChRs subunit have been identified. We found that, in these patients, the pattern of the brain distribution of the radiotracer was found different when compared to the healthy subjects

  17. Screening CEST contrast agents using ultrafast CEST imaging

    Science.gov (United States)

    Xu, Xiang; Yadav, Nirbhay N.; Song, Xiaolei; McMahon, Michael T.; Jerschow, Alexej; van Zijl, Peter C. M.; Xu, Jiadi

    2016-04-01

    A chemical exchange saturation transfer (CEST) experiment can be performed in an ultrafast fashion if a gradient field is applied simultaneously with the saturation pulse. This approach has been demonstrated for studying dia- and para-magnetic CEST agents, hyperpolarized Xe gas and in vivo spectroscopy. In this study we present a simple method for the simultaneous screening of multiple samples. Furthermore, by interleaving a number of saturation and readout periods within the TR, a series of images with different saturation times can be acquired, allowing for the quantification of exchange rates using the variable saturation time (QUEST) approach in a much accelerated fashion, thus enabling high throughput screening of CEST contrast agents.

  18. Role of Hybrid Brain Imaging in Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Amer M. Burhan

    2015-12-01

    Full Text Available This is a focused review of imaging literature to scope the utility of hybrid brain imaging in neuropsychiatric disorders. The review focuses on brain imaging modalities that utilize hybrid (fusion techniques to characterize abnormal brain molecular signals in combination with structural and functional changes that have been observed in neuropsychiatric disorders. An overview of clinical hybrid brain imaging technologies for human use is followed by a selective review of the literature that conceptualizes the use of these technologies in understanding basic mechanisms of major neuropsychiatric disorders and their therapeutics. Neuronal network abnormalities are highlighted throughout this review to scope the utility of hybrid imaging as a potential biomarker for each disorder.

  19. Metabolic imaging of the heart and brain

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) can provide quantitative images of cerebral function. Detailed maps of critical functional areas such as those concerned with language may ultimately guide the neurosurgeon. In vivo pharmacology of the brain is also being conducted with PET and offers the opportunity for better understanding of the pathophysiology of specific diseases and to tailor therapies to the needs of individual patients. The development of single photon emission computed tomography (SPECT) and radiopharmaceuticals whose intracerebral distribution reflects metabolism, perfusion, and receptor function promises to bring into general medical practice the remarkable diagnostic advances that have previously been limited to a small number of PET centers. Tracers of perfusion and metabolism have been particularly useful in the assessment of Alzheimer disease, cerebrovascular disease, epilepsy, and schizophrenia. SPECT of the heart has been coupled with radiopharmaceuticals that reflect cardiac perfusion, metabolism, and infarction. These studies have been particularly helpful in the identification and assessment of coronary artery disease in its therapy. The recent introduction of Tc-99m-labeled radiotracers further extends the application of this technique to patients with acute ischemia and infarction and to assessment of the effect of interventions such as angioplasty and lytic therapy. Radiolabeled antibody fragments to myosini provide a further tool for early identification of infarction and estimation of its size

  20. Role of infectious agents in the carcinogenesis of brain and head and neck cancers

    OpenAIRE

    Alibek Kenneth; Kakpenova Ainur; Baiken Yeldar

    2013-01-01

    Abstract This review concentrates on tumours that are anatomically localised in head and neck regions. Brain cancers and head and neck cancers together account for more than 873,000 cases annually worldwide, with an increasing incidence each year. With poor survival rates at late stages, brain and head and neck cancers represent serious conditions. Carcinogenesis is a multi-step process and the role of infectious agents in this progression has not been fully identified. A major problem with s...

  1. Pattern recognition on brain magnetic resonance imaging in alpha dystroglycanopathies

    Directory of Open Access Journals (Sweden)

    Bindu Parayil

    2010-01-01

    Full Text Available Alpha dystroglycanopathies are heterogeneous group of disorders both phenotypically and genetically. A subgroup of these patients has characteristic brain imaging findings. Four patients with typical imaging findings of alpha dystroglycanopathy are reported. Phenotypic features included: global developmental delay, contractures, hypotonia and oculomotor abnormalities in all. Other manifestations were consanguinity (3, seizures (3, macrocephaly (1, microcephaly (3, retinal changes (2 and hypogenitalism (2. Magnetic resonance imaging (MRI of the brain revealed polymicrogyria, white matter changes, pontine hypoplasia, and subcortical cerebellar cysts in all the patients, ventriculomegaly, callosal abnormalities, and absent septum pellucidum in two and Dandy -Walker variant malformation in three. Magnetic resonace imaging of the first cousin of one the patient had the same characteristic imaging features. Brain imaging findings were almost identical despite heterogeneity in clinical presentation and histopathological features. Pattern recognition of MR imaging features may serve as a clue to the diagnosis of alpha dystroglycanopathy.

  2. Identifying brain neoplasms using dye-enhanced multimodal confocal imaging

    Science.gov (United States)

    Wirth, Dennis; Snuderl, Matija; Sheth, Sameer; Kwon, Churl-Su; Frosch, Matthew P.; Curry, William; Yaroslavsky, Anna N.

    2012-02-01

    Brain tumors cause significant morbidity and mortality even when benign. Completeness of resection of brain tumors improves quality of life and survival; however, that is often difficult to accomplish. The goal of this study was to evaluate the feasibility of using multimodal confocal imaging for intraoperative detection of brain neoplasms. We have imaged different types of benign and malignant, primary and metastatic brain tumors. We correlated optical images with histopathology and evaluated the possibility of interpreting confocal images in a manner similar to pathology. Surgical specimens were briefly stained in 0.05 mg/ml aqueous solution of methylene blue (MB) and imaged using a multimodal confocal microscope. Reflectance and fluorescence signals of MB were excited at 642 nm. Fluorescence emission of MB was registered between 670 and 710 nm. After imaging, tissues were processed for hematoxylin and eosin (H&E) histopathology. The results of comparison demonstrate good correlation between fluorescence images and histopathology. Reflectance images provide information about morphology and vascularity of the specimens, complementary to that provided by fluorescence images. Multimodal confocal imaging has the potential to aid in the intraoperative detection of microscopic deposits of brain neoplasms. The application of this technique may improve completeness of resection and increase patient survival.

  3. Preparation and animal studies of 99Tcm-TRODAT-1 as a dopamine transporter imaging agent

    International Nuclear Information System (INIS)

    Objective: To develop 99Tcm labelled dopamine transporter (DAT) imaging agent 99Tcm-(2β-[N,N'-bis(2-mercaptoethyl) ethylenediamin] methyl, 3β-(4-chlorophenyl) tropane (TRODAT-1) for evaluating changes of DAT in patients with Parkinson's disease. Methods: TRODAT-1 was synthesized from cocaine by stepwise reactions adding two aminoethanethiol units. Using SnCl2 as reducing agent, and in the presence of Naglucoheptonate, 99Tcm-TRODAT-1 was prepared. Animal studies have been performed in rats and normal monkeys. Results: The structure of TRODAT-1 was confirmed by IR, 1HNMR and MS. Radiochemical purity of 99Tcm-TRODAT-1 was over 90%, and stable for 24 h at room temperature. The partition coefficient in octanol and buffer was 132 and 154 at pH 7.0 and 7.4 respectively. Biodistribution displayed relatively low uptake in rat brain (0.28 and 0.12% ID/org at 2 min and 60 min post injection, respectively), but high uptake in liver (16.7% ID/organ at 60 min), steady uptake in kidney (maintained 3% ID/organ). The major radioactivity was excreted by hepatobiliary systems. The distribution in rat's brain showed that striatal uptake were 0.193, 0.189, 0.142 and 0.136% ID/g at 2, 30, 60 and 120 min, respectively. The ratios of striatal to cerebellar, striatal to hippocampal and striatal to cortical were 4.45 2.55 and 3.15 at 120 min post injection, respectively. Brain image studies in monkeys indicated that TRODAT was uptake and retained in the basal ganglia, where containing DAT abundantly. Ratio of regional brain uptakes of striatum/cerebellum was 1.56 as measured by SPECT imaging at 120 min. Conclusions: Above results showed the stable, neutral and lipophilic complex 99Tcm-TRODAT-1 can cross the blood brain barrier, and be selectively concentrated by the striatal area, where containing DAT abundantly. High quality images of monkeys were also obtained. It suggested that 99Tcm-TRODAT-1 may be a promising agent for clinical application

  4. Mechanism of Chronic Pain in Rodent Brain Imaging

    Science.gov (United States)

    Chang, Pei-Ching

    Chronic pain is a significant health problem that greatly impacts the quality of life of individuals and imparts high costs to society. Despite intense research effort in understanding of the mechanism of pain, chronic pain remains a clinical problem that has few effective therapies. The advent of human brain imaging research in recent years has changed the way that chronic pain is viewed. To further extend the use of human brain imaging techniques for better therapies, the adoption of imaging technique onto the animal pain models is essential, in which underlying brain mechanisms can be systematically studied using various combination of imaging and invasive techniques. The general goal of this thesis is to addresses how brain develops and maintains chronic pain in an animal model using fMRI. We demonstrate that nucleus accumbens, the central component of mesolimbic circuitry, is essential in development of chronic pain. To advance our imaging technique, we develop an innovative methodology to carry out fMRI in awake, conscious rat. Using this cutting-edge technique, we show that allodynia is assoicated with shift brain response toward neural circuits associated nucleus accumbens and prefrontal cortex that regulate affective and cognitive component of pain. Taken together, this thesis provides a deeper understanding of how brain mediates pain. It builds on the existing body of knowledge through maximizing the depth of insight into brain imaging of chronic pain.

  5. Appropriate Contrast Enhancement Measures for Brain and Breast Cancer Images

    Directory of Open Access Journals (Sweden)

    Suneet Gupta

    2016-01-01

    Full Text Available Medical imaging systems often produce images that require enhancement, such as improving the image contrast as they are poor in contrast. Therefore, they must be enhanced before they are examined by medical professionals. This is necessary for proper diagnosis and subsequent treatment. We do have various enhancement algorithms which enhance the medical images to different extents. We also have various quantitative metrics or measures which evaluate the quality of an image. This paper suggests the most appropriate measures for two of the medical images, namely, brain cancer images and breast cancer images.

  6. Superparamagnetic particles as an oral MR imaging contrast agent

    International Nuclear Information System (INIS)

    A new superparamagnetic oral magnetic resonance imaging contrast agent has been developed that reduces the signal from the bowel due to T2 shortening. The contrast agent consists of monodisperse resin carrier particles with a diameter of approximately 3.5 μm and containing 20% magnetic iron oxide. The contrast agent produced a satisfactory lowering of the signal intensity with different spin-echo sequences at a dose of 0.1-1.0g of particles in 1,000 mL of water; and lower doses were needed with gradient-echo and phase-contrast sequences. In an examination of 25 volunteers and patients with malignant lymphoma, the depiction of normal and pathologic structures was enhanced after administration of the contrast medium

  7. Functional connectivity of the rat brain in magnetic resonance imaging

    OpenAIRE

    Kalthoff, Daniel

    2011-01-01

    INTRODUCTION: Functional connectivity – generally defined by Friston as “temporal correlation of a neurophysiological index measured in different brain areas” – was first reported for human functional magnetic resonance imaging (fMRI) of the brain by Biswal and co-workers in 1995. It relies on spontaneous low frequency fluctuations (< 0.1 Hz) of the blood oxygenation level dependent (BOLD) signal that are synchronized in distant brain regions in the absence of any task or stimulus, hence the ...

  8. In vivo PET imaging of beta-amyloid deposition in mouse models of Alzheimer's disease with a high specific activity PET imaging agent [18F]flutemetamol

    OpenAIRE

    Snellman, Anniina; Rokka, Johanna; Lopez-Picon, Francisco R; Eskola, Olli; Salmona, Mario; Forloni, Gianluigi; Scheinin, Mika; Solin, Olof; Rinne, Juha O; Haaparanta-Solin, Merja

    2014-01-01

    Background: The purpose of the study was to evaluate the applicability of 18F-labelled amyloid imaging positron emission tomography (PET) agent [18F]flutemetamol to detect changes in brain beta-amyloid (Aβ) deposition in vivo in APP23, Tg2576 and APPswe-PS1dE9 mouse models of Alzheimer's disease. We expected that the high specific activity of [18F]flutemetamol would make it an attractive small animal Aβ imaging agent. Methods: [18F]flutemetamol uptake in the m...

  9. In vivo imaging agents: an international market report

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    The purpose of this study is to provide a global perspective of the in vivo imaging agents business to market planning executives who are working for companies that develop, produce and distribute various types of in vivo imaging agents. Others that could find this study useful include investment bankers, regulatory and governmental authorities and purchasers of these products. The study attempts to diligently provide market data by type for important geographic markets - Western Europe, the U.S.A., and Japan. A competitive intelligence section which discusses companies involved in these markets constitutes the last part of this study. These profiles are not intended to extensively evaluate each company's marketing strengths or strategies but to provide a general idea of the market presence and prospects. A combination of primary and secondary research is used for all findings. (author).

  10. In vivo imaging agents: an international market report

    International Nuclear Information System (INIS)

    The purpose of this study is to provide a global perspective of the in vivo imaging agents business to market planning executives who are working for companies that develop, produce and distribute various types of in vivo imaging agents. Others that could find this study useful include investment bankers, regulatory and governmental authorities and purchasers of these products. The study attempts to diligently provide market data by type for important geographic markets - Western Europe, the U.S.A., and Japan. A competitive intelligence section which discusses companies involved in these markets constitutes the last part of this study. These profiles are not intended to extensively evaluate each company's marketing strengths or strategies but to provide a general idea of the market presence and prospects. A combination of primary and secondary research is used for all findings. (author)

  11. Characterization of IMPY as a potential imaging agent for β-amyloid plaques in double transgenic PSAPP mice

    International Nuclear Information System (INIS)

    Deposition of β-amyloid (Aβ) plaques in the brain is likely linked to the pathogenesis of Alzheimer's disease (AD). Developing specific Aβ aggregate-binding ligands as in vivo imaging agents may be useful for diagnosis and monitoring the progression of AD. We have prepared a thioflavin derivative, 6-iodo-2-(4'-dimethylamino-)phenyl-imidazo[1,2-a]pyridine, IMPY, which is readily radiolabeled with 125I/123I for binding or single-photon emission computerized tomography (SPECT) imaging studies. Characterization of [125I]IMPY binding to plaque-like structures was evaluated in double transgenic PSAPP mice. [125I]IMPY labeled Aβ plaques in transgenic mouse brain sections, and the labeling was consistent with fluorescent staining and Aβ-specific antibody labeling. Significant amounts of Aβ plaques present in the cortical, hippocampal, and entorhinal regions of the transgenic mouse brain were clearly detected with [125I]IMPY via ex vivo autoradiography. In contrast, [125I]IMPY showed little labeling in the age-matched control mouse brain. Tissue homogenate binding further corroborated the Aβ plaque-specific distribution in various brain regions of transgenic mouse, and correlated well with the known density of Aβ deposition. Using a tissue dissection technique, [125I]IMPY showed a moderate increase in the cortical region of transgenic mice as compared to the age-matched controls. In vitro blocking of [125I]IMPY by ''carrier'' observed via autoradiography in mouse brain sections was not replicated by an in vivo blocking experiment in living TT mouse brain. The failure was most likely due to a significant carrier effect, which slows down the tracer in vivo metabolism, leading to an increased brain uptake. Taken together, these data indicate that [123I]IMPY is a potentially useful SPECT imaging agent for in vivo labeling of Aβ plaques in the living brain. (orig.)

  12. Do brain image databanks support understanding of normal ageing brain structure? A systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Dickie, David Alexander; Job, Dominic E.; Wardlaw, Joanna M. [University of Edinburgh, Division of Clinical Neurosciences, Western General Hospital, Brain Research Imaging Centre (BRIC), Edinburgh (United Kingdom); Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Edinburgh (United Kingdom); Poole, Ian [Toshiba Medical Visualisation Systems Europe, Ltd., Edinburgh (United Kingdom); Ahearn, Trevor S.; Staff, Roger T.; Murray, Alison D. [University of Aberdeen, Aberdeen Biomedical Imaging Centre, Aberdeen (United Kingdom); Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Edinburgh (United Kingdom)

    2012-07-15

    To document accessible magnetic resonance (MR) brain images, metadata and statistical results from normal older subjects that may be used to improve diagnoses of dementia. We systematically reviewed published brain image databanks (print literature and Internet) concerned with normal ageing brain structure. From nine eligible databanks, there appeared to be 944 normal subjects aged {>=}60 years. However, many subjects were in more than one databank and not all were fully representative of normal ageing clinical characteristics. Therefore, there were approximately 343 subjects aged {>=}60 years with metadata representative of normal ageing, but only 98 subjects were openly accessible. No databank had the range of MR image sequences, e.g. T2*, fluid-attenuated inversion recovery (FLAIR), required to effectively characterise the features of brain ageing. No databank supported random subject retrieval; therefore, manual selection bias and errors may occur in studies that use these subjects as controls. Finally, no databank stored results from statistical analyses of its brain image and metadata that may be validated with analyses of further data. Brain image databanks require open access, more subjects, metadata, MR image sequences, searchability and statistical results to improve understanding of normal ageing brain structure and diagnoses of dementia. (orig.)

  13. Do brain image databanks support understanding of normal ageing brain structure? A systematic review

    International Nuclear Information System (INIS)

    To document accessible magnetic resonance (MR) brain images, metadata and statistical results from normal older subjects that may be used to improve diagnoses of dementia. We systematically reviewed published brain image databanks (print literature and Internet) concerned with normal ageing brain structure. From nine eligible databanks, there appeared to be 944 normal subjects aged ≥60 years. However, many subjects were in more than one databank and not all were fully representative of normal ageing clinical characteristics. Therefore, there were approximately 343 subjects aged ≥60 years with metadata representative of normal ageing, but only 98 subjects were openly accessible. No databank had the range of MR image sequences, e.g. T2*, fluid-attenuated inversion recovery (FLAIR), required to effectively characterise the features of brain ageing. No databank supported random subject retrieval; therefore, manual selection bias and errors may occur in studies that use these subjects as controls. Finally, no databank stored results from statistical analyses of its brain image and metadata that may be validated with analyses of further data. Brain image databanks require open access, more subjects, metadata, MR image sequences, searchability and statistical results to improve understanding of normal ageing brain structure and diagnoses of dementia. (orig.)

  14. Structural brain imaging in diabetes : A methodological perspective

    NARCIS (Netherlands)

    Jongen, Cynthia; Biessels, Geert Jan

    2008-01-01

    Brain imaging provides information on brain anatomy and function and progression of cerebral abnormalities can be monitored. This may provide insight into the aetiology of diabetes related cerebral disorders. This paper focuses on the methods for the assessment of white matter hyperintensities and b

  15. Automated morphometry of transgenic mouse brains in MR images

    NARCIS (Netherlands)

    Scheenstra, Alize Elske Hiltje

    2011-01-01

    Quantitative and local morphometry of mouse brain MRI is a relatively new field of research, where automated methods can be exploited to rapidly provide accurate and repeatable results. In this thesis we reviewed several existing methods and applications of quantitative morphometry to brain MR image

  16. A Unified Framework for Brain Segmentation in MR Images

    Directory of Open Access Journals (Sweden)

    S. Yazdani

    2015-01-01

    Full Text Available Brain MRI segmentation is an important issue for discovering the brain structure and diagnosis of subtle anatomical changes in different brain diseases. However, due to several artifacts brain tissue segmentation remains a challenging task. The aim of this paper is to improve the automatic segmentation of brain into gray matter, white matter, and cerebrospinal fluid in magnetic resonance images (MRI. We proposed an automatic hybrid image segmentation method that integrates the modified statistical expectation-maximization (EM method and the spatial information combined with support vector machine (SVM. The combined method has more accurate results than what can be achieved with its individual techniques that is demonstrated through experiments on both real data and simulated images. Experiments are carried out on both synthetic and real MRI. The results of proposed technique are evaluated against manual segmentation results and other methods based on real T1-weighted scans from Internet Brain Segmentation Repository (IBSR and simulated images from BrainWeb. The Kappa index is calculated to assess the performance of the proposed framework relative to the ground truth and expert segmentations. The results demonstrate that the proposed combined method has satisfactory results on both simulated MRI and real brain datasets.

  17. Radiolabelled D2 agonists as prolactinoma imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Otto, C.A.

    1991-12-31

    Research conducted in this terminal year of support centered on three distinct areas: mAChR ligand localization in pancreas and the effect of Ca{sup +2} on localization, continuation of assessment of quaternized and neutral mAChR ligands for possible use as PET myocardial imaging agents, and initiation of a study to determine the relationship of the nAChR receptor to the cellular receptor for measles virus. Several tables and figures illustrating the results are included.

  18. Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging

    OpenAIRE

    Taejun Wang; Won Hyuk Jang; Seunghun Lee; Yoon, Calvin J.; Jun Ho Lee; Bumju Kim; Sekyu Hwang; Chun-Pyo Hong; Yeoreum Yoon; Gilgu Lee; Viet-Hoan Le; Seoyeon Bok; G-One Ahn; Jaewook Lee; Yong Song Gho

    2016-01-01

    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetra...

  19. Skull-stripping for Tumor-bearing Brain Images

    CERN Document Server

    Bauer, Stefan; Reyes, Mauricio

    2012-01-01

    Skull-stripping separates the skull region of the head from the soft brain tissues. In many cases of brain image analysis, this is an essential preprocessing step in order to improve the final result. This is true for both registration and segmentation tasks. In fact, skull-stripping of magnetic resonance images (MRI) is a well-studied problem with numerous publications in recent years. Many different algorithms have been proposed, a summary and comparison of which can be found in [Fennema-Notestine, 2006]. Despite the abundance of approaches, we discovered that the algorithms which had been suggested so far, perform poorly when dealing with tumor-bearing brain images. This is mostly due to additional difficulties in separating the brain from the skull in this case, especially when the lesion is located very close to the skull border. Additionally, images acquired according to standard clinical protocols, often exhibit anisotropic resolution and only partial coverage, which further complicates the task. There...

  20. Imaging of brain tumors with histological correlations. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Drevelegas, Antonios (ed.)

    2011-07-01

    This volume provides a deeper understanding of the diagnosis of brain tumors by correlating radiographic imaging features with the underlying pathological abnormalities. All modern imaging modalities are used to complete a diagnostic overview of brain tumors with emphasis on recent advances in diagnostic neuroradiology. High-quality illustrations depicting common and uncommon imaging characteristics of a wide range of brain tumors are presented and analysed, drawing attention to the ways in which these characteristics reflect different aspects of pathology. Important theoretical considerations are also discussed. Since the first edition, chapters have been revised and updated and new material has been added, including detailed information on the clinical application of functional MRI and diffusion tensor imaging. Radiologists and other clinicians interested in the current diagnostic approach to brain tumors will find this book to be an invaluable and enlightening clinical tool. (orig.)

  1. The preclinical pharmacological study of dopamine transporter imaging agent [99mTc]TRODAT-1

    International Nuclear Information System (INIS)

    Objective: To investigate the pharmacological characteristics of 99mTc-TRODAT-1 as an imaging agent for dopamine transporter. Methods: (1) The quality control of one-vial formulation produced in China. (2) Biodistribution in rats. (3) Imaging in normal and hemi-Parkinsonian model monkeys. Results: (1) The radiochemical purity of [99mTc]TRODAT-1 was about 79.9% evaluated by TLC. It was stable for 2.5 hours at room temperature. (2) The clearance of [99mTc]TRODAT-1 in the blood of rats was fast. The major portion of radioactivity was excreted by hepatobiliary system. (3) The brain uptake was moderate. But the agent had high-affinity binding to DAT which was highly concentrated in striatal area and there was no specific uptake in cerebellum. The ratio of ST/CB was high. (4) Pretreatment with haloperidol, a non-competing ligand, did not result in any significant change in the level of striatal uptake. (5) The distribution pattern as well as the brain regional uptake of [99mTc]TRODAT-1 did not display any significant difference between male and female rats at 60 min post-injection. (6) Monkeys' SPECT images clearly displayed the normal uptake and the pathologic changes in striatal area at 3 hours post-injection. The semi-quantitative analysis, ST/CB ratio, could reveal the specific uptake value for [99mTc]TRODAT-1 in reflecting the numeral and functional changes in DAT. Conclusion: [99mTc]TRODAT-1 labeled by one-vial formulation of China can be the imaging agent of DAT in clinical study. It proves to be effective and promising radiopharmaceuticals in vivo assessment of the loss of dopamine neurons in Parkinson's disease and other neurodegenerative disease

  2. STEREOLOGICAL EVALUATION OF BRAIN MAGNETIC RESONANCE IMAGES OF SCHIZOPHRENIC PATIENTS

    Directory of Open Access Journals (Sweden)

    Amani Abdelrazag Elfaki

    2013-11-01

    Full Text Available Advances in neuroimaging have enabled studies of specific neuroanatomical abnormalities with relevance to schizophrenia. This study quantified structural alterations on brain magnetic resonance (MR images of patients with schizophrenia. MR brain imaging was done on 88 control and 57 schizophrenic subjects and Dicom images were analyzed with ImageJ software. The brain volume was estimated with the planimetric stereological technique. The volume fraction of brain structures was also estimated. The results showed that, the mean volume of right, left, and total hemispheres in controls were 551, 550, and 1101 cm³, respectively. The mean volumes of right, left, and total hemispheres in schizophrenics were 513, 512, and 1026 cm³, respectively. The schizophrenics’ brains were smaller than the controls (p < 0.05. The mean volume of total white matter of controls (516 cm³ was bigger than the schizophrenics’ volume (451 cm³, (p < 0.05. The volume fraction of total white matter was also lower in schizophrenics (p < 0.05. Volume fraction of the lateral ventricles was higher in schizophrenics (p < 0.05. According to the findings, the volumes of schizophrenics’ brain were smaller than the controls and the volume fractional changes in schizophrenics showed sex dependent differences. We conclude that stereological analysis of MR brain images is useful for quantifying schizophrenia related structural changes.

  3. The potential of using brain images for authentication.

    Science.gov (United States)

    Chen, Fanglin; Zhou, Zongtan; Shen, Hui; Hu, Dewen

    2014-01-01

    Biometric recognition (also known as biometrics) refers to the automated recognition of individuals based on their biological or behavioral traits. Examples of biometric traits include fingerprint, palmprint, iris, and face. The brain is the most important and complex organ in the human body. Can it be used as a biometric trait? In this study, we analyze the uniqueness of the brain and try to use the brain for identity authentication. The proposed brain-based verification system operates in two stages: gray matter extraction and gray matter matching. A modified brain segmentation algorithm is implemented for extracting gray matter from an input brain image. Then, an alignment-based matching algorithm is developed for brain matching. Experimental results on two data sets show that the proposed brain recognition system meets the high accuracy requirement of identity authentication. Though currently the acquisition of the brain is still time consuming and expensive, brain images are highly unique and have the potential possibility for authentication in view of pattern recognition. PMID:25126604

  4. Radioiodination of central nerves system dopamine D2 receptor imaging agent. IBZM preparation and preclinical study

    International Nuclear Information System (INIS)

    To study preparation of central nerves system dopamine D2 imaging agent 131I-IBZM and its preclinical investigation, peracetic acid was used as the oxidant for preparing radioiodinated 125I-IBZM and 131I-IBZM, D2 binding properties of IBZM were examined by in vitro binding saturation analysis, rat whole body and regional brain biodistribution, rat brain autoradiography and rabbit SPECT static imaging, etc. The results are: 1. The radiolabelling yields of 125I-IBZM and 131I-IBZM were 84.18% +- 3.06% and 78.50% +- 3.47%. The radiochemical purity were over 95% after being isolated by HPLC; and were over 90% after being isolated by organic extraction. 2. Scatchard plot of D2 receptor saturation binding analysis showed: Kd = 0.53 +- 0.06 nmol/L, Bmax = 466.45 +- 45.88 fmol/mg protein. 3. The rat brain autoradiography and analysis showed that there was high 125I-IBZM uptake in striatal area 2 hr after injection, the striatal/cerebellum ratio was 6.22 +- 0.48; the high 125-IBZM uptake can be blocked by haloperidol--a special dopamine D2 receptor antagonist. 4. 131I-IBZM rat biodistribution and rabbit SPECT planar imaging showed good initial brain uptake and retention, the initial uptake of rat brain was 1.893 +- 0.147% ID/g at 2 min and 1.044 +- 0.135% ID/g at 60 min. The results showed that the radioiodinated IBZM had high affinity, saturation and specificity to rat's and rabbit's central nerves system dopamine D2 receptors

  5. Brain Imaging, Forward Inference, and Theories of Reasoning

    OpenAIRE

    Evan Heit

    2015-01-01

    This review focuses on the issue of how neuroimaging studies address theoretical accounts of reasoning, through the lens of the method of forward inference (Henson, 2005, 2006). After theories of deductive and inductive reasoning are briefly presented, the method of forward inference for distinguishing between psychological theories based on brain imaging evidence is critically reviewed. Brain imaging studies of reasoning, comparing deductive and inductive arguments, comparing meaningful ve...

  6. Effects of PUFA supplementation evidenced by brain imaging

    Directory of Open Access Journals (Sweden)

    Puri Basant K.

    2011-07-01

    Full Text Available This paper describes how the effects of PUFA supplementation can be indexed by neuroimaging. The role of structural magnetic resonance imaging studies are detailed in respect of testing a brain (lipid hypothesis and in respect of using a gold-standard image registration technique. The role of magnetic resonance spectroscopy of the brain is considered with respect to a recent advance in the analysis of 31-phosphorus neurospectroscopy data that enables motion-restricted membrane phospholipids to be quantified.

  7. An automated and simple method for brain MR image extraction

    OpenAIRE

    Zhu Zixin; Liu Jiafeng; Zhang Haiyan; Li Haiyun

    2011-01-01

    Abstract Background The extraction of brain tissue from magnetic resonance head images, is an important image processing step for the analyses of neuroimage data. The authors have developed an automated and simple brain extraction method using an improved geometric active contour model. Methods The method uses an improved geometric active contour model which can not only solve the boundary leakage problem but also is less sensitive to intensity inhomogeneity. The method defines the initial fu...

  8. SQUID based multichannel system for brain functional imaging

    OpenAIRE

    Vettoliere, Antonio

    2012-01-01

    A multichannel system for brain imaging containing 163 SQUID magnetometers arranged in a helmet shaped multisensorial array has been developed. To this aim, a previous investigation of a several SQUID configurations has been performed in order to choose a SQUID sensor having best performance for brain imaging on the basis of system working conditions. In particular, magnetometer and planar gradiometer have been designed, fabricated and characterized. Furthermore, a small magnetometer has b...

  9. Primary study of a novel Tc-tricarbonyl cocaine analogue as the potential DAT imaging agent

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiaobo; ZHU Lin; DING Shaoke; LIU Boli

    2005-01-01

    The convenient preparation of organometallic precursor fac-[99mTc(CO)3 (H2O)3]+ opens a new route to design new radiopharmaceuticals. Based on this precursor, a new cocaine analogue, Tropyn, is designed and synthesized, and "2+1" mixed-ligands approach is used to prepare a neutral complex [99mTc(CO)3(Tropyn)I]. Biodistribution in mice and rats proves that it has sufficient brain uptake. Rat regional brain biodistribution indicates that the complex is highly concentrated in the striatum (ST) with rapid clearance in the cortex (CT) and hippocampus (HP), which make it valuable for further investigation as the potential Second-Generation DAT imaging agent.

  10. Unsupervised Neural Techniques Applied to MR Brain Image Segmentation

    Directory of Open Access Journals (Sweden)

    A. Ortiz

    2012-01-01

    Full Text Available The primary goal of brain image segmentation is to partition a given brain image into different regions representing anatomical structures. Magnetic resonance image (MRI segmentation is especially interesting, since accurate segmentation in white matter, grey matter and cerebrospinal fluid provides a way to identify many brain disorders such as dementia, schizophrenia or Alzheimer’s disease (AD. Then, image segmentation results in a very interesting tool for neuroanatomical analyses. In this paper we show three alternatives to MR brain image segmentation algorithms, with the Self-Organizing Map (SOM as the core of the algorithms. The procedures devised do not use any a priori knowledge about voxel class assignment, and results in fully-unsupervised methods for MRI segmentation, making it possible to automatically discover different tissue classes. Our algorithm has been tested using the images from the Internet Brain Image Repository (IBSR outperforming existing methods, providing values for the average overlap metric of 0.7 for the white and grey matter and 0.45 for the cerebrospinal fluid. Furthermore, it also provides good results for high-resolution MR images provided by the Nuclear Medicine Service of the “Virgen de las Nieves” Hospital (Granada, Spain.

  11. AN ANN BASED BRAIN ABNORMALITY DETECTION USING MR IMAGES

    Directory of Open Access Journals (Sweden)

    K.V. Kulhalli

    2013-02-01

    Full Text Available The Main purpose of this paper is to design, implement and evaluate a strong automatic diagnostic system that increases the accuracy of tumor diagnosis in brain using MR images. This presented work classifies the brain tissues as normal or abnormal automatically, using computer vision. This saves lot of radiologist time to carryout monotonous repeated job. The acquired MR images are processed using image preprocessing techniques. The preprocessed images are then segmented, and the various features are extracted. The extracted features are fed to the artificial neural network as input that trains the network using error back propagation algorithm for correct decision making.

  12. MR image-guided portal verification for brain treatment field

    International Nuclear Information System (INIS)

    Purpose: To investigate a method for the generation of digitally reconstructed radiographs directly from MR images (DRR-MRI) to guide a computerized portal verification procedure. Methods and Materials: Several major steps were developed to perform an MR image-guided portal verification procedure. Initially, a wavelet-based multiresolution adaptive thresholding method was used to segment the skin slice-by-slice in MR brain axial images. Some selected anatomical structures, such as target volume and critical organs, were then manually identified and were reassigned to relatively higher intensities. Interslice information was interpolated with a directional method to achieve comparable display resolution in three dimensions. Next, a ray-tracing method was used to generate a DRR-MRI image at the planned treatment position, and the ray tracing was simply performed on summation of voxels along the ray. The skin and its relative positions were also projected to the DRR-MRI and were used to guide the search of similar features in the portal image. A Canny edge detector was used to enhance the brain contour in both portal and simulation images. The skin in the brain portal image was then extracted using a knowledge-based searching technique. Finally, a Chamfer matching technique was used to correlate features between DRR-MRI and portal image. Results: The MR image-guided portal verification method was evaluated using a brain phantom case and a clinical patient case. Both DRR-CT and DRR-MRI were generated using CT and MR phantom images with the same beam orientation and then compared. The matching result indicated that the maximum deviation of internal structures was less than 1 mm. The segmented results for brain MR slice images indicated that a wavelet-based image segmentation technique provided a reasonable estimation for the brain skin. For the clinical patient case with a given portal field, the MR image-guided verification method provided an excellent match between

  13. Chapter 4 - Applications of nanotechnology in molecular imaging of the brain.

    Science.gov (United States)

    McAteer, Martina A; Choudhury, Robin P

    2009-01-01

    Rapid advances in the field of nanotechnology promise revolutionary improvements in the diagnosis and therapy of neuroinflammatory disorders. An array of iron oxide nano- and microparticle agents have been developed for in vivo molecular magnetic resonance imaging (mMRI) of cerebrovascular endothelial targets, such as vascular cell adhesion molecule-1 (VCAM-1), E-selectin, and the glycoprotein receptor GP IIb/IIIa expressed on activated platelets. Molecular markers of glioma cells, such as matrix metalloproteinase-2 (MMP-2), and markers for brain tumor angiogenesis, such as alpha (v) beta (3) integrin (alpha(v)beta(3)), have also been successfully targeted using nanoparticle imaging probes. This chapter provides an overview of targeted, iron oxide nano- and microparticles that have been applied for in vivo mMRI of the brain in experimental models of multiple sclerosis (MS), brain ischemia, cerebral malaria (CM), brain cancer, and Alzheimer's disease. The potential of targeted nanoparticle agents for application in clinical imaging is also discussed, including multimodal and therapeutic approaches. PMID:20302829

  14. In vivo characteristics of IBZM in rat brains, an agent for quantitative SPECT imaging of D2 dopamine receptors. A basis for semiquantitative measurement of the receptor density using equilibrium analysis

    International Nuclear Information System (INIS)

    To establish a basis for semiquantitative SPECT measurements of the D2 dopamine receptor density using equilibrium analysis, we evaluated in vivo kinetic properties of 125I-IBZM in rat brains. We measured percent uptakes (% dose/g) of 125I-IBZM in the striatum, frontal cortex, and cerebellum. We made these regional measurements at 15, 30, 45, 60, 90, and 120 minutes after injection, respectively. The specific striatal uptake, which is the uptake difference between striatum and frontal cortex or cerebellum, showed a transient equilibrium phase at 60 min. Theoretically, with these 'reversible' D2 receptor binding ligands, the tracer-uptake ratio of the striatum-to-frontal cortex or cerebellum during the equilibrium phase provides an estimate of binding potential (Bound/Free=Bmax/Kd). Our experiment showed that these ratio increased with time after bolus injection of the tracer. Striatum to frontal cortex or cerebellum ratios which were calculated with pooled data (n=12) at 60 minutes in equilibrium phase showed nearly constant values (C.V.=12.3% and 13.5%, respectively). Although measuring the striatum to frontal cortex or cerebellum ratios near equilibrium phase by bolus injection of the tracer which are widely used in human SPECT study could not exactly signify the binding potential, those ratios at fixed time after injection would be reliable for semiquantitative index. (author)

  15. Preoperative functional brain mapping with MEG and MR imaging

    International Nuclear Information System (INIS)

    This paper reports on the feasibility of using MEG and MR imaging data for postoperative planning in surgical procedures employing sterotaxic techniques. Stereotaxic frame and frameless examinations were performed with selective display of images and superimposed MEG data. The Talairach/Tournoux whole-brain proportional voxel technique of statistically determining the most likely anatomic structures in a voxel of brain allows more precise localization of MEG data. A detailed anatomic atlas library provides a powerful computer-based reference for evaluation. Correlations of MEG findings with well-established functional anatomic references may provide a noninvasive means of preoperative brain mapping

  16. Three-dimensional microtomographic imaging of human brain cortex

    CERN Document Server

    Mizutania, Ryuta; Uesugi, Kentaro; Ohyama, Masami; Takekoshi, Susumu; Osamura, R Yoshiyuki; Suzuki, Yoshio

    2016-01-01

    This paper describes an x-ray microtomographic technique for imaging the three-dimensional structure of the human cerebral cortex. Neurons in the brain constitute a neural circuit as a three-dimensional network. The brain tissue is composed of light elements that give little contrast in a hard x-ray transmission image. The contrast was enhanced by staining neural cells with metal compounds. The obtained structure revealed the microarchitecture of the gray and white matter regions of the frontal cortex, which is responsible for the higher brain functions.

  17. Natural image classification driven by human brain activity

    Science.gov (United States)

    Zhang, Dai; Peng, Hanyang; Wang, Jinqiao; Tang, Ming; Xue, Rong; Zuo, Zhentao

    2016-03-01

    Natural image classification has been a hot topic in computer vision and pattern recognition research field. Since the performance of an image classification system can be improved by feature selection, many image feature selection methods have been developed. However, the existing supervised feature selection methods are typically driven by the class label information that are identical for different samples from the same class, ignoring with-in class image variability and therefore degrading the feature selection performance. In this study, we propose a novel feature selection method, driven by human brain activity signals collected using fMRI technique when human subjects were viewing natural images of different categories. The fMRI signals associated with subjects viewing different images encode the human perception of natural images, and therefore may capture image variability within- and cross- categories. We then select image features with the guidance of fMRI signals from brain regions with active response to image viewing. Particularly, bag of words features based on GIST descriptor are extracted from natural images for classification, and a sparse regression base feature selection method is adapted to select image features that can best predict fMRI signals. Finally, a classification model is built on the select image features to classify images without fMRI signals. The validation experiments for classifying images from 4 categories of two subjects have demonstrated that our method could achieve much better classification performance than the classifiers built on image feature selected by traditional feature selection methods.

  18. Graphene-based nanomaterials as molecular imaging agents.

    Science.gov (United States)

    Garg, Bhaskar; Sung, Chu-Hsun; Ling, Yong-Chien

    2015-01-01

    Molecular imaging (MI) is a noninvasive, real-time visualization of biochemical events at the cellular and molecular level within tissues, living cells, and/or intact objects that can be advantageously applied in the areas of diagnostics, therapeutics, drug discovery, and development in understanding the nanoscale reactions including enzymatic conversions and protein-protein interactions. Consequently, over the years, great advancement has been made in the development of a variety of MI agents such as peptides, aptamers, antibodies, and various nanomaterials (NMs) including single-walled carbon nanotubes. Recently, graphene, a material popularized by Geim & Novoselov, has ignited considerable research efforts to rationally design and execute a wide range of graphene-based NMs making them an attractive platform for developing highly sensitive MI agents. Owing to their exceptional physicochemical and biological properties combined with desirable surface engineering, graphene-based NMs offer stable and tunable visible emission, small hydrodynamic size, low toxicity, and high biocompatibility and thus have been explored for in vitro and in vivo imaging applications as a promising alternative of traditional imaging agents. This review begins by describing the intrinsic properties of graphene and the key MI modalities. After which, we provide an overview on the recent advances in the design and development as well as physicochemical properties of the different classes of graphene-based NMs (graphene-dye conjugates, graphene-antibody conjugates, graphene-nanoparticle composites, and graphene quantum dots) being used as MI agents for potential applications including theranostics. Finally, the major challenges and future directions in the field will be discussed. PMID:25857851

  19. Computed tomographic imaging of the brain of normal neonatal foals

    Directory of Open Access Journals (Sweden)

    L Cabrera

    2015-01-01

    Full Text Available The aim of this study was to provide a more complete description of normal cross-sectional anatomy of the neonatal brain of the foal and associated structures by computed tomography (CT and gross anatomical sections. Using a fourth-generation CT scanner, 2-mm contiguous transverse images were acquired from two neonatal 5-days-old Quarter horse foals. After the study the animals were euthanised for reasons unrelated to head pathology. To assist in the accurate identification of brain and associated structures, transverse CT images were obtained and compared with the corresponding frozen cross-sections of the head. CT images matched well with their corresponding transverse gross sections and provided good differentiation between the bones and the soft tissues of the head. These CT images are intended to be a useful initial anatomic reference in the interpretation for clinical CT imaging studies of the brain and associated structures in live neonatal foals.

  20. In vivo calcium imaging of the aging and diseased brain

    International Nuclear Information System (INIS)

    Over the last decade, in vivo calcium imaging became a powerful tool for studying brain function. With the use of two-photon microscopy and modern labelling techniques, it allows functional studies of individual living cells, their processes and their interactions within neuronal networks. In vivo calcium imaging is even more important for studying the aged brain, which is hard to investigate in situ due to the fragility of neuronal tissue. In this article, we give a brief overview of the techniques applicable to image aged rodent brain at cellular resolution. We use multicolor imaging to visualize specific cell types (neurons, astrocytes, microglia) as well as the autofluorescence of the ''aging pigment'' lipofuscin. Further, we illustrate an approach for simultaneous imaging of cortical cells and senile plaques in mouse models of Alzheimer's disease. (orig.)

  1. In vivo calcium imaging of the aging and diseased brain

    Energy Technology Data Exchange (ETDEWEB)

    Eichhoff, Gerhard; Busche, Marc A.; Garaschuk, Olga [Technical University of Munich, Institute of Neuroscience, Munich (Germany)

    2008-03-15

    Over the last decade, in vivo calcium imaging became a powerful tool for studying brain function. With the use of two-photon microscopy and modern labelling techniques, it allows functional studies of individual living cells, their processes and their interactions within neuronal networks. In vivo calcium imaging is even more important for studying the aged brain, which is hard to investigate in situ due to the fragility of neuronal tissue. In this article, we give a brief overview of the techniques applicable to image aged rodent brain at cellular resolution. We use multicolor imaging to visualize specific cell types (neurons, astrocytes, microglia) as well as the autofluorescence of the ''aging pigment'' lipofuscin. Further, we illustrate an approach for simultaneous imaging of cortical cells and senile plaques in mouse models of Alzheimer's disease. (orig.)

  2. Toward carbon nanotube-based imaging agents for the clinic.

    Science.gov (United States)

    Hernández-Rivera, Mayra; Zaibaq, Nicholas G; Wilson, Lon J

    2016-09-01

    Among the many applications for carbon nanotubes (CNTs), their use in medicine has drawn special attention due to their potential for a variety of therapeutic and diagnostic applications. As progress toward clinical applications continues, monitoring CNTs in vivo will be essential to evaluate their biodistribution, potential toxicity, therapeutic activity, and any physiological changes that the material may induce in specific tissues. There are many different imaging modalities to visualize and track CNTs in vivo, yet only a few are full-body penetrating, a central characteristic that widens their clinical utility. In order to visualize CNTs, chemical modification is often required for the material to be used as a platform to carry imaging agents compatible with one or more of the clinical imaging techniques. Here, we focus on the most recent work involving the use of CNTs as imaging agents for the non-invasive, full-body penetrating clinical modalities of MRI, PET, SPECT, and X-ray CT. The synthesis and modification of the CNT materials are discussed, as well as relevant preclinical studies. PMID:27294540

  3. Bypassing the blood-brain barrier: delivery of therapeutic agents by macrophages

    Science.gov (United States)

    Hirschberg, Henry; Baek, Seung-Kuk; Kwon, Young Jik; Sun, Chung-Ho; Madsen, Steen J.

    2010-02-01

    Introduction: Failure to eradicate infiltrating glioma cells using conventional treatment regimens results in tumor recurrence and is responsible for the dismal prognosis of patients with glioblastoma multiforme (GBM). This is due to the fact that these migratory cells are protected by the blood-brain barrier (BBB) and the blood brain tumor barrier (BBTB) which prevents the delivery of most anti-cancer agents. We have evaluated the ability of monocytes/macrophages (Mo/Ma) to cross the BBB in rats. This will permit access of anti-cancer agents such as nanoparticles to effectively target the infiltrating tumor cells, and potentially improve the treatment effectiveness for malignant gliomas. Materials and Methods: The infiltration of Mo/Ma into brain tumor spheroids in vitro was determined using fluorescent stained Mo/Ma. Tumors were also established in the brains of inbred rats and ALA-PDT was given 18 days following tumor induction. The degredation of the BBTB and quantification of the number of infiltrating Mo/Ma was examined on histological sections from removed brains. Results & Conclusion: PDT was highly effective in locally opening the BBTB and inducing macrophage migration into the irradiated portions of brain tumors.

  4. Cortical surface-based statistical analysis of brain PET images

    International Nuclear Information System (INIS)

    Precise and focal analysis of brain PET using voxel-based statistical mapping is limited due to the innate low spatial resolution of PET images which causes partial volume effect as well as due to the low precision of the image registration. In this study, we propose a cortical surface-based method for the precise analysis of brain PET images in combination with MRI. 18F-FDG brain PET images were acquired using GE ADVANCE PET scanner in 3D mode. 3D T1-weighted axial MR images were acquired from Philips Intera 1.5T scanner with slice thickness 1.5 mm and FOV=22 cm. The first step of analysis, we segmented gray and white matter from the structural T1 images using Freesurfer (MGH, Harvard Medical School) which extract the white matter surface using a deformable surface model. The cortical surface was further parcellated automatically into 85 anatomically relevant brain sub-regions. The second step, we developed a method for registering PET images to MRI in combination with a mutual information algorithm to maximize total metabolic activity within the gray matter band. Partial volume correction of PET image was conducted utilizing the extracted gray matter. The third step, we calculated mean cortical activity along the path from the white matter surface to the gray matter surface. The cortical activity was represented on the spatially normalized surface which statistical evaluation of cortical activity was conducted with. We evaluated the surface-based representation of PET images and the registration of PET images and the registration of PET and MRI utilizing cortical parcellation. The preliminary results showed that our method is very promising in the analysis of subtle cortical activity difference. We proposed a novel surface-based approach of brain PET analysis using high resolution MRI. Cortical Surface-based method was very efficient in the precise representation of brain activity, correction of partial volume effect as well as better spatial normalization

  5. Cortical surface-based statistical analysis of brain PET images

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae Jeong; Kim, Jae Jin; Yoon, Mi Jin; Yoo, Young Hoon; Lee, Jong Doo [School of Medicine, Yonsei University, Seoul (Korea, Republic of)

    2004-07-01

    Precise and focal analysis of brain PET using voxel-based statistical mapping is limited due to the innate low spatial resolution of PET images which causes partial volume effect as well as due to the low precision of the image registration. In this study, we propose a cortical surface-based method for the precise analysis of brain PET images in combination with MRI. {sup 18}F-FDG brain PET images were acquired using GE ADVANCE PET scanner in 3D mode. 3D T1-weighted axial MR images were acquired from Philips Intera 1.5T scanner with slice thickness 1.5 mm and FOV=22 cm. The first step of analysis, we segmented gray and white matter from the structural T1 images using Freesurfer (MGH, Harvard Medical School) which extract the white matter surface using a deformable surface model. The cortical surface was further parcellated automatically into 85 anatomically relevant brain sub-regions. The second step, we developed a method for registering PET images to MRI in combination with a mutual information algorithm to maximize total metabolic activity within the gray matter band. Partial volume correction of PET image was conducted utilizing the extracted gray matter. The third step, we calculated mean cortical activity along the path from the white matter surface to the gray matter surface. The cortical activity was represented on the spatially normalized surface which statistical evaluation of cortical activity was conducted with. We evaluated the surface-based representation of PET images and the registration of PET images and the registration of PET and MRI utilizing cortical parcellation. The preliminary results showed that our method is very promising in the analysis of subtle cortical activity difference. We proposed a novel surface-based approach of brain PET analysis using high resolution MRI. Cortical Surface-based method was very efficient in the precise representation of brain activity, correction of partial volume effect as well as better spatial normalization.

  6. The preclinical pharmacological study of dopamine transporter imaging agent 18F-FP-β-CIT

    Institute of Scientific and Technical Information of China (English)

    LI Xiaomin; CHEN Zhengping; WANG Songpei; TANG Jie; LIN Yansong; ZHU Zhaohui; FANG Ping

    2007-01-01

    The paper is to study pharmacologic characteristics of 18F-FP-β-CIT (18F-N-(3-fluoropropyl)-2β- carbomethoxy-3β- (4-iodophenyl)nortropane) as an imaging agent for dopamine transporter. The radiochemical purity of 18F-FP-β-CIT in aqueous solution was over 95% after standing at room temperature for 4h. Biodistribution displayed rapid uptake in rat brain (1.375 %ID/organ at 5min and 0.100 %ID/organ at 180 min) and the striatal uptake was 1.444,0.731, 0.397, 0.230 and 0.146 %ID/g at 5, 30, 60, 120 and 180 min, respectively. The values of striatum/cerebellum,striatum/frontal cortex and striatum / hippocampus in rat's brain at 30 min were 3.38, 2.17 and 2.40 respectively. The uptake in striatum can be blocked by β-CFT, suggesting that 18F-FP-β-CIT binds to DAT peculiarly. The compound was rapidly cleared from monkey's blood. The striatal uptake was bilaterally decreased in the left-sided lesioned PD rats, compared with normal control. Brain PET imaging studies in normal monkey showed that 18F-FP-β-CIT was concentrated in striatum. The test of undue toxicity showed that the dose received by mice was 1250 times as by human, which indicates that 18F-FP-β-CIT is very safe. So 18F-FP-β-CIT is a promising PET imaging agent for DAT with safety and validity.

  7. Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging

    Science.gov (United States)

    Wang, Taejun; Jang, Won Hyuk; Lee, Seunghun; Yoon, Calvin J.; Lee, Jun Ho; Kim, Bumju; Hwang, Sekyu; Hong, Chun-Pyo; Yoon, Yeoreum; Lee, Gilgu; Le, Viet-Hoan; Bok, Seoyeon; Ahn, G.-One; Lee, Jaewook; Gho, Yong Song; Chung, Euiheon; Kim, Sungjee; Jang, Myoung Ho; Myung, Seung-Jae; Kim, Myoung Joon; So, Peter T. C.; Kim, Ki Hean

    2016-06-01

    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence.

  8. Brain SPECT imaging in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Temporal lobe epilepsy is diagnosed by clinical symptoms and signs and by localization of an epileptogenic focus. A brain SPECT study of two patients with temporal lobe epilepsy, using 99mTc-HMPAO, was used to demonstrate a perfusion abnormality in the temporal lobe, while brain CT and MRI were non-contributory. The electroencephalogram, though abnormal, did not localize the diseased area. The potential role of the SPECT study in diagnosis and localization of temporal lobe epilepsy is discussed. (orig.)

  9. Whole brain imaging with Serial Two-Photon Tomography

    Directory of Open Access Journals (Sweden)

    Stephen P Amato

    2016-03-01

    Full Text Available Imaging entire mouse brains at submicron resolution has historically been a challenging undertaking and largely confined to the province of dedicated atlasing initiatives. The has limited systematic investigations into important areas of neuroscience, such as neural circuits, brain mapping and neurodegeneration. In this paper, we describe in detail Serial Two-Photon (STP tomography, a robust, reliable method for imaging entire brains with histological detail. We provide examples of how the basic methodology can be extended to other imaging modalities, such as optical coherence tomography, in order to provide unique contrast mechanisms. Furthermore we provide a survey of the research that STP tomography has enabled in the field of neuroscience, provide examples of how this technology enables quantitative whole brain studies, and discuss the current limitations of STP tomography-based approaches

  10. Whole Brain Imaging with Serial Two-Photon Tomography

    Science.gov (United States)

    Amato, Stephen P.; Pan, Feng; Schwartz, Joel; Ragan, Timothy M.

    2016-01-01

    Imaging entire mouse brains at submicron resolution has historically been a challenging undertaking and largely confined to the province of dedicated atlasing initiatives. This has limited systematic investigations into important areas of neuroscience, such as neural circuits, brain mapping and neurodegeneration. In this article, we describe in detail Serial Two-Photon (STP) tomography, a robust, reliable method for imaging entire brains with histological detail. We provide examples of how the basic methodology can be extended to other imaging modalities, such as Optical Coherence Tomography (OCT), in order to provide unique contrast mechanisms. Furthermore, we provide a survey of the research that STP tomography has enabled in the field of neuroscience, provide examples of how this technology enables quantitative whole brain studies, and discuss the current limitations of STP tomography-based approaches. PMID:27047350

  11. Preparation and animal studies of a novel potential cerebral perfusion imaging agent

    International Nuclear Information System (INIS)

    Objective: To investigate a novel potential SPECT cerebral blood flow perfusion imaging agent. Methods: N2S tridentate α-mercaptol-propyl-1, 2-benzenediamine (MPBDA) was obtained from chemical synthesis IR and was labelled with 99Tcm. Biodistribution analysis in 25 mice was performed after intravenous injection of 100 μL 555 - 740 kBq of 99Tcm-MPBDA. Dynamic acquisition was performed after rapid intravenous injection of 218.3 - 333 MBq 99Tc-MPBDA or 99Tcm-ECD, while whole body imaging and brain perfusion imaging were done after 70 min in 2 normal monkeys. Preclinical studies including toxicity and pyrogen tests in mice and rabbits were undertaken. Results: The radiochemical synthetic yield and radiochemical purity of MPBDA labelled with 99Tcm were more than 95% and 97%, respectively. Mice biodistribution test showed the 99Tcm-MPBDA can concentrate in brain with good retention, and blood clearance Ty2 99Tcm-ECD (2.9% ID). SPECT imaging of cerebral gray and white matter showed good contrast with a clear contour. No toxic side affect in mice and rabbits after 99Tcm-MPBDA injection was found. Conclusion: Investigated 99Tcm-MPBDA has almost the same property as 99Tcm-ECD. It is safe and reliable in vivo

  12. Histogram analysis with automated extraction of brain-tissue region from whole-brain CT images

    OpenAIRE

    Kondo, Masatoshi; Yamashita, Koji; Yoshiura, Takashi; Hiwatash, Akio; Shirasaka, Takashi; Arimura, Hisao; Nakamura, Yasuhiko; Honda, Hiroshi

    2015-01-01

    To determine whether an automated extraction of the brain-tissue region from CT images is useful for the histogram analysis of the brain-tissue region was studied. We used the CT images of 11 patients. We developed an automatic brain-tissue extraction algorithm. We evaluated the similarity index of this automated extraction method relative to manual extraction, and we compared the mean CT number of all extracted pixels and the kurtosis and skewness of the distribution of CT numbers of all ext...

  13. Magnetic nanoparticles as both imaging probes and therapeutic agents.

    Science.gov (United States)

    Lacroix, Lise-Marie; Ho, Don; Sun, Shouheng

    2010-01-01

    Magnetic nanoparticles (MNPs) have been explored extensively as contrast agents for magnetic resonance imaging (MRI) or as heating agents for magnetic fluid hyperthermia (MFH) [1]. To achieve optimum operation conditions in MRI and MFH, these NPs should have well-controlled magnetic properties and biological functionalities. Although numerous efforts have been dedicated to the investigations on MNPs for biomedical applications [2-5], the NP optimizations for early diagnostics and efficient therapeutics are still far from reached. Recent efforts in NP syntheses have led to some promising MNP systems for sensitive MRI and efficient MFH applications. This review summarizes these advances in the synthesis of monodisperse MNPs as both contrast probes in MRI and as therapeutic agents via MFH. It will first introduce the nanomagnetism and elucidate the critical parameters to optimize the superparamagnetic NPs for MRI and ferromagnetic NPs for MFH. It will further outline the new chemistry developed for making monodisperse MNPs with controlled magnetic properties. The review will finally highlight the NP functionalization with biocompatible molecules and biological targeting agents for tumor diagnosis and therapy. PMID:20388109

  14. REGISTRATION OF BRAIN IMAGES USING MODIFIED ADAPTIVE POLAR TRANSFORM

    Directory of Open Access Journals (Sweden)

    D.Sasikala,

    2010-09-01

    Full Text Available Image registration has great significance in medicine, with a lot of techniques anticipated in it. This paper discusses an approach for medical image registration. It registers images of the mono or multi modalities for CT or MRI images using Modified Adaptive Polar Transform. The performance of the Adaptive Polar Transform with theproposed technique is examined. The results prove that the proposed method performs better than Adaptive Polar Transform technique. The proposed method reduces the errors and also the elapsed time for registration. An analysis is presented for the medical image registration of brain images using Adaptive Polar Transform and Modified Adaptive Polar Transform.

  15. Look again: effects of brain images and mind-brain dualism on lay evaluations of research.

    Science.gov (United States)

    Hook, Cayce J; Farah, Martha J

    2013-09-01

    Brain scans have frequently been credited with uniquely seductive and persuasive qualities, leading to claims that fMRI research receives a disproportionate share of public attention and funding. It has been suggested that functional brain images are fascinating because they contradict dualist beliefs regarding the relationship between the body and the mind. Although previous research has indicated that brain images can increase judgments of an article's scientific reasoning, the hypotheses that brain scans make research appear more interesting, surprising, or worthy of funding have not been tested. Neither has the relation between the allure of brain imaging and dualism. In the following three studies, laypersons rated both fictional research descriptions and real science news articles accompanied by brain scans, bar charts, or photographs. Across 988 participants, we found little evidence of neuroimaging's seductive allure or of its relation to self-professed dualistic beliefs. These results, taken together with other recent null findings, suggest that brain images are less powerful than has been argued. PMID:23879877

  16. Photo-acoustic imaging of blue nanoparticle targeted brain tumor for intra-operative glioma delineation

    Science.gov (United States)

    Ray, Aniruddha; Wang, Xueding; Koo Lee, Yong-Eun; Hah, HoeJin; Kim, Gwangseong; Chen, Thomas; Orrienger, Daniel; Sagher, Oren; Kopelman, Raoul

    2011-07-01

    Distinguishing the tumor from the background neo-plastic tissue is challenging for cancer surgery such as surgical resection of glioma. Attempts have been made to use visible or fluorescent markers to delineate the tumors during surgery. However, the systemic injection of the dyes requires high dose, resulting in negative side effects. A novel method to delineate rat brain tumors intra-operatively, as well as post-operatively, using a highly sensitive photoacoustic imaging technique enhanced by tumor targeting blue nanoparticle as contrast agent is demonstrated. The nanoparticles are made of polyacrylamide (PAA) matrix with covalently linked Coomassie-Blue dye. They contain 7.0% dye and the average size is 80nm. Their surface was conjugated with F3 peptide for active tumor targeting. These nanoparticles are nontoxic, chemically inert and have long plasma circulation lifetime, making them suitable as nanodevices for imaging using photoacoustics. Experiments on phantoms and rat brains tumors ex-vivo demonstrate the high sensitivity of photoacoustic imaging in delineating the tumor, containing contrast agent at concentrations too low to be visualized by eye. The control tumors without nanoparticles did not show any enhanced signal. This study shows that photoacoustic imaging facilitated with the nanoparticle contrast agent could contribute to future surgical procedures for glioma.

  17. Wavelet Based Image Fusion for Detection of Brain Tumor

    Directory of Open Access Journals (Sweden)

    CYN Dwith

    2013-01-01

    Full Text Available Brain tumor, is one of the major causes for the increase in mortality among children and adults. Detecting the regions of brain is the major challenge in tumor detection. In the field of medical image processing, multi sensor images are widely being used as potential sources to detect brain tumor. In this paper, a wavelet based image fusion algorithm is applied on the Magnetic Resonance (MR images and Computed Tomography (CT images which are used as primary sources to extract the redundant and complementary information in order to enhance the tumor detection in the resultant fused image. The main features taken into account for detection of brain tumor are location of tumor and size of the tumor, which is further optimized through fusion of images using various wavelet transforms parameters. We discuss and enforce the principle of evaluating and comparing the performance of the algorithm applied to the images with respect to various wavelets type used for the wavelet analysis. The performance efficiency of the algorithm is evaluated on the basis of PSNR values. The obtained results are compared on the basis of PSNR with gradient vector field and big bang optimization. The algorithms are analyzed in terms of performance with respect to accuracy in estimation of tumor region and computational efficiency of the algorithms.

  18. Imaging Findings of Brain Death on 3-Tesla MRI

    International Nuclear Information System (INIS)

    To demonstrate the usefulness of 3-tesla (3T) magnetic resonance imaging (MRI) including T2-weighted imaging (T2WI), diffusion weighted imaging (DWI), time-of-flight (TOF) magnetic resonance angiography (MRA), T2*-weighted gradient recalled echo (GRE), and susceptibility weighted imaging (SWI) in diagnosing brain death. Magnetic resonance imaging findings for 10 patients with clinically verified brain death (group I) and seven patients with comatose or stuporous mentality who did not meet the clinical criteria of brain death (group II) were retrospectively reviewed. Tonsilar herniation and loss of intraarterial flow signal voids (LIFSV) on T2WI were highly sensitive and specific findings for the diagnosis of brain death (p < 0.001 and < 0.001, respectively). DWI, TOF-MRA, and GRE findings were statistically different between the two groups (p = 0.015, 0.029, and 0.003, respectively). However, cortical high signal intensities in T2WI and SWI findings were not statistically different between the two group (p = 0.412 and 1.0, respectively). T2-weighted imaging, DWI, and MRA using 3T MRI may be useful for diagnosing brain death. However, SWI findings are not specific due to high false positive findings.

  19. Differential MRI Diagnosis Between Brain Abscess and Necrotic or Cystic Brain Tumors Using Diffusion Weighted Images

    Directory of Open Access Journals (Sweden)

    Zinat Miabi

    2009-01-01

    Full Text Available "nIntroduction: Differentiating brain abscesses from cystic or necrotic tumors by CT or MR imaging can be difficult. Difficulties in the diagnosis of intracranial abscess are mainly due to the combination of often unspecified clinical findings and similarities in the morphologic appearance of some intracranial mass lesions, such as cystic gliomas, metastases, and brain abscesses. Diffusion-weighted imaging provides a way to evaluate the diffusion properties of water molecules in tissue and has been used for diseases such as ischemia, tumors, epilepsy, and white matter disorders. The goal of this study was to evaluate the diagnostic utility of diffusion MRI to differentiate between brain abscesses and necrotic or cystic brain tumors. "nMaterials and Methods: MRI was performed in 17 patients (12 men and five women; age range, 19–74 years [mean, 55 years] with necrotic lesions and MR imaging evidence of ring-shaped enhancement after the injection of contrast material .In addition to standard MR sequences diffusion weighted MRI with apparent coefficient (ADC maps. "nResults: Eleven patients had tumors, and six had pyogenic abscesses. The tumors were glioblastomas (five patients, anaplastic astrocytoma (three patients, metastases (three patients, and primary malignancy, including lung (2 and breast (1 cancer. Surgical or stereotactic biopsies were obtained, and histologic studies were performed in all except one case (case 5. In the cases of abscess, bacteriologic analysis was also conducted. None of these lesions appeared hemorrhagic on T1-weighted images. "nConclusion: Diffusion-weighted imaging is useful for differentiating brain abscess from cystic or necrotic brain tumor, which is often difficult with conventional MR imaging. Diffusion-weighted imaging is useful as an additional imaging technique for establishing the differential diagnosis between brain abscesses and cystic or necrotic brain tumors. It requires less imaging time and is more

  20. In vivo PET imaging of brain nicotinic cholinergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bottlaender, M.; Valette, H.; Saba, W.; Schollhorn-Peyronneau, M.A.; Dolle, F.; Syrota, A. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), 91 - Orsay (France)

    2006-07-01

    Neuronal acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system where they modulate a number of CNS functions including neurotransmitter release, cognitive function, anxiety, analgesia and control of cerebral blood flow. In the brain, a major subtype is composed of the {alpha}4{beta}2 subunit combination. Density of this subtype has been shown to be decreased in patients with neuro-degenerative disease such as Alzheimer and Parkinson's disease (AD and PD), and mutated receptors has been described in some familial epilepsy. Thus, in vivo mapping of the nicotinic nAChRs by Positron Emission Tomography (PET) are of great interest to monitor the evolution of these pathologies and changes in the neuronal biochemistry induced by therapeutic agents. Recently, a new compound, 3-[2(S)-2-azetidinyl-methoxy]pyridine (A-85380) has been synthesised and labelled with fluorine-18, [{sup 18}F]fluoro-A-85380 (Dolle et al., 1999). The [{sup 18}F]fluoro-A-85380 has been shown to bind with high affinity t o nAChRs in vitro (Saba et al., 2004), and its toxicity was low and compatible with it s use at tracer dose in human PET studies (Valette, 2002). PET studies in baboons showed that, after in vivo administration of [ {sup 18}F]fluoro-A-85380 at a tracer dose, the distribution of the radioactivity in the brain reflect the distribution of the < 4R2 nAChRs. Competition and pre-blocking studies, using nicotinic agonists, confirm that the radiotracer binds specifically to the heteromeric nAChRs in the brain (Valette et al., 1999). The in vivo, characteristics of the [{sup 18}F]fluoro-A-8538 0 combined with its low toxicity make possible the imaging of the nicotinic receptor s in human by PET (Bottlaender 2003). Studies were performed in healthy non-smoker volunteers to evaluate the brain kinetics of [{sup 18}F]fluoro-A-85380 and to assess the quantification of its nAChRs binding in the human brain with PET (Gallezot et a., 2005). The [{sup 18}F

  1. Potential lung perfusion imaging agent of synthetic origin

    International Nuclear Information System (INIS)

    99mTc-labelled macroaggregated albumin (MAA) is the radiopharmaceutical routinely used for perfusion lung scans. However MAA formulations contain excipients of biological origin, that may potentially cause allergic hypersensitivity in patients. The aim of this study was to prepare a non-biological lung imaging agent, with physiological uptake based on a mechanism of colloid localisation in the pulmonary vasculature. To a frozen stannous fluoride cold kit (RAH Radiopharmacy) was added 99mTc-pcrtcchnetate (99mTc-products were analysed for % radiolabelling efficiciency (RE), radioactive particle size distribution (RPSD). qualitative and quantitative rat biodistribution studies. Results indicated that all radioactive particles were formed with >99% RE. and 1-47% were >8 um. The optimum radiotracer formulation containing the highest proportion of the largest particles, was prepared by mixing SnF2 and 99mTc-pertechnetate with a low [Na+] at room temperature for 50 minutes. Results from the quantitative organ assays gave 88+/-1% tracer in the lungs. 7+/-l% in the liver and l+/-0% in the spleen. The images showed excellent lung uptake with minimal interference from liver and spleen to the lower regions of right and left lobes. In conclusion, the synthetic radiopharmaceutical 99mTc-stan-nous fluoride colloid can be prepared with a large particle size, from a commercially available cold kit in a simple and practical manner, and it has high potential for use as a perfusion imaging agent in lung scans

  2. Clinical anatomy of the canine brain using magnetic resonance imaging.

    Science.gov (United States)

    Leigh, Edmund J; Mackillop, Edward; Robertson, Ian D; Hudson, Lola C

    2008-01-01

    The purpose of this study was to produce an magnetic resonsnce (MR) image atlas of clinically relevant brain anatomy and to relate this neuroanatomy to clinical signs. The brain of a large mixed breed dog was imaged in transverse, sagittal, and dorsal planes using a 1.5 T MR unit and the following pulse sequences: Turbo (fast) spin echo (TSE) T2, T1, and T2- weighted spatial and chemical shift-encoded excitation sequence. Relevant neuroanatomic structures were identified using anatomic texts, sectioned cadaver heads, and previously published atlases. Major subdivisions of the brain were mapped and the neurologic signs of lesions in these divisions were described. TSE T2-weighted images were found to be the most useful for identifying clinically relevant neuroanatomy. Relating clinical signs to morphology as seen on MR will assist veterinarians to better understand clinically relevant neuroanatomy in MR images. PMID:18418990

  3. The use of contrast agent for imaging biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Dammer, J; Sopko, V; Jakubek, J [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, CZ 12800 Prague 2 (Czech Republic); Weyda, F, E-mail: jiri.dammer@utef.cvut.cz [Biological center of the Academy of Sciences of the Czech Republic, Institute of Entomology, Branisovska 31, CZ-37005 Ceske Budejovice (Czech Republic)

    2011-01-15

    The technique of X-ray transmission imaging has been available for over a century and is still among the fastest and easiest approaches to the studies of internal structure of biological samples. Recent advances in semiconductor technology have led to the development of new types of X-ray detectors with direct conversion of interacting X-ray photon to an electric signal. Semiconductor pixel detectors seem to be specially promising; compared to the film technique, they provide single-quantum and real-time digital information about the objects being studied. We describe the recently developed radiographic apparatus, equipped with Medipix2 semiconductor pixel detector. The detector is used as an imager that counts individual photons of ionizing radiation, emitted by an X-ray tube (micro- or nano-focus FeinFocus). Thanks to the wide dynamic range of the Medipix2 detector and its high spatial resolution better than 1{mu}m, the setup is particularly suitable for radiographic imaging of small biological samples, including in-vivo observations with contrast agent (Optiray). Along with the description of the apparatus we provide examples of the use iodine contrast agent as a tracer in various insects as model organisms. The motivation of our work is to develop our imaging techniques as non-destructive and non-invasive. Microradiographic imaging helps detect organisms living in a not visible environment, visualize the internal biological processes and also to resolve the details of their body (morphology). Tiny live insects are an ideal object for our studies.

  4. Identifying Brain Image Level Endophenotypes in Epilepsy

    CERN Document Server

    Cheng, Wei; Tian, Ge; Feng, Jianfeng; Wang, Zhengge; Zhang, Zhiqiang; Lu, GuangMing

    2012-01-01

    A brain wide association study (BWAS) based on the logistic regression was first developed and applied to a large population of epilepsy patients (168) and healthy controls (136). It was found that the most significant links associated with epilepsy are those bilateral links with regions mainly belonging to the default mode network and subcortex, such as amygdala, fusiform gyrus, inferior temporal gyrus, hippocampus, temporal pole, parahippocampal gyrus, insula, middle occipital gyrus, cuneus. These links were found to have much higher odd ratios than other links, and all of them showed reduced functional couplings in patients compared with controls. Interestingly, with the increasing of the seizure onset frequency or duration of illness, the functional connection between these bilateral regions became further reduced. On the other hand, as a functional compensation and brain plasticity, connections of these bilateral regions to other brain regions were abnormally enhanced and became even much stronger with t...

  5. An agent harms a victim: A functional magnetic resonance imaging study on specific moral emotions

    International Nuclear Information System (INIS)

    The statement 'An agent harms a victim' depicts a situation that triggers moral emotions. Depending on whether the agent and the victim are the self or someone else, it can lead to four different moral emotions: self-anger ('I harm myself'), guilt ('I harm someone'), other-anger ('someone harms me'), and compassion ('someone harms someone'). In order to investigate the neural correlates of these emotions, we examined brain activation patterns elicited by variations in the agent (self vs. other) and the victim (self vs. other) of a harmful action. Twenty-nine healthy participants underwent functional magnetic resonance imaging while imagining being in situations in which they or someone else harmed themselves or someone else. Results indicated that the three emotional conditions associated with the involvement of other, either as agent or victim (guilt, other-anger, and compassion conditions), all activated structures that have been previously associated with the Theory of Mind (ToM, the attribution of mental states to others), namely, the dorsal medial prefrontal cortex, the precuneus, and the bilateral temporo-parietal junction. Moreover, the two conditions in which both the self and other were concerned by the harmful action (guilt and other-anger conditions) recruited emotional structures (i. e., the bilateral amygdala, anterior cingulate, and basal ganglia). These results suggest that specific moral emotions induce different neural activity depending on the extent to which they involve the self and other. (authors)

  6. Evolving Concept of Small Vessel Disease through Advanced Brain Imaging.

    OpenAIRE

    Norrving, Bo

    2015-01-01

    Imaging plays a crucial role in studying and understanding cerebral small vessel disease. Several important findings have emerged from recent applications of advanced brain imaging methods. In patients with acute lacunar syndromes, diffusionweighted MRI studies have shown that the diagnostic precision of using clinical features alone or combined with CT scan findings to diagnose small vessel disease as the underlying cause is poor. Followup imaging studies on patients with acute infarcts rela...

  7. Brain imaging in lung cancer patients without symptoms of brain metastases: a national survey of current practice in England

    International Nuclear Information System (INIS)

    Aim: To determine current practice regarding brain imaging for newly diagnosed lung cancer patients without symptoms of brain metastases. Materials and methods: A survey questionnaire was sent by e-mail to all the lung cancer lead clinicians in England currently on the National Cancer Intelligence Network database. The survey asked whether brain imaging was used in new lung cancer patients without symptoms or signs to suggest brain metastases; and if so, which patient subgroups were imaged according to cell type, stage of disease, and intention to treat, and which techniques were used to image these patients. Responses were received between February and May 2014. Results: Fifty-nine of 154 centres replied to the survey (38%). Thirty of the 59 centres (51%) did not image the brain in these patients. Twenty-nine of the 59 (49%) centres imaged the brain in at least certain subgroups. Of those centres that did image the brain 21 (72%) used CT as the first-line imaging technique and six (20%) used MRI. Twenty-five of 59 (42%) centres stated that the 2011 NICE guidelines had led to a change in their practice. Conclusion: There is wide variation in practice regarding brain imaging in this patient group in England, with no brain imaging at all in approximately half of centres and a spectrum of imaging in the other half. When the brain is imaged, CT is the technique most commonly used. The 2011 NICE guidelines have led to some change in practice but not to national uniformity. - Highlights: • Ascertain current practice in brain imaging for staging asymptomatic lung cancer patients. • Survey questionnaire sent to all the lung cancer lead clinicians in England. • Wide variation in practice with regard to brain imaging in this patient group. • No brain imaging at all in approximately half of centres and a spectrum of imaging in the other half • The 2011 NICE guidelines have led to some change in practice but not to national uniformity

  8. Human brain activity with functional NIR optical imager

    Science.gov (United States)

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  9. MR imaging of the neonatal brain: Pathologic features

    International Nuclear Information System (INIS)

    Seventy-three neonates, aged 29-43 weeks since conception, were studied. US and/or CT correlations were obtained in most infants with pathology. In the first 4-5 days after hemorrhage, US and CT were superior to MR imaging, but after that time MR imaging was the single best modality for imaging blood. In early premature infants with very watery white matter, US detected infarction and brain edema that were poorly seen on both MR imaging and CT. However, in late premature and full-term infants, MR imaging was better than CT in distinguishing between normal white matter and infarction. Only MR imaging disclosed delayed myelination in 13 term infants with hydrocephalus and severe asphyxia. MR imaging with play an important role in imaging neonates once MR imaging-compatible monitors and neonatal head coils become widely available

  10. Brain magnetic resonance imaging of infants exposed prenatally to buprenorphine

    International Nuclear Information System (INIS)

    Purpose: To evaluate the brains of newborns exposed to buprenorphine prenatally. Material and Methods: Seven neonates followed up antenatally in connection with their mothers' buprenorphine replacement therapy underwent 1.5T magnetic resonance imaging (MRI) of the brain before the age of 2 months. The infants were born to heavy drug abusers. Four mothers were hepatitis C positive, and all were HIV negative. All mothers smoked tobacco and used benzodiazepines. All pregnancies were full term, and no perinatal asphyxia occurred. All but one neonate had abstinence syndrome and needed morphine replacement therapy. Results: Neither structural abnormalities nor abnormalities in signal intensity were recorded. Conclusion: Buprenorphine replacement therapy does not seem to cause any major structural abnormalities of the brain, and it may prevent known hypoxic-ischemic brain changes resulting from uncontrolled drug abuse. Longitudinal studies are needed to assess possible abnormalities in the brain maturation process

  11. Metabolic Syndrome, Brain Magnetic Resonance Imaging, and Cognition

    OpenAIRE

    Cavalieri, Margherita; Ropele, Stefan; Petrovic, Katja; Pluta-Fuerst, Aga; Homayoon, Nina; Enzinger, Christian; Grazer, Anja; Katschnig, Petra; Schwingenschuh, Petra; Berghold, Andrea; Schmidt, Reinhold

    2010-01-01

    OBJECTIVE We explored cognitive impairment in metabolic syndrome in relation to brain magnetic resonance imaging (MRI) findings. RESEARCH DESIGN AND METHODS We studied 819 participants free of clinical stroke and dementia of the population-based Austrian Stroke Prevention Study who had undergone brain MRI, neuropsychological testing, and a risk factor assessment relevant to National Cholesterol Education Program Adult Treatment Panel III criteria–defined metabolic syndrome. High-sensitivity C...

  12. Different impressions of other agents obtained through social interaction uniquely modulate dorsal and ventral pathway activities in the social human brain.

    Science.gov (United States)

    Takahashi, Hideyuki; Terada, Kazunori; Morita, Tomoyo; Suzuki, Shinsuke; Haji, Tomoki; Kozima, Hideki; Yoshikawa, Masahiro; Matsumoto, Yoshio; Omori, Takashi; Asada, Minoru; Naito, Eiichi

    2014-09-01

    Internal (neuronal) representations in the brain are modified by our experiences, and this phenomenon is not unique to sensory and motor systems. Here, we show that different impressions obtained through social interaction with a variety of agents uniquely modulate activity of dorsal and ventral pathways of the brain network that mediates human social behavior. We scanned brain activity with functional magnetic resonance imaging (fMRI) in 16 healthy volunteers when they performed a simple matching-pennies game with a human, human-like android, mechanical robot, interactive robot, and a computer. Before playing this game in the scanner, participants experienced social interactions with each opponent separately and scored their initial impressions using two questionnaires. We found that the participants perceived opponents in two mental dimensions: one represented "mind-holderness" in which participants attributed anthropomorphic impressions to some of the opponents that had mental functions, while the other dimension represented "mind-readerness" in which participants characterized opponents as intelligent. Interestingly, this "mind-readerness" dimension correlated to participants frequently changing their game tactic to prevent opponents from envisioning their strategy, and this was corroborated by increased entropy during the game. We also found that the two factors separately modulated activity in distinct social brain regions. Specifically, mind-holderness modulated activity in the dorsal aspect of the temporoparietal junction (TPJ) and medial prefrontal and posterior paracingulate cortices, while mind-readerness modulated activity in the ventral aspect of TPJ and the temporal pole. These results clearly demonstrate that activity in social brain networks is modulated through pre-scanning experiences of social interaction with a variety of agents. Furthermore, our findings elucidated the existence of two distinct functional networks in the social human brain

  13. Brain Imaging with Positron Emission Tomography: Quantification and Biomedical Applications in Alzheimer's Disease and Brain Tumors

    OpenAIRE

    Wardak, Mirwais

    2013-01-01

    Positron emission tomography (PET) is a unique and powerful imaging technique that is used to visualize and quantify various biological processes in living subjects in health and disease. PET imaging can also provide biological information for the assessment of therapies. In this dissertation, we will cover three projects that utilize the quantitative capability of PET for studying two neurological disorders: Alzheimer's disease and brain tumors.One of the goals in PET imaging is to produce...

  14. Gd-DTPA-enhanced MR imaging for metastatic brain tumors

    International Nuclear Information System (INIS)

    The present series consists of 24 patients with brain metastasis smaller than 10 mm in diameter demonstrated on Gd-DTPA enhanced MR imaging (Gd-MRI). All patients underwent contrast-enhanced (CE) CT to be compared with Gd-MRI in size, number and detectability. The primary lesions of the series included 18 patients with lung cancer (9 with adenocarcinoma, 4 with small cell cancer, 3 with squamous cell cancer and 2 with large cell cancer), 4 with breast cancer, and each 1 with parotid cancer and renal cell carcinoma. All 24 patients except one who underwent surgery were treated with radiation therapy. In 13 patients examined by Gd-MRI and CE-CT both before and after the brain irradiation, therapeutic effect was estimated on each diagnostic imaging comparatively. In regard to size of brain metastases of 24 patients, 91 lesions smaller than 5 mm in diameter were detected by Gd-MRI but only 15 by CE-CT. Three of all patients, no brain metastasis was found on CE-CT. In 6 patients estimated as CR (complete remission) by CE-CT after brain irradiation, Gd-MRI evidenced tumor residues in 5 patients to alter the score of therapeutic effect as PR (partial remission). The difference in therapeutic effects confirmed by Gd-MRI was noted according to histological results and size of metastasis. The most radiosensitive tumor was small cell lung cancer, of which brain metastases smaller than 5 mm in diameter completely disappeared after 20∼50 Gy irradiation. Prophylactic whole brain irradiation has been an alternative indication for small cell lung cancer when CT showed no evidence of brain metastasis. However, our data strongly suggest that the small or tiny brain metastases negative on CE-CT will become new subjects of 'radical' radiotherapy. The higher sensitivity of Gd-MRI for detecting brain metastasis may propose new clinical prospects in staging, planning of therapy and estimation of therapeutic effect. (author)

  15. The HealthAgents ontology: knowledge representation in a distributed decision support system for brain tumours

    OpenAIRE

    Martínez Miranda, Juan Crisóforo; Sáez Silvestre, Carlos; Hu, B.; Croitoru, M; Roset, R; Dupplaw, D.; Lurgi, M.; Dasmahapatra, S.; Lewis, P

    2011-01-01

    In this paper we present our experience of representing the knowledge behind HealthAgents (HA), a distributed decision support system for brain tumour diagnosis. Our initial motivation came from the distributed nature of the information involved in the system and has been enriched by clinicians' requirements and data access restrictions. We present in detail the steps we have taken towards building our ontology starting from knowledge acquisition to data access and reasoning. We motivate our ...

  16. Brain SPECT imaging of Alzheimer's disease and mild cognitive impairment

    International Nuclear Information System (INIS)

    Objective: To assess the early diagnostic and prognostic value of brain SPECT imaging in Alzheimer's disease (AD) and mild cognitive impairment (MCI). Methods: Brain SPECT imaging and follow-up study were performed in 33 AD patients, 17 MCI patients and 12 cognitive normal subjects. Results: The typical feature of AD was bilateral temporoparietal hypoperfusion. Compared with MCI and normal group, the regional cerebral blood flow (rCBF) of temporal lobe, parietal lobe, frontal lobe, thalamus and cingulum decreased significantly (P< 0.05). MCI had a significant lower rCBF in temporal lobe only than that in normal group (P<0.05). Besides, the rCBF in cingulum of instable MCI was much lower than that in cingulum of stable MCI (P<0.05). Conclusion: Brain SPECT imaging can provide useful information for the early diagnosis of AD and MCI, and also for the prognosis of MCI. (authors)

  17. Normal feline brain: clinical anatomy using magnetic resonance imaging.

    Science.gov (United States)

    Mogicato, G; Conchou, F; Layssol-Lamour, C; Raharison, F; Sautet, J

    2012-04-01

    The purpose of this study was to provide a clinical anatomy atlas of the feline brain using magnetic resonance imaging (MRI). Brains of twelve normal cats were imaged using a 1.5 T magnetic resonance unit and an inversion/recovery sequence (T1). Fourteen relevant MRI sections were chosen in transverse, dorsal, median and sagittal planes. Anatomic structures were identified and labelled using anatomical texts and Nomina Anatomica Veterinaria, sectioned specimen heads, and previously published articles. The MRI sections were stained according to the major embryological and anatomical subdivisions of the brain. The relevant anatomical structures seen on MRI will assist clinicians to better understand MR images and to relate this neuro-anatomy to clinical signs. PMID:21919951

  18. A technique for the deidentification of structural brain MR images

    DEFF Research Database (Denmark)

    Bischoff-Grethe, Amanda; Ozyurt, I Burak; Busa, Evelina;

    2007-01-01

    Due to the increasing need for subject privacy, the ability to deidentify structural MR images so that they do not provide full facial detail is desirable. A program was developed that uses models of nonbrain structures for removing potentially identifying facial features. When a novel image is...... presented, the optimal linear transform is computed for the input volume (Fischl et al. [2002]: Neuron 33:341-355; Fischl et al. [2004]: Neuroimage 23 (Suppl 1):S69-S84). A brain mask is constructed by forming the union of all voxels with nonzero probability of being brain and then morphologically dilated...... inspection showed none had brain tissue removed. In a detailed analysis of the impact of defacing on skull-stripping, 16 datasets were bias corrected with N3 (Sled et al. [1998]: IEEE Trans Med Imaging 17:87-97), defaced, and then skull-stripped using either a hybrid watershed algorithm (Ségonne et al. [2004...

  19. Cerenkov and radioluminescence imaging of brain tumor specimens during neurosurgery

    Science.gov (United States)

    Spinelli, Antonello Enrico; Schiariti, Marco P.; Grana, Chiara M.; Ferrari, Mahila; Cremonesi, Marta; Boschi, Federico

    2016-05-01

    We presented the first example of Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI) of human tumor specimens. A patient with a brain meningioma localized in the left parietal region was injected with 166 MBq of Y90-DOTATOC the day before neurosurgery. The specimens of the tumor removed during surgery were imaged using both CLI and RLI using an optical imager prototype developed in our laboratory. The system is based on a cooled electron multiplied charge coupled device coupled with an f/0.95 17-mm C-mount lens. We showed for the first time the possibility of obtaining CLI and RLI images of fresh human brain tumor specimens removed during neurosurgery.

  20. Imaging Monoamine Oxidase in the Human Brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  1. The psychopath magnetized: insights from brain imaging

    OpenAIRE

    Anderson, Nathaniel E.; Kiehl, Kent A.

    2011-01-01

    Psychopaths commit a disproportionate amount of violent crime, and this places a substantial economic and emotional burden on society. Elucidation of the neural correlates of psychopathy may lead to improved management and treatment of the condition. Although some methodological issues remain, the neuroimaging literature is generally converging on a set of brain regions and circuits that are consistently implicated in the condition: the orbitofrontal cortex, amygdala, and the anterior and pos...

  2. Imaging Monoamine Oxidase in the Human Brain

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets

  3. Advanced MR brain imaging in preterm infants

    OpenAIRE

    Bruine, Francisca Teresa de

    2013-01-01

    The aim of the thesis is to investigate the diagnostic value of MRI performed around term equivalent age in evaluating brain injury and predicting neurodevelopmental outcome at two years corrected age in very preterm infants with a gestational age of less than 32 weeks. MRI is a powerful tool to diagnose all types of white matter injury and is more sensitive than ultrasound in detecting punctate white matter lesions which are associated with developmental delay and cerebral palsy. The positiv...

  4. Use of automated image registration to generate mean brain SPECT image of Alzheimer's patients

    International Nuclear Information System (INIS)

    The purpose of this study was to compute and compare the group mean HMPAO brain SPECT images of patients with senile dementia of Alzheimer's type (SDAT) and age matched control subjects after transformation of the individual images to a standard size and shape. Ten patients with Alzheimer's disease (age 71.6±5.0 yr) and ten age matched normal subjects (age 71.0±6.1 yr) participated in this study. Tc-99m HMPAO brain SPECT and X-ray CT scans were acquired for each subject. SPECT images were normalized to an average activity of 100 counts/pixel. Individual brain images were transformed to a standard size and shape with the help of Automated Image Registration (AIR). Realigned brain SPECT images of both groups were used to generate mean and standard deviation images by arithmetic operations on voxel based numerical values. Mean images of both groups were compared by applying the unpaired t-test on a voxel by voxel basis to generate three dimensional T-maps. X-ray CT images of individual subjects were evaluated by means of a computer program for brain atrophy. A significant decrease in relative radioisotope (RI) uptake was present in the bilateral superior and inferior parietal lobules (p<0.05), bilateral inferior temporal gyri, and the bilateral superior and middle frontal gyri (p<0.001). The mean brain atrophy indices for patients and normal subjects were 0.853±0.042 and 0.933±0.017 respectively, the difference being statistically significant (p<0.001). The use of a brain image standardization procedure increases the accuracy of voxel based group comparisons. Thus, intersubject averaging enhances the capacity for detection of abnormalities in functional brain images by minimizing the influence of individual variation. (author)

  5. Laser Doppler imaging for intraoperative human brain mapping.

    Science.gov (United States)

    Raabe, A; Van De Ville, D; Leutenegger, M; Szelényi, A; Hattingen, E; Gerlach, R; Seifert, V; Hauger, C; Lopez, A; Leitgeb, R; Unser, M; Martin-Williams, E J; Lasser, T

    2009-02-15

    The identification and accurate location of centers of brain activity are vital both in neuro-surgery and brain research. This study aimed to provide a non-invasive, non-contact, accurate, rapid and user-friendly means of producing functional images intraoperatively. To this end a full field Laser Doppler imager was developed and integrated within the surgical microscope and perfusion images of the cortical surface were acquired during awake surgery whilst the patient performed a predetermined task. The regions of brain activity showed a clear signal (10-20% with respect to the baseline) related to the stimulation protocol which lead to intraoperative functional brain maps of strong statistical significance and which correlate well with the preoperative fMRI and intraoperative cortical electro-stimulation. These initial results achieved with a prototype device and wavelet based regressor analysis (the hemodynamic response function being derived from MRI applications) demonstrate the feasibility of LDI as an appropriate technique for intraoperative functional brain imaging. PMID:19049824

  6. Characterization of normal brain and brain tumor pathology by chisquares parameter maps of diffusion-weighted image data

    International Nuclear Information System (INIS)

    Objective: To characterize normal and pathologic brain tissue by quantifying the deviation of diffusion-related signal from a simple monoexponential decay, when measured over a wider than usual range of b-factors. Methods and materials: Line scan diffusion imaging (LSDI), with diffusion weighting at multiple b-factors between 100 and 5000 s/mm2, was performed on 1.5 T clinical scanners. Diffusion data of single slice sections were acquired in five healthy subjects and 19 brain tumor patients. In-patients, conventional T2-weighted and contrast-enhanced T1-weighted images were obtained for reference purposes. The chisquare (χ2) error parameter associated with the monoexponential fits of the measured tissue water signals was then used to quantify the departure from a simple monoexponential signal decay on a pixel-by-pixel basis. Results: Diffusion-weighted images over a wider b-factor range than typically used were successfully obtained in all healthy subjects and patients. Normal and pathologic tissues demonstrated signal decays, which clearly deviate from a simple monoexponential behavior. The χ2 of cortical and deep grey matter was considerably lower than in white matter. In peritumoral edema, however, χ2 was 68% higher than in normal white matter. In highly malignant brain tumors, such as glioblastoma multiforme (GBM) or anaplastic astrocytoma, χ2 values were on average almost 400% higher than in normal white matter, while for one low grade astrocytoma and two cases of metastasis, χ2 was not profoundly different from the χ2 value of white matter. Maps of the χ2 values provide good visualization of spatial details. However, the tumor tissue contrast generated appeared in many cases to be different from the enhancement produced by paramagnetic contrast agents. For example, in cases where the contrast agent only highlighted the rim of the tumor, χ2 enhancement was present within the solid part of the tumor. Conclusion: The deviation from a purely

  7. Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine

    OpenAIRE

    Shapiro, Mikhail G.; Westmeyer, Gil G.; Romero, Philip A.; Szablowski, Jerzy O.; Küster, Benedict; Shah, Ameer; Christopher R Otey; Langer, Robert; Frances H Arnold; Jasanoff, Alan

    2010-01-01

    The development of molecular probes that allow in vivo imaging of neural signaling processes with high temporal and spatial resolution remains challenging. Here we applied directed evolution techniques to create magnetic resonance imaging (MRI) contrast agents sensitive to the neurotransmitter dopamine. The sensors were derived from the heme domain of the bacterial cytochrome P450-BM3 (BM3h). Ligand binding to a site near BM3h's paramagnetic heme iron led to a drop in MRI signal enhancement a...

  8. Brain Imaging, Forward Inference, and Theories of Reasoning

    Directory of Open Access Journals (Sweden)

    Evan eHeit

    2015-01-01

    Full Text Available This review focuses on the issue of how neuroimaging studies address theoretical accounts of reasoning, through the lens of the method of forward inference (Henson, 2005, 2006. After theories of deductive and inductive reasoning are briefly presented, the method of forward inference for distinguishing between psychological theories based on brain imaging evidence is critically reviewed. Brain imaging studies of reasoning, comparing deductive and inductive arguments, comparing meaningful versus non-meaningful material, investigating hemispheric localization, and comparing conditional and relational arguments, are assessed in light of the method of forward inference. Finally, conclusions are drawn with regard to future research opportunities.

  9. Brain imaging, forward inference, and theories of reasoning.

    Science.gov (United States)

    Heit, Evan

    2014-01-01

    This review focuses on the issue of how neuroimaging studies address theoretical accounts of reasoning, through the lens of the method of forward inference (Henson, 2005, 2006). After theories of deductive and inductive reasoning are briefly presented, the method of forward inference for distinguishing between psychological theories based on brain imaging evidence is critically reviewed. Brain imaging studies of reasoning, comparing deductive and inductive arguments, comparing meaningful versus non-meaningful material, investigating hemispheric localization, and comparing conditional and relational arguments, are assessed in light of the method of forward inference. Finally, conclusions are drawn with regard to future research opportunities. PMID:25620926

  10. Physiological basis and image processing in functional magnetic resonance imaging: Neuronal and motor activity in brain

    Directory of Open Access Journals (Sweden)

    Sharma Rakesh

    2004-05-01

    Full Text Available Abstract Functional magnetic resonance imaging (fMRI is recently developing as imaging modality used for mapping hemodynamics of neuronal and motor event related tissue blood oxygen level dependence (BOLD in terms of brain activation. Image processing is performed by segmentation and registration methods. Segmentation algorithms provide brain surface-based analysis, automated anatomical labeling of cortical fields in magnetic resonance data sets based on oxygen metabolic state. Registration algorithms provide geometric features using two or more imaging modalities to assure clinically useful neuronal and motor information of brain activation. This review article summarizes the physiological basis of fMRI signal, its origin, contrast enhancement, physical factors, anatomical labeling by segmentation, registration approaches with examples of visual and motor activity in brain. Latest developments are reviewed for clinical applications of fMRI along with other different neurophysiological and imaging modalities.

  11. Nanoparticle-assisted-multiphoton microscopy for in vivo brain imaging of mice

    Science.gov (United States)

    Qian, Jun

    2015-03-01

    Neuro/brain study has attracted much attention during past few years, and many optical methods have been utilized in order to obtain accurate and complete neural information inside the brain. Relying on simultaneous absorption of two or more near-infrared photons by a fluorophore, multiphoton microscopy can achieve deep tissue penetration and efficient light detection noninvasively, which makes it very suitable for thick-tissue and in vivo bioimaging. Nanoparticles possess many unique optical and chemical properties, such as anti-photobleaching, large multiphoton absorption cross-section, and high stability in biological environment, which facilitates their applications in long-term multiphoton microscopy as contrast agents. In this paper, we will introduce several typical nanoparticles (e.g. organic dye doped polymer nanoparticles and gold nanorods) with high multiphoton fluorescence efficiency. We further applied them in two- and three-photon in vivo functional brain imaging of mice, such as brain-microglia imaging, 3D architecture reconstruction of brain blood vessel, and blood velocity measurement.

  12. NMR imaging of the brain: initial impressions

    International Nuclear Information System (INIS)

    An NMR imaging system designed and built by Thorn-EMI Ltd was installed at Hammersmith Hospital in March 1981. In the first year of operation 180 patients and 40 volunteers have had cranial examinations and initial impressions bases on this experience are presented. Patients with a wide variety of neurological diseases have been studied to provide a basis for diagnostic interpretation, to define distinctive features, and to evaluate different types of scanning sequences. NMR imaging appears to be of considerable value in neurological diagnosis and has a number of advantages over CT. The detailed evaluation of NMR imaging will require much more work but the initial results are very promising

  13. 99Tcm-Neurolite brain SPECT imaging as an outcome predictor after brain trauma: initial experience

    International Nuclear Information System (INIS)

    Full text: The aim of this study was to use semi-quantitative 99Tcm-ethylene cysteine dimer (Neurolite) cerebral blood flow (CBF) SPET brain imaging to assess its role in predicting outcome after brain trauma. Twelve adult patients (9 males, 3 females) who sustained moderate to severe brain trauma were studied by CBF/SPET within 4 weeks of the injury (scan A) and again after 1 year (scan B). Clinical assessment was also performed at these times and included extensive neuropsychometric testing. Patients received 800-850 MBq 99Tcm-Neurolite intravenously, and were imaged using a triple-headed gamma camera with LEUHR fan beam collimators. Processing, filtering, reconstruction and data set selection were identical for scans A and B. Semi-quantitative analysis was performed using 25 regions of interest in the cerebral cortex and deep structures in 2 coronal, 2 sagittal and 3 oblique planes. Normalized mean counts per pixel for the whole brain, and regional brain ratios were calculated. Scans A and B were compared and correlated to the clinical outcome data. Two patients with minimal CBF abnormalities made full recoveries. The remaining 10 had moderate to severe focal CBF defects, which showed no significant improvement at 12 months. Of these patients, 2 had moderate disability, 3 had severe to moderate disability and 2 had severe disability at 12 months. Patients with persisting focal abnormal CBF showed persisting neurological deficits. Neurolite brain CBF imaging is a useful method of predicting outcome after moderate to severe head injury

  14. Obsessive-compulsive disorder: advances in brain imaging

    International Nuclear Information System (INIS)

    In the past twenty years functional brain imaging has advanced to the point of tackling the differential diagnosis, prognosis and therapeutic response in Neurology and Psychiatry. Psychiatric disorders were rendered 'functional' a century ago; however nowadays they can be seen by means of brain imaging. Functional images in positron emission tomography (PET) and single photon emission tomography (NEUROSPET) show in non-invasive fashion the state of brain functioning. PET does this assessing glucose metabolism and NEUROSPET by putting cerebral blood flow in images. Prevalence of OCD is clearly low (2 to 3%), but comorbidity with depression, psychoses, bipolar disorder and schizophrenia is high. Furthermore, it is not infrequent with autism, attention disorder, tichotillomany, borderline personality disorders, in pathological compulsive spending, sexual compulsion and in pathological gambling, in tics, and in Gilles de la Tourette disorder, NEUROSPET and PET show hypoperfusion in both frontal lobes, in their prefrontal dorsolateral aspects, in their inferior zone and premotor cortex, with hyperperfusion in the posterior cingulum and hypoperfusion in basal ganglia (caudate nucleus). Cummings states that hyperactivity of the limbic system might be involved in OCD. Thus, brain imaging in OCD is a diagnostic aid, allows us to see clinical imagenological evolution and therapeutic response and, possibly, it is useful predict therapeutic response (Au)

  15. 3T MR imaging of the brain.

    Science.gov (United States)

    DeLano, Mark C; Fisher, Charles

    2006-02-01

    The advent of very high field clinical scanners that operate at 3T is taking structural and functional imaging to new levels and is reinvigorating clinical spectroscopy, fMR imaging, and noncontrast-enhanced methods of MRA. Most of the challenges that are related to 3T imaging have been addressed to facilitate routine clinical imaging. An awareness of the complexities that underlie the solutions to these challenges is important to the continued improvements to the 3T platform so that its maximal potential can be reached. The development of the multichannel-head coils and the improvement in the design of body coils, concurrently with the development of multichannel capabilities that enable parallel imaging, have benefited all field platforms. Perhaps the added value of parallel imaging has been greatest at 3T where the additional signal can be exploited. The definition of very high field is a moving target, and may be well on its way to 7.0 T, although in terms of the current clinical state of the art, 3T is our current reference. PMID:16530636

  16. Radiolabeled Zn-DPA as a potential infection imaging agent

    International Nuclear Information System (INIS)

    Introduction: A zinc-dipicolylamine analog (Zn-DPA) conjugated with a fluorophore (PSVue®794) has been shown to image bacterial infections in mice. However, radiolabeled Zn-DPA has not previously been considered for nuclear imaging of infection. Methods: Both 111In-labeled DOTA-biotin and Zn-DPA-biotin were combined using streptavidin (SA) as a noncovalent linker. Mice injected intramuscularly with Streptococcus pyogenes (infection model) or with lipopolysaccharide (LPS) (inflammation model) were coinjected intravenously with 6 μg of DPA as PSVue794 and as 111In-DOTA-biotin/SA/biotin-Zn-DPA. Periodic fluorescent and SPECT (single photon emission computed tomography)/CT (computed tomography) images were acquired, and biodistributions were obtained at 22 h. Results: Histological examination confirmed the validity of both the infection and inflammation animal models. Both the whole-body optical and nuclear images showed obvious accumulations in the target thigh in both models at all time points. At 22 h, the average target thigh accumulation of 111In was 1.66%ID/g (S.D. 0.15) in the infection mice compared to 0.58%ID/g (S.D. 0.07) in the inflammation mice (P111In target/normal thigh ratio was 2.8 fold higher in the infection animals compared to the inflammation animals. Conclusions: These preliminary results show that Zn-DPA within streptavidin targets S. pyogenes-infected mice similarly to its free fluorescent analogue. The significantly higher accumulation in the live bacterial infection thigh compared to that of the LPS-induced inflammation thigh suggests that Zn-DPA may be a promising imaging agent to distinguish between bacterial infections and sterile inflammations.

  17. Positrons as imaging agents and probes in nanotechnology

    Science.gov (United States)

    Smith, Suzanne V.

    2009-09-01

    Positron emission tomography (PET) tracks a positron emitting radiopharmaceutical injected into the body and generates a 3-dimensional image of its location. Introduced in the early 70s, it has now developed into a powerful medical diagnostic tool for routine clinical use as well as in drug development. Unrivalled as a highly sensitive, specific and non-invasive imaging tool, PET unfortunately lacks the resolution of Computer Tomography (CT) and Magnetic Resonance Imaging (MRI). As the resolution of PET depends significantly on the energy of the positron incorporated in the radiopharmaceutical and its interaction with its surrounding tissue, there is growing interest in expanding our understanding of how positrons interact at the atomic and molecular level. A better understanding of these interactions will contribute to improving the resolution of PET and assist in the design of better imaging agents. Positrons are also used in Positron Annihilation Lifetime Spectroscopy (PALS) to determine electron density and or presence and incidence of micro- and mesopores (0.1 to 10 nm) in materials. The control of porosity in engineered materials is crucial for applications such as controlled release or air and water resistant films. Equally important to the design of nano and microtechnologies, is our understanding of the microenvironments within these pores and on surfaces. Hence as radiopharmaceuticals are designed to track disease, nuclear probes (radioactive molecules) are synthesized to investigate the chemical properties within these pores. This article will give a brief overview of the present role of positrons in imaging as well as explore its potential to contribute in the engineering of new materials to the marketplace.

  18. Clinical application of synthesized brain surface imaging for preoperative simulation of brain biopsy under local anesthesia

    International Nuclear Information System (INIS)

    Surface anatomy scanning (SAS) is the technique which permits the direct visualization of brain surface structures, including cortical sulci, guri, subcortical lesions as well as skin markings for craniotomy. A synthesized brain surface image is a technique that combines MR angiography (MRA) with SAS, and it proposed by us for detecting cerebral superficial veins with these surface structures on the same image. The purpose of this report is to present the result of applying the synthesized brain surface image to the preoperative simulation of biopsy under local anesthesia in 2 cases of multiple metastatic brain tumors. The parameters for SAS were TR/TE=50/40 msec, flip angle=60deg by the fast T2 technique using refocused FID in steady-state (STERF technique). SAS images were processed by gray scale reversal. The MRA data were acquired with two-dimensional time of flight (TOF) sequence after intravenous administration of Gd-DTPA. Before imaging, the water-filled plastic tubes were placed on the patients scalp as markings for craniotomy. Their positions were planned by the neurosurgeons. On SAS, the markings for burr-hole appeared located above the tumors. However on the synthesized brain surface images, the positions of burr-hole were considered to be inadequate, since superficial cerebral vein and sinus were also visualized in the area of the markings. From these results, the positions of burr-hole were reset to avoid the venous structures, and so as to include the lesions in operations. The biopsies were performed successfully and safely because the venous structure could be excluded from the operative field. By this technique it was easy to confirm the relationships among lesions, skin markings and venous structures. The technique described appears to be a useful method for preoperative simulation of biopsies for multiple metastatic brain tumors under local anesthesia. (author)

  19. Multiphoton Imaging of Ultrasound Bioeffects in the Murine Brain

    Science.gov (United States)

    Raymond, Scott; Skoch, Jesse; Bacskai, Brian; Hynynen, Kullervo

    2006-05-01

    The purpose of this study was to demonstrate the feasibility of multiphoton imaging in the murine brain during exposure to ultrasound. Our experimental setup coupled ultrasound through the ventral surface of the mouse while allowing imaging through a cranial window from the dorsal surface. Field attenuation was estimated by scanning the field after insertion of a freshly sacrificed mouse; beam profile and peak position were preserved, suggesting adequate targeting for imaging experiments. C57 mice were imaged with a Biorad multiphoton microscope while being exposed to ultrasound (f = 1.029 MHz, peak pressure ˜ 200 kPa, average power ˜ 0.18 W) with IV injection of Optison. We observed strong vasoconstriction coincident with US and Optison, as well as permeabilization of the blood-brain barrier.

  20. MR imaging of brain metastases. Pt. 1

    International Nuclear Information System (INIS)

    Sensitifity and specificity of plain T2-WI and Gd-DTPA enhanced T1-WI were compared by evaluating MR exams of 30 patients with brain metastases. Large lesions with high signal on T2-WI always enhanced (43/43) when a structure (perifocal edema, tumor tissue, centralnecrosis) was found. Large lesions nearly always enhanced (53/55) even if no such structure was found. 65% of small unstructured white matter lesions with high signal on T2-WI, which are generally considered vascular, did not enhance. Surprisingly, 35% did enhance. Demonstration of blood brain barrier disturbance in these lesions suggested a metastatic origin. In 3 patients with multiple metastases, Gd-DTPA enhanced T1-WI disclosed more than 140 lesions not seen on T2-WI. All of them were located in or adjacent to grey matter. Our results indicate that enhanced T1-WI should be obtained even if T1-WI are normal or show only small white matter lesions. (orig.)

  1. Neuronal Clustering of Brain fMRI Images

    OpenAIRE

    Lachiche, N; Hommet, J.; J. Korczak; Braud, A.

    2005-01-01

    Functional Magnetic Resonance Imaging (fMRI) allows the neuroscientists to observe the human brain in vivo. The current approach consists in statistically validating their hypotheses. Data mining techniques provide an opportunity to help them in making up their hypotheses. This paper shows how a neuronal clustering technique can highlight active areas thanks to an appropriate distance between fMRI image sequences. This approach has been integrated into an interactive environment for knowledge...

  2. MR to CT Registration of Brains using Image Synthesis

    OpenAIRE

    Roy, Snehashis; Carass, Aaron; Jog, Amod; Prince, Jerry L.; Lee, Junghoon

    2014-01-01

    Computed tomography (CT) is the standard imaging modality for patient dose calculation for radiation therapy. Magnetic resonance (MR) imaging (MRI) is used along with CT to identify brain structures due to its superior soft tissue contrast. Registration of MR and CT is necessary for accurate delineation of the tumor and other structures, and is critical in radiotherapy planning. Mutual information (MI) or its variants are typically used as a similarity metric to register MRI to CT. However, u...

  3. Biochemical imaging of the human brain in development and disease

    International Nuclear Information System (INIS)

    The authors used positron emission tomography (PET) to image cerebral glucose metabolism in more than 140 children aged 5 days to 15 years. Twenty-nine children were studied during normal development and the remainder because of infantile spasm, seizure, Lennox-Gastaut syndrome, or cerebral palsy. This exhibit demonstrates the temporal course of normal function (metabolic) development of the brain, and compares the relative value of PET, MR imaging, and x-ray CT in abnormal cases

  4. Application of iterative image reconstruction to functional brain mapping

    International Nuclear Information System (INIS)

    Full text: The advantage of the iterative image reconstruction algorithms, such as the maximum likelihood expectation maximisation (ML-EM) algorithm in providing improved image signal-to-noise ratio (SNR)in the low count positron emission tomography (PET) studies makes it a suitable image reconstruction algorithm for PET functional brain mapping. The ML-EM algorithm improves the sensitivity and specificity of functional brain imaging compared to images reconstructed using the filtered back projection (FBP) algorithm. We optimised the ML-EM algorithm for maximum sensitivity with no loss of specificity (compared to the FBP algorithm) as a function of iteration number and t-value probability threshold. A receiver operating characteristic (ROC) for analysing a simulated 3D activation study was determined for each ML-EM iteration up to the twenty first iteration. At four ML-EM iterations and using a 0.05 t-value probability threshold, the ML-EM images identified the signal regions with 41% increased sensitivity and 6% decreased specificity compared to FBP images. Results for a human auditory stimulus activation study are also presented and discussed. In conclusion, the images reconstructed at four ML-EM iterations demonstrate improved statistical properties compared to images reconstructed using FBP algorithm

  5. Uptake of myocardial imaging agents by rejected hearts

    International Nuclear Information System (INIS)

    Technetium 99 m pyrophosphate, Gallium 67 and Thallium 201 uptakes were measured in heterotopically transplanted rat hearts. Five days after transplantation, Technetium 99 m pyrophosphate, and Gallium 67 uptakes were significantly higher in allogeneic grafts than in syngeneic grafts. At an early stage of rejection (three days after transplantation), only Technetium 99 m pyrophosphate uptake in the left ventricle of allogeneic grafts showed a significant difference (p less than 0.04). At five days, Thallium 201 uptake was significantly lower in allo- than syngeneic grafts. There was a positive correlation between radionuclide uptake and histologic degree of rejection for Technetium 99 m pyrophosphate and Gallium 67 while Thallium 201 uptake correlated negatively. Analysis of variance revealed that hearts with no or minimal rejection had statistically different uptakes than hearts with mild to moderate rejection. These results suggest that uptake of imaging agents might be useful in the diagnosis of rejection of the transplanted heart

  6. Tracers and contrast agents in cardiovascular imaging: present and future

    International Nuclear Information System (INIS)

    This brief article addresses the current status and future potential of nuclear medicine, X-ray computed tomography (CT), ultrasound (US), and magnetic resonance (MR) imaging in the diagnosis of cardiovascular diseases. The currently perceived advantages and disadvantages, as well as the possible future roles, of each of the modalities with regard to the evaluation of coronary artery disease are delineated. The certain advent of Mr and US myocardial contrast agents, combined with the inexorable pressures of health care reform, will alter the future usage patterns of all four modalities. Future debates about which modality should be used in which clinical situation will be based not on 'anatomy vs function', nor on the issues of cost effectiveness and patient outcomes

  7. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    DEFF Research Database (Denmark)

    Menze, Bjoern H.; Jakab, Andras; Bauer, Stefan;

    2015-01-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- a...

  8. Apparatus and method for motion tracking in brain imaging

    DEFF Research Database (Denmark)

    2013-01-01

    Disclosed is apparatus and method for motion tracking of a subject in medical brain imaging. The method comprises providing a light projector and a first camera; projecting a first pattern sequence (S1) onto a surface region of the subject with the light projector, wherein the subject is positioned...

  9. Molecular imaging of the brain. Using multi-quantum coherence and diagnostics of brain disorders

    International Nuclear Information System (INIS)

    Explains the basics of the MRI and its use in the diagnostics and the treatment of the human brain disorders. Examines multi-quantum magnetic resonance imaging methods and the diagnostics of brain disorders. Covers how in a non-invasive manner one can diagnose diseases of the brain. This book examines multi-quantum magnetic resonance imaging methods and the diagnostics of brain disorders. It consists of two Parts. The part I is initially devoted towards the basic concepts of the conventional single quantum MRI techniques. It is supplemented by the basic knowledge required to understand multi-quantum MRI. Practical illustrations are included both on recent developments in conventional MRI and the MQ-MRI. This is to illustrate the connection between theoretical concepts and their scope in the clinical applications. The Part II initially sets out the basic details about quadrupole charge distribution present in certain nuclei and their importance about the functions they perform in our brain. Some simplified final mathematical expressions are included to illustrate facts about the basic concepts of the quantum level interactions between magnetic dipole and the electric quadrupole behavior of useful nuclei present in the brain. Selected practical illustrations, from research and clinical practices are included to illustrate the newly emerging ideas and techniques. The reader should note that the two parts of the book are written with no interdependence. One can read them quite independently.

  10. Design of a new serotonin receptor 5-HT1A imaging agent based on 99mTc

    International Nuclear Information System (INIS)

    Serotonin is one of the neurotransmitters found in the brain and mediates brain functions. It is very well known that serotonin related brain abnormalities are exerted mainly via serotonin receptors in a similar manner to other neurotransmitters found in the brain. Recently, it has also been found that serotonin is involved in Alzheimer's disease either directly or indirectly by its actions on serotonergic neurons. To understand and treat the diseases caused by abnormalities in the serotonergic system in the brain, it is certain that its mechanism of function has to be well investigated. So far several 5-HT receptors and receptor subtypes have been well characterized. Moreover, serotonin agonists and antagonists acting on specific receptors are chemically synthesized and are now available for the prevention or treatment of serotonergic related diseases. In recent years, a great demand for developing neuroimaging agents has emerged for the diagnosis of abnormal brain functions in the area of nuclear medicine. Since arylpiperazine, WAY 100635, in the present investigation, has been recognized as a highly selective ligand for the 5-HT1A receptor, it has been used for the development of brain imaging agents based on serotonin receptors. First, S,S'-bis(trityl) monoamide monoamine (MAMA-Tr2) was synthesized, followed by synthesis of an arylpiperazine ligand. The synthesis of the analogue of WAY 100635 was completed and it lead to successful labelling with 99mTc without a by-product. Deprotection of the S,S-Tr2 group of MAMA-Tr2 was efficiently conducted by incubation at 100 deg. C for 1 h under acidic conditions (pH2-3), followed by labelling with 99mTc. Its radiochemical purity was checked by high performance liquid chromatography, and a labelled compound of >99% radiochemical purity was used for an in vivo bioavailability study using a gamma ray camera. An animal biodistribution study was also conducted to ascertain the serotonergic neuronal imaging effect of 99m

  11. Role of infectious agents in the carcinogenesis of brain and head and neck cancers

    Directory of Open Access Journals (Sweden)

    Alibek Kenneth

    2013-02-01

    Full Text Available Abstract This review concentrates on tumours that are anatomically localised in head and neck regions. Brain cancers and head and neck cancers together account for more than 873,000 cases annually worldwide, with an increasing incidence each year. With poor survival rates at late stages, brain and head and neck cancers represent serious conditions. Carcinogenesis is a multi-step process and the role of infectious agents in this progression has not been fully identified. A major problem with such research is that the role of many infectious agents may be underestimated due to the lack of or inconsistency in experimental data obtained globally. In the case of brain cancer, no infection has been accepted as directly oncogenic, although a number of viruses and parasites are associated with the malignancy. Our analysis of the literature showed the presence of human cytomegalovirus (HCMV in distinct types of brain tumour, namely glioblastoma multiforme (GBM and medulloblastoma. In particular, there are reports of viral protein in up to 100% of GBM specimens. Several epidemiological studies reported associations of brain cancer and toxoplasmosis seropositivity. In head and neck cancers, there is a distinct correlation between Epstein-Barr virus (EBV and nasopharyngeal carcinoma (NPC. Considering that almost every undifferentiated NPC is EBV-positive, virus titer levels can be measured to screen high-risk populations. In addition there is an apparent association between human papilloma virus (HPV and head and neck squamous cell carcinoma (HNSCC; specifically, 26% of HNSCCs are positive for HPV. HPV type 16 was the most common type detected in HNSCCs (90% and its dominance is even greater than that reported in cervical carcinoma. Although there are many studies showing an association of infectious agents with cancer, with various levels of involvement and either a direct or indirect causative effect, there is a scarcity of articles covering the role of

  12. Assessment of vessel diameters for MR brain angiography processed images

    Science.gov (United States)

    Moraru, Luminita; Obreja, Cristian-Dragos; Moldovanu, Simona

    2015-12-01

    The motivation was to develop an assessment method to measure (in)visible differences between the original and the processed images in MR brain angiography as a method of evaluation of the status of the vessel segments (i.e. the existence of the occlusion or intracerebral vessels damaged as aneurysms). Generally, the image quality is limited, so we improve the performance of the evaluation through digital image processing. The goal is to determine the best processing method that allows an accurate assessment of patients with cerebrovascular diseases. A total of 10 MR brain angiography images were processed by the following techniques: histogram equalization, Wiener filter, linear contrast adjustment, contrastlimited adaptive histogram equalization, bias correction and Marr-Hildreth filter. Each original image and their processed images were analyzed into the stacking procedure so that the same vessel and its corresponding diameter have been measured. Original and processed images were evaluated by measuring the vessel diameter (in pixels) on an established direction and for the precise anatomic location. The vessel diameter is calculated using the plugin ImageJ. Mean diameter measurements differ significantly across the same segment and for different processing techniques. The best results are provided by the Wiener filter and linear contrast adjustment methods and the worst by Marr-Hildreth filter.

  13. Radiopharmaceuclicks: from multimodal imaging probes to therapeutic agents

    International Nuclear Information System (INIS)

    Full text of publication follows. The 'click-to-chelate' concept developed recently by Schibli and Coll. allowed the synthesis and biological evaluation of numerous metallic complexes based on a triazole ring for nuclear medicine [Ref.1]. Most of these radio-complexes, prepared by a Copper-catalyzed Alkyne-Azide Cycloaddition reaction (CuAAC reaction), have been used for single photon emission computer tomography applications (SPECT), particularly 99mTc complexes. The CuAAC reaction representing, in our opinion, a very powerful tool, we anticipated that its use could be interesting for the development of dual imaging probes and for the preparation of new therapeutic agents. These compounds, so-called radiopharmaceuclicks, have been developed using (i) a 99mTc(I)/185/187Re metal pairs for the preparation of a novel bimodal SPECT/fluorescence probe and (ii) a 188Re(I) core for the conception of a new Re-radio-complex. Therefore, we developed recently a novel bimodal optical/radiolabelled probe based on a pyridyl-triazole scaffold, so-called pyta [Ref.2]. The final dual imaging agent combines a carboxylate functionalization for bio-molecule conjugation and two distinct metal chelating sites: a pyta-based tricarbonyl-rhenium moiety as fluorescent probe and a 99mTc(CO3)+ core through the tridentate chelating iminodiacetic acid (IDA) clamp as SPECT reporter. The preparation and biological evaluation (in vitro stability, non-toxicity, cell tracking... ) of this complex will be presented here and its potential as a pre- and intra-operative diagnostic probe will be discussed. On the other hand, first investigations about the preparation of a new bifunctional chelating agent based on a triazolyl moiety and specific for the 188Re-tricarbonyl core complexation will be described. To the best of our knowledge, this 188Re(CO)3 complex represents the second example of a chelate in which the 188Re-tricarbonyl core is coordinated by a click ligand, the first one being

  14. Simulation of brain tumor resection in image-guided neurosurgery

    Science.gov (United States)

    Fan, Xiaoyao; Ji, Songbai; Fontaine, Kathryn; Hartov, Alex; Roberts, David; Paulsen, Keith

    2011-03-01

    Preoperative magnetic resonance images are typically used for neuronavigation in image-guided neurosurgery. However, intraoperative brain deformation (e.g., as a result of gravitation, loss of cerebrospinal fluid, retraction, resection, etc.) significantly degrades the accuracy in image guidance, and must be compensated for in order to maintain sufficient accuracy for navigation. Biomechanical finite element models are effective techniques that assimilate intraoperative data and compute whole-brain deformation from which to generate model-updated MR images (uMR) to improve accuracy in intraoperative guidance. To date, most studies have focused on early surgical stages (i.e., after craniotomy and durotomy), whereas simulation of more complex events at later surgical stages has remained to be a challenge using biomechanical models. We have developed a method to simulate partial or complete tumor resection that incorporates intraoperative volumetric ultrasound (US) and stereovision (SV), and the resulting whole-brain deformation was used to generate uMR. The 3D ultrasound and stereovision systems are complimentary to each other because they capture features deeper in the brain beneath the craniotomy and at the exposed cortical surface, respectively. In this paper, we illustrate the application of the proposed method to simulate brain tumor resection at three temporally distinct surgical stages throughout a clinical surgery case using sparse displacement data obtained from both the US and SV systems. We demonstrate that our technique is feasible to produce uMR that agrees well with intraoperative US and SV images after dural opening, after partial tumor resection, and after complete tumor resection. Currently, the computational cost to simulate tumor resection can be up to 30 min because of the need for re-meshing and the trial-and-error approach to refine the amount of tissue resection. However, this approach introduces minimal interruption to the surgical workflow

  15. Faster permutation inference in brain imaging.

    OpenAIRE

    Winkler, AM; Ridgway, GR; Douaud, G; Nichols, TE; Smith, SM

    2016-01-01

    Permutation tests are increasingly being used as a reliable method for inference in neuroimaging analysis. However, they are computationally intensive. For small, non-imaging datasets, recomputing a model thousands of times is seldom a problem, but for large, complex models this can be prohibitively slow, even with the availability of inexpensive computing power. Here we exploit properties of statistics used with the general linear model (GLM) and their distributions to obtain accelerations i...

  16. Intracranial Hemorrhage Annotation for CT Brain Images

    OpenAIRE

    Tong Hau Lee; Mohammad Faizal Ahmad Fauzi; Su-Cheng Haw

    2011-01-01

    In this paper, we created a decision-making model to detect intracranial hemorrhage and adopted Expectation Maximization(EM) segmentation to segment the Computed Tomography (CT) images. In this work, basically intracranial hemorrhage is classified into two main types which are intra-axial hemorrhage and extra-axial hemorrhage. In order to ease classification, contrast enhancement is adopted to finetune the contrast of the hemorrhage. After that, k-means is applied to group the potential and s...

  17. A preliminary study of new imaging agents on inflammatory lesions

    International Nuclear Information System (INIS)

    Feasibility of imaging inflammatory lesions with five small molecular weight complexes of 99mTc was investigated. The labeling yields of D-glucaric acid (D-Gca), citric acid (Cit), DL-malic acid (DL-Mal), L-malic acid (L-Mal) and tartaric acid (Tar) were all more than 90%. The percentage uptake/g tissue of them and 99mTc-pertechnetate (P) in mice with turpentine-induced abscesses and abscess/muscle (A/M), blood (A/B), liver (A/L), kidney (A/K) concentration ratios were calculated. The maximum A/M ratios were 4.02±0.21 (Cit, 3h), 4.30±0.77 (D-Gca, 3h), 4.04±0.21 (DL-Mal, 6h), 3.50±0.23 (L-Mal, 1h), 3.20±0.17 (Tar, 1h) and 3.23±0.41 (P, 1h) respectively. The scintigram was obtained in a rabbit with turpentine-induced abscess after 99mTc-D-Gca i.v. injection. Results demonstrated they all can accumulate in inflammatory lesions. Of them, 99mTc-D-Gca is probably a potential imaging agent on inflammatory lesions. (author)

  18. Comparison of radiation dosimetry for several potential myocardial imaging agents

    International Nuclear Information System (INIS)

    Although myocardial imaging is currently dominated by Tl-201, several alternative agents with improved physiologic or radionuclidic properties have been proposed. Based on human and animal studies in the literature, the metabolism of several of these compounds was studied for the purpose of generating radiation dose estimates. Dose estimates are listed for several I-123-labeled free fatty acids, an I-123-labeled phosphonium compound, Rb-82, Cu-64, F-18 FDG (all compounds which are taken up by the normal myocardium), and for Tc-99m pyrophosphate (PYP) (which localizes in myocardial infarcts). Dose estimates could not be generated for C-11 palmitate, but his compound was included in a comparison of myocardial retention times. For the I-123-labeled compounds, I-124 was included as a contaminant in generating the dose estimates. Radiation doses were lowest for Rb-82 (gonads 0.3-0.4 Gy/MBq, kidneys 8.6 Gy/MBq). Doses for the I-123-labeled fatty acids were similar to one another, with IPPA being the lowest (gonads 15 Gy/MBq, heart wall 18 Gy/MBq). Doses for Tc-99m PYP were also low (gonads 4-7 Gy/MBq, heart wall 4 Gy/MBq, skeleton 15 Gy/MBq). The desirability of these compounds is discussed briefly, considering half-life, imaging mode and energy, and dosimetry, including a comparison of the effective whole body dose equivalents. 37 references, 11 tables

  19. Automatic intra-modality brain image registration method

    International Nuclear Information System (INIS)

    Full text: Registration of 3D images of brain of the same or different subjects has potential importance in clinical diagnosis, treatment planning and neurological research. The broad aim of our work is to produce an automatic and robust intra-modality, brain image registration algorithm for intra-subject and inter-subject studies. Our algorithm is composed of two stages. Initial alignment is achieved by finding the values of nine transformation parameters (representing translation, rotation and scale) that minimise the nonoverlapping regions of the head. This is achieved by minimisation of the sum of the exclusive OR of two binary head images, produced using the head extraction procedure described by Ardekani et al. (J Comput Assist Tomogr, 19:613-623, 1995). The initial alignment successfully determines the scale parameters and gross translation and rotation parameters. Fine alignment uses an objective function described for inter-modality registration in Ardekani et al. (ibid.). The algorithm segments one of the images to be aligned into a set of connected components using K-means clustering. Registration is achieved by minimising the K-means variance of the segmentation induced in the other image. Similarity of images of the same modality makes the method attractive for intra-modality registration. A 3D MR image, with voxel dimensions, 2x2x6 mm, was misaligned. The registered image shows visually accurate registration. The average displacement of a pixel from its correct location was measured to be 3.3 mm. The algorithm was tested on intra-subject MR images and was found to produce good qualitative results. Using the data available, the algorithm produced promising qualitative results in intra-subject registration. Further work is necessary in its application to intersubject registration, due to large variability in brain structure between subjects. Clinical evaluation of the algorithm for selected applications is required

  20. β淀粉样蛋白PET显像剂11C-DPOD的制备及其在动物体内的分布%Synthesis and Biological Evaluation of 11C-DPOD for PET Imaging Agent of Amyloid-β in Mouse Brain

    Institute of Scientific and Technical Information of China (English)

    王新艳; 张政伟; 蒋雨平; 孔艳艳; 桂媛; 胡名扬; 华逢春; 管一晖

    2013-01-01

    Aim To study the synthesis of 11C-labeled PET amyloid-P (Ap) imaging agent titled DPOD, a new series of 11C-6-OH-BTA-1 derivatives, and biological evaluation of 11C-DPOD for detecting amyloid-P plaques in mouse brain. Methods 11C-triflate-CH3 was bubbled into 2 mg precursor DPOD, which was dissolved in 0.1 mg methyl ethyl ketone, to generate 11C-DPOD in a V-tube at high temperature (about 80℃). The radiolabelled products were purified by HPLC. Then the image of radioactive concentration of transgenic, senile mice and rhesus monkey was made by using PET/CT. All data were analyzed by Stata 10.0 software (P<0.05). Results 11C-DPOD was a kind of colorless transparent liquid with ethyl alcohol about 10%, pH7.0. The radiochemical purity was over 95% and the average radiolabeling yield was from 10% to 15%. 11C-DPOD had the same effect as 11C-PIB in pharmacokinetics of transgenic and senile mice. Conclusion 11C-DPOD radioactivity of brain was synthesized by ourselves and washed out quickly thereafter in both transgenic mice and monkey.%目的 研究脑内β淀粉样蛋白(Aβ)的PET显像剂11C-DPOD即[N-甲基-11C]-3,5-二苯基-1,2,4-苯并噻唑的制备路线和在动物体内的分布情况.方法 使用11C-三氟甲基磺酰甲烷(11C-triflate-CH3)和2 mg自制DPOD前体(溶于0.1 mL丁酮中,摇匀后装于3mL的特制密闭反应瓶中,置-20℃)反应,在80℃水浴中对前体进行甲基化反应并完成11C标记.反应后的液体加入5mL注射用水稀释,过活化的固相C18柱除去杂质,再用乙醇0.5 mL洗脱保留在柱上的产品.经无菌注射水稀释和0.22 μm的微孔无菌滤膜过滤,得到澄清11C-DPOD乙醇水溶液.经尾静脉注射于转基因型阿尔茨海默病(AD)小鼠(AD小鼠)、正常C57老龄小鼠(正常老龄小鼠,作为对照);经肘静脉注射猕猴,进行动态显像.结果 11C-DPOD注射液为无色澄清透明液体(pH 7.0),含10%的乙醇,放射性化学纯度>98%,产率为10%~15%.在AD小鼠和正常

  1. Brain imaging of mild cognitive impairment and Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Changhao Yin; Siou Li; Weina Zhao; Jiachun Feng

    2013-01-01

    The rapidly increasing prevalence of cognitive impairment and Alzheimer's disease has the potential to create a major worldwide healthcare crisis. Structural MRI studies in patients with Alzheimer's disease and mild cognitive impairment are currently attracting considerable interest. It is extremely important to study early structural and metabolic changes, such as those in the hippocampus, entorhinal cortex, and gray matter structures in the medial temporal lobe, to allow the early detection of mild cognitive impairment and Alzheimer's disease. The microstructural integrity of white matter can be studied with diffusion tensor imaging. Increased mean diffusivity and decreased fractional anisotropy are found in subjects with white matter damage. Functional imaging studies with positron emission tomography tracer compounds enable detection of amyloid plaques in the living brain in patients with Alzheimer's disease. In this review, we will focus on key findings from brain imaging studies in mild cognitive impairment and Alzheimer's disease, including structural brain changes studied with MRI and white matter changes seen with diffusion tensor imaging, and other specific imaging methodologies will also be discussed.

  2. Transport, monitoring, and successful brain MR imaging in unsedated neonates

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Amit M. [St. Louis Children' s Hospital at the Washington University School of Medicine, Department of Pediatrics and Newborn Medicine, St. Louis, MO (United States); St. Louis Children' s Hospital, Division of Newborn Medicine, St. Louis, MO (United States); Neil, Jeffrey J. [St. Louis Children' s Hospital at the Washington University School of Medicine, Department of Neurology, St. Louis, MO (United States); Mallinckrodt Institute of Radiology, St. Louis, MO (United States); McKinstry, Robert C. [Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Inder, Terrie E. [St. Louis Children' s Hospital at the Washington University School of Medicine, Department of Pediatrics and Newborn Medicine, St. Louis, MO (United States); St. Louis Children' s Hospital at the Washington University School of Medicine, Department of Neurology, St. Louis, MO (United States); Mallinckrodt Institute of Radiology, St. Louis, MO (United States)

    2008-03-15

    Neonatal cerebral MR imaging is a sensitive technique for evaluating brain injury in the term and preterm infant. In term encephalopathic infants, MR imaging reliably detects not only the pattern of brain injury but might also provide clues about the timing of injury. In premature infants, MR imaging has surpassed US in the detection of white matter injury, a common lesion in this population. Concerns remain about the safety and transport of sedated neonates for MR examination to radiology suites, which are usually located at a distance from neonatal intensive care units. We present our own institutional experience and guidelines used to optimize the performance of cerebral MR examinations in neonates without sedation or anesthesia. (orig.)

  3. Ultrasound contrast-agent improves imaging of lower limb occlusive disease

    DEFF Research Database (Denmark)

    Eiberg, J P; Hansen, M A; Jensen, F; Rasmussen, J B Grønvall; Schroeder, T V

    2003-01-01

    to evaluate if ultrasound contrast-agent infusion could improve duplex-ultrasound imaging of peripheral arterial disease (PAD) and increase the agreement with digital subtraction arteriography (DSA)....

  4. Positron emission tomography imaging of (2R,3R)-5-[18F]fluoroethoxybenzovesamicol in rat and monkey brain: a radioligand for the vesicular acetylcholine transporter

    International Nuclear Information System (INIS)

    Introduction: The regional brain distribution of (2R,3R)-5-[18F]fluoroethoxy-benzovesamicol ((-)-[18F]FEOBV), a radioligand for the vesicular acetylcholine transporter (VAChT), was examined in vivo in mice, rats and rhesus monkeys. Methods: Regional brain distributions of (-)-[18F]FEOBV in mice were determined using ex vivo dissection. MicroPET imaging was used to determine the regional brain pharmacokinetics of the radioligand in rat and rhesus monkey brains. Results: In all three species, clear heterogeneous regional brain distributions were obtained, with the rank order of brain tissues (striatum>thalamus>cortex>cerebellum) consistent with the distribution of cholinergic nerve terminals containing the VAChT. Conclusions: (-)-[18F]FEOBV remains a viable candidate for further development as an in vivo imaging agent for positron emission tomography (PET) studies of the VAChT in the human brain.

  5. Reversible acute methotrexate leukoencephalopathy: atypical brain MR imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Ziereisen, France; Damry, Nash; Christophe, Catherine [Queen Fabiola Children' s University Hospital, Department of Radiology, Brussels (Belgium); Dan, Bernard [Queen Fabiola Children' s University Hospital, Department of Neurology, Brussels (Belgium); Azzi, Nadira; Ferster, Alina [Queen Fabiola Children' s University Hospital, Department of Paediatrics, Brussels (Belgium)

    2006-03-15

    Unusual acute symptomatic and reversible early-delayed leukoencephalopathy has been reported to be induced by methotrexate (MTX). We aimed to identify the occurrence of such atypical MTX neurotoxicity in children and document its MR presentation. We retrospectively reviewed the clinical findings and brain MRI obtained in 90 children treated with MTX for acute lymphoblastic leukaemia or non-B malignant non-Hodgkin lymphoma. All 90 patients had normal brain imaging before treatment. In these patients, brain imaging was performed after treatment completion and/or relapse and/or occurrence of neurological symptoms. Of the 90 patients, 15 (16.7%) showed signs of MTX neurotoxicity on brain MRI, 9 (10%) were asymptomatic, and 6 (6.7%) showed signs of acute leukoencephalopathy. On the routine brain MRI performed at the end of treatment, all asymptomatic patients had classical MR findings of reversible MTX neurotoxicity, such as abnormal high-intensity areas localized in the deep periventricular white matter on T2-weighted images. In contrast, the six symptomatic patients had atypical brain MRI characterized by T2 high-intensity areas in the supratentorial cortex and subcortical white matter (n=6), cerebellar cortex and white matter (n=4), deep periventricular white matter (n=2) and thalamus (n=1). MR normalization occurred later than clinical recovery in these six patients. In addition to mostly asymptomatic classical MTX neurotoxicity, MTX may induce severe but reversible unusual leukoencephalopathy. It is important to recognize this clinicoradiological presentation in the differential diagnosis of acute neurological deterioration in children treated with MTX. (orig.)

  6. Concussion in athletics: ongoing clinical and brain imaging research controversies.

    Science.gov (United States)

    Slobounov, Semyon; Gay, Michael; Johnson, Brian; Zhang, Kai

    2012-06-01

    Concussion, the most common form of traumatic brain injury, proves to be increasingly complex and not mild in nature as its synonymous term mild traumatic brain injury (mTBI) would imply. Despite the increasing occurrence and prevalence of mTBI there is no universally accepted definition and conventional brain imaging techniques lack the sensitivity to detect subtle changes it causes. Moreover, clinical management of sports induced mild traumatic brain injury has not changed much over the past decade. Advances in neuroimaging that include electroencephalography (EEG), functional magnetic resonance imaging (fMRI), resting-state functional connectivity, diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS) offer promise in aiding research into understanding the complexities and nuances of mTBI which may ultimately influence clinical management of the condition. In this paper the authors review the major findings from these advanced neuroimaging methods along with current controversy within this field of research. As mTBI is frequently associated with youth and sports injury this review focuses on sports-related mTBI in the younger population. PMID:22669496

  7. Diffusion tensor imaging and fiber tractography in brain malformations

    International Nuclear Information System (INIS)

    Diffusion tensor imaging (DTI) is an advanced MR technique that provides qualitative and quantitative information about the micro-architecture of white matter. DTI and its post-processing tool fiber tractography (FT) have been increasingly used in the last decade to investigate the microstructural neuroarchitecture of brain malformations. This article aims to review the use of DTI and FT in the evaluation of a variety of common, well-described brain malformations, in particular by pointing out the additional information that DTI and FT renders compared with conventional MR sequences. In addition, the relevant existing literature is summarized. (orig.)

  8. Diffusion tensor imaging and fiber tractography in brain malformations

    Energy Technology Data Exchange (ETDEWEB)

    Poretti, Andrea; Meoded, Avner; Huisman, Thierry A.G.M. [The Johns Hopkins University School of Medicine, Division of Pediatric Radiology, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Rossi, Andrea [G. Gaslini Institue, Pediatric Neuroradiology, Genova (Italy); Raybaud, Charles [University of Toronto, Department of Neuroradiology, Hospital for Sick Children, Toronto, ON (Canada)

    2013-01-15

    Diffusion tensor imaging (DTI) is an advanced MR technique that provides qualitative and quantitative information about the micro-architecture of white matter. DTI and its post-processing tool fiber tractography (FT) have been increasingly used in the last decade to investigate the microstructural neuroarchitecture of brain malformations. This article aims to review the use of DTI and FT in the evaluation of a variety of common, well-described brain malformations, in particular by pointing out the additional information that DTI and FT renders compared with conventional MR sequences. In addition, the relevant existing literature is summarized. (orig.)

  9. Imaging of the brain in the HIV-positive child

    International Nuclear Information System (INIS)

    The prevalence of human immune-deficiency virus (HIV) infection around the world, coupled with increasing population movement, make it likely that many physicians will treat HIV-infected patients. New treatment protocols for the specific manifestations of acquired immune-deficiency syndrome (AIDS) make distinguishing the different neurological diseases of great importance. The pattern of disease in children differs from those of adults both in its distribution and etiology. This article encapsulates the salient aspects relating to the imaging of the brain in HIV-positive children, paying particular attention to recent advances and the different features of the various pathological conditions affecting the HIV-infected brain in children. (orig.)

  10. Radionuclide brain imaging in acquired immunodeficiency syndrome (AIDS)

    International Nuclear Information System (INIS)

    Infection with the Human Immunodeficiency Virus type 1 (HIV-1) may produce a variety of central nervous system (CNS) symptoms and signs. CNS involvement in patients with the Acquired Immunodeficiency Syndrome (AIDS) includes AIDS dementia complex or HIV-1 associated cognitive/motor complex (widely known as HIV encephalopathy), progressive multifocal leucoencephalopathy (PML), opportunistic infections such as Toxoplasma gondii, TB, Cryptococcus and infiltration by non-Hodgkin's B cell lymphoma. High resolution structural imaging investigations, either X-ray Computed Tomography (CT scan) or Magnetic Resonance Imaging (MRI) have contributed to the understanding and definition of cerebral damage caused by HIV encephalopathy. Atrophy and mainly high signal scattered white matter abnormalities are commonly seen with MRI. PML produces focal white matter high signal abnormalities due to multiple foci of demyelination. However, using structural imaging techniques there are no reliable parameters to distinguish focal lesions due to opportunistic infection (Toxoplasma gondii abscess) from neoplasm (lymphoma infiltration). It is studied the use of radionuclide brain imaging techniques in the investigation of HIV infected patients. Brain perfusion Single Photon Emission Tomography (SPET), neuroreceptor and Positron Emission Tomography (PET) studies are reviewed. Greater emphasis is put on the potential of some radiopharmaceuticals, considered to be brain tumour markers, to distinguish intracerebral lymphoma infiltration from Toxoplasma infection. SPET with 201Tl using quantification (tumour to non-tumour radioactivity ratios) appears a very promising technique to identify intracerebral lymphoma

  11. Bacterial brain abscesses: prognostic value of an imaging severity index

    International Nuclear Information System (INIS)

    Aim: To assess the correlation between imaging findings [computed tomography (CT) or magnetic resonance imaging (MRI)] and neurological status before and after the treatment of bacterial brain abscesses. Materials and methods: CT and MRI images of 96 patients with brain abscesses were retrospectively evaluated in terms of the number, location and size of lesions, and the presence and extent of perilesional oedema and midline shift. An imaging severity index (ISI) based on these different radiological parameters was calculated. Initial Glasgow Coma Scale (GCS) scores and ISI were assessed and the prognostic value of these two indices was calculated. The Pearson correlation test, Mann-Whitney test, Chi-square test, receiver-operating characteristic (ROC) analysis, together with comparison of ROC analyses and Fisher's exact test were used. Results: There was a negative correlation between ISI and the initial GCS values: ISI increased as the GCS score decreased, indicating an inverse relationship (r = -0.51, p < 0.0001). There was a significant difference between the ISI and GCS scores of patients with an adverse event compared with patients with good recovery. Outcome was significantly worse in patients with initial ISI over the calculated cut-off values of 8 points or GCS scores under the cut-off value of 13 points. Conclusion: ISI is a useful prognostic indicator for bacterial brain abscess patients and correlates strongly with the patient outcome for all parameters studied. ISI score had a better prognostic value than GCS

  12. Radionuclide brain imaging in acquired immunodeficiency syndrome (AIDS)

    Energy Technology Data Exchange (ETDEWEB)

    Costa, D.C.; Gacinovic, S.; Miller, R.F. [London University College Medical School, Middlesex Hospital, London (United Kingdom)

    1995-09-01

    Infection with the Human Immunodeficiency Virus type 1 (HIV-1) may produce a variety of central nervous system (CNS) symptoms and signs. CNS involvement in patients with the Acquired Immunodeficiency Syndrome (AIDS) includes AIDS dementia complex or HIV-1 associated cognitive/motor complex (widely known as HIV encephalopathy), progressive multifocal leucoencephalopathy (PML), opportunistic infections such as Toxoplasma gondii, TB, Cryptococcus and infiltration by non-Hodgkin`s B cell lymphoma. High resolution structural imaging investigations, either X-ray Computed Tomography (CT scan) or Magnetic Resonance Imaging (MRI) have contributed to the understanding and definition of cerebral damage caused by HIV encephalopathy. Atrophy and mainly high signal scattered white matter abnormalities are commonly seen with MRI. PML produces focal white matter high signal abnormalities due to multiple foci of demyelination. However, using structural imaging techniques there are no reliable parameters to distinguish focal lesions due to opportunistic infection (Toxoplasma gondii abscess) from neoplasm (lymphoma infiltration). It is studied the use of radionuclide brain imaging techniques in the investigation of HIV infected patients. Brain perfusion Single Photon Emission Tomography (SPET), neuroreceptor and Positron Emission Tomography (PET) studies are reviewed. Greater emphasis is put on the potential of some radiopharmaceuticals, considered to be brain tumour markers, to distinguish intracerebral lymphoma infiltration from Toxoplasma infection. SPET with {sup 201}Tl using quantification (tumour to non-tumour radioactivity ratios) appears a very promising technique to identify intracerebral lymphoma.

  13. Comparison of FSE and EPI with brain MR imaging

    International Nuclear Information System (INIS)

    To compare the usefulness of echo-planar imaging(EPI) and fast spin-echo(FSE) in routine brain MR imaging. Twenty-five patients with various intracranial diseases were prospectively examined with T2-weighted MR imaging on a 1.5T unit using FSE, spin echo single-shot EPI(SS-EPI) and multi-shot EPI(MS-EPI) techniques. For qualitative assessment, overall image quality, discrimination between cortical gray-white matter and between basal ganglia-white matter, lesion conspicuity, image distortion and artifacts(motion, ghost, flow, and susceptibility) were all evaluated using a subjective scoring system ranging from 1 to 4 (1 for the worst and 4 for the best). For quantitative assessment, contrast and contrast-to-noise ratio(CNR) were calculated for cortical gray-white matter, basal ganglia-white matter, and lesion-white matter. Overall image quality, discrimination between cortical gray-white matter, basal ganglia-white matter, and lesion-white matter, lesion conspicuity, image distortion and susceptibility artifacts showed the highest value in FSE and the lowest in SS-EPI. Motion artifacts were seen only in FSE, while flow and ghost artifacts were most commonly seen in SS-EPI. Contrast and CNR of anatomical and pathologic structures showed the highest value in FSE, especially for cortical gray-white matter and basal ganglia-white matter. With regard to overall image quality, image distortion, susceptibility artifacts, contrast and CNR, EPI is far inferior to FSE. In routine brain MR imaging., the usefulness of EPI techniques would therefore be very limited

  14. Brain perfusion imaging in amyotrophic lateral sclerosis with dementia

    International Nuclear Information System (INIS)

    Single photon emission computed tomography (SPECT) studies have been applied for evaluation of regional cerebral blood flow (rCBF) in various neurodegenerative disorders including amyotrophic lateral sclerosis (ALS) and ALS with dementia (ALS-D). Brain perfusion SPECT using statistical image analysis is useful for accurate and objective diagnosis to evaluate slight decreases in rCBF, even in cases difficult to assess by visual inspection. We have used statistical parametric mapping (SPM), three-dimensional stereotactic surface projection (3D-SSP), easy Z-score imaging system (eZIS) as statistical image analyses. ALS-D cases, even if a case manifests minimal mentality change, showed obvious rCBF reduction in the bilateral prefrontal area with some irregularity and laterality of its decrease. This abnormality was clear in ALS-D compared with classic ALS. Our study has demonstrated that brain perfusion SPECT imaging using statistical image analyses is quite useful as an adjunct to presume the existence of dementia in ALS, even if ALS patients have trouble in verbal or manual communication of the language because of progressive bulbar symptoms and muscle weakness. Thus, for ALS patients with any subtle signs and symptoms suggesting dementia, we recommend a SPECT study with use of statistical image analyses. (author)

  15. Computerized morphometric assessment of brain structure with MR imaging

    International Nuclear Information System (INIS)

    Limitation of imaging technique and measurement method are believed to underlie much of the variability across morphometric studies of the brain. To reduce variability, the authors have chosen three-dimensional MR gradient-echo imaging as the optimal imaging technique and developed a semiautomated mensuration system in conjunction with EKTRON Applied Imaging Inc with high accuracy and reliability. Images were acquired on a 1.O-T MR imaging system (Siemens, Magnetom) using coronal gradient-echo, three-dimensional (fast low-angle shot) sequence. The basic algorithmic philosophy for automatic extraction of anatomic structures was the definition of an exterior edge. The program is menu-driven and designed to run on SUN 3-160 series microcomputer. Accuracy of the system was tested with a simple geometric phantom, a complex human ventricular phantom, and a fresh postmortem brain. System accuracy was within 2% of the true volumes. System reliability was evaluated in three patient populations: 12 patients with Alzheimer disease, nine schizophrenics, and nine normal age-matched Alzheimer controls

  16. Optimization of Butterworth filter for brain SPECT imaging

    International Nuclear Information System (INIS)

    A method has been described to optimize the cutoff frequency of the Butterworth filter for brain SPECT imaging. Since a computer simulation study has demonstrated that separation between an object signal and the random noise in projection images in a spatial-frequency domain is influenced by the total number of counts, the cutoff frequency of the Butterworth filter should be optimized for individual subjects according to total counts in a study. To reveal the relationship between the optimal cutoff frequencies and total counts in brain SPECT study, we used a normal volunteer and 99mTc hexamethyl-propyleneamine oxime (HMPAO) to obtain projection sets with different total counts. High quality images were created from a projection set with an acquisition time of 300-seconds per projection. The filter was optimized by calculating mean square errors from high quality images visually inspecting filtered reconstructed images. Dependence between total counts and optimal cutoff frequencies was clearly demonstrated in a nomogram. Using this nomogram, the optimal cutoff frequency for each study can be estimated from total counts, maximizing visual image quality. The results suggest that the cutoff frequency of Butterworth filter should be determined by referring to total counts in each study. (author)

  17. Data-driven forward model inference for EEG brain imaging

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Hauberg, Søren; Hansen, Lars Kai

    2016-01-01

    Electroencephalography (EEG) is a flexible and accessible tool with excellent temporal resolution but with a spatial resolution hampered by volume conduction. Reconstruction of the cortical sources of measured EEG activity partly alleviates this problem and effectively turns EEG into a brain......-of-concept study, we show that, even when anatomical knowledge is unavailable, a suitable forward model can be estimated directly from the EEG. We propose a data-driven approach that provides a low-dimensional parametrization of head geometry and compartment conductivities, built using a corpus of forward models....... Combined with only a recorded EEG signal, we are able to estimate both the brain sources and a person-specific forward model by optimizing this parametrization. We thus not only solve an inverse problem, but also optimize over its specification. Our work demonstrates that personalized EEG brain imaging...

  18. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging

    KAUST Repository

    Magistretti, Pierre J.

    2015-05-01

    The energy demands of the brain are high: they account for at least 20% of the body\\'s energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and pointat a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales. © 2015 Elsevier Inc.

  19. CT images in brain metastases of the primary lung cancer

    International Nuclear Information System (INIS)

    Computed tomography (CT) of the brain was carried out in 366 patients with lung cancer in order to evaluate brain metastases. Suggestive evidences of metastases such as low density or contrast enhancement were observed in 65 cases (18%), although 26% of the metastatic cases revealed no signs or symptoms of neurological disorders. These facts emphasize that brain CT should be conducted in all patients with lung cancer, irrespective of signs and symptoms. A solitary lesion was noted in 37 out of 65 metastatic cases. More than 80% of the metastatic lesions were demonstrated as iso-density on plain CT films and were enhanced by intravenous injection of contrast medium. Although CT images of metastatic lesions reveal certain characteristic appearances according to the histologic type of the primary cancer, perifocal low density and central cavitation were observed independent of histologic type. (author)

  20. Brain size and brain organization of the whale shark, Rhincodon typus, using magnetic resonance imaging.

    Science.gov (United States)

    Yopak, Kara E; Frank, Lawrence R

    2009-01-01

    Very little is known about the brain organization of the suction filter feeder, Rhincodon typus, and how it compares to other orectolobiforms in light of its specialization as a plankton-feeder. Brain size and overall brain organization was assessed in two specimens of R. typus in relation to both phylogeny and ecology, using magnetic resonance imaging (MRI). In comparison to over 60 other chondrichthyan species, R. typus demonstrated a relatively small brain for its body size (expressed in terms of encephalization quotients and residuals), similar to the lamniforms Carcharodon carcharias, Cetorhinus maximus, and Carcharias taurus. R. typus possessed a relatively small telencephalon with some development of the dorsal pallium, which was suggestive of moderate social behavior, in addition to a relatively large diencephalon and a relatively reduced mesencephalon. The most notable characteristic of the brain of Rhincodon was a large and highly foliated cerebellum, one of the largest cerebellums within the chondrichthyan clade. Early development of the brain was qualitatively assessed using an in situ MRI scan of the brain and chondrocranium of a neonate specimen of R. typus. There was evidence that folding of the cerebellar corpus appeared in early development, although the depth and number of folds might vary ontogenetically in this species. Hierarchical cluster analysis and multidimensional scaling ordinations showed evidence of convergent evolution with the basking shark, Cetorhinus maximus, another large-bodied filter feeding elasmobranch, supporting the claim that organization of the brain is more similar in species with analogous but independently evolved lifestyles than those that share taxonomic classification. PMID:19729899

  1. The effect of a gadolinium-based contrast agent on diffusion tensor imaging

    International Nuclear Information System (INIS)

    Objective: The aim of this study was to investigate in detail the effect of gadolinium contrast on diffusion tensor imaging scans. As the present literature offers conflicting results, we have included a large selection of indices in the analysis. Materials and methods: Sixteen patients harboring an intra-axial contrast enhancing brain tumor were included in this study. Two diffusion tensor imaging scans were performed—one natively, and the second following a gadolinium contrast agent application. Maps of the invariant indices fractional anisotropy (FA), linear, planar, and spherical indices, trace, eigenvalues λ1, λ2, λ3 as well as of the components of the diffusion tensor matrix Dxx, Dyy, Dzz, Dxy, Dxz and Dyz were co-registered and compared statistically with matching ROI pairs in the contrast enhancing areas, peritumoral edema and the normal appearing white matter. Results: We have observed a significant increase in the FA and disproportional decrease of the eigenvalues in the post-contrast scans. In accordance with these findings, the spherical index was decreased and the linear and planar indices were increased. There was a significant decrease of all diagonal components of the diffusion tensor matrix. These changes have been strongest in the contrast enhancing areas, but there were also significant changes in the peritumoral edema and the normal appearing white matter. Conclusion: Diffusion tensor imaging scans performed after gadolinium contrast agent administration may display artificially increased FA values due to disproportional changes of the measured eigenvalues. The distortion of the diffusion measurement is strongest in, but not limited to the contrasting areas.

  2. Study on the biodistribution of deuterated biomolecules in mice aiming at new Γ imaging agents

    International Nuclear Information System (INIS)

    Deuterated compounds (2H-compounds) labeled with 14C prepared from deuterated algae, Chlorella ellipsoidea, were examined for their time-coursed distribution in mice after intravenous administration. The 14C-2H-compounds were fractionated and isolated from algae grown in practically 100 mol% 2H2O in the presence of 14C-bicarbonate. The fractions obtained were the 'basic' and 'acid' fractions, composed mainly of amino acids and sugar phosphates, respectively, and glucose, galactose, and lipid fractions. All fractions were examined for their biodistribution in mice bearing Ehrlich solid tumor in comparison with the fractions isolated from ordinary Chlorella (1H-Chlorella). 2H-Compounds thus examined showed some behaviors different from 1H-compounds. The 2H-'basic' fraction distributed more slowly in heart, lung and liver than the 1H-fraction. The 2H-specific large distribution in tumor was also observed on this fraction. The 2H-dependent characteristics in the distribution of glucose and galactose differed. The 2H-glucose level was lower in blood and higher in brain, resulting in a brain/blood ratio approximately twice that of 1H-glucose, while 2H-galactose did not show such a characteristic. These findings may be useful for the application of 2H-biomolecules to functional radio-imaging agents for nuclear medicine. (author)

  3. Radioiodinated carnitine and acylcarnitine analogs as potential myocardial imaging agents

    International Nuclear Information System (INIS)

    R-carnitine is extremely important in mammalian energy metabolism. Gamma-butyrobetaine, the immediate biosynthetic precursor to R-carnitine, is synthesized in many organs. However, only liver can hydroxylate gamma-butyrobetaine to carnitine. Thus the transport of carnitine from its site of synthesis to the site of utilization is of utmost importance. Carnitine is found in highest concentration in cardiac and skeletal muscle, where it is required for the transport of fatty acids into the mitochondria. Before fatty acids are utilized as fuel for the myocyte by beta-oxidation, they are bound to carnitine as an acylcarnitine ester at the 3-hydroxyl, and transported across the micochondrial membranes. R,S-Carnitine has been shown to be taken up by myocytes. The author has begun a study on the use of carnitine derivatives as potential carriers for the site-specific delivery of radioiodine to bidning sites in the myocardium. Such agents labeled with a gamma-emitting nuclide such as iodine-123 would be useful for the noninvasive imaging of these tissues. The aim was to synthesize a variety of radiolabeled analogs of carnitine and acylcarnitine to address questions of transport, binding and availability for myocardial metabolism. These analogs consist of N-alkylated derivatives of carnitine, acylcarnitine esters as well as carnitine amides and ethers. One C-alkylated derivative showed interesting biodistribution, elevated myocardial uptake and competition with carnitine for binding in the myocardium

  4. DTPA: Bis benzimidazole as multi model imaging agent

    International Nuclear Information System (INIS)

    Full text: The DTPA bis benzimidazole analogue has been tested for radiopharmaceutical efficacy. The radiolabelling was found more then 98% after 8 hrs and blood kinetics was fast. The compound was also tested for optical imaging agent. The Eu3+ ion has an absorption band in the visible spectrum (578-582 nm) whose wavelength is very sensitive to even small changes in the coordination environment. Although the intensity of this 7F0 → 5D0 transition is low, the bands are relatively narrow, which allows distinguishing different coordination states of the metal. For Eu3+ complexes which have two differently hydrated forms in aqueous solution, one observes two absorption bands belonging to the two species. High-resolution UV-visible spectra were recorded in aqueous solutions which show a temperature invariant absorption with two distinct, temperature-dependent absorption bands. The intensity ratio of these two bands changes with temperature: the band at shorter wavelengths is decreasing very slightly, while that at longer wavelengths is increasing with the temperature. The ratio of the integrals of the two bands is related to the equilibrium constant, and its temperature dependence yields the reaction enthalpy and entropy

  5. Superparamagnetic particles as possible contrast agents for NMR imaging

    International Nuclear Information System (INIS)

    The development of 'magneto-pharmaceuticals' plays an important role in the extension of nuclear magnetic resonance (NMR) for diagnostic medicine. Fundamental investigations leading to the new area of NMR contrast agents are considered. Superparamagnetic particles represent a new class of NMR contrast agents that usually referred to as T2 or T*2 contrast agents as opposed to T1 agents, such as paramagnetic chelates. Another novelty presented by superparamagnetic agents is their specific distribution. The synthesis and the transverse R2 and longitudinal R1 relaxivity measurements of some ferro-, ferri- and superparamagnetic particles suspensions are presented. (authors)

  6. BRAIN FUNCTIONAL IMAGING BASED ON BRAIN TISSUE OXYGEN CONTENT VIA MAGNETIC RESONANCE

    Directory of Open Access Journals (Sweden)

    M.A OGHABIAN

    2003-03-01

    Full Text Available Introduction: FMRI is a new approach in MRI to provide functional data of human brain activities. Some methods such as BOLD contrast, perfusion imaging, diffusion imaging, and spectroscopy in MRI have used to yield functional images. Material and Methods: This research was performed in imaging center of IMAM KHOMEINI hospital in TEHRAN in 1997. The experiments were performed on a conventional 1.5- T picker MR instrument, using a standard head coil. CE – FAST gradient echo images were obtained (TR=100, TE = 35, 128*256 matrix, 10 mm slice, FOV = 250 mm, F.A =25 Degree, NEX = 1, 13 s per image. Images were obtained during sensory - motor stimulation by pressing fingers to each other, coronal oblique images were acquired through central sulcus (precentral gyrus where the related sensory cortex is. Then, the Images were transferred to personal computers in order to eliminate noise and highlight the functional differences. These images were processed by various mathematical methods such as subtraction and student T- test. Results: Although some changes were seen in functional area, there were not significant results by the conventional system protocols. Some new protocols were designed and implemented to increase the sensitivity of the system to functional changes. Discussion: However, more research needs to be done in the future to obtain faster and more efficient techniques and in regard to clinical applications of the method.

  7. Study of functional brain imaging for bilingual language cognition

    International Nuclear Information System (INIS)

    Bilingual and multilingual brain studies of language recognition is an interdisciplinary subject which needs to identify different levels involved in the neural representation of languages, such as neuroanatomical, neurofunctional, biochemical, psychological and linguistic levels. Furthermore, specific factor's such as age, manner of acquisition and environmental factors seem to affect the neural representation. Functional brain imaging, such as PET, SPECT and functional MRI can explore the neurolinguistics representation of bilingualism in the brain in subjects, and elucidate the neuronal mechanisms of bilingual language processing. Functional imaging methods show differences in the pattern of cerebral activation associated with a second language compared with the subject's native language. It shows that verbal memory processing in two unrelated languages is mediated by a common neural system with some distinct cortical areas. The different patterns of activation differ according to the language used. It also could be ascribed either to age of acquisition or to proficiency level. And attained proficiency is more important than age of acquisition as a determinant of the cortical representation of the second language. The study used PET and SPECT shows that sign and spoken language seem to be localized in the same brain areas, and elicit similar regional cerebral blood flow patterns. But for sign language perception, the functional anatomy overlaps that of language processing contain both auditory and visual components. And the sign language is dependent on spatial information too. (authors)

  8. PET/SPECT imaging: From carotid vulnerability to brain viability

    Energy Technology Data Exchange (ETDEWEB)

    Meerwaldt, Robbert [Department of Surgery, Isala Clinics, Zwolle (Netherlands); Slart, Riemer H.J.A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands); Dam, Gooitzen M. van [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands); Luijckx, Gert-Jan [Department of Neurology, University Medical Center Groningen, Groningen (Netherlands); Tio, Rene A. [Department of Cardiology, University Medical Center Groningen, Groningen (Netherlands); Zeebregts, Clark J. [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands)], E-mail: czeebregts@hotmail.com

    2010-04-15

    Background: Current key issues in ischemic stroke are related to carotid plaque vulnerability, brain viability, and timing of intervention. The treatment of ischemic stroke has evolved into urgent active interventions, as 'time is brain'. Functional imaging such as positron emission tomography (PET)/single photon emission computed tomography (SPECT) could improve selection of patients with a vulnerable plaque and evaluation of brain viability in ischemic stroke. Objective: To describe the current applications of PET and SPECT as a diagnostic tool in relation to ischemic stroke. Methods: A literature search using PubMed identified articles. Manual cross-referencing was also performed. Results: Several papers, all observational studies, identified PET/SPECT to be used as a tool to monitor systemic atheroma modifying treatment and to select high-risk patients for surgery regardless of the degree of luminal stenosis in carotid lesions. Furthermore, PET/SPECT is able to quantify the penumbra region during ischemic stroke and in this way may identify those patients who may benefit from timely intervention. Discussion: Functional imaging modalities such as PET/SPECT may become important tools for risk-assessment and evaluation of treatment strategies in carotid plaque vulnerability and brain viability. Prospective clinical studies are needed to evaluate the diagnostic accuracy of PET/SPECT.

  9. PET/SPECT imaging: From carotid vulnerability to brain viability

    International Nuclear Information System (INIS)

    Background: Current key issues in ischemic stroke are related to carotid plaque vulnerability, brain viability, and timing of intervention. The treatment of ischemic stroke has evolved into urgent active interventions, as 'time is brain'. Functional imaging such as positron emission tomography (PET)/single photon emission computed tomography (SPECT) could improve selection of patients with a vulnerable plaque and evaluation of brain viability in ischemic stroke. Objective: To describe the current applications of PET and SPECT as a diagnostic tool in relation to ischemic stroke. Methods: A literature search using PubMed identified articles. Manual cross-referencing was also performed. Results: Several papers, all observational studies, identified PET/SPECT to be used as a tool to monitor systemic atheroma modifying treatment and to select high-risk patients for surgery regardless of the degree of luminal stenosis in carotid lesions. Furthermore, PET/SPECT is able to quantify the penumbra region during ischemic stroke and in this way may identify those patients who may benefit from timely intervention. Discussion: Functional imaging modalities such as PET/SPECT may become important tools for risk-assessment and evaluation of treatment strategies in carotid plaque vulnerability and brain viability. Prospective clinical studies are needed to evaluate the diagnostic accuracy of PET/SPECT.

  10. Radiolabelled D/sub 2/ agonists as prolactinoma imaging agents: Progress report for period February 1, 1988--January 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Otto, C.A.

    1988-10-15

    Targeted studies completed include the evaluation of tritiated N-0437, evaluation of /sup 35/S-cysteamine, evaluation of /sup 18/F-FDG and initiation of synthetic efforts towards the synthesis of iodinated N-0437 and pergolide analogs. The direction of the project has been changed due to several factors which include the decided lack of favorable experimental results, the excellence of results using muscarinic receptor ligands in pituitary, brain and heart and the contention of the DOE review panel that the original grant proposal was based on flawed assumptions together with their perceived lack of importance to pituitary imaging. In the final year of this grant, three studies will be completed. The first study is the continuation of synthetic efforts to prepare iodinated N-0437 and pergolide analogs for possible use as brain imaging agents. The second study is directed towards completion of biochemical evaluation of various muscarinic receptor analogs for heart, brain and (possible) pituitary imaging. The third study is to probe the use of quaternized D/sub 2/ receptor ligands for imaging peripheral dopaminergic receptors (including the pituitary). 14 refs., 1 fig., 7 tabs.

  11. Radiolabelled D2 agonists as prolactinoma imaging agents: Progress report for period February 1, 1988--January 31, 1989

    International Nuclear Information System (INIS)

    Targeted studies completed include the evaluation of tritiated N-0437, evaluation of 35S-cysteamine, evaluation of 18F-FDG and initiation of synthetic efforts towards the synthesis of iodinated N-0437 and pergolide analogs. The direction of the project has been changed due to several factors which include the decided lack of favorable experimental results, the excellence of results using muscarinic receptor ligands in pituitary, brain and heart and the contention of the DOE review panel that the original grant proposal was based on flawed assumptions together with their perceived lack of importance to pituitary imaging. In the final year of this grant, three studies will be completed. The first study is the continuation of synthetic efforts to prepare iodinated N-0437 and pergolide analogs for possible use as brain imaging agents. The second study is directed towards completion of biochemical evaluation of various muscarinic receptor analogs for heart, brain and (possible) pituitary imaging. The third study is to probe the use of quaternized D2 receptor ligands for imaging peripheral dopaminergic receptors (including the pituitary). 14 refs., 1 fig., 7 tabs

  12. A novel algorithm for segmentation of brain MR images

    International Nuclear Information System (INIS)

    Accurate and fully automatic segmentation of brain from magnetic resonance (MR) scans is a challenging problem that has received an enormous amount of . attention lately. Many researchers have applied various techniques however a standard fuzzy c-means algorithm has produced better results compared to other methods. In this paper, we present a modified fuzzy c-means (FCM) based algorithm for segmentation of brain MR images. Our algorithm is formulated by modifying the objective function of the standard FCM and uses a special spread method to get a smooth and slow varying bias field This method has the advantage that it can be applied at an early stage in an automated data analysis before a tissue model is available. The results on MRI images show that this method provides better results compared to standard FCM algorithms. (author)

  13. Functional imaging of the human brain using conventional MRI

    International Nuclear Information System (INIS)

    It was shown in 1991 by Belliveau and coworkers that the activation of the human brain can be visualized in a completely noninvasive way by MRI. First publications coming from the US claimed that very high magnetic field strength or echo planar imaging, both available only at a few research sites, would be necessary to do this job. Recently, it was demonstrated that functional imaging of the human brain can be done with high spatial resolution MRI using conventional FLASH-sequences with the commercial widely available 1,5 Tesla systems. First results have been reported for visual as well as primary motor cortex activation in healthy volunteers. The key to a successful application of the conventional technique lies in the design of extremely low bandwidth, long echo-time FLASH-sequences with high spatial resolution. (orig.)

  14. The image of a brain stroke in a computed tomograph

    International Nuclear Information System (INIS)

    On the basis of 100 findings from patients who suffered brain strokes and by the use of 1500 ensured stroke images it was tested whether or not the stroke-predilection typologie outlined by Zuelch is based on a coincidental summation of individual cases. The radio-computed tomography with the possibility of evaluation of non-lethal cases proved itself as a suited method for confirmation or repudiation of this stroke theory. By means of the consistently achieved association of the frontal, respectively horizontal sectional image for the typology it could be proven and - with the exception of a few rather seldom types - also demonstrated that the basic and predilection types of brain stroke repeated themselves in their pattern. In individual cases a specification of lower types could also be undertaken. (orig./TRV)

  15. Ultrasound contrast-agent improves imaging of lower limb occlusive disease

    DEFF Research Database (Denmark)

    Eiberg, J P; Hansen, M A; Jensen, F;

    2003-01-01

    to evaluate if ultrasound contrast-agent infusion could improve duplex-ultrasound imaging of peripheral arterial disease (PAD) and increase the agreement with digital subtraction arteriography (DSA).......to evaluate if ultrasound contrast-agent infusion could improve duplex-ultrasound imaging of peripheral arterial disease (PAD) and increase the agreement with digital subtraction arteriography (DSA)....

  16. Molecular Imaging of the Brain Using Multi-Quantum Coherence and Diagnostics of Brain Disorders

    CERN Document Server

    Kaila, M M

    2013-01-01

    This book examines multi-quantum magnetic resonance imaging methods and the diagnostics of brain disorders. It consists of two Parts. The part I is initially devoted towards the basic concepts of the conventional single quantum MRI techniques. It is supplemented by the basic knowledge required to understand multi-quantum MRI. Practical illustrations are included both on recent developments in conventional MRI and the MQ-MRI. This is to illustrate the connection between theoretical concepts and their scope in the clinical applications. The Part II initially sets out the basic details about quadrupole charge distribution present in certain nuclei and their importance about the functions they perform in our brain. Some simplified final mathematical expressions are included to illustrate facts about the basic concepts of the quantum level interactions between magnetic dipole and the electric quadrupole behavior of useful nuclei present in the brain. Selected practical illustrations, from research and clinical pra...

  17. Using Diffusion-weighted Images to Identify Brain Tumors

    Czech Academy of Sciences Publication Activity Database

    Marcon, P.; Bartušek, Karel; Šprláková, A.

    Cambridge: The Electromagnetics Academy, 2014, s. 2340-2343. ISBN 978-1-934142-28-8. [PIERS 2014. Progress In Electromagnetics Research Symposium /35./. Guangzhou (CN), 25.08.2014-28.08.2014] R&D Projects: GA ČR GAP102/12/1104 Institutional support: RVO:68081731 Keywords : brain tumor * MRI * diffusion-weighted image s Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  18. Novel positron emission tomography radiotracers in brain tumor imaging

    OpenAIRE

    Maria Mathew D′Souza; Rajnish Sharma; Madhavi Tripathi; Puja Panwar; Abhinav Jaimini; Anupam Mondal

    2011-01-01

    Although [18F] 2-fluoro-2-deoxy-D-glucose (FDG) is the most widely used radiopharmaceutical the world over, it is not the ideal tracer for brain imaging, owing to its high physiological cortical uptake and lack of specificity. This has paved the way for the introduction of several novel radiotracers, each with their own inherent strengths and limitations. We present the insights gained from the use of these radiotracers at our institution.

  19. Novel positron emission tomography radiotracers in brain tumor imaging

    Directory of Open Access Journals (Sweden)

    Maria Mathew D′Souza

    2011-01-01

    Full Text Available Although [18F] 2-fluoro-2-deoxy-D-glucose (FDG is the most widely used radiopharmaceutical the world over, it is not the ideal tracer for brain imaging, owing to its high physiological cortical uptake and lack of specificity. This has paved the way for the introduction of several novel radiotracers, each with their own inherent strengths and limitations. We present the insights gained from the use of these radiotracers at our institution.

  20. Imaging and Quantification of Brain Serotonergic Activity using PET

    OpenAIRE

    Lundquist, Pinelopi

    2006-01-01

    This thesis investigates the potential of using positron emission tomography (PET) to study the biosynthesis and release of serotonin (5HT) at the brain serotonergic neuron. As PET requires probe compounds with specific attributes to enable imaging and quantification of biological processes, emphasis was placed on the evaluation of these attributes. The experiments established that the 5HT transporter radioligand [11C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile, [11C]DASB, ...

  1. Imaging of Brain Dopamine Pathways: Implications for Understanding Obesity

    OpenAIRE

    Wang, Gene-Jack; Volkow, Nora D.; Panayotis K Thanos; Fowler, Joanna S.

    2009-01-01

    Obesity is typically associated with abnormal eating behaviors. Brain imaging studies in humans implicate the involvement of dopamine (DA)-modulated circuits in pathologic eating behavior(s). Food cues increase striatal extracellular DA, providing evidence for the involvement of DA in the nonhedonic motivational properties of food. Food cues also increase metabolism in the orbitofrontal cortex indicating the association of this region with the motivation for food consumption. Similar to drug-...

  2. Towards an hybrid system for annotating brain MRI images

    OpenAIRE

    Mechouche, Ammar; Golbreich, Christine; Gibaud, Bernard

    2006-01-01

    This paper describes a method combining symbolic and numerical techniques for annotating brain Magnetic Resonance images. The goal is to assist existing automatic labelling methods which are mostly statistical in nature and do not work very well in certain situations such as the presence of lesions. The system uses existing statistical methods for generating ABox facts that constitute a set of initial information sufficient for fruitful reasoning. The reasoning is supported by an OWL ontology...

  3. Study of preparation of radioiodinated allyl diprenorphine as an single photon emission computed tomographic imaging agent for mapping opioid receptors

    International Nuclear Information System (INIS)

    Purpose: To prepare and evaluate radioiodinated allyl diprenorphine (DPN) as a new opioid receptor imaging agent for SPECT study. Methods: 7α-O-stannyl-DPN was obtained from DPN by acetylated it to protect the phenolic 3-OH group of DPN and then introduced the vinylstannane into the tertiary alcohol of the 7α-side chain. [125I]-7α-O-iodoallyl diprenorphine (7α-O-IA-DPN) was prepared by radioiododestannylation under acidic condition using iodobead as an oxidant reagent, and in vitro and in vivo opioid receptor binding assays, metabolism were performed with Kunming mouse brains. Study of distribution in the Wistar rat's brain and naloxone inhibition was carried out. The data were analyzed by statistical method. Results: The radiochemical yields of I-125-7α-O-IA-DPN were more than 90%. In TLC, Rf of 7α-O-IA-DPN and I-125-7α-O-IA-DPN was 0.83 and 0.93, respectively. In ambient temperature the radiochemical purity of I-125-7α-O-IA-DPN in rats showed higher in anterior and posterior colliculi, striatum and hippocampus. It was low in frontal lobe, temporal lobe and brain stem and was low in cerebellum and the other parts of the brain. Among the clearance from the structures in brain, it was fastest in cerebellum. At 20 min when the uptake reached to the peak, the ratio of anterior and posterior colliculi, striatum and hippocampus to the cerebellum was 4.36, 3.7 and 3.12, respectively. There were significant differences between the inhibition experimental group using the naloxone and control. Conclusions: I-125-7α-O-IA-DPN appears to be a potential opioid receptor imaging agent for SPECT study. (authors)

  4. Animal biodistribution,safety and validation study of dopamine transporter PET imaging agent 18F-FECNT

    Institute of Scientific and Technical Information of China (English)

    WANG Songpei; CHEN Zhengping; LI Xiaomin; TANG Jie; LILT Chunyi; ZOU Meifen; PAN Donghui; LU Chunxiong; XU Yuping; XU Xijie; ZHOU Xingqin; JIN Jian

    2009-01-01

    This work was to investigate the pharmacologic characteristics of 18F-FECNT (2β-carbomethoxy-3β-(4-chlorophenyl)-8-(2-[18F]fluorcethyl)nortropane) as a dopamine transporter (DAT) PET imaging agent.Its partition coefficients were determined in n-octanol and phosphate buffer (PB) (pH 7.0 and pH 7.4).6-Hydroxydopamine (6-OHDA) left-sided lesioned Parkinsonian rats were established and validated by rotational behavior tests.Biodistribution in vivo in mice,autoradiography in normal and hemi-Parkinsonian rat brains,and toxicity test were performed.The results showed that partition coefficients were 34.14 (pH 7.0) and 56.41 (pH 7.4),respectively.Biodistribution exhibited rapid uptake and favorable retention in the mice brains.The major radioactivity was metabolized by the hepatic system.The autoradiography showed that 18F-FECNT was highly concentrated in striaturn,and that the left and the tight striatal uptake were symmetrical in normal SD rat brains.In left-sided lesioned PD rat brains,the striatal uptake of 18F-FECNT bilaterally decreased in comparison with normal rats.No significant uptake was visible in the 6-OHDA lesioned-sided striatal areas.The results demonstrated that 18F-FECNT binds to DAT was specific.Toxicity trial displayed that the acceptable dose per kilogram to mice was 625 times greater than that to human.These indicate that 18F-FECNT is a potentially safe and useful DAT PET imaging agent in the brain.

  5. Methods for processing and analysis functional and anatomical brain images: computerized tomography, emission tomography and nuclear resonance imaging

    International Nuclear Information System (INIS)

    The various methods for brain image processing and analysis are presented and compared. The following topics are developed: the physical basis of brain image comparison (nature and formation of signals intrinsic performance of the methods image characteristics); mathematical methods for image processing and analysis (filtering, functional parameter extraction, morphological analysis, robotics and artificial intelligence); methods for anatomical localization (neuro-anatomy atlas, proportional stereotaxic atlas, numerized atlas); methodology of cerebral image superposition (normalization, retiming); image networks

  6. Imaging synaptic density in the living human brain.

    Science.gov (United States)

    Finnema, Sjoerd J; Nabulsi, Nabeel B; Eid, Tore; Detyniecki, Kamil; Lin, Shu-Fei; Chen, Ming-Kai; Dhaher, Roni; Matuskey, David; Baum, Evan; Holden, Daniel; Spencer, Dennis D; Mercier, Joël; Hannestad, Jonas; Huang, Yiyun; Carson, Richard E

    2016-07-20

    Chemical synapses are the predominant neuron-to-neuron contact in the central nervous system. Presynaptic boutons of neurons contain hundreds of vesicles filled with neurotransmitters, the diffusible signaling chemicals. Changes in the number of synapses are associated with numerous brain disorders, including Alzheimer's disease and epilepsy. However, all current approaches for measuring synaptic density in humans require brain tissue from autopsy or surgical resection. We report the use of the synaptic vesicle glycoprotein 2A (SV2A) radioligand [(11)C]UCB-J combined with positron emission tomography (PET) to quantify synaptic density in the living human brain. Validation studies in a baboon confirmed that SV2A is an alternative synaptic density marker to synaptophysin. First-in-human PET studies demonstrated that [(11)C]UCB-J had excellent imaging properties. Finally, we confirmed that PET imaging of SV2A was sensitive to synaptic loss in patients with temporal lobe epilepsy. Thus, [(11)C]UCB-J PET imaging is a promising approach for in vivo quantification of synaptic density with several potential applications in diagnosis and therapeutic monitoring of neurological and psychiatric disorders. PMID:27440727

  7. Round Randomized Learning Vector Quantization for Brain Tumor Imaging

    Directory of Open Access Journals (Sweden)

    Siti Norul Huda Sheikh Abdullah

    2016-01-01

    Full Text Available Brain magnetic resonance imaging (MRI classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function.

  8. Round Randomized Learning Vector Quantization for Brain Tumor Imaging

    Science.gov (United States)

    2016-01-01

    Brain magnetic resonance imaging (MRI) classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ) is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function.

  9. Multifunctional Silica Particles as Contrast Agents for Optical and Magnetic Resonance Imaging

    OpenAIRE

    Feldmann, Verena

    2011-01-01

    The development of magnetic resonance imaging (MRI) towards one of the most powerful techniques in clinical diagnosis is accompanied by progress in the design of paramagnetic contrast agents (CAs) to enhance imaging sensitivity. Most of the currently applied CAs for enhanced T1-contrast are based on gadolinium(III)-chelate-complexes and are mainly extracellular agents which only distribute non-specifically throughout the circulatory system and interstitial space. Since those agents are excret...

  10. Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging.

    Directory of Open Access Journals (Sweden)

    David A Feinberg

    Full Text Available Echo planar imaging (EPI is an MRI technique of particular value to neuroscience, with its use for virtually all functional MRI (fMRI and diffusion imaging of fiber connections in the human brain. EPI generates a single 2D image in a fraction of a second; however, it requires 2-3 seconds to acquire multi-slice whole brain coverage for fMRI and even longer for diffusion imaging. Here we report on a large reduction in EPI whole brain scan time at 3 and 7 Tesla, without significantly sacrificing spatial resolution, and while gaining functional sensitivity. The multiplexed-EPI (M-EPI pulse sequence combines two forms of multiplexing: temporal multiplexing (m utilizing simultaneous echo refocused (SIR EPI and spatial multiplexing (n with multibanded RF pulses (MB to achieve m×n images in an EPI echo train instead of the normal single image. This resulted in an unprecedented reduction in EPI scan time for whole brain fMRI performed at 3 Tesla, permitting TRs of 400 ms and 800 ms compared to a more conventional 2.5 sec TR, and 2-4 times reductions in scan time for HARDI imaging of neuronal fibertracks. The simultaneous SE refocusing of SIR imaging at 7 Tesla advantageously reduced SAR by using fewer RF refocusing pulses and by shifting fat signal out of the image plane so that fat suppression pulses were not required. In preliminary studies of resting state functional networks identified through independent component analysis, the 6-fold higher sampling rate increased the peak functional sensitivity by 60%. The novel M-EPI pulse sequence resulted in a significantly increased temporal resolution for whole brain fMRI, and as such, this new methodology can be used for studying non-stationarity in networks and generally for expanding and enriching the functional information.

  11. Magnetic resonance imaging research progress on brain functional reorganization after peripheral nerve injury

    International Nuclear Information System (INIS)

    In the recent years, with the development of functional magnetic resonance imaging technology the brain plasticity and functional reorganization are hot topics in the central nervous system imaging studies. Brain functional reorganization and rehabilitation after peripheral nerve injury may have certain regularity. In this paper, the progress of brain functional magnetic resonance imaging technology and its applications in the world wide clinical and experimental researches of the brain functional reorganization after peripheral nerve injury is are reviewed. (authors)

  12. Imaging of non tumorous and tumorous human brain tissue with full-field optical coherence tomography

    CERN Document Server

    Assayag, Osnath; Devaux, Bertrand; Harms, Fabrice; Pallud, Johan; Chretien, Fabrice; Boccara, Claude; Varlet, Pascale

    2013-01-01

    A prospective study was performed on neurosurgical samples from 18 patients to evaluate the use of Full-Field Optical Coherence Tomography (FF-OCT) in brain tumor diagnosis. FF-OCT captures en face slices of tissue samples at 1\\mum resolution in 3D with a typical 200\\mum imaging depth. A 1cm2 specimen is scanned at a single depth and processed in about 5 minutes. This rapid imaging process is non-invasive and 30 requires neither contrast agent injection nor tissue preparation, which makes it particularly well suited to medical imaging applications. Temporal chronic epileptic parenchyma and brain tumors such as meningiomas, low- grade and high-grade gliomas, and choroid plexus papilloma were imaged. A subpopulation of neurons, myelin fibers and CNS vasculature were clearly identified. Cortex could be discriminated from white matter, but individual glial cells as astrocytes (normal or reactive) or oligodendrocytes were not observable. This study reports for the first time on the feasibility of using FF-OCT in a...

  13. Technetium-99m Labelled Infection Imaging Agents. Chapter 7

    International Nuclear Information System (INIS)

    Infection specific radiopharmaceuticals can be used for diagnosis as well as for decision making in therapy and treatment follow-up. Most of the currently used tracers are not able to discriminate between infection and inflammation. Research has been going on to develop infection specific markers, and radiolabelled anti-infective agents look promising towards developing infection specific agents. Technetium-99m labelled antibiotics might also have the potential to differentiate sterile inflammation from infection. There are numerous ongoing studies reporting the use of other radiolabelled antibacterial and antifungal agents for detecting infection. Other promising agents are antimicrobial peptides as they preferentially bind to membranes of bacteria over mammalian cells and, therefore, will discriminate between infection and sterile inflammation. Clinical studies are now being undertaken with these agents and further evaluation with different types of pathogens such as viruses, fungi, parasites and intracellular pathogens in humans will provide new infection specific diagnostic agents. (author)

  14. Comparative assessments of the effects of alcohol exposure on fetal brain development using optical coherence tomography and ultrasound imaging

    Science.gov (United States)

    Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C.; Larin, Kirill V.

    2013-02-01

    The developing fetal brain is vulnerable to a variety of environmental agents including maternal ethanol consumption. Preclinical studies on the development and amelioration of fetal teratology would be significantly facilitated by the application of high resolution imaging technologies like optical coherence tomography (OCT) and high-frequency ultrasound (US). This study investigates the ability of these imaging technologies to measure the effects of maternal ethanol exposure on brain development, ex vivo, in fetal mice. Pregnant mice at gestational day 12.5 were administered ethanol (3 g/Kg b.wt.) or water by intragastric gavage, twice daily for three consecutive days. On gestational day 14.5, fetuses were collected and imaged. Three-dimensional images of the mice fetus brains were obtained by OCT and high-resolution US, and the volumes of the left and right ventricles of the brain were measured. Ethanol-exposed fetuses exhibited a statistically significant, 2-fold increase in average left and right ventricular volumes compared with the ventricular volume of control fetuses, with OCT-derived measures of 0.38 and 0.18 mm3, respectively, whereas the boundaries of the fetal mouse lateral ventricles were not clearly definable with US imaging. Our results indicate that OCT is a useful technology for assessing ventriculomegaly accompanying alcohol-induced developmental delay. This study clearly demonstrated advantages of using OCT for quantitative assessment of embryonic development compared with US imaging.

  15. Imaging of rare radiation injuries after radiosurgery for brain metastases

    International Nuclear Information System (INIS)

    Gamma knife radiosurgery (GKS) is generally an effective and safe treatment for brain metastases. We report 3 rare complicated cases after GKS due to radiation injury including image findings. Case 1: A 58-year-old man received whole brain radiation therapy for right occipital brain metastasis from lung cancer. However, local recurrence was noted and GKS was carried out 5 months later (size 28 mm, marginal dose 23 Gy (50% isodose)). Four years later, a cyst appeared and the patient developed apraxia and visual disturbance. Surgery was performed and the histopathology showed necrosis. Case 2: A 51-year-old woman received GKS for 4 brain metastases from breast cancer. The right occipital lobe lesion was treated with marginal dose of 18 Gy (size 24 mm, 50% isodose). Thirty-one months later, she developed left homonymous hemianopsia and MR imaging and CT scan showed intracerebral hemorrhage with cyst formation. An operation was performed and the histology revealed necrosis. Case 3: A 37-year-old man received GKS for left temporal brain metastasis from lung cancer (size 14 mm, marginal dose 23 Gy (50% isodose)). Twelve months later, the lesion increased in size again, so we carried out a second GKS on the same lesion (size 15 mm, marginal dose 23 Gy (50% isodose)). Thirty-five months later, massive peritumoral edema appeared and the patient developed left oculomotor palsy. An emergency operation was performed and the histopathological diagnosis was cavernous malformation that was thought to be induced by radiosurgery. Although the incidence is low, rare complications associated with radiation therapy can also occur by radiosurgery. (author)

  16. PANDA: a pipeline toolbox for analyzing brain diffusion images

    Directory of Open Access Journals (Sweden)

    Gaolang Gong

    2013-02-01

    Full Text Available Diffusion magnetic resonance imaging (dMRI is widely used in both scientific research and clinical practice in in-vivo studies of the human brain. While a number of post-processing packages have been developed, fully automated processing of dMRI datasets remains challenging. Here, we developed a MATLAB toolbox named “Pipeline for Analyzing braiN Diffusion imAges” (PANDA for fully automated processing of brain diffusion images. The processing modules of a few established packages, including FMRIB Software Library (FSL, Pipeline System for Octave and Matlab (PSOM, Diffusion Toolkit and MRIcron, were employed in PANDA. Using any number of raw dMRI datasets from different subjects, in either DICOM or NIfTI format, PANDA can automatically perform a series of steps to process DICOM/NIfTI to diffusion metrics (e.g., FA and MD that are ready for statistical analysis at the voxel-level, the atlas-level and the Tract-Based Spatial Statistics (TBSS-level and can finish the construction of anatomical brain networks for all subjects. In particular, PANDA can process different subjects in parallel, using multiple cores either in a single computer or in a distributed computing environment, thus greatly reducing the time cost when dealing with a large number of datasets. In addition, PANDA has a friendly graphical user interface (GUI, allowing the user to be interactive and to adjust the input/output settings, as well as the processing parameters. As an open-source package, PANDA is freely available at http://www.nitrc.org/projects/panda/. This novel toolbox is expected to substantially simplify the image processing of dMRI datasets and facilitate human structural connectome studies.

  17. Wearable scanning photoacoustic brain imaging in behaving rats.

    Science.gov (United States)

    Tang, Jianbo; Dai, Xianjin; Jiang, Huabei

    2016-06-01

    A wearable scanning photoacoustic imaging (wPAI) system is presented for noninvasive brain study in behaving rats. This miniaturized wPAI system consists of four pico linear servos and a single transducer-based PAI probe. It has a dimension of 50 mm × 35 mm × 40 mm, and a weight of 26 g excluding cablings. Phantom evaluation shows that wPAI achieves a lateral resolution of ∼0.5 mm and an axial resolution of ∼0.1 mm at a depth of up to 11 mm. Its imaging ability is also tested in a behaving rat, and the results indicate that wPAI is able to image blood vessels at a depth of up to 5 mm with intact scalp and skull. With its noninvasive, deep penetration, and functional imaging ability in behaving animals, wPAI can be used for behavior, cognition, and preclinical brain disease studies. PMID:26777064

  18. Automated delineation of stroke lesions using brain CT images

    Directory of Open Access Journals (Sweden)

    Céline R. Gillebert

    2014-01-01

    Full Text Available Computed tomographic (CT images are widely used for the identification of abnormal brain tissue following infarct and hemorrhage in stroke. Manual lesion delineation is currently the standard approach, but is both time-consuming and operator-dependent. To address these issues, we present a method that can automatically delineate infarct and hemorrhage in stroke CT images. The key elements of this method are the accurate normalization of CT images from stroke patients into template space and the subsequent voxelwise comparison with a group of control CT images for defining areas with hypo- or hyper-intense signals. Our validation, using simulated and actual lesions, shows that our approach is effective in reconstructing lesions resulting from both infarct and hemorrhage and yields lesion maps spatially consistent with those produced manually by expert operators. A limitation is that, relative to manual delineation, there is reduced sensitivity of the automated method in regions close to the ventricles and the brain contours. However, the automated method presents a number of benefits in terms of offering significant time savings and the elimination of the inter-operator differences inherent to manual tracing approaches. These factors are relevant for the creation of large-scale lesion databases for neuropsychological research. The automated delineation of stroke lesions from CT scans may also enable longitudinal studies to quantify changes in damaged tissue in an objective and reproducible manner.

  19. Functional imaging of the lung using a gaseous contrast agent: 3Helium-magnetic resonance imaging

    International Nuclear Information System (INIS)

    Current imaging methods of the lung concentrate on morphology as well as on the depiction of the pulmonary parenchyma. The need of an advanced and more subtle imaging technology compared to conventional radiography is met by computed topograhy as the method of choice. Nevertheless, computed tomography yields very limited functional information. This is to be derived from arterial blood gas analysis, spirometry and body plethysmography. These methods, however, lack the scope for regional allocation of any pathology. Magnetic resonance imaging of the lung has been advanced by the use of hyperpolarised 3Helium as an inhaled gaseous contrast agent. The inhalation of the gas provides functional data by distribution, diffusion and relaxation of its hyperpolarised state. Because anatomical landmarks of the lung can be visualised as well, functional information can be linked with regional information. Furthermore, the method provides high spatial and temporal resolution and lacks the potential side-effects of ionising radiation. Four different modalities have been established: 1. Spin density imaging studies the distribution of gas, normally after a single inhalation of contrast gas in inspiratory breath hold. 2. Dynamic cine imaging studies the distribution of gas with respect to regional time constants of pulmonary gas inflow. 3. Diffusion weighted imaging can exhibit the presence and severity of pulmonary airspace enlargement, as in pulmonary emphysema. 4. Oxygen sensitive imaging displays intrapulmonary oxygen partial pressure and its distribution. Currently, the method is limited by comparably high costs and limited availability. As there have been recent developments which might bring this modality closer to clinical use, this review article will comprise the methodology as well as the current state of the art and standard of knowledge of magnetic resonance imaging of the lung using hyperpolarised 3Helium. (orig.)

  20. A generic model for 11C labelled radiopharmaceuticals for imaging receptors in the human brain

    International Nuclear Information System (INIS)

    A large number of radiopharmaceuticals labelled with 11C (half-time 0.340 h) are being developed for positron emission tomographic studies of different types of receptor in the human brain. For most of these agents the available biokinetic data are insufficient to construct realistic compound-specific biokinetic models for calculating the internal radiation dose delivered to persons undergoing investigation. A generic model for brain receptor substances that predicts the internal dose with sufficient accuracy for general radiation protection purposes has, therefore, been developed. Biokinetic data for 13 11C radiopharmaceuticals used clinically for imaging different brain receptors indicate that, despite differences in chemical structure, their uptake and retention in the human brain and other tissues is broadly similar. The proposed model assumes instantaneous deposition of 5% of the injected radioactivity in the brain, with the remaining radioactivity being rapidly and uniformly distributed throughout all other tissues. Elimination from all tissues is assumed to occur with a half-time of 2 h. It is further assumed that 75% of the injected 11C is excreted in the urine, and 25% via the gall bladder, with a half-time of 2 h. This model yields an effective dose of 4.5 x 10-3mSv/MBq, with doses of 3.2 x 10-2, 1.7 x 10-2, 8.7 X 10-3, 5.2 x 10-3, and 3.8 x 10-3mGy MBq-1 to the urinary bladder, gall bladder, kidneys, brain and ovaries, respectively. These doses are well within the range of those reported using compound-specific models for the radiopharmaceuticals studied. (author)

  1. Exploiting temporal information in functional magnetic resonance imaging brain data.

    Science.gov (United States)

    Zhang, Lei; Samaras, Dimitris; Tomasi, Dardo; Alia-Klein, Nelly; Cottone, Lisa; Leskovjan, Andreana; Volkow, Nora; Goldstein, Rita

    2005-01-01

    Functional Magnetic Resonance Imaging(fMRI) has enabled scientists to look into the active human brain, leading to a flood of new data, thus encouraging the development of new data analysis methods. In this paper, we contribute a comprehensive framework for spatial and temporal exploration of fMRI data, and apply it to a challenging case study: separating drug addicted subjects from healthy non-drug-using controls. To our knowledge, this is the first time that learning on fMRI data is performed explicitly on temporal information for classification in such applications. Experimental results demonstrate that, by selecting discriminative features, group classification can be successfully performed on our case study although training data are exceptionally high dimensional, sparse and noisy fMRI sequences. The classification performance can be significantly improved by incorporating temporal information into machine learning. Both statistical and neuroscientific validation of the method's generalization ability are provided. We demonstrate that incorporation of computer science principles into functional neuroimaging clinical studies, facilitates deduction about the behavioral probes from the brain activation data, thus providing a valid tool that incorporates objective brain imaging data into clinical classification of psychopathologies and identification of genetic vulnerabilities. PMID:16685905

  2. Diffusion Tensor Imaging Of the Brain in Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Jo Ann V. Antenor-Dorsey

    2014-10-01

    Full Text Available Individuals with Type 1 diabetes mellitus (T1DM are required to carefully manage their insulin dosing, dietary intake, and activity levels in order to maintain optimal blood sugar levels. Over time, exposure to hyperglycaemia is known to cause significant damage to the peripheral nervous system, but its impact on the central nervous system has been less well studied. Researchers have begun to explore the cumulative impact of commonly experienced blood glucose fluctuations on brain structure and function in patient populations. To date, these studies have typically used magnetic resonance imaging to measure regional grey and white matter volumes across the brain. However, newer methods, such as diffusion tensor imaging (DTI can measure the microstructural properties of white matter, which can be more sensitive to neurological effects than standard volumetric measures. Studies are beginning to use DTI to understand the impact of T1DM on white matter structure in the human brain. This work, its implications, future directions, and important caveats, are the focus of this review.

  3. Imaging study of brain damage from methanol intoxication of wine

    International Nuclear Information System (INIS)

    Objective: To investigate the imaging of CT and MRI in brain damage caused by methanol intoxication from false wine, and to study the relations between imaging manifestation and different degrees of the methanol intoxication. Method: Thirty nine cases with methanol intoxication from false wine were retrospectively reported, The latent period of these patients was 0-4 days, and the average latent period of these patients was 0.5 days, All cases were performed by serology examination, brain CT scan, and four cases performed by MRI scan after average 2.5 days (range, 1-6 days) the onset of methanol intoxication. Results: Six cases showed hyperintense signals in bilateral putamen, two cases also showed hyperintense signals in biolateral subcortex white substance regions. Four cases showed hyperintense signals in unilateral internal capsule. One case showed hyperintense changess in subcortex white substance regions. Our study showed the positive correlation between CT features and the amount of methanol and stage of clinic manifestation(χ2=4.232, P2=0.001, P>0.05). Conclusions: MRI was better than CT in finding early brain damage caused by methanol intoxication from false wine. The characteristic finding changes of the patients was showed mainly in in bilateral putamen, Prognosis for the patients combined with subcortex white substance lesion wasn't hopeful. (authors)

  4. Structural similarity analysis for brain MR image quality assessment

    Science.gov (United States)

    Punga, Mirela Visan; Moldovanu, Simona; Moraru, Luminita

    2014-11-01

    Brain MR images are affected and distorted by various artifacts as noise, blur, blotching, down sampling or compression and as well by inhomogeneity. Usually, the performance of pre-processing operation is quantified by using the quality metrics as mean squared error and its related metrics such as peak signal to noise ratio, root mean squared error and signal to noise ratio. The main drawback of these metrics is that they fail to take the structural fidelity of the image into account. For this reason, we addressed to investigate the structural changes related to the luminance and contrast variation (as non-structural distortions) and to denoising process (as structural distortion)through an alternative metric based on structural changes in order to obtain the best image quality.

  5. Visualizing the blind brain: brain imaging of visual field defects from early recovery to rehabilitation techniques

    Directory of Open Access Journals (Sweden)

    Marika eUrbanski

    2014-09-01

    Full Text Available Visual field defects (VFDs are one of the most common consequences observed after brain injury, especially after a stroke in the posterior cerebral artery territory. Less frequently, tumours, traumatic brain injury, brain surgery or demyelination can also determine various visual disabilities, from a decrease in visual acuity to cerebral blindness. VFD is a factor of bad functional prognosis as it compromises many daily life activities (e.g., obstacle avoidance, driving, and reading and therefore the patient’s quality of life. Spontaneous recovery seems to be limited and restricted to the first six months, with the best chance of improvement at one month. The possible mechanisms at work could be partly due to cortical reorganization in the visual areas (plasticity and/or partly to the use of intact alternative visual routes, first identified in animal studies and possibly underlying the phenomenon of blindsight. Despite processes of early recovery, which is rarely complete, and learning of compensatory strategies, the patient’s autonomy may still be compromised at more chronic stages. Therefore, various rehabilitation therapies based on neuroanatomical knowledge have been developed to improve VFDs. These use eye-movement training techniques (e.g., visual search, saccadic eye movements, reading training, visual field restitution (the Vision Restoration Therapy, VRT, or perceptual learning. In this review, we will focus on studies of human adults with acquired VFDs, which have used different imaging techniques (Positron Emission Tomography: PET, Diffusion Tensor Imaging: DTI, functional Magnetic Resonance Imaging: fMRI, MagnetoEncephalography: MEG or neurostimulation techniques (Transcranial Magnetic Stimulation: TMS; transcranial Direct Current Stimulation, tDCS to show brain activations in the course of spontaneous recovery or after specific rehabilitation techniques.

  6. Brain tumours at 7T MRI compared to 3T - contrast effect after half and full standard contrast agent dose: initial results

    Energy Technology Data Exchange (ETDEWEB)

    Noebauer-Huhmann, Iris-Melanie; Weber, M. [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Medical University of Vienna, Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Szomolanyi, P.; Juras, V. [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Slovak Academy of Sciences, Department of Imaging Methods, Institute of Measurement Science, Bratislava (Slovakia); Kronnerwetter, C. [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Widhalm, G. [Medical University of Vienna, Department of Neurosurgery, Vienna (Austria); Nemec, S.; Prayer, D. [Medical University of Vienna, Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Ladd, M.E. [University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); German Cancer Research Center (DKFZ), Division of Medical Physics in Radiology, Heidelberg (Germany); Trattnig, S. [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna (Austria)

    2015-01-15

    To compare the contrast agent effect of a full dose and half the dose of gadobenate dimeglumine in brain tumours at 7 Tesla (7T) MR versus 3 Tesla (3T). Ten patients with primary brain tumours or metastases were examined. Signal intensities were assessed in the lesion and normal brain. Tumour-to-brain contrast and lesion enhancement were calculated. Additionally, two independent readers subjectively graded the image quality and artefacts. The enhanced mean tumour-to-brain contrast and lesion enhancement were significantly higher at 7T than at 3T for both half the dose (91.8 ± 45.8 vs. 43.9 ± 25.3 [p = 0.010], 128.1 ± 53.7 vs. 75.5 ± 32.4 [p = 0.004]) and the full dose (129.2 ± 50.9 vs. 66.6 ± 33.1 [p = 0.002], 165.4 ± 54.2 vs. 102.6 ± 45.4 [p = 0.004]). Differences between dosages at each field strength were also significant. Lesion enhancement was higher with half the dose at 7T than with the full dose at 3T (p =.037), while the tumour-to-brain contrast was not significantly different. Subjectively, contrast enhancement, visibility, and lesion delineation were better at 7T and with the full dose. All parameters were rated as good, at the least. Half the routine contrast agent dose at 7T provided higher lesion enhancement than the full dose at 3T which indicates the possibility of dose reduction at 7T. (orig.)

  7. Brain tumours at 7T MRI compared to 3T - contrast effect after half and full standard contrast agent dose: initial results

    International Nuclear Information System (INIS)

    To compare the contrast agent effect of a full dose and half the dose of gadobenate dimeglumine in brain tumours at 7 Tesla (7T) MR versus 3 Tesla (3T). Ten patients with primary brain tumours or metastases were examined. Signal intensities were assessed in the lesion and normal brain. Tumour-to-brain contrast and lesion enhancement were calculated. Additionally, two independent readers subjectively graded the image quality and artefacts. The enhanced mean tumour-to-brain contrast and lesion enhancement were significantly higher at 7T than at 3T for both half the dose (91.8 ± 45.8 vs. 43.9 ± 25.3 [p = 0.010], 128.1 ± 53.7 vs. 75.5 ± 32.4 [p = 0.004]) and the full dose (129.2 ± 50.9 vs. 66.6 ± 33.1 [p = 0.002], 165.4 ± 54.2 vs. 102.6 ± 45.4 [p = 0.004]). Differences between dosages at each field strength were also significant. Lesion enhancement was higher with half the dose at 7T than with the full dose at 3T (p =.037), while the tumour-to-brain contrast was not significantly different. Subjectively, contrast enhancement, visibility, and lesion delineation were better at 7T and with the full dose. All parameters were rated as good, at the least. Half the routine contrast agent dose at 7T provided higher lesion enhancement than the full dose at 3T which indicates the possibility of dose reduction at 7T. (orig.)

  8. Grid Computing Application for Brain Magnetic Resonance Image Processing

    International Nuclear Information System (INIS)

    This work emphasizes the use of grid computing and web technology for automatic post-processing of brain magnetic resonance images (MRI) in the context of neuropsychiatric (Alzheimer's disease) research. Post-acquisition image processing is achieved through the interconnection of several individual processes into pipelines. Each process has input and output data ports, options and execution parameters, and performs single tasks such as: a) extracting individual image attributes (e.g. dimensions, orientation, center of mass), b) performing image transformations (e.g. scaling, rotation, skewing, intensity standardization, linear and non-linear registration), c) performing image statistical analyses, and d) producing the necessary quality control images and/or files for user review. The pipelines are built to perform specific sequences of tasks on the alphanumeric data and MRIs contained in our database. The web application is coded in PHP and allows the creation of scripts to create, store and execute pipelines and their instances either on our local cluster or on high-performance computing platforms. To run an instance on an external cluster, the web application opens a communication tunnel through which it copies the necessary files, submits the execution commands and collects the results. We present result on system tests for the processing of a set of 821 brain MRIs from the Alzheimer's Disease Neuroimaging Initiative study via a nonlinear registration pipeline composed of 10 processes. Our results show successful execution on both local and external clusters, and a 4-fold increase in performance if using the external cluster. However, the latter's performance does not scale linearly as queue waiting times and execution overhead increase with the number of tasks to be executed.

  9. Grid Computing Application for Brain Magnetic Resonance Image Processing

    Science.gov (United States)

    Valdivia, F.; Crépeault, B.; Duchesne, S.

    2012-02-01

    This work emphasizes the use of grid computing and web technology for automatic post-processing of brain magnetic resonance images (MRI) in the context of neuropsychiatric (Alzheimer's disease) research. Post-acquisition image processing is achieved through the interconnection of several individual processes into pipelines. Each process has input and output data ports, options and execution parameters, and performs single tasks such as: a) extracting individual image attributes (e.g. dimensions, orientation, center of mass), b) performing image transformations (e.g. scaling, rotation, skewing, intensity standardization, linear and non-linear registration), c) performing image statistical analyses, and d) producing the necessary quality control images and/or files for user review. The pipelines are built to perform specific sequences of tasks on the alphanumeric data and MRIs contained in our database. The web application is coded in PHP and allows the creation of scripts to create, store and execute pipelines and their instances either on our local cluster or on high-performance computing platforms. To run an instance on an external cluster, the web application opens a communication tunnel through which it copies the necessary files, submits the execution commands and collects the results. We present result on system tests for the processing of a set of 821 brain MRIs from the Alzheimer's Disease Neuroimaging Initiative study via a nonlinear registration pipeline composed of 10 processes. Our results show successful execution on both local and external clusters, and a 4-fold increase in performance if using the external cluster. However, the latter's performance does not scale linearly as queue waiting times and execution overhead increase with the number of tasks to be executed.

  10. An improved kit formulation of a dopamine transporter imaging agent: [Tc-99m]TRODAT-1

    International Nuclear Information System (INIS)

    Recently, [Tc-99m]TRODAT-1, the first Tc-99m-labeled tracer for imaging CNS dopamine transporters in humans, was reported. This tracer displayed excellent specific binding to dopamine transporters in the basal ganglia region of the brain, thus it is potentially useful for the diagnosis of deficit of dopamine transporters in neurodegenerative diseases, such as Parkinson's disease. Preparation of [Tc-99m]TRODAT-1 was previously achieved by a multistep kit formulation. It is highly desirable to further improve the preparation by developing a simplified one-vial formulation with a reduced amount of TRODAT-1 ligand for routine clinical use. To achieve this goal, a series of studies to optimize labeling efficiency by varying a combination of factors (amount of free ligand, reaction reagents, and reaction pH) was carried out. [Tc-99m]TRODAT-1 prepared by this new kit formulation was evaluated by assessing the brain uptake and target (striatum) versus nontarget (cerebellum) ratios in rats. Appropriate amounts of various ingredients for a one-vial kit formulation providing ≥90% radiolabeling yields were identified. The most consistent and reliable formulation contained 10 μg of TRODAT-1 (a reduction of free ligand from 200 μg to 10 μg), 32 μg of SnCl2, 10 mg of sodium glucoheptonate, and 840 μg of disodium EDTA in one vial as a lyophilized kit. It is feasible to reconstitute the vial with [Tc-99m]pertechnetate (0.5-2 mL , ≤1110 MBq, 30 mCi), resulting in a final solution with a pH value of 4.5-5.0. [Tc-99m]TRODAT-1, prepared by this new kit, was stable at room temperature for 6 h. Biodistribution studies of this agent in rats with the new formulation showed similar regional brain distribution as compared with those obtained with the previous preparation (high striatum-to-cerebellum ratio). In conclusion, using this lyophilized one-vial kit formulation, [Tc-99m]TRODAT-1 can be prepared with greater than 90% radiochemical purity. This simplified kit will

  11. Intra-individual, randomised comparison of the MRI contrast agents gadobutrol versus gadoteridol in patients with primary and secondary brain tumours, evaluated in a blinded read

    International Nuclear Information System (INIS)

    To prove that 1.0 M gadobutrol provides superior contrast enhancement and MRI image characteristics of primary and secondary brain tumours compared with 0.5 M gadoteridol, thereby providing superior diagnostic information. Brain MRI was performed in two separate examinations in patients scheduled for neurosurgery. Independent injections of 1.0 M gadobutrol and 0.5 M gadoteridol at doses of 0.1 mmol Gd/kg body weight were administered per patient in randomised order. Evaluation was performed in an off-site blinded read. Fifty-one patients in the full analysis set (FAS) were eligible for efficacy analysis and 44 for the per-protocol analysis. For the primary efficacy variable ''preference in contrast enhancement for one contrast agent or the other'', the rate of ''gadobutrol preferred'' was estimated at 0.73 (95 % confidence interval 0.61; 0.83), showing significant superiority of gadobutrol over gadoteridol. Calculated lesion-to-brain contrast and the results of all qualitative secondary efficacy variables were also in favour of gadobutrol. Keeping a sufficient time delay after contrast application proved to be essential to get optimal image quality. Compared with 0.5 M gadoteridol, 1.0 M gadobutrol was proven to have significantly superior contrast enhancement characteristics in a routine MRI protocol of primary and secondary brain tumours. (orig.)

  12. Autoradiographic imaging of phosphoinositide turnover in the brain

    International Nuclear Information System (INIS)

    With [3H]cytidine as a precursor, phosphoinositide turnover can be localized in brain slices by selective autoradiography of the product [3H]cytidine diphosphate diacylglycerol, which is membrane-bound. In the cerebellum, glutamatergic stimulation elicits an increase of phosphoinositide turnover only in Purkinje cells and the molecular layer. In the hippocampus, both glutamatergic and muscarinic cholinergic stimulation increase phosphoinositide turnover, but with distinct localizations. Cholinergic stimulation affects CA1, CA3, CA4, and subiculum, whereas glutamatergic effects are restricted to the subiculum and CA3. Imaging phosphoinositide turnover in brain slices, which are amenable to electrophysiologic studies, will permit a dynamic localized analysis of regulation of this second messenger in response to synaptic stimulation of specific neuronal pathways

  13. CT and MRI imaging of the brain in MELAS syndrome

    International Nuclear Information System (INIS)

    MELAS syndrome (mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes) is a rare, multisystem disorder which belongs to a group of mitochondrial metabolic diseases. As other diseases in this group, it is inherited in the maternal line. In this report, we discussed a case of a 10-year-old girl with clinical and radiological picture of MELAS syndrome. We would like to describe characteristic radiological features of MELAS syndrome in CT, MRI and MR spectroscopy of the brain and differential diagnosis. The rarity of this disorder and the complexity of its clinical presentation make MELAS patients among the most difficult to diagnose. Brain imaging studies require a wide differential diagnosis, primarily to distinguish between MELAS and ischemic stroke. Particularly helpful are the MRI and MR spectroscopy techniques

  14. Ultrasound/Magnetic Targeting with SPIO-DOX-Microbubble Complex for Image-Guided Drug Delivery in Brain Tumors

    Science.gov (United States)

    Fan, Ching-Hsiang; Cheng, Yu-Hang; Ting, Chien-Yu; Ho, Yi-Ju; Hsu, Po-Hung; Liu, Hao-Li; Yeh, Chih-Kuang

    2016-01-01

    One of the greatest challenges in the deployment of chemotherapeutic drugs against brain tumors is ensuring that sufficient drug concentrations reach the tumor, while minimizing drug accumulation at undesired sites. Recently, injection of therapeutic agents following blood-brain barrier (BBB) opening by focused ultrasound (FUS) with microbubbles (MBs) has been shown to enhance drug delivery in targeted brain regions. Nevertheless, the distribution and quantitative deposition of agents delivered to the brain are still hard to estimate. Based on our previous work on superparamagnetic iron oxide (SPIO)-loaded MBs, we present a novel theranostic complex of SPIO-Doxorubicin (DOX)-conjugated MB (SD-MB) for drug delivery to the brain. Magnetic labeling of the drug enables direct visualization via magnetic resonance imaging, and also facilitates magnetic targeting (MT) to actively enhance targeted deposition of the drug. In a rat glioma model, we demonstrated that FUS sonication can be used with SD-MBs to simultaneously facilitate BBB opening and allow dual ultrasound/magnetic targeting of chemotherapeutic agent (DOX) delivery. The accumulation of SD complex within brain tumors can be significantly enhanced by MT (25.7 fold of DOX, 7.6 fold of SPIO). The change in relaxation rate R2 (1/T2) within tumors was highly correlated with SD deposition as quantified by high performance liquid chromatography (R2 = 0.93) and inductively coupled plasma-atomic emission spectroscopy (R2 = 0.94), demonstrating real-time monitoring of DOX distribution. Our results suggest that SD-MBs can serve as multifunction agents to achieve advanced molecular theranostics. PMID:27446489

  15. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging

    Science.gov (United States)

    Tomitaka, Asahi; Arami, Hamed; Gandhi, Sonu; Krishnan, Kannan M.

    2015-10-01

    Magnetic Particle Imaging (MPI) is a new real-time imaging modality, which promises high tracer mass sensitivity and spatial resolution directly generated from iron oxide nanoparticles. In this study, monodisperse iron oxide nanoparticles with median core diameters ranging from 14 to 26 nm were synthesized and their surface was conjugated with lactoferrin to convert them into brain glioma targeting agents. The conjugation was confirmed with the increase of the hydrodynamic diameters, change of zeta potential, and Bradford assay. Magnetic particle spectrometry (MPS), performed to evaluate the MPI performance of these nanoparticles, showed no change in signal after lactoferrin conjugation to nanoparticles for all core diameters, suggesting that the MPI signal is dominated by Néel relaxation and thus independent of hydrodynamic size difference or presence of coating molecules before and after conjugations. For this range of core sizes (14-26 nm), both MPS signal intensity and spatial resolution improved with increasing core diameter of nanoparticles. The lactoferrin conjugated iron oxide nanoparticles (Lf-IONPs) showed specific cellular internalization into C6 cells with a 5-fold increase in MPS signal compared to IONPs without lactoferrin, both after 24 h incubation. These results suggest that Lf-IONPs can be used as tracers for targeted brain glioma imaging using MPI.

  16. Functional connectivity of the rodent brain using optical imaging

    Science.gov (United States)

    Guevara Codina, Edgar

    The aim of this thesis is to apply functional connectivity in a variety of animal models, using several optical imaging modalities. Even at rest, the brain shows high metabolic activity: the correlation in slow spontaneous fluctuations identifies remotely connected areas of the brain; hence the term "functional connectivity". Ongoing changes in spontaneous activity may provide insight into the neural processing that takes most of the brain metabolic activity, and so may provide a vast source of disease related changes. Brain hemodynamics may be modified during disease and affect resting-state activity. The thesis aims to better understand these changes in functional connectivity due to disease, using functional optical imaging. The optical imaging techniques explored in the first two contributions of this thesis are Optical Imaging of Intrinsic Signals and Laser Speckle Contrast Imaging, together they can estimate the metabolic rate of oxygen consumption, that closely parallels neural activity. They both have adequate spatial and temporal resolution and are well adapted to image the convexity of the mouse cortex. In the last article, a depth-sensitive modality called photoacoustic tomography was used in the newborn rat. Optical coherence tomography and laminar optical tomography were also part of the array of imaging techniques developed and applied in other collaborations. The first article of this work shows the changes in functional connectivity in an acute murine model of epileptiform activity. Homologous correlations are both increased and decreased with a small dependence on seizure duration. These changes suggest a potential decoupling between the hemodynamic parameters in resting-state networks, underlining the importance to investigate epileptic networks with several independent hemodynamic measures. The second study examines a novel murine model of arterial stiffness: the unilateral calcification of the right carotid. Seed-based connectivity analysis

  17. Mechanism of brain damaging by rapid evacuation decompression of epidural hematoma explored with dynamic brain SPECT imaging

    International Nuclear Information System (INIS)

    Objective: To explore the value of dynamic brain SPECT imaging in clarifying the major mechanism of obstinate brain edema following evacuation of epidural hematoma. Methods: The dynamic brain SPECT imaging was performed on New Zealand rabbit model of epidural hematoma. The changes of their intracellular [Ca2+], and brain tissue water content were measured, and the correlation between them was analyzed. Results: It is showed that the severe hypoperfusion occurred on compressing parietal lobe for 30 min and hyper-reperfusion occurred 10 min after decompression on dynamic brain SPECT imaging and on its time-radioactivity curve. [Ca2+] increased remarkably after being pressed. There was a short-term decreasing following decompression and then increased gradually reaching the peak at 24 h. The correlation between [Ca2+] and brain tissue water content was with magnificent value (r=0.469, P<0.01). Conclusions: These findings indicate there exists severe reperfusion injury, which is the major mechanism of obstinate brain edema after evacuation of epidural hematoma. The dynamic brain SPECT imaging can show the image evidence of reperfusion clearly and non-invasively. (authors)

  18. Radiological symmetry of brain and head images: comparison and applications

    International Nuclear Information System (INIS)

    Most existing image-based approaches neglect the difference in radiological symmetry between the human brain and head. Thus, it is important to analyze and quantify the spatial relationship between the brain symmetry plane (BSP) and the head symmetry plane (HSP) on radiological images. The HSP and BSP were calculated through maximizing local symmetry within the head or cerebrum followed by outlier removal. The HSPs and BSPs for 145 diversified MRI datasets (80 normal, 23 pathological, and 42 synthesized) were extracted and compared. The average angular and distance deviations between the HSP and BSP were 0.49 and 1.65 mm, respectively. These deviations are dependent upon ethnicity and gender, being: (1) (0.56 , 1.85 mm) and (0.42 , 0.91 mm) for Caucasians and Asians, respectively; and (2) (0.33 , 1.17 mm) and (0.51 , 1.58 mm) for males and females, respectively. The HSP is generally different from the BSP on MR images. Statistically, they can be used interchangeably if accuracy of (0.49 , 1.65 mm) is acceptable. The BSP is preferred for a high accuracy Talairach transformation and localization of the anterior and posterior commissures. Either BSP or HSP can be used for medium accuracy Talairach transform. The HSP is preferred for detecting intracranial pathology. (orig.)

  19. Development of a novel 99mTc-labelled brain perfusion agent

    International Nuclear Information System (INIS)

    A method has been described for radiolabeling of salbutamol with technetium-99m (99mTc). To a 1 ml solution, containing 5 mg salbutamol and 2 mg of ascorbic acid, was added a clear solution (10 μl) of SnCl2.2H2O (100 μg) in distilled water. The pH of the solution was adjusted to 8.5, mixed gently with 10 mCi (370 MBq) of 99mTc elute and incubated at room temperature for 15 minutes. The resulting solution was passed through 0.22 μ filter and radiolabeled fraction was quantified using paper chromatography. The radiochemical analysis, employing the use of above mentioned radioanalytical technique, revealed that greater than 97% of the radioactivity was bound to salbutamol and rest of the activity was in the form of free pertechnitate (99mTcO4). Biological data, obtained after i. v. injection of 99mTc-Salbutamol to female albino rabbits, revealed a fair uptake in the brain at 30 min and 60 min post injection time intervals. On the basis of animal biodistribution data it is suggested that 99mTc-salbutamol can be successfully applied as a brain perfusion agent. (author)

  20. Using a cVEP-Based Brain-Computer Interface to Control a Virtual Agent.

    Science.gov (United States)

    Riechmann, Hannes; Finke, Andrea; Ritter, Helge

    2016-06-01

    Brain-computer interfaces provide a means for controlling a device by brain activity alone. One major drawback of noninvasive BCIs is their low information transfer rate, obstructing a wider deployment outside the lab. BCIs based on codebook visually evoked potentials (cVEP) outperform all other state-of-the-art systems in that regard. Previous work investigated cVEPs for spelling applications. We present the first cVEP-based BCI for use in real-world settings to accomplish everyday tasks such as navigation or action selection. To this end, we developed and evaluated a cVEP-based on-line BCI that controls a virtual agent in a simulated, but realistic, 3-D kitchen scenario. We show that cVEPs can be reliably triggered with stimuli in less restricted presentation schemes, such as on dynamic, changing backgrounds. We introduce a novel, dynamic repetition algorithm that allows for optimizing the balance between accuracy and speed individually for each user. Using these novel mechanisms in a 12-command cVEP-BCI in the 3-D simulation results in ITRs of 50 bits/min on average and 68 bits/min maximum. Thus, this work supports the notion of cVEP-BCIs as a particular fast and robust approach suitable for real-world use. PMID:26469340

  1. Review and current status of hepatobiliary imaging agents

    International Nuclear Information System (INIS)

    This review will outline aspects of the normal hepatobiliary anatomy and physiology relevant to an understanding of cholescintigraphy and discuss factors of hepatobiliary diseases which impact on the design of new hepatobiliary radiopharmaceuticals. The synthesis, pharmacokinetics, and structure-distribution relationship of the existing /sup 99m/Tc hepatobiliary agents will be compared, and the clinical status of present cholescintigraphic agents will be summarized. Future trends in the design and use of hepatobiliary tracers will be presented

  2. Anatomical Brain Magnetic Resonance Imaging of Typically Developing Children and Adolescents

    Science.gov (United States)

    Giedd, Jay N.; Lalonde, Francois M.; Celano, Mark J.; White, Samantha L.; Wallace, Gregory L.; Lee, Nancy R.; Lenroot, Rhoshel K.

    2009-01-01

    Methodological issues relevant to magnetic resonance imaging studies of brain anatomy are discussed along with the findings on the neuroanatomic changes during childhood and adolescence. The development of the brain is also discussed.

  3. Influence of image reconstruction methods on statistical parametric mapping of brain PET images

    International Nuclear Information System (INIS)

    Objective: Statistic parametric mapping (SPM) was widely recognized as an useful tool in brain function study. The aim of this study was to investigate if imaging reconstruction algorithm of PET images could influence SPM of brain. Methods: PET imaging of whole brain was performed in six normal volunteers. Each volunteer had two scans with true and false acupuncturing. The PET scans were reconstructed using ordered subsets expectation maximization (OSEM) and filtered back projection (FBP) with 3 varied parameters respectively. The images were realigned, normalized and smoothed using SPM program. The difference between true and false acupuncture scans was tested using a matched pair t test at every voxel. Results: (1) SPM corrected multiple comparison (Pcorrecteduncorrected<0.001): SPM derived from the images with different reconstruction method were different. The largest difference, in number and position of the activated voxels, was noticed between FBP and OSEM re- construction algorithm. Conclusions: The method of PET image reconstruction could influence the results of SPM uncorrected multiple comparison. Attention should be paid when the conclusion was drawn using SPM uncorrected multiple comparison. (authors)

  4. Brain imaging and psychotherapy: methodological considerations and practical implications.

    Science.gov (United States)

    Linden, David E J

    2008-11-01

    The development of psychotherapy has been based on psychological theories and clinical effects. However, an investigation of the neurobiological mechanisms of psychological interventions is also needed in order to improve indication and prognosis, inform the choice of parallel pharmacotherapy, provide outcome measures and potentially even aid the development of new treatment protocols. This neurobiological investigation can be informed by animal models, for example of learning and conditioning, but will essentially need the non-invasive techniques of functional neuroimaging in order to assess psychotherapy effects on patients' brains, which will be reviewed here. Most research so far has been conducted in obsessive compulsive disorder (OCD), anxiety disorders and depression. Effects in OCD were particularly exciting in that both cognitive behavioural therapy and medication with a selective serotonin inhibitor led to a reduction in blood flow in the caudate nucleus. In phobia, brief courses of behavioural therapy produced marked reductions of paralimbic responses to offensive stimuli in line with the clinical improvement. Findings in depression are less consistent, with both increases and decreases in prefrontal metabolism being reported. However, they are important in pointing to different mechanisms for the clinical effects of pharmacotherapy (more "bottom up") and psychotherapy (more "top down"). For the future it would be desirable if the findings of psychotherapy changes to brain activation patterns were confirmed in larger groups with homogenous imaging protocols. Functional imaging has already made great contributions to the understanding of the neural correlates of psychopathology. For example, evidence converges to suggest that the subgenual cingulate is crucial for mood regulation. One current clinical application of these findings is deep brain stimulation in areas highlighted by such imaging studies. I will discuss their initial application in depression

  5. Experimental characterization, comparison and image quality assessment of two ultrasound contrast agents: Optison and Definity

    Science.gov (United States)

    Hughes, Amy C.; Day, Steven W.; Linte, Cristian A.; Schwarz, Karl Q.

    2016-04-01

    Microbubble-based contrast agents are commonly used in ultrasound imaging to help differentiate the blood pool from the endocardial wall. It is essential to use an agent which produces high image intensity relative to the surrounding tissue, commonly referred to contrast effect. When exposed to ultrasound waves, microbubbles produce an intense backscatter signal in addition to the contrast produced by the fluctuating size of the microbubbles. However, over time, the microbubble concentration depletes, leading to reduced visual enhancement. The retention time associated with contrast effect varies according to the frequency and power level of the ultrasound wave, as well as the contrast agent used. The primary objective of this study was to investigate and identify the most appropriate image acquisition parameters that render optimal contrast effect for two intravenous contrast agents, Optison™ and Definity™. Several controlled in vitro experiments were conducted using an experimental apparatus that featured a perfused tissue-emulating phantom. A continuous flow of contrast agent was imaged using ultrasound at different frequencies and power levels, while a pulse wave Doppler device was used to monitor the concentration of the contrast agent solution. The contrast effect was determined based on the image intensity inside the flow pipe mimicking the blood-pool relative to the intensity of the surrounding phantom material mimicking cardiac tissue. To identify the combination of parameters that yielded optimal visualization for each contrast agent tested, the contrast effect was assessed at different microbubble concentrations and different ultrasound imaging frequencies and transmission power levels.

  6. Computed tomographical imaging of the brain in post hypoglycemic coma

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, A.; Sakamoto, T.; Kinoshita, Y.; Yokota, J.I.; Yoshioka, T.; Sugimoto, T.

    1987-07-01

    A case of post severe hypoglycemic coma was studied by sequential Computed Tomographic Imaging (CT) of the brain. The CT 1) was normal in the early stage, 2) subsequently showed a low density area, which was enhanced by the contrast medium, in the cerebral cortex and the boundary zone between the major cerebral arteries, and 3) revealed marked enhancement in the entire cortical region and hypodensity in the periventricular region in the late stage. These CT findings, representing the course of neural cell damage by severe hypoglycemia, are discussed from the pathophysiological viewpoint.

  7. Computed tomographical imaging of the brain in post hypoglycemic coma

    International Nuclear Information System (INIS)

    A case of post severe hypoglycemic coma was studied by sequential Computed Tomographic Imaging (CT) of the brain. The CT 1) was normal in the early stage, 2) subsequently showed a low density area, which was enhanced by the contrast medium, in the cerebral cortex and the boundary zone between the major cerebral arteries, and 3) revealed marked enhancement in the entire cortical region and hypodensity in the periventricular region in the late stage. These CT findings, representing the course of neural cell damage by severe hypoglycemia, are discussed from the pathophysiological viewpoint. (orig.)

  8. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    Science.gov (United States)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-07-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  9. Ultrasound contrast agent imaging: Real-time imaging of the superharmonics

    Energy Technology Data Exchange (ETDEWEB)

    Peruzzini, D.; Viti, J. [MSD lab, Department of Information Engineering, Univ of Florence, Via S.Marta, 3, 50139 Firenze (Italy); Erasmus MC, ’s-Gravendijkwal 230, Faculty Building, Ee 2302, 3015 CE Rotterdam (Netherlands); Tortoli, P. [MSD lab, Department of Information Engineering, Univ of Florence, Via S.Marta, 3, 50139 Firenze (Italy); Verweij, M. D. [Acoustical Wavefield Imaging, ImPhys, Delft Univ Technology, van der Waalsweg 8, 2628 CH Delft (Netherlands); Jong, N. de; Vos, H. J., E-mail: h.vos@erasmusmc.nl [Erasmus MC, ’s-Gravendijkwal 230, Faculty Building, Ee 2302, 3015 CE Rotterdam (Netherlands); Acoustical Wavefield Imaging, ImPhys, Delft Univ Technology, van der Waalsweg 8, 2628 CH Delft (Netherlands)

    2015-10-28

    Currently, in medical ultrasound contrast agent (UCA) imaging the second harmonic scattering of the microbubbles is regularly used. This scattering is in competition with the signal that is caused by nonlinear wave propagation in tissue. It was reported that UCA imaging based on the third or higher harmonics, i.e. “superharmonic” imaging, shows better contrast. However, the superharmonic scattering has a lower signal level compared to e.g. second harmonic signals. This study investigates the contrast-to-tissue ratio (CTR) and signal to noise ratio (SNR) of superharmonic UCA scattering in a tissue/vessel mimicking phantom using a real-time clinical scanner. Numerical simulations were performed to estimate the level of harmonics generated by the microbubbles. Data were acquired with a custom built dual-frequency cardiac phased array probe. Fundamental real-time images were produced while beam formed radiofrequency (RF) data was stored for further offline processing. The phantom consisted of a cavity filled with UCA surrounded by tissue mimicking material. The acoustic pressure in the cavity of the phantom was 110 kPa (MI = 0.11) ensuring non-destructivity of UCA. After processing of the acquired data from the phantom, the UCA-filled cavity could be clearly observed in the images, while tissue signals were suppressed at or below the noise floor. The measured CTR values were 36 dB, >38 dB, and >32 dB, for the second, third, and fourth harmonic respectively, which were in agreement with those reported earlier for preliminary contrast superharmonic imaging. The single frame SNR values (in which ‘signal’ denotes the signal level from the UCA area) were 23 dB, 18 dB, and 11 dB, respectively. This indicates that noise, and not the tissue signal, is the limiting factor for the UCA detection when using the superharmonics in nondestructive mode.

  10. Ultrasound contrast agent imaging: Real-time imaging of the superharmonics

    International Nuclear Information System (INIS)

    Currently, in medical ultrasound contrast agent (UCA) imaging the second harmonic scattering of the microbubbles is regularly used. This scattering is in competition with the signal that is caused by nonlinear wave propagation in tissue. It was reported that UCA imaging based on the third or higher harmonics, i.e. “superharmonic” imaging, shows better contrast. However, the superharmonic scattering has a lower signal level compared to e.g. second harmonic signals. This study investigates the contrast-to-tissue ratio (CTR) and signal to noise ratio (SNR) of superharmonic UCA scattering in a tissue/vessel mimicking phantom using a real-time clinical scanner. Numerical simulations were performed to estimate the level of harmonics generated by the microbubbles. Data were acquired with a custom built dual-frequency cardiac phased array probe. Fundamental real-time images were produced while beam formed radiofrequency (RF) data was stored for further offline processing. The phantom consisted of a cavity filled with UCA surrounded by tissue mimicking material. The acoustic pressure in the cavity of the phantom was 110 kPa (MI = 0.11) ensuring non-destructivity of UCA. After processing of the acquired data from the phantom, the UCA-filled cavity could be clearly observed in the images, while tissue signals were suppressed at or below the noise floor. The measured CTR values were 36 dB, >38 dB, and >32 dB, for the second, third, and fourth harmonic respectively, which were in agreement with those reported earlier for preliminary contrast superharmonic imaging. The single frame SNR values (in which ‘signal’ denotes the signal level from the UCA area) were 23 dB, 18 dB, and 11 dB, respectively. This indicates that noise, and not the tissue signal, is the limiting factor for the UCA detection when using the superharmonics in nondestructive mode

  11. Magnetic resonance imaging of post-ischemic blood-brain barrier damage with PEGylated iron oxide nanoparticles

    Science.gov (United States)

    Liu, Dong-Fang; Qian, Cheng; An, Yan-Li; Chang, Di; Ju, Sheng-Hong; Teng, Gao-Jun

    2014-11-01

    Blood-brain barrier (BBB) damage during ischemia may induce devastating consequences like cerebral edema and hemorrhagic transformation. This study presents a novel strategy for dynamically imaging of BBB damage with PEGylated supermagnetic iron oxide nanoparticles (SPIONs) as contrast agents. The employment of SPIONs as contrast agents made it possible to dynamically image the BBB permeability alterations and ischemic lesions simultaneously with T2-weighted MRI, and the monitoring could last up to 24 h with a single administration of PEGylated SPIONs in vivo. The ability of the PEGylated SPIONs to highlight BBB damage by MRI was demonstrated by the colocalization of PEGylated SPIONs with Gd-DTPA after intravenous injection of SPION-PEG/Gd-DTPA into a mouse. The immunohistochemical staining also confirmed the leakage of SPION-PEG from cerebral vessels into parenchyma. This study provides a novel and convenient route for imaging BBB alteration in the experimental ischemic stroke model.

  12. Study of suspending agents for gadolinium(III)-exchanged hectorite. An oral magnetic resonance imaging contrast agent

    International Nuclear Information System (INIS)

    Clays modified with paramagnetic ions have been shown to be effective magnetic resonance imaging contrast agents. The efficacy in part relies on the suspension of the small clay particles in aqueous solution. In this study a series of macromolecules were eveluated as suspending agents for Gd(III) ion exchanged hectorite clay in water. The room temperature relaxivities for the Gd-hectorite clays were enhanced by the addition of poly(ethylene oxide), poly(ethylene glycol), cyclodextrins, and cholic acid to aqueous suspensions. Additionally, there was no evidence of free Gd(III) in solution in the presence of these suspending agents. In contrast the combination of alginic acid or poly(sodium 4-styrenesulfonate) with the clays resulted in release of the Gd(III) into solution. Xanthan gum, which is often used as an emulsifier and stabilizer in food products, forms a viscous suspension but also reacts with free Gd(III) ions. 25 refs., 10 figs., 2 tabs

  13. Combined ultrasound and MR imaging to guide focused ultrasound therapies in the brain

    International Nuclear Information System (INIS)

    Several emerging therapies with potential for use in the brain, harness effects produced by acoustic cavitation—the interaction between ultrasound and microbubbles either generated during sonication or introduced into the vasculature. Systems developed for transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation can enable their clinical translation, but methods for real-time monitoring and control are currently lacking. Acoustic emissions produced during sonication can provide information about the location, strength and type of the microbubble oscillations within the ultrasound field, and they can be mapped in real-time using passive imaging approaches. Here, we tested whether such mapping can be achieved transcranially within a clinical brain MRgFUS system. We integrated an ultrasound imaging array into the hemisphere transducer of the MRgFUS device. Passive cavitation maps were obtained during sonications combined with a circulating microbubble agent at 20 targets in the cingulate cortex in three macaques. The maps were compared with MRI-evident tissue effects. The system successfully mapped microbubble activity during both stable and inertial cavitation, which was correlated with MRI-evident transient blood–brain barrier disruption and vascular damage, respectively. The location of this activity was coincident with the resulting tissue changes within the expected resolution limits of the system. While preliminary, these data clearly demonstrate, for the first time, that it is possible to construct maps of stable and inertial cavitation transcranially, in a large animal model, and under clinically relevant conditions. Further, these results suggest that this hybrid ultrasound/MRI approach can provide comprehensive guidance for targeted drug delivery via blood–brain barrier disruption and other emerging ultrasound treatments, facilitating their clinical translation. We anticipate that it will also prove to be an important research tool that

  14. New Dual Mode Gadolinium Nanoparticle Contrast Agent for Magnetic Resonance Imaging

    OpenAIRE

    Ghaghada, Ketan B.; Ravoori, Murali; Sabapathy, Divya; Bankson, James; Kundra, Vikas; ANNAPRAGADA, ANANTH

    2009-01-01

    Background Liposomal-based gadolinium (Gd) nanoparticles have elicited significant interest for use as blood pool and molecular magnetic resonance imaging (MRI) contrast agents. Previous generations of liposomal MR agents contained gadolinium-chelates either within the interior of liposomes (core-encapsulated gadolinium liposomes) or presented on the surface of liposomes (surface-conjugated gadolinium liposomes). We hypothesized that a liposomal agent that contained both core-encapsulated gad...

  15. Quantitative iodine-123 IMP imaging of brain perfusion in schizophrenia

    International Nuclear Information System (INIS)

    Decreased perfusion in the frontal lobes of patients with chronic schizophrenia has been reported by multiple observes using a variety of techniques. Other observers have been unable to confirm this finding using similar techniques. In this study quantitative single photon emission computed tomography brain imaging was performed using p,5n [123I]IMP in five normal subjects and ten chronically medicated patients with schizophrenia. The acquisition data were preprocessed with an image dependent Metz filter and reconstructed using a ramp filtered back projection technique. The uptake in each of 50 regions of interest in each subject was normalized to the uptake in the cerebellum. There were no significant confirmed differences in the comparable ratios of normal subjects and patients with schizophrenia even at the p = 0.15 level. Hypofrontality was not observed

  16. Serotonin transporter and dopamine transporter imaging in the canine brain

    Energy Technology Data Exchange (ETDEWEB)

    Peremans, Kathelijne [Department of Medical Imaging, Faculty of Veterinary Sciences, Ghent University, B-9000 Ghent (Belgium); Goethals, Ingeborg [Division of Nuclear Medicine, University Hospital Ghent, B-9000 Ghent (Belgium); De Vos, Filip [Laboratory of Radiopharmacy, Pharmaceutical Sciences, Ghent University, B-9000 Ghent (Belgium); Dobbeleir, A. [Department of Medical Imaging, Faculty of Veterinary Sciences, Ghent University, B-9000 Ghent (Belgium); Ham, Hamphrey [Division of Nuclear Medicine, University Hospital Ghent, B-9000 Ghent (Belgium); Van Bree, Henri [Department of Medical Imaging, Faculty of Veterinary Sciences, Ghent University, B-9000 Ghent (Belgium); Heeringen, Cees van [Department of Psychiatry and Medical Psychology, Faculty of Medical and Health Sciences, Ghent University, B-9000, Ghent (Belgium); Audenaert, Kurt [Division of Nuclear Medicine, University Hospital Ghent, B-9000 Ghent (Belgium) and Department of Psychiatry and Medical Psychology, Faculty of Medical and Health Sciences, Ghent University, B-9000, Ghent (Belgium)]. E-mail: kurt.audenaert@ugent.be

    2006-10-15

    The serotonergic and dopaminergic systems are involved in a wide range of emotional and behavioral aspects of animals and humans and are involved in many neuropsychiatric disorders. Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are designed to block the 5-HT transporter (SERT), thereby increasing the available 5-HT in the brain. Functional imaging with specific SERT and dopamine transporter (DAT) ligands contributes to the study of the SSRI-transporter interaction. First, we evaluated the feasibility of a canine model in the study of the SERT and DAT with the radioligands [{sup 123}I]-{beta}-CIT and [{sup 123}I]-FP-CIT as well as single-photon emission computed tomography imaging. Second, we studied the effect of SSRIs (sertraline, citalopram and escitalopram) on the SERT and DAT in two dogs. The position of the canine model in the study of the SERT and DAT is discussed and compared with other animal models.

  17. Serotonin transporter and dopamine transporter imaging in the canine brain

    International Nuclear Information System (INIS)

    The serotonergic and dopaminergic systems are involved in a wide range of emotional and behavioral aspects of animals and humans and are involved in many neuropsychiatric disorders. Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are designed to block the 5-HT transporter (SERT), thereby increasing the available 5-HT in the brain. Functional imaging with specific SERT and dopamine transporter (DAT) ligands contributes to the study of the SSRI-transporter interaction. First, we evaluated the feasibility of a canine model in the study of the SERT and DAT with the radioligands [123I]-β-CIT and [123I]-FP-CIT as well as single-photon emission computed tomography imaging. Second, we studied the effect of SSRIs (sertraline, citalopram and escitalopram) on the SERT and DAT in two dogs. The position of the canine model in the study of the SERT and DAT is discussed and compared with other animal models

  18. A new 3-dimensional head fixation device for brain imaging

    International Nuclear Information System (INIS)

    We have developed a new head fixation device for studies of brain function. This device was designed to immobilize subject's heads during image scanning and to precisely reproduce the head position for two different imaging modalities such as MRI and PET. The device consists of a plastic frame, a pillow filled with beads of styrene foam, and a face mask of thermoplastic resin which was originally intended for application in radiotherapy. A bridge for biting was incorporated into the mask for stable fixation. The device enables immobilization of subject's heads with good reproducibility of position at the practical level. Our results indicate that this head fixation system is useful for fixation of head during activation studies using PET. (author)

  19. Tomographic brain imaging with nucleolar detail and automatic cell counting.

    Science.gov (United States)

    Hieber, Simone E; Bikis, Christos; Khimchenko, Anna; Schweighauser, Gabriel; Hench, Jürgen; Chicherova, Natalia; Schulz, Georg; Müller, Bert

    2016-01-01

    Brain tissue evaluation is essential for gaining in-depth insight into its diseases and disorders. Imaging the human brain in three dimensions has always been a challenge on the cell level. In vivo methods lack spatial resolution, and optical microscopy has a limited penetration depth. Herein, we show that hard X-ray phase tomography can visualise a volume of up to 43 mm(3) of human post mortem or biopsy brain samples, by demonstrating the method on the cerebellum. We automatically identified 5,000 Purkinje cells with an error of less than 5% at their layer and determined the local surface density to 165 cells per mm(2) on average. Moreover, we highlight that three-dimensional data allows for the segmentation of sub-cellular structures, including dendritic tree and Purkinje cell nucleoli, without dedicated staining. The method suggests that automatic cell feature quantification of human tissues is feasible in phase tomograms obtained with isotropic resolution in a label-free manner. PMID:27581254

  20. Identification of a Common Binding Mode for Imaging Agents to Amyloid Fibrils from Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Skeby, Katrine Kirkeby; Sørensen, Jesper; Schiøtt, Birgit

    2013-01-01

    amyloid fibrils and the disease pathology. Alzheimer’s disease is very difficult to diagnose, and much research is being performed to develop noninvasive diagnostic methods, such as imaging with small-molecule agents. The interactions between amyloid fibrils and imaging agents are challenging to examine...... experimentally due to the insoluble nature of amyloid fibrils. This study uses molecular dynamics simulations to investigate the interactions between 13 aromatic amyloid imaging agents, entailing 4 different organic scaffolds, and a model of an amyloid fibril. Clustering analysis combined with free energy...... binding modes for imaging agents is proposed to originate from subtle differences in amino acid composition of the surface grooves on an amyloid fibril, resulting in fine tuning of the binding affinities for a specific amyloid fibril....

  1. In vivo pink-beam imaging and fast alignment procedure for rat brain lesion microbeam radiation therapy

    International Nuclear Information System (INIS)

    A fast 50 µm-accuracy alignment procedure has been developed for the radiosurgery of brain lesions in rats, using microbeam radiation therapy. A fast 50 µm-accuracy alignment procedure has been developed for the radiosurgery of brain lesions in rats, using microbeam radiation therapy. In vivo imaging was performed using the pink beam (35–60 keV) produced by the ID17 wiggler at the ESRF opened at 120 mm and filtered. A graphical user interface has been developed in order to define the irradiation field size and to position the target with respect to the skull structures observed in X-ray images. The method proposed here allows tremendous time saving by skipping the swap from white beam to monochromatic beam and vice versa. To validate the concept, the somatosensory cortex or thalamus of GAERS rats were irradiated under several ports using this alignment procedure. The magnetic resonance images acquired after contrast agent injection showed that the irradiations were selectively performed in these two expected brain regions. Image-guided microbeam irradiations have therefore been realised for the first time ever, and, thanks to this new development, the ID17 biomedical beamline provides a major tool allowing brain radiosurgery trials on animal patients

  2. Imaging diagnosis--magnetic resonance imaging findings in a dog with sequential brain infarction.

    Science.gov (United States)

    Major, Alison C; Caine, Abby; Rodriguez, Sue B; Cherubini, Giunio B

    2012-01-01

    An adult greyhound was evaluated on three occasions for acute, intracranial neurologic signs. Based on magnetic resonance (MR) imaging, there were T2-hyperintense and T1-hypointense, noncontrast enhancing lesions in the cerebellum, and brain stem. Using diffusion-weighted imaging (DWI), the lesions were characterized initially by restricted water diffusion. The presumptive diagnosis on each occasion was acute ischemic cerebrovascular accident leading to infarction. This allowed us to characterize the changes in appearance of infarcted neural tissue on the standard MR sequences over time, and to confirm that the DWI could be successfully used in low-field imaging. © 2012 Veterinary Radiology & Ultrasound. PMID:22731883

  3. Three modality image registration of brain SPECT/CT and MR images for quantitative analysis of dopamine transporter imaging

    Science.gov (United States)

    Yamaguchi, Yuzuho; Takeda, Yuta; Hara, Takeshi; Zhou, Xiangrong; Matsusako, Masaki; Tanaka, Yuki; Hosoya, Kazuhiko; Nihei, Tsutomu; Katafuchi, Tetsuro; Fujita, Hiroshi

    2016-03-01

    Important features in Parkinson's disease (PD) are degenerations and losses of dopamine neurons in corpus striatum. 123I-FP-CIT can visualize activities of the dopamine neurons. The activity radio of background to corpus striatum is used for diagnosis of PD and Dementia with Lewy Bodies (DLB). The specific activity can be observed in the corpus striatum on SPECT images, but the location and the shape of the corpus striatum on SPECT images only are often lost because of the low uptake. In contrast, MR images can visualize the locations of the corpus striatum. The purpose of this study was to realize a quantitative image analysis for the SPECT images by using image registration technique with brain MR images that can determine the region of corpus striatum. In this study, the image fusion technique was used to fuse SPECT and MR images by intervening CT image taken by SPECT/CT. The mutual information (MI) for image registration between CT and MR images was used for the registration. Six SPECT/CT and four MR scans of phantom materials are taken by changing the direction. As the results of the image registrations, 16 of 24 combinations were registered within 1.3mm. By applying the approach to 32 clinical SPECT/CT and MR cases, all of the cases were registered within 0.86mm. In conclusions, our registration method has a potential in superimposing MR images on SPECT images.

  4. Wearable 3-D Photoacoustic Tomography for Functional Brain Imaging in Behaving Rats

    OpenAIRE

    Tang, Jianbo; Jason E. Coleman; DAI, XIANJIN; Jiang, Huabei

    2016-01-01

    Understanding the relationship between brain function and behavior remains a major challenge in neuroscience. Photoacoustic tomography (PAT) is an emerging technique that allows for noninvasive in vivo brain imaging at micrometer-millisecond spatiotemporal resolution. In this article, a novel, miniaturized 3D wearable PAT (3D-wPAT) technique is described for brain imaging in behaving rats. 3D-wPAT has three layers of fully functional acoustic transducer arrays. Phantom imaging experiments rev...

  5. Noninvasive, in vivo imaging of the mouse brain using photoacoustic microscopy

    OpenAIRE

    Stein, Erich W.; Maslov, Konstantin; Wang, Lihong V.

    2009-01-01

    Noninvasive, high resolution imaging of mouse brain activity is poised to provide clinically translatable insights into human neurological disease progression. Toward noninvasive imaging of brain activity through the hemodynamic response, the dark-field photoacoustic microscopy (PAM) technique was enhanced to image the cortex vasculature of the mouse brain in vivo using endogenous hemoglobin contrast. Specifically, the PAM system was redesigned to efficiently collect photoacoustic waves origi...

  6. Kit for preparing Tc (III)-99m myocardial imaging agents that are effective in humans

    International Nuclear Information System (INIS)

    This patent describes a myocardial imaging agent for humans that is a technetium (III) complex ligated in the planar positions by a tetradenate ligand such as (acac)2en and in the axial positions by an ether containing phosphine ligand such as tris(3-methoxy-1-propyl)-phosphine. The agent exhibits extremely rapid blood clearance after injection into a human and has a sufficiently high heart/liver and heart/lung ratios to provide effective myocardial images

  7. Polypyrrole Hollow Microspheres as Echogenic Photothermal Agent for Ultrasound Imaging Guided Tumor Ablation

    OpenAIRE

    Zha, Zhengbao; Wang, Jinrui; Qu, Enze; Zhang, Shuhai; Jin, Yushen; Wang, Shumin; Dai, Zhifei

    2013-01-01

    Ultrasound (US) imaging provides a valuable opportunity to administer photothermal therapy (PTT) of cancer with real-time guidance to ensure proper targeting, but only a few theranostic agents were developed by physically grafting near infrared (NIR)-absorbing inorganic nanomaterials to ready-made ultrasound contrast agents (UCAs) for US imaging guided PTT. In this paper, NIR absorbing hollow microspheres were generated from polypyrrole merely using a facile one-step microemulsion method. It ...

  8. Medical imaging environment : a multi-agent system for a computer clustering based multi-display

    OpenAIRE

    Alves, Victor; Marreiros, Filipe; Nelas, Luís; Heymer, Mourvlise; Neves, José

    2007-01-01

    This paper presents a solution to minimize a problem that normally arises from the huge amount of images that a radiologist usually has to interpret. A multi-agent system that implements a multi-display for medical imaging based on computer clustering of normal personal computers is therefore described, as well as the multi-agent architecture that caters for the system evolution. An evaluation study was performed and its results are presented.

  9. Nanoparticle-Based Systems for T1-Weighted Magnetic Resonance Imaging Contrast Agents

    Directory of Open Access Journals (Sweden)

    Dianjun Liu

    2013-05-01

    Full Text Available Because magnetic resonance imaging (MRI contrast agents play a vital role in diagnosing diseases, demand for new MRI contrast agents, with an enhanced sensitivity and advanced functionalities, is very high. During the past decade, various inorganic nanoparticles have been used as MRI contrast agents due to their unique properties, such as large surface area, easy surface functionalization, excellent contrasting effect, and other size-dependent properties. This review provides an overview of recent progress in the development of nanoparticle-based T1-weighted MRI contrast agents. The chemical synthesis of the nanoparticle-based contrast agents and their potential applications were discussed and summarized. In addition, the recent development in nanoparticle-based multimodal contrast agents including T1-weighted MRI/computed X-ray tomography (CT and T1-weighted MRI/optical were also described, since nanoparticles may curtail the shortcomings of single mode contrast agents in diagnostic and clinical settings by synergistically incorporating functionality.

  10. In vivo imaging of tau in the brain

    International Nuclear Information System (INIS)

    The importance of early detection of Alzheimer's disease has increased, and the research on diagnosing brain imaging for senile plaques and neurofibrially tangles has been advancing. As a PET FDG for neurofibrially tangles, we developed PBB3 that would bond with agglutinative tau protein. Tau regulates stabilization of microtubules in neurons, and in tauopathy, fibrillized tau protein inclusion bodies are observed. For PET scanning of β-amyloid in senile plaques, Pittsburgh Compound B (PiB) has been employed. In developing a PET FDG for tau, we designed a compound by changing the basic skeletal length of PiB molecule and selected PBB3 by assessing the fibroid selectivity of tau in dementia-model mice and human brain tissue slices. As a result of comparison between the PET images of [11C] PiB and those of [11C] PBB3 for the patients of Alzheimer's disease and the healthy elderly, it was found that PBB3 labeled tauopathy, while PiB labeled senile plaques, each on a selective basis. As in corticobasal-degenerated patients [11C ] PBB3 accumulated, but [11C ] PiB did not accumulate, PBB3 was found to be effective in diagnosis for tauopathy of non-Alzheimer's disease having no accumulation of senile plaques. (I.H.)

  11. Diffusion-weighted imaging in normal fetal brain maturation

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, J.F. [University Children' s Hospital UKBB, Department of Pediatric Radiology, Basel (Switzerland); Confort-Gouny, S.; Le Fur, Y.; Viout, P.; Cozzone, P. [UMR-CNRS 6612, Faculte de Medecine, Universite de la Mediterranee, Centre de Resonance Magnetique Biologique et Medicale, Marseille (France); Bennathan, M.; Chapon, F.; Fogliarini, C.; Girard, N. [Universite de la Mediterranee, Department of Neuroradiology AP-HM Timone, Marseille (France)

    2007-09-15

    Diffusion-weighted imaging (DWI) provides information about tissue maturation not seen on conventional magnetic resonance imaging. The aim of this study is to analyze the evolution over time of the apparent diffusion coefficient (ADC) of normal fetal brain in utero. DWI was performed on 78 fetuses, ranging from 23 to 37 gestational weeks (GW). All children showed at follow-up a normal neurological evaluation. ADC values were obtained in the deep white matter (DWM) of the centrum semiovale, the frontal, parietal, occipital and temporal lobe, in the cerebellar hemisphere, the brainstem, the basal ganglia (BG) and the thalamus. Mean ADC values in supratentorial DWM areas (1.68 {+-} 0.05 mm{sup 2}/s) were higher compared with the cerebellar hemisphere (1.25 {+-} 0.06 mm{sup 2}/s) and lowest in the pons (1.11 {+-} 0.05 mm{sup 2}/s). Thalamus and BG showed intermediate values (1.25 {+-} 0.04 mm{sup 2}/s). Brainstem, cerebellar hemisphere and thalamus showed a linear negative correlation with gestational age. Supratentorial areas revealed an increase in ADC values, followed by a decrease after the 30th GW. This study provides a normative data set that allows insights in the normal fetal brain maturation in utero, which has not yet been observed in previous studies on premature babies. (orig.)

  12. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging.

    Science.gov (United States)

    Yan, Chao-Gan; Wang, Xin-Di; Zuo, Xi-Nian; Zang, Yu-Feng

    2016-07-01

    Brain imaging efforts are being increasingly devoted to decode the functioning of the human brain. Among neuroimaging techniques, resting-state fMRI (R-fMRI) is currently expanding exponentially. Beyond the general neuroimaging analysis packages (e.g., SPM, AFNI and FSL), REST and DPARSF were developed to meet the increasing need of user-friendly toolboxes for R-fMRI data processing. To address recently identified methodological challenges of R-fMRI, we introduce the newly developed toolbox, DPABI, which was evolved from REST and DPARSF. DPABI incorporates recent research advances on head motion control and measurement standardization, thus allowing users to evaluate results using stringent control strategies. DPABI also emphasizes test-retest reliability and quality control of data processing. Furthermore, DPABI provides a user-friendly pipeline analysis toolkit for rat/monkey R-fMRI data analysis to reflect the rapid advances in animal imaging. In addition, DPABI includes preprocessing modules for task-based fMRI, voxel-based morphometry analysis, statistical analysis and results viewing. DPABI is designed to make data analysis require fewer manual operations, be less time-consuming, have a lower skill requirement, a smaller risk of inadvertent mistakes, and be more comparable across studies. We anticipate this open-source toolbox will assist novices and expert users alike and continue to support advancing R-fMRI methodology and its application to clinical translational studies. PMID:27075850

  13. Statistical shape model-based segmentation of brain MRI images.

    Science.gov (United States)

    Bailleul, Jonathan; Ruan, Su; Constans, Jean-Marc

    2007-01-01

    We propose a segmentation method that automatically delineates structures contours from 3D brain MRI images using a statistical shape model. We automatically build this 3D Point Distribution Model (PDM) in applying a Minimum Description Length (MDL) annotation to a training set of shapes, obtained by registration of a 3D anatomical atlas over a set of patients brain MRIs. Delineation of any structure from a new MRI image is first initialized by such registration. Then, delineation is achieved in iterating two consecutive steps until the 3D contour reaches idempotence. The first step consists in applying an intensity model to the latest shape position so as to formulate a closer guess: our model requires far less priors than standard model in aiming at direct interpretation rather than compliance to learned contexts. The second step consists in enforcing shape constraints onto previous guess so as to remove all bias induced by artifacts or low contrast on current MRI. For this, we infer the closest shape instance from the PDM shape space using a new estimation method which accuracy is significantly improved by a huge increase in the model resolution and by a depth-search in the parameter space. The delineation results we obtained are very encouraging and show the interest of the proposed framework. PMID:18003193

  14. Dynamic magnetic resonance inverse imaging of human brain function.

    Science.gov (United States)

    Lin, Fa-Hsuan; Wald, Lawrence L; Ahlfors, Seppo P; Hämäläinen, Matti S; Kwong, Kenneth K; Belliveau, John W

    2006-10-01

    MRI is widely used for noninvasive hemodynamic-based functional brain imaging. In traditional spatial encoding, however, gradient switching limits the temporal resolution, which makes it difficult to unambiguously identify possible fast nonhemodynamic changes. In this paper we propose a novel reconstruction approach, called dynamic inverse imaging (InI), that is capable of providing millisecond temporal resolution when highly parallel detection is used. To achieve an order-of-magnitude speedup in generating time-resolved contrast estimates and dynamic statistical parametric maps (dSPMs), the spatial information is derived from an array of detectors rather than by time-consuming gradient-encoding methods. The InI approach was inspired by electroencephalography (EEG) and magnetoencephalography (MEG) source localization techniques. Dynamic MR InI was evaluated by means of numerical simulations. InI was also applied to measure BOLD hemodynamic time curves at 20-ms temporal resolution in a visual stimulation experiment using a 90-channel head array. InI is expected to improve the time resolution of MRI and provide increased flexibility in the trade-off between spatial and temporal resolution for studies of dynamic activation patterns in the human brain. PMID:16964616

  15. PET imaging reveals brain functional changes in internet gaming disorder

    International Nuclear Information System (INIS)

    Internet gaming disorder is an increasing problem worldwide, resulting in critical academic, social, and occupational impairment. However, the neurobiological mechanism of internet gaming disorder remains unknown. The aim of this study is to assess brain dopamine D2 (D2)/Serotonin 2A (5-HT2A) receptor function and glucose metabolism in the same subjects by positron emission tomography (PET) imaging approach, and investigate whether the correlation exists between D2 receptor and glucose metabolism. Twelve drug-naive adult males who met criteria for internet gaming disorder and 14 matched controls were studied with PET and 11C-N-methylspiperone (11C-NMSP) to assess the availability of D2/5-HT2A receptors and with 18F-fluoro-D-glucose (18F-FDG) to assess regional brain glucose metabolism, a marker of brain function. 11C-NMSP and 18F-FDG PET imaging data were acquired in the same individuals under both resting and internet gaming task states. In internet gaming disorder subjects, a significant decrease in glucose metabolism was observed in the prefrontal, temporal, and limbic systems. Dysregulation of D2 receptors was observed in the striatum, and was correlated to years of overuse. A low level of D2 receptors in the striatum was significantly associated with decreased glucose metabolism in the orbitofrontal cortex. For the first time, we report the evidence that D2 receptor level is significantly associated with glucose metabolism in the same individuals with internet gaming disorder, which indicates that D2/5-HT2A receptor-mediated dysregulation of the orbitofrontal cortex could underlie a mechanism for loss of control and compulsive behavior in internet gaming disorder subjects. (orig.)

  16. Imaging neuroreceptors in the human brain in health and disease

    International Nuclear Information System (INIS)

    For nearly a century it has been known that chemical activity accompanies mental activity, but only recently has it been possible to begin to examine its exact nature. Positron-emitting radioactive tracers have made it possible to study the chemistry of the human brain in health and disease, using chiefly cyclotron-produced radionuclides, carbon-11, fluorine-18 and oxygen-15. It is now well established that measurable increases in regional cerebral blood flow, and glucose and oxygen metabolism accompany the mental functions of perception, cognition, emotion and motion. On 25 May 1983 the first imaging of a neuroreceptor in the human brain was accomplished with carbon-11 N-methyl spiperone, a ligand that binds preferentially to dopamine-2 receptors, 80% of which are located in the caudate nucleus and putamen. Quantitative imaging of serotonin-2, opiate, benzodiazapine and muscarinic cholinergic receptors has subsequently been accomplished. In studies of normal men and women, it has been found that dopamine and serotonin receptor activity decreases dramatically with age, such a decrease being more pronounced in men than in women and greater in the case of dopamine-2 receptors than in serotonin-2 receptors. Preliminary studies of patients with neuropsychiatric disorders suggest that dopamine-2 receptor activity is diminished in the caudate nucleus of patients with Huntington's disease. Positron tomography permits a quantitative assay of picomolar quantities of neuroreceptors within the living human brain. Studies of patients with Parkinson's disease, Alzheimer's disease, depression, anxiety, schizophrenia, acute and chronic pain states and drug addiction are now in progress. (author)

  17. PET imaging reveals brain functional changes in internet gaming disorder

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Mei; Zhang, Ying; Du, Fenglei; Hou, Haifeng; Chao, Fangfang; Zhang, Hong [The Second Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); Chen, Qiaozhen [The Second Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Psychiatry, Hangzhou (China)

    2014-07-15

    Internet gaming disorder is an increasing problem worldwide, resulting in critical academic, social, and occupational impairment. However, the neurobiological mechanism of internet gaming disorder remains unknown. The aim of this study is to assess brain dopamine D{sub 2} (D{sub 2})/Serotonin 2A (5-HT{sub 2A}) receptor function and glucose metabolism in the same subjects by positron emission tomography (PET) imaging approach, and investigate whether the correlation exists between D{sub 2} receptor and glucose metabolism. Twelve drug-naive adult males who met criteria for internet gaming disorder and 14 matched controls were studied with PET and {sup 11}C-N-methylspiperone ({sup 11}C-NMSP) to assess the availability of D{sub 2}/5-HT{sub 2A} receptors and with {sup 18}F-fluoro-D-glucose ({sup 18}F-FDG) to assess regional brain glucose metabolism, a marker of brain function. {sup 11}C-NMSP and {sup 18}F-FDG PET imaging data were acquired in the same individuals under both resting and internet gaming task states. In internet gaming disorder subjects, a significant decrease in glucose metabolism was observed in the prefrontal, temporal, and limbic systems. Dysregulation of D{sub 2} receptors was observed in the striatum, and was correlated to years of overuse. A low level of D{sub 2} receptors in the striatum was significantly associated with decreased glucose metabolism in the orbitofrontal cortex. For the first time, we report the evidence that D{sub 2} receptor level is significantly associated with glucose metabolism in the same individuals with internet gaming disorder, which indicates that D{sub 2}/5-HT{sub 2A} receptor-mediated dysregulation of the orbitofrontal cortex could underlie a mechanism for loss of control and compulsive behavior in internet gaming disorder subjects. (orig.)

  18. Rapid-releasing of HI-6 via brain-targeted mesoporous silica nanoparticles for nerve agent detoxification

    Science.gov (United States)

    Yang, Jun; Fan, Lixue; Wang, Feijian; Luo, Yuan; Sui, Xin; Li, Wanhua; Zhang, Xiaohong; Wang, Yongan

    2016-05-01

    The toxic nerve agent (NA) soman is the most toxic artificially synthesized compound that can rapidly penetrate into the brain and irreversibly inhibit acetylcholinesterase (AChE) activity, leading to immediate death. However, there are currently few brain-targeted nanodrugs that can treat acute chemical brain poisoning owing to the limited drug-releasing speed. The present study investigated the effectiveness of a nanodrug against NA toxicity that has high blood-brain barrier penetration and is capable of rapid drug release. Transferrin-modified mesoporous silica nanoparticles (TF-MSNs) were conjugated with the known AChE reactivator HI-6. This nanodrug rapidly penetrated the blood-brain barrier in zebrafish and mice and restored cerebral AChE activity via the released HI-6, preventing the brain damage caused by soman poisoning and increasing the survival rate in mice. Furthermore, there was no toxicity associated with the MSNs in mice or rats. These results demonstrate that TF-MSNs loaded with HI-6 represent the most effective antidote against NA poisoning by soman reported to date, and suggest that MSNs are a safe alternative to conventional drugs and an optimal nanocarrier for treating brain poisoning, which requires acute pulse cerebral administration.The toxic nerve agent (NA) soman is the most toxic artificially synthesized compound that can rapidly penetrate into the brain and irreversibly inhibit acetylcholinesterase (AChE) activity, leading to immediate death. However, there are currently few brain-targeted nanodrugs that can treat acute chemical brain poisoning owing to the limited drug-releasing speed. The present study investigated the effectiveness of a nanodrug against NA toxicity that has high blood-brain barrier penetration and is capable of rapid drug release. Transferrin-modified mesoporous silica nanoparticles (TF-MSNs) were conjugated with the known AChE reactivator HI-6. This nanodrug rapidly penetrated the blood-brain barrier in zebrafish and

  19. Fetal magnetic resonance imaging of the brain: technical considerations and normal brain development

    International Nuclear Information System (INIS)

    Fetal MRI examines non-invasively the unborn fetus. Ultrafast MRI sequences effectively suppress fetal motion. Multiple case reports and studies have shown that fetal MRI is particularly helpful in the evaluation of the central nervous system. The high contrast-to-noise ratio, the high spatial resolution, the multiplanar capabilities, the large field of view and the simultaneous visualisation of fetal and maternal structures have proven to be advantageous. Fetal MRI is particularly helpful in the evaluation of the normal and pathological development of the brain. Despite the fact that no side effects have been reported or are to be expected, the use of MRI during pregnancy is still limited to the second and third trimester of pregnancy. Magnetic resonance imaging contrast media are not to be used as it passes the placenta. Ultrasound remains the primary screening modality for fetal pathology; fetal MRI can serve as an adjunct or second-line imaging modality. (orig.)

  20. Distinct Regions of Right Temporal Cortex Are Associated with Biological and Human-Agent Motion: Functional Magnetic Resonance Imaging and Neuropsychological Evidence

    OpenAIRE

    Han, Zaizhu; Bi, Yanchao; Chen, Jing; Chen, Quanjing; He, Yong; Caramazza, Alfonso

    2013-01-01

    In human lateral temporal cortex, some regions show specific sensitivity to human motion. Here we examine whether such effects reflect a general biological-nonbiological organizational principle or a process specific to human-agent processing by comparing processing of human, animal, and tool motion in a functional magnetic resonance imaging (fMRI) experiment with healthy participants and a voxel-based lesion-symptom mapping (VLSM) study of patients with brain damage (77 stroke patients). The...

  1. A quantitative MRI method for imaging blood-brain barrier leakage in experimental traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Blood-brain barrier (BBB disruption is common following traumatic brain injury (TBI. Dynamic contrast enhanced (DCE MRI can longitudinally measure the transport coefficient Ktrans which reflects BBB permeability. Ktrans measurements however are not widely used in TBI research because it is generally considered to be noisy and possesses low spatial resolution. We improved spatiotemporal resolution and signal sensitivity of Ktrans MRI in rats by using a high-sensitivity surface transceiver coil. To overcome the signal drop off profile of the surface coil, a pre-scan module was used to map the flip angle (B1 field and magnetization (M0 distributions. A series of T1-weighted gradient echo images were acquired and fitted to the extended Kety model with reversible or irreversible leakage, and the best model was selected using F-statistics. We applied this method to study the rat brain one hour following controlled cortical impact (mild to moderate TBI, and observed clear depiction of the BBB damage around the impact regions, which matched that outlined by Evans Blue extravasation. Unlike the relatively uniform T2 contrast showing cerebral edema, Ktrans shows a pronounced heterogeneous spatial profile in and around the impact regions, displaying a nonlinear relationship with T2. This improved Ktrans MRI method is also compatible with the use of high-sensitivity surface coil and the high-contrast two-coil arterial spin-labeling method for cerebral blood flow measurement, enabling more comprehensive investigation of the pathophysiology in TBI.

  2. Functional brain imaging study on brain processes involved in visual awareness

    International Nuclear Information System (INIS)

    Recently, there has been great interest in visual awareness because it is thought that it may provide valuable information in understanding aspects of consciousness. An important but still controversial issue is what region in the brain is involved in visual awareness. When viewing ambiguous figures, observers can be aware of only one of multiple competing percepts at any given moment, but experience spontaneous alternations among the percepts over time. This phenomenon is known as multistable perceptions and thought to be essential in understanding the brain processes involved in visual awareness. We used functional magnetic resonance imaging to investigate the brain activities associated with multistable perceptions. Two separate experiments were performed based on two different multistable phenomena known as binocular rivalry and perceptions of ambiguous figures. Significant differential activations in the parietal and prefrontal areas were commonly observed under multistable conditions compared to monostable control conditions in the two separate experiments. These findings suggest that neural processes in the parietal and prefrontal areas may be involved in perceptual alternations in situations involving multistable phenomena. (author)

  3. Pediatric brain stem gliomas: Comparison of evaluation by CT and MR imaging

    International Nuclear Information System (INIS)

    This study is a direct comparison of the role of CT and MR imaging in the pretreatment and posttreatment evaluation of pediatric brain-stem gliomas. Thirty-four patients with presumed brain-stem gliomas were imaged by both CT and MR over the past 53 months. Twenty-two males and 12 females ranged in age from 3 to 17 years. Fifteen patients had tumor confirmed by biopsy. Thirteen children with nonneoplastic brain-stem lesions were imaged. MR proved superior to CT in both the pretreatment and posttreatment evaluation of patients with brain-stem gliomas. Pathologic correlation to the images is made in selected cases

  4. SU-E-QI-21: Iodinated Contrast Agent Time Course In Human Brain Metastasis: A Study For Stereotactic Synchrotron Radiotherapy Clinical Trials

    Energy Technology Data Exchange (ETDEWEB)

    Obeid, L; Esteve, F; Adam, J [Grenoble Institut des Neurosciences, La Tronche, Isere (France); Tessier, A; Balosso, J [Centre Hospitalier Universitaire, La Tronche, Isere (France)

    2014-06-15

    Purpose: Synchrotron stereotactic radiotherapy (SSRT) is an innovative treatment combining the selective accumulation of heavy elements in tumors with stereotactic irradiations using monochromatic medium energy x-rays from a synchrotron source. Phase I/II clinical trials on brain metastasis are underway using venous infusion of iodinated contrast agents. The radiation dose enhancement depends on the amount of iodine in the tumor and its time course. In the present study, the reproducibility of iodine concentrations between the CT planning scan day (Day 0) and the treatment day (Day 10) was assessed in order to predict dose errors. Methods: For each of days 0 and 10, three patients received a biphasic intravenous injection of iodinated contrast agent (40 ml, 4 ml/s, followed by 160 ml, 0.5 ml/s) in order to ensure stable intra-tumoral amounts of iodine during the treatment. Two volumetric CT scans (before and after iodine injection) and a multi-slice dynamic CT of the brain were performed using conventional radiotherapy CT (Day 0) or quantitative synchrotron radiation CT (Day 10). A 3D rigid registration was processed between images. The absolute and relative differences of absolute iodine concentrations and their corresponding dose errors were evaluated in the GTV and PTV used for treatment planning. Results: The differences in iodine concentrations remained within the standard deviation limits. The 3D absolute differences followed a normal distribution centered at zero mg/ml with a variance (∼1 mg/ml) which is related to the image noise. Conclusion: The results suggest that dose errors depend only on the image noise. This study shows that stable amounts of iodine are achievable in brain metastasis for SSRT treatment in a 10 days interval.

  5. SU-E-QI-21: Iodinated Contrast Agent Time Course In Human Brain Metastasis: A Study For Stereotactic Synchrotron Radiotherapy Clinical Trials

    International Nuclear Information System (INIS)

    Purpose: Synchrotron stereotactic radiotherapy (SSRT) is an innovative treatment combining the selective accumulation of heavy elements in tumors with stereotactic irradiations using monochromatic medium energy x-rays from a synchrotron source. Phase I/II clinical trials on brain metastasis are underway using venous infusion of iodinated contrast agents. The radiation dose enhancement depends on the amount of iodine in the tumor and its time course. In the present study, the reproducibility of iodine concentrations between the CT planning scan day (Day 0) and the treatment day (Day 10) was assessed in order to predict dose errors. Methods: For each of days 0 and 10, three patients received a biphasic intravenous injection of iodinated contrast agent (40 ml, 4 ml/s, followed by 160 ml, 0.5 ml/s) in order to ensure stable intra-tumoral amounts of iodine during the treatment. Two volumetric CT scans (before and after iodine injection) and a multi-slice dynamic CT of the brain were performed using conventional radiotherapy CT (Day 0) or quantitative synchrotron radiation CT (Day 10). A 3D rigid registration was processed between images. The absolute and relative differences of absolute iodine concentrations and their corresponding dose errors were evaluated in the GTV and PTV used for treatment planning. Results: The differences in iodine concentrations remained within the standard deviation limits. The 3D absolute differences followed a normal distribution centered at zero mg/ml with a variance (∼1 mg/ml) which is related to the image noise. Conclusion: The results suggest that dose errors depend only on the image noise. This study shows that stable amounts of iodine are achievable in brain metastasis for SSRT treatment in a 10 days interval

  6. Brain MR imaging finding in patients with central vertigo

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chun Keun; Kim, Sang Joon; Kim, You Me; Cha, Min Jung; Lee, Young Seok; Kim, Jae Il; Lee, Geun Ho; Rhee, Chung Koo; Park, Hyun Min [Dankook Univ. College of Medicine, Chonan (Korea, Republic of)

    1998-11-01

    To investigate brain lesions and their locations in patients with central vertigo, as seen on MR imaging. We retrospectively reviewed MR images of 85 patients with central type vertigo diagnosed on the basis of clinical symptoms and vestibular function test(VFT), and analyzed lesions fand their locations. Those located along the known central vestibular pathway were included in our study. In 29 of 85 patients(34%), lesions considered to be associated with central vertigo were detected on MR imaging. These included infarction(18 patients), hemorrhage(5), tumor(2), cavernous angioma(1), cerebellopontine angle cyst(1), tuberous sclerosis(1) and olivopontocerebellar atrophy (1);they were located in the parietal lobe(6 patients), the lateral medulla(5), the pons(5), the middle cerebellar peduncle(4), the corona radiata(3), and the cerebellar vermis(3). Thirty-eight cases showed high signal intensity lesions in deep cerebral matter, the basal ganglia, and pons but these were considered to be unrelated to central vertigo. MR imaging could be a useful tool for the evaluation of patients with central vertigo.=20.

  7. Superimposition of MR angiography and three dimensional radionuclide brain perfusion image with personal computer

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Jinsaku; Taki, Suzuka; Tanada, Kimikazu (Tonami General Hospital, Toyama (Japan))

    1994-11-01

    To investigate the correlation of arterial obstruction with brain perfusion, MR angiography (MRA) and three dimensional (3D) radionuclide brain perfusion image were superimposed. Eleven cases with intracranial artery obstructive patients were studied. Three dimensional brain perfusion images were generated based on the ray-tracing method. Superimposition of MRA on to 3D brain perfusion image was performed on a personal computer. Reconstructing time for 3D image was about 15 minutes for each patient, Superimposing time was about 5 minutes for each image. Correlation of arterial obstruction with decrease in brain perfusion was demonstrated clearly by superimposed image. With a personal computer, it was possible to produce clinically useful synthesized images with relatively short time and conveniently. (author).

  8. Optimizing brain tumor resection. Midfield interventional MR imaging.

    Science.gov (United States)

    Alexander, E

    2001-11-01

    The development of the intraoperative MR imager represents an important example of creative vision and interdisciplinary teamwork. The result is a remarkable tool for neurosurgical applications. MRT allows surgical manipulation under direct visualization of the intracranial contents through the eye of the surgeon and through the volumetric images of the MR imaging system. This technology can be applied to cranial and spinal cases, and forseeably can encompass application to the entire gamut of neurosurgical efforts. The author's experience has been that this device is easy and comfortable for the surgeon to use. Image acquisition, giving views in the plane of choice, lasts no more than 2 to 60 seconds (depending on the imaging method), and does not increase the duration of a given procedure substantially. The author believes that the information received through intraoperative MR imaging scanning ultimately will contribute to decreasing the duration of surgery. Future possibilities include combining the intraoperative MR imager with other technologies, such as the endoscope, focused ultrasound, robotics, and the evaluation of brain function intraoperatively. The development of the intraoperative MR imager marks a significant advance in neurosurgery, an advance that will revolutionize intraoperative visualization as fully as the operating microscope. The combination of intraoperative visualization and precise surgical navigation is unparalleled, and its enhancement of surgical applications will be widespread. Considering the remarkable potential of the intraoperative MR imager for neurosurgical applications, optimal magnet design, image quality, and navigational methods are necessary to capitalize on the advantages of this revolutionary tool. The intraoperative MR imaging system that the author's team has developed and used has combined these features, and allows the performance of open surgical procedures without the need of patient or magnet repositioning. By

  9. Magnetic Resonance Imaging with Hyperpolarized 13C Contrast Agents

    Science.gov (United States)

    Gordon, Jeremy W.

    Hyperpolarized 13C substrates offer the potential to non-invasively image metabolism and enzymatic activity. However, hyperpolarization introduces a number of difficulties, and imaging is hampered by non-equilibrium magnetization and the need for spectral encoding. There is therefore a need for fast and RF efficient spectral imaging techniques. This work presents a number of new methods that can be used to improve polarization, increase RF efficiency and improve modeling accuracy in hyperpolarized 13C experiments. In particular, a novel encoding and reconstruction algorithm is presented that can generate spatially and spectrally resolved images with a single RF excitation and echo time. This reconstruction framework increases data acquisition efficiency, enabling accelerated acquisition speed, preserved polarization, and/or improved temporal or spatial resolution. Overall, the methods enumerated in this dissertation have the potential to improve modeling accuracy and to mitigate the conventional tradeoffs between SNR, spatial resolution, and temporal resolution that govern image quality in hyperpolarized 13C experiments.

  10. Brain Basics

    Medline Plus

    Full Text Available ... Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies show that brain growth in children with autism ...

  11. Magnetic resonance imaging of brain inflammation using microparticles of iron oxide.

    Science.gov (United States)

    McAteer, Martina A; von Zur Muhlen, Constantin; Anthony, Daniel C; Sibson, Nicola R; Choudhury, Robin P

    2011-01-01

    For molecular magnetic resonance imaging (mMRI), microparticles of iron oxide (MPIO) create potent hypointense contrast effects that extend a distance far exceeding their physical size. The potency of the contrast effects derive from their high iron content and are significantly greater than that of ultra-small particles of iron oxide (USPIO), commonly used for MRI. Due to their size and incompressible nature, MPIO are less susceptible to nonspecific vascular egress or uptake by endothelial cells. Therefore, MPIO may be useful contrast agents for detection of endovascular molecular targets by MRI. This Chapter describes the methodology of a novel, functional MPIO probe targeting vascular cell adhesion molecule-1 (VCAM-1), for detection of acute brain inflammation in vivo, at a time when pathology is undetectable by conventional MRI. Protocols are included for conjugation of MPIO to mouse monoclonal antibodies against VCAM-1 (VCAM-MPIO), the validation of VCAM-MPIO binding specificity to activated endothelial cells in vitro, and the application of VCAM-MPIO for in vivo targeted MRI of acute brain inflammation in mice. This functional molecular imaging tool may potentially accelerate accurate diagnosis of early cerebral vascular inflammation by MRI, and guide specific therapy. PMID:21153376

  12. Progress in clinical research and application of resting state functional brain imaging

    International Nuclear Information System (INIS)

    Resting state functional brain imaging experimental design is free of stimulus task and offers various parametric maps through different data-driven post processing methods with endogenous BOLD signal changes as the source of imaging. Mechanism of resting state brain activities could be extensively studied with improved patient compliance and clinical application compared with task related functional brain imaging. Also resting state functional brain imaging can be used as a method of data acquisition, with implicit neuronal activity as a kind of experimental design, to reveal characteristic brain activities of epileptic patient. Even resting state functional brain imaging data processing method can be used to analyze task related functional MRI data, opening new horizons of task related functional MRI study. (authors)

  13. Tumor imaging with novel radiogallium (67/68Ga) labeled agents

    Science.gov (United States)

    Kulkarni, P. V.; Antich, P. P.; Constantinescu, A.; Ranney, D. F.; Fernando, J. L.; Xiong, R.; Oz, O.; Parkey, R. W.

    1997-02-01

    Gallium-67 (t1/2: 78 h) has played an important role in tumor imaging. It is produced in a cyclotron and is commercially available for routine clinical use. 68Ga (t1/2: 68 min), a positron emitter, suitable for positron emission tomographic (PET) imaging, is obtained from a generator with long lived parent 68Ge (t1/2: 288 d). Radiogallium has been used mostly, as gallium citrate in imaging studies. Recently, receptor specific agents labeled with gallium have been developed. These include, agents to image somatostatin and folate receptors. We have shown that a new class of agents based on glycosaminoglycoans (GLYCOS) target a variety of tumors. Gallium labeled deferroxamine (DF) bound to sulfated glycosaminoglycans has the ability to rapidly target and permeate a wide variety of solid animal tumors and also undergo rapid blood clearance almost exclusively by the renal route. We have been able to image (within 5 min to 1 hr), prostate adenocarcinoma (AT-1 tumor) grown in surgically prepared pedicles of Copenhagen male rats and breast tumor in pedicles of Fisher female rats. 67Ga labeled agent was used in single photon imaging mode and 68Ga labeled agent was used in PET mode with a small animal PET imaging device built in our laboratory with plastic scintillating optical fibers.

  14. Functional MR imaging of working memory in the human brain

    International Nuclear Information System (INIS)

    In order to investigate the functional brain anatomy associated with verbal and visual working memory, functional magnetic resonance imaging was performed. In ten normal right handed subjects, functional MR images were obtained using a 1.5-T MR scanner and the EPI BOLD technique. An item recognition task was used for stimulation, and during the activation period of the verbal working memory task, consonant letters were used. During the activation period of the visual working memory task, symbols or diagrams were employed instead of letters. For the post-processing of images, the SPM program was used, with the threshold of significance set at p < .001. We assessed activated brain areas during the two stimulation tasks and compared the activated regions between the two tasks. The prefrontal cortex and secondary visual cortex were activated bilaterally by both verbal and visual working memory tasks, and the patterns of activated signals were similar in both tasks. The superior parietal cortex was also activated by both tasks, with lateralization to the left in the verbal task, and bilaterally without lateralization in the visual task. The inferior frontal cortex, inferior parietal cortex and temporal gyrus were activated exclusively by the verbal working memory task, predominantly in the left hemisphere. The prefrontal cortex is activated by two stimulation tasks, and this is related to the function of the central executive. The language areas activated by the verbal working memory task may be a function of the phonological loop. Bilateral prefrontal and superior parietal cortices activated by the visual working memory task may be related to the visual maintenance of objects, representing visual working memory

  15. Optimising imaging parameters for post mortem MR imaging of the human brain

    International Nuclear Information System (INIS)

    MR imaging of post mortem brains has the potential to yield volumetric information and define the extent of structural changes prior to pathological examination. Although standard T2-weighted clinical imaging sequences have been used for the examination of formalin-fixed brains, these protocols may not yield optimum contrast. We examined the effect of varying durations of formalin fixation on the transverse relaxation time (T2) and the tissue spin density. Three post mortem brains were examined weekly during formalin fixation from the unfixed state to 35 days fixation. Standard MR spin-echo imaging was used at 5 echo times (20-100 ms) to calculate transverse relaxation time (T2) and spin density. T2 decreased significantly in both grey and white matter by 7 days fixation and there was a further (but non-significant) trend towards lower values between 7 and 35 days. Grey and white matter T2 times converged with fixation. Conversely, the grey to white matter spin density ratio increased from 1.19±0.01 to 1.54±0.06 over five weeks of fixation. Our results suggest that spin density-weighted imaging sequences would provide improved grey to white matter contrast over T2-weighted sequences

  16. Optimising imaging parameters for post mortem MR imaging of the human brain

    International Nuclear Information System (INIS)

    Purpose: MR imaging of post mortem brains has the potential to yield volumetric information and define the extent of structural changes prior to pathological examination. Although standard T2-weighted clinical imaging sequences have been used for the examination of formalin-fixed brains, these protocols may not yield optimum contrast. We examined the effect of varying durations of formalin fixation on the transverse relaxation time (T2) and the tissue spin density. Material and Methods: Three post mortem brains were examined weekly during formalin fixation from the unfixed state to 35 days fixation. Standard MR spin-echo imaging was used at 5 echo times (20-100 ms) to calculate transverse relaxation time (T2) and spin density. Results: T2 decreased significantly (ANOVA, p<0.001) in both grey and white matter by 7 days fixation and there was a further (but non-significant) trend towards lower values between 7 and 35 days. Grey and white matter T2 times converged with fixation. Conversely, the grey to white matter spin density ratio increased from 1.19±0.01 to 1.54±0.06 over five weeks of fixation. Conclusion: Our results suggest that spin density-weighted imaging sequences would provide improved grey to white matter contrast over T2-weighted sequences. (orig.)

  17. High-Relaxivity MRI Contrast Agents: Where Coordination Chemistry Meets Medical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Eric J.; Datta, Ankona; Jocher, Christoph J.; Raymond, Kenneth N.

    2008-01-15

    The desire to improve and expand the scope of clinical magnetic resonance imaging (MRI) has prompted the search for contrast agents of higher efficiency. The development of better agents requires consideration of the fundamental coordination chemistry of the gadolinium(III) ion and the parameters that affect its efficacy as a proton relaxation agent. In optimizing each parameter, other practical issues such as solubility and in vivo toxicity must also be addressed, making the attainment of safe, high-relaxivity agents a challenging goal. Here we present recent advances in the field, with an emphasis on the hydroxypyridinone family of Gd{sup III} chelates.

  18. The Preparation and Application of Dendrimer Modified CdTe/CdS Near Infrared Quantum Dots for Brain Cancer Cells Imaging

    Directory of Open Access Journals (Sweden)

    Qingke Bai

    2015-11-01

    Full Text Available The most notable obstacle of brain cancer diagnosis is the inability of delivering imaging agents across the blood-brain barrier (BBB. Recently, quantum dots (QDs has been demonstrated as an ideal image agent for brain imaging due to their ultra-small size for crossing BBB. The plolyamidoamine dendrimers modified CdTe/CdS core/shell near-infrared (NIR region QDs was successfully synthesized in aqueous solution, and then was characterized by UV-vis absorption, photoluminescence (PL spectroscopy, dynamic light scattering (DLS, X-ray powder diffraction (XRD and high-resolution transmission electron microscopy (HR-TEM, etc. Our results reveal that the dendrimers modified CdTe/CdS QDs exhibits good water-dispersity and stable NIR fluorescence in various biological environments. In addition, this NIR QDs demonstrates a good biocompatibility and sensitive photoluminescence responses in brain tumor cell imaging. In a word, this type of dendrimers modified NIR CdTe/CdS QDs has huge potential applications in brain imaging.

  19. Multi-agent systems and neural networks for automatic target recognition on air images

    Science.gov (United States)

    Cozien, Roger F.; Rosenberger, Christophe; Eyherabide, Partrick; Rossettini, Joaquim; Ceyrolle, Arnaud

    2000-08-01

    Our purpose is, in medium term, to detect in air images, characteristic shapes and objects such as airports, industrial plants, planes, tanks, trucks, ... with great accuracy and low rate of mistakes. However, we also want to value whether the link between neural networks and multi-agents systems is relevant and effective. If it appears to be really effective, we hope to use this kind of technology in other fields. That would be an easy and convenient way to depict and to use the agents' knowledge which is distributed and fragmented. After a first phase of preliminary tests to know if agents are able to give relevant information to a neural network, we verify that only a few agents running on an image are enough to inform the network and let it generalize the agents' distributed and fragmented knowledge. In a second phase, we developed a distributed architecture allowing several multi- agents systems running at the same time on different computers with different images. All those agents send information to a 'multi neural networks system' whose job is to identify the shapes detected by the agents. The name we gave to our project is Jarod.

  20. Quantitative imaging of cell-permeable magnetic resonance contrast agents using x-ray fluorescence.

    Science.gov (United States)

    Endres, Paul J; Macrenaris, Keith W; Vogt, Stefan; Allen, Matthew J; Meade, Thomas J

    2006-01-01

    The inability to transduce cellular membranes is a limitation of current magnetic resonance imaging probes used in biologic and clinical settings. This constraint confines contrast agents to extracellular and vascular regions of the body, drastically reducing their viability for investigating processes and cycles in developmental biology. Conversely, a contrast agent with the ability to permeate cell membranes could be used in visualizing cell patterning, cell fate mapping, gene therapy, and, eventually, noninvasive cancer diagnosis. Therefore, we describe the synthesis and quantitative imaging of four contrast agents with the capability to cross cell membranes in sufficient quantity for detection. Each agent is based on the conjugation of a Gd(III) chelator with a cellular transduction moiety. Specifically, we coupled Gd(III)-diethylenetriaminepentaacetic acid DTPA and Gd(III)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid with an 8-amino acid polyarginine oligomer and an amphipathic stilbene molecule, 4-amino-4'-(N,N-dimethylamino)stilbene. The imaging modality that provided the best sensitivity and spatial resolution for direct detection of the contrast agents is synchrotron radiation x-ray fluorescence (SR-XRF). Unlike optical microscopy, SR-XRF provides two-dimensional images with resolution 10(3) better than (153)Gd gamma counting, without altering the agent by organic fluorophore conjugation. The transduction efficiency of the intracellular agents was evaluated by T(1) analysis and inductively coupled plasma mass spectrometry to determine the efficacy of each chelate-transporter combination. PMID:17150161

  1. Prodrug Strategies for Metalloenzyme Inhibitors and Molecular Imaging Agents

    OpenAIRE

    Daniel, Kevin Brett

    2015-01-01

    Prodrugs are effective tools in overcoming drawbacks typically associated with drug properties in vivo. This dissertation will first discuss prodrug approaches and how they have been successfully applied to a variety of pharmacological agents. Metalloenzymes will then be introduced with an emphasis on matrix metalloproteinases (MMPs) as therapeutic targets. A survey of reported prodrugs of metalloenzymes will be presented, highlighting the limited number of strategies previously explored. A d...

  2. An Improved Technique for Identification and Classification of Brain Disorder from MRI Brain Image

    Directory of Open Access Journals (Sweden)

    Finitha Joseph

    2014-04-01

    Full Text Available Medical image processing is developing recently due to its wide applications. An efficient MRI image segmentation is needed at present. In this paper, MRI brain segmentation is done by Semi supervised learning which does not require pathology modelling and, thus, allows high degree of automation. In abnormality detection, a vector is characterized as anomalous if it does not comply with the probability distribution obtained from normal data. The estimation of the probability density function, however, is usually not feasible due to large data dimensionality. In order to overcome this challenge, we treat every image as a network of locally coherent image partitions (overlapping blocks. We formulate and maximize a strictly concave likelihood function estimating abnormality for each partition and fuse the local estimates into a globally optimal estimate that satisfies the consistency constraints, based on a distributed estimation algorithm. After this features are extracted by Gray-Level Co-occurrence Matrices (GLCM algorithm and those features are given to Particle Spam Optimization (PSO and finally classification is done by using Library Support Vector Machine (LIBSVM.Thus results are evaluated and proved its efficiency using accuracy.

  3. AN IMPROVED TECHNIQUE FOR IDENTIFICATION AND CLASSIFICATION OF BRAIN DISORDER FROM MRI BRAIN IMAGE

    Directory of Open Access Journals (Sweden)

    Finitha Joseph

    2015-11-01

    Full Text Available Medical image processing is developing recently due to its wide applications. An efficient MRI image segmentation is needed at present. In this paper, MRI brain segmentation is done by Semi supervised learning which does not require pathology modelling and, thus, allows high degree of automation. In abnormality detection, a vector is characterized as anomalous if it does not comply with the probability distribution obtained from normal data. The estimation of the probability density function, however, is usually not feasible due to large data dimensionality. In order to overcome this challenge, we treat every image as a network of locally coherent image partitions (overlapping blocks. We formulate and maximize a strictly concave likelihood function estimating abnormality for each partition and fuse the local estimates into a globally optimal estimate that satisfies the consistency constraints, based on a distributed estimation algorithm. After this features are extracted by Gray-Level Co-occurrence Matrices (GLCM algorithm and those features are given to Particle Spam Optimization (PSO and finally classification is done by using Library Support Vector Machine (LIBSVM.Thus results are evaluated and proved its efficiency using accuracy.

  4. Increased Nanoparticle Delivery to Brain Tumors by Autocatalytic Priming for Improved Treatment and Imaging.

    Science.gov (United States)

    Han, Liang; Kong, Derek K; Zheng, Ming-Qiang; Murikinati, Sasidhar; Ma, Chao; Yuan, Peng; Li, Liyuan; Tian, Daofeng; Cai, Qiang; Ye, Chunlin; Holden, Daniel; Park, June-Hee; Gao, Xiaobin; Thomas, Jean-Leon; Grutzendler, Jaime; Carson, Richard E; Huang, Yiyun; Piepmeier, Joseph M; Zhou, Jiangbing

    2016-04-26

    The blood-brain barrier (BBB) is partially disrupted in brain tumors. Despite the gaps in the BBB, there is an inadequate amount of pharmacological agents delivered into the brain. Thus, the low delivery efficiency renders many of these agents ineffective in treating brain cancer. In this report, we proposed an "autocatalytic" approach for increasing the transport of nanoparticles into the brain. In this strategy, a small number of nanoparticles enter into the brain via transcytosis or through the BBB gaps. After penetrating the BBB, the nanoparticles release BBB modulators, which enables more nanoparticles to be transported, creating a positive feedback loop for increased delivery. Specifically, we demonstrated that these autocatalytic brain tumor-targeting poly(amine-co-ester) terpolymer nanoparticles (ABTT NPs) can readily cross the BBB and preferentially accumulate in brain tumors at a concentration of 4.3- and 94.0-fold greater than that in the liver and in brain regions without tumors, respectively. We further demonstrated that ABTT NPs were capable of mediating brain cancer gene therapy and chemotherapy. Our results suggest ABTT NPs can prime the brain to increase the systemic delivery of therapeutics for treating brain malignancies. PMID:26967254

  5. Polypyrrole Hollow Microspheres as Echogenic Photothermal Agent for Ultrasound Imaging Guided Tumor Ablation

    Science.gov (United States)

    Zha, Zhengbao; Wang, Jinrui; Qu, Enze; Zhang, Shuhai; Jin, Yushen; Wang, Shumin; Dai, Zhifei

    2013-08-01

    Ultrasound (US) imaging provides a valuable opportunity to administer photothermal therapy (PTT) of cancer with real-time guidance to ensure proper targeting, but only a few theranostic agents were developed by physically grafting near infrared (NIR)-absorbing inorganic nanomaterials to ready-made ultrasound contrast agents (UCAs) for US imaging guided PTT. In this paper, NIR absorbing hollow microspheres were generated from polypyrrole merely using a facile one-step microemulsion method. It was found that the obtained polypyrrole hollow microspheres (PPyHMs) can act as an efficient theranostic agent not only to enhance US imaging greatly, but also exhibit excellent photohyperthermic effects. The contrast consistently sustained the echo signals for no less than 5 min and the NIR laser light ablated the tumor completely within two weeks in the presence of PPyHMs. More importantly, no use of additional NIR absorber substantially minimizes an onetime dose of the theranostic agent.

  6. EPR and DNP Properties of Certain Novel Single Electron Contrast Agents Intended for Oximetric Imaging

    DEFF Research Database (Denmark)

    Ardenkjær-Larsen, J. H.; Laursen, I; Leunbach, I.; Ehnholm, G.; Wistrand, L.-G.; Petersson, J. S.; Golman, K.

    1998-01-01

    Parameters of relevance to oximetry with Overhauser magnetic resonance imaging (OMRI) have been measured for three single electron contrast agents of the triphenylmethyl type. The single electron contrast agents are stable and water soluble. Magnetic resonance properties of the agents have been e...... than 1 μT in water at room temperature. The longitudinal electron spin relaxation rate is calculated from the DNP enhancement curves. The oxygen broadening in water is about 50 μT/mM O2at 37°C. These agents have good properties for oximetry with OMRI.......Parameters of relevance to oximetry with Overhauser magnetic resonance imaging (OMRI) have been measured for three single electron contrast agents of the triphenylmethyl type. The single electron contrast agents are stable and water soluble. Magnetic resonance properties of the agents have been...... dipolar limit. The agents have a single, narrow EPR line, which is analyzed as a Voigt function. The linewidth is measured as a function of the agent concentration and the oxygen concentration. The concentration broadenings are about 1–3 μT/mM and the Lorentzian linewidths at infinite dilution are less...

  7. In vivo electrical conductivity imaging of a canine brain using a 3 T MREIT system

    International Nuclear Information System (INIS)

    Magnetic resonance electrical impedance tomography (MREIT) aims at producing high-resolution cross-sectional conductivity images of an electrically conducting object such as the human body. Following numerous phantom imaging experiments, the most recent study demonstrated successful conductivity image reconstructions of postmortem canine brains using a 3 T MREIT system with 40 mA imaging currents. Here, we report the results of in vivo animal imaging experiments using 5 mA imaging currents. To investigate any change of electrical conductivity due to brain ischemia, canine brains having a regional ischemic model were scanned along with separate scans of canine brains having no disease model. Reconstructed multi-slice conductivity images of in vivo canine brains with a pixel size of 1.4 mm showed a clear contrast between white and gray matter and also between normal and ischemic regions. We found that the conductivity value of an ischemic region decreased by about 10–14%. In a postmortem brain, conductivity values of white and gray matter decreased by about 4–8% compared to those in a live brain. Accumulating more experience of in vivo animal imaging experiments, we plan to move to human experiments. One of the important goals of our future work is the reduction of the imaging current to a level that a human subject can tolerate. The ability to acquire high-resolution conductivity images will find numerous clinical applications not supported by other medical imaging modalities. Potential applications in biology, chemistry and material science are also expected

  8. Radiolabelling and PET brain imaging of the a1-adrenoceptor antagonist Lu AE43936

    DEFF Research Database (Denmark)

    Risgaard, Rune; Ettrup, Anders Janusz; Balle, Thomas; Dyssegaard, Agnete; Hansen, Hanne Demant; Lehel, Szabolcs; Madsen, Jacob; Pedersen, Henrik; Püschl, Ask; Badolo, Lassina; Bang-Andersen, Benny; Knudsen, Gitte Moos; Kristensen, Jesper Langgaard

    2013-01-01

    -transporters. This was confirmed in Madin Darby canine kidney (MDCK) cells overexpressing permeability glycoprotein (Pgp). In conclusion, the limited brain uptake of both (S)-[¹¹C]-1 and (R)-[¹¹C]-1 in the pig brain necessitates the search for alternative radioligands for in vivo PET brain imaging of α₁...

  9. Visual image reconstruction from human brain activity: A modular decoding approach

    International Nuclear Information System (INIS)

    Brain activity represents our perceptual experience. But the potential for reading out perceptual contents from human brain activity has not been fully explored. In this study, we demonstrate constraint-free reconstruction of visual images perceived by a subject, from the brain activity pattern. We reconstructed visual images by combining local image bases with multiple scales, whose contrasts were independently decoded from fMRI activity by automatically selecting relevant voxels and exploiting their correlated patterns. Binary-contrast, 10 x 10-patch images (2100 possible states), were accurately reconstructed without any image prior by measuring brain activity only for several hundred random images. The results suggest that our approach provides an effective means to read out complex perceptual states from brain activity while discovering information representation in multi-voxel patterns.

  10. Positron radioactive molecular imaging agents for early diagnosis of Parkinson's disease

    International Nuclear Information System (INIS)

    Positron radioactive molecular imaging can be used to do early diagnose of Parkinson's disease, a senile neurodegenerative disease, and the method has been accepted by more and more doctors and patients. In this paper, we give a review on positron radioactive molecular imaging agents in clinical application and research of Parkinson's disease. (authors)

  11. Developing a multiscale, multi-resolution agent-based brain tumor model by graphics processing units

    Directory of Open Access Journals (Sweden)

    Zhang Le

    2011-12-01

    Full Text Available Abstract Multiscale agent-based modeling (MABM has been widely used to simulate Glioblastoma Multiforme (GBM and its progression. At the intracellular level, the MABM approach employs a system of ordinary differential equations to describe quantitatively specific intracellular molecular pathways that determine phenotypic switches among cells (e.g. from migration to proliferation and vice versa. At the intercellular level, MABM describes cell-cell interactions by a discrete module. At the tissue level, partial differential equations are employed to model the diffusion of chemoattractants, which are the input factors of the intracellular molecular pathway. Moreover, multiscale analysis makes it possible to explore the molecules that play important roles in determining the cellular phenotypic switches that in turn drive the whole GBM expansion. However, owing to limited computational resources, MABM is currently a theoretical biological model that uses relatively coarse grids to simulate a few cancer cells in a small slice of brain cancer tissue. In order to improve this theoretical model to simulate and predict actual GBM cancer progression in real time, a graphics processing unit (GPU-based parallel computing algorithm was developed and combined with the multi-resolution design to speed up the MABM. The simulated results demonstrated that the GPU-based, multi-resolution and multiscale approach can accelerate the previous MABM around 30-fold with relatively fine grids in a large extracellular matrix. Therefore, the new model has great potential for simulating and predicting real-time GBM progression, if real experimental data are incorporated.

  12. Computationally Prediction of Candidate Agents for Preventing Organ Dysfunction After Brain Death.

    Science.gov (United States)

    Liu, Qianwen; Ye, Qifa

    2016-01-01

    BACKGROUND Our aim was to explore the mechanism of post-transplant organ function decrease induced by brain death (BD) and discover a potential candidate drug for improving the survival and organ function after BD. MATERIAL AND METHODS The microarray data developed from the liver tissues after BD were further analyzed by bioinformatics methods. The differentially expressed genes (DEGs) were computationally predicted and the DEGs that involved biological functions were explored by gene ontology (GO) analysis. The candidate agents that could induce the reverse gene signature were predicted based on the Connectivity Map (CMap) database. RESULTS There were total 1374 DEGs, including 589 up-regulated genes and 785 down-regulated genes. Function analysis showed that DEGs were mainly enriched in biological process-related GO terms, such as regulation of transcription, DNA-dependent, inflammatory response, and regulation of phosphorus metabolic process. The down-regulated genes were significantly enriched in transcription factor activity and transcription regulator activity-related molecular function. The down-regulated GO terms exhibited close interaction with each other. CONCLUSIONS The organ function decrease may be attributed by transcription alteration, inflammation response, and metabolic alteration in liver after BD. Spaglumic acid and halcinonide may be potential drugs for preventing organ damage during the BD process. PMID:27170053

  13. An Improved Image Mining Technique For Brain Tumour Classification Using Efficient Classifier

    CERN Document Server

    Rajendran, P

    2010-01-01

    An improved image mining technique for brain tumor classification using pruned association rule with MARI algorithm is presented in this paper. The method proposed makes use of association rule mining technique to classify the CT scan brain images into three categories namely normal, benign and malign. It combines the low level features extracted from images and high level knowledge from specialists. The developed algorithm can assist the physicians for efficient classification with multiple keywords per image to improve the accuracy. The experimental result on prediagnosed database of brain images showed 96 percent and 93 percent sensitivity and accuracy respectively.

  14. Multimodal imaging of the self-regulating developing brain

    Science.gov (United States)

    Fjell, Anders M.; Walhovd, Kristine Beate; Brown, Timothy T.; Kuperman, Joshua M.; Chung, Yoonho; Hagler, Donald J.; Venkatraman, Vijay; Roddey, J. Cooper; Erhart, Matthew; McCabe, Connor; Akshoomoff, Natacha; Amaral, David G.; Bloss, Cinnamon S.; Libiger, Ondrej; Darst, Burcu F.; Schork, Nicholas J.; Casey, B. J.; Chang, Linda; Ernst, Thomas M.; Gruen, Jeffrey R.; Kaufmann, Walter E.; Kenet, Tal; Frazier, Jean; Murray, Sarah S.; Sowell, Elizabeth R.; van Zijl, Peter; Mostofsky, Stewart; Jernigan, Terry L.; Dale, Anders M.; Jernigan, Terry L.; McCabe, Connor; Chang, Linda; Akshoomoff, Natacha; Newman, Erik; Dale, Anders M.; Ernst, Thomas; Dale, Anders M.; Van Zijl, Peter; Kuperman, Joshua; Murray, Sarah; Bloss, Cinnamon; Schork, Nicholas J.; Appelbaum, Mark; Gamst, Anthony; Thompson, Wesley; Bartsch, Hauke; Jernigan, Terry L.; Dale, Anders M.; Akshoomoff, Natacha; Chang, Linda; Ernst, Thomas; Keating, Brian; Amaral, David; Sowell, Elizabeth; Kaufmann, Walter; Van Zijl, Peter; Mostofsky, Stewart; Casey, B.J.; Ruberry, Erika J.; Powers, Alisa; Rosen, Bruce; Kenet, Tal; Frazier, Jean; Kennedy, David; Gruen, Jeffrey

    2012-01-01

    Self-regulation refers to the ability to control behavior, cognition, and emotions, and self-regulation failure is related to a range of neuropsychiatric problems. It is poorly understood how structural maturation of the brain brings about the gradual improvement in self-regulation during childhood. In a large-scale multicenter effort, 735 children (4–21 y) underwent structural MRI for quantification of cortical thickness and surface area and diffusion tensor imaging for quantification of the quality of major fiber connections. Brain development was related to a standardized measure of cognitive control (the flanker task from the National Institutes of Health Toolbox), a critical component of self-regulation. Ability to inhibit responses and impose cognitive control increased rapidly during preteen years. Surface area of the anterior cingulate cortex accounted for a significant proportion of the variance in cognitive performance. This finding is intriguing, because characteristics of the anterior cingulum are shown to be related to impulse, attention, and executive problems in neurodevelopmental disorders, indicating a neural foundation for self-regulation abilities along a continuum from normality to pathology. The relationship was strongest in the younger children. Properties of large-fiber connections added to the picture by explaining additional variance in cognitive control. Although cognitive control was related to surface area of the anterior cingulate independently of basic processes of mental speed, the relationship between white matter quality and cognitive control could be fully accounted for by speed. The results underscore the need for integration of different aspects of brain maturation to understand the foundations of cognitive development. PMID:23150548

  15. In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography

    Science.gov (United States)

    Lin, Li; Xia, Jun; Wong, Terence T. W.; Zhang, Ruiying; Wang, Lihong V.

    2015-03-01

    We demonstrate, by means of internal light delivery, photoacoustic imaging of the deep brain of rats in vivo. With fiber illumination via the oral cavity, we delivered light directly into the bottom of the brain, much more than can be delivered by external illumination. The study was performed using a photoacoustic computed tomography (PACT) system equipped with a 512-element full-ring transducer array, providing a full two-dimensional view aperture. Using internal illumination, the PACT system provided clear cross sectional photoacoustic images from the palate to the middle brain of live rats, revealing deep brain structures such as the hypothalamus, brain stem, and cerebral medulla.

  16. Internal brain motion pumping of CSF using high-resolution velocity MR imaging

    International Nuclear Information System (INIS)

    An MR velocity density (MRVD) technique able to detect velocities as low as 0.4 mm/sec was applied to obtain images of the brain synchronized to the cardiac cycle in 25 healthy subjects and five patients. During systole (100-200 msec after the R wave), MRVD images demonstrated a caudad velocity in the central regions of the brain, most prominent in the brain stem (up to 1.5 mm/sec). This caudad brain motion and the synchronous ejection of cerebrospinal fluid (CSF) from the ventricles into the basal cisterns, taken together, strongly suggest a cardiac-driven pumping action of the brain on the CSF

  17. Memory Networks in Tinnitus: A Functional Brain Image Study

    Science.gov (United States)

    Laureano, Maura Regina; Onishi, Ektor Tsuneo; Bressan, Rodrigo Affonseca; Castiglioni, Mario Luiz Vieira; Batista, Ilza Rosa; Reis, Marilia Alves; Garcia, Michele Vargas; de Andrade, Adriana Neves; de Almeida, Roberta Ribeiro; Garrido, Griselda J.; Jackowski, Andrea Parolin

    2014-01-01

    Tinnitus is characterized by the perception of sound in the absence of an external auditory stimulus. The network connectivity of auditory and non-auditory brain structures associated with emotion, memory and attention are functionally altered in debilitating tinnitus. Current studies suggest that tinnitus results from neuroplastic changes in the frontal and limbic temporal regions. The objective of this study was to use Single-Photon Emission Computed Tomography (SPECT) to evaluate changes in the cerebral blood flow in tinnitus patients with normal hearing compared with healthy controls. Methods: Twenty tinnitus patients with normal hearing and 17 healthy controls, matched for sex, age and years of education, were subjected to Single Photon Emission Computed Tomography using the radiotracer ethylenedicysteine diethyl ester, labeled with Technetium 99 m (99 mTc-ECD SPECT). The severity of tinnitus was assessed using the “Tinnitus Handicap Inventory” (THI). The images were processed and analyzed using “Statistical Parametric Mapping” (SPM8). Results: A significant increase in cerebral perfusion in the left parahippocampal gyrus (pFWE <0.05) was observed in patients with tinnitus compared with healthy controls. The average total THI score was 50.8+18.24, classified as moderate tinnitus. Conclusion: It was possible to identify significant changes in the limbic system of the brain perfusion in tinnitus patients with normal hearing, suggesting that central mechanisms, not specific to the auditory pathway, are involved in the pathophysiology of symptoms, even in the absence of clinically diagnosed peripheral changes. PMID:24516567

  18. Functional brain imaging predicts public health campaign success.

    Science.gov (United States)

    Falk, Emily B; O'Donnell, Matthew Brook; Tompson, Steven; Gonzalez, Richard; Dal Cin, Sonya; Strecher, Victor; Cummings, Kenneth Michael; An, Lawrence

    2016-02-01

    Mass media can powerfully affect health decision-making. Pre-testing through focus groups or surveys is a standard, though inconsistent, predictor of effectiveness. Converging evidence demonstrates that activity within brain systems associated with self-related processing can predict individual behavior in response to health messages. Preliminary evidence also suggests that neural activity in small groups can forecast population-level campaign outcomes. Less is known about the psychological processes that link neural activity and population-level outcomes, or how these predictions are affected by message content. We exposed 50 smokers to antismoking messages and used their aggregated neural activity within a 'self-localizer' defined region of medial prefrontal cortex to predict the success of the same campaign messages at the population level (n = 400,000 emails). Results demonstrate that: (i) independently localized neural activity during health message exposure complements existing self-report data in predicting population-level campaign responses (model combined R(2) up to 0.65) and (ii) this relationship depends on message content-self-related neural processing predicts outcomes in response to strong negative arguments against smoking and not in response to compositionally similar neutral images. These data advance understanding of the psychological link between brain and large-scale behavior and may aid the construction of more effective media health campaigns. PMID:26400858

  19. Memory networks in tinnitus: a functional brain image study.

    Directory of Open Access Journals (Sweden)

    Maura Regina Laureano

    Full Text Available Tinnitus is characterized by the perception of sound in the absence of an external auditory stimulus. The network connectivity of auditory and non-auditory brain structures associated with emotion, memory and attention are functionally altered in debilitating tinnitus. Current studies suggest that tinnitus results from neuroplastic changes in the frontal and limbic temporal regions. The objective of this study was to use Single-Photon Emission Computed Tomography (SPECT to evaluate changes in the cerebral blood flow in tinnitus patients with normal hearing compared with healthy controls.Twenty tinnitus patients with normal hearing and 17 healthy controls, matched for sex, age and years of education, were subjected to Single Photon Emission Computed Tomography using the radiotracer ethylenedicysteine diethyl ester, labeled with Technetium 99 m (99 mTc-ECD SPECT. The severity of tinnitus was assessed using the "Tinnitus Handicap Inventory" (THI. The images were processed and analyzed using "Statistical Parametric Mapping" (SPM8.A significant increase in cerebral perfusion in the left parahippocampal gyrus (pFWE <0.05 was observed in patients with tinnitus compared with healthy controls. The average total THI score was 50.8+18.24, classified as moderate tinnitus.It was possible to identify significant changes in the limbic system of the brain perfusion in tinnitus patients with normal hearing, suggesting that central mechanisms, not specific to the auditory pathway, are involved in the pathophysiology of symptoms, even in the absence of clinically diagnosed peripheral changes.

  20. Ischemic white brain matter lesions in MR imaging

    International Nuclear Information System (INIS)

    In 21 patients suffering from cerebrovascular insufficiency, MR imaging was correlated with positron emission tomographic measurements of regional cerebral blood flow in order to evaluate the functional significance of ischemic white matter lesions (WMLs). In contrast to brain infarcts, WMLs demonstrated no marked reduction of regional cerebral blood flow. It has to be considered, however, that the blood flow within the white matter is reduced by a factor of four as compared with the gray matter. In several cases, cortex adjacent to WMLs revealed reduced blood flow. This finding can probably be explained as an effect of deafferentiation. A statistically significant inverse relation between the mean cortical blood flow and the extent of WMLs could be demonstrated