WorldWideScience

Sample records for brain hsp90 studied

  1. Phosphorylation and oligomerization states of native pig brain HSP90 studied by mass spectrometry

    DEFF Research Database (Denmark)

    Garnier, C.; Lafitte, D.; Jorgensen, T.J.

    2001-01-01

    such as actin-microfilament, tubulin-microtubule and intermediate filaments, and also exhibits conventional chaperone functions. This protein exists in two isoforms alpha-HSP90 and beta-HSP90, and it forms dimers which are crucial species for its biological activity. PAGE, ESI-MS and MALDI-MS were used to study...

  2. Decreased Hsp90 expression in infiltrative lobular carcinoma: an immunohistochemical study

    Directory of Open Access Journals (Sweden)

    Zagouri Flora

    2010-08-01

    Full Text Available Abstract Background Elevated Hsp90 expression has been documented in breast ductal carcinomas, whereas decreased Hsp90 expression has been reported in precursor lobular lesions. This study aims to assess Hsp90 expression in infiltrative lobular carcinomas of the breast. Methods Tissue specimens were taken from 32 patients with infiltrative lobular carcinoma. Immunohistochemical assessment of Hsp90 was performed both in the lesion and the adjacent normal breast ducts and lobules; the latter serving as control. Concerning Hsp90 assessment: i the percentage of positive cells and ii the intensity were separately analyzed. Subsequently, the Allred score was adopted and calculated. The intensity was treated as an ordinal variable-score (0: negative, low: 1, moderate: 2, high: 3. Statistical analysis followed. Results All infiltrative lobular carcinoma foci mainly presented with a positive cytoplasmic immunoreaction for Hsp90. Compared to the adjacent normal ducts and lobules, infiltrative lobular carcinoma exhibited a statistically significant decrease in Hsp90 expression, both in terms of Hsp90 positive cells (% and Allred score (74.2 ± 11.2 vs. 59.1 ± 14.2 p = 0.0001; 7.00 ± 0.95 vs. 6.22 ± 1.01, p = 0.007, Wilcoxon matched-pairs signed-ranks test. Concerning the intensity of Hsp90 immunostaining only a marginal decrease was noted (2.16 ± 0.68 vs. 1.84 ± 0.63, p = 0.087, Wilcoxon matched-pairs signed-ranks test. Conclusion ILC lesions seem to exhibit decreased Hsp90 expression, a finding contrary to what might have been expected, given that high Hsp90 expression is a trait of invasive ductal carcinomas.

  3. Scoring functions and enrichment: a case study on Hsp90

    Directory of Open Access Journals (Sweden)

    Mitchell John BO

    2007-01-01

    Full Text Available Abstract Background The need for fast and accurate scoring functions has been driven by the increased use of in silico virtual screening twinned with high-throughput screening as a method to rapidly identify potential candidates in the early stages of drug development. We examine the ability of some the most common scoring functions (GOLD, ChemScore, DOCK, PMF, BLEEP and Consensus to discriminate correctly and efficiently between active and non-active compounds among a library of ~3,600 diverse decoy compounds in a virtual screening experiment against heat shock protein 90 (Hsp90. Results Firstly, we investigated two ranking methodologies, GOLDrank and BestScorerank. GOLDrank is based on ranks generated using GOLD. The various scoring functions, GOLD, ChemScore, DOCK, PMF, BLEEP and Consensus, are applied to the pose ranked number one by GOLD for that ligand. BestScorerank uses multiple poses for each ligand and independently chooses the best ranked pose of the ligand according to each different scoring function. Secondly, we considered the effect of introducing the Thr184 hydrogen bond tether to guide the docking process towards a particular solution, and its effect on enrichment. Thirdly, we considered normalisation to account for the known bias of scoring functions to select larger molecules. All the scoring functions gave fairly similar enrichments, with the exception of PMF which was consistently the poorest performer. In most cases, GOLD was marginally the best performing individual function; the Consensus score usually performed similarly to the best single scoring function. Our best results were obtained using the Thr184 tether in combination with the BestScorerank protocol and normalisation for molecular weight. For that particular combination, DOCK was the best individual function; DOCK recovered 90% of the actives in the top 10% of the ranked list; Consensus similarly recovered 89% of the actives in its top 10%. Conclusion Overall, we

  4. Heat-shock protein 90 (Hsp90) promotes opioid-induced anti-nociception by an ERK mitogen-activated protein kinase (MAPK) mechanism in mouse brain.

    Science.gov (United States)

    Lei, Wei; Mullen, Nathan; McCarthy, Sarah; Brann, Courtney; Richard, Philomena; Cormier, James; Edwards, Katie; Bilsky, Edward J; Streicher, John M

    2017-06-23

    Recent advances in developing opioid treatments for pain with reduced side effects have focused on the signaling cascades of the μ-opioid receptor (MOR). However, few such signaling targets have been identified for exploitation. To address this need, we explored the role of heat-shock protein 90 (Hsp90) in opioid-induced MOR signaling and pain, which has only been studied in four previous articles. First, in four cell models of MOR signaling, we found that Hsp90 inhibition for 24 h with the inhibitor 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) had different effects on protein expression and opioid signaling in each line, suggesting that cell models may not be reliable for predicting pharmacology with this protein. We thus developed an in vivo model using CD-1 mice with an intracerebroventricular injection of 17-AAG for 24 h. We found that Hsp90 inhibition strongly blocked morphine-induced anti-nociception in models of post-surgical and HIV neuropathic pain but only slightly blocked anti-nociception in a naive tail-flick model, while enhancing morphine-induced precipitated withdrawal. Seeking a mechanism for these changes, we found that Hsp90 inhibition blocks ERK MAPK activation in the periaqueductal gray and caudal brain stem. We tested these signaling changes by inhibiting ERK in the above-mentioned pain models and found that ERK inhibition could account for all of the changes in anti-nociception induced by Hsp90 inhibition. Taken together, these findings suggest that Hsp90 promotes opioid-induced anti-nociception by an ERK mechanism in mouse brain and that Hsp90 could be a future target for improving the therapeutic index of opioid drugs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Hsp90 depletion goes wild.

    Science.gov (United States)

    Siegal, Mark L; Masel, Joanna

    2012-02-27

    Hsp90 reveals phenotypic variation in the laboratory, but is Hsp90 depletion important in the wild? Recent work from Chen and Wagner in BMC Evolutionary Biology has discovered a naturally occurring Drosophila allele that downregulates Hsp90, creating sensitivity to cryptic genetic variation. Laboratory studies suggest that the exact magnitude of Hsp90 downregulation is important. Extreme Hsp90 depletion might reactivate transposable elements and/or induce aneuploidy, in addition to revealing cryptic genetic variation. See research article http://wwww.biomedcentral.com/1471-2148/12/25.

  6. Virtual prototyping study shows increased ATPase activity of Hsp90 to be the key determinant of cancer phenotype.

    Science.gov (United States)

    Vali, Shireen; Pallavi, Rani; Kapoor, Shweta; Tatu, Utpal

    2010-03-01

    Hsp90 is an ATP-dependent molecular chaperone that regulates key signaling proteins and thereby impacts cell growth and development. Chaperone cycle of Hsp90 is regulated by ATP binding and hydrolysis through its intrinsic ATPase activities, which is in turn modulated by interaction with its co-chaperones. Hsp90 ATPase activity varies in different organisms and is known to be increased in tumor cells. In this study we have quantitatively analyzed the impact of increasing Hsp90 ATPase activity on the activities of its clients through a virtual prototyping technology, which comprises a dynamic model of Hsp90 interaction with clients involved in proliferation pathways. Our studies highlight the importance of increased ATPase activity of Hsp90 in cancer cells as the key modulator for increased proliferation and survival. A tenfold increase in ATPase activity of Hsp90 often seen in cancer cells increases the levels of active client proteins such as Akt-1, Raf-1 and Cyclin D1 amongst others to about 12-, 8- and 186-folds respectively. Additionally we studied the effect of a competitive inhibitor of Hsp90 activity on the reduction in the client protein levels. Virtual prototyping experiments corroborate with findings that the drug has almost 10- to 100-fold higher affinity as indicated by a lower IC(50) value (30-100 nM) in tumor cells with higher ATPase activity. The results also indicate a 15- to 25-fold higher efficacy of the inhibitor in reducing client levels in tumor cells. This analysis provides mechanistic insights into the links between increased Hsp90 ATPase activity, tumor phenotype and the hypersensitivity of tumor Hsp90 to inhibition by ATP analogs. The online version of this article (doi:10.1007/s11693-009-9046-3) contains supplementary material, which is available to authorized users.

  7. Differential modulation of functional dynamics and allosteric interactions in the Hsp90-cochaperone complexes with p23 and Aha1: a computational study.

    Directory of Open Access Journals (Sweden)

    Kristin Blacklock

    Full Text Available Allosteric interactions of the molecular chaperone Hsp90 with a large cohort of cochaperones and client proteins allow for molecular communication and event coupling in signal transduction networks. The integration of cochaperones into the Hsp90 system is driven by the regulatory mechanisms that modulate the progression of the ATPase cycle and control the recruitment of the Hsp90 clientele. In this work, we report the results of computational modeling of allosteric regulation in the Hsp90 complexes with the cochaperones p23 and Aha1. By integrating protein docking, biophysical simulations, modeling of allosteric communications, protein structure network analysis and the energy landscape theory we have investigated dynamics and stability of the Hsp90-p23 and Hsp90-Aha1 interactions in direct comparison with the extensive body of structural and functional experiments. The results have revealed that functional dynamics and allosteric interactions of Hsp90 can be selectively modulated by these cochaperones via specific targeting of the regulatory hinge regions that could restrict collective motions and stabilize specific chaperone conformations. The protein structure network parameters have quantified the effects of cochaperones on conformational stability of the Hsp90 complexes and identified dynamically stable communities of residues that can contribute to the strengthening of allosteric interactions. According to our results, p23-mediated changes in the Hsp90 interactions may provide "molecular brakes" that could slow down an efficient transmission of the inter-domain allosteric signals, consistent with the functional role of p23 in partially inhibiting the ATPase cycle. Unlike p23, Aha1-mediated acceleration of the Hsp90-ATPase cycle may be achieved via modulation of the equilibrium motions that facilitate allosteric changes favoring a closed dimerized form of Hsp90. The results of our study have shown that Aha1 and p23 can modulate the Hsp90

  8. Prediction of new Hsp90 inhibitors based on 3,4-isoxazolediamide scaffold using QSAR study, molecular docking and molecular dynamic simulation.

    Science.gov (United States)

    Abbasi, Maryam; Sadeghi-Aliabadi, Hojjat; Amanlou, Massoud

    2017-06-30

    Heat shock protein90 (Hsp90) are overexpressed in tumor cells, so the inhibition of the Hsp90 ATPase activity would be a significantly effective strategy in cancer therapy. In the current study, 3,4-isoxazolediamide derivatives were suggested as an Hsp90 inhibitor for anti-cancer therapy. Multiple linear regression (MLR) and genetic algorithm of partial least square (GA-PLS) methods were performed to build models to predict the inhibitory activity of Hsp90. The leave-one out (LOO) cross-validation and Y-randomization tests were performed to models' validation. The new ligands were monitored by applicability domain. Molecular docking studies were also conducted to evaluate the mode of interaction of these compounds with Hsp90. Identification of the likely pathways into the active site pocket and the involved residues were performed by CAVAER 3.0.1 software. According to QSAR models and docking analysis, three new compounds were predicted. 50 ns molecular dynamic simulation was performed for the strongest synthesized compound and the best predicted compound in terms of binding energy and interactions between ligand and protein. The made models showed the significance of size, shape, symmetry, and branching of molecules in inhibitory activities of Hsp90. Docking studies indicated that two hydroxyl groups in the resorcinol ring were important in interacting with Asp93 and the orientation of these groups was related to substitution of different R1 groups. Comparing of molecular dynamic simulation (MDs) results shows that new compound perched in active site with lower binding energy than the best synthesized compound. The QSAR and docking analyses shown to be beneficial tools in the proposal of anti-cancer activities and a leader to the synthesis of new Hsp90 inhibitors based 3,4-isoxazolediamide. The MDs confirmed that predicted ligand is steady in the Hsp90 active sites.

  9. Search for Hsp90 inhibitors with potential anticancer activity: isolation and SAR studies of radicicol and monocillin I from two plant-associated fungi of the Sonoran desert.

    Science.gov (United States)

    Turbyville, Thomas J; Wijeratne, E M Kithsiri; Liu, Manping X; Burns, Anna M; Seliga, Christopher J; Luevano, Libia A; David, Cynthia L; Faeth, Stanley H; Whitesell, Luke; Gunatilaka, A A Leslie

    2006-02-01

    In an effort to discover small molecule inhibitors of Hsp90, we have screened over 500 EtOAc extracts of Sonoran desert plant-associated fungi using a two-stage strategy consisting of a primary cell-based heat shock induction assay (HSIA) followed by a secondary biochemical luciferase refolding assay (LRA). Bioassay-guided fractionation of extracts active in these assays derived from Chaetomium chiversii and Paraphaeosphaeria quadriseptata furnished the Hsp90 inhibitors radicicol (1) and monocillin I (2), respectively. In SAR studies, 1, 2, and their analogues, 3-16, were evaluated in these assays, and the antiproliferative activity of compounds active in both assays was determined using the breast cancer cell line MCF-7. Radicicol and monocillin I were also evaluated in a solid-phase competition assay for their ability to bind Hsp90 and to deplete cellular levels of two known Hsp90 client proteins with relevance to breast cancer, estrogen receptor (ER), and the type 1 insulin-like growth factor receptor (IGF-1R). Some inferences on SAR were made considering the crystal structure of the N-terminus of yeast Hsp90 bound to 1 and the observed biological activities of 1-16. Isolation of radicicol and monocillin I in this study provides evidence that we have developed an effective strategy for discovering natural product-based Hsp90 inhibitors with potential anticancer activity.

  10. Low resolution structural studies indicate that the activator of Hsp90 ATPase 1 (Aha1 of Leishmania braziliensis has an elongated shape which allows its interaction with both N- and M-domains of Hsp90.

    Directory of Open Access Journals (Sweden)

    Thiago V Seraphim

    Full Text Available The Hsp90 molecular chaperone is essential for protein homeostasis and in the maturation of proteins involved with cell-cycle control. The low ATPase activity of Hsp90 is critical to drive its functional cycle, which is dependent on the Hsp90 cochaperones. The Activator of Hsp90 ATPase-1 (Aha1 is a protein formed by two domains, N- and C-terminal, that stimulates the Hsp90 ATPase activity by several folds. Although the relevance of Aha1 for Hsp90 functions has been proved, as well as its involvement in the desensitization to inhibitors of the Hsp90, the knowledge on its overall structure and behavior in solution is limited. In this work we present the functional and structural characterization of Leishmania braziliensis Aha1 (LbAha1. This protozoan is the causative agent of cutaneous and mucocutaneous leishmaniasis, a neglected disease. The recombinant LbAha1 behaves as an elongated monomer and is organized into two folded domains interconnected by a flexible linker. Functional experiments showed that LbAha1 interacts with L. braziliensis Hsp90 (LbHsp90 with micromolar dissociation constant in a stoichiometry of 2 LbAha1 to 1 LbHsp90 dimer and stimulates 10-fold the LbHsp90 ATPase activity showing positive cooperativity. Furthermore, the LbHsp90::LbAha1 complex is directed by enthalphy and opposed by entropy, probably due to the spatial freedom restrictions imposed by the proteins' interactions. Small-angle X-ray scattering data allowed the reconstruction of low resolution models and rigid body simulations of LbAha1, indicating its mode of action on LbHsp90. Western blot experiments allowed Aha1 identification (as well as Hsp90 in three Leishmania species at two temperatures, suggesting that Aha1 is a cognate protein. All these data shed light on the LbAha1 mechanism of action, showing that it has structural dimensions and flexibility that allow interacting with both N-terminal and middle domains of the LbHsp90.

  11. Calcium/calmodulin kinase1 and its relation to thermotolerance and HSP90 in Sporothrix schenckii: an RNAi and yeast two-hybrid study

    Directory of Open Access Journals (Sweden)

    Gonzalez-Mendez Ricardo

    2011-07-01

    Full Text Available Abstract Background Sporothrix schenckii is a pathogenic dimorphic fungus of worldwide distribution. It grows in the saprophytic form with hyaline, regularly septated hyphae and pyriform conidia at 25°C and as the yeast or parasitic form at 35°C. Previously, we characterized a calcium/calmodulin kinase in this fungus. Inhibitors of this kinase were observed to inhibit the yeast cell cycle in S. schenckii. Results The presence of RNA interference (RNAi mechanism in this fungus was confirmed by the identification of a Dicer-1 homologue in S. schenckii DNA. RNAi technology was used to corroborate the role of calcium/calmodulin kinase I in S. schenckii dimorphism. Yeast cells were transformed with the pSilent-Dual2G (pSD2G plasmid w/wo inserts of the coding region of the calcium/calmodulin kinase I (sscmk1 gene. Transformants were selected at 35°C using resistance to geneticin. Following transfer to liquid medium at 35°C, RNAi transformants developed as abnormal mycelium clumps and not as yeast cells as would be expected. The level of sscmk1 gene expression in RNAi transformants at 35°C was less than that of cells transformed with the empty pSD2G at this same temperature. Yeast two-hybrid analysis of proteins that interact with SSCMK1 identified a homologue of heat shock protein 90 (HSP90 as interacting with this kinase. Growth of the fungus similar to that of the RNAi transformants was observed in medium with geldanamycin (GdA, 10 μM, an inhibitor of HSP90. Conclusions Using the RNAi technology we silenced the expression of sscmk1 gene in this fungus. RNAi transformants were unable to grow as yeast cells at 35°C showing decreased tolerance to this temperature. The interaction of SSCMK1 with HSP90, observed using the yeast two-hybrid assay suggests that this kinase is involved in thermotolerance through its interaction with HSP90. SSCMK1 interacted with the C terminal domain of HSP90 where effector proteins and co-chaperones interact. These

  12. Molecular mechanisms of canalization: Hsp90 and beyond

    Indian Academy of Sciences (India)

    Madhu Sudhan

    2007-03-26

    Mar 26, 2007 ... action is supported by a recent study in Saccharomyces cerevisiae, which investigated Hsp90's ... growth conditions including temperature on phenotype in diverse organisms have been widely reported (Durrant ..... Saccharomyces cerevisiae Hsp90 chaperone; Proc. Natl. Acad. Sci. USA 94 12949–12956.

  13. RET is a heat shock protein 90 (HSP90) client protein and is knocked down upon HSP90 pharmacological block.

    Science.gov (United States)

    Alfano, Luigi; Guida, Teresa; Provitera, Livia; Vecchio, Giancarlo; Billaud, Marc; Santoro, Massimo; Carlomagno, Francesca

    2010-07-01

    Mutations of the RET receptor tyrosine kinase are associated to multiple endocrine neoplasia type 2 (MEN2) and sporadic medullary thyroid carcinoma (MTC). The heat shock protein (HSP) 90 chaperone is required for folding and stability of several kinases. HSP90 is specifically inhibited by 17-allyl-amino-17-demethoxygeldanamycin (17-AAG). Our aim was to investigate whether RET protein half-life depends on HSP90 and to dissect the molecular pathway responsible for the degradation of RET upon HSP90 inhibition by 17-AAG. 17-AAG effects were studied in RAT1 fibroblasts exogenously expressing MEN2-associated RET mutants and human MTC-derived cell lines. 17-AAG induced a 26S proteasome-dependent degradation of wild-type RET and MEN2-associated RET mutants. The compound hampered HSP90/RET interaction and stabilized RET binding to HSP70, leading to the recruitment of the HSP70-associated E3 ligase C-terminus of Hsc70-interacting protein. In turn, C-terminus of Hsc70-interacting protein polyubiquitinated RET, promoting its proteasomal degradation. 17-AAG blocked RET downstream effectors and RET-dependent transcriptional activation of gene promoters. In human MTC cells carrying oncogenic RET mutants, HSP90 inhibition induced receptor degradation and signaling hindrance leading to cell cycle arrest. RET and MEN2-associated RET mutants rely on HSP90 for protein stability, and HSP90 blockade by 17-AAG promotes RET degradation.

  14. Role of oxidative stress in Geldanamycin-induced cytotoxicity and disruption of Hsp90 signaling complex

    OpenAIRE

    Clark, Christina B.; Rane, Madhavi J.; Mehdi, Delphine El; Miller, Cynthia J; Sachleben, Leroy R.; Gozal, Evelyne

    2009-01-01

    Heat shock protein 90 (Hsp90) is a chaperone protein regulating PC-12 cell survival by binding and stabilizing Akt, Raf-1, and Cdc37. Hsp90 inhibitor Geldanamycin (GA) cytotoxicity has been attributed to disruption of Hsp90 binding, and the contribution of oxidative stress generated by its quinone group has not been studied in this context.

  15. Evidence of a Cell Surface Role for Hsp90 Complex Proteins Mediating Neuroblast Migration in the Subventricular Zone

    Directory of Open Access Journals (Sweden)

    Leo M. Miyakoshi

    2017-05-01

    Full Text Available In most mammalian brains, the subventricular zone (SVZ is a germinative layer that maintains neurogenic activity throughout adulthood. Neuronal precursors arising from this region migrate through the rostral migratory stream (RMS and reach the olfactory bulbs where they differentiate and integrate into the local circuitry. Recently, studies have shown that heat shock proteins have an important role in cancer cell migration and blocking Hsp90 function was shown to hinder cell migration in the developing cerebellum. In this work, we hypothesize that chaperone complexes may have an important function regulating migration of neuronal precursors from the subventricular zone. Proteins from the Hsp90 complex are present in the postnatal SVZ as well as in the RMS. Using an in vitro SVZ explant model, we have demonstrated the expression of Hsp90 and Hop/STI1 by migrating neuroblasts. Treatment with antibodies against Hsp90 and co-chaperone Hop/STI1, as well as Hsp90 and Hsp70 inhibitors hinder neuroblast chain migration. Time-lapse videomicroscopy analysis revealed that cell motility and average migratory speed was decreased after exposure to both antibodies and inhibitors. Antibodies recognizing Hsp90, Hsp70, and Hop/STI1 were found bound to the membranes of cells from primary SVZ cultures and biotinylation assays demonstrated that Hsp70 and Hop/STI1 could be found on the external leaflet of neuroblast membranes. The latter could also be detected in conditioned medium samples obtained from cultivated SVZ cells. Our results suggest that chaperones Hsp90, Hsp70, and co-chaperone Hop/STI1, components of the Hsp90 complex, regulate SVZ neuroblast migration in a concerted manner through an extracellular mechanism.

  16. The HSP90 complex of plants.

    Science.gov (United States)

    Kadota, Yasuhiro; Shirasu, Ken

    2012-03-01

    Heat shock protein 90 (HSP90) is a highly conserved and essential molecular chaperone involved in maturation and activation of signaling proteins in eukaryotes. HSP90 operates as a dimer in a conformational cycle driven by ATP binding and hydrolysis. HSP90 often functions together with co-chaperones that regulate the conformational cycle and/or load a substrate "client" protein onto HSP90. In plants, immune sensing NLR (nucleotide-binding domain and leucine-rich repeat containing) proteins are among the few known client proteins of HSP90. In the process of chaperoning NLR proteins, co-chaperones, RAR1 and SGT1 function together with HSP90. Recent structural and functional analyses indicate that RAR1 dynamically controls conformational changes of the HSP90 dimer, allowing SGT1 to bridge the interaction between NLR proteins and HSP90. Here, we discuss the regulation of NLR proteins by HSP90 upon interaction with RAR1 and SGT1, emphasizing the recent progress in our understanding of the structure and function of the complex. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90). Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Tissue-specific induction of Hsp90 mRNA and plasma cortisol response in chinook salmon following heat shock, seawater challenge, and handling challenge

    Science.gov (United States)

    Palmisano, Aldo N.; Winton, J.R.; Dickhoff, Walton W.

    2000-01-01

    In studying the whole-body response of chinook salmon (Oncorhynchus tshawytscha) to various stressors, we found that 5-hour exposure to elevated temperature (mean 21.6??C; + 10.6??C over ambient) induced a marked increase in Hsp90 messenger RNA accumulation in heart, brain, gill, muscle, liver, kidney, and tail fin tissues. The most vital tissues (heart, brain, gill, and muscle) showed the greatest Hsp90-mRNA response, with heart tissue increasing approximately 35-fold, Heat shock induced no increase in plasma cortisol. In contrast, a standard handling challenge induced high plasma cortisol levels, but no elevation in Hsp90 mRNA in any tissue, clearly separating the physiological and cellular stress responses. We saw no increase either in tissue Hsp90 mRNA levels or in plasma cortisol concentrations after exposing the fish to seawater overnight.

  18. The Double-Edged Sword: Conserved Functions of Extracellular Hsp90 in Wound Healing and Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hance, Michael W.; Nolan, Krystal D.; Isaacs, Jennifer S., E-mail: isaacsj@musc.edu [Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Hollings Cancer Center, Charleston, SC 29412 (United States)

    2014-05-06

    Heat shock proteins (Hsps) represent a diverse group of chaperones that play a vital role in the protection of cells against numerous environmental stresses. Although our understanding of chaperone biology has deepened over the last decade, the “atypical” extracellular functions of Hsps have remained somewhat enigmatic and comparatively understudied. The heat shock protein 90 (Hsp90) chaperone is a prototypic model for an Hsp family member exhibiting a duality of intracellular and extracellular functions. Intracellular Hsp90 is best known as a master regulator of protein folding. Cancers are particularly adept at exploiting this function of Hsp90, providing the impetus for the robust clinical development of small molecule Hsp90 inhibitors. However, in addition to its maintenance of protein homeostasis, Hsp90 has also been identified as an extracellular protein. Although early reports ascribed immunoregulatory functions to extracellular Hsp90 (eHsp90), recent studies have illuminated expanded functions for eHsp90 in wound healing and cancer. While the intended physiological role of eHsp90 remains enigmatic, its evolutionarily conserved functions in wound healing are easily co-opted during malignancy, a pathology sharing many properties of wounded tissue. This review will highlight the emerging functions of eHsp90 and shed light on its seemingly dichotomous roles as a benevolent facilitator of wound healing and as a sinister effector of tumor progression.

  19. The Double-Edged Sword: Conserved Functions of Extracellular Hsp90 in Wound Healing and Cancer

    Directory of Open Access Journals (Sweden)

    Michael W. Hance

    2014-05-01

    Full Text Available Heat shock proteins (Hsps represent a diverse group of chaperones that play a vital role in the protection of cells against numerous environmental stresses. Although our understanding of chaperone biology has deepened over the last decade, the “atypical” extracellular functions of Hsps have remained somewhat enigmatic and comparatively understudied. The heat shock protein 90 (Hsp90 chaperone is a prototypic model for an Hsp family member exhibiting a duality of intracellular and extracellular functions. Intracellular Hsp90 is best known as a master regulator of protein folding. Cancers are particularly adept at exploiting this function of Hsp90, providing the impetus for the robust clinical development of small molecule Hsp90 inhibitors. However, in addition to its maintenance of protein homeostasis, Hsp90 has also been identified as an extracellular protein. Although early reports ascribed immunoregulatory functions to extracellular Hsp90 (eHsp90, recent studies have illuminated expanded functions for eHsp90 in wound healing and cancer. While the intended physiological role of eHsp90 remains enigmatic, its evolutionarily conserved functions in wound healing are easily co-opted during malignancy, a pathology sharing many properties of wounded tissue. This review will highlight the emerging functions of eHsp90 and shed light on its seemingly dichotomous roles as a benevolent facilitator of wound healing and as a sinister effector of tumor progression.

  20. Molecular cloning and characterization of the full-length Hsp90 gene from Matricaria recutita.

    Science.gov (United States)

    Ling, S P; Su, S S; Zhang, H M; Zhang, X S; Liu, X Y; Pan, G F; Yuan, Y

    2014-12-19

    Heat shock protein 90 (Hsp90) is one of the most abundant and conserved chaperone proteins and plays important roles in plant growth and responses to environmental stimuli. However, little is known regarding the sequence and function of Hsp90s in Matricaria recutita. In the present study, we cloned the full-length cDNA sequence of the hsp90 gene from this species. Using rapid amplification of cDNA ends technologies with 2 degenerate primers that were designed based on the hsp90 gene sequence from other members of Asteraceae, we isolated and characterized an Hsp90 homolog gene from M. recutita (Mr-Hsp90). The full-length Mr-hsp90 cDNA sequence, containing 2097 base pairs, encodes a protein of 698 amino acids. Based on amino acid sequence identity, Mr-Hsp90 showed high similarity to other cloned Hsp90 proteins. The Mr-Hsp90 protein was closely clustered with the Lactuca sativa in a phylogenetic tree. These results indicate that the cloned sequence of Mr-Hsp90 is a member of the Hsp90 family, which is reported for the first time in M. recutita. Next, we conducted a salt stress experiment to determine the protein's function under salt stress conditions. Survival of chamomile seedlings subjected to heat-shock pretreatment was significantly increased compared with groups that had not undergone heat-shock pretreatment in a salt stress environment. This indicates that Mr-Hsp90 plays an important role in the salt resistance of chamomile seedlings.

  1. Multiple Conformations of E. Coli Hsp90 in Solution: Insights Into the Conformational Dynamics of Hsp90

    Energy Technology Data Exchange (ETDEWEB)

    Krukenberg, K.A.; Forster, F.; Rice, L.M.; Sali, A.; Agard, D.A.

    2009-05-20

    Hsp90, an essential eukaryotic chaperone, depends upon its intrinsic ATPase activity for function. Crystal structures of the bacterial Hsp90 homolog, HtpG, and the yeast Hsp90 reveal large domain rearrangements between the nucleotide-free and the nucleotide-bound forms. We used small-angle X-ray scattering and recently developed molecular modeling methods to characterize the solution structure of HtpG and demonstrate how it differs from known Hsp90 conformations. In addition to this HtpG conformation, we demonstrate that under physiologically relevant conditions, multiple conformations coexist in equilibrium. In solution, nucleotide-free HtpG adopts a more extended conformation than observed in the crystal, and upon the addition of AMPPNP, HtpG is in equilibrium between this open state and a closed state that is in good agreement with the yeast AMPPNP crystal structure. These studies provide a unique view of Hsp90 conformational dynamics and provide a model for the role of nucleotide in effecting conformational change.

  2. NLR sensors meet at the SGT1-HSP90 crossroad.

    Science.gov (United States)

    Kadota, Yasuhiro; Shirasu, Ken; Guerois, Raphaël

    2010-04-01

    The NLR (nucleotide-binding domain and leucine-rich repeat containing) proteins provide pathogen-sensing systems that are conserved in both plants and animals. They can be activated directly or indirectly by pathogen-derived molecules through mechanisms that remain largely elusive. Studies in plants revealed that the molecular chaperone, HSP90, and its co-chaperones, SGT1 and RAR1, are major stabilizing factors for NLR proteins. More recent work indicates that SGT1 and HSP90 are also required for the function of NLR proteins in mammals, underscoring the evolutionary conservation of innate immune system regulatory mechanisms. Comparative analyses of plant and mammalian NLR proteins, together with recent insights provided by the structure of SGT1-HSP90 complex, have begun to uncover the mechanisms by which immune NLR sensors are regulated. 2009 Elsevier Ltd. All rights reserved.

  3. Extracellular Hsp90 as a Novel Epigenetic of EMT and Metastatic Risk in Prostate Cancer

    Science.gov (United States)

    2015-12-01

    cadherin can also stimulate Wnt activation, and lead to EMT events, we also utilized CRISPR technology to downregulate E-cadherin (Task 3b). Although this...studies also suggest that eHsp90 may enhance the stem-like cell diversity existing within populations, which would be predicted to further confound...reported that secreted extracellular Hsp90 (eHsp90) initiates EMT in prostate cancer cells, coincident with its enhanced expression in mesenchymal models

  4. Targeting Hsp90 in urothelial carcinoma

    Science.gov (United States)

    Skotnicki, Kamil; Landas, Steve; Bratslavsky, Gennady; Bourboulia, Dimitra

    2015-01-01

    Urothelial carcinoma, or transitional cell carcinoma, is the most common urologic malignancy that carries significant morbidity, mortality, recurrence risk and associated health care costs. Despite use of current chemotherapies and immunotherapies, long-term remission in patients with muscle-invasive or metastatic disease remains low, and disease recurrence is common. The molecular chaperone Heat Shock Protein-90 (Hsp90) may offer an ideal treatment target, as it is a critical signaling hub in urothelial carcinoma pathogenesis and potentiates chemoradiation. Preclinical testing with Hsp90 inhibitors has demonstrated reduced proliferation, enhanced apoptosis and synergism with chemotherapies and radiation. Despite promising preclinical data, clinical trials utilizing Hsp90 inhibitors for other malignancies had modest efficacy. Therefore, we propose that Hsp90 inhibition would best serve as an adjuvant treatment in advanced muscle-invasive or metastatic bladder cancers to potentiate other therapies. An overview of bladder cancer biology, current treatments, molecular targeted therapies, and the role for Hsp90 inhibitors in the treatment of urothelial carcinoma is the focus of this review. PMID:25909217

  5. Antiviral evaluation of an Hsp90 inhibitor, gedunin, against dengue ...

    African Journals Online (AJOL)

    conducted to evaluate the inhibitory potential of gedunin against DENV-2 replicon in cell culture. Further, molecular docking was performed in order to investigate the possible interaction of gedunin with Hsp90. The results of this study will aid in the development of more effective therapeutics to treat dengue virus infections.

  6. The Hsp70/Hsp90 Chaperone Machinery in Neurodegenerative Diseases

    Science.gov (United States)

    Lackie, Rachel E.; Maciejewski, Andrzej; Ostapchenko, Valeriy G.; Marques-Lopes, Jose; Choy, Wing-Yiu; Duennwald, Martin L.; Prado, Vania F.; Prado, Marco A. M.

    2017-01-01

    The accumulation of misfolded proteins in the human brain is one of the critical features of many neurodegenerative diseases, including Alzheimer's disease (AD). Assembles of beta-amyloid (Aβ) peptide—either soluble (oligomers) or insoluble (plaques) and of tau protein, which form neurofibrillary tangles, are the major hallmarks of AD. Chaperones and co-chaperones regulate protein folding and client maturation, but they also target misfolded or aggregated proteins for refolding or for degradation, mostly by the proteasome. They form an important line of defense against misfolded proteins and are part of the cellular quality control system. The heat shock protein (Hsp) family, particularly Hsp70 and Hsp90, plays a major part in this process and it is well-known to regulate protein misfolding in a variety of diseases, including tau levels and toxicity in AD. However, the role of Hsp90 in regulating protein misfolding is not yet fully understood. For example, knockdown of Hsp90 and its co-chaperones in a Caenorhabditis elegans model of Aβ misfolding leads to increased toxicity. On the other hand, the use of Hsp90 inhibitors in AD mouse models reduces Aβ toxicity, and normalizes synaptic function. Stress-inducible phosphoprotein 1 (STI1), an intracellular co-chaperone, mediates the transfer of clients from Hsp70 to Hsp90. Importantly, STI1 has been shown to regulate aggregation of amyloid-like proteins in yeast. In addition to its intracellular function, STI1 can be secreted by diverse cell types, including astrocytes and microglia and function as a neurotrophic ligand by triggering signaling via the cellular prion protein (PrPC). Extracellular STI1 can prevent Aβ toxic signaling by (i) interfering with Aβ binding to PrPC and (ii) triggering pro-survival signaling cascades. Interestingly, decreased levels of STI1 in C. elegans can also increase toxicity in an amyloid model. In this review, we will discuss the role of intracellular and extracellular STI1 and the

  7. The Hsp70/Hsp90 Chaperone Machinery in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Rachel E. Lackie

    2017-05-01

    Full Text Available The accumulation of misfolded proteins in the human brain is one of the critical features of many neurodegenerative diseases, including Alzheimer's disease (AD. Assembles of beta-amyloid (Aβ peptide—either soluble (oligomers or insoluble (plaques and of tau protein, which form neurofibrillary tangles, are the major hallmarks of AD. Chaperones and co-chaperones regulate protein folding and client maturation, but they also target misfolded or aggregated proteins for refolding or for degradation, mostly by the proteasome. They form an important line of defense against misfolded proteins and are part of the cellular quality control system. The heat shock protein (Hsp family, particularly Hsp70 and Hsp90, plays a major part in this process and it is well-known to regulate protein misfolding in a variety of diseases, including tau levels and toxicity in AD. However, the role of Hsp90 in regulating protein misfolding is not yet fully understood. For example, knockdown of Hsp90 and its co-chaperones in a Caenorhabditis elegans model of Aβ misfolding leads to increased toxicity. On the other hand, the use of Hsp90 inhibitors in AD mouse models reduces Aβ toxicity, and normalizes synaptic function. Stress-inducible phosphoprotein 1 (STI1, an intracellular co-chaperone, mediates the transfer of clients from Hsp70 to Hsp90. Importantly, STI1 has been shown to regulate aggregation of amyloid-like proteins in yeast. In addition to its intracellular function, STI1 can be secreted by diverse cell types, including astrocytes and microglia and function as a neurotrophic ligand by triggering signaling via the cellular prion protein (PrPC. Extracellular STI1 can prevent Aβ toxic signaling by (i interfering with Aβ binding to PrPC and (ii triggering pro-survival signaling cascades. Interestingly, decreased levels of STI1 in C. elegans can also increase toxicity in an amyloid model. In this review, we will discuss the role of intracellular and extracellular

  8. Hsp90 inhibitors exhibit resistance-free antiviral activity against respiratory syncytial virus.

    Directory of Open Access Journals (Sweden)

    Ron Geller

    Full Text Available Respiratory syncytial virus (RSV is a major cause of respiratory illness in young children, leading to significant morbidity and mortality worldwide. Despite its medical importance, no vaccine or effective therapeutic interventions are currently available. Therefore, there is a pressing need to identify novel antiviral drugs to combat RSV infections. Hsp90, a cellular protein-folding factor, has been shown to play an important role in the replication of numerous viruses. We here demonstrate that RSV requires Hsp90 for replication. Mechanistic studies reveal that inhibition of Hsp90 during RSV infection leads to the degradation of a viral protein similar in size to the RSV L protein, the viral RNA-dependent RNA polymerase, implicating it as an Hsp90 client protein. Accordingly, Hsp90 inhibitors exhibit antiviral activity against laboratory and clinical isolates of RSV in both immortalized as well as primary differentiated airway epithelial cells. Interestingly, we find a high barrier to the emergence of drug resistance to Hsp90 inhibitors, as extensive growth of RSV under conditions of Hsp90 inhibition did not yield mutants with reduced sensitivity to these drugs. Our results suggest that Hsp90 inhibitors may present attractive antiviral therapeutics for treatment of RSV infections and highlight the potential of chaperone inhibitors as antivirals exhibiting high barriers to development of drug resistance.

  9. The regulatory mechanism of Hsp90{alpha} secretion from endothelial cells and its role in angiogenesis during wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiaomin [National Engineering Laboratory for Anti-tumor Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084 (China); Luo, Yongzhang, E-mail: yluo@tsinghua.edu.cn [National Engineering Laboratory for Anti-tumor Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084 (China)

    2010-07-16

    Research highlights: {yields} Growth factors such as bFGF, VEGF, PDGF and SDF-1 stimulate Hsp90{alpha} secretion from endothelial cells. {yields} Secreted Hsp90{alpha} localizes on the leading edge of activated endothelial cells. {yields} Secreted Hsp90{alpha} promotes angiogenesis in wound healing. -- Abstract: Heat shock protein 90{alpha} (Hsp90{alpha}) is a ubiquitously expressed molecular chaperone, which is essential for the maintenance of eukaryote homeostasis. Hsp90{alpha} can also be secreted extracellularly and is associated with several physiological and pathological processes including wound healing, cancer, infectious diseases and diabetes. Angiogenesis, defined as the sprouting of new blood vessels from pre-existing capillaries via endothelial cell proliferation and migration, commonly occurs in and contributes to the above mentioned processes. However, the secretion of Hsp90{alpha} from endothelial cells and also its function in angiogenesis are still unclear. Here we investigated the role of extracellular Hsp90{alpha} in angiogenesis using dermal endothelial cells in vitro and a wound healing model in vivo. We find that the secretion of Hsp90{alpha} but not Hsp90{beta} is increased in activated endothelial cells with the induction of angiogenic factors and matrix proteins. Secreted Hsp90{alpha} localizes on the leading edge of endothelial cells and promotes their angiogenic activities, whereas Hsp90{alpha} neutralizing antibodies reverse the effect. Furthermore, using a mouse skin wound healing model in vivo, we demonstrate that extracellular Hsp90{alpha} localizes on blood vessels in granulation tissues of wounded skin and promotes angiogenesis during wound healing. Taken together, our study reveals that Hsp90{alpha} can be secreted by activated endothelial cells and is a positive regulator of angiogenesis, suggesting the potential application of Hsp90{alpha} as a stimulator for wound repair.

  10. Molecular mechanisms of canalization: Hsp90 and beyond

    Indian Academy of Sciences (India)

    2006-03-26

    ' proteins. Many of these Hsp90 clients are essential nodes in signal transduction pathways and regulatory circuits, accounting for the important role Hsp90 plays in organismal development and responses to the environment.

  11. Sulforaphane inhibits pancreatic cancer through disrupting Hsp90-p50(Cdc37) complex and direct interactions with amino acids residues of Hsp90.

    Science.gov (United States)

    Li, Yanyan; Karagöz, G Elif; Seo, Young Ho; Zhang, Tao; Jiang, Yiqun; Yu, Yanke; Duarte, Afonso M S; Schwartz, Steven J; Boelens, Rolf; Carroll, Kate; Rüdiger, Stefan G D; Sun, Duxin

    2012-12-01

    Sulforaphane [1-isothiocyanato-4-(methyl-sulfinyl) butane)], an isothiocyanate derived from cruciferous vegetables, has been shown to possess potent chemopreventive activity. We analyzed the effect of sulforaphane on the proliferation of pancreatic cancer cells. Sulforaphane inhibited pancreatic cancer cell growth in vitro with IC(50)s of around 10-15 μM and induced apoptosis. In pancreatic cancer xenograft mouse model, administration of sulforaphane showed remarkable inhibition of tumor growth without apparent toxicity noticed. We found that sulforaphane induced the degradation of heat shock protein 90 (Hsp90) client proteins and blocked the interaction of Hsp90 with its cochaperone p50(Cdc37) in pancreatic cancer cells. Using nuclear magnetic resonance spectroscopy (NMR) with an isoleucine-specific labeling strategy, we overcame the protein size limit of conventional NMR and studied the interaction of sulforaphane with full-length Hsp90 dimer (170 kDa) in solution. NMR revealed multiple chemical shifts in sheet 2 and the adjacent loop in Hsp90 N-terminal domain after incubation of Hsp90 with sulforaphane. Liquid chromatography coupled to mass spectrometry further mapped a short peptide in this region that was tagged with sulforaphane. These data suggest a new mechanism of sulforaphane that disrupts protein-protein interaction in Hsp90 complex for its chemopreventive activity. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Sulforaphane inhibits pancreatic cancer through disrupting Hsp90-p50Cdc37 complex and direct interactions with amino acids residues of Hsp90

    Science.gov (United States)

    Li, Yanyan; Karagöz, G. Elif; Seo, Young Ho; Zhang, Tao; Jiang, Yiqun; Yu, Yanke; Duarte, Afonso M.S.; Schwartz, Steven J.; Boelens, Rolf; Carroll, Kate; Rüdiger, Stefan G. D.; Sun, Duxin

    2011-01-01

    Sulforaphane [1-isothiocyanato-4-(methyl-sulfinyl) butane)], an isothiocyanate derived from cruciferous vegetables, has been shown to possess potent chemopreventive activity. We analyzed the effect of sulforaphane on the proliferation of pancreatic cancer cells. Sulforaphane inhibited pancreatic cancer cell growth in vitro with the IC50's around 10-15 μM and induced apoptosis. In pancreatic cancer xenograft mouse model, administration of sulforaphane showed remarkable inhibition of tumor growth without apparent toxicity noticed. We found that sulforaphane induced the degradation of heat shock protein 90 (Hsp90) client proteins and blocked the interaction of Hsp90 with its cochaperone p50Cdc37 in pancreatic cancer cells. Using Nuclear Magnetic Resonance Spectroscopy (NMR) with an isoleucine-specific labeling strategy, we overcame the protein size limit of conventional NMR and studied the interaction of sulforaphane with full-length Hsp90 dimer (170 kDa) in solution. NMR revealed multiple chemical shifts in sheet 2 and the adjacent loop in Hsp90 N-terminal domain after incubation of Hsp90 with sulforaphane. Liquid Chromatography coupled to Mass Spectrometry (LC-MS) further mapped a short peptide in this region that was tagged with sulforaphane. These data suggest a new mechanism of sulforaphane that disrupts protein-protein interaction in Hsp90 complex for its chemopreventive activity. PMID:22444872

  13. Hsp90 and FKBP51: complex regulators of psychiatric diseases.

    Science.gov (United States)

    Criado-Marrero, Marangelie; Rein, Theo; Binder, Elisabeth B; Porter, James T; Koren, John; Blair, Laura J

    2018-01-19

    Mood disorders affect nearly a quarter of the world's population. Therefore, understanding the molecular mechanisms underlying these conditions is of great importance. FK-506 binding protein 5 (FKBP5) encodes the FKBP51 protein, a heat shock protein 90 kDa (Hsp90) co-chaperone, and is a risk factor for several affective disorders. FKBP51, in coordination with Hsp90, regulates glucocorticoid receptor (GR) activity via a short negative feedback loop. This signalling pathway rapidly restores homeostasis in the hypothalamic-pituitary-adrenal (HPA) axis following stress. Expression of FKBP5 increases with age through reduced DNA methylation. High levels of FKBP51 are linked to GR resistance and reduced stress coping behaviour. Moreover, common allelic variants in the FKBP5 gene are associated with increased risk of developing affective disorders like anxiety, depression and post-traumatic stress disorder (PTSD). This review highlights the current understanding of the Hsp90 co-chaperone, FKBP5, in disease from both human and animal studies. In addition, FKBP5 genetic implications in the clinic involving life stress exposure, gender differences and treatment outcomes are discussed.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'. © 2017 The Author(s).

  14. Little effect of HSP90 inhibition on the quantitative wing traits variation in Drosophila melanogaster.

    Science.gov (United States)

    Takahashi, Kazuo H

    2017-02-01

    Drosophila wings have been a model system to study the effect of HSP90 on quantitative trait variation. The effect of HSP90 inhibition on environmental buffering of wing morphology varies among studies while the genetic buffering effect of it was examined in only one study and was not detected. Variable results so far might show that the genetic background influences the environmental and genetic buffering effect of HSP90. In the previous studies, the number of the genetic backgrounds used is limited. To examine the effect of HSP90 inhibition with a larger number of genetic backgrounds than the previous studies, 20 wild-type strains of Drosophila melanogaster were used in this study. Here I investigated the effect of HSP90 inhibition on the environmental buffering of wing shape and size by assessing within-individual and among-individual variations, and as a result, I found little or very weak effects on environmental and genetic buffering. The current results suggest that the role of HSP90 as a global regulator of environmental and genetic buffering is limited at least in quantitative traits.

  15. DsHsp90 is involved in the early response of Dunaliella salina to environmental stress.

    Science.gov (United States)

    Wang, Si-Jia; Wu, Ming-Jie; Chen, Xiang-Jun; Jiang, Yan; Yan, Yong-Bin

    2012-01-01

    Heat shock protein 90 (Hsp90) is a molecular chaperone highly conserved across the species from prokaryotes to eukaryotes. Hsp90 is essential for cell viability under all growth conditions and is proposed to act as a hub of the signaling network and protein homeostasis of the eukaryotic cells. By interacting with various client proteins, Hsp90 is involved in diverse physiological processes such as signal transduction, cell mobility, heat shock response and osmotic stress response. In this research, we cloned the dshsp90 gene encoding a polypeptide composed of 696 amino acids from the halotolerant unicellular green algae Dunaliella salina. Sequence alignment indicated that DsHsp90 belonged to the cytosolic Hsp90A family. Further biophysical and biochemical studies of the recombinant protein revealed that DsHsp90 possessed ATPase activity and existed as a dimer with similar percentages of secondary structures to those well-studied Hsp90As. Analysis of the nucleotide sequence of the cloned genomic DNA fragment indicated that dshsp90 contained 21 exons interrupted by 20 introns, which is much more complicated than the other plant hsp90 genes. The promoter region of dshsp90 contained putative cis-acting stress responsive elements and binding sites of transcriptional factors that respond to heat shock and salt stress. Further experimental research confirmed that dshsp90 was upregulated quickly by heat and salt shock in the D. salina cells. These findings suggested that dshsp90 might serve as a component of the early response system of the D. salina cells against environmental stresses.

  16. DsHsp90 Is Involved in the Early Response of Dunaliella salina to Environmental Stress†

    Science.gov (United States)

    Wang, Si-Jia; Wu, Ming-Jie; Chen, Xiang-Jun; Jiang, Yan; Yan, Yong-Bin

    2012-01-01

    Heat shock protein 90 (Hsp90) is a molecular chaperone highly conserved across the species from prokaryotes to eukaryotes. Hsp90 is essential for cell viability under all growth conditions and is proposed to act as a hub of the signaling network and protein homeostasis of the eukaryotic cells. By interacting with various client proteins, Hsp90 is involved in diverse physiological processes such as signal transduction, cell mobility, heat shock response and osmotic stress response. In this research, we cloned the dshsp90 gene encoding a polypeptide composed of 696 amino acids from the halotolerant unicellular green algae Dunaliella salina. Sequence alignment indicated that DsHsp90 belonged to the cytosolic Hsp90A family. Further biophysical and biochemical studies of the recombinant protein revealed that DsHsp90 possessed ATPase activity and existed as a dimer with similar percentages of secondary structures to those well-studied Hsp90As. Analysis of the nucleotide sequence of the cloned genomic DNA fragment indicated that dshsp90 contained 21 exons interrupted by 20 introns, which is much more complicated than the other plant hsp90 genes. The promoter region of dshsp90 contained putative cis-acting stress responsive elements and binding sites of transcriptional factors that respond to heat shock and salt stress. Further experimental research confirmed that dshsp90 was upregulated quickly by heat and salt shock in the D. salina cells. These findings suggested that dshsp90 might serve as a component of the early response system of the D. salina cells against environmental stresses. PMID:22942684

  17. Hsp90 inhibitor celastrol reinstates growth plate angiogenesis in thiram-induced tibial dyschondroplasia.

    Science.gov (United States)

    Nabi, Fazul; Shahzad, Muhammad; Liu, Jingying; Li, Kun; Han, Zhaoqing; Zhang, Ding; Iqbal, Muhammad Kashif; Li, Jiakui

    2016-01-01

    Tibial dyschondroplasia (TD) is an important long bone defect of broiler chickens that disturbs the proximal growth plate and is characterized by non-vascularized cartilage, a distended growth plate and lameness. Celastrol, a medicinal root extract from the plant Tripterygium wilfordii, is reported widely as a well-known heat-shock protein 90 (Hsp90) inhibitor. Recently, Hsp90 inhibition in chondrocyte differentiation and growth-plate vascularization were effective in restoring the morphology of the growth plate. The present study was aimed at investigating Hsp90 inhibition in TD using celastrol. The broiler chicks were divided into three groups; Control; TD induced (40 mg/kg thiram) and celastrol treatment. Hsp90, vascular endothelial growth factor and Flk-1 expressions were evaluated by quantitative real-time polymerase chain reaction and the protein levels of Hsp90 were measured by Western blot analysis. Antioxidant enzymes were determined to assess the liver damage caused by thiram and the protective effects of the medicine were evaluated by levels of serum biomarkers. The expression levels of Hsp90 and vascular endothelial growth factor mRNA transcripts were increased while Flk-1 receptor was decreased in TD-affected chicks. Celastrol therapy inhibited Hsp90 mRNA and protein levels and up-regulated the expressions of receptor Flk-1 in TD-affected tibial growth plates significantly (P thiram on the liver by decreasing the levels of aspartate aminotransferase, alanine aminotransferase and malondialdehyde and correcting the oxidative imbalance. In conclusion, administering celastrol to dyschondroplastic chicks prevented un-vascularized growth plate, lameness and reinstated angiogenesis. Celastrol may be efficacious for the treatment of TD through the inhibition of Hsp90 expression and limiting the liver damage caused by thiram in broiler chickens.

  18. HSP-90 expression as a predictor of response to radiotherapy in head and neck cancer patients.

    Science.gov (United States)

    García Lorenzo, Jacinto; León Vintró, Xavier; Camacho Pérez de Madrid, Mercedes

    2016-01-01

    HSP-90 is an intracellular protein that protects the cell from environmental stress situations. The overexpression of HSP-90 isoforms could serve as a mechanism of resistance to radiotherapy for tumour cells. We studied this effect in a sample of head and neck tumours. We included 87 patients diagnosed with oral cavity, oropharynx, larynx and hypopharynx tumours. We studied the expression of the HSP-90 isoforms by real-time PCR on pre-treatment biopsy samples. We analysed the relationship between HSP-90 expression levels and local relapse of the tumour with CRT decision trees. The expression levels of the inducible citosolic isoform (HSP90AA) allowed the definition of 2 groups of patients with different rates of local relapse. The group with a low expression level showed a 2.9% local relapse rate, while the group with a high expression level showed a 38.2% rate. Survival curves showed differences in time to local relapse for both groups of patients. These differences did not reach statistical significance. Radiotherapy response was related to expression levels of HSP-90 in a sample of head and neck cancer patients. This result could prove useful in the selection of treatments for this group of patients. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.

  19. A Chemogenomic Screening Platform Used to Identify Chemotypes Perturbing HSP90 Pathways.

    Science.gov (United States)

    Thomas, Fiona M; Goode, Kourtney M; Rajwa, Bartek; Bieberich, Andrew A; Avramova, Larisa V; Hazbun, Tony R; Davisson, V Jo

    2017-07-01

    Compounds that modulate the heat shock protein (HSP) network have potential in a broad range of research applications and diseases. A yeast-based liquid culture assay that measured time-dependent turbidity enabled the high-throughput screening of different Saccharomyces cerevisae strains to identify HSP modulators with unique molecular mechanisms. A focused set of four strains, with differing sensitivities to Hsp90 inhibitors, was used to screen a compound library of 3680 compounds. Computed turbidity curve functions were used to classify strain responses and sensitivity to chemical effects across the compound library. Filtering based on single-strain selectivity identified nine compounds as potential heat shock modulators, including the known Hsp90 inhibitor macbecin. Haploid yeast deletion strains (360), mined from previous Hsp90 inhibitor yeast screens and heat shock protein interaction data, were screened for differential sensitivities to known N-terminal ATP site-directed Hsp90 inhibitors to reveal functional distinctions. Strains demonstrating differential sensitivity (13) to Hsp90 inhibitors were used to prioritize primary screen hit compounds, with NSC145366 emerging as the lead hit. Our follow-up biochemical and functional studies show that NSC145366 directly interacts and inhibits the C-terminus of Hsp90, validating the platform as a powerful approach for early-stage identification of bioactive modulators of heat shock-dependent pathways.

  20. Characterisation of the Plasmodium falciparum Hsp70-Hsp90 organising protein (PfHop).

    Science.gov (United States)

    Gitau, Grace W; Mandal, Pradipta; Blatch, Gregory L; Przyborski, Jude; Shonhai, Addmore

    2012-03-01

    Malaria is caused by Plasmodium species, whose transmission to vertebrate hosts is facilitated by mosquito vectors. The transition from the cold blooded mosquito vector to the host represents physiological stress to the parasite, and additionally malaria blood stage infection is characterised by intense fever periods. In recent years, it has become clear that heat shock proteins play an essential role during the parasite's life cycle. Plasmodium falciparum expresses two prominent heat shock proteins: heat shock protein 70 (PfHsp70) and heat shock protein 90 (PfHsp90). Both of these proteins have been implicated in the development and pathogenesis of malaria. In eukaryotes, Hsp70 and Hsp90 proteins are functionally linked by an essential adaptor protein known as the Hsp70-Hsp90 organising protein (Hop). In this study, recombinant P. falciparum Hop (PfHop) was heterologously produced in E. coli and purified by nickel affinity chromatography. Using specific anti-PfHop antisera, the expression and localisation of PfHop in P. falciparum was investigated. PfHop was shown to co-localise with PfHsp70 and PfHsp90 in parasites at the trophozoite stage. Gel filtration and co-immunoprecipitation experiments suggested that PfHop was present in a complex together with PfHsp70 and PfHsp90. The association of PfHop with both PfHsp70 and PfHsp90 suggests that this protein may mediate the functional interaction between the two chaperones.

  1. Identification of the plant compound geraniin as a novel Hsp90 inhibitor.

    Directory of Open Access Journals (Sweden)

    Antonio Vassallo

    Full Text Available Besides its function in normal cellular growth, the molecular chaperone heat shock protein 90 (Hsp90 binds to a large number of client proteins required for promoting cancer cell growth and/or survival. In an effort to discover new small molecules able to inhibit the Hsp90 ATPase and chaperoning activities, we screened, by a surface plasmon resonance assay, a small library including different plant polyphenols. The ellagitannin geraniin, was identified as the most promising molecule, showing a binding affinity to Hsp90α similar to that of 17-(allylamino-17-demethoxygeldanamycin (17AGG. Geraniin was able to inhibit in vitro the Hsp90α ATPase activity in a dose-dependent manner, with an inhibitory efficiency comparable to that measured for 17-AAG. In addition, this compound compromised the chaperone activity of Hsp90α, monitored by the citrate synthase thermal induced aggregation assay. Geraniin decreased the viability of HeLa and Jurkat cell lines and caused an arrest in G2/M phase. We also proved that following exposure to different concentrations of geraniin, the level of expression of the client proteins c-Raf, pAkt, and EGFR was strongly down-regulated in both the cell lines. These results, along with the finding that geraniin did not exert any appreciable cytotoxicity on normal cells, encourage further studies on this compound as a promising chemical scaffold for the design of new Hsp90 inhibitors.

  2. Mps1 Mediated Phosphorylation of Hsp90 Confers Renal Cell Carcinoma Sensitivity and Selectivity to Hsp90 Inhibitors

    Directory of Open Access Journals (Sweden)

    Mark R. Woodford

    2016-02-01

    Full Text Available The molecular chaperone Hsp90 protects deregulated signaling proteins that are vital for tumor growth and survival. Tumors generally display sensitivity and selectivity toward Hsp90 inhibitors; however, the molecular mechanism underlying this phenotype remains undefined. We report that the mitotic checkpoint kinase Mps1 phosphorylates a conserved threonine residue in the amino-domain of Hsp90. This, in turn, regulates chaperone function by reducing Hsp90 ATPase activity while fostering Hsp90 association with kinase clients, including Mps1. Phosphorylation of Hsp90 is also essential for the mitotic checkpoint because it confers Mps1 stability and activity. We identified Cdc14 as the phosphatase that dephosphorylates Hsp90 and disrupts its interaction with Mps1. This causes Mps1 degradation, thus providing a mechanism for its inactivation. Finally, Hsp90 phosphorylation sensitizes cells to its inhibitors, and elevated Mps1 levels confer renal cell carcinoma selectivity to Hsp90 drugs. Mps1 expression level can potentially serve as a predictive indicator of tumor response to Hsp90 inhibitors.

  3. Sulphoxythiocarbamates modify cysteine residues in HSP90 causing degradation of client proteins and inhibition of cancer cell proliferation.

    Science.gov (United States)

    Zhang, Y; Dayalan Naidu, S; Samarasinghe, K; Van Hecke, G C; Pheely, A; Boronina, T N; Cole, R N; Benjamin, I J; Cole, P A; Ahn, Y-H; Dinkova-Kostova, A T

    2014-01-07

    Heat shock protein 90 (HSP90) has a key role in the maintenance of the cellular proteostasis. However, HSP90 is also involved in stabilisation of oncogenic client proteins and facilitates oncogene addiction and cancer cell survival. The development of HSP90 inhibitors for cancer treatment is an area of growing interest as such agents can affect multiple pathways that are linked to all hallmarks of cancer. This study aimed to test the hypothesis that targeting cysteine residues of HSP90 will lead to degradation of client proteins and inhibition of cancer cell proliferation. Combining chemical synthesis, biological evaluation, and structure-activity relationship analysis, we identified a new class of HSP90 inhibitors. Click chemistry and protease-mass spectrometry established the sites of modification of the chaperone. The mildly electrophilic sulphoxythiocarbamate alkyne (STCA) selectively targets cysteine residues of HSP90, forming stable thiocarbamate adducts. Without interfering with the ATP-binding ability of the chaperone, STCA destabilises the client proteins RAF1, HER2, CDK1, CHK1, and mutant p53, and decreases proliferation of breast cancer cells. Addition of a phenyl or a tert-butyl group in tandem with the benzyl substituent at nitrogen increased the potency. A new compound, S-4, was identified as the most robust HSP90 inhibitor within a series of 19 derivatives. By virtue of their cysteine reactivity, sulphoxythiocarbamates target HSP90, causing destabilisation of its client oncoproteins and inhibiting cell proliferation.

  4. Hsp90 regulation of fibroblast activation in pulmonary fibrosis

    Science.gov (United States)

    Sontake, Vishwaraj; Wang, Yunguan; Kasam, Rajesh K.; Sinner, Debora; Reddy, Geereddy B.; Naren, Anjaparavanda P.; McCormack, Francis X.; Jegga, Anil G.; Madala, Satish K.

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a severe fibrotic lung disease associated with fibroblast activation that includes excessive proliferation, tissue invasiveness, myofibroblast transformation, and extracellular matrix (ECM) production. To identify inhibitors that can attenuate fibroblast activation, we queried IPF gene signatures against a library of small-molecule-induced gene-expression profiles and identified Hsp90 inhibitors as potential therapeutic agents that can suppress fibroblast activation in IPF. Although Hsp90 is a molecular chaperone that regulates multiple processes involved in fibroblast activation, it has not been previously proposed as a molecular target in IPF. Here, we found elevated Hsp90 staining in lung biopsies of patients with IPF. Notably, fibroblasts isolated from fibrotic lesions showed heightened Hsp90 ATPase activity compared with normal fibroblasts. 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), a small-molecule inhibitor of Hsp90 ATPase activity, attenuated fibroblast activation and also TGF-β–driven effects on fibroblast to myofibroblast transformation. The loss of the Hsp90AB, but not the Hsp90AA isoform, resulted in reduced fibroblast proliferation, myofibroblast transformation, and ECM production. Finally, in vivo therapy with 17-AAG attenuated progression of established and ongoing fibrosis in a mouse model of pulmonary fibrosis, suggesting that targeting Hsp90 represents an effective strategy for the treatment of fibrotic lung disease. PMID:28239659

  5. Identification of HSP90 gene from the Chinese oak silkworm ...

    African Journals Online (AJOL)

    The complete cDNA (2,482 bp) contained a 2,154 bp open reading frame encoding 717 amino acid residues and had 94.5% identity with Antheraea yamamai Hsp90. The relative expression levels of Hsp90 in five different tissues at normal and high temperatures were evaluated with real-time fluorescence quantitative ...

  6. Hsp70 and Hsp90 are differentially expressed in crayfish muscle and neurons after heat stress

    Directory of Open Access Journals (Sweden)

    Liang S

    2013-12-01

    Full Text Available Shuang Liang, Xiaoqing Yu, Debra E Wood, Emmitt R Jolly Department of Biology, Case Western Reserve University, Cleveland, OH, USA Abstract: Heat shock proteins are essential cellular proteins that are highly conserved across organisms and contribute to adaptive responses of organisms during changing environmental conditions. Protein members of the families of heat shock genes can be differentially regulated in response to stressors and play critical roles in protein stability, folding, and molecular trafficking. We used a crustacean species with strong adaptability to diverse environments, the crayfish Procambarus clarkii, to study expression profiles of two well known heat shock genes, Hsp90 and Hsp70. This crayfish can withstand a broad range of temperatures, and its adaptability contributes to its value for human use as an agricultural food source and as a biological control agent against snails that transmit schistosomiasis. However, it has become a harmful invasive species in some areas. To begin to understand the thermal resilience of P. clarkii, we identified and cloned Hsp90 from crayfish by degenerate polymerase chain reaction in conjunction with rapid amplification of 3' and 5' cDNA ends, and subsequently sequenced and characterized the molecular chaperone. Sequence analysis by phylogenetic alignment and polypeptide three-dimensional structure prediction of the newly identified Hsp90 gene shows that it has conserved motifs with Hsp90 s in other species. Using quantitative polymerase chain reaction, we characterized the expression profiles of Hsp90 and Hsp70 in muscle and in central nervous system tissues. We found that Hsp70 and Hsp90 transcripts are upregulated under heat stress in both muscle and the central nervous system, but that their expression levels are more robustly increased in muscle. Keywords: crayfish, stress response, Procambarus clarkii, heat shock protein, Hsp90, schistosomiasis

  7. Structure, Function and Regulation of the Hsp90 Machinery

    Directory of Open Access Journals (Sweden)

    Jing Li

    2013-06-01

    Full Text Available Heat shock protein 90 (Hsp90 is an ATP-dependent molecular chaperone which is essential in eukaryotes. It is required for the activation and stabilization of a wide variety of client proteins and many of them are involved in important cellular pathways. Since Hsp90 affects numerous physiological processes such as signal transduction, intracellular transport, and protein degradation, it became an interesting target for cancer therapy. Structurally, Hsp90 is a flexible dimeric protein composed of three different domains which adopt structurally distinct conformations. ATP binding triggers directionality in these conformational changes and leads to a more compact state. To achieve its function, Hsp90 works together with a large group of cofactors, termed co-chaperones. Co-chaperones form defined binary or ternary complexes with Hsp90, which facilitate the maturation of client proteins. In addition, posttranslational modifications of Hsp90, such as phosphorylation and acetylation, provide another level of regulation. They influence the conformational cycle, co-chaperone interaction, and inter-domain communications. In this review, we discuss the recent progress made in understanding the Hsp90 machinery.

  8. Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90 gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jinyan Xu

    Full Text Available Hsp90 is one of the most conserved and abundant molecular chaperones and is an essential component of the protective stress response; however, its roles in abiotic stress responses in soybean (Glycine max remain obscure. Here, 12 GmHsp90 genes from soybean were identified and found to be expressed and to function differentially under abiotic stresses. The 12 GmHsp90 genes were isolated and named GmHsp90A1-GmHsp90A6, GmHsp90B1, GmHsp90B2, GmHsp90C1.1, GmHsp90C1.2, GmHsp90C2.1 and GmHsp90C2.2 based on their characteristics and high homology to other Hsp90s according to a new nomenclature system. Quantitative real-time PCR expression data revealed that all the genes exhibited higher transcript levels in leaves and could be strongly induced under heat, osmotic and salt stress but not cold stress. Overexpression of five typical genes (GmHsp90A2, GmHsp90A4, GmHsp90B1, GmHsp90C1.1 and GmHsp90C2.1 in Arabidopsis thaliana provided useful evidences that GmHsp90 genes can decrease damage of abiotic stresses. In addition, an abnormal accumulation of proline was detected in some transgenic Arabidopsis plants suggested overexpressing GmHsp90s may affect the synthesis and response system of proline. Our work represents a systematic determination of soybean genes encoding Hsp90s, and provides useful evidence that GmHsp90 genes function differently in response to abiotic stresses and may affect the synthesis and response system of proline.

  9. Hsp90 Is a Novel Target Molecule of CDDO-Me in Inhibiting Proliferation of Ovarian Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Dong-Jun Qin

    Full Text Available Synthetic triterpenoid methyl-2-cyano-3, 12-dioxooleana-1, 9(11-dien-28-oate (CDDO-Me has been shown as a promising agent against ovarian cancer. However, the underlying mechanism is not well understood. Here, we demonstrate that CDDO-Me directly interacts with Hsp90 in cells by cellular thermal shift assay. CDDO-Me treatment leads to upregulation of Hsp70 and degradation of Hsp90 clients (ErbB2 and Akt, indicating the inhibition of Hsp90 by CDDO-Me in cells. Knockdown of Hsp90 significantly inhibits cell proliferation and enhances the anti-proliferation effect of CDDO-Me in H08910 ovarian cancer cells. Dithiothreitol inhibits the interaction of CDDO-Me with Hsp90 in cells and abrogates CDDO-Me induced upregulation of Hsp70, degradation of Akt and cell proliferation inhibition. This suggests the anti-ovarian cancer effect of CDDO-Me is possibly mediated by the formation of Michael adducts between CDDO-Me and reactive nucleophiles on Hsp90. This study identifies Hsp90 as a novel target protein of CDDO-Me, and provides a novel insight into the mechanism of action of CDDO-Me in ovarian cancer cells.

  10. Resolving hot spots in the C-terminal dimerization domain that determine the stability of the molecular chaperone Hsp90.

    Directory of Open Access Journals (Sweden)

    Emanuele Ciglia

    Full Text Available Human heat shock protein of 90 kDa (hHsp90 is a homodimer that has an essential role in facilitating malignant transformation at the molecular level. Inhibiting hHsp90 function is a validated approach for treating different types of tumors. Inhibiting the dimerization of hHsp90 via its C-terminal domain (CTD should provide a novel way to therapeutically interfere with hHsp90 function. Here, we predicted hot spot residues that cluster in the CTD dimerization interface by a structural decomposition of the effective energy of binding computed by the MM-GBSA approach and confirmed these predictions using in silico alanine scanning with DrugScore(PPI. Mutation of these residues to alanine caused a significant decrease in the melting temperature according to differential scanning fluorimetry experiments, indicating a reduced stability of the mutant hHsp90 complexes. Size exclusion chromatography and multi-angle light scattering studies demonstrate that the reduced stability of the mutant hHsp90 correlates with a lower complex stoichiometry due to the disruption of the dimerization interface. These results suggest that the identified hot spot residues can be used as a pharmacophoric template for identifying and designing small-molecule inhibitors of hHsp90 dimerization.

  11. Picky Hsp90-Every Game with Another Mate

    NARCIS (Netherlands)

    Radli, Martina; Rüdiger, Stefan G D

    2017-01-01

    In this issue of Molecular Cell, Sahasrabudhe et al. (2017) present a dramatically renovated functional cycle for the molecular chaperone Hsp90, which stimulates re-thinking of the mechanism of this vital protein folding machine.

  12. How Hsp90 and Cdc37 Lubricate Kinase Molecular Switches.

    Science.gov (United States)

    Verba, Kliment A; Agard, David A

    2017-10-01

    The Hsp90/Cdc37 chaperone system interacts with and supports 60% of the human kinome. Not only are Hsp90 and Cdc37 generally required for initial folding, but many kinases rely on the Hsp90/Cdc37 throughout their lifetimes. A large fraction of these 'client' kinases are key oncoproteins, and their interactions with the Hsp90/Cdc37 machinery are crucial for both their normal and malignant activity. Recently, advances in single-particle cryo-electron microscopy (cryoEM) and biochemical strategies have provided the first key molecular insights into kinase-chaperone interactions. The surprising results suggest a re-evaluation of the role of chaperones in the kinase lifecycle, and suggest that such interactions potentially allow kinases to more rapidly respond to key signals while simultaneously protecting unstable kinases from degradation and suppressing unwanted basal activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Hsp90-binding immunophilin FKBP51 forms complexes with hTERT enhancing telomerase activity.

    Science.gov (United States)

    Lagadari, Mariana; Zgajnar, Nadia R; Gallo, Luciana I; Galigniana, Mario D

    2016-08-01

    FK506-binding proteins are members of the immunophilin family of proteins. Those immunophilins associated to the 90-kDa-heat-shock protein, Hsp90, have been proposed as potential modulators of signalling cascade factors chaperoned by Hsp90. FKBP51 and FKBP52 are the best characterized Hsp90-bound immunophilins first described associated to steroid-receptors. The reverse transcriptase subunit of telomerase, hTERT, is also an Hsp90 client-protein and is highly expressed in cancer cells, where it is required to compensate the loss of telomeric DNA after each successive cell division. Because FKBP51 is also a highly expressed protein in cancer tissues, we analyzed its potential association with hTERT·Hsp90 complexes and its possible biological role. In this study it is demonstrated that both immunophilins, FKBP51 and FKBP52, co-immunoprecipitate with hTERT. The Hsp90 inhibitor radicicol disrupts the heterocomplex and favors the partial cytoplasmic relocalization of hTERT in similar manner as the overexpression of the TPR-domain peptide of the immunophilin. While confocal microscopy images show that FKBP51 is primarily localized in mitochondria and hTERT is totally nuclear, upon the onset of oxidative stress, FKBP51 (but not FKBP52) becomes mostly nuclear colocalizing with hTERT, and longer exposure times to peroxide favors hTERT export to mitochondria. Importantly, telomerase activity of hTERT is significantly enhanced by FKBP51. These observations support the emerging role assigned to FKBP51 as antiapoptotic factor in cancer development and progression, and describe for the first time the potential role of this immunophilin favoring the clonal expansion by enhancing telomerase activity. Copyright © 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Interplay between HSP90 and Nrf2 pathways in diabetes-associated atherosclerosis.

    Science.gov (United States)

    Lazaro, Iolanda; Oguiza, Ainhoa; Recio, Carlota; Lopez-Sanz, Laura; Bernal, Susana; Egido, Jesus; Gomez-Guerrero, Carmen

    Oxidative stress and inflammation are determinant processes in the development of diabetic vascular complications. Heat shock protein 90 (HSP90) overexpression in atherosclerotic plaques plays a role in sustaining inflammatory mechanisms, and its specific inhibition prevents atherosclerosis. The present work investigates, in a mouse model of diabetes-driven atherosclerosis, whether atheroprotection by pharmacological HSP90 inhibition is accomplished by bolstering antioxidant defense mechanisms headed by nuclear factor erythroid-derived 2-like 2 (Nrf2). Streptozotocin-induced diabetic apolipoprotein E-deficient mice were randomized to receive vehicle or HSP90 inhibitor (17-dimethylaminoethylamino-17-demethoxygeldanamycin, 4mg/kg) for 10 weeks. Aortic root sections were analyzed for plaque size and composition, transcription factor activity, and expression of inflammatory and antioxidant markers. In vitro studies were performed in murine macrophages cultured under hyperglycemic conditions. Treatment with HSP90 inhibitor promoted the activation of Nrf2 in the aortic tissue of diabetic mice (predominantly localized in macrophages and smooth muscle cells) and also in cultured cells. Nrf2 induction was associated with a concomitant inhibition of nuclear factor-κB (NF-κB) in atherosclerotic plaques, thus resulting in a significant reduction in lesion size and inflammatory component (leukocytes and cytokines). Furthermore, atheroprotection by HSP90 inhibition was linked to the induction of cytoprotective HSP70, antioxidant enzymes (heme oxygenase-1, superoxide dismutase and catalase) and autophagy machinery (LC3 and p62/SQSTM1) in aortic tissue. HSP90 inhibition protects from atherosclerosis in experimental diabetes through the induction of Nrf2-dependent cytoprotective mechanisms, reinforcing its therapeutic potential. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Heat Shock Protein 90 (Hsp90 Expression and Breast Cancer

    Directory of Open Access Journals (Sweden)

    Christos A. Papadimitriou

    2012-09-01

    Full Text Available Hsp90 is an abundant protein in mammalian cells. It forms several discrete complexes, each containing distinct groups of co-chaperones that assist protein folding and refolding during stress, protein transport and degradation. It interacts with a variety of proteins that play key roles in breast neoplasia including estrogen receptors, tumor suppressor p53 protein, angiogenesis transcription factor HIF-1alpha, antiapoptotic kinase Akt, Raf-1 MAP kinase and a variety of receptor tyrosine kinases of the erbB family. Elevated Hsp90 expression has been documented in breast ductal carcinomas contributing to the proliferative activity of breast cancer cells; whilst a significantly decreased Hsp90 expression has been shown in infiltrative lobular carcinomas and lobular neoplasia. Hsp90 overexpression has been proposed as a component of a mechanism through which breast cancer cells become resistant to various stress stimuli. Therefore, pharmacological inhibition of HSPs can provide therapeutic opportunities in the field of cancer treatment. 17-allylamino,17-demethoxygeldanamycin is the first Hsp90 inhibitor that has clinically been investigated in phase II trial, yielding promising results in patients with HER2-overexpressing metastatic breast cancer, whilst other Hsp90 inhibitors (retaspimycin HCL, NVP-AUY922, NVP-BEP800, CNF2024/BIIB021, SNX-5422, STA-9090, etc. are currently under evaluation.

  16. Humic acid induces the endothelial nitric oxide synthase phosphorylation at Ser1177 and Thr495 Via Hsp90α and Hsp90β upregulation in human umbilical vein endothelial cells.

    Science.gov (United States)

    Tanaka, Masato; Miyajima, Miki; Hishioka, Naoko; Nishimura, Ryo; Kihara, Yusuke; Hosokawa, Toshiyuki; Kurasaki, Masaaki; Tanaka, Shunitz; Saito, Takeshi

    2015-02-01

    Humic acid (HA) has been implicated as a contributory factor for blackfoot disease, which is an endemic peripheral vascular disease. We investigated the effect of HA on the regulation of endothelial nitric oxide (NO) synthase (eNOS) in human umbilical vein endothelial cells (HUVECs) to evaluate the involvement of eNOS and related factors in peripheral vascular impairment with HA exposure. Treatment of HUVECs with HA induced upregulation of eNOS. This result coincides with those of previous studies. Furthermore this is the first study to report that HA induces upregulation of heat shock protein (Hsp)90α, Hsp90β, eNOS phosphorylation at Ser1177, and eNOS phosphorylation at Thr495, as compared to that in the control. In contrast, treatment with BAPTA, an intracellular Ca(2+) chelator, inhibited upregulation of these proteins induced by HA. This study demonstrates that HA treatment leads to increases in both Hsp90α and Hsp90β proteins and indicates that Hsp90α leads to eNOS phosphorylation at Ser1177 and that Hsp90β leads to eNOS phosphorylation at Thr495, respectively. Upregulation of eNOS, Hsp90α, and Hsp90β in HUVECs is regulated by intracellular Ca(2+) accumulation induced by HA. These results suggest that upregulation of eNOS phosphorylation at Ser1177 and eNOS phosphorylation at Thr495 produce NO and superoxide anions, respectively, resulting in generation of peroxynitrite, which causes impairment of vascular endothelial cells. © 2013 Wiley Periodicals, Inc.

  17. Protein Expression and Purification of the Hsp90-Cdc37-Cdk4 Kinase Complex from Saccharomyces cerevisiae.

    Science.gov (United States)

    Verba, Kliment A; Agard, David A

    2017-10-05

    Interactions between Hsp90, its co-chaperone Cdc37 and kinases have been biochemically studied for over three decades and have been shown to be functionally important in organisms from yeast to humans. However, formation of a stable complex for structural studies has been elusive. In this protocol we describe expression and purification of Hsp90-Cdc37-Cdk4 kinase protein complex from Saccharomyces cerevisiae utilizing the viral 2A sequences to titrate the three proteins at similar levels.

  18. Ammonia stress under high environmental ammonia induces Hsp70 and Hsp90 in the mud eel, Monopterus cuchia.

    Science.gov (United States)

    Hangzo, Hnunlalliani; Banerjee, Bodhisattwa; Saha, Shrabani; Saha, Nirmalendu

    2017-02-01

    The obligatory air-breathing mud eel (Monopterus cuchia) is frequently being challenged with high environmental ammonia (HEA) exposure in its natural habitats. The present study investigated the possible induction of heat shock protein 70 and 90 (hsp70, hsc70, hsp90α and hsp90β) genes and more expression of Hsp70 and Hsp90 proteins under ammonia stress in different tissues of the mud eel after exposure to HEA (50 mM NH4Cl) for 14 days. HEA resulted in significant accumulation of toxic ammonia in different body tissues and plasma, which was accompanied with the stimulation of oxidative stress in the mud eel as evidenced by more accumulation of malondialdehyde (MDA) and hydrogen peroxide (H2O2) during exposure to HEA. Further, hyper-ammonia stress led to significant increase in the levels of mRNA transcripts for inducible hsp70 and hsp90α genes and also their translated proteins in different tissues probably as a consequence of induction of hsp70 and hsp90α genes in the mud eel. However, hyper-ammonia stress was neither associated with any significant alterations in the levels of mRNA transcripts for constitutive hsc70 and hsp90β genes nor their translated proteins in any of the tissues studied. More abundance of Hsp70 and Hsp90α proteins might be one of the strategies adopted by the mud eel to defend itself from the ammonia-induced cellular damages under ammonia stress. Further, this is the first report of ammonia-induced induction of hsp70 and hsp90α genes under hyper-ammonia stress in any freshwater air-breathing teleost.

  19. HSP90 expression correlation with the freezing resistance of bull sperm.

    Science.gov (United States)

    Wang, Peng; Wang, Yan-Feng; Wang, Hong; Wang, Chun-Wei; Zan, Lin-Sen; Hu, Jian-Hong; Li, Qing-Wang; Jia, Yong-Hong; Ma, Guo-Ji

    2014-05-01

    To date, there has been little improvement in cryopreservation of bull sperm due to lack of understanding of the freezing mechanisms. Therefore, this study set out to investigate expression levels of fertility-associated proteins in bull sperm, and in particular the relationship between the 90 kDa heat-shock protein (HSP90) and the sperm characteristics after freezing-thawing. Semen was collected from eight Holstein bulls by artificial vagina. Characteristics of these fresh semen, including sperm motility, morphology, viability and concentration, were evaluated. Sperm quality was also assessed after freezing-thawing. Eight ejaculates were divided into two groups based on freezing resistance and sperm motility. Sperm proteins were extracted and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis and western blotting were performed. SDS-PAGE results showed that there was substantial diversity in 90 kDa proteins in the frozen-thawed sperm and HSP90 was confirmed as one of the 90 kDa proteins by western blot. This study indicated that HSP90 expression correlated positively with sperm quality. The amount of expressed 90 kDa proteins in the high freezing resistance (HFR) group was significantly higher than that in the low freezing resistance (LFR) group (P sperm found after freezing-thawing. Therefore, we concluded that level of HSP90 expression could be used to predict reliably and simply the freezing resistance of bull sperm.

  20. High dose of antibiotic colistin induces oligomerization of molecular chaperone HSP90.

    Science.gov (United States)

    Togashi, Shuntaro; Takahashi, Kyosuke; Tamura, Arisa; Toyota, Ikumi; Hatakeyama, Shiori; Komatsuda, Atsushi; Kudo, Ikuru; Sasaki Kudoh, Erina; Okamoto, Tomoya; Haga, Asami; Miyamoto, Asuka; Grave, Ewa; Sugawara, Taku; Shimizu, Hiroaki; Itoh, Hideaki

    2017-07-01

    Colistin is an antimicrobial cationic peptide that belongs to the polymyxin family. Colistin was clinically used for the treatment of gram-negative infections but fell out of favour because of its significant side effects including neurotoxicity and nephrotoxicity. More recently, colistin has been regarded as one of the important options for nosocomial infections caused by multidrug resistant bacteria. Mechanisms of both the side effect onset of the drug and the side effect reduction are yet to be elucidated. In this study, we identified the specific binding protein of colistin using an affinity column chromatography. Colistin binds to the molecular chaperone HSP90. Although colistin slightly suppressed the chaperone activity of HSP90, there are no effects on the ATPase activity for a low concentration of colistin. Interestingly, colistin-induced aggregation of HSP90 via the N-domain. As for the cell viability of the SHSY5Y cell, the cell viability decreased to approximately 80% by the colistin 300 μM. However, the cell viability recovered to approximately 100% by adding ATP dosage. The same result was obtained by dot blot assay using anti-HSP90 antibody. Our results may help to understand the side effect mechanism of colistin. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  1. Ascorbic Acid Inhibition of Candida albicans Hsp90-Mediated Morphogenesis Occurs via the Transcriptional Regulator Upc2

    Science.gov (United States)

    Van Hauwenhuyse, Frédérique; Fiori, Alessandro

    2014-01-01

    Morphogenetic transitions of the opportunistic fungal pathogen Candida albicans are influenced by temperature changes, with induction of filamentation upon a shift from 30 to 37°C. Hsp90 was identified as a major repressor of an elongated cell morphology at low temperatures, as treatment with specific inhibitors of Hsp90 results in elongated growth forms at 30°C. Elongated growth resulting from a compromised Hsp90 is considered neither hyphal nor pseudohyphal growth. It has been reported that ascorbic acid (vitamin C) interferes with the yeast-to-hypha transition in C. albicans. In the present study, we show that ascorbic acid also antagonizes the morphogenetic change caused by hampered Hsp90 function. Further analysis revealed that Upc2, a transcriptional regulator of genes involved in ergosterol biosynthesis, and Erg11, the target of azole antifungals, whose expression is in turn regulated by Upc2, are required for this antagonism. Ergosterol levels correlate with elongated growth and are reduced in cells treated with the Hsp90 inhibitor geldanamycin (GdA) and restored by cotreatment with ascorbic acid. In addition, we show that Upc2 appears to be required for ascorbic acid-mediated inhibition of the antifungal activity of fluconazole. These results identify Upc2 as a major regulator of ascorbic acid-induced effects in C. albicans and suggest an association between ergosterol content and elongated growth upon Hsp90 compromise. PMID:25084864

  2. The HSP90 inhibitor alvespimycin enhances the potency of telomerase inhibition by imetelstat in human osteosarcoma.

    Science.gov (United States)

    Hu, Yafang; Bobb, Daniel; He, Jianping; Hill, D Ashley; Dome, Jeffrey S

    2015-01-01

    The unsatisfactory outcomes for osteosarcoma necessitate novel therapeutic strategies. This study evaluated the effect of the telomerase inhibitor imetelstat in pre-clinical models of human osteosarcoma. Because the chaperone molecule HSP90 facilitates the assembly of telomerase protein, the ability of the HSP90 inhibitor alvespimycin to potentiate the effect of the telomerase inhibitor was assessed. The effect of single or combined treatment with imetelstat and alvespimycin on long-term growth was assessed in osteosarcoma cell lines (143B, HOS and MG-63) and xenografts derived from 143B cells. Results indicated that imetelstat as a single agent inhibited telomerase activity, induced telomere shortening, and inhibited growth in all 3 osteosarcoma cell lines, though the bulk cell cultures did not undergo growth arrest. Combined treatment with imetelstat and alvespimycin resulted in diminished telomerase activity and shorter telomeres compared to either agent alone as well as higher levels of γH2AX and cleaved caspase-3, indicative of increased DNA damage and apoptosis. With dual telomerase and HSP90 inhibition, complete growth arrest of bulk cell cultures was achieved. In xenograft models, all 3 treatment groups significantly inhibited tumor growth compared with the placebo-treated control group, with the greatest effect seen in the combined treatment group (imetelstat, p = 0.045, alvespimycin, p = 0.034; combined treatment, p = 0.004). In conclusion, HSP90 inhibition enhanced the effect of telomerase inhibition in pre-clinical models of osteosarcoma. Dual targeting of telomerase and HSP90 warrants further investigation as a therapeutic strategy.

  3. Antiviral evaluation of an Hsp90 inhibitor, gedunin, against dengue ...

    African Journals Online (AJOL)

    including herpes simplex virus type 1 (HSV-1), severe acute respiratory syndrome coronavirus and Zaire EBOV in vitro [10,11]. It has been observed for several viruses, including Ebola, Influenza, DENV, and Japanese encephalitis virus (JEV), that many proteins of these viruses require Hsp90 for their folding, assembly, and ...

  4. Antiviral evaluation of an Hsp90 inhibitor, gedunin, against dengue ...

    African Journals Online (AJOL)

    Purpose: To evaluate the antiviral potential of a tetranortriterpenoid, gedunin, against dengue virus (DENV) replication by targeting the host chaperone, Hsp90. Methods: The compound, gedunin, was tested against the replication of DENV in vitro using BHK-15 cells transfected with DENV-2 subgenomic replicon. Molecular ...

  5. Regulation of Nod1 by Hsp90 chaperone complex.

    Science.gov (United States)

    Hahn, Ji-Sook

    2005-08-15

    Nod1 and Nod2 proteins play important roles in mammalian innate immune responses as intracellular sensors for bacterial peptidoglycan. Nod1 and Nod2 share structural homology with many R proteins involved in plant disease resistance. It has been demonstrated that plant Hsp90 and its co-chaperone RAR1 are implicated in R-mediated disease resistance. Here the Chp-1 gene encoding a mammalian homologue of plant RAR1 was identified as a new target for transcriptional activation by heat shock factor 1 (HSF1), a stress-responsive HSF isoform. In addition, Nod1 is demonstrated to be a client protein of the Hsp90 chaperone complex containing the Chp-1. Chp-1 interacts with the tetratricopeptide repeat (TPR) domain of protein phosphatase 5 (PP5) and the ATPase domain of Hsp90 via two distinct zinc-binding cysteine and histidine rich domains (CHORDs). These findings suggest a common regulatory mechanism involving the Hsp90 chaperone complex in R-mediated disease resistance in plants and Nod1-mediated innate immune response in mammals.

  6. HSP90 stabilizes B-cell receptor kinases in a multi-client interactome: PU-H71 induces CLL apoptosis in a cytoprotective microenvironment.

    Science.gov (United States)

    Guo, A; Lu, P; Lee, J; Zhen, C; Chiosis, G; Wang, Y L

    2017-06-15

    Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of B cells in the hematopoietic system and lymphoid tissues. Although inhibitors targeting the B-cell receptor (BCR) pathway have been successful in the treatment of the disease, the underlying mechanisms leading to BCR over-activity in CLL are not fully understood. In this study, we found that HSP90, a highly conserved molecular chaperone, is overexpressed in CLL compared with resting B cells. HSP90 overexpression is accompanied by the overexpression of several BCR kinases including LYN, spleen tyrosine kinase, Bruton tyrosine kinase and AKT. Chemical and immune-precipitation demonstrated that these BCR constituents are present in a multi-client chaperone complex with HSP90. Inhibition of HSP90 with PU-H71 destabilized the BCR kinases and caused apoptosis of CLL cells through the mitochondrial apoptotic pathway. Further, PU-H71 induced apoptosis in the presence of stromal co-culture or cytoprotective survival signals. Finally, genetic knockdown of HSP90 and its client AKT, but not BTK, reduced CLL viability. Overall, our study suggests that the chaperone function of HSP90 contributes to the over-activity of the BCR signaling in CLL and inhibition of HSP90 has the potential to achieve a multi-targeting effect. Thus, HSP90 inhibition may be explored to prevent or overcome drug resistance to single targeting agents.

  7. Choice of biological source material supersedes oxidative stress in its influence on DJ-1 in vivo interactions with Hsp90.

    Science.gov (United States)

    Knobbe, Christiane B; Revett, Timothy J; Bai, Yu; Chow, Vinca; Jeon, Amy Hye Won; Böhm, Christopher; Ehsani, Sepehr; Kislinger, Thomas; Mount, Howard T; Mak, Tak W; St George-Hyslop, Peter; Schmitt-Ulms, Gerold

    2011-10-07

    DJ-1 is a small but relatively abundant protein of unknown function that may undergo stress-dependent cellular translocation and has been implicated in both neurodegenerative diseases and cancer. As such, DJ-1 may be an excellent study object to elucidate the relative influence of the cellular context on its interactome and for exploring whether acute exposure to oxidative stressors alters its molecular environment. Using quantitative mass spectrometry, we conducted comparative DJ-1 interactome analyses from in vivo cross-linked brains or livers and from hydrogen peroxide-treated or naïve embryonic stem cells. The analysis identified a subset of glycolytic enzymes, heat shock proteins 70 and 90, and peroxiredoxins as interactors of DJ-1. Consistent with a role of DJ-1 in Hsp90 chaperone biology, we document destabilization of Hsp90 clients in DJ-1 knockout cells. We further demonstrate the existence of a C106 sulfinic acid modification within DJ-1 and thereby establish that this previously inferred modification also exists in vivo. Our data suggest that caution has to be exerted in interpreting interactome data obtained from a single biological source material and identify a role of DJ-1 as an oxidative stress sensor and partner of a molecular machinery notorious for its involvement in cell fate decisions.

  8. Molecular Dynamic Simulation of 3-(5-Chloro-2, 4-dihydroxyphenyl-pyrazole-4-carboxamide and HSP90 Molecular Chaperone Interaction

    Directory of Open Access Journals (Sweden)

    Leila Baramakeh

    2011-01-01

    Full Text Available The calculation of free energy differences of a system is of great importance as the rate and extent of many if not all chemical and biophysical processes are governed by the nature of underlying free energy landscape. In this study the preferential binding of 3-(5-chloro-2, 4-dihydroxyphenyl–pyrazole-4-carboxamide (4BC and Heat shock protein 90(Hsp90 molecular chaperone has been evaluated using molecular dynamics simulation. A soft core potential was used during the mutations to facilitate the creation and deletion of atoms. Trajectory analysis showed a stable equilibrium after energy minimization. Potential energy plot showed equilibrium around -69520 and -183859 kJ/mol for Hsp90 and Hsp90-4BC. Kinetic energy also was calculated for Hsp90 and Hsp90-4BC as 44500 and 65928.29 kJ/mol, respectively.

  9. The soluble recombinant Neisseria meningitidis adhesin NadA(Δ351-405) stimulates human monocytes by binding to extracellular Hsp90.

    Science.gov (United States)

    Cecchini, Paola; Tavano, Regina; Polverino de Laureto, Patrizia; Franzoso, Susanna; Mazzon, Cristina; Montanari, Paolo; Papini, Emanuele

    2011-01-01

    The adhesin NadA favors cell adhesion/invasion by hypervirulent Neisseria meningitidis B (MenB). Its recombinant form NadA(Δ351-405,) devoid of the outer membrane domain, is an immunogenic candidate for an anti-MenB vaccine able to stimulate monocytes, macrophages and dendritic cells. In this study we investigated the molecular mechanism of NadA(Δ351-405) cellular effects in monocytes. We show that NadA(Δ351-405) (against which we obtained polyclonal antibodies in rabbits), binds to hsp90, but not to other extracellular homologous heat shock proteins grp94 and hsp70, in vitro and on the surface of monocytes, in a temperature dependent way. Pre-incubation of monocytes with the MenB soluble adhesin interfered with the binding of anti-hsp90 and anti-hsp70 antibodies to hsp90 and hsp70 at 37°C, a condition in which specific cell-binding occurs, but not at 0°C, a condition in which specific cell-binding is very diminished. Conversely, pre-incubation of monocytes with anti-hsp90 and anti-hsp70 antibodies did not affected NadA(Δ351-405) cell binding in any temperature condition, indicating that it associates to another receptor on their plasma membrane and then laterally diffuses to encounter hsp90. Consistently, polymixin B interfered with NadA(Δ351-405) /hsp90 association, abrogated the decrease of anti-hsp90 antibodies binding to the cell surface due to NadA(Δ351-405) and inhibited adhesin-induced cytokine/chemokine secretion without affecting monocyte-adhesin binding. Co-stimulation of monocytes with anti-hsp90 antibodies and NadA(Δ351-405) determined a stronger but polymixin B insensitive cell activation. This indicated that the formation of a recombinant NadA/hsp90/hsp70 complex, although essential for full monocyte stimulation, can be replaced by anti-hsp90 antibody/hsp90 binding. Finally, the activation of monocytes by NadA(Δ351-405) alone or in the presence of anti-hsp90 antibodies were both inhibited by neutralizing anti-TLR4 antibodies, but not by

  10. Stability of the Human Hsp90-p50Cdc37 Chaperone Complex against Nucleotides and Hsp90 Inhibitors, and the Influence of Phosphorylation by Casein Kinase 2

    Science.gov (United States)

    Olesen, Sanne H.; Ingles, Donna J.; Zhu, Jin-Yi; Martin, Mathew P.; Betzi, Stephane; Georg, Gunda I.; Tash, Joseph S.; Schönbrunn, Ernst

    2015-01-01

    The molecular chaperone Hsp90 is regulated by co-chaperones such as p50Cdc37, which recruits a wide selection of client protein kinases. Targeted disruption of the Hsp90-p50Cdc37 complex by protein-protein interaction (PPI) inhibitors has emerged as an alternative strategy to treat diseases characterized by aberrant Hsp90 activity. Using isothermal microcalorimetry, ELISA and GST-pull down assays we evaluated reported Hsp90 inhibitors and nucleotides for their ability to inhibit formation of the human Hsp90β-p50Cdc37 complex, reconstituted in-vitro from full-length proteins. Hsp90 inhibitors, including the proposed PPI inhibitors gedunin and H2-gamendazole, did not affect the interaction of Hsp90 with p50Cdc37 in vitro. Phosphorylation of Hsp90 and p50Cdc37 by casein kinase 2 (CK2) did not alter the thermodynamic signature of complex formation. However, the phosphorylated complex was vulnerable to disruption by ADP (IC50 = 32 µM), while ATP, AMPPNP and Hsp90 inhibitors remained largely ineffective. The differential inhibitory activity of ADP suggests that phosphorylation by CK2 primes the complex for dissociation in response to a drop in ATP/ADP levels. The approach applied herein provides robust assays for a comprehensive biochemical evaluation of potential effectors of the Hsp90-p50Cdc37 complex, such as phosphorylation by a kinase or the interaction with small molecule ligands. PMID:25608045

  11. Stability of the human Hsp90-p50Cdc37 chaperone complex against nucleotides and Hsp90 inhibitors, and the influence of phosphorylation by casein kinase 2.

    Science.gov (United States)

    Olesen, Sanne H; Ingles, Donna J; Zhu, Jin-Yi; Martin, Mathew P; Betzi, Stephane; Georg, Gunda I; Tash, Joseph S; Schönbrunn, Ernst

    2015-01-19

    The molecular chaperone Hsp90 is regulated by co-chaperones such as p50Cdc37, which recruits a wide selection of client protein kinases. Targeted disruption of the Hsp90-p50Cdc37 complex by protein-protein interaction (PPI) inhibitors has emerged as an alternative strategy to treat diseases characterized by aberrant Hsp90 activity. Using isothermal microcalorimetry, ELISA and GST-pull down assays we evaluated reported Hsp90 inhibitors and nucleotides for their ability to inhibit formation of the human Hsp90β-p50Cdc37 complex, reconstituted in vitro from full-length proteins. Hsp90 inhibitors, including the proposed PPI inhibitors gedunin and H2-gamendazole, did not affect the interaction of Hsp90 with p50Cdc37 in vitro. Phosphorylation of Hsp90 and p50Cdc37 by casein kinase 2 (CK2) did not alter the thermodynamic signature of complex formation. However, the phosphorylated complex was vulnerable to disruption by ADP (IC50 = 32 µM), while ATP, AMPPNP and Hsp90 inhibitors remained largely ineffective. The differential inhibitory activity of ADP suggests that phosphorylation by CK2 primes the complex for dissociation in response to a drop in ATP/ADP levels. The approach applied herein provides robust assays for a comprehensive biochemical evaluation of potential effectors of the Hsp90-p50Cdc37 complex, such as phosphorylation by a kinase or the interaction with small molecule ligands.

  12. Stability of the Human Hsp90-p50Cdc37 Chaperone Complex against Nucleotides and Hsp90 Inhibitors, and the Influence of Phosphorylation by Casein Kinase 2

    Directory of Open Access Journals (Sweden)

    Sanne H. Olesen

    2015-01-01

    Full Text Available The molecular chaperone Hsp90 is regulated by co-chaperones such as p50Cdc37, which recruits a wide selection of client protein kinases. Targeted disruption of the Hsp90-p50Cdc37 complex by protein–protein interaction (PPI inhibitors has emerged as an alternative strategy to treat diseases characterized by aberrant Hsp90 activity. Using isothermal microcalorimetry, ELISA and GST-pull down assays we evaluated reported Hsp90 inhibitors and nucleotides for their ability to inhibit formation of the human Hsp90β-p50Cdc37 complex, reconstituted in vitro from full-length proteins. Hsp90 inhibitors, including the proposed PPI inhibitors gedunin and H2-gamendazole, did not affect the interaction of Hsp90 with p50Cdc37 in vitro. Phosphorylation of Hsp90 and p50Cdc37 by casein kinase 2 (CK2 did not alter the thermodynamic signature of complex formation. However, the phosphorylated complex was vulnerable to disruption by ADP (IC50 = 32 µM, while ATP, AMPPNP and Hsp90 inhibitors remained largely ineffective. The differential inhibitory activity of ADP suggests that phosphorylation by CK2 primes the complex for dissociation in response to a drop in ATP/ADP levels. The approach applied herein provides robust assays for a comprehensive biochemical evaluation of potential effectors of the Hsp90-p50Cdc37 complex, such as phosphorylation by a kinase or the interaction with small molecule ligands.

  13. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Casal, Roberto; Bhattacharya, Chitralekha [The University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Medicine, The University of Pittsburgh, Pittsburgh, PA 15213 (United States); Epperly, Michael W. [The University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Radiation Oncology, The University of Pittsburgh, Pittsburgh, PA 15213 (United States); Basse, Per H. [The University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Immunology, The University of Pittsburgh, Pittsburgh, PA 15213 (United States); Wang, Hong [The University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Biostatistics, The University of Pittsburgh, Pittsburgh, PA 15213 (United States); Wang, Xinhui [Harvard Medical School, Harvard University, 25 Shattuck Street, Boston, MA 02115 (United States); Proia, David A. [Synta Pharmaceuticals Corp., 45 Hartwell Avenue, Lexington, MA 02421 (United States); Greenberger, Joel S. [The University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Radiation Oncology, The University of Pittsburgh, Pittsburgh, PA 15213 (United States); Socinski, Mark A.; Levina, Vera, E-mail: levinav@upmc.edu [The University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Medicine, The University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2015-05-22

    The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC) cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of β-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors.

  14. Myocyte-Derived Hsp90 Modulates Collagen Upregulation via Biphasic Activation of STAT-3 in Fibroblasts during Cardiac Hypertrophy

    Science.gov (United States)

    Datta, Ritwik; Bansal, Trisha; Rana, Santanu; Datta, Kaberi; Datta Chaudhuri, Ratul; Chawla-Sarkar, Mamta

    2016-01-01

    ABSTRACT Signal transducer and activator of transcription 3 (STAT-3)-mediated signaling in relation to upregulated collagen expression in fibroblasts during cardiac hypertrophy is well defined. Our recent findings have identified heat shock protein 90 (Hsp90) to be a critical modulator of fibrotic signaling in cardiac fibroblasts in this disease milieu. The present study was therefore intended to analyze the role of Hsp90 in the STAT-3-mediated collagen upregulation process. Our data revealed a significant difference between in vivo and in vitro results, pointing to a possible involvement of myocyte-fibroblast cross talk in this process. Cardiomyocyte-targeted knockdown of Hsp90 in rats (Rattus norvegicus) in which the renal artery was ligated showed downregulated collagen synthesis. Furthermore, the results obtained with cardiac fibroblasts conditioned with Hsp90-inhibited hypertrophied myocyte supernatant pointed toward cardiomyocytes' role in the regulation of collagen expression in fibroblasts during hypertrophy. Our study also revealed a novel signaling mechanism where myocyte-derived Hsp90 orchestrates not only p65-mediated interleukin-6 (IL-6) synthesis but also its release in exosomal vesicles. Such myocyte-derived exosomes and myocyte-secreted IL-6 are responsible in unison for the biphasic activation of STAT-3 signaling in cardiac fibroblasts that culminates in excess collagen synthesis, leading to severely compromised cardiac function during cardiac hypertrophy. PMID:28031326

  15. Acquired resistance to 5-fluorouracil via HSP90/Src-mediated increase in thymidylate synthase expression in colon cancer.

    Science.gov (United States)

    Ahn, Ji-Young; Lee, Ji-Sun; Min, Hye-Young; Lee, Ho-Young

    2015-10-20

    5-fluorouracil (5-FU), one of the first-line chemotherapeutic agents for the treatment of gastrointestinal malignancies, has shown limited efficacy. The expression of thymidylate synthase (TYMS) has been reported to be associated with the resistance to 5-FU. Here, we demonstrate that the enhanced HSP90 function and subsequent activation of Src induce expression of TYMS and acquired resistance to 5-FU in colon cancer. We show that the persistent 5-FU treatment granted 5-FU-sensitive HCT116 colon cancer cells morphologic, molecular, and behavioral characteristic of the epithelial-mesenchymal transition (EMT), contributing to emergence of acquired resistance to 5-FU. HCT116/R, a HCT116 colon cancer cell subline carrying acquired resistance to 5-FU, showed increased expression and activation of HSP90's client proteins and transcriptional up-regulation of TYMS. Forced overexpression of HSP90 or constitutive active Src in HCT116 cells increased TYMS expression. Conversely, pharmacological blockade of HSP90 or Src in HCT116/R cells effectively suppressed the changes involved in 5-FU resistance in vitro and xenograft tumor growth, hematogenous spread, and metastatic tumor development in vivo. This study suggests a novel function of HSP90-Src pathway in regulation of TYMS expression and acquisition of 5-FU resistance. Thus, therapeutics targeting this pathway may be an effective clinical strategy to overcome 5-FU resistance in colon cancer.

  16. Jasmonate signalling in Arabidopsis involves SGT1b-HSP70-HSP90 chaperone complexes.

    Science.gov (United States)

    Zhang, Xue-Cheng; Millet, Yves A; Cheng, Zhenyu; Bush, Jenifer; Ausubel, Frederick M

    Plant hormones play pivotal roles in growth, development and stress responses. Although it is essential to our understanding of hormone signalling, how plants maintain a steady state level of hormone receptors is poorly understood. We show that mutation of the Arabidopsis thaliana co-chaperone SGT1b impairs responses to the plant hormones jasmonate, auxin and gibberellic acid, but not brassinolide and abscisic acid, and that SGT1b and its homologue SGT1a are involved in maintaining the steady state levels of the F-box proteins COI1 and TIR1, receptors for jasmonate and auxin, respectively. The association of SGT1b with COI1 is direct and is independent of the Arabidopsis SKP1 protein, ASK1. We further show that COI1 is a client protein of SGT1b-HSP70-HSP90 chaperone complexes and that the complexes function in hormone signalling by stabilizing the COI1 protein. This study extends the SGT1b-HSP90 client protein list and broadens the functional scope of SGT1b-HSP70-HSP90 chaperone complexes.

  17. Hsp70/Hsp90 organising protein (hop): beyond interactions with chaperones and prion proteins.

    Science.gov (United States)

    Baindur-Hudson, Swati; Edkins, Adrienne L; Blatch, Gregory L

    2015-01-01

    The Hsp70/Hsp90 organising protein (Hop), also known as stress-inducible protein 1 (STI1), has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins. Consequently, Hop is implicated in a number of key signalling pathways, including aberrant pathways leading to cancer. However, Hop is also secreted and it is now well established that Hop also serves as a receptor for the prion protein, PrP(C). The intracellular and extracellular forms of Hop most likely represent two different isoforms, although the molecular determinants of these divergent functions are yet to be identified. There is also a growing body of research that reports the involvement of Hop in cellular activities that appear independent of either chaperones or PrP(C). While Hop has been shown to have various cellular functions, its biological function remains elusive. However, recent knockout studies in mammals suggest that Hop has an important role in embryonic development. This review provides a critical overview of the latest molecular, cellular and biological research on Hop, critically evaluating its function in healthy systems and how this function is adapted in diseases states.

  18. The protective role of HSP90 against 3-hydroxykynurenine-induced neuronal apoptosis.

    Science.gov (United States)

    Lee, M W; Park, S C; Chae, H S; Bach, J H; Lee, H J; Lee, S H; Kang, Y K; Kim, K Y; Lee, W B; Kim, S S

    2001-06-08

    3-hydroxykynurenine (3HK), an endogenous metabolite of tryptophan in the kynurenine pathway, is a potential neurotoxin in several neurodegenerative disorders. Stabilizing protein structure, heat shock proteins (HSPs) have diverse roles as molecular chaperones to mediate stress tolerance. In the present study, we investigated the possible protective role of HSPs against 3HK induced neuronal cell death. Here we report that 3HK induced in a dose- and time-dependent manner neuronal cell death in neuroblastoma SK-N-SH cells. The cell death showed characteristic apoptotic features such as cell shrinkage, plasma membrane blebbing, chromatin condensation, and nuclear condensation and fragmentation. Furthermore, SK-N-SN cells were protected from 3HK induced cytotoxicity by prior elevation of HSPs expression. Our results show that the protective effect was abolished by HSP90 anti-sense oligonucleotides while not by HSP27 and HSP70 anti-sense oligonucleotides. Also, our result shows that HSP90 effectively inhibits caspases activities leading to the apoptosis. These results suggest that 3HK induces apoptosis in neuroblastoma SK-N-SN cells and that HSP90 is major contributing protein component of protection against 3HK induced apoptosis. Copyright 2001 Academic Press.

  19. Out with the old: Hsp90 finds amino acid residue more useful than co-chaperone protein

    Directory of Open Access Journals (Sweden)

    Abbey D. Zuehlke

    2017-08-01

    Full Text Available Redundant functions maintained from single to multi-cellular organisms have made Saccharomyces cere-visiae an important model for the analysis of con-served com-plex cellular processes. Yeast has been especially useful in understanding the regulation and function of the essential molecular chaperone, Heat Shock Protein 90 (Hsp90. Research focused on Hsp90 has determined that it is highly regulated by both co-chaperones and posttranslational modifications. A recent study per-formed by (Zuehlke et al., 2017 demonstrates that the function of one co-chaperone in yeast is replaced by posttranslational modification (PTM of a single amino acid within Hsp90 in higher eukaryotes.

  20. Development and characterization of a novel C-terminal inhibitor of Hsp90 in androgen dependent and independent prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Eskew Jeffery D

    2011-10-01

    Full Text Available Abstract Background The molecular chaperone, heat shock protein 90 (Hsp90 has been shown to be overexpressed in a number of cancers, including prostate cancer, making it an important target for drug discovery. Unfortunately, results with N-terminal inhibitors from initial clinical trials have been disappointing, as toxicity and resistance resulting from induction of the heat shock response (HSR has led to both scheduling and administration concerns. Therefore, Hsp90 inhibitors that do not induce the heat shock response represent a promising new direction for the treatment of prostate cancer. Herein, the development of a C-terminal Hsp90 inhibitor, KU174, is described, which demonstrates anti-cancer activity in prostate cancer cells in the absence of a HSR and describe a novel approach to characterize Hsp90 inhibition in cancer cells. Methods PC3-MM2 and LNCaP-LN3 cells were used in both direct and indirect in vitro Hsp90 inhibition assays (DARTS, Surface Plasmon Resonance, co-immunoprecipitation, luciferase, Western blot, anti-proliferative, cytotoxicity and size exclusion chromatography to characterize the effects of KU174 in prostate cancer cells. Pilot in vivo efficacy studies were also conducted with KU174 in PC3-MM2 xenograft studies. Results KU174 exhibits robust anti-proliferative and cytotoxic activity along with client protein degradation and disruption of Hsp90 native complexes without induction of a HSR. Furthermore, KU174 demonstrates direct binding to the Hsp90 protein and Hsp90 complexes in cancer cells. In addition, in pilot in-vivo proof-of-concept studies KU174 demonstrates efficacy at 75 mg/kg in a PC3-MM2 rat tumor model. Conclusions Overall, these findings suggest C-terminal Hsp90 inhibitors have potential as therapeutic agents for the treatment of prostate cancer.

  1. 17AAG Treatment Accelerates Doxorubicin Induced Cellular Senescence: Hsp90 Interferes with Enforced Senescence of Tumor Cells

    Directory of Open Access Journals (Sweden)

    Upasana Sarangi

    2012-01-01

    Full Text Available Hsp90 chaperone has been identified as an attractive pharmacological target to combat cancer. However, some metastatic tumors either fail to respond to Hsp90 inhibition or show recovery necessitating irreversible therapeutic strategies. In response to this enforced senescence has been proposed as an alternate strategy. Here, we demonstrate that inhibiting Hsp90 with 17AAG sensitizes human neuroblastoma to DNA damage response mediated cellular senescence. Among individual and combination drug treatments, 17AAG pre-treatment followed by doxorubicin treatment exhibited senescence-like characteristics such as increased nucleus to cytoplasm ratio, cell cycle arrest, SA- β -gal staining and the perpetual increase in SAHF. Doxorubicin induced senescence signaling was mediated by p53-p21 CIP/WAF-1 and was accelerated in the absence of functional Hsp90. Sustained p16 INK4a and H3K4me3 expressions correlating with unaffected telomerase activation annulled replicative senescence and appraised stress induced senescence. Despite increases in [(ROSi] and [(Ca 2+ i], a concomitant increase in cellular antioxidant defense system suggested oxidation independent senescence activation. Sustained activation of survival (Akt and proliferative (ERK1/2 kinases fosters robustness of cells. Invigorating senescent cells with growth factor or snooping with mTOR or PI3 kinase inhibitors compromised cell survival but not senescence. Intriguingly, senescence-associated secretory factors from the senescence cells manifested established senescence in neuroblastoma, which offers clinical advantage to our approach. Our study discusses tumor selective functions of Hsp90 and discusses irrefutable strategies of Hsp90 inhibition in anticancer treatments.

  2. Targeting Plasmodium falciparum Hsp90: Towards Reversing Antimalarial Resistance

    Directory of Open Access Journals (Sweden)

    Dea Shahinas

    2013-02-01

    Full Text Available Malaria continues to exact a great human toll in tropical settings. Antimalarial resistance is rife and the parasite inexorably develops mechanisms to outwit our best drugs, including the now first-line choice, artesunate. Novel strategies to circumvent resistance are needed. Here we detail drug development focusing on heat shock protein 90 and its central role as a chaperone. A growing body of evidence supports the role for Hsp90 inhibitors as adjunctive drugs able to restore susceptibility to traditionally efficacious compounds like chloroquine.

  3. High-Throughput Screen of Natural Product Libraries for Hsp90 Inhibitors

    Directory of Open Access Journals (Sweden)

    Jason Davenport

    2014-02-01

    Full Text Available Hsp90 has become the target of intensive investigation, as inhibition of its function has the ability to simultaneously incapacitate proteins that function in pathways that represent the six hallmarks of cancer. While a number of Hsp90 inhibitors have made it into clinical trials, a number of short-comings have been noted, such that the search continues for novel Hsp90 inhibitors with superior pharmacological properties. To identify new potential Hsp90 inhibitors, we have utilized a high-throughput assay based on measuring Hsp90-dependent refolding of thermally denatured luciferase to screen natural compound libraries. Over 4,000 compounds were screen with over 100 hits. Data mining of the literature indicated that 51 compounds had physiological effects that Hsp90 inhibitors also exhibit, and/or the ability to downregulate the expression levels of Hsp90-dependent proteins. Of these 51 compounds, seven were previously characterized as Hsp90 inhibitors. Four compounds, anthothecol, garcinol, piplartine, and rottlerin, were further characterized, and the ability of these compounds to inhibit the refolding of luciferase, and reduce the rate of growth of MCF7 breast cancer cells, correlated with their ability to suppress the Hsp90-dependent maturation of the heme-regulated eIF2α kinase, and deplete cultured cells of Hsp90-dependent client proteins. Thus, this screen has identified an additional 44 compounds with known beneficial pharmacological properties, but with unknown mechanisms of action as possible new inhibitors of the Hsp90 chaperone machine.

  4. Spatio-temporal regulation of Hsp90-ligand complex leads to immune activation.

    Directory of Open Access Journals (Sweden)

    Yasuaki eTamura

    2016-05-01

    Full Text Available Hsp90 is the most abundant cytosolic HSP and is known to act as a molecular chaperone. We found that an Hsp90-cancer antigen peptide complex was efficiently cross-presented by human monocyte-derived dendritic cells and induced peptide-specific cytotoxic T lymphocytes. Furthermore, we observed that the internalized Hsp90-peptide complex was strictly sorted to the Rab5+, EEA1+ static early endosome and the Hsp90-chaperoned peptide was processed and bound to MHC class I molecules through a endosome-recycling pathway. We also found that extracellular Hsp90 complexed with CpG-A or self-DNA stimulates production of a large amount of IFN-α from pDCs via static early endosome targeting. Thus, extracellular Hsp90 can target the antigen or nucleic acid to a static early endosome by spatio-temporal regulation. Moreover, we showed that Hsp90 associates with and delivers TLR7/9 from the ER to early endosomes for ligand recognition. Hsp90 inhibitor, geldanamycin derivative inhibited the Hsp90 association with TLR7/9, resulting in inhibition IFN-α production, leading to improvement of SLE symptoms. Interstingly, we observed that serum Hsp90 is clearly increased in patients with active SLE compared with that in patients with inactive disease. Serum Hsp90 detected in SLE patients binds to self-DNA and/or anti-DNA Ab, thus leading to stimulation of pDCs to produce IFN-α. Thus, Hsp90 plays a crucial role in the pathogenesis of SLE and that an Hsp90 inhibitor will therefore provide a new therapeutic approach to SLE and other nucleic acid-related autoimmune diseases. We will discuss how spatio-temporal regulation of Hsp90-ligand complexes within antigen-presenting cells affects the innate immunity and adaptive immunity.

  5. Interactions of p60, a mediator of progesterone receptor assembly, with heat shock proteins hsp90 and hsp70

    DEFF Research Database (Denmark)

    Chen, S; Prapapanich, V; Rimerman, R A

    1996-01-01

    mature PR complexes. In the present study we observe that a monoclonal antibody specific for p60 can, on the one hand, inhibit formation of mature PR complexes containing heat shock protein 90 (hsp90), p23, and immunophilins and, on the other, enhance recovery of early PR complexes containing hsp70...

  6. Cloning and Expression of a Cytosolic HSP90 Gene in Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Zhengyi Liu

    2014-01-01

    Full Text Available Heat shock protein 90 (HSP90, a highly conserved molecular chaperone, plays essential roles in folding, keeping structural integrity, and regulating the subset of cytosolic proteins. We cloned the cDNA of Chlorella vulgaris HSP90 (named CvHSP90 by combining homology cloning with rapid amplification of cDNA ends (RACE. Sequence analysis indicated that CvHSP90 is a cytosolic member of the HSP90 family. Quantitative RT-PCR was applied to determine the expression level of messenger RNA (mRNA in CvHSP90 under different stress conditions. C. vulgaris was kept in different temperatures (5–45°C for 1 h. The mRNA expression level of CvHSP90 increased with temperature from 5 to 10°C, went further from 35 to 40°C, and reached the maximum at 40°C. On the other hand, for C. vulgaris kept at 35°C for different durations, the mRNA expression level of CvHSP90 increased gradually and reached the peak at 7 h and then declined progressively. In addition, the expression level of CvHSP90 at 40 or 45 in salinity (‰ was almost fourfold of that at 25 in salinity (‰ for 2 h. Therefore, CvHSP90 may be a potential biomarker to monitor environment changes.

  7. Conformational switching of the molecular chaperone Hsp90 via regulated phosphorylation.

    Science.gov (United States)

    Soroka, Joanna; Wandinger, Sebastian K; Mäusbacher, Nina; Schreiber, Thiemo; Richter, Klaus; Daub, Henrik; Buchner, Johannes

    2012-02-24

    Hsp90 is an essential molecular chaperone in the eukaryotic cytosol. Its function is modulated by cochaperones and posttranslational modifications. Importantly, the phosphatase Ppt1 is a dedicated regulator of the Hsp90 chaperone system. Little is known about Ppt1-dependent phosphorylation sites and how these affect Hsp90 activity. Here, we identified the major phosphorylation sites of yeast Hsp90 in its middle or the C-terminal domain and determined the subset regulated by Ppt1. In general, phosphorylation decelerates the Hsp90 machinery, reduces chaperone function in vivo, sensitizes yeast cells to Hsp90 inhibition and affects DNA repair processes. Modification of one particular site (S485) is lethal, whereas others modulate Hsp90 activity via distinct mechanisms affecting the ATPase activity, cochaperone binding and manipulating conformational transitions in Hsp90. Our mechanistic analysis reveals that phosphorylation of Hsp90 permits a regulation of the conformational cycle at distinct steps by targeting switch points for the communication of remote regions within Hsp90. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. RAR1 and HSP90 Form a Complex with Rac/Rop GTPase and Function in Innate-Immune Responses in Rice[W][OA

    Science.gov (United States)

    Thao, Nguyen Phuong; Chen, Letian; Nakashima, Ayako; Hara, Shin-ichiro; Umemura, Kenji; Takahashi, Akira; Shirasu, Ken; Kawasaki, Tsutomu; Shimamoto, Ko

    2007-01-01

    A rice (Oryza sativa) Rac/Rop GTPase, Os Rac1, is involved in innate immunity, but its molecular function is largely unknown. RAR1 (for required for Mla12 resistance) and HSP90 (a heat shock protein 90 kD) are important components of R gene–mediated disease resistance, and their function is conserved in several plant species. HSP90 has also recently been shown to be important in mammalian innate immunity. However, their functions at the molecular level are not well understood. In this study, we examined the functional relationships between Os Rac1, RAR1, and HSP90. Os RAR1-RNA interference (RNAi) rice plants had impaired basal resistance to a compatible race of the blast fungus Magnaporthe grisea and the virulent bacterial blight pathogen Xanthomonas oryzae. Constitutively active Os Rac1 complemented the loss of resistance, suggesting that Os Rac1 and RAR1 are functionally linked. Coimmunoprecipitation experiments with rice cell culture extracts indicate that Rac1 forms a complex with RAR1, HSP90, and HSP70 in vivo. Studies with Os RAR1-RNAi and treatment with geldanamycin, an HSP90-specific inhibitor, showed that RAR1 and HSP90 are essential for the Rac1-mediated enhancement of pathogen-associated molecular pattern–triggered immune responses in rice cell cultures. Furthermore, the function of HSP90, but not RAR1, may be essential for their association with the Rac1 complex. Os Rac1 also regulates RAR1 expression at both the mRNA and protein levels. Together, our results indicate that Rac1, RAR1, HSP90, and HSP70 form one or more protein complexes in rice cells and suggest that these proteins play important roles in innate immunity in rice. PMID:18156216

  9. RAR1 and HSP90 form a complex with Rac/Rop GTPase and function in innate-immune responses in rice.

    Science.gov (United States)

    Thao, Nguyen Phuong; Chen, Letian; Nakashima, Ayako; Hara, Shin-ichiro; Umemura, Kenji; Takahashi, Akira; Shirasu, Ken; Kawasaki, Tsutomu; Shimamoto, Ko

    2007-12-01

    A rice (Oryza sativa) Rac/Rop GTPase, Os Rac1, is involved in innate immunity, but its molecular function is largely unknown. RAR1 (for required for Mla12 resistance) and HSP90 (a heat shock protein 90 kD) are important components of R gene-mediated disease resistance, and their function is conserved in several plant species. HSP90 has also recently been shown to be important in mammalian innate immunity. However, their functions at the molecular level are not well understood. In this study, we examined the functional relationships between Os Rac1, RAR1, and HSP90. Os RAR1-RNA interference (RNAi) rice plants had impaired basal resistance to a compatible race of the blast fungus Magnaporthe grisea and the virulent bacterial blight pathogen Xanthomonas oryzae. Constitutively active Os Rac1 complemented the loss of resistance, suggesting that Os Rac1 and RAR1 are functionally linked. Coimmunoprecipitation experiments with rice cell culture extracts indicate that Rac1 forms a complex with RAR1, HSP90, and HSP70 in vivo. Studies with Os RAR1-RNAi and treatment with geldanamycin, an HSP90-specific inhibitor, showed that RAR1 and HSP90 are essential for the Rac1-mediated enhancement of pathogen-associated molecular pattern-triggered immune responses in rice cell cultures. Furthermore, the function of HSP90, but not RAR1, may be essential for their association with the Rac1 complex. Os Rac1 also regulates RAR1 expression at both the mRNA and protein levels. Together, our results indicate that Rac1, RAR1, HSP90, and HSP70 form one or more protein complexes in rice cells and suggest that these proteins play important roles in innate immunity in rice.

  10. DsHsp90 Is Involved in the Early Response of Dunaliella salina to Environmental Stress

    Directory of Open Access Journals (Sweden)

    Si-Jia Wang

    2012-06-01

    Full Text Available Heat shock protein 90 (Hsp90 is a molecular chaperone highly conserved across the species from prokaryotes to eukaryotes. Hsp90 is essential for cell viability under all growth conditions and is proposed to act as a hub of the signaling network and protein homeostasis of the eukaryotic cells. By interacting with various client proteins, Hsp90 is involved in diverse physiological processes such as signal transduction, cell mobility, heat shock response and osmotic stress response. In this research, we cloned the dshsp90 gene encoding a polypeptide composed of 696 amino acids from the halotolerant unicellular green algae Dunaliella salina. Sequence alignment indicated that DsHsp90 belonged to the cytosolic Hsp90A family. Further biophysical and biochemical studies of the recombinant protein revealed that DsHsp90 possessed ATPase activity and existed as a dimer with similar percentages of secondary structures to those well-studied Hsp90As. Analysis of the nucleotide sequence of the cloned genomic DNA fragment indicated that dshsp90 contained 21 exons interrupted by 20 introns, which is much more complicated than the other plant hsp90 genes. The promoter region of dshsp90 contained putative cis-acting stress responsive elements and binding sites of transcriptional factors that respond to heat shock and salt stress. Further experimental research confirmed that dshsp90 was upregulated quickly by heat and salt shock in the D. salina cells. These findings suggested that dshsp90 might serve as a component of the early response system of the D. salina cells against environmental stresses.

  11. Repercussion of mitochondria deformity induced by anti-Hsp90 drug 17AAG in human tumor cells

    KAUST Repository

    Vishal, Chaturvedi

    2011-06-07

    Inhibiting Hsp90 chaperone roles using 17AAG induces cytostasis or apoptosis in tumor cells through destabilization of several mutated cancer promoting proteins. Although mitochondria are central in deciding the fate of cells, 17AAG induced effects on tumor cell mitochondria were largely unknown. Here, we show that Hsp90 inhibition with 17AAG first affects mitochondrial integrity in different human tumor cells, neuroblastoma, cervical cancer and glial cells. Using human neuroblastoma tumor cells, we found the early effects associated with a change in mitochondrial membrane potential, elongation and engorgement of mitochondria because of an increased matrix vacuolization. These effects are specific to Hsp90 inhibition as other chemotherapeutic drugs did not induce similar mitochondrial deformity. Further, the effects are independent of oxidative damage and cytoarchitecture destabilization since cytoskeletal disruptors and mitochondrial metabolic inhibitors also do not induce similar deformity induced by 17AAG. The 1D PAGE LC MS/ MS mitochondrial proteome analysis of 17AAG treated human neuroblastoma cells showed a loss of 61% proteins from membrane, metabolic, chaperone and ribonucleoprotein families. About 31 unmapped protein IDs were identified from proteolytic processing map using Swiss-Prot accession number, and converted to the matching gene name searching the ExPASy proteomics server. Our studies display that Hsp90 inhibition effects at first embark on mitochondria of tumor cells and compromise mitochondrial integrity. the author(s), publisher and licensee Libertas Academica Ltd.

  12. RNAi knockdown of Hop (Hsp70/Hsp90 organising protein) decreases invasion via MMP-2 down regulation.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2011-07-28

    We previously identified Hop as over expressed in invasive pancreatic cancer cell lines and malignant tissues of pancreatic cancer patients, suggesting an important role for Hop in the biology of invasive pancreatic cancer. Hop is a co-chaperone protein that binds to both Hsp70\\/Hsp90. We hypothesised that by targeting Hop, signalling pathways modulating invasion and client protein stabilisation involving Hsp90-dependent complexes may be altered. In this study, we show that Hop knockdown by small interfering (si)RNA reduces the invasion of pancreatic cancer cells, resulting in decreased expression of the downstream target gene, matrix metalloproteinases-2 (MMP-2). Hop in conditioned media co-immunoprecipitates with MMP-2, implicating a possible extracellular function for Hop. Knockdown of Hop expression also reduced expression levels of Hsp90 client proteins, HER2, Bcr-Abl, c-MET and v-Src. Furthermore, Hop is strongly expressed in high grade PanINs compared to lower PanIN grades, displaying differential localisation in invasive ductal pancreatic cancer, indicating that the localisation of Hop is an important factor in pancreatic tumours. Our data suggests that the attenuation of Hop expression inactivates key signal transduction proteins which may decrease the invasiveness of pancreatic cancer cells possibly through the modulation of Hsp90 activity. Therefore, targeting Hop in pancreatic cancer may constitute a viable strategy for targeted cancer therapy.

  13. Whey protein hydrolysate enhances HSP90 but does not alter HSP60 and HSP25 in skeletal muscle of rats.

    Directory of Open Access Journals (Sweden)

    Carolina Soares Moura

    Full Text Available Whey protein hydrolysate (WPH intake has shown to increase HSP70 expression. The aim of the present study was to investigate whether WPH intake would also influences HSP90, HSP60 and HSP25 expression, as well as associated parameters. Forty-eight male Wistar rats were divided into sedentary (unstressed and exercised (stressed groups, and were fed with three different sources of protein: whey protein (WP, whey protein hydrolysate (WPH and casein (CAS as a control, based on the AIN93G diet for 3 weeks. WPH intake increased HSP90 expression in both sedentary and exercised animals compared to WP or CAS, however no alteration was found from exercise or diet to HSP60 or HSP25. Co-chaperone Aha1 and p-HSF1 were also increased in the exercised animals fed with WPH in comparison with WP or CAS, consistent with enhanced HSP90 expression. VEGF and p-AKT were increased in the WPH exercised group. No alteration was found in BCKDH, PI3-Kinase (p85, GFAT, OGT or PGC for diet or exercise. The antioxidant system GPx, catalase and SOD showed different responses to diet and exercise. The data indicate that WPH intake enhanced factors related to cell survival, such as HSP90 and VEGF, but does not alter HSP60 or HSP25 in rat skeletal muscle.

  14. Targeting HSP90 by the novel inhibitor NVP-AUY922 reduces growth and angiogenesis of pancreatic cancer.

    Science.gov (United States)

    Moser, Christian; Lang, Sven A; Hackl, Christina; Wagner, Christine; Scheiffert, Eva; Schlitt, Hans J; Geissler, Edward K; Stoeltzing, Oliver

    2012-07-01

    To evaluate the impact of heat-shock protein 90 (HSP90) blockade by the novel inhibitor NVP-AUY922, on tumor growth and angiogenesis in pancreatic cancer. Effects of NVP-AUY922 on signaling pathways were evaluated by western blotting. Cell motility of cancer cells, pericytes and endothelial cells was investigated in Boyden chambers. Impact of HSP90 blockade on pancreatic tumor growth and angiogenesis were studied in in vivo tumor models. NVP-AUY922 effectively inhibited cancer cell growth. Moreover, HSP90 inhibition potently interfered with multiple signaling pathways in cancer cells, as well as endothelial cells and pericytes, leading to significant reduction of pro-migratory and invasive properties of these cell types. In vivo, treatment with NVP-AUY922 significantly inhibited growth and vascularization of pancreatic cancer at doses far below the maximum tolerated dose. HSP90 blockade by the novel synthetic inhibitor NVP-AUY922 effectively reduces pancreatic cancer progression through direct effects on cancer cells, as well as on endothelial cells and pericytes.

  15. Fever-range hyperthermia vs. hypothermia effect on cancer cell viability, proliferation and HSP90 expression.

    Science.gov (United States)

    Kalamida, Dimitra; Karagounis, Ilias V; Mitrakas, Achilleas; Kalamida, Sofia; Giatromanolaki, Alexandra; Koukourakis, Michael I

    2015-01-01

    The current study examines the effect of fever-range hyperthermia and mild hypothermia on human cancer cells focusing on cell viability, proliferation and HSP90 expression. A549 and H1299 lung carcinoma, MCF7 breast adenocarcinoma, U87MG and T98G glioblastoma, DU145 and PC3 prostate carcinoma and MRC5 normal fetal lung fibroblasts cell lines were studied. After 3-day exposure to 34°C, 37°C and 40°C, cell viability was determined. Cell proliferation (ki67 index), apoptosis (Caspase 9) and HSP90 expression was studied by confocal microscopy. Viability/proliferation experiments demonstrated that MRC5 fibroblasts were extremely sensitive to hyperthermia, while they were the most resistant to hypothermia. T98G and A549 were thermo-tolerant, the remaining being thermo-sensitive to a varying degree. Nonetheless, as a universal effect, hypothermia reduced viability/proliferation in all cell lines. Hyperthermia sharply induced Caspase 9 in the U87MG most thermo-sensitive cell line. In T98G and A549 thermo-tolerant cell lines, the levels of Caspase 9 declined. Moreover, hyperthermia strongly induced the HSP90 levels in T98G, whilst a sharp decrease was recorded in the thermo-sensitive PC3 and U87MG cell lines. Hyperthermia sensitized thermo-sensitive cancer cell lines to cisplatin and temozolomide, whilst its sensitizing effect was diminished in thermo-tolerant cell lines. The existence of thermo-tolerant and thermo-sensitive cancer cell lines was confirmed, which further encourages research to classify human tumor thermic predilection for patient stratification in clinical trials. Of interest, mild hypothermia had a universal suppressing effect on cancer cell proliferation, further supporting the radio-sensitization hypothesis through reduction of oxygen and metabolic demands.

  16. Fever-range hyperthermia vs. hypothermia effect on cancer cell viability, proliferation and HSP90 expression.

    Directory of Open Access Journals (Sweden)

    Dimitra Kalamida

    Full Text Available The current study examines the effect of fever-range hyperthermia and mild hypothermia on human cancer cells focusing on cell viability, proliferation and HSP90 expression.A549 and H1299 lung carcinoma, MCF7 breast adenocarcinoma, U87MG and T98G glioblastoma, DU145 and PC3 prostate carcinoma and MRC5 normal fetal lung fibroblasts cell lines were studied. After 3-day exposure to 34°C, 37°C and 40°C, cell viability was determined. Cell proliferation (ki67 index, apoptosis (Caspase 9 and HSP90 expression was studied by confocal microscopy.Viability/proliferation experiments demonstrated that MRC5 fibroblasts were extremely sensitive to hyperthermia, while they were the most resistant to hypothermia. T98G and A549 were thermo-tolerant, the remaining being thermo-sensitive to a varying degree. Nonetheless, as a universal effect, hypothermia reduced viability/proliferation in all cell lines. Hyperthermia sharply induced Caspase 9 in the U87MG most thermo-sensitive cell line. In T98G and A549 thermo-tolerant cell lines, the levels of Caspase 9 declined. Moreover, hyperthermia strongly induced the HSP90 levels in T98G, whilst a sharp decrease was recorded in the thermo-sensitive PC3 and U87MG cell lines. Hyperthermia sensitized thermo-sensitive cancer cell lines to cisplatin and temozolomide, whilst its sensitizing effect was diminished in thermo-tolerant cell lines.The existence of thermo-tolerant and thermo-sensitive cancer cell lines was confirmed, which further encourages research to classify human tumor thermic predilection for patient stratification in clinical trials. Of interest, mild hypothermia had a universal suppressing effect on cancer cell proliferation, further supporting the radio-sensitization hypothesis through reduction of oxygen and metabolic demands.

  17. Human calmodulin methyltransferase: expression, activity on calmodulin, and Hsp90 dependence.

    Directory of Open Access Journals (Sweden)

    Sophia Magen

    Full Text Available Deletion of the first exon of calmodulin-lysine N-methyltransferase (CaM KMT, previously C2orf34 has been reported in two multigene deletion syndromes, but additional studies on the gene have not been reported. Here we show that in the cells from 2p21 deletion patients the loss of CaM KMT expression results in accumulation of hypomethylated calmodulin compared to normal controls, suggesting that CaM KMT is essential for calmodulin methylation and there are no compensatory mechanisms for CaM methylation in humans. We have further studied the expression of this gene at the transcript and protein levels. We have identified 2 additional transcripts in cells of the 2p21 deletion syndrome patients that start from alternative exons positioned outside the deletion region. One of them starts in the 2(nd known exon, the other in a novel exon. The transcript starting from the novel exon was also identified in a variety of tissues from normal individuals. These new transcripts are not expected to produce proteins. Immunofluorescent localization of tagged CaM KMT in HeLa cells indicates that it is present in both the cytoplasm and nucleus of cells whereas the short isoform is localized to the Golgi apparatus. Using Western blot analysis we show that the CaM KMT protein is broadly expressed in mouse tissues. Finally we demonstrate that the CaM KMT interacts with the middle portion of the Hsp90 molecular chaperon and is probably a client protein since it is degraded upon treatment of cells with the Hsp90 inhibitor geldanamycin. These findings suggest that the CaM KMT is the major, possibly the single, methyltransferase of calmodulin in human cells with a wide tissue distribution and is a novel Hsp90 client protein. Thus our data provides basic information for a gene potentially contributing to the patient phenotype of two contiguous gene deletion syndromes.

  18. Decreased Thioredoxin-1 and Increased HSP90 Expression in Skeletal Muscle in Subjects with Type 2 Diabetes or Impaired Glucose Tolerance

    Directory of Open Access Journals (Sweden)

    M. Venojärvi

    2014-01-01

    Full Text Available In diabetes, the endogenous defence systems are overwhelmed, causing various types of stress in tissues. In this study, newly diagnosed or diet-treated type 2 diabetics (T2D (n=10 were compared with subjects with impaired glucose tolerance (IGT (n=8. In both groups, at resting conditions, blood samples were drawn for assessing metabolic indices and skeletal muscle samples (m. vastus lateralis were taken for the measurements of cellular defence markers: thioredoxin-1 (TRX-1 and stress proteins HSP72, HSP90. The protein level of TRX-1 was 36.1% lower (P=0.031 and HSP90 was 380% higher (P<0.001 in the T2D than in the IGT subjects, with no significant changes in HSP72. However, after the adjustment of both analyses with HOMA-IR only HSP90 difference remained significant. In conclusion, level of TRX-1 in skeletal muscle tissue was lower while that of HSP90 was higher in T2D than in IGT subjects. This may impair antioxidant defence and lead to disruptions of protein homoeostasis and redox regulation of cellular defences. Because HSP90 may be involved in sustaining functional insulin signalling pathway in type 2 diabetic muscles and higher HSP90 levels can be a consequence of type 2 diabetes, our results are potentially important for the diabetes research.

  19. Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein.

    Science.gov (United States)

    Hubert, David A; Tornero, Pablo; Belkhadir, Youssef; Krishna, Priti; Takahashi, Akira; Shirasu, Ken; Dangl, Jeffery L

    2003-11-03

    The Arabidopsis protein RPM1 activates disease resistance in response to Pseudomonas syringae proteins targeted to the inside of the host cell via the bacterial type III delivery system. We demonstrate that specific mutations in the ATP-binding domain of a single Arabidopsis cytosolic HSP90 isoform compromise RPM1 function. These mutations do not affect the function of related disease resistance proteins. RPM1 associates with HSP90 in plant cells. The Arabidopsis proteins RAR1 and SGT1 are required for the action of many R proteins, and display some structural similarity to HSP90 co-chaperones. Each associates with HSP90 in plant cells. Our data suggest that (i) RPM1 is an HSP90 client protein; and (ii) RAR1 and SGT1 may function independently as HSP90 cofactors. Dynamic interactions among these proteins can regulate RPM1 stability and function, perhaps similarly to the formation and regulation of animal steroid receptor complexes.

  20. TaRAR1 and TaSGT1 associate with TaHsp90 to function in bread wheat (Triticum aestivum L.) seedling growth and stripe rust resistance.

    Science.gov (United States)

    Wang, Guan-Feng; Fan, Renchun; Wang, Xianping; Wang, Daowen; Zhang, Xiangqi

    2015-04-01

    RAR1 and SGT1 are important co-chaperones of Hsp90. We previously showed that TaHsp90.1 is required for wheat seedling growth, and that TaHsp90.2 and TaHsp90.3 are essential for resistance (R) gene mediated resistance to stripe rust fungus. Here, we report the characterization of TaRAR1 and TaSGT1 genes in bread wheat. TaRAR1 and TaSGT1 each had three homoeologs, which were located on wheat groups 2 and 3 chromosomes, respectively. Strong inhibition of seedling growth was observed after silencing TaSGT1 but not TaRAR1. In contrast, decreasing the expression of TaRAR1 or TaSGT1 could all compromise R gene mediated resistance to stripe rust fungus infection. Protein-protein interactions were found among TaRAR1, TaSGT1 and TaHsp90. The N-terminus of TaHsp90, the CHORD-I and CHORD-II domains of TaRAR1 and the CS domain of TaSGT1 may be instrumental for the interactions among the three proteins. Based on this work and our previous study on TaHsp90, we speculate that the TaSGT1-TaHsp90.1 interaction is important for maintaining bread wheat seedling growth. The TaRAR1-TaSGT1-TaHsp90.2 and TaRAR1-TaSGT1-TaHsp90.3 interactions are involved in controlling the resistance to stripe rust disease. The new information obtained here should aid further functional investigations of TaRAR1-TaSGT1-TaHsp90 complexes in regulating bread wheat growth and disease resistance.

  1. HSP90 Inhibitor Encapsulated Photo-Theranostic Nanoparticles for Synergistic Combination Cancer Therapy.

    Science.gov (United States)

    Lin, Tzu-Yin; Guo, Wenchang; Long, Qilai; Ma, Aihong; Liu, Qiangqiang; Zhang, Hongyong; Huang, Yee; Chandrasekaran, Siddarth; Pan, Chongxian; Lam, Kit S; Li, Yuanpei

    2016-01-01

    Photodynamic therapy (PDT) is a promising non-invasive therapeutic modality that has been proposed for treating prostate cancer, but the procedure is associated with limited efficacy, tumor recurrence and photo-toxicity. In the present study, we proposed to develop a novel multifunctional nano-platform for targeted delivery of heat, reactive oxygen species (ROS) and heat shock protein 90 (Hsp90) inhibitor simultaneously for combination therapy against prostate cancer. This new nano-platform combines two newly developed entities: 1) a unique organic and biocompatible nanoporphyrin-based drug delivery system that can generate efficient heat and ROS simultaneously with light activation at the tumor sites for dual-modal photothermal- and photodynamic- therapy (PTT/PDT), and 2) new nano-formulations of Hsp90 inhibitors that can decrease the levels of pro-survival and angiogenic signaling molecules induced by phototherapy, therefore, further sensitizing cancer cells to phototherapy. Furthermore, the nanoparticles have activatable near infrared (NIR) fluorescence for optical imaging to conveniently monitor the real-time drug delivery in both subcutaneous and orthotopic mouse models bearing prostate cancer xenograft. This novel multifunctional nano-platform has great potential to improve the care of prostate cancer patients through targeted combination therapy.

  2. Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin inhibits the proliferation of ARPE-19 cells

    Directory of Open Access Journals (Sweden)

    Wang Lin

    2010-04-01

    Full Text Available Abstract Background The antiproliferative effect of the Hsp90 inhibitor 17-AAG (17-allylamino-17-demethoxygeldanamycin on human retinal pigment epithelial cells is investigated. Methods MTT and flow cytometry were used to study the antiproliferative effects of the 17-AAG treatment of ARPE-19 cells. 2D gel electrophoresis (2-DE and mass spectrometry were applied to detect the altered expression of proteins, which was verified by real-time PCR. Gene Ontology analysis and Ingenuity Pathway Analysis (IPA were utilized to analyze the signaling pathways, cellular location, function, and network connections of the identified proteins. And SOD assay was employed to confirm the analysis. Results 17-AAG suppressed the proliferation of ARPE-19 cells by inducing cell cycle arrest and apoptosis. Proteomic analysis revealed that the expression of 94 proteins was altered by a factor of more than 1.5 following exposure to 17-AAG. Of these 94, 87 proteins were identified. Real-time PCR results indicated that Hsp90 and Hsp70, which were not identified by proteomic analysis, were both upregulated upon 17-AAG treatment. IPA revealed that most of the proteins have functions that are related to oxidative stress, as verified by SOD assay, while canonical pathway analysis revealed glycolysis/gluconeogenesis. Conclusions 17-AAG suppressed the proliferation of ARPE-19 cells by inducing cell cycle arrest and apoptosis, and possibly by oxidative stress.

  3. Molecular analysis of common wheat genes encoding three types of cytosolic heat shock protein 90 (Hsp90): functional involvement of cytosolic Hsp90s in the control of wheat seedling growth and disease resistance.

    Science.gov (United States)

    Wang, Guan-Feng; Wei, Xuening; Fan, Renchun; Zhou, Huanbin; Wang, Xianping; Yu, Chunmei; Dong, Lingli; Dong, Zhenying; Wang, Xiaojie; Kang, Zhensheng; Ling, Hongqing; Shen, Qian-Hua; Wang, Daowen; Zhang, Xiangqi

    2011-07-01

    Heat shock protein 90 (Hsp90) molecular chaperones play important roles in plant growth and responses to environmental stimuli. However, little is known about the genes encoding Hsp90s in common wheat. Here, we report genetic and functional analysis of the genes specifying cytosolic Hsp90s in this species. Three groups of homoeologous genes (TaHsp90.1, TaHsp90.2 and TaHsp90.3), encoding three types of cytosolic Hsp90, were isolated. The loci containing TaHsp90.1, TaHsp90.2 and TaHsp90.3 genes were assigned to groups 2, 7 and 5 chromosomes, respectively. TaHsp90.1 genes exhibited higher transcript levels in the stamen than in the leaf, root and culm. TaHsp90.2 and TaHsp90.3 genes were more ubiquitously transcribed in the vegetative and reproductive organs examined. Decreasing the expression of TaHsp90.1 genes through virus-induced gene silencing (VIGS) caused pronounced inhibition of wheat seedling growth, whereas the suppression of TaHsp90.2 or TaHsp90.3 genes via VIGS compromised the hypersensitive resistance response of the wheat variety Suwon 11 to stripe rust fungus. Our work represents the first systematic determination of wheat genes encoding cytosolic Hsp90s, and provides useful evidence for the functional involvement of cytosolic Hsp90s in the control of seedling growth and disease resistance in common wheat. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  4. The Hsp90 chaperone in action: following the ATP cycle of a molecular machine

    NARCIS (Netherlands)

    Karagoz, G.E.

    2011-01-01

    Protein folding in the cell is assisted by molecular chaperones. Hsp90 is the most abundant molecular chaperone in the cytosol. It facilitates the folding and activation of mainly signalling molecules. Its chaperoning of regulatory proteins places Hsp90 in the cross road of several important

  5. Why is this effective HSP90 inhibitor not being developed in HER2+ breast cancer?

    Science.gov (United States)

    Arteaga, Carlos L

    2011-08-01

    Inhibition of the HSP90 chaperone leads to degradation of the HER2 receptor. The HSP90 inhibitor tanespimycin in combination with trastuzumab is active in patients with HER2-overexpressing metastatic breast cancer. This combination is one of several HER2-targeted therapies that will significantly improve the outcome of patients with this subtype of breast cancer. ©2011 AACR.

  6. Spermatogenesis arrest caused by conditional deletion of Hsp90α in adult mice

    Directory of Open Access Journals (Sweden)

    Chiaki Kajiwara

    2012-08-01

    It is controversial whether a functional androgen receptor (AR on germ cells, including spermatogonia, is essential for their development into sperm and, thus, initiation and maintenance of spermatogenesis. It was recently shown that many spermatocytes underwent apoptosis in the testes of Hsp90α KO mice. We had generated Hsp90α KO mice independently and confirmed this phenotype. However, the important question of whether Hsp90α is required to maintain spermatogenesis in adult mice in which testicular maturation is already completed could not be addressed using these conventional KO mice. To answer this question, we generated a tamoxifen-inducible deletion mutant of Hsp90α and found that conditional deletion of Hsp90α in adult mice caused even more severe apoptosis in germ cells beyond the pachytene stage, leading to complete arrest of spermatogenesis and testicular atrophy. Importantly, immunohistochemical analysis revealed that AR expression in WT testis was more evident in spermatogonia than in spermatocytes, whereas its expression was aberrant and ectopic in Hsp90α KO testis, raising the possibility that an AR abnormality in primordial germ cells is involved in spermatogenesis arrest in the Hsp90α KO mice. Our results suggest that the AR, specifically chaperoned by Hsp90α in spermatogonia, is critical for maintenance of established spermatogenesis and for survival of spermatocytes in adult testis, in addition to setting the first wave of spermatogenesis before puberty.

  7. Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast.

    Directory of Open Access Journals (Sweden)

    Michelle D Leach

    2012-12-01

    Full Text Available Thermal adaptation is essential in all organisms. In yeasts, the heat shock response is commanded by the heat shock transcription factor Hsf1. Here we have integrated unbiased genetic screens with directed molecular dissection to demonstrate that multiple signalling cascades contribute to thermal adaptation in the pathogenic yeast Candida albicans. We show that the molecular chaperone heat shock protein 90 (Hsp90 interacts with and down-regulates Hsf1 thereby modulating short term thermal adaptation. In the longer term, thermal adaptation depends on key MAP kinase signalling pathways that are associated with cell wall remodelling: the Hog1, Mkc1 and Cek1 pathways. We demonstrate that these pathways are differentially activated and display cross talk during heat shock. As a result ambient temperature significantly affects the resistance of C. albicans cells to cell wall stresses (Calcofluor White and Congo Red, but not osmotic stress (NaCl. We also show that the inactivation of MAP kinase signalling disrupts this cross talk between thermal and cell wall adaptation. Critically, Hsp90 coordinates this cross talk. Genetic and pharmacological inhibition of Hsp90 disrupts the Hsf1-Hsp90 regulatory circuit thereby disturbing HSP gene regulation and reducing the resistance of C. albicans to proteotoxic stresses. Hsp90 depletion also affects cell wall biogenesis by impairing the activation of its client proteins Mkc1 and Hog1, as well as Cek1, which we implicate as a new Hsp90 client in this study. Therefore Hsp90 modulates the short term Hsf1-mediated activation of the classic heat shock response, coordinating this response with long term thermal adaptation via Mkc1- Hog1- and Cek1-mediated cell wall remodelling.

  8. Toxoplasma gondii Hsp90: potential roles in essential cellular processes of the parasite

    Science.gov (United States)

    Angel, Sergio O.; Figueras, Maria J.; Alomar, Maria L.; Echeverria, Pablo C.; Deng, Bin

    2014-01-01

    SUMMARY Hsp90 is a widely distributed and highly conserved molecular chaperone that is ubiquitously expressed throughout nature, being one of the most abundant proteins within non-stressed cells. This chaperone is up-regulated following stressful events and has been involved in many cellular processes. In Toxoplasma gondii, Hsp90 could be linked with many essential processes of the parasite such as host cell invasion, replication and tachyzoite-bradyzoite interconversion. A Protein-Protein Interaction (PPI) network approach of TgHsp90 has allowed inferring how these processes may be altered. In addition, data mining of T. gondii phosphoproteome and acetylome has allowed the generation of the phosphorylation and acetylation map of TgHsp90. This review focuses on the potential roles of TgHsp90 in parasite biology and the analysis of experimental data in comparison with its counterparts in yeast and humans. PMID:24560345

  9. Epigallocatechin-3-gallate suppresses the expression of HSP70 and HSP90 and exhibits anti-tumor activity in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Yoon Jung-Hoon

    2010-06-01

    Full Text Available Abstract Background Epigallocatechin-3-gallate (EGCG, one of the major catechins in green tea, is a potential chemopreventive agent for various cancers. The aim of this study was to examine the effect of EGCG on the expression of heat shock proteins (HSPs and tumor suppression. Methods Cell colony formation was evaluated by a soft agar assay. Transcriptional activity of HSP70 and HSP90 was determined by luciferase reporter assay. An EGCG-HSPs complex was prepared using EGCG attached to the cyanogen bromide (CNBr-activated Sepharose 4B. In vivo effect of EGCG on tumor growth was examined in a xenograft model. Results Treatment with EGCG decreased cell proliferation and colony formation of MCF-7 human breast cancer cells. EGCG specifically inhibited the expression of HSP70 and HSP90 by inhibiting the promoter activity of HSP70 and HSP90. Pretreatment with EGCG increased the stress sensitivity of MCF-7 cells upon heat shock (44°C for 1 h or oxidative stress (H2O2, 500 μM for 24 h. Moreover, treatment with EGCG (10 mg/kg in a xenograft model resulted in delayed tumor incidence and reduced tumor size, as well as the inhibition of HSP70 and HSP90 expression. Conclusions Overall, these findings demonstrate that HSP70 and HSP90 are potent molecular targets of EGCG and suggest EGCG as a drug candidate for the treatment of human cancer.

  10. 3D-QSAR, molecular docking, and molecular dynamic simulations for prediction of new Hsp90 inhibitors based on isoxazole scaffold.

    Science.gov (United States)

    Abbasi, Maryam; Sadeghi-Aliabadi, Hojjat; Amanlou, Massoud

    2017-05-24

    Heat shock protein 90(Hsp90), as a molecular chaperone, play a crucial role in folding and proper function of many proteins. Hsp90 inhibitors containing isoxazole scaffold are currently being used in the treatment of cancer as tumor suppressers. Here in the present studies, new compounds based on isoxazole scaffold were predicted using a combination of molecular modeling techniques including three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamic (MD) simulations. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were also done. The steric and electrostatic contour map of CoMFA and CoMSIA were created. Hydrophobic, hydrogen bond donor and acceptor of CoMSIA model also were generated, and new compounds were predicted by CoMFA and CoMSIA contour maps. To investigate the binding modes of the predicted compounds in the active site of Hsp90, a molecular docking simulation was carried out. MD simulations were also conducted to evaluate the obtained results on the best predicted compound and the best reported Hsp90 inhibitors in the 3D-QSAR model. Findings indicate that the predicted ligands were stable in the active site of Hsp90.

  11. Structural Bioinformatics and Protein Docking Analysis of the Molecular Chaperone-Kinase Interactions: Towards Allosteric Inhibition of Protein Kinases by Targeting the Hsp90-Cdc37 Chaperone Machinery

    Directory of Open Access Journals (Sweden)

    Gennady Verkhivker

    2013-11-01

    Full Text Available A fundamental role of the Hsp90-Cdc37 chaperone system in mediating maturation of protein kinase clients and supporting kinase functional activity is essential for the integrity and viability of signaling pathways involved in cell cycle control and organism development. Despite significant advances in understanding structure and function of molecular chaperones, the molecular mechanisms and guiding principles of kinase recruitment to the chaperone system are lacking quantitative characterization. Structural and thermodynamic characterization of Hsp90-Cdc37 binding with protein kinase clients by modern experimental techniques is highly challenging, owing to a transient nature of chaperone-mediated interactions. In this work, we used experimentally-guided protein docking to probe the allosteric nature of the Hsp90-Cdc37 binding with the cyclin-dependent kinase 4 (Cdk4 kinase clients. The results of docking simulations suggest that the kinase recognition and recruitment to the chaperone system may be primarily determined by Cdc37 targeting of the N-terminal kinase lobe. The interactions of Hsp90 with the C-terminal kinase lobe may provide additional “molecular brakes” that can lock (or unlock kinase from the system during client loading (release stages. The results of this study support a central role of the Cdc37 chaperone in recognition and recruitment of the kinase clients. Structural analysis may have useful implications in developing strategies for allosteric inhibition of protein kinases by targeting the Hsp90-Cdc37 chaperone machinery.

  12. Inhibition of HSP90 Promotes Neural Stem Cell Survival from Oxidative Stress through Attenuating NF-κB/p65 Activation

    Directory of Open Access Journals (Sweden)

    Qian Liu

    2016-01-01

    Full Text Available Stem cell survival after transplantation determines the efficiency of stem cell treatment, which develops as a novel potential therapy for several central nervous system (CNS diseases in recent decades. The engrafted stem cells face the damage of oxidative stress, inflammation, and immune response at the lesion point in host. Among the damaging pathologies, oxidative stress directs stem cells to apoptosis and even death through several signalling pathways and DNA damage. However, the in-detail mechanism of stem cell survival from oxidative stress has not been revealed clearly. Here, in this study, we used hydrogen peroxide (H2O2 to induce the oxidative damage on neural stem cells (NSCs. The damage was in consequence demonstrated involving the activation of heat shock protein 90 (HSP90 and NF-κB/p65 signalling pathways. Further application of the pharmacological inhibitors, respectively, targeting at each signalling indicated an upper-stream role of HSP90 upon NF-κB/p65 on NSCs survival. Preinhibition of HSP90 with the specific inhibitor displayed a significant protection on NSCs against oxidative stress. In conclusion, inhibition of HSP90 would attenuate NF-κB/p65 activation by oxidative induction and promote NSCs survival from oxidative damage. The HSP90/NF-κB mechanism provides a new evidence on rescuing NSCs from oxidative stress and also promotes the stem cell application on CNS pathologies.

  13. A primate specific extra domain in the molecular chaperone Hsp90.

    Directory of Open Access Journals (Sweden)

    Vishwadeepak Tripathi

    Full Text Available Hsp90 (heat shock protein 90 is an essential molecular chaperone that mediates folding and quality control of client proteins. Many of them such as protein kinases, steroid receptors and transcription factors are involved in cellular signaling processes. Hsp90 undergoes an ATP hydrolysis dependent conformational cycle to assist folding of the client protein. The canonical Hsp90 shows a typical composition of three distinct domains and interacts with individual cochaperone partners such as Hop, Cdc37 and Aha1 (activator of Hsp90 ATPase that regulate the reaction cycle of the molecular chaperone. A bioinformatic survey identified an additional domain of 122 amino acids in front of the canonical Hsp90 sequence. This extra domain (E domain is specific to the Catarrhini or drooping nose monkeys, a subdivision of the higher primates that includes man, the great apes and the old world monkeys but is absent from all other species. Our biochemical analysis reveals that Hsp103 associates with cochaperone proteins such as Hop, Cdc37 and Aha1 similar to Hsp90. However, the extra domain reduces the ATP hydrolysis rate to about half when compared to Hsp90 thereby acting as a negative regulator of the molecular chaperonés intrinsic ATPase activity.

  14. Hyponatremia and V2 vasopressin receptor upregulation: a result of HSP90 inhibition.

    Science.gov (United States)

    Yang, Qiong; Puhm, Florian; Freissmuth, Michael; Nanoff, Christian

    2017-10-01

    Small-molecule inhibitors of heat-shock protein 90 (HSP90) have been under development as chemotherapeutic agents. The adverse events reported from early clinical trials included hyponatremia. Given the limited number of patients enrolled, the number of hyponatremia incidents was remarkable and repeatedly, the event was judged as severe. Inappropriate V2 vasopressin receptor stimulation is an established cause of hyponatremia. We explored the hypothesis that HSP90 inhibition produces hypersensitivity to vasopressin by upregulating V2-receptors. Experiments were carried out in cell culture using HEK293 cells with heterologous expression of the human V2-receptor and HELA cells with an endogenous V2-receptor complement. We tested the effect of HSP90 inhibition by three structurally unrelated compounds (alvespimycin, luminespib, radicicol) and asserted its specificity in cells depleted of cytosolic HSP90 (by RNA interference). Assays encompassed surface V2-receptor density and vasopressin-stimulated formation of cyclic AMP (cAMP). The results demonstrate a twofold increase in cell-surface receptor density following pre-incubation with each of the HSP90 inhibitors. The effect had a concentration-dependence consistent with the individual potencies to inhibit HSP90. Similarly, depletion of cytosolic HSP90 increased surface-receptor density and at the same time, reduced the inhibitor effect. Upregulated V2-receptors were fully functional; hence, in culture treated with an HSP90 inhibitor, addition of vasopressin resulted in higher levels of cAMP than in controls. Since formation of cAMP is the first signalling step in raising water permeability of the collecting duct epithelia, we suggest that V2-receptor upregulation generates hypersensitivity to vasopressin linking HSP90 inhibition to the development of hyponatremia.

  15. Probing molecular mechanisms of the Hsp90 chaperone: biophysical modeling identifies key regulators of functional dynamics.

    Directory of Open Access Journals (Sweden)

    Anshuman Dixit

    Full Text Available Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based "conformational selection" of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected

  16. Probing molecular mechanisms of the Hsp90 chaperone: biophysical modeling identifies key regulators of functional dynamics.

    Science.gov (United States)

    Dixit, Anshuman; Verkhivker, Gennady M

    2012-01-01

    Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based "conformational selection" of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected residue clusters may be

  17. MicroRNA-223 is a novel negative regulator of HSP90B1 in CLL.

    Science.gov (United States)

    Rodríguez-Vicente, Ana E; Quwaider, Dalia; Benito, Rocío; Misiewicz-Krzeminska, Irena; Hernández-Sánchez, María; de Coca, Alfonso García; Fisac, Rosa; Alonso, José-María; Zato, Carolina; de Paz, Juan Francisco; García, Juan Luis; Sarasquete, Ma Eugenia; Hernández, José Ángel; Corchado, Juan M; González, Marcos; Gutiérrez, Norma C; Hernández-Rivas, Jesús-María

    2015-04-08

    MicroRNAs are known to inhibit gene expression by binding to the 3'UTR of the target transcript. Downregulation of miR-223 has been recently reported to have prognostic significance in CLL. However, there is no evidence of the pathogenetic mechanism of this miRNA in CLL patients. By applying next-generation sequencing techniques we have detected a common polymorphism (rs2307842), in 24% of CLL patients, which disrupts the binding site for miR-223 in HSP90B1 3'UTR. We investigated whether miR-223 directly targets HSP90B1 through luciferase assays and ectopic expression of miR-223. Quantitative real-time polymerase chain reaction and western blot were used to determine HSP90B1 expression in CLL patients. The relationship between rs2307842 status, HSP90B1 expression and clinico-biological data were assessed. HSP90B1 is a direct target for miR-223 by interaction with the putative miR-223 binding site. The analysis in paired samples (CD19+ fraction cell and non-CD19+ fraction cell) showed that the presence of rs2307842 and IGHV unmutated genes determined HSP90B1 overexpression in B lymphocytes from CLL patients. These results were confirmed at the protein level by western blot. Of note, HSP90B1 overexpression was independently predictive of shorter time to the first therapy in CLL patients. By contrast, the presence of rs2307842 was not related to the outcome. HSP90B1 is a direct target gene of miR-223. Our results provide a plausible explanation of why CLL patients harboring miR-223 downregulation are associated with a poor outcome, pointing out HSP90B1 as a new pathogenic mechanism in CLL and a promising therapeutic target.

  18. Molecular signature of response and potential pathways related to resistance to the HSP90 inhibitor, 17AAG, in breast cancer

    Directory of Open Access Journals (Sweden)

    Benitez Javier

    2010-10-01

    Full Text Available Abstract Background HSP90 may be a favorable target for investigational therapy in breast cancer. In fact, the HSP90 inhibitor, 17AAG, currently has entered in phase II clinical trials as an anticancer agent in breast and other tumors. Since HSP90 inhibition leads to global depletion of oncogenic proteins involved in multiple pathways we applied global analysis using gene array technology to study new genes and pathways involved in the drug response in breast cancer. Methods Gene expression profiling using Whole Human Genome Agilent array technology was applied to a total of six sensitive and two resistant breast cancer cell lines pre-treatment and treated with the 17AAG for 24 and 48 hours. Results We have identified a common molecular signature of response to 17AAG composed of 35 genes which include novel pharmacodynamic markers of this drug. In addition, different patterns of HSP90 client transcriptional changes after 17AAG were identified associated to the sensitive cell lines, which could be useful to evaluate drug effectiveness. Finally, we have found differentially expressed pathways associated to resistance to 17AAG. We observed significant activation of NF-κB and MAPK pathways in resistant cells upon treatment, indicating that these pathways could be potentially targeted to overcome resistance. Conclusions Our study shows that global mRNA expression analysis is a useful strategy to examine molecular effects of drugs, which allowed us the discovery of new biomarkers of 17AAG activity and provided more insights into the complex mechanism of 17AAG resistance.

  19. The HSP90 inhibitor 17-PAG effectively inhibits the proliferation and migration of androgen-independent prostate cancer cells

    Science.gov (United States)

    Peng, Ruixian; Li, Zhenyu; Lin, Zhiyuan; Wang, Yang; Wang, Wei; Hu, Bo; Wang, Xilong; Zhang, Jun; Wang, Yangyun; Zhou, Renyuan; Lu, Chunhua; Shen, Yuemao; Wang, Jifeng; Shi, Guowei

    2015-01-01

    Castration-resistant prostate cancer (CRPC) ultimately occurs after a period of treatment with androgen deprivation therapy. Furthermore, CRPC patients can only derive limited survival benefits from traditional cytotoxic drugs. HSP90, which is a molecular chaperone, plays a vital role in client protein processing and maintaining the function of cells. HSP90 is usually overexpressed in prostate cancer tissues, which makes it a potential target for managing prostate cancer. Geldanamycin (GA), which was recognized as the first natural HSP90 inhibitor, has demonstrated potent anti-tumor efficacy in large-scale pre-clinical studies, but its application in the clinic is not permitted due to its liver toxicity and unstable physical properties. In this study, we report a new GA derivative, 17-PAG (17-(propynylamino)-17-demethoxygeldanamycin), which demonstrates highly effective anti-tumor activity against androgen-independent prostate cancer cells. Treating cells with 17-PAG dose-dependently suppressed proliferation, reduced colony formation and induced apoptosis of DU-145/C4-2B cells. Moreover, 17-PAG suppressed the migration and invasion of DU-145/C4-2B cells by regulating epithelial mesenchymal transition (EMT). 17-PAG also downregulated the HSP90 client proteins, including Her2, EGFR, C-Raf, AKT, p-AKT, and CDK4. Animal assays confirmed that 17-PAG shows strong anti-tumor effects with no obvious organ toxicity in DU-145 cell xenografted nude mice. These results provide us with a potential target for treating androgen-independent prostate cancer in a safe and effective manner. PMID:26693070

  20. Expression dynamics of HSP90 and nitric oxide synthase (NOS) isoforms during heat stress acclimation in Tharparkar cattle

    Science.gov (United States)

    Bharati, Jaya; Dangi, S. S.; Bag, S.; Maurya, V. P.; Singh, G.; Kumar, P.; Sarkar, M.

    2017-08-01

    Six male Tharparkar cattle of 2-3 years old were selected for the study. After 15-day acclimation at thermoneutral zone (TNZ) in psychrometric chamber, animals were exposed at 42 °C for 6 h up to 23 days followed by 12 days of recovery period. Blood samples were collected during control period at TNZ (days 1, 5, and 12), after heat stress exposure (day 1, immediate heat stress acclimation (IHSA); days 2 to 10, short-term heat stress acclimation (STHSA); days 15 to 23, long-term heat stress acclimation (LTHSA); days 7 and 12, recovery period), and peripheral blood mononuclear cells (PBMCs) were isolated for RNA and protein extraction. The messenger RNA (mRNA) and protein expression in PBMCs were determined by qPCR and western blot, respectively. Samples at TNZ were taken as control. The mRNA expression of HSP90, iNOS, and eNOS was significantly upregulated ( P culture study was conducted to study transcriptional abundance of HSP90, iNOS, and eNOS at different temperature-time combinations. The present findings indicate that HSP90, iNOS, and eNOS could possibly play an important role in mitigating thermal insults and confer thermotolerance during long-term heat stress exposure in Tharparkar cattle.

  1. Development of Tethered Hsp90 Inhibitors Carrying Radioiodinated Probes to Specifically Discriminate and Kill Malignant Breast Tumor Cells

    Science.gov (United States)

    2016-05-01

    tethered Hsp90 inhibitor capable of carrying various radioactive iodine isotopes for early detection and ablation of metastatic breast cancers . These...imaging agents in mouse models of breast cancer . 15. SUBJECT TERMS Radiodination, tethered Hsp90 inhibitor, malignant breast tumor , ectopic Hsp90 16...and 324 ER- tumors ) showed increased Hsp90 expression in all breast cancer cell lines, and in nearly 90% of primary breast cancers (2). A recent

  2. Intra- And Inter-Monomer Interactions are Required to Synergistically Facilitate ATP Hydrolysis in HSP90

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, C.N.; Krukenberg, K.A.; Agard, D.A.

    2009-05-12

    Nucleotide-dependent conformational changes of the constitutively dimeric molecular chaperone Hsp90 are integral to its molecular mechanism. Recent full-length crystal structures (Protein Data Bank codes 2IOQ, 2CG9, AND 2IOP) of Hsp90 homologs reveal large scale quaternary domain rearrangements upon the addition of nucleotides. Although previous work has shown the importance of C-terminal domain dimerization for efficient ATP hydrolysis, which should imply cooperativity, other studies suggest that the two ATPases function independently. Using the crystal structures as a guide, we examined the role of intra- and intermonomer interactions in stabilizing the ATPase activity of a single active site within an intact dimer. This was accomplished by creating heterodimers that allow us to differentially mutate each monomer, probing the context in which particular residues are important for ATP hydrolysis. Although the ATPase activity of each monomer can function independently, we found that the activity of one monomer could be inhibited by the mutation of hydrophobic residues on the trans N-terminal domain (opposite monomer). Furthermore, these trans interactions are synergistically mediated by a loop on the cis middle domain. This loop contains hydrophobic residues as well as a critical arginine that provides a direct linkage to the {gamma}-phosphate of bound ATP. Small angle x-ray scattering demonstrates that deleterious mutations block domain closure in the presence of AMPPNP (5{prime}-adenylyl-{beta},{gamma}-imidodiphosphate), providing a direct linkage between structural changes and functional consequences. Together, these data indicate that both the cis monomer and the trans monomer and the intradomain and interdomain interactions cooperatively stabilize the active conformation of each active site and help explain the importance of dimer formation.

  3. A Review of Recent Patents on the Protozoan Parasite HSP90 as a Drug Target

    Science.gov (United States)

    Angel, Sergio O; Matrajt, Mariana; Echeverria, Pablo C

    2013-01-01

    Diseases caused by protozoan parasites are still an important health problem. These parasites can cause a wide spectrum of diseases, some of which are severe and have high morbidity or mortality if untreated. Since they are still uncontrolled, it is important to find novel drug targets and develop new therapies to decrease their remarkable social and economic impact on human societies. In the past years, human HSP90 has become an interesting drug target that has led to a large number of investigations both at state organizations and pharmaceutical companies, followed by clinical trials. The finding that HSP90 has important biological roles in some protozoan parasites like Plasmodium spp, Toxoplasma gondii and trypanosomatids has allowed the expansion of the results obtained in human cancer to these infections. This review summarizes the latest important findings showing protozoan HSP90 as a drug target and presents three patents targeting T. gondii, P. falciparum and trypanosomatids HSP90. PMID:23002958

  4. Synthesis and biological evaluation of hybrid acridine-HSP90 ligand conjugates as telomerase inhibitors.

    Science.gov (United States)

    Roe, S; Gunaratnam, M; Spiteri, C; Sharma, P; Alharthy, R D; Neidle, S; Moses, J E

    2015-08-21

    The synthesis and biological evaluation of a series of bifunctional acridine-HSP90 inhibitor ligands as telomerase inhibitors is herein described. Four hybrid acridine-HSP90 inhibitor conjugates were prepared using a click-chemistry approach, and subsequently shown to display comparable results to the established telomerase inhibitor BRACO-19 in the TRAP-LIG telomerase assay. The conjugates also demonstrated significant cyctotoxity against a number of cancer cell lines, in the sub-μM range.

  5. Post-translational modifications of Hsp90 and their contributions to chaperone regulation

    OpenAIRE

    Mollapour, Mehdi; Neckers, Len

    2011-01-01

    Molecular chaperones, as the name suggests, are involved in folding, maintenance, intracellular transport, and degradation of proteins as well as in facilitating cell signaling. Heat shock protein 90 (Hsp90) is an essential eukaryotic molecular chaperone that carries out these processes in normal and cancer cells. Hsp90 function in vivo is coupled to its ability to hydrolyze ATP and this can be regulated by co-chaperones and post-translational modifications. In this review, we explore the var...

  6. Differential Regulation of G1 CDK Complexes by the Hsp90-Cdc37 Chaperone System

    Directory of Open Access Journals (Sweden)

    Stephen T. Hallett

    2017-10-01

    Full Text Available Summary: Selective recruitment of protein kinases to the Hsp90 system is mediated by the adaptor co-chaperone Cdc37. We show that assembly of CDK4 and CDK6 into protein complexes is differentially regulated by the Cdc37-Hsp90 system. Like other Hsp90 kinase clients, binding of CDK4/6 to Cdc37 is blocked by ATP-competitive inhibitors. Cdc37-Hsp90 relinquishes CDK6 to D3- and virus-type cyclins and to INK family CDK inhibitors, whereas CDK4 is relinquished to INKs but less readily to cyclins. p21CIP1 and p27KIP1 CDK inhibitors are less potent than the INKs at displacing CDK4 and CDK6 from Cdc37. However, they cooperate with the D-type cyclins to generate CDK4/6-containing ternary complexes that are resistant to cyclin D displacement by Cdc37, suggesting a molecular mechanism to explain the assembly factor activity ascribed to CIP/KIP family members. Overall, our data reveal multiple mechanisms whereby the Hsp90 system may control formation of CDK4- and CDK6-cyclin complexes under different cellular conditions. : Hallett et al. reconstitute CDK4/6 client kinase handover from Cdc37-Hsp90 to CDK regulatory partners and propose a model for the assembly factor activity of CIP/KIP CDK inhibitors. They find that CDK4/6 inhibitors in clinical use can displace G1 CDKs from the Cdc37-Hsp90 chaperone system at submicromolar concentrations. Keywords: Cdc37, CDK, chaperone, CIP/KIP, cyclin D, Hsp90, INK, kinase, palbociclib, ribociclib

  7. Heat Shock Protein 90 (HSP90 and Her2 in Adenocarcinomas of the Esophagus

    Directory of Open Access Journals (Sweden)

    Julia Slotta-Huspenina

    2014-06-01

    Full Text Available Her2 overexpression and amplification can be found in a significant subset of esophageal adenocarcinomas. The activity of Her2 has been shown to be modulated by molecular chaperones such as HSP90. We analyzed expression/amplification data for HSP90 and Her2 on 127 primary resected esophageal adenocarcinomas in order to evaluate a possible relationship between these two molecules. HSP90 expression determined by immunohistochemistry was observed in various levels. Thirty nine (39 tumors (30.7% were classified as Her2-positive according to their immunoreactivity and amplification status. There was a significant correlation between HSP90 expression and Her2-status (p = 0.008. This could also be demonstrated by quantitative protein expression analysis with reverse phase protein arrays (r = 0.9; p < 0.001. Her2-status was associated withpT-category (p = 0.041, lymph node metastases (p = 0.049 and tumor differentiation (p = 0.036 with a higher percentage of cases with negative Her2 status in lower tumor stagesA negative Her2-status was also associated with better survival in univariate and multivariate analysis (p = 0.001 and p = 0.014. For HSP90, no associations between clinical and pathological parameters were found. The observed association between HSP90 expression and Her2 suggests a co-regulation of these molecules in at least a subset of esophageal adenocarcinomas. Anti-HSP90 drugs, which recently have been introduced in cancer treatment, may also be an option for these tumors by targeting HSP90 alone or in combination with Her2.

  8. Heat Shock Protein 90 (HSP90) and Her2 in Adenocarcinomas of the Esophagus

    Energy Technology Data Exchange (ETDEWEB)

    Slotta-Huspenina, Julia; Becker, Karl-Friedrich [Institute of Pathology, Technische Universität München, München 81765 (Germany); Feith, Marcus [Department of Surgery, Klinikum Rechts der Isar der Technischen Universität München, München 81622 (Germany); Walch, Axel [Institute of Pathology, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg 85764 (Germany); Langer, Rupert, E-mail: rupert.langer@pathology.unibe.ch [Institute of Pathology, University of Bern, Bern 3010 (Switzerland)

    2014-06-27

    Her2 overexpression and amplification can be found in a significant subset of esophageal adenocarcinomas. The activity of Her2 has been shown to be modulated by molecular chaperones such as HSP90. We analyzed expression/amplification data for HSP90 and Her2 on 127 primary resected esophageal adenocarcinomas in order to evaluate a possible relationship between these two molecules. HSP90 expression determined by immunohistochemistry was observed in various levels. Thirty nine (39) tumors (30.7%) were classified as Her2-positive according to their immunoreactivity and amplification status. There was a significant correlation between HSP90 expression and Her2-status (p = 0.008). This could also be demonstrated by quantitative protein expression analysis with reverse phase protein arrays (r = 0.9; p < 0.001). Her2-status was associated withpT-category (p = 0.041), lymph node metastases (p = 0.049) and tumor differentiation (p = 0.036) with a higher percentage of cases with negative Her2 status in lower tumor stagesA negative Her2-status was also associated with better survival in univariate and multivariate analysis (p = 0.001 and p = 0.014). For HSP90, no associations between clinical and pathological parameters were found. The observed association between HSP90 expression and Her2 suggests a co-regulation of these molecules in at least a subset of esophageal adenocarcinomas. Anti-HSP90 drugs, which recently have been introduced in cancer treatment, may also be an option for these tumors by targeting HSP90 alone or in combination with Her2.

  9. Loss of Smyhc1 or Hsp90alpha1 function results in different effects on myofibril organization in skeletal muscles of zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Marta Codina

    Full Text Available BACKGROUND: Myofibrillogenesis requires the correct folding and assembly of sarcomeric proteins into highly organized sarcomeres. Heat shock protein 90alpha1 (Hsp90alpha1 has been implicated as a myosin chaperone that plays a key role in myofibrillogenesis. Knockdown or mutation of hsp90alpha1 resulted in complete disorganization of thick and thin filaments and M- and Z-line structures. It is not clear whether the disorganization of these sarcomeric structures is due to a direct effect from loss of Hsp90alpha1 function or indirectly through the disorganization of myosin thick filaments. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we carried out a loss-of-function analysis of myosin thick filaments via gene-specific knockdown or using a myosin ATPase inhibitor BTS (N-benzyl-p-toluene sulphonamide in zebrafish embryos. We demonstrated that knockdown of myosin heavy chain 1 (myhc1 resulted in sarcomeric defects in the thick and thin filaments and defective alignment of Z-lines. Similarly, treating zebrafish embryos with BTS disrupted thick and thin filament organization, with little effect on the M- and Z-lines. In contrast, loss of Hsp90alpha1 function completely disrupted all sarcomeric structures including both thick and thin filaments as well as the M- and Z-lines. CONCLUSION/SIGNIFICANCE: Together, these studies indicate that the hsp90alpha1 mutant phenotype is not simply due to disruption of myosin folding and assembly, suggesting that Hsp90alpha1 may play a role in the assembly and organization of other sarcomeric structures.

  10. Genome-wide dissection of AP2/ERF and HSP90 gene families in five legumes and expression profiles in chickpea and pigeonpea.

    Science.gov (United States)

    Agarwal, Gaurav; Garg, Vanika; Kudapa, Himabindu; Doddamani, Dadakhalandar; Pazhamala, Lekha T; Khan, Aamir W; Thudi, Mahendar; Lee, Suk-Ha; Varshney, Rajeev K

    2016-07-01

    APETALA2/ethylene response factor (AP2/ERF) and heat-shock protein 90 (HSP90) are two significant classes of transcription factor and molecular chaperone proteins which are known to be implicated under abiotic and biotic stresses. Comprehensive survey identified a total of 147 AP2/ERF genes in chickpea, 176 in pigeonpea, 131 in Medicago, 179 in common bean and 140 in Lotus, whereas the number of HSP90 genes ranged from 5 to 7 in five legumes. Sequence alignment and phylogenetic analyses distinguished AP2, ERF, DREB, RAV and soloist proteins, while HSP90 proteins segregated on the basis of their cellular localization. Deeper insights into the gene structure allowed ERF proteins to be classified into AP2s based on DNA-binding domains, intron arrangements and phylogenetic grouping. RNA-seq and quantitative real-time PCR (qRT-PCR) analyses in heat-stressed chickpea as well as Fusarium wilt (FW)- and sterility mosaic disease (SMD)-stressed pigeonpea provided insights into the modus operandi of AP2/ERF and HSP90 genes. This study identified potential candidate genes in response to heat stress in chickpea while for FW and SMD stresses in pigeonpea. For instance, two DREB genes (Ca_02170 and Ca_16631) and three HSP90 genes (Ca_23016, Ca_09743 and Ca_25602) in chickpea can be targeted as potential candidate genes. Similarly, in pigeonpea, a HSP90 gene, C.cajan_27949, was highly responsive to SMD in the resistant genotype ICPL 20096, can be recommended for further functional validation. Also, two DREB genes, C.cajan_41905 and C.cajan_41951, were identified as leads for further investigation in response to FW stress in pigeonpea. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Bcl-2 regulates HIF-1alpha protein stabilization in hypoxic melanoma cells via the molecular chaperone HSP90.

    Directory of Open Access Journals (Sweden)

    Daniela Trisciuoglio

    Full Text Available BACKGROUND: Hypoxia-Inducible Factor 1 (HIF-1 is a transcription factor that is a critical mediator of the cellular response to hypoxia. Enhanced levels of HIF-1alpha, the oxygen-regulated subunit of HIF-1, is often associated with increased tumour angiogenesis, metastasis, therapeutic resistance and poor prognosis. It is in this context that we previously demonstrated that under hypoxia, bcl-2 protein promotes HIF-1/Vascular Endothelial Growth Factor (VEGF-mediated tumour angiogenesis. METHODOLOGY/PRINCIPAL FINDINGS: By using human melanoma cell lines and their stable or transient derivative bcl-2 overexpressing cells, the current study identified HIF-1alpha protein stabilization as a key regulator for the induction of HIF-1 by bcl-2 under hypoxia. We also demonstrated that bcl-2-induced accumulation of HIF-1alpha protein during hypoxia was not due to an increased gene transcription or protein synthesis. In fact, it was related to a modulation of HIF-1alpha protein expression at a post-translational level, indeed its degradation rate was faster in the control lines than in bcl-2 transfectants. The bcl-2-induced HIF-1alpha stabilization in response to low oxygen tension conditions was achieved through the impairment of ubiquitin-dependent HIF-1alpha degradation involving the molecular chaperone HSP90, but it was not dependent on the prolyl hydroxylation of HIF-1alpha protein. We also showed that bcl-2, HIF-1alpha and HSP90 proteins form a tri-complex that may contribute to enhancing the stability of the HIF-1alpha protein in bcl-2 overexpressing clones under hypoxic conditions. Finally, by using genetic and pharmacological approaches we proved that HSP90 is involved in bcl-2-dependent stabilization of HIF-1alpha protein during hypoxia, and in particular the isoform HSP90beta is the main player in this phenomenon. CONCLUSIONS/SIGNIFICANCE: We identified the stabilization of HIF-1alpha protein as a mechanism through which bcl-2 induces the

  12. Genome-wide analysis of the Populus Hsp90 gene family reveals differential expression patterns, localization, and heat stress responses.

    Science.gov (United States)

    Zhang, Jin; Li, Jianbo; Liu, Bobin; Zhang, Li; Chen, Jun; Lu, Mengzhu

    2013-08-05

    Members of the heat shock protein 90 (Hsp90) class of proteins are evolutionarily conserved molecular chaperones. They are involved in protein folding, assembly, stabilization, activation, and degradation in many normal cellular processes and under stress conditions. Unlike many other well-characterized molecular chaperones, Hsp90s play key roles in signal transduction, cell-cycle control, genomic silencing, and protein trafficking. However, no systematic analysis of genome organization, gene structure, and expression compendium has been performed in the Populus model tree genus to date. We performed a comprehensive analysis of the Populus Hsp90 gene family and identified 10 Populus Hsp90 genes, which were phylogenetically clustered into two major groups. Gene structure and motif composition are relatively conserved in each group. In Populus trichocarpa, we identified three paralogous pairs, among which the PtHsp90-5a/PtHsp90-5b paralogous pair might be created by duplication of a genome segment. Subcellular localization analysis shows that PtHsp90 members are localized in different subcellular compartments. PtHsp90-3 is localized both in the nucleus and in the cytoplasm, PtHsp90-5a and PtHsp90-5b are in chloroplasts, and PtHsp90-7 is in the endoplasmic reticulum (ER). Furthermore, microarray and semi-quantitative real-time RT-PCR analyses show that a number of Populus Hsp90 genes are differentially expressed upon exposure to various stresses. The gene structure and motif composition of PtHsp90s are highly conserved among group members, suggesting that members of the same group may also have conserved functions. Microarray and RT-PCR analyses show that most PtHsp90s were induced by various stresses, including heat stress. Collectively, these observations lay the foundation for future efforts to unravel the biological roles of PtHsp90 genes.

  13. Identification and characterization of the antiplasmodial activity of Hsp90 inhibitors.

    Science.gov (United States)

    Murillo-Solano, Claribel; Dong, Chunmin; Sanchez, Cecilia G; Pizarro, Juan C

    2017-07-19

    The recent reduction in mortality due to malaria is being threatened by the appearance of Plasmodium falciparum parasites that are resistant to artemisinin in Southeast Asia. To limit the impact of resistant parasites and their spread across the world, there is a need to validate anti-malarial drug targets and identify new leads that will serve as foundations for future drug development programmes targeting malaria. Towards that end, the antiplasmodial potential of several Hsp90 inhibitors was characterized. Because, the Hsp90 chaperone has been suggested as a good drug target against multiple parasitic infections including malaria. Chemically diverse sets of Hsp90 inhibitors, evaluated in clinical trials as anti-cancer agents, were tested against the malaria parasite. Most of the compounds showed strong antiplasmodial activity in growth inhibition assays against chloroquine sensitive and resistant strains. There was a good agreement between the compound in vitro anti-parasitic activity and their affinity against the Plasmodium chaperone. The two most potent Hsp90 inhibitors also showed cytocidal activity against two P. falciparum strains. Their antiplasmodial activity affected all parasite forms during the malaria blood cycle. However, the compounds activity against the parasite showed no synergy when combined with anti-malarial drugs, like chloroquine or DHA. The Hsp90 inhibitors anti-parasitic activity correlates with their affinity to their predicted target the P. falciparum chaperone Hsp90. However, the most effective compounds also showed high affinity for a close homologue, Grp94. This association points to a mode of action for Hsp90 inhibitors that correlate compound efficacy with multi-target engagement. Besides their ability to limit parasite replication, two compounds also significantly impacted P. falciparum viability in vitro. Finally, a structural analysis suggests that the best hit represents a promising scaffold to develop parasite specific leads

  14. Targeting the Hsp90 C-terminal domain to induce allosteric inhibition and selective client downregulation.

    Science.gov (United States)

    Goode, Kourtney M; Petrov, Dino P; Vickman, Renee E; Crist, Scott A; Pascuzzi, Pete E; Ratliff, Tim L; Davisson, V Jo; Hazbun, Tony R

    2017-08-01

    Inhibition of Hsp90 is desirable due to potential downregulation of oncogenic clients. Early generation inhibitors bind to the N-terminal domain (NTD) but C-terminal domain (CTD) inhibitors are a promising class because they do not induce a heat shock response. Here we present a new structural class of CTD binding molecules with a unique allosteric inhibition mechanism. A hit molecule, NSC145366, and structurally similar probes were assessed for inhibition of Hsp90 activities. A ligand-binding model was proposed indicating a novel Hsp90 CTD binding site. Client protein downregulation was also determined. NSC145366 interacts with the Hsp90 CTD and has anti-proliferative activity in tumor cell lines (GI50=0.2-1.9μM). NSC145366 increases Hsp90 oligomerization resulting in allosteric inhibition of NTD ATPase activity (IC50=119μM) but does not compete with NTD or CTD-ATP binding. Treatment of LNCaP prostate tumor cells resulted in selective client protein downregulation including AR and BRCA1 but without a heat shock response. Analogs had similar potencies in ATPase and chaperone activity assays and variable effects on oligomerization. In silico modeling predicted a binding site at the CTD dimer interface distinct from the nucleotide-binding site. A set of symmetrical scaffold molecules with bisphenol A cores induced allosteric inhibition of Hsp90. Experimental evidence and molecular modeling suggest that the binding site is independent of the CTD-ATP site and consistent with unique induction of allosteric effects. Allosteric inhibition of Hsp90 via a mechanism used by the NSC145366-based probes is a promising avenue for selective oncogenic client downregulation. Copyright © 2017. Published by Elsevier B.V.

  15. Expression of heat shock protein (Hsp90 paralogues is regulated by amino acids in skeletal muscle of Atlantic salmon.

    Directory of Open Access Journals (Sweden)

    Daniel Garcia de la Serrana

    Full Text Available Heat shock proteins 90 (Hsp90 have an essential role in sarcomere formation and differentiation in skeletal muscle and also act as molecular chaperones during protein folding impacting a wide range of physiological processes. We characterised and provided a phylogenetically consistent nomenclature for the complete repertoire of six Hsp90 paralogues present in duplicated salmonid fish genomes (Hsp90α1a, Hsp90α1b, Hsp90α2a, Hsp90α2b, Hsp90ß1a and Hsp90ß1b. The expression of paralogues in fast skeletal muscle was investigated using in vivo fasting-feeding experiments and primary myogenic cultures. Fasted juvenile Atlantic salmon (Salmo salar showed a transient 2 to 8-fold increase in the expression of all 4 Hsp90α paralogues within 24h of satiation feeding. Hsp90α1a and hsp90α1b also showed a pronounced secondary increase in expression after 10 days, concomitant with muscle differentiation and the expression of myogenin and sarcomeric proteins (mlc2, myhc. Hsp90ß1b was constitutively expressed whereas Hsp90ß1a expression was downregulated 10-fold between fasted and fed individuals. Hsp90α1a and Hsp90α1b were upregulated 10 to 15-fold concomitant with myotube formation and muscle differentiation in vitro whereas other Hsp90 paralogues showed no change in expression. In cells starved of amino acid (AA and serum for 72h the addition of AA, but not insulin-like growth factor 1, increased phosphorylation of mTor and expression of all 4 hsp90α paralogues and associated co-chaperones including hsp30, tbcb, pdia4, pdia6, stga and fk504bp1, indicating a general activation of the protein folding response. In contrast, Hsp90ß1a expression in vitro was unresponsive to AA treatment indicating that some other as yet uncharacterised signal(s regulate its expression in response to altered nutritional state.

  16. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β.

    Science.gov (United States)

    Roundhill, Elizabeth; Turnbull, Doug; Burchill, Susan

    2016-05-01

    Overexpression of plasma membrane multidrug resistance-associated protein 1 (MRP-1) in Ewing's sarcoma (ES) predicts poor outcome. MRP-1 is also expressed in mitochondria, and we have examined the submitochondrial localization of MRP-1 and investigated the mechanism of MRP-1 transport and role of this organelle in the response to doxorubicin. The mitochondrial localization of MRP-1 was examined in ES cell lines by differential centrifugation and membrane solubilization by digitonin. Whether MRP-1 is chaperoned by heat shock proteins (HSPs) was investigated by immunoprecipitation, immunofluorescence microscopy, and HSP knockout using small hairpin RNA and inhibitors (apoptozole, 17-AAG, and NVPAUY). The effect of disrupting mitochondrial MRP-1-dependent efflux activity on the cytotoxic effect of doxorubicin was investigated by counting viable cell number. Mitochondrial MRP-1 is glycosylated and localized to the outer mitochondrial membrane, where it is coexpressed with HSP90. MRP-1 binds to both HSP90 and HSP70, although only inhibition of HSP90β decreases expression of MRP-1 in the mitochondria. Disruption of mitochondrial MRP-1-dependent efflux significantly increases the cytotoxic effect of doxorubicin (combination index, MRP-1 is expressed in the outer mitochondrial membrane and is a client protein of HSP90β, where it may play a role in the doxorubicin-induced resistance of ES.-Roundhill, E., Turnbull, D., Burchill, S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β. © FASEB.

  17. An Impermeant Ganetespib Analog Inhibits Extracellular Hsp90-Mediated Cancer Cell Migration that Involves Lysyl Oxidase 2-like Protein

    Directory of Open Access Journals (Sweden)

    Jessica McCready

    2014-04-01

    Full Text Available Extracellular Hsp90 (eHsp90 activates a number of client proteins outside of cancer cells required for migration and invasion. Therefore, eHsp90 may serve as a novel target for anti-metastatic drugs as its inhibition using impermeant Hsp90 inhibitors would not affect the numerous vital intracellular Hsp90 functions in normal cells. While some eHsp90 clients are known, it is important to establish other proteins that act outside the cell to validate eHsp90 as a drug target to limit cancer spread. Using mass spectrometry we identified two precursor proteins Galectin 3 binding protein (G3BP and Lysyl oxidase 2-like protein (LOXL2 that associate with eHsp90 in MDA-MB231 breast cancer cell conditioned media and confirmed that LOXL2 binds to eHsp90 in immunoprecipitates. We introduce a novel impermeant Hsp90 inhibitor STA-12-7191 derived from ganetespib and show that it is markedly less toxic to cells and can inhibit cancer cell migration in a dose dependent manner. We used STA-12-7191 to test if LOXL2 and G3BP are potential eHsp90 clients. We showed that while LOXL2 can increase wound healing and compensate for STA-12-7191-mediated inhibition of wound closure, addition of G3BP had no affect on this assay. These findings support of role for LOXL2 in eHsp90 stimulated cancer cell migration and provide preliminary evidence for the use of STA-12-7191 to inhibit eHsp90 to limit cancer invasion.

  18. An Impermeant Ganetespib Analog Inhibits Extracellular Hsp90-Mediated Cancer Cell Migration that Involves Lysyl Oxidase 2-like Protein

    Energy Technology Data Exchange (ETDEWEB)

    McCready, Jessica [Department of Natural Sciences, Assumption College, Worcester, MA 01609 (United States); Wong, Daniel S. [Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Cell and Molecular Physiology Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 (United States); Burlison, Joseph A.; Ying, Weiwen [Synta Pharmaceuticals, Lexington, MA 02421 (United States); Jay, Daniel G., E-mail: daniel.jay@tufts.edu [Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Cell and Molecular Physiology Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 (United States)

    2014-04-30

    Extracellular Hsp90 (eHsp90) activates a number of client proteins outside of cancer cells required for migration and invasion. Therefore, eHsp90 may serve as a novel target for anti-metastatic drugs as its inhibition using impermeant Hsp90 inhibitors would not affect the numerous vital intracellular Hsp90 functions in normal cells. While some eHsp90 clients are known, it is important to establish other proteins that act outside the cell to validate eHsp90 as a drug target to limit cancer spread. Using mass spectrometry we identified two precursor proteins Galectin 3 binding protein (G3BP) and Lysyl oxidase 2-like protein (LOXL2) that associate with eHsp90 in MDA-MB231 breast cancer cell conditioned media and confirmed that LOXL2 binds to eHsp90 in immunoprecipitates. We introduce a novel impermeant Hsp90 inhibitor STA-12-7191 derived from ganetespib and show that it is markedly less toxic to cells and can inhibit cancer cell migration in a dose dependent manner. We used STA-12-7191 to test if LOXL2 and G3BP are potential eHsp90 clients. We showed that while LOXL2 can increase wound healing and compensate for STA-12-7191-mediated inhibition of wound closure, addition of G3BP had no affect on this assay. These findings support of role for LOXL2 in eHsp90 stimulated cancer cell migration and provide preliminary evidence for the use of STA-12-7191 to inhibit eHsp90 to limit cancer invasion.

  19. Hsp90 Binds Directly to Fibronectin (FN) and Inhibition Reduces the Extracellular Fibronectin Matrix in Breast Cancer Cells

    Science.gov (United States)

    Kenyon, Amy; Dhanani, Karim C. H.; Prinsloo, Earl; Edkins, Adrienne L.

    2014-01-01

    Heat shock protein 90 (Hsp90) has been identified in the extracellular space and has been shown to chaperone a finite number of extracellular proteins involved in cell migration and invasion. We used chemical cross-linking and immunoprecipitation followed by tandem mass spectrometry (MS/MS) to isolate a complex containing Hsp90 and the matrix protein fibronectin (FN) from breast cancer cells. Further analysis showed direct binding of Hsp90 to FN using an in vitro co-immunoprecipitation assay, a solid phase binding assay and surface plasmon resonance (SPR) spectroscopy. Confocal microscopy showed regions of co-localisation of Hsp90 and FN in breast cancer cell lines. Exogenous Hsp90β was shown to increase the formation of extracellular FN matrix in the Hs578T cell line, whilst knockdown or inhibition of Hsp90 led to a reduction in the levels of both soluble and insoluble FN and could be partially rescued by addition of exogenous Hsp90β. Treatment of cells with novobiocin led to internalization of FN into vesicles that were positive for the presence of the lysosomal marker, LAMP-1. Taken together, the direct interaction between FN and Hsp90, as well as the decreased levels of both soluble and insoluble FN upon Hsp90 inhibition or knockdown, suggested that FN may be a new client protein for Hsp90 and that Hsp90 was involved in FN matrix assembly and/or stability. The identification of FN as a putative client protein of Hsp90 suggests a role for Hsp90 in FN matrix stability, which is important for a number of fundamental cellular processes including embryogenesis, wound healing, cell migration and metastasis. PMID:24466266

  20. The 4C5 cell-impermeable anti-HSP90 antibody with anti-cancer activity, is composed of a single light chain dimer.

    Directory of Open Access Journals (Sweden)

    Katerina Sidera

    Full Text Available MAb 4C5 is a cell impermeable, anti-HSP90 murine monoclonal antibody, originally produced using hybridoma technology. We have previously shown that mAb 4C5 specifically recognizes both the α- and to a lesser extent the β-isoform of HSP90. Additionally, in vitro and in vivo studies revealed that by selectively inhibiting the function of cell-surface HSP90, mAb 4C5 significantly impairs cancer cell invasion and metastasis. Here we describe the reconstitution of mAb 4C5 into a mouse-human chimera. More importantly we report that mAb 4C5 and consequently its chimeric counterpart are completely devoid of heavy chain and consist only of a functional kappa light chain dimer. The chimeric antibody is shown to retain the original antibody's specificity and functional properties. Thus it is capable of inhibiting the function of surface HSP90, leading to reduced cancer cell invasion in vitro. Finally, we present in vivo evidence showing that the chimeric 4C5 significantly inhibits the metastatic deposit formation of MDA-MB-453 cells into the lungs of SCID mice. These data suggest that a chimeric kappa light chain antibody could be potentially used as an anti-cancer agent, thereby introducing a novel type of antibody fragment, with reduced possible adverse immunogenic effects, into cancer therapeutics.

  1. Suppression by HSP90 inhibitors of BMP‑4‑stimulated osteoprotegerin synthesis in osteoblasts: Attenuation of p70 S6 kinase.

    Science.gov (United States)

    Kawabata, Tetsu; Otsuka, Takanobu; Fujita, Kazuhiko; Kainuma, Shingo; Yamamoto, Naohiro; Kuroyanagi, Gen; Sakai, Go; Matsushima-Nishiwaki, Rie; Kozawa, Osamu; Tokuda, Haruhiko

    2017-09-27

    Heat shock protein 90 (HSP90) is an ATP‑dependent ubiquitous molecular chaperon which is important in cell homeostasis. The authors previously demonstrated that bone morphogenetic protein (BMP)‑4 stimulates osteoprotegerin (OPG) production in osteoblast‑like MC3T3‑E1 cells, and that p70 S6 kinase positively regulates the OPG synthesis by BMP‑4. The present study investigated the involvement of HSP90 in the BMP‑4‑stimulated OPG synthesis and the mechanism in MC3T3‑E1 cells. HSP90 inhibitors, 17‑allylamino‑17demethoxy‑geldanamycin (17‑AAG), 17‑dimethylamino‑ethylamino‑17‑demethoxy‑geldanamycin (17‑DMAG) and geldanamycin significantly suppressed the BMP‑4‑stimulated OPG release. Geldanamycin markedly reduced the BMP‑4‑induced mRNA expression of OPG. 17‑AAG and 17‑DMAG significantly attenuated the phosphorylation of p70 S6 kinase induced by BMP‑4 without affecting the BMP‑4‑induced phosphorylation of mothers against decapentaplegic homolog 1/5. The results suggest that HSP90 inhibitors suppress the BMP‑4‑stimulated OPG synthesis in osteoblasts, and that their suppressive effects are exerted through downregulating p70 S6 kinase.

  2. 17-Allylamino-17-demethoxygeldanamycin induces downregulation of critical Hsp90 protein clients and results in cell cycle arrest and apoptosis of human urinary bladder cancer cells.

    Science.gov (United States)

    Karkoulis, Panagiotis K; Stravopodis, Dimitrios J; Margaritis, Lukas H; Voutsinas, Gerassimos E

    2010-09-09

    17-Allylamino-17-demethoxygeldanamycin (17-AAG), a benzoquinone ansamycin antibiotic, specifically targets heat shock protein 90 (Hsp90) and interferes with its function as a molecular chaperone that maintains the structural and functional integrity of various protein clients involved in cellular signaling. In this study, we have investigated the effect of 17-AAG on the regulation of Hsp90-dependent signaling pathways directly implicated in cell cycle progression, survival and motility of human urinary bladder cancer cell lines. We have used MTT-based assays, FACS analysis, Western blotting, semi-quantitative RT-PCR, immunocytochemistry and scratch-wound assay in RT4, RT112 and T24 human urinary bladder cancer cell lines. We have demonstrated that, upon 17-AAG treatment, bladder cancer cells are arrested in the G1 phase of the cell cycle and eventually undergo apoptotic cell death in a dose-dependent manner. Furthermore, 17-AAG administration was shown to induce a pronounced downregulation of multiple Hsp90 protein clients and other downstream effectors, such as IGF-IR, Akt, IKK-α, IKK-β, FOXO1, ERK1/2 and c-Met, resulting in sequestration-mediated inactivation of NF-κB, reduced cell proliferation and decline of cell motility. In total, we have clearly evinced a dose-dependent and cell type-specific effect of 17-AAG on cell cycle progression, survival and motility of human bladder cancer cells, due to downregulation of multiple Hsp90 clients and subsequent disruption of signaling integrity.

  3. Mechanistic evaluation of the novel HSP90 inhibitor NVP-AUY922 in adult and pediatric glioblastoma

    Science.gov (United States)

    Gaspar, Nathalie; Sharp, Swee Y; Eccles, Suzanne A; Gowan, Sharon; Popov, Sergey; Jones, Chris; Pearson, Andrew; Vassal, Gilles; Workman, Paul

    2010-01-01

    The dismal prognosis of glioblastoma (GB) indicates the urgent need for new therapies for these tumors. Heat shock protein 90 (HSP90) inhibitors induce proteasome-mediated degradation of many oncogenic client proteins involved in all of the hallmark characteristics of cancer. Here, we explored the mechanistic potential of the potent synthetic diarylisoxazole amide resorcinol HSP90 inhibitor, NVP-AUY922, in adult and pediatric GB. In vitro antiproliferative potency (nanomolar range) was seen in both adult and pediatric human GB cell lines with different molecular pathologies. A cytostatic effect was observed in all GB lines; more apoptosis was observed at lower concentrations in SF188 pediatric GB line and at 144hrs in the slower growing KNS42 pediatric GB line, as compared to the adult GB lines, U87MG and SF268. In vitro combination studies with inhibitors of PI3 kinase/mTOR (PI-103) or MEK (PD-0325901) supported the hypothesis that sustained inhibition of ERK up to 72hrs and at least temporary inhibition of AKT were necessary to induce apoptosis in GB lines. In athymic mice bearing established subcutaneous U87MG glioblastoma xenografts, NVP-AUY922 (50mg/kg i.p x 3 days) caused inhibition of ERK1/2 and AKT phosphorylation and induced apoptosis, while 17-AAG used at MTD was less effective. NVP-AUY922 antitumor activity with objective tumor regression resulted from antiproliferative, pro-apoptotic and anti-angiogenic effects, the latter shown by decreased microvessel density and HIF1α levels. Our results have established mechanistic proof of concept for the potential of novel synthetic HSP90 inhibitors in adult and pediatric GB, alone or in combination with PI3 kinase/mTOR and MEK inhibitors. PMID:20457619

  4. Client Proteins and Small Molecule Inhibitors Display Distinct Binding Preferences for Constitutive and Stress-Induced HSP90 Isoforms and Their Conformationally Restricted Mutants.

    Directory of Open Access Journals (Sweden)

    Thomas L Prince

    Full Text Available The two cytosolic/nuclear isoforms of the molecular chaperone HSP90, stress-inducible HSP90α and constitutively expressed HSP90β, fold, assemble and maintain the three-dimensional structure of numerous client proteins. Because many HSP90 clients are important in cancer, several HSP90 inhibitors have been evaluated in the clinic. However, little is known concerning possible unique isoform or conformational preferences of either individual HSP90 clients or inhibitors. In this report, we compare the relative interaction strength of both HSP90α and HSP90β with the transcription factors HSF1 and HIF1α, the kinases ERBB2 and MET, the E3-ubiquitin ligases KEAP1 and RHOBTB2, and the HSP90 inhibitors geldanamycin and ganetespib. We observed unexpected differences in relative client and drug preferences for the two HSP90 isoforms, with HSP90α binding each client protein with greater apparent affinity compared to HSP90β, while HSP90β bound each inhibitor with greater relative interaction strength compared to HSP90α. Stable HSP90 interaction was associated with reduced client activity. Using a defined set of HSP90 conformational mutants, we found that some clients interact strongly with a single, ATP-stabilized HSP90 conformation, only transiently populated during the dynamic HSP90 chaperone cycle, while other clients interact equally with multiple HSP90 conformations. These data suggest different functional requirements among HSP90 clientele that, for some clients, are likely to be ATP-independent. Lastly, the two inhibitors examined, although sharing the same binding site, were differentially able to access distinct HSP90 conformational states.

  5. Effect of different temperatures on the expression of the newly characterized heat shock protein 90 (Hsp90) in L3 of Anisakis spp. isolated from Scomber australasicus.

    Science.gov (United States)

    Chen, Hui-Yu; Cheng, Yi-Sheng; Grabner, Daniel S; Chang, Shih-Hsin; Shih, Hsiu-Hui

    2014-10-15

    Anisakid nematodes are distributed worldwide in a wide variety of marine fishes and they are known to cause the zoonotic disease, anisakiasis. The temperature control is commonly applied for prevention and control of anisakiasis. To analyze the cellular response to temperature stress in Anisakis, the heat shock protein 90 (Hsp90) was chosen in the present study, as it plays a key role in many cellular processes and responds to stress conditions such as heat or cold shock. Anisakids were sampled from spotted mackerel Scomber australasicus caught from the coastal waters of Yilan, in northeastern Taiwan (25 °N, 121 °E). Anisakid nematodes were pre-identified morphologically and later molecularly by PCR-RFLP. In total, we obtained six species of the genus Anisakis, A. typica, A. pegreffii, A. paggiae, A. brevispiculata, A. physeteris, and a recombinant genotype between A. pegreffii and A. simplex sensu stricto. Thereby we provide new host and locality records for A. paggiae, A. brevispiculata and A. physeteris. The Hsp90 genes of five species (except the recombinant genotype) were cloned by rapid amplification of cDNA ends (RACE) and their deduced amino acid sequences were further characterized. Quantitative real-time PCR and Western blot analysis were used to examine the expression levels of the Hsp90 in A. pegreffii under different temperature conditions. Quantitative RT-PCR showed that Hsp90 transcript levels increased slightly under heat shock (50 °C) treatment, and increased gradually during the first 3h, and thereafter, returned to its baseline value at 37 °C. Under cold shock (4 °C) treatment, the mRNA expression of Hsp90 did not change significantly. In addition, we found a clear time-dependent Hsp90 protein expression pattern of A. pegreffii exposed to high temperature. Our results suggest that the mRNA and protein expression patterns of Hsp90 are related to the temperature, and are especially significantly increased under heat stress. Copyright © 2014

  6. Purification and comparison of heat shock protein 90 (Hsp90) in Candida albicans isolates from Malaysian and Iranian patients and infected mice.

    Science.gov (United States)

    Khalili, V; Shokri, H; Khosravi, A R; Akim, A; Amri Saroukolaei, S

    2016-06-01

    The purposes of this study were to purify and compare the concentration ratios of heat shock protein 90 (Hsp90) in clinical isolates of Candida albicans (C. albicans) obtained from Malaysian and Iranian patients and infected mice. Hsp90 was extracted using glass beads and ultracentrifugation from yeast cells and purified by ion exchange chromatography (DEAE-cellulose) and followed by affinity chromatography (hydroxyapatite). Purity of Hsp90 was controlled by SDS-PAGE and its identification was realized by immunoblotting test. The graphs of ion exchange and affinity chromatography showed one peak in all C. albicans isolates obtained from both Malaysian and Iranian samples, infected mice and under high-thermal (42°C) and low-thermal (25°C) shock. In immunoblotting, the location of Hsp90 fragments was obtained around 47, 75 and 82kDa. The least average concentration ratios of Hsp90 were 0.350 and 0.240mg/g for Malaysian and Iranian isolates at 25°C, respectively, while the highest average concentration ratios of Hsp90 were 3.05 and 2.600mg/g for Malaysian and Iranian isolates at 42°C, respectively. There were differences in the ratio amount of Hsp90 between Malaysian isolates (1.01±0.07mg/g) and mice kidneys (1.23±0.28mg/g) as well as between Iranian isolates (0.70±0.19mg/g) and mice kidneys (1.00±0.28mg/g) (P<0.05). The results showed differences in all situations tested including Iranian and Malaysian isolates, samples treated with temperatures (25°C or 42°C) and before and after infecting the mice (37°C), indicating higher virulent nature of this yeast species in high temperature in human and animal models. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. The Hsp70/Hsp90 Chaperone Machinery in Neurodegenerative Diseases

    OpenAIRE

    Rachel E. Lackie; Rachel E. Lackie; Andrzej Maciejewski; Andrzej Maciejewski; Valeriy G. Ostapchenko; Jose Marques-Lopes; Wing-Yiu Choy; Martin L. Duennwald; Vania F. Prado; Vania F. Prado; Vania F. Prado; Vania F. Prado; Marco A. M. Prado; Marco A. M. Prado; Marco A. M. Prado

    2017-01-01

    The accumulation of misfolded proteins in the human brain is one of the critical features of many neurodegenerative diseases, including Alzheimer's disease (AD). Assembles of beta-amyloid (Aβ) peptide—either soluble (oligomers) or insoluble (plaques) and of tau protein, which form neurofibrillary tangles, are the major hallmarks of AD. Chaperones and co-chaperones regulate protein folding and client maturation, but they also target misfolded or aggregated proteins for refolding or for degrada...

  8. A Hyperactive Signalosome in Acute Myeloid Leukemia Drives Addiction to a Tumor-Specific Hsp90 Species

    Directory of Open Access Journals (Sweden)

    Hongliang Zong

    2015-12-01

    Full Text Available Acute myeloid leukemia (AML is a heterogeneous and fatal disease with an urgent need for improved therapeutic regimens given that most patients die from relapsed disease. Irrespective of mutation status, the development of aggressive leukemias is enabled by increasing dependence on signaling networks. We demonstrate that a hyperactive signalosome drives addiction of AML cells to a tumor-specific Hsp90 species (teHsp90. Through genetic, environmental, and pharmacologic perturbations, we demonstrate a direct and quantitative link between hyperactivated signaling pathways and apoptotic sensitivity of AML to teHsp90 inhibition. Specifically, we find that hyperactive JAK-STAT and PI3K-AKT signaling networks are maintained by teHsp90 and, in fact, gradual activation of these networks drives tumors increasingly dependent on teHsp90. Thus, although clinically aggressive AML survives via signalosome activation, this addiction creates a vulnerability that can be exploited with Hsp90-directed therapy.

  9. Interactions between Hsp90 and oncogenic viruses: implications for viral cancer therapeutics.

    Science.gov (United States)

    Defee, Michael R; Qin, Zhiqiang; Dai, Lu; Isaacs, Jennifer S; Parsons, Chris H

    2011-01-01

    Oncogenic viruses are the etiologic agents for a significant proportion of human cancers, but effective therapies and preventative strategies are lacking for the majority of virus-associated cancers. Targeting of virus-induced signal transduction or virus-host protein interactions may offer novel therapeutic strategies for viral cancers. Heat shock protein 90 (Hsp90) is a well-characterized, multifunctional molecular chaperone involved in regulation of signal transduction, transcriptional activation, oncogenic protein stabilization, and neovascularization-pathogenic elements relevant to viral cancer pathogenesis. This review will summarize mechanistic concepts involving regulation of viral oncogenesis by both intracellular and extracellular Hsp90, as well as current therapeutic implications of these data.

  10. Allosteric regulation of the Hsp90 dynamics and stability by client recruiter cochaperones: protein structure network modeling.

    Science.gov (United States)

    Blacklock, Kristin; Verkhivker, Gennady M

    2014-01-01

    The fundamental role of the Hsp90 chaperone in supporting functional activity of diverse protein clients is anchored by specific cochaperones. A family of immune sensing client proteins is delivered to the Hsp90 system with the aid of cochaperones Sgt1 and Rar1 that act cooperatively with Hsp90 to form allosterically regulated dynamic complexes. In this work, functional dynamics and protein structure network modeling are combined to dissect molecular mechanisms of Hsp90 regulation by the client recruiter cochaperones. Dynamic signatures of the Hsp90-cochaperone complexes are manifested in differential modulation of the conformational mobility in the Hsp90 lid motif. Consistent with the experiments, we have determined that targeted reorganization of the lid dynamics is a unifying characteristic of the client recruiter cochaperones. Protein network analysis of the essential conformational space of the Hsp90-cochaperone motions has identified structurally stable interaction communities, interfacial hubs and key mediating residues of allosteric communication pathways that act concertedly with the shifts in conformational equilibrium. The results have shown that client recruiter cochaperones can orchestrate global changes in the dynamics and stability of the interaction networks that could enhance the ATPase activity and assist in the client recruitment. The network analysis has recapitulated a broad range of structural and mutagenesis experiments, particularly clarifying the elusive role of Rar1 as a regulator of the Hsp90 interactions and a stability enhancer of the Hsp90-cochaperone complexes. Small-world organization of the interaction networks in the Hsp90 regulatory complexes gives rise to a strong correspondence between highly connected local interfacial hubs, global mediator residues of allosteric interactions and key functional hot spots of the Hsp90 activity. We have found that cochaperone-induced conformational changes in Hsp90 may be determined by specific

  11. Allosteric regulation of the Hsp90 dynamics and stability by client recruiter cochaperones: protein structure network modeling.

    Directory of Open Access Journals (Sweden)

    Kristin Blacklock

    Full Text Available The fundamental role of the Hsp90 chaperone in supporting functional activity of diverse protein clients is anchored by specific cochaperones. A family of immune sensing client proteins is delivered to the Hsp90 system with the aid of cochaperones Sgt1 and Rar1 that act cooperatively with Hsp90 to form allosterically regulated dynamic complexes. In this work, functional dynamics and protein structure network modeling are combined to dissect molecular mechanisms of Hsp90 regulation by the client recruiter cochaperones. Dynamic signatures of the Hsp90-cochaperone complexes are manifested in differential modulation of the conformational mobility in the Hsp90 lid motif. Consistent with the experiments, we have determined that targeted reorganization of the lid dynamics is a unifying characteristic of the client recruiter cochaperones. Protein network analysis of the essential conformational space of the Hsp90-cochaperone motions has identified structurally stable interaction communities, interfacial hubs and key mediating residues of allosteric communication pathways that act concertedly with the shifts in conformational equilibrium. The results have shown that client recruiter cochaperones can orchestrate global changes in the dynamics and stability of the interaction networks that could enhance the ATPase activity and assist in the client recruitment. The network analysis has recapitulated a broad range of structural and mutagenesis experiments, particularly clarifying the elusive role of Rar1 as a regulator of the Hsp90 interactions and a stability enhancer of the Hsp90-cochaperone complexes. Small-world organization of the interaction networks in the Hsp90 regulatory complexes gives rise to a strong correspondence between highly connected local interfacial hubs, global mediator residues of allosteric interactions and key functional hot spots of the Hsp90 activity. We have found that cochaperone-induced conformational changes in Hsp90 may be

  12. The HSP90 inhibitor NVP-AUY922 radiosensitizes by abrogation of homologous recombination resulting in mitotic entry with unresolved DNA damage.

    Directory of Open Access Journals (Sweden)

    Shane Zaidi

    Full Text Available Heat shock protein 90 (HSP90 is a molecular chaperone responsible for the conformational maintenance of a number of client proteins that play key roles in cell cycle arrest, DNA damage repair and apoptosis following radiation. HSP90 inhibitors exhibit antitumor activity by modulating the stabilisation and activation of HSP90 client proteins. We sought to evaluate NVP-AUY922, the most potent HSP90 inhibitor yet reported, in preclinical radiosensitization studies.NVP-AUY922 potently radiosensitized cells in vitro at low nanomolar concentrations with a concurrent depletion of radioresistance-linked client proteins. Radiosensitization by NVP-AUY922 was verified for the first time in vivo in a human head and neck squamous cell carcinoma xenograft model in athymic mice, as measured by delayed tumor growth and increased surrogate end-point survival (p = <0.0001. NVP-AUY922 was shown to ubiquitously inhibit resolution of dsDNA damage repair correlating to delayed Rad51 foci formation in all cell lines tested. Additionally, NVP-AUY922 induced a stalled mitotic phenotype, in a cell line-dependent manner, in HeLa and HN5 cell lines irrespective of radiation exposure. Cell cycle analysis indicated that NVP-AUY922 induced aberrant mitotic entry in all cell lines tested in the presence of radiation-induced DNA damage due to ubiquitous CHK1 depletion, but resultant downstream cell cycle effects were cell line dependent.These results identify NVP-AUY922 as the most potent HSP90-mediated radiosensitizer yet reported in vitro, and for the first time validate it in a clinically relevant in vivo model. Mechanistic analysis at clinically achievable concentrations demonstrated that radiosensitization is mediated by the combinatorial inhibition of cell growth and survival pathways, ubiquitous delay in Rad51-mediated homologous recombination and CHK1-mediated G(2/M arrest, but that the contribution of cell cycle perturbation to radiosensitization may be cell line

  13. Hsp90α regulates ATM and NBN functions in sensing and repair of DNA double-strand breaks.

    Science.gov (United States)

    Pennisi, Rosa; Antoccia, Antonio; Leone, Stefano; Ascenzi, Paolo; di Masi, Alessandra

    2017-08-01

    The molecular chaperone heat shock protein 90 (Hsp90α) regulates cell proteostasis and mitigates the harmful effects of endogenous and exogenous stressors on the proteome. Indeed, the inhibition of Hsp90α ATPase activity affects the cellular response to ionizing radiation (IR). Although the interplay between Hsp90α and several DNA damage response (DDR) proteins has been reported, its role in the DDR is still unclear. Here, we show that ataxia-telangiectasia-mutated kinase (ATM) and nibrin (NBN), but not 53BP1, RAD50, and MRE11, are Hsp90α clients as the Hsp90α inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) induces ATM and NBN polyubiquitination and proteosomal degradation in normal fibroblasts and lymphoblastoid cell lines. Hsp90α-ATM and Hsp90α-NBN complexes are present in unstressed and irradiated cells, allowing the maintenance of ATM and NBN stability that is required for the MRE11/RAD50/NBN complex-dependent ATM activation and the ATM-dependent phosphorylation of both NBN and Hsp90α in response to IR-induced DNA double-strand breaks (DSBs). Hsp90α forms a complex also with ph-Ser1981-ATM following IR. Upon phosphorylation, NBN dissociates from Hsp90α and translocates at the DSBs, while phThr5/7-Hsp90α is not recruited at the damaged sites. The inhibition of Hsp90α affects nuclear localization of MRE11 and RAD50, impairs DDR signaling (e.g., BRCA1 and CHK2 phosphorylation), and slows down DSBs repair. Hsp90α inhibition does not affect DNA-dependent protein kinase (DNA-PK) activity, which possibly phosphorylates Hsp90α and H2AX after IR. Notably, Hsp90α inhibition causes H2AX phosphorylation in proliferating cells, this possibly indicating replication stress events. Overall, present data shed light on the regulatory role of Hsp90α on the DDR, controlling ATM and NBN stability and influencing the DSBs signaling and repair. © 2017 Federation of European Biochemical Societies.

  14. Human heat shock protein (Hsp) 90 interferes with Neisseria meningitidis adhesin A (NadA)-mediated adhesion and invasion.

    Science.gov (United States)

    Montanari, Paolo; Bozza, Giuseppe; Capecchi, Barbara; Caproni, Elena; Barrile, Riccardo; Norais, Nathalie; Capitani, Mirco; Sallese, Michele; Cecchini, Paola; Ciucchi, Laura; Gao, Zhenai; Rappuoli, Rino; Pizza, Mariagrazia; Aricò, Beatrice; Merola, Marcello

    2012-03-01

    NadA (N eisseria meningitidisadhesin A), a meningococcal surface protein, mediates adhesion to and invasion of human cells, an activity in which host membrane proteins have been implicated. While investigating these host factors in human epithelial cells by affinity chromatography, we discovered an unanticipated interaction of NadA with heat shock protein (Hsp) 90, a molecular chaperone. The specific in vitro interaction of recombinant soluble NadA and Hsp90 was confirmed by co-immunoprecipitations, dot and far-Western blot. Intriguingly, ADP, but not ATP, was required for this association, and the Hsp90 inhibitor 17-AAG promoted complex formation. Hsp90 binding to an Escherichia coli strain used as carrier to express surface exposed NadA confirmed these results in live bacteria. We also examined RNA interference, plasmid-driven overexpression, addition of exogenous rHsp90 and 17-AAG inhibition in human epithelial cells to further elucidate the involvement of Hsp90 in NadA-mediated adhesion and invasion. Together, these data suggest an inverse correlation between the amount of host Hsp90 and the NadA adhesive/invasive phenotype. Confocal microscopy also demonstrated that meningococci interact with cellular Hsp90, a completely novel finding. Altogether our results show that variation of host Hsp90 expression or activity interferes with adhesive and invasive events driven by NadA. © 2011 Blackwell Publishing Ltd.

  15. Hsp10, Hsp70, and Hsp90 immunohistochemical levels change in ulcerative colitis after therapy

    Science.gov (United States)

    Tomasello, G.; Sciumè, C.; Rappa, F.; Rodolico, V.; Zerilli, M.; Martorana, A.; Cicero, G.; De Luca, R.; Damiani, P.; Accardo, F.M.; Romeo, M.; Farina, F.; Bonaventura, G.; Modica, G.; Zummo, G.; Conway de Macario, E.; Macario, A.J.L.; Cappello, F.

    2011-01-01

    Ulcerative colitis (UC) is a form of inflammatory bowel disease (IBD) characterized by damage of large bowel mucosa and frequent extra-intestinal autoimmune comorbidities. The role played in IBD pathogenesis by molecular chaperones known to interact with components of the immune system involved in inflammation is unclear. We previously demonstrated that mucosal Hsp60 decreases in UC patients treated with conventional therapies (mesalazine, probiotics), suggesting that this chaperonin could be a reliable biomarker useful for monitoring response to treatment, and that it might play a role in pathogenesis. In the present work we investigated three other heat shock protein/molecular chaperones: Hsp10, Hsp70, and Hsp90. We found that the levels of these proteins are increased in UC patients at the time of diagnosis and decrease after therapy, supporting the notion that these proteins deserve attention in the study of the mechanisms that promote the development and maintenance of IBD, and as biomarkers of this disease (e.g., to monitor response to treatment at the histological level). PMID:22297444

  16. Photodynamic Therapy with Hypericin Improved by Targeting HSP90 Associated Proteins

    Directory of Open Access Journals (Sweden)

    Peter Ferenc

    2011-11-01

    Full Text Available In this study we have focused on the response of SKBR-3 cells to both single 17-DMAG treatment as well as its combination with photodynamic therapy with hypericin. Low concentrations of 17-DMAG without any effect on survival of SKBR-3 cells significantly reduced metabolic activity, viability and cell number when combined with photodynamic therapy with hypericin. Moreover, IC10 concentation of 17-DMAG resulted in significant increase of SKBR-3 cells in G1 phase of the cell cycle, followed by an increase of cells in G2 phase when combined with photodynamic therapy. Furthermore, 17-DMAG already decreased HER2, Akt, P-Erk1/2 and survivin protein levels in SKBR-3 cells a short time after its application. In this regard, 17-DMAG protected also SKBR-3 cells against both P-Erk1/2 as well as survivin upregulations induced by photodynamic therapy with hypericin. Interestingly, IC10 concentration of 17-DMAG led to total depletion of Akt, P-Erk1/2 proteins and to decrease of survivin level at 48 h. On the other hand, 17-DMAG did not change HER2 relative expression in SKBR-3 cells, but caused a significant decrease of HER2 mRNA in MCF-7 cells characterized by low HER2 expression. These results show that targeting HSP90 client proteins increases the efficiency of antineoplastic effect of photodynamic therapy in vitro.

  17. Hsp10, Hsp70, and Hsp90 immunohistochemical levels change in ulcerative colitis after therapy

    Directory of Open Access Journals (Sweden)

    G. Tomasello

    2011-10-01

    Full Text Available Ulcerative colitis (UC is a form of inflammatory bowel disease (IBD characterized by damage of large bowel mucosa and frequent extra-intestinal autoimmune comorbidities. The role played in IBD pathogenesis by molecular chaperones known to interact with components of the immune system involved in inflammation is unclear. We previously demonstrated that mucosal Hsp60 decreases in UC patients treated with conventional therapies (mesalazine, probiotics, suggesting that this chaperonin could be a reliable biomarker useful for monitoring response to treatment, and that it might play a role in pathogenesis. In the present work we investigated three other heat shock protein/molecular chaperones: Hsp10, Hsp70, and Hsp90. We found that the levels of these proteins are increased in UC patients at the time of diagnosis and decrease after therapy, supporting the notion that these proteins deserve attention in the study of the mechanisms that promote the development and maintenance of IBD, and as biomarkers of this disease (e.g., to monitor response to treatment at the histological level.

  18. TsDAF-21/Hsp90 is expressed in all examined stages of Trichinella spiralis

    Science.gov (United States)

    Trichinella is an important parasitic nematode of animals worldwide. Heat shock proteins are ubiquitous in nature and allow organisms to quickly respond to environmental stress. A portion of the Tsdaf-21 gene, a Caenorhabditis elegans daf-21 homologue encoding heat-shock protein 90 (Hsp90) was clone...

  19. The Role of DAF-21/Hsp90 in Mouth-Form Plasticity in Pristionchus pacificus.

    Science.gov (United States)

    Sieriebriennikov, Bogdan; Markov, Gabriel V; Witte, Hanh; Sommer, Ralf J

    2017-07-01

    Phenotypic plasticity is increasingly recognized to facilitate adaptive change in plants and animals, including insects, nematodes, and vertebrates. Plasticity can occur as continuous or discrete (polyphenisms) variation. In social insects, for example, in ants, some species have workers of distinct size classes while in other closely related species variation in size may be continuous. Despite the abundance of examples in nature, how discrete morphs are specified remains currently unknown. In theory, polyphenisms might require robustness, whereby the distribution of morphologies would be limited by the same mechanisms that execute buffering from stochastic perturbations, a function attributed to heat-shock proteins of the Hsp90 family. However, this possibility has never been directly tested because plasticity and robustness are considered to represent opposite evolutionary principles. Here, we used a polyphenism of feeding structures in the nematode Pristionchus pacificus to test the relationship between robustness and plasticity using geometric morphometrics of 20 mouth-form landmarks. We show that reducing heat-shock protein activity, which reduces developmental robustness, increases the range of mouth-form morphologies. Specifically, elevated temperature led to a shift within morphospace, pharmacological inhibition of all Hsp90 genes using radicicol treatment increased shape variability in both mouth-forms, and CRISPR/Cas9-induced Ppa-daf-21/Hsp90 knockout had a combined effect. Thus, Hsp90 canalizes the morphologies of plastic traits resulting in discrete polyphenism of mouth-forms. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Induction of hsp70, hsp90, and catalase activity in planarian Dugesia japonica exposed to cadmium.

    Science.gov (United States)

    Zhang, Xiufang; Mo, Yehua; Zhou, Luming; Wang, Yinan; Wang, Zhongchen; Zhao, Bosheng

    2016-08-01

    The hsp70 and hsp90 expression patterns and catalase (CAT) activity in the freshwater planaria Dugesia japonica exposed to cadmium (Cd) under laboratory conditions were investigated. Planaria were exposed to a range of Cd concentrations (0-150 μg Cd/L) for 24 h. The expression levels of hsp70 and hsp90 were determined by relative quantitative real-time polymerase chain reaction. Within the overall dose range in the experiment, the expression level of hsp70 and the activity of CAT in D. japonica were altered significantly. Hsp70 was induced in D. japonica upon Cd exposure concentrations as low as 9.375 μg Cd/L. No significant effect on the expression level of hsp90 was observed. Our findings demonstrated that stress gene hsp70, but not hsp90, was responsive to Cd contamination in D. japonica CAT activity was significantly induced at concentrations of 18.75, 37.5, and 75 μg Cd/L after 24-h exposure. We recommend that the use of hsp70 as a biomarker should be complemented by evidence of changes in other parameters, such as CAT activity, in D. japonica. © The Author(s) 2014.

  1. Hsp90 prevents interaction between CHIP and HERG proteins to facilitate maturation of wild-type and mutant HERG proteins.

    Science.gov (United States)

    Iwai, Chisato; Li, Peili; Kurata, Yasutaka; Hoshikawa, Yoshiko; Morikawa, Kumi; Maharani, Nani; Higaki, Katsumi; Sasano, Tetsuro; Notsu, Tomomi; Ishido, Yuko; Miake, Junichiro; Yamamoto, Yasutaka; Shirayoshi, Yasuaki; Ninomiya, Haruaki; Nakai, Akira; Murata, Shigeo; Yoshida, Akio; Yamamoto, Kazuhiro; Hiraoka, Masayasu; Hisatome, Ichiro

    2013-12-01

    We examined the role of Hsp90 in expression and maturation of wild-type (WT) and mutant ether-a-go-go related gene (HERG) proteins by using Hsp90 inhibitors, geldanamycin (GA) and radicicol, and Hsp90 overexpression. The proteins were expressed in HEK293 cells or collected from HL-1 mouse cardiomyocytes, and analysed by western blotting, immunoprecipitation, immunofluorescence, and whole-cell patch-clamp techniques. GA and radicicol suppressed maturation of HERG-FLAG proteins and increased their immature forms. Co-expression of Hsp90 counteracted the effects of Hsp90 inhibitors and suppressed ubiquitination of HERG proteins. Overexpressed Hsp90 also inhibited the binding of endogenous C-terminus of Hsp70-interacting protein (CHIP) to HERG-FLAG proteins. Hsp90-induced increase of functional HERG proteins was verified by their increased expression on the cell surface and enhanced HERG channel currents. CHIP overexpression decreased both mature and immature forms of HERG-FLAG proteins in cells treated with GA. Hsp90 facilitated maturation of endogenous ERG proteins, whereas CHIP decreased both forms of ERG proteins in HL-1 cells. Mutant HERG proteins harbouring disease-causing missense mutations were mainly in the immature form and had a higher binding capacity to CHIP than the WT; Hsp90 overexpression suppressed this association. Overexpressed Hsp90 increased the mature form of HERG(1122fs/147) proteins, reduced its ubiquitinated form, increased its immunoreactivity in the endoplasmic reticulum and on the plasma membrane, and increased the mutant-mediated membrane current. CHIP overexpression decreased the immature form of HERG(1122fs/147) proteins. Enhancement of HERG protein expression through Hsp90 inhibition of CHIP binding might be a novel therapeutic strategy for long QT syndrome 2 caused by trafficking abnormalities of HERG proteins.

  2. Phase I evaluation of STA-1474, a prodrug of the novel HSP90 inhibitor ganetespib, in dogs with spontaneous cancer.

    Directory of Open Access Journals (Sweden)

    Cheryl A London

    Full Text Available The novel water soluble compound STA-1474 is metabolized to ganetespib (formerly STA-9090, a potent HSP90 inhibitor previously shown to kill canine tumor cell lines in vitro and inhibit tumor growth in the setting of murine xenografts. The purpose of the following study was to extend these observations and investigate the safety and efficacy of STA-1474 in dogs with spontaneous tumors.This was a Phase 1 trial in which dogs with spontaneous tumors received STA-1474 under one of three different dosing schemes. Pharmacokinetics, toxicities, biomarker changes, and tumor responses were assessed. Twenty-five dogs with a variety of cancers were enrolled. Toxicities were primarily gastrointestinal in nature consisting of diarrhea, vomiting, inappetence and lethargy. Upregulation of HSP70 protein expression was noted in both tumor specimens and PBMCs within 7 hours following drug administration. Measurable objective responses were observed in dogs with malignant mast cell disease (n = 3, osteosarcoma (n = 1, melanoma (n = 1 and thyroid carcinoma (n = 1, for a response rate of 24% (6/25. Stable disease (>10 weeks was seen in 3 dogs, for a resultant overall biological activity of 36% (9/25.This study provides evidence that STA-1474 exhibits biologic activity in a relevant large animal model of cancer. Given the similarities of canine and human cancers with respect to tumor biology and HSP90 activation, it is likely that STA-1474 and ganetespib will demonstrate comparable anti-cancer activity in human patients.

  3. A protective role of HSP90 chaperone in gamma-irradiated Arabidopsis thaliana seeds.

    Science.gov (United States)

    Kozeko, Liudmyla; Talalaiev, Oleksandr; Neimash, Volodymyr; Povarchuk, Vasyl

    2015-07-01

    The heat shock protein 90 (HSP90) is required for the maturation and conformational regulation of many regulatory proteins affecting morphogenetic pathways and stress tolerance. The purpose of this work is to disclose a role of HSP90 in radioresistance of seeds. Arabidopsis thaliana (Ler) seeds were exposed to γ-ray irradiation with doses of 0.1-1 kGy using (60)Co source to obtain a viable but polymorphic material. A comet assay of the seeds showed a dose-dependent increase in DNA damage. Phenotypic consequences of irradiation included growth stimulation at doses of 0.1-0.25 kGy and negative growth effects at doses from 0.5 kGy and beyond, along with increasing heterogeneity of seedling growth rate and phenotype. The frequencies of abnormal phenotypes were highly correlated with the degree of DNA damage in seeds. Treatment of seeds with geldanamycin (GDA), an inhibitor of HSP90, stimulated the seedling growth at all radiation doses and, at the same time, enhanced the growth rate and morphological diversity. It was also found that HSP70 induction by γ-rays was increased following GDA treatment (shown at 1 kGy). We suppose that the GDA-induced HSP70 can be involved in elimination of detrimental radiation effects that ultimately results in growth stimulation. On the other hand, the increase in phenotypic variation, when HSP90 function was impaired, confirms the supposition that the chaperone may control the concealment of cryptic genetic alterations and the developmental stability. In general, these results demonstrate that HSP90 may interface the stress response and phenotypic expression of genetic alterations induced by irradiation. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  4. Identification of HSP90 inhibitors as a novel class of senolytics.

    Science.gov (United States)

    Fuhrmann-Stroissnigg, Heike; Ling, Yuan Yuan; Zhao, Jing; McGowan, Sara J; Zhu, Yi; Brooks, Robert W; Grassi, Diego; Gregg, Siobhan Q; Stripay, Jennifer L; Dorronsoro, Akaitz; Corbo, Lana; Tang, Priscilla; Bukata, Christina; Ring, Nadja; Giacca, Mauro; Li, Xuesen; Tchkonia, Tamara; Kirkland, James L; Niedernhofer, Laura J; Robbins, Paul D

    2017-09-04

    Aging is the main risk factor for many chronic degenerative diseases and cancer. Increased senescent cell burden in various tissues is a major contributor to aging and age-related diseases. Recently, a new class of drugs termed senolytics were demonstrated to extending healthspan, reducing frailty and improving stem cell function in multiple murine models of aging. To identify novel and more optimal senotherapeutic drugs and combinations, we established a senescence associated β-galactosidase assay as a screening platform to rapidly identify drugs that specifically affect senescent cells. We used primary Ercc1 -/- murine embryonic fibroblasts with reduced DNA repair capacity, which senesce rapidly if grown at atmospheric oxygen. This platform was used to screen a small library of compounds that regulate autophagy, identifying two inhibitors of the HSP90 chaperone family as having significant senolytic activity in mouse and human cells. Treatment of Ercc1 -/∆ mice, a mouse model of a human progeroid syndrome, with the HSP90 inhibitor 17-DMAG extended healthspan, delayed the onset of several age-related symptoms and reduced p16INK4a expression. These results demonstrate the utility of our screening platform to identify senotherapeutic agents as well as identified HSP90 inhibitors as a promising new class of senolytic drugs.The accumulation of senescent cells is thought to contribute to the age-associated decline in tissue function. Here, the authors identify HSP90 inhibitors as a new class of senolytic compounds in an in vitro screening and show that administration of a HSP90 inhibitor reduces age-related symptoms in progeroid mice.

  5. Predicting Allosteric Effects from Orthosteric Binding in Hsp90-Ligand Interactions: Implications for Fragment-Based Drug Design.

    Directory of Open Access Journals (Sweden)

    Arun Chandramohan

    2016-06-01

    Full Text Available A key question in mapping dynamics of protein-ligand interactions is to distinguish changes at binding sites from those associated with long range conformational changes upon binding at distal sites. This assumes a greater challenge when considering the interactions of low affinity ligands (dissociation constants, KD, in the μM range or lower. Amide hydrogen deuterium Exchange mass spectrometry (HDXMS is a robust method that can provide both structural insights and dynamics information on both high affinity and transient protein-ligand interactions. In this study, an application of HDXMS for probing the dynamics of low affinity ligands to proteins is described using the N-terminal ATPase domain of Hsp90. Comparison of Hsp90 dynamics between high affinity natural inhibitors (KD ~ nM and fragment compounds reveal that HDXMS is highly sensitive in mapping the interactions of both high and low affinity ligands. HDXMS reports on changes that reflect both orthosteric effects and allosteric changes accompanying binding. Orthosteric sites can be identified by overlaying HDXMS onto structural information of protein-ligand complexes. Regions distal to orthosteric sites indicate long range conformational changes with implications for allostery. HDXMS, thus finds powerful utility as a high throughput method for compound library screening to identify binding sites and describe allostery with important implications for fragment-based ligand discovery (FBLD.

  6. Effect of electromagnetic fields at 2.45 GHz on the levels of cellular stress proteins HSP-90 and 70 in the rat thyroid; Efecto de los campos electromagneticos a 2,45 GHz sobre los niveles de proteinas de estres celular HSP-90 y 70 en el toroides de rata

    Energy Technology Data Exchange (ETDEWEB)

    Misa Agustino, M. J.; Alvarez-Folgueras, M.; Jorge-Mora, M. T.; Jorge Barreiro, F. J.; Ares Pena, F. J.; Lleiro, J.; Lopez Martin, M. E.

    2011-07-01

    In this study we analyzed the cellular stress levels achieved by heat shock proteins (HSP) 90 and 70 in rat thyroid tissue after exposure to radio waves in TWG experimental system. Parallel measurements of body stress in animals by rectal temperature probes allow us to determine whether there is any interaction between temperature increases and cellular stress.

  7. HSP90 Stabilizes Auxin-Responsive Phenotypes by Masking a Mutation in the Auxin Receptor TIR1.

    Science.gov (United States)

    Watanabe, Etsuko; Mano, Shoji; Nomoto, Mika; Tada, Yasuomi; Hara-Nishimura, Ikuko; Nishimura, Mikio; Yamada, Kenji

    2016-11-01

    Heat shock protein 90 (HSP90) is a molecular chaperone that is required for the function of various substrate proteins, also known as client proteins. It is proposed that HSP90 buffers or hides phenotypic variations in animals and plants by masking mutations in some of its client proteins. However, none of the client proteins with cryptic mutations has been identified to date. Here, we identify the first client protein example by which HSP90 buffers a mutation: the auxin receptor transport inhibitor response 1 (TIR1). TIR1 interacts with HSP90 in the nucleus. An HSP90-specific inhibitor abolished the nuclear localization of TIR1 and the auxin-induced degradation of a TIR1-substrate, indicating that TIR1 is an HSP90 client protein. Plants with a null mutation in the TIR1 gene had a defect in auxin response, whereas plants with a point mutation in the TIR1 gene responded to auxin treatment in young seedlings, but a cryptic defect in its auxin response was exposed with HSP90 inhibitor treatment. These results demonstrate that HSP90 masks a point mutation in the auxin receptor TIR1 and thereby buffers auxin-responsive phenotypes. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Structural and functional analysis of SGT1-HSP90 core complex required for innate immunity in plants.

    Science.gov (United States)

    Kadota, Yasuhiro; Amigues, Beatrice; Ducassou, Lionel; Madaoui, Hocine; Ochsenbein, Francoise; Guerois, Raphaël; Shirasu, Ken

    2008-12-01

    SGT1 (Suppressor of G2 allele of skp1), a co-chaperone of HSP90 (Heat-shock protein 90), is required for innate immunity in plants and animals. Unveiling the cross talks between SGT1 and other co-chaperones such as p23, AHA1 (Activator of HSP90 ATPase 1) or RAR1 (Required for Mla12 resistance) is an important step towards understanding the HSP90 machinery. Nuclear magnetic resonance spectroscopy and mutational analyses of HSP90 revealed the nature of its binding with the CS domain of SGT1. Although CS is structurally similar to p23, these domains were found to non-competitively bind to various regions of HSP90; yet, unexpectedly, full-length SGT1 could displace p23 from HSP90. RAR1 partly shares the same binding site with HSP90 as the CS domain, whereas AHA1 does not. This analysis allowed us to build a structural model of the HSP90-SGT1 complex and to obtain a compensatory mutant pair between both partners that is able to restore virus resistance in vivo through Rx (Resistance to potato virus X) immune sensor stabilization.

  9. 17AAG Treatment Accelerates Doxorubicin Induced Cellular Senescence: Hsp90 Interferes with Enforced Senescence of Tumor Cells.

    NARCIS (Netherlands)

    Sarangi, U.; Paithankar, K.R.; Kumar, J.U.; Subramaniam, V.; Sreedhar, A.S.

    2012-01-01

    Hsp90 chaperone has been identified as an attractive pharmacological target to combat cancer. However, some metastatic tumors either fail to respond to Hsp90 inhibition or show recovery necessitating irreversible therapeutic strategies. In response to this enforced senescence has been proposed as an

  10. Selection and Characterization of Single Chain Antibody Fragments Specific for Hsp90 as a Potential Cancer Targeting Molecule

    Directory of Open Access Journals (Sweden)

    Edyta Petters

    2015-08-01

    Full Text Available Heat shock proteins play an essential role in facilitating malignant transformation and they have been recognized as important factors in human cancers. One of the key elements of the molecular chaperones machinery is Hsp90 and it has recently become a target for anticancer therapeutic approaches. The potential and importance of Hsp90-directed agents becomes apparent when one realizes that disruption of Hsp90 function may influence over 200 oncogenic client proteins. Here, we described the selection and characterization of Hsp90-specific antibody fragments from commercially available Tomlinson I and J phage display libraries. The affinities of Hsp90-binding scFv variants were measured using SPR method. Then, based on the best clone selected, we performed the affinity maturation procedure and obtained valuable Hsp90-specific clones. The selected binders were expressed and applied for immunostaining, ELISA and SPR analysis using model cancer cell lines. All performed experiments confirmed the ability of selected antibodies to interact with the Hsp90. Therefore, the presented Hsp90-specific scFv, might be a starting point for the development of a novel antibody-based strategy targeting cancer.

  11. Down-regulation of cellular FLICE-inhibitory protein (Long Form contributes to apoptosis induced by Hsp90 inhibition in human lung cancer cells

    Directory of Open Access Journals (Sweden)

    Wang Qilin

    2012-12-01

    Full Text Available Abstract Background Cellular FLICE-Inhibitory Protein (long form, c-FLIPL is a critical negative regulator of death receptor-mediated apoptosis. Overexpression of c-FLIPL has been reported in many cancer cell lines and is associated with chemoresistance. In contrast, down-regulation of c-FLIP may drive cancer cells into cellular apoptosis. This study aims to demonstrate that inhibition of the heat shock protein 90 (Hsp90 either by inhibitors geldanamycin/17-N-Allylamino-17-demethoxygeldanamycin (GA/17-AAG or siRNA technique in human lung cancer cells induces c-FLIPL degradation and cellular apoptosis through C-terminus of Hsp70-interacting protein (CHIP-mediated mechanisms. Methods Calu-1 and H157 cell lines (including H157-c-FLIPL overexpressing c-FLIPL and control cell H157-lacZ were treated with 17-AAG and the cell lysates were prepared to detect the given proteins by Western Blot and the cell survival was assayed by SRB assay. CHIP and Hsp90 α/β proteins were knocked down by siRNA technique. CHIP and c-FLIPL plasmids were transfected into cells and immunoprecipitation experiments were performed to testify the interactions between c-FLIPL, CHIP and Hsp90. Results c-FLIPL down-regulation induced by 17-AAG can be reversed with the proteasome inhibitor MG132, which suggested that c-FLIPL degradation is mediated by a ubiquitin-proteasome system. Inhibition of Hsp90α/β reduced c-FLIPL level, whereas knocking down CHIP expression with siRNA technique inhibited c-FLIPL degradation. Furthermore, c-FLIPL and CHIP were co-precipitated in the IP complexes. In addition, overexpression of c-FLIPL can rescue cancer cells from apoptosis. When 17-AAG was combined with an anti-cancer agent celecoxib(CCB, c-FLIPL level declined further and there was a higher degree of caspase activation. Conclusion We have elucidated c-FLIPL degradation contributes to apoptosis induced by Hsp90 inhibition, suggesting c-FLIP and Hsp90 may be the promising combined targets

  12. Cyclophilin40 isomerase activity is regulated by a temperature-dependent allosteric interaction with Hsp90.

    Science.gov (United States)

    Blackburn, Elizabeth A; Wear, Martin A; Landré, Vivian; Narayan, Vikram; Ning, Jia; Erman, Burak; Ball, Kathryn L; Walkinshaw, Malcolm D

    2015-09-01

    Cyclophilin 40 (Cyp40) comprises an N-terminal cyclophilin domain with peptidyl-prolyl isomerase (PPIase) activity and a C-terminal tetratricopeptide repeat (TPR) domain that binds to the C-terminal-EEVD sequence common to both heat shock protein 70 (Hsp70) and Hsp90. We show in the present study that binding of peptides containing the MEEVD motif reduces the PPIase activity by ∼30%. CD and fluorescence assays show that the TPR domain is less stable than the cyclophilin domain and is stabilized by peptide binding. Isothermal titration calorimetry (ITC) shows that the affinity for the-MEEVD peptide is temperature sensitive in the physiological temperature range. Results from these biophysical studies fit with the MD simulations of the apo and holo (peptide-bound) structures which show a significant reduction in root mean square (RMS) fluctuation in both TPR and cyclophilin domains when-MEEVD is bound. The MD simulations of the apo-protein also highlight strong anti-correlated motions between residues around the PPIase-active site and a band of residues running across four of the seven helices in the TPR domain. Peptide binding leads to a distortion in the shape of the active site and a significant reduction in these strongly anti-correlated motions, providing an explanation for the allosteric effect of ligand binding and loss of PPIase activity. Together the experimental and MD results suggest that on heat shock, dissociation of Cyp40 from complexes mediated by the TPR domain leads to an increased pool of free Cyp40 capable of acting as an isomerase/chaperone in conditions of cellular stress. © 2015 Authors.

  13. Topically applied Hsp90 inhibitor 17AAG inhibits UVR-induced cutaneous squamous cell carcinomas.

    Science.gov (United States)

    Singh, Anupama; Singh, Ashok; Sand, Jordan M; Bauer, Samuel J; Hafeez, Bilal Bin; Meske, Louise; Verma, Ajit K

    2015-04-01

    We present here that heat-shock protein 90 (Hsp90) inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17AAG), when topically applied to mouse skin, inhibits UVR-induced development of cutaneous squamous cell carcinoma (SCC). In these experiments, DMSO:acetone (1:40 v/v) solution of 17AAG (500 nmol) was applied topically to mouse skin in conjunction with each UVR exposure (1.8 kJ m(-2)). The UVR source was Kodacel-filtered FS-40 sun lamps (approximately 60% UVB and 40% UVA). In independent experiments with three separate mouse lines (SKH-1 hairless mice, wild-type FVB, and protein kinase C epsilon (PKCɛ)-overexpressing transgenic FVB mice), 17AAG treatment increased the latency and decreased both the incidence and multiplicity of UVR-induced SCC. Topical 17AAG alone or in conjunction with UVR treatments elicited neither skin nor systemic toxicity. 17AAG-caused inhibition of SCC induction was accompanied by a decrease in UVR-induced (1) hyperplasia, (2) Hsp90β-PKCɛ interaction, and (3) expression levels of Hsp90β, Stat3, pStat3Ser727, pStat3Tyr705, pAktSer473, and matrix metalloproteinase (MMP). The results presented here indicate that topical Hsp90 inhibitor 17AAG is effective in prevention of UVR-induced epidermal hyperplasia and SCC. One may conclude from the preclinical data presented here that topical 17AAG may be useful for prevention of UVR-induced inflammation and cutaneous SCC either developed in UVR-exposed or organ transplant population.

  14. Stromal cell–derived factor 2 is critical for Hsp90-dependent eNOS activation

    Science.gov (United States)

    Siragusa, Mauro; Fröhlich, Florian; Park, Eon Joo; Schleicher, Michael; Walther, Tobias C.; Sessa, William C.

    2016-01-01

    Endothelial nitric oxide synthase (eNOS) catalyzes the conversion of l-arginine and molecular oxygen into l-citrulline and nitric oxide (NO), a gaseous second messenger that influences cardiovascular physiology and disease. Several mechanisms regulate eNOS activity and function, including phosphorylation at Ser and Thr residues and protein-protein interactions. Combining a tandem affinity purification approach and mass spectrometry, we identified stromal cell–derived factor 2 (SDF2) as a component of the eNOS macromolecular complex in endothelial cells. SDF2 knockdown impaired agonist-stimulated NO synthesis and decreased the phosphorylation of eNOS at Ser1177, a key event required for maximal activation of eNOS. Conversely, SDF2 overexpression dose-dependently increased NO synthesis through a mechanism involving Akt and calcium (induced with ionomycin), which increased the phosphorylation of Ser1177 in eNOS. NO synthesis by iNOS (inducible NOS) and nNOS (neuronal NOS) was also enhanced upon SDF2 overexpression. We found that SDF2 was a client protein of the chaperone protein Hsp90, interacting preferentially with the M domain of Hsp90, which is the same domain that binds to eNOS. In endothelial cells exposed to vascular endothelial growth factor (VEGF), SDF2 was required for the binding of Hsp90 and calmodulin to eNOS, resulting in eNOS phosphorylation and activation. Thus, our data describe a function for SDF2 as a component of the Hsp90-eNOS complex that is critical for signal transduction in endothelial cells. PMID:26286023

  15. FGFR3 translocations in bladder cancer: differential sensitivity to HSP90 inhibition based on drug metabolism.

    Science.gov (United States)

    Acquaviva, Jaime; He, Suqin; Zhang, Chaohua; Jimenez, John-Paul; Nagai, Masazumi; Sang, Jim; Sequeira, Manuel; Smith, Donald L; Ogawa, Luisa Shin; Inoue, Takayo; Tatsuta, Noriaki; Knowles, Margaret A; Bates, Richard C; Proia, David A

    2014-07-01

    Activating mutations and/or overexpression of FGFR3 are common in bladder cancer, making FGFR3 an attractive therapeutic target in this disease. In addition, FGFR3 gene rearrangements have recently been described that define a unique subset of bladder tumors. Here, a selective HSP90 inhibitor, ganetespib, induced loss of FGFR3-TACC3 fusion protein expression and depletion of multiple oncogenic signaling proteins in RT112 bladder cells, resulting in potent cytotoxicity comparable with the pan-FGFR tyrosine kinase inhibitor BGJ398. However, in contrast to BGJ398, ganetespib exerted pleiotropic effects on additional mitogenic and survival pathways and could overcome the FGFR inhibitor-resistant phenotype of FGFR3 mutant-expressing 97-7 and MHG-U3 cells. Combinatorial benefit was observed when ganetespib was used with BGJ398 both in vitro and in vivo. Interestingly, two additional FGFR3 fusion-positive lines (RT4 and SW480) retained sensitivity to HSP90 inhibitor treatment by the ansamycins 17-AAG and 17-DMAG yet displayed intrinsic resistance to ganetespib or AUY922, both second-generation resorcinol-based compounds. Both cell lines, compared with RT112, expressed considerably higher levels of endogenous UGT1A enzyme; this phenotype resulted in a rapid glucuronidation-dependent metabolism and subsequent efflux of ganetespib from SW780 cells, thus providing a mechanism to account for the lack of bioactivity. Pharmacologic blockade of the molecular chaperone HSP90 represents a promising approach for treating bladder tumors driven by oncogenic gene rearrangements of FGFR3. Furthermore, UDP-glucuronosyltransferase enzyme expression may serve as a predictive factor for clinical response to resorcinol-based HSP90 inhibitors. ©2014 American Association for Cancer Research.

  16. Symmetry broken and rebroken during the ATP hydrolysis cycle of the mitochondrial Hsp90 TRAP1.

    Science.gov (United States)

    Elnatan, Daniel; Betegon, Miguel; Liu, Yanxin; Ramelot, Theresa; Kennedy, Michael A; Agard, David A

    2017-07-25

    Hsp90 is a homodimeric ATP-dependent molecular chaperone that remodels its substrate 'client' proteins, facilitating their folding and activating them for biological function. Despite decades of research, the mechanism connecting ATP hydrolysis and chaperone function remains elusive. Particularly puzzling has been the apparent lack of cooperativity in hydrolysis of the ATP in each protomer. A crystal structure of the mitochondrial Hsp90, TRAP1, revealed that the catalytically active state is closed in a highly strained asymmetric conformation. This asymmetry, unobserved in other Hsp90 homologs, is due to buckling of one of the protomers and is most pronounced at the broadly conserved client-binding region. Here, we show that rather than being cooperative or independent, ATP hydrolysis on the two protomers is sequential and deterministic. Moreover, dimer asymmetry sets up differential hydrolysis rates for each protomer, such that the buckled conformation favors ATP hydrolysis. Remarkably, after the first hydrolysis, the dimer undergoes a flip in the asymmetry while remaining in a closed state for the second hydrolysis. From these results, we propose a model where direct coupling of ATP hydrolysis and conformational flipping rearranges client-binding sites, providing a paradigm of how energy from ATP hydrolysis can be used for client remodeling.

  17. Differential Proteomics Identification of HSP90 as Potential Serum Biomarker in Hepatocellular Carcinoma by Two-dimensional Electrophoresis and Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Yiyi Sun

    2010-03-01

    Full Text Available The aim of the current study is to identify the potential biomarkers involved in Hepatocellular carcinoma (HCC carcinogenesis. A comparative proteomics approach was utilized to identify the differentially expressed proteins in the serum of 10 HCC patients and 10 controls. A total of 12 significantly altered proteins were identified by mass spectrometry. Of the 12 proteins identified, HSP90 was one of the most significantly altered proteins and its over-expression in the serum of 20 HCC patients was confirmed using ELISA analysis. The observations suggest that HSP90 might be a potential biomarker for early diagnosis, prognosis, and monitoring in the therapy of HCC. This work demonstrates that a comprehensive strategy of proteomic identification combined with further validation should be adopted in the field of cancer biomarker discovery.

  18. Differential Proteomics Identification of HSP90 as Potential Serum Biomarker in Hepatocellular Carcinoma by Two-dimensional Electrophoresis and Mass Spectrometry

    OpenAIRE

    Sun, Yiyi; Zang, Zhihe; Xu, Xiaohong; Zhang, Zhonglin; Zhong, Ling; Zan, Wang; Zhao, Yan; Sun, Lin

    2010-01-01

    The aim of the current study is to identify the potential biomarkers involved in Hepatocellular carcinoma (HCC) carcinogenesis. A comparative proteomics approach was utilized to identify the differentially expressed proteins in the serum of 10 HCC patients and 10 controls. A total of 12 significantly altered proteins were identified by mass spectrometry. Of the 12 proteins identified, HSP90 was one of the most significantly altered proteins and its over-expression in the serum of 20 HCC patie...

  19. Involvement of Yeast HSP90 Isoforms in Response to Stress and Cell Death Induced by Acetic Acid

    Science.gov (United States)

    Silva, Alexandra; Sampaio-Marques, Belém; Fernandes, Ângela; Carreto, Laura; Rodrigues, Fernando; Holcik, Martin; Santos, Manuel A. S.; Ludovico, Paula

    2013-01-01

    Acetic acid-induced apoptosis in yeast is accompanied by an impairment of the general protein synthesis machinery, yet paradoxically also by the up-regulation of the two isoforms of the heat shock protein 90 (HSP90) chaperone family, Hsc82p and Hsp82p. Herein, we show that impairment of cap-dependent translation initiation induced by acetic acid is caused by the phosphorylation and inactivation of eIF2α by Gcn2p kinase. A microarray analysis of polysome-associated mRNAs engaged in translation in acetic acid challenged cells further revealed that HSP90 mRNAs are over-represented in this polysome fraction suggesting preferential translation of HSP90 upon acetic acid treatment. The relevance of HSP90 isoform translation during programmed cell death (PCD) was unveiled using genetic and pharmacological abrogation of HSP90, which suggests opposing roles for HSP90 isoforms in cell survival and death. Hsc82p appears to promote survival and its deletion leads to necrotic cell death, while Hsp82p is a pro-death molecule involved in acetic acid-induced apoptosis. Therefore, HSP90 isoforms have distinct roles in the control of cell fate during PCD and their selective translation regulates cellular response to acetic acid stress. PMID:23967187

  20. Isoform-Specific Phosphorylation in Human Hsp90β Affects Interaction with Clients and the Cochaperone Cdc37.

    Science.gov (United States)

    Nguyen, Minh T N; Knieß, Robert A; Daturpalli, Soumya; Le Breton, Laura; Ke, Xiangyu; Chen, Xuemei; Mayer, Matthias P

    2017-03-10

    The 90-kDa heat shock proteins (Hsp90s) assist the maturation of many key regulators of signal transduction pathways and cellular control circuits like protein kinases and transcription factors and chaperone their stability and activity. In this function, Hsp90s cooperate with some 30 cochaperones and they are themselves subject to regulation by numerous post-translational modifications. In vertebrates, two major isoforms exist in the cytosol, Hsp90α and Hsp90β, which share a high degree of sequence identity and are expressed in tissue- and environmental condition-dependent manner. We identified an isoform-specific phosphorylation site in human Hsp90β. This phosphorylation site seems to be linked to vertebrate evolution since it is not found in invertebrata but in all tetrapoda and many but not all fish species. We provide data suggesting that this phosphorylation is important for the activation of Hsp90 clients like glucocorticoid receptor and a protein kinase. Replacement of the phosphorylation site by glutamate affects the conformational dynamics of Hsp90 and interaction with the kinase-specific cochaperone Cdc37. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Sequence features and phylogenetic analysis of the stress protein Hsp90α in chinook salmon Oncorhynchus tshawytscha, a poikilothermic vertebrate

    Science.gov (United States)

    Palmisano, Aldo N.; Winton, James R.; Dickhoff, Walton W.

    1999-01-01

    We cloned and sequenced a chinook salmon Hsp90 cDNA; sequence analysis shows it to be Hsp90??. Phylogenetic analysis supports the hypothesis that ?? and ?? paralogs of Hsp90 arose as a result of a gene duplication event and that they diverged early in the evolution of vertebrates, before tetrapods separated from the teleost lineage. Among several differences distinguishing poikilothermic Hsp90?? sequences from their bird and mammal orthologs, the teleost versions specifically lack a characteristic QTQDQP phosphorylation site near the N-terminus. We used the cDNA to develop an RNA (Northern) blot to quantify cellular Hsp90 mRNA levels. Chinook salmon embryonic (CHSE-214) cells responded to heat shock with a rapid rise in Hsp90 mRNA through 4 h, followed by a gradual decline over the next 20 h. Hsp90 mRNA level may be useful as a stress indicator, especially in a laboratory setting or in response to acute heat stress.

  2. HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis.

    Science.gov (United States)

    Takahashi, Akira; Casais, Catarina; Ichimura, Kazuya; Shirasu, Ken

    2003-09-30

    RAR1 and its interacting partner SGT1 play a central role in plant disease resistance triggered by a number of resistance (R) proteins. We identified cytosolic heat shock protein 90 (HSP90), a molecular chaperone, as another RAR1 interacting protein by yeast two-hybrid screening. RAR1 interacts with the N-terminal half of HSP90 that contains the ATPase domain. HSP90 also specifically interacts with SGT1 that contains a tetratricopeptide repeat motif and a domain with similarity to the cochaperone p23. In Arabidopsis, the HSP90 inhibitor geldanamycin reduces the hypersensitive response and abolishes resistance triggered by the R protein RPS2 against Pseudomonas syringae pv. tomato DC3000 (avrRpt2). One of four Arabidopsis cytosolic HSP90 isoforms, AtHSP90.1 is required for full RPS2 resistance and is rapidly induced upon pathogen challenge. We propose that RAR1 and SGT1 function closely with HSP90 in chaperoning roles that are essential for disease resistance.

  3. Apigenin inhibits proliferation and induces apoptosis in human multiple myeloma cells through targeting the trinity of CK2, Cdc37 and Hsp90.

    Science.gov (United States)

    Zhao, Ming; Ma, Jian; Zhu, Hai-Yan; Zhang, Xu-Hui; Du, Zhi-Yan; Xu, Yuan-Ji; Yu, Xiao-Dan

    2011-08-29

    Multiple myeloma (MM) is a B-cell malignancy that is largely incurable and is characterized by the accumulation of malignant plasma cells in the bone marrow. Apigenin, a common flavonoid, has been reported to suppress proliferation in a wide variety of solid tumors and hematological cancers; however its mechanism is not well understood and its effect on MM cells has not been determined. In this study, we investigated the effects of apigenin on MM cell lines and on primary MM cells. Cell viability assays demonstrated that apigenin exhibited cytotoxicity against both MM cell lines and primary MM cells but not against normal peripheral blood mononuclear cells. Together, kinase assays, immunoprecipitation and western blot analysis showed that apigenin inhibited CK2 kinase activity, decreased phosphorylation of Cdc37, disassociated the Hsp90/Cdc37/client complex and induced the degradation of multiple kinase clients, including RIP1, Src, Raf-1, Cdk4 and AKT. By depleting these kinases, apigenin suppressed both constitutive and inducible activation of STAT3, ERK, AKT and NF-κB. The treatment also downregulated the expression of the antiapoptotic proteins Mcl-1, Bcl-2, Bcl-xL, XIAP and Survivin, which ultimately induced apoptosis in MM cells. In addition, apigenin had a greater effects in depleting Hsp90 clients when used in combination with the Hsp90 inhibitor geldanamycin and the histone deacetylase inhibitor vorinostat. Our results suggest that the primary mechanisms by which apigenin kill MM cells is by targeting the trinity of CK2-Cdc37-Hsp90, and this observation reveals the therapeutic potential of apigenin in treating multiple myeloma.

  4. 17-Allylamino-17-demethoxygeldanamycin induces downregulation of critical Hsp90 protein clients and results in cell cycle arrest and apoptosis of human urinary bladder cancer cells

    Directory of Open Access Journals (Sweden)

    Karkoulis Panagiotis K

    2010-09-01

    Full Text Available Abstract Background 17-Allylamino-17-demethoxygeldanamycin (17-AAG, a benzoquinone ansamycin antibiotic, specifically targets heat shock protein 90 (Hsp90 and interferes with its function as a molecular chaperone that maintains the structural and functional integrity of various protein clients involved in cellular signaling. In this study, we have investigated the effect of 17-AAG on the regulation of Hsp90-dependent signaling pathways directly implicated in cell cycle progression, survival and motility of human urinary bladder cancer cell lines. Methods We have used MTT-based assays, FACS analysis, Western blotting, semi-quantitative RT-PCR, immunocytochemistry and scratch-wound assay in RT4, RT112 and T24 human urinary bladder cancer cell lines. Results We have demonstrated that, upon 17-AAG treatment, bladder cancer cells are arrested in the G1 phase of the cell cycle and eventually undergo apoptotic cell death in a dose-dependent manner. Furthermore, 17-AAG administration was shown to induce a pronounced downregulation of multiple Hsp90 protein clients and other downstream effectors, such as IGF-IR, Akt, IKK-α, IKK-β, FOXO1, ERK1/2 and c-Met, resulting in sequestration-mediated inactivation of NF-κB, reduced cell proliferation and decline of cell motility. Conclusions In total, we have clearly evinced a dose-dependent and cell type-specific effect of 17-AAG on cell cycle progression, survival and motility of human bladder cancer cells, due to downregulation of multiple Hsp90 clients and subsequent disruption of signaling integrity.

  5. GRP94: An HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum

    DEFF Research Database (Denmark)

    Marzec, Michal; Eletto, Davide; Argon, Yair

    2012-01-01

    Glucose-regulated protein 94 is the HSP90-like protein in the lumen of the endoplasmic reticulum and therefore it chaperones secreted and membrane proteins. It has essential functions in development and physiology of multicellular organisms, at least in part because of this unique clientele. GRP94...... shares many biochemical features with other HSP90 proteins, in particular its domain structure and ATPase activity, but also displays distinct activities, such as calcium binding, necessitated by the conditions in the endoplasmic reticulum. GRP94's mode of action varies from the general HSP90 theme...

  6. An AlphaScreen™ Based High-throughput Screen to Identify Inhibitors of Hsp90 and Cochaperone Interaction

    OpenAIRE

    Yi, Fang; Zhu, Pingjun; Southall, Noel; Inglese, James; Austin, Christopher P.; Zheng, Wei; Regan, Lynne

    2009-01-01

    Hsp90 has emerged as an important anti-cancer drug target because of its essential role in promoting the folding and maturation of many oncogenic proteins. Here we describe the development of the first high throughput screen, based on AlphaScreen™ technology, to identify a novel type of Hsp90 inhibitors that interrupt its interaction with the cochaperone HOP. The assay uses the 20-mer C-terminal peptide of Hsp90 and the TPR2A domain of HOP. Assay specificity was demonstrated by measuring diff...

  7. HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis

    OpenAIRE

    Takahashi, Akira; Casais, Catarina; Ichimura, Kazuya; Shirasu, Ken

    2003-01-01

    RAR1 and its interacting partner SGT1 play a central role in plant disease resistance triggered by a number of resistance (R) proteins. We identified cytosolic heat shock protein 90 (HSP90), a molecular chaperone, as another RAR1 interacting protein by yeast two-hybrid screening. RAR1 interacts with the N-terminal half of HSP90 that contains the ATPase domain. HSP90 also specifically interacts with SGT1 that contains a tetratricopeptide repeat motif and a domain with similarity to the cochape...

  8. Molecular Chaperone Hsp90 Associates with Resistance Protein N and Its Signaling Proteins SGT1 and Rar1 to Modulate an Innate Immune Response in Plants

    National Research Council Canada - National Science Library

    Yule Liu; Tessa Burch-Smith; Michael Schiff; Suhua Feng; Savithramma P. Dinesh-Kumar

    2004-01-01

    .... Here we report that SGT1 and Rar1 associate with the molecular chaperone Hsp90. In addition, we show that Hsp90 associates with the resistance protein N that confers resistance to tobacco mosaic virus...

  9. Potential diagnostic significance of HSP90, ACS/TMS1, and L-plastin in the identification of melanoma.

    Science.gov (United States)

    Strickler, Allen G; Vasquez, Juan G; Yates, Nathan; Ho, Jonhan

    2014-12-01

    Melanoma is one of the deadliest cancers, yet it remains a diagnostic and prognostic challenge. The lack of effective treatment modalities compounds this challenge. Characterizing the molecular mechanisms leading to the development of melanoma is the first step to understanding the pathophysiology of melanoma. Numerous molecular studies have helped us understand critical changes that occur in the transition from a benign nevus to melanoma. However, many of these processes remain undiscovered. The goal of the current project was to characterize the proteomes of benign nevi and malignant melanomas using proteomic methods, with confirmation by immunohistochemical analysis. Using tandem mass spectrometry, we identified proteins potentially involved in melanoma pathogenesis. Several of the identified proteins have known roles in oncogenesis, melanogenesis, or both. We selected Hsp90-β, apoptosis-associated speck-like protein containing a CARD (ASC/TMS1), and L-plastin from these to analyze nevi and melanoma samples by immunohistochemical analysis. Hsp90-β and ASC/TMS1 staining was higher in melanoma when compared with nevi, whereas L-plastin protein expression was not significantly different between cells of these tumor types; however, it was expressed in the inflammatory milieu of melanoma. ACS/TMS1 showed staining in normal and junctional melanocytes, as well as in superficial nevomelanocytes, but deeper dermal nevomelanocytes gradually lost expression. This study helps validate the use of proteomics to aid in characterizing protein differences between nevi and melanomas and also underscores the importance of correlating proteomic results with histomorphology to understand the context of the information. The proteins in the current study may hold potential in differentiating between melanoma and benign nevi in diagnostically challenging cases.

  10. Involvement of YAP, TAZ and HSP90 in contact guidance and intercellular junction formation in corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Vijay Krishna Raghunathan

    Full Text Available The extracellular environment possesses a rich milieu of biophysical and biochemical signaling cues that are simultaneously integrated by cells and influence cellular phenotype. Yes-associated protein (YAP and transcriptional co-activator with PDZ-binding motif (WWTR1; TAZ, two important signaling molecules of the Hippo pathway, have been recently implicated as nuclear relays of cytoskeletal changes mediated by substratum rigidity and topography. These proteins intersect with other important intracellular signaling pathways (e.g. Wnt and TGFβ. In the cornea, epithelial cells adhere to the stroma through a 3-dimensional topography-rich basement membrane, with features in the nano-submicron size-scale that are capable of profoundly modulating a wide range of fundamental cell behaviors. The influences of substratum-topography, YAP/TAZ knockdown, and HSP90 inhibition on cell morphology, YAP/TAZ localization, and the expression of TGFβ2 and CTGF, were investigated. The results demonstrate (a that knockdown of TAZ enhances contact guidance in a YAP dependent manner, (b that CTGF is predominantly regulated by YAP and not TAZ, and (c that TGFβ2 is regulated by both YAP and TAZ in these cells. Additionally, inhibition of HSP90 resulted in nuclear localization and subsequent transcriptional-activation of YAP, formation of cell-cell junctions and co-localization of E-cadherin and β-catenin at adherens junctions. Results presented in this study reflect the complexities underlying the molecular relationships between the cytoskeleton, growth factors, heat shock proteins, and co-activators of transcription that impact mechanotransduction. The data reveal the importance of YAP/TAZ on the cell behaviors, and gene and protein expression.

  11. An interaction network predicted from public data as a discovery tool: application to the Hsp90 molecular chaperone machine.

    Directory of Open Access Journals (Sweden)

    Pablo C Echeverría

    Full Text Available Understanding the functions of proteins requires information about their protein-protein interactions (PPI. The collective effort of the scientific community generates far more data on any given protein than individual experimental approaches. The latter are often too limited to reveal an interactome comprehensively. We developed a workflow for parallel mining of all major PPI databases, containing data from several model organisms, and to integrate data from the literature for a protein of interest. We applied this novel approach to build the PPI network of the human Hsp90 molecular chaperone machine (Hsp90Int for which previous efforts have yielded limited and poorly overlapping sets of interactors. We demonstrate the power of the Hsp90Int database as a discovery tool by validating the prediction that the Hsp90 co-chaperone Aha1 is involved in nucleocytoplasmic transport. Thus, we both describe how to build a custom database and introduce a powerful new resource for the scientific community.

  12. Expression patterns and structural modelling of Hsp70 and Hsp90 in a fish-borne zoonotic nematode Anisakis pegreffii

    National Research Council Canada - National Science Library

    Chen, Hui-Yu; Cheng, Yi-Sheng; Shih, Hsiu-Hui

    2015-01-01

    .... Here, we aimed to elucidate the possible roles of Hsp70 and Hsp90 in the life cycle of the parasitic nematode Anisakis, particularly third- and fourth-stage larvae, from cold-blooded fish to warm...

  13. Antibiotic Radicicol Binds to the N-Terminal Domain of Hsp90 and Shares Important Biologic Activities with Geldanamycin

    National Research Council Canada - National Science Library

    Theodor W. Schulte; Shiro Akinaga; Shiro Soga; William Sullivan; Bridget Stensgard; David Toft; Leonard M. Neckers

    1998-01-01

    The molecular chaperone Hsp90 plays an essential role in the folding and function of important cellular proteins including steroid hormone receptors, protein kinases and proteins controlling the cell cycle and apoptosis. A 15 Å...

  14. A Novel Therapeutic Strategy for the Treatment of Glioma, Combining Chemical and Molecular Targeting of Hsp90α

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Adi; Shervington, Leroy; Munje, Chinmay; Shervington, Amal, E-mail: aashervington@googlemail.com [Brain Tumour North West, Faculty of Science and Technology, University of Central Lancashire, Preston, PR1 2HE (United Kingdom)

    2011-12-08

    Hsp90α's vital role in tumour survival and progression, together with its highly inducible expression profile in gliomas and its absence in normal tissue and cell lines validates it as a therapeutic target for glioma. Hsp90α was downregulated using the post-transcriptional RNAi strategy (sihsp90α) and a post-translational inhibitor, the benzoquinone antibiotic 17-AAG. Glioblastoma U87-MG and normal human astrocyte SVGp12 were treated with sihsp90α, 17-AAG and concurrent sihsp90α/17-AAG (combined treatment). Both Hsp90α gene silencing and the protein inhibitor approaches resulted in a dramatic reduction in cell viability. Results showed that sihsp90α, 17-AAG and a combination of sihsp90α/17-AAG, reduced cell viability by 27%, 75% and 88% (p < 0.001), respectively, after 72 h. hsp90α mRNA copy numbers were downregulated by 65%, 90% and 99% after 72 h treatment with sihsp90α, 17-AAG and sihsp90α/17-AAG, respectively. The relationship between Hsp90α protein expression and its client Akt kinase activity levels were monitored following treatment with sihsp90α, 17-AAG and sihsp90α/17-AAG. Akt kinase activity was downregulated as a direct consequence of Hsp90α inhibition. Both Hsp90α and Akt kinase levels were significantly downregulated after 72 h. Although, 17-AAG when used as a single agent reduces the Hsp90α protein and the Akt kinase levels, the efficacy demonstrated by combinatorial treatment was found to be far more effective. Combination treatment reduced the Hsp90α protein and Akt kinase levels to 4.3% and 43%, respectively, after 72 h. hsp90α mRNA expression detected in SVGp12 was negligible compared to U87-MG, also, the combination treatment did not compromise the normal cell viability. Taking into account the role of Hsp90α in tumour progression and the involvement of Akt kinase in cell signalling and the anti-apoptotic pathways in tumours, this double targets treatment infers a novel therapeutic strategy.

  15. Expression patterns and structural modelling of Hsp70 and Hsp90 in a fish-borne zoonotic nematode Anisakis pegreffii.

    Science.gov (United States)

    Chen, Hui-Yu; Cheng, Yi-Sheng; Shih, Hsiu-Hui

    2015-09-15

    Heat shock proteins (HSPs) are essential molecular chaperones that are highly conserved across organisms. They have a pivotal function in responding to thermal stress and are responsible for many cellular functions. Here, we aimed to elucidate the possible roles of Hsp70 and Hsp90 in the life cycle of the parasitic nematode Anisakis, particularly third- and fourth-stage larvae, from cold-blooded fish to warm-blooded marine mammals or accidentally to human hosts. We examined the expression profiles of Hsp70 and Hsp90 in different developmental stages of Anisakis pegreffii. The open reading frame of Hsp70 of A. pegreffii was 1950 bp, and deduced amino acid sequence showed high homology with those of other nematodes. Heatmap analysis revealed sequence identity of Hsp70 and Hsp90 in 13 important parasitic species, human and yeast. On heatmap and phylogenetic analysis, ApHsp70 and ApHsp90 shared the highest amino acid sequence identity with other nematodes and formed a monophyletic clade. The three-dimensional (3D) structure prediction of the newly characterized ApHsp70 and known ApHsp90 gene showed highly conserved motifs between A. pegreffii and other species. Quantitative real-time PCR and western blot analysis revealed higher mRNA and protein expression for ApHsp70 and ApHsp90 in fourth- than third-stage larvae, with higher mRNA and protein expression for ApHsp70 than ApHsp90. ApHsp70 and ApHsp90 may play important roles in Anisakis in response to thermal stress and might be important molecules in the development of A. pegreffii, which has implications for its control. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Down-regulation of ERK1/2 and AKT-mediated X-ray repair cross-complement group 1 protein (XRCC1) expression by Hsp90 inhibition enhances the gefitinib-induced cytotoxicity in human lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Chun-Liang [Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan (China); Jian, Yi-Jun [Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan (China); Department of Biochemical Science and Technology, National Chiayi University, 300 Syuefu Road, Chiayi 600, Taiwan (China); Syu, Jhan-Jhang; Wang, Tai-Jing; Chang, Po-Yuan; Chen, Chien-Yu; Jian, Yun-Ting [Department of Biochemical Science and Technology, National Chiayi University, 300 Syuefu Road, Chiayi 600, Taiwan (China); Lin, Yun-Wei, E-mail: linyw@mail.ncyu.edu.tw [Department of Biochemical Science and Technology, National Chiayi University, 300 Syuefu Road, Chiayi 600, Taiwan (China)

    2015-05-15

    Gefitinib (Iressa{sup R}, ZD1839) is a selective epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) that blocks growth factor-mediated cell proliferation and extracellular signal-regulated kinases 1/2 (ERK1/2) and AKT signaling activation. It has been shown that inhibition of Hsp90 function can enhance antitumor activity of EGFR-TKI. XRCC1 is an important scaffold protein in base excision repair, which could be regulated by ERK1/2 and AKT pathways. However, the role of ERK1/2 and AKT-mediated XRCC1 expression in gefitinib alone or combination with an Hsp90 inhibitor-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. In this study, gefitinib treatment decreased XRCC1 mRNA and protein expression through ERK1/2 and AKT inactivation in two NSCLC cells, A549 and H1975. Knocking down XRCC1 expression by transfection with small interfering RNA of XRCC1 enhanced the cytotoxicity and cell growth inhibition of gefitinib. Combining treatment of gefitinib with an Hsp90 inhibitor resulted in enhancing the reduction of XRCC1 protein and mRNA levels in gefitinib-exposed A549 and H1975 cells. Compared to a single agent alone, gefitinib combined with an Hsp90 inhibitor resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells. Furthermore, transfection with constitutive active MKK1 or AKT vectors rescued the XRCC1 protein level as well as the cell survival suppressed by an Hsp90 inhibitor and gefitinib. These findings suggested that down-regulation of XRCC1 can enhance the sensitivity of gefitinib for NSCLC cells. - Highlights: • Gefitinib treatment decreased XRCC1 mRNA and protein expression in NSCLC cells. • Knocking down XRCC1 expression enhanced the cytotoxic effect of gefitinib. • Gefitinib combined with an Hsp90 inhibitor resulted in synergistically cytotoxicity.

  17. Molecular imaging of EGFR and CD44v6 for prediction and response monitoring of HSP90 inhibition in an in vivo squamous cell carcinoma model

    Energy Technology Data Exchange (ETDEWEB)

    Spiegelberg, Diana; Mortensen, Anja C.; Stenerloew, Bo [Uppsala University, Department of Immunology, Genetics and Pathology, Uppsala (Sweden); Selvaraju, Ram K.; Eriksson, Olof [Uppsala University, Preclinical PET Platform, Uppsala (Sweden); Nestor, Marika [Uppsala University, Department of Immunology, Genetics and Pathology, Uppsala (Sweden); Uppsala University, Unit of Otolaryngology and Head and Neck Surgery, Department of Surgical Sciences, Uppsala (Sweden)

    2016-05-15

    Heat shock protein 90 (HSP90) is essential for the activation and stabilization of numerous oncogenic client proteins. AT13387 is a novel HSP90 inhibitor promoting degradation of oncogenic proteins upon binding, and may also act as a radiosensitizer. For optimal treatment there is, however, the need for identification of biomarkers for patient stratification and therapeutic response monitoring, and to find suitable targets for combination treatments. The aim of this study was to assess the response of surface antigens commonly expressed in squamous cell carcinoma to AT13387 treatment, and to find suitable biomarkers for molecular imaging and radioimmunotherapy in combination with HSP90 inhibition. Cancer cell proliferation and radioimmunoassays were used to evaluate the effect of AT13387 on target antigen expression in vitro. Inhibitor effects were then assessed in vivo in mice-xenografts. Animals were treated with AT13387 (5 x 50 mg/kg), and were imaged with PET using either {sup 18}F-FDG or {sup 124}I-labelled tracers for EGFR and CD44v6, and this was followed by ex-vivo biodistribution analysis and immunohistochemical staining. AT13387 exposure resulted in high cytotoxicity and possible radiosensitization with IC{sub 50} values below 4 nM. Both in vitro and in vivo AT13387 effectively downregulated HSP90 client proteins. PET imaging with {sup 124}I-cetuximab showed a significant decrease of EGFR in AT13387-treated animals compared with untreated animals. In contrast, the squamous cell carcinoma-associated biomarker CD44v6, visualized with {sup 124}I-AbD19384 as well as {sup 18}F-FDG uptake, were not significantly altered by AT13387 treatment. We conclude that AT13387 downregulates HSP90 client proteins, and that molecular imaging of these proteins may be a suitable approach for assessing treatment response. Furthermore, radioimmunotherapy targeting CD44v6 in combination with AT13387 may potentiate the radioimmunotherapy outcome due to radiosensitizing effects of

  18. Sulforaphane Potentiates the Efficacy of 17-Allylamino 17-Demethoxygeldanamycin Against Pancreatic Cancer Through Enhanced Abrogation of Hsp90 Chaperone Function

    Science.gov (United States)

    Li, Yanyan; Zhang, Tao; Schwartz, Steven J.; Sun, Duxin

    2013-01-01

    Heat shock protein 90 (Hsp90), an essential molecular chaperone that regulates the stability of a wide range of oncogenic proteins, is a promising target for cancer therapeutics. We investigated the combination efficacy and potential mechanisms of sulforaphane, a dietary component from broccoli and broccoli sprouts, and 17-allylamino 17-demethoxygeldanamycin (17-AAG), an Hsp90 inhibitor, in pancreatic cancer. MTS assay demonstrated that sulforaphane sensitized pancreatic cancer cells to 17-AAG in vitro. Caspase-3 was activated to 6.4-fold in response to simultaneous treatment with sulforaphane and 17-AAG, whereas 17-AAG alone induced caspase-3 activity to 2-fold compared to control. ATP binding assay and coimmunoprecipitation revealed that sulforaphane disrupted Hsp90-p50Cdc37 interaction, whereas 17-AAG inhibited ATP binding to Hsp90. Concomitant use of sulforaphane and 17-AAG synergistically downregulated Hsp90 client proteins in Mia Paca-2 cells. Co-administration of sulforaphane and 17-AAG in pancreatic cancer xenograft model led to more than 70% inhibition of the tumor growth, whereas 17-AAG alone only suppressed the tumor growth by 50%. Our data suggest that sulforaphane potentiates the efficacy of 17-AAG against pancreatic cancer through enhanced abrogation of Hsp90 function. These findings provide a rationale for further evaluation of broccoli/broccoli sprout preparations combined with 17-AAG for better efficacy and lower dose-limiting toxicity in pancreatic cancer. PMID:21875325

  19. An AlphaScreen-based high-throughput screen to identify inhibitors of Hsp90-cochaperone interaction.

    Science.gov (United States)

    Yi, Fang; Zhu, Pingjun; Southall, Noel; Inglese, James; Austin, Christopher P; Zheng, Wei; Regan, Lynne

    2009-03-01

    Hsp90 has emerged as an important anticancer drug target because of its essential role in promoting the folding and maturation of many oncogenic proteins. The authors describe the development of the first high-throughput screen, based on AlphaScreen technology, to identify a novel type of Hsp90 inhibitors that interrupt its interaction with the cochaperone HOP. The assay used the 20-mer C-terminal peptide of Hsp90 and the TPR2A domain of HOP. Assay specificity was demonstrated by measuring different interactions using synthetic peptides, with measured IC50s in good agreement with reported values. The assay was stable over 12 h and tolerated DMSO up to 5%. The authors first validated the assay by screening against 20,000 compounds in a 384-well format. After further optimization into a 1536-well format, it was screened against an NIH Chemical Genomics Center library of 76,134 compounds, with a signal-to-background ratio of 78 and Z' factor of 0.77. The present assay can be used for discovery of novel small-molecule Hsp90 inhibitors that can be used as chemical probes to investigate the role of cochaperones in Hsp90 function. Such molecules have the potential to be developed into novel anticancer drugs, for use alone or in combination with other Hsp90 inhibitors.

  20. The MI-1-mediated pest resistance requires Hsp90 and Sgt1.

    Science.gov (United States)

    Bhattarai, Kishor K; Li, Qi; Liu, Yule; Dinesh-Kumar, Savithramma P; Kaloshian, Isgouhi

    2007-05-01

    The tomato (Solanum lycopersicum) Mi-1 gene encodes a protein with putative coiled-coil nucleotide-binding site and leucine-rich repeat motifs. Mi-1 confers resistance to root-knot nematodes (Meloidogyne spp.), potato aphids (Macrosiphum euphorbiae), and sweet potato whitefly (Bemisia tabaci). To identify genes required in the Mi-1-mediated resistance to nematodes and aphids, we used tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) to repress candidate genes and assay for nematode and aphid resistance. We targeted Sgt1 (suppressor of G-two allele of Skp1), Rar1 (required for Mla12 resistance), and Hsp90 (heat shock protein 90), which are known to participate early in resistance gene signaling pathways. Two Arabidopsis (Arabidopsis thaliana) Sgt1 genes exist and one has been implicated in disease resistance. Thus far the sequence of only one Sgt1 ortholog is known in tomato. To design gene-specific VIGS constructs, we cloned a second tomato Sgt1 gene, Sgt1-2. The gene-specific VIGS construct TRV-SlSgt1-1 resulted in lethality, while silencing Sgt1-2 using TRV-SlSgt1-2 did not result in lethal phenotype. Aphid and root-knot nematode assays of Sgt1-2-silenced plants indicated no role for Sgt1-2 in Mi-1-mediated resistance. A Nicotiana benthamiana Sgt1 VIGS construct silencing both Sgt1-1 and Sgt1-2 yielded live plants and identified a role for Sgt1 in Mi-1-mediated aphid resistance. Silencing of Rar1 did not affect Mi-1-mediated nematode and aphid resistance and demonstrated that Rar1 is not required for Mi-1 resistance. Silencing Hsp90-1 resulted in attenuation of Mi-1-mediated aphid and nematode resistance and indicated a role for Hsp90-1. The requirement for Sgt1 and Hsp90-1 in Mi-1-mediated resistance provides further evidence for common components in early resistance gene defense signaling against diverse pathogens and pests.

  1. Analysis of HSP90-related folds with MED-SuMo classification approach.

    Science.gov (United States)

    Doppelt-Azeroual, Olivia; Moriaud, Fabrice; Delfaud, François; de Brevern, Alexandre G

    2009-09-21

    Three-dimensional structural information is critical for understanding functional protein properties and the precise mechanisms of protein functions implicated in physiological and pathological processes. Comparison and detection of protein binding sites are key steps for annotating structures with functional predictions and are extremely valuable steps in a drug design process. In this research area, MED-SuMo is a powerful technology to detect and characterize similar local regions on protein surfaces. Each amino acid residue's potential chemical interactions are represented by specific surface chemical features (SCFs). The MED-SuMo heuristic is based on the representation of binding sites by a graph structure suitable for exploration by an efficient comparison algorithm. We use this approach to analyze one particular SCOP superfamily which includes HSP90 chaperone, MutL/DNA topoisomerase, histidine kinases, and alpha-ketoacid dehydrogenase kinase C (BCK). They share a common fold and a common region for ATP-binding. To analyze both similar and differing features of this fold, we use a novel classification method, the MED-SuMo multi approach (MED-SMA). We highlight common and distinct features of these proteins. The different clusters created by MED-SMA yield interesting observations. For instance, one cluster gathers three types of proteins (HSP90, topoisomerase VI, and BCK) which all bind the drug radicicol.

  2. LPS-induced delayed preconditioning is mediated by Hsp90 and involves the heat shock response in mouse kidney.

    Directory of Open Access Journals (Sweden)

    Tamás Kaucsár

    Full Text Available We and others demonstrated previously that preconditioning with endotoxin (LPS protected from a subsequent lethal LPS challenge or from renal ischemia-reperfusion injury (IRI. LPS is effective in evoking the heat shock response, an ancient and essential cellular defense mechanism, which plays a role in resistance to, and recovery from diseases. Here, by using the pharmacological Hsp90 inhibitor novobiocin (NB, we investigated the role of Hsp90 and the heat shock response in LPS-induced delayed renal preconditioning.Male C57BL/6 mice were treated with preconditioning (P: 2 mg/kg, i.p. and subsequent lethal (L: 10 mg/kg, i.p. doses of LPS alone or in combination with NB (100 mg/kg, i.p.. Controls received saline (C or NB.Preconditioning LPS conferred protection from a subsequent lethal LPS treatment. Importantly, the protective effect of LPS preconditioning was completely abolished by a concomitant treatment with NB. LPS induced a marked heat shock protein increase as demonstrated by Western blots of Hsp70 and Hsp90. NB alone also stimulated Hsp70 and Hsp90 mRNA but not protein expression. However, Hsp70 and Hsp90 protein induction in LPS-treated mice was abolished by a concomitant NB treatment, demonstrating a NB-induced impairment of the heat shock response to LPS preconditioning.LPS-induced heat shock protein induction and tolerance to a subsequent lethal LPS treatment was prevented by the Hsp90 inhibitor, novobiocin. Our findings demonstrate a critical role of Hsp90 in LPS signaling, and a potential involvement of the heat shock response in LPS-induced preconditioning.

  3. Inhibiting the HSP90 chaperone slows cyst growth in a mouse model of autosomal dominant polycystic kidney disease.

    Science.gov (United States)

    Seeger-Nukpezah, Tamina; Proia, David A; Egleston, Brian L; Nikonova, Anna S; Kent, Tatiana; Cai, Kathy Q; Hensley, Harvey H; Ying, Weiwen; Chimmanamada, Dinesh; Serebriiskii, Ilya G; Golemis, Erica A

    2013-07-30

    Autosomal dominant polycystic kidney disease (ADPKD) is a progressive genetic syndrome with an incidence of 1:500 in the population, arising from inherited mutations in the genes for polycystic kidney disease 1 (PKD1) or polycystic kidney disease 2 (PKD2). Typical onset is in middle age, with gradual replacement of renal tissue with thousands of fluid-filled cysts, resulting in end-stage renal disease requiring dialysis or kidney transplantation. There currently are no approved therapies to slow or cure ADPKD. Mutations in the PKD1 and PKD2 genes abnormally activate multiple signaling proteins and pathways regulating cell proliferation, many of which we observe, through network construction, to be regulated by heat shock protein 90 (HSP90). Inhibiting HSP90 with a small molecule, STA-2842, induces the degradation of many ADPKD-relevant HSP90 client proteins in Pkd1(-/-) primary kidney cells and in vivo. Using a conditional Cre-mediated mouse model to inactivate Pkd1 in vivo, we find that weekly administration of STA-2842 over 10 wk significantly reduces initial formation of renal cysts and kidney growth and slows the progression of these phenotypes in mice with preexisting cysts. These improved disease phenotypes are accompanied by improved indicators of kidney function and reduced expression and activity of HSP90 clients and their effectors, with the degree of inhibition correlating with cystic expansion in individual animals. Pharmacokinetic analysis indicates that HSP90 is overexpressed and HSP90 inhibitors are selectively retained in cystic versus normal kidney tissue, analogous to the situation observed in solid tumors. These results provide an initial justification for evaluating HSP90 inhibitors as therapeutic agents for ADPKD.

  4. Hectd1 regulates intracellular localization and secretion of Hsp90 to control cellular behavior of the cranial mesenchyme.

    Science.gov (United States)

    Sarkar, Anjali A; Zohn, Irene E

    2012-03-19

    Hectd1 mutant mouse embryos exhibit the neural tube defect exencephaly associated with abnormal cranial mesenchyme. Cellular rearrangements in cranial mesenchyme are essential during neurulation for elevation of the neural folds. Here we investigate the molecular basis of the abnormal behavior of Hectd1 mutant cranial mesenchyme. We demonstrate that Hectd1 is a functional ubiquitin ligase and that one of its substrates is Hsp90, a chaperone protein with both intra- and extracellular clients. Extracellular Hsp90 enhances migration of multiple cell types. In mutant cranial mesenchyme cells, both secretion of Hsp90 and emigration of cells from cranial mesenchyme explants were enhanced. Importantly, we show that this enhanced emigration was highly dependent on the excess Hsp90 secreted from mutant cells. Together, our data set forth a model whereby increased secretion of Hsp90 in the cranial mesenchyme of Hectd1 mutants is responsible, at least in part, for the altered organization and behavior of these cells and provides a potential molecular mechanism underlying the neural tube defect.

  5. Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes

    Energy Technology Data Exchange (ETDEWEB)

    Takai, Hiroyuki; Xie, Yihu; de Lange, Titia; Pavletich, Nikola P. (Rockefeller); (SKI)

    2010-09-20

    We reported previously that the stability of all mammalian phosphatidylinositol 3-kinase-related protein kinases (PIKKs) depends on their interaction with Tel2, the ortholog of yeast Tel2 and Caenorhabditis elegans Clk-2. Here we provide evidence that Tel2 acts with Hsp90 in the maturation of PIKK complexes. Quantitative immunoblotting showed that the abundance of Tel2 is low compared with the PIKKs, and Tel2 preferentially bound newly synthesized ATM, ATR, mTOR, and DNA-PKcs. Tel2 complexes contained, in addition to Tti1-Tti2, the Hsp90 chaperone, and inhibition of Hsp90 interfered with the interaction of Tel2 with the PIKKs. Analysis of in vivo labeled nascent protein complexes showed that Tel2 and Hsp90 mediate the formation of the mTOR TORC1 and TORC2 complexes and the association of ATR with ATRIP. The structure of yeast Tel2, reported here, shows that Tel2 consists of HEAT-like helical repeats that assemble into two separate {alpha}-solenoids. Through mutagenesis, we identify a surface patch of conserved residues involved in binding to the Tti1-Tti2 complex in vitro. In vivo, mutation of this conserved patch affects cell growth, levels of PIKKs, and ATM/ATR-mediated checkpoint signaling, highlighting the importance of Tti1-Tti2 binding to the function of Tel2. Taken together, our data suggest that the Tel2-Tti1-Tti2 complex is a PIKK-specific cochaperone for Hsp90.

  6. Structural basis for assembly of Hsp90-Sgt1-CHORD protein complexes: implications for chaperoning of NLR innate immunity receptors.

    Science.gov (United States)

    Zhang, Minghao; Kadota, Yasuhiro; Prodromou, Chrisostomos; Shirasu, Ken; Pearl, Laurence H

    2010-07-30

    Hsp90-mediated function of NLR receptors in plant and animal innate immunity depends on the cochaperone Sgt1 and, at least in plants, on a cysteine- and histidine-rich domains (CHORD)-containing protein Rar1. Functionally, CHORD domains are associated with CS domains, either within the same protein, as in the mammalian melusin and Chp1, or in separate but interacting proteins, as in the plant Rar1 and Sgt1. Both CHORD and CS domains are independently capable of interacting with the molecular chaperone Hsp90 and can coexist in complexes with Hsp90. We have now determined the structure of an Hsp90-CS-CHORD ternary complex, providing a framework for understanding the dynamic nature of Hsp90-Rar1-Sgt1 complexes. Mutational and biochemical analyses define the architecture of the ternary complex that recruits nucleotide-binding leucine-rich repeat receptors (NLRs) by manipulating the structural elements to control the ATPase-dependent conformational cycle of the chaperone. Copyright 2010 Elsevier Inc. All rights reserved.

  7. HSP90 as a novel molecular target in non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Esfahani K

    2016-03-01

    Full Text Available Khashayar Esfahani, Victor Cohen Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, QC, Canada Abstract: Lung cancer remains the most lethal cancer, with over 160,000 annual deaths in the USA alone. Over the past decade, the discovery of driver mutations has changed the landscape for the treatment of non-small-cell lung cancer (NSCLC. Targeted therapies against epidermal growth factor receptor (EGFR or anaplastic lymphoma kinase (ALK have now been approved by the Food and Drug Administration as part of the standard first-line treatment of NSCLC. Despite good initial responses, most patients develop resistance within 8–12 months and have disease progression. Keywords: non-small-cell lung cancer, driver mutations, targeted therapy, heat shock protein 90 (HSP90

  8. The molecular chaperone Hsp90 is required for cell cycle exit in Drosophila melanogaster.

    Science.gov (United States)

    Bandura, Jennifer L; Jiang, Huaqi; Nickerson, Derek W; Edgar, Bruce A

    2013-01-01

    The coordination of cell proliferation and differentiation is crucial for proper development. In particular, robust mechanisms exist to ensure that cells permanently exit the cell cycle upon terminal differentiation, and these include restraining the activities of both the E2F/DP transcription factor and Cyclin/Cdk kinases. However, the full complement of mechanisms necessary to restrain E2F/DP and Cyclin/Cdk activities in differentiating cells are not known. Here, we have performed a genetic screen in Drosophila melanogaster, designed to identify genes required for cell cycle exit. This screen utilized a PCNA-miniwhite(+) reporter that is highly E2F-responsive and results in a darker red eye color when crossed into genetic backgrounds that delay cell cycle exit. Mutation of Hsp83, the Drosophila homolog of mammalian Hsp90, results in increased E2F-dependent transcription and ectopic cell proliferation in pupal tissues at a time when neighboring wild-type cells are postmitotic. Further, these Hsp83 mutant cells have increased Cyclin/Cdk activity and accumulate proteins normally targeted for proteolysis by the anaphase-promoting complex/cyclosome (APC/C), suggesting that APC/C function is inhibited. Indeed, reducing the gene dosage of an inhibitor of Cdh1/Fzr, an activating subunit of the APC/C that is required for timely cell cycle exit, can genetically suppress the Hsp83 cell cycle exit phenotype. Based on these data, we propose that Cdh1/Fzr is a client protein of Hsp83. Our results reveal that Hsp83 plays a heretofore unappreciated role in promoting APC/C function during cell cycle exit and suggest a mechanism by which Hsp90 inhibition could promote genomic instability and carcinogenesis.

  9. The molecular chaperone Hsp90 is required for cell cycle exit in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Jennifer L Bandura

    Full Text Available The coordination of cell proliferation and differentiation is crucial for proper development. In particular, robust mechanisms exist to ensure that cells permanently exit the cell cycle upon terminal differentiation, and these include restraining the activities of both the E2F/DP transcription factor and Cyclin/Cdk kinases. However, the full complement of mechanisms necessary to restrain E2F/DP and Cyclin/Cdk activities in differentiating cells are not known. Here, we have performed a genetic screen in Drosophila melanogaster, designed to identify genes required for cell cycle exit. This screen utilized a PCNA-miniwhite(+ reporter that is highly E2F-responsive and results in a darker red eye color when crossed into genetic backgrounds that delay cell cycle exit. Mutation of Hsp83, the Drosophila homolog of mammalian Hsp90, results in increased E2F-dependent transcription and ectopic cell proliferation in pupal tissues at a time when neighboring wild-type cells are postmitotic. Further, these Hsp83 mutant cells have increased Cyclin/Cdk activity and accumulate proteins normally targeted for proteolysis by the anaphase-promoting complex/cyclosome (APC/C, suggesting that APC/C function is inhibited. Indeed, reducing the gene dosage of an inhibitor of Cdh1/Fzr, an activating subunit of the APC/C that is required for timely cell cycle exit, can genetically suppress the Hsp83 cell cycle exit phenotype. Based on these data, we propose that Cdh1/Fzr is a client protein of Hsp83. Our results reveal that Hsp83 plays a heretofore unappreciated role in promoting APC/C function during cell cycle exit and suggest a mechanism by which Hsp90 inhibition could promote genomic instability and carcinogenesis.

  10. The differential regulation of human ACT1 isoforms by Hsp90 in IL-17 signaling1

    Science.gov (United States)

    Wu, Ling; Wang, Chenhui; Boisson, Bertrand; Misra, Saurav; Rayman, Patricia; Finke, James H.; Puel, Anne; Casanova, Jean-Laurent; Li, Xiaoxia

    2014-01-01

    IL-17 is a pro-inflammatory cytokine implicated in the pathogenesis of autoimmune diseases including psoriasis. ACT1 is an essential adaptor molecule in the IL-17 signaling pathway. A missense single nucleotide polymorphism (rs33980500; SNP-D10N) that resulted in the substitution of an asparagine for an aspartic acid at position 10 of ACT1 (ACT1-D10N) is associated with psoriasis susceptibility. Due to alternative splicing in humans, SNP-D10N encodes two mutated ACT1 proteins, ACT1-D10N and ACT1-D19N. Though both ACT1 isoforms are Hsp90 ‘client’ proteins, the nine additional amino acids in ACT1-D19N provide an additional Hsp90 binding site that is absent in ACT1-D10N. Therefore, while ACT1-D10N is a dead protein that is unable to transduce IL-17 signals for gene expression, ACT1-D19N is fully responsive to IL-17. Intriguingly, the two ACT1 isoforms are differentially expressed in ACT1D10N/D10N fibroblasts and T cells. Fibroblasts express both isoforms equally, enabling ACT1-D19N to compensate for the loss of ACT1-D10N function. ACT1D10N/D10N T cells, however, express predominantly ACT1-D10N. Lacking this compensatory mechanism, ACT1D10N/D10N T cells behave like ACT1-deficient T cells, exhibiting a dysregulated and hyperactive Th17 phenotype with overproduction of IL-22 and IL-17. The hyperactive Th17 response combined with fully responsive fibroblasts likely synergized to contribute to psoriasis susceptibility in SNP-D10N patients. PMID:25024377

  11. Establish an automated flow injection ESI-MS method for the screening of fragment based libraries: Application to Hsp90.

    Science.gov (United States)

    Riccardi Sirtori, Federico; Caronni, Dannica; Colombo, Maristella; Dalvit, Claudio; Paolucci, Mauro; Regazzoni, Luca; Visco, Carlo; Fogliatto, Gianpaolo

    2015-08-30

    ESI-MS is a well established technique for the study of biopolymers (nucleic acids, proteins) and their non covalent adducts, due to its capacity to detect ligand-target complexes in the gas phase and allows inference of ligand-target binding in solution. In this article we used this approach to investigate the interaction of ligands to the Heat Shock Protein 90 (Hsp90). This enzyme is a molecular chaperone involved in the folding and maturation of several proteins which has been subjected in the last years to intensive drug discovery efforts due to its key role in cancer. In particular, reference compounds, with a broad range of dissociation constants from 40pM to 100μM, were tested to assess the reliability of ESI-MS for the study of protein-ligand complexes. A good agreement was found between the values measured with a fluorescence polarization displacement assay and those determined by mass spectrometry. After this validation step we describe the setup of a medium throughput screening method, based on ESI-MS, suitable to explore interactions of therapeutic relevance biopolymers with chemical libraries. Our approach is based on an automated flow injection ESI-MS method (AFI-MS) and has been applied to screen the Nerviano Medical Sciences proprietary fragment library of about 2000 fragments against Hsp90. In order to discard false positive hits and to discriminate those of them interacting with the N-terminal ATP binding site, competition experiments were performed using a reference inhibitor. Gratifyingly, this group of hits matches with the ligands previously identified by NMR FAXS techniques and confirmed by X-ray co-crystallization experiments. These results support the use of AFI-MS for the screening of medium size libraries, including libraries of small molecules with low affinity typically used in fragment based drug discovery. AFI-MS is a valid alternative to other techniques with the additional opportunities to identify compounds interacting with

  12. Assessment and Reconstruction of Novel HSP90 Genes: Duplications, Gains and Losses in Fungal and Animal Lineages

    Science.gov (United States)

    Pantzartzi, Chrysoula N.; Drosopoulou, Elena; Scouras, Zacharias G.

    2013-01-01

    Hsp90s, members of the Heat Shock Protein class, protect the structure and function of proteins and play a significant task in cellular homeostasis and signal transduction. In order to determine the number of hsp90 gene copies and encoded proteins in fungal and animal lineages and through that key duplication events that this family has undergone, we collected and evaluated Hsp90 protein sequences and corresponding Expressed Sequence Tags and analyzed available genomes from various taxa. We provide evidence for duplication events affecting either single species or wider taxonomic groups. With regard to Fungi, duplicated genes have been detected in several lineages. In invertebrates, we demonstrate key duplication events in certain clades of Arthropoda and Mollusca, and a possible gene loss event in a hymenopteran family. Finally, we infer that the duplication event responsible for the two (a and b) isoforms in vertebrates occurred probably shortly after the split of Hyperoartia and Gnathostomata. PMID:24066039

  13. Interaction between Calpain-1 and HSP90: New Insights into the Regulation of Localization and Activity of the Protease

    Science.gov (United States)

    Averna, Monica; De Tullio, Roberta; Pedrazzi, Marco; Bavestrello, Margherita; Pellegrini, Matteo; Salamino, Franca; Pontremoli, Sandro; Melloni, Edon

    2015-01-01

    Here we demonstrate that heat shock protein 90 (HSP90) interacts with calpain-1, but not with calpain-2, and forms a discrete complex in which the protease maintains its catalytic activity, although with a lower affinity for Ca2+. Equilibrium gel distribution experiments show that this complex is composed by an equal number of molecules of each protein partner. Moreover, in resting cells, cytosolic calpain-1 is completely associated with HSP90. Since calpain-1, in association with HSP90, retains its proteolytic activity, and the chaperone is displaced by calpastatin also in the absence of Ca2+, the catalytic cleft of the protease is not involved in this association. Thus, calpain-1 can form two distinct complexes depending on the availability of calpastatin in the cytosol. The occurrence of a complex between HSP90 and calpain-1, in which the protease is still activable, can prevent the complete inhibition of the protease even in the presence of high calpastatin levels. We also demonstrate that in basal cell conditions HSP90 and calpain-1, but not calpain-2, are inserted in the multi-protein N-Methyl-D-Aspartate receptor (NMDAR) complex. The amount of calpain-1 at the NMDAR cluster is not modified in conditions of increased [Ca2+]i, and this resident protease is involved in the processing of NMDAR components. Finally, the amount of calpain-1 associated with NMDAR cluster is independent from Ca2+-mediated translocation. Our findings show that HSP90 plays an important role in maintaining a given and proper amount of calpain-1 at the functional sites. PMID:25575026

  14. A novel pulse-chase SILAC strategy measures changes in protein decay and synthesis rates induced by perturbation of proteostasis with an Hsp90 inhibitor.

    Directory of Open Access Journals (Sweden)

    Ivo Fierro-Monti

    Full Text Available Standard proteomics methods allow the relative quantitation of levels of thousands of proteins in two or more samples. While such methods are invaluable for defining the variations in protein concentrations which follow the perturbation of a biological system, they do not offer information on the mechanisms underlying such changes. Expanding on previous work [1], we developed a pulse-chase (pc variant of SILAC (stable isotope labeling by amino acids in cell culture. pcSILAC can quantitate in one experiment and for two conditions the relative levels of proteins newly synthesized in a given time as well as the relative levels of remaining preexisting proteins. We validated the method studying the drug-mediated inhibition of the Hsp90 molecular chaperone, which is known to lead to increased synthesis of stress response proteins as well as the increased decay of Hsp90 "clients". We showed that pcSILAC can give information on changes in global cellular proteostasis induced by treatment with the inhibitor, which are normally not captured by standard relative quantitation techniques. Furthermore, we have developed a mathematical model and computational framework that uses pcSILAC data to determine degradation constants kd and synthesis rates Vs for proteins in both control and drug-treated cells. The results show that Hsp90 inhibition induced a generalized slowdown of protein synthesis and an increase in protein decay. Treatment with the inhibitor also resulted in widespread protein-specific changes in relative synthesis rates, together with variations in protein decay rates. The latter were more restricted to individual proteins or protein families than the variations in synthesis. Our results establish pcSILAC as a viable workflow for the mechanistic dissection of changes in the proteome which follow perturbations. Data are available via ProteomeXchange with identifier PXD000538.

  15. Combining trail with PI3 kinase or HSP90 inhibitors enhances apoptosis in colorectal cancer cells via suppression of survival signaling.

    Science.gov (United States)

    Saturno, Grazia; Valenti, Melanie; De Haven Brandon, Alexis; Thomas, George V; Eccles, Suzanne; Clarke, Paul A; Workman, Paul

    2013-08-01

    TRAIL has been shown to induce apoptosis in cancer cells, but in some cases they fail to respond to this ligand. We explored the ability of representative phosphatidylinositol-3-kinase (PI3 Kinase)/mTOR and HSP90 inhibitors to overcome TRAIL resistance by increasing apoptosis in colorectal cancer models. We determined the sensitivity of 27 human colorectal cancer and 2 non-transformed colon epithelial cell lines to TRAIL treatment. A subset of the cancer cell lines with a range of responses to TRAIL was selected from the panel for treatment with TRAIL combined with the PI3 Kinase/mTOR inhibitor PI-103 or the HSP90 inhibitor 17-AAG (tanespimycin). Two TRAIL-resistant cell lines were selected for in vivo combination studies with TRAIL and 17-AAG. We found that 13 colorectal cancer cell lines and the 2 non-transformed colon epithelial cell lines were resistant to TRAIL. We demonstrated that co-treatment of TRAIL and PI-103 or 17-AAG was synergistic or additive and significantly enhanced apoptosis in colorectal cancer cells. This was associated with decreased expression or activity of survival protein biomarkers such as ERBB2, AKT, IKKα and XIAP. In contrast, the effect of the combination treatments in non-transformed colon cells was minimal. We show here for the first time that co-treatment in vivo with TRAIL and 17-AAG in two TRAIL-resistant human colorectal cancer xenograft models resulted in significantly greater tumor growth inhibition compared to single treatments. We propose that combining TRAIL with PI3 Kinase/mTOR or HSP90 inhibitors has therapeutic potential in the treatment of TRAIL-resistant colorectal cancers.

  16. Development of Tethered Hsp90 Inhibitors Carrying Radioiodinated Probes to Specifically Discriminate and Kill Malignant Breast Tumor Cells

    Science.gov (United States)

    2016-05-01

    specifically target a surface form of heat shock protein 90 (eHsp90)that is expressed on malignant cells and internalized. In this report we describe our...cancer deaths annually. Clinical data indicate a strong link between high expression/activation of Heat shock protein 90 (Hsp90) with poor prognosis in...MeOH/ NH3 in CH2Cl2) to give iodide 2 (203 mg, 57%) as a clear oil. LC/MS gives m/z = 820.4 [M+1]+. Bisalkylation product was also isolated (91 mg

  17. The flavonoid TL-2-8 induces cell death and immature mitophagy in breast cancer cells via abrogating the function of the AHA1/Hsp90 complex.

    Science.gov (United States)

    Liu, Hui-Juan; Jiang, Xiao-Xiao; Guo, Yi-Zhen; Sun, Fang-Hui; Kou, Xin-Hui; Bao, Yong; Zhang, Zhu-Qing; Lin, Zhao-Hu; Ding, Ting-Bo; Jiang, Lan; Lei, Xin-Sheng; Yang, Yong-Hua

    2017-10-01

    The flavonoid quercetin exhibits significant anticancer activities with few side effects. In the current study, we characterized TL-2-8, a quercetin derivative, as a novel anticancer agent in vitro and in vivo. Cell proliferation and viability were assessed using Cell Counting Kit-8 and CellTiter-Blue assay, respectively. Cell death was examined using PI staining or a TUNEL assay. Mitophagy was determined by measuring autophagic flux and by confocal imaging. Protein expression was examined by Western blotting. We found that TL-2-8 selectively inhibited the proliferation and decreased the viability of various cancer cells (the anti-proliferation IC50 values in MDA-MB-231, MDA-MB-468 and MCF-7 breast cancer cells at 72 h were 8.28, 8.56, and 9.58 μmol/L, respectively), and it displayed only slight cytotoxicity against normal MCF-10A and HEK-293 cells. In MDA-MB-231 and MDA-MB-468 breast cancer cells, TL-2-8 treatment induced the degradation of multiple Hsp90 client proteins without inducing Hsp70. TL-2-8 (3, 6, 12 μmol/L) dose-dependently inhibited the expression of AHA1, an activator of Hsp90 ATPase, and decreased Hsp90-AHA1 complex formation, leading to decreased Hsp90 chaperone function and reduced polo-like kinase 1 (PLK1) signaling. Consequently, impaired mitophagy was induced via the downregulation of lysosomal-associated membrane protein 2 (LAMP2). The in vivo anticancer effects of TL-2-8 were evaluated in an MDA-MB-231 breast cancer xenograft model, which was treated with TL-2-8 (25, 50, 100 mg·kg(-1)·d(-1), po). Administration of TL-2-8 resulted in tumor growth inhibition rates of 37.9%, 58.9% and 70.9%, respectively, whereas quercetin treatment (100 mg·kg(-1)·d(-1), po) produced only a lower tumor growth inhibition rate (49.5%). Furthermore, TL-2-8 treatment significantly extended the lifespan of mice bearing MDA-MB-231 breast cancer cell xenografts. Our results demonstrate that TL-2-8 induces significant cell death and immature mitophagy in breast

  18. Characterization of an Hsp90-independent interaction between the co-chaperone p23 and the transcription factor p53.

    Science.gov (United States)

    Wu, Huiwen; Hyun, Jashil; Martinez-Yamout, Maria A; Park, Sung Jean; Dyson, Jane

    2018-01-15

    The cancer-suppressing transcription factor p53 is regulated by a wide variety of cellular factors, including many chaperones. The DNA-binding domain (DBD) of p53 is known to interact with the chaperone Hsp90, but the role of other members of the chaperone network, including co-chaperones such as p23 is unknown. Using a combination of NMR titration, isothermal titration calorimetry, fluorescence anisotropy and native agarose gel electrophoresis, we have identified a direct interaction between the p53 DBD and the Hsp90 co-chaperone p23 that occurs in the absence of Hsp90. The affinity is relatively weak, and largely determined by electrostatic interactions between the acidic C-terminal disordered tail of p23 and the two DNA binding regions of p53 DBD. We show by NMR and native agarose gel electrophoresis that a p53-specific double-stranded DNA sequence competes successfully with p23 for binding to the p53 DBD. The Hsp90-independence of the interaction between p23 and p53 DBD, together with the p23-DNA competition for p53, raise the intriguing possibility that p23, like other small charged proteins, may affect the p53 in hitherto-unknown ways.

  19. Hsp70 Forms Antiparallel Dimers Stabilized by Post-translational Modifications to Position Clients for Transfer to Hsp90

    Directory of Open Access Journals (Sweden)

    Nina Morgner

    2015-05-01

    Full Text Available Protein folding in cells is regulated by networks of chaperones, including the heat shock protein 70 (Hsp70 system, which consists of the Hsp40 cochaperone and a nucleotide exchange factor. Hsp40 mediates complex formation between Hsp70 and client proteins prior to interaction with Hsp90. We used mass spectrometry (MS to monitor assemblies formed between eukaryotic Hsp90/Hsp70/Hsp40, Hop, p23, and a client protein, a fragment of the glucocorticoid receptor (GR. We found that Hsp40 promotes interactions between the client and Hsp70, and facilitates dimerization of monomeric Hsp70. This dimerization is antiparallel, stabilized by post-translational modifications (PTMs, and maintained in the stable heterohexameric client-loading complex Hsp902Hsp702HopGR identified here. Addition of p23 to this client-loading complex induces transfer of GR onto Hsp90 and leads to expulsion of Hop and Hsp70. Based on these results, we propose that Hsp70 antiparallel dimerization, stabilized by PTMs, positions the client for transfer from Hsp70 to Hsp90.

  20. The Stoichiometric Interaction of the Hsp90-Sgt1-Rar1 Complex by CD and SRCD Spectroscopy

    Directory of Open Access Journals (Sweden)

    Giuliano Siligardi

    2018-01-01

    Full Text Available While the molecular details by which Hsp90 interacts with Sgt1 and Rar1 were previously described the exact stoichiometric complex that is formed remains elusive. Several possibilities remain that include two asymmetric complexes, Sgt12-Hsp902-Rar12 (two molecules of Sgt1 and Rar1 and one Hsp90 dimer or Sgt12-Hsp902-Rar11 (with a single Rar1 molecule and an asymmetric complex (Sgt11-Hsp902-Rar11. The Hsp90-mediated activation of NLR receptors (Nucleotide-binding domain and Leucine-rich Repeat in the innate immunity of both plants and animals is dependent on the co-chaperone Sgt1 and in plants on Rar1, a cysteine- and histidine-rich domain (CHORD-containing protein. The exact stoichiometry of such a complex may have a direct impact on NLR protein oligomerization and thus ultimately on the mechanism by which NLRs are activated. CD spectroscopy was successfully used to determine the stoichiometry of a ternary protein complex among Hsp90, Sgt1, and Rar1 in the presence of excess ADP. The results indicated that a symmetric Sgt12-Hsp902-Rar11 complex was formed that could allow two NLR molecules to simultaneously bind. The stoichiometry of this complex has implications on, and might promote, the dimerization of NLR proteins following their activation.

  1. The Transient Receptor Potential Melastatin 7 Channel Regulates Pancreatic Cancer Cell Invasion through the Hsp90α/uPA/MMP2 pathway

    Directory of Open Access Journals (Sweden)

    Pierre Rybarczyk

    2017-04-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is an aggressive malignancy with a very poor prognosis. There is an urgent need to better understand the molecular mechanisms that regulate PDAC cell aggressiveness. The transient receptor potential melastatin 7 (TRPM7 is a nonselective cationic channel that mainly conducts Ca2+ and Mg2+. TRPM7 is overexpressed in numerous malignancies including PDAC. In the present study, we used the PANC-1 and MIA PaCa-2 cell lines to specifically assess the role of TRPM7 in cell invasion and matrix metalloproteinase secretion. We show that TRPM7 regulates Mg2+ homeostasis and constitutive cation entry in both PDAC cell lines. Moreover, cell invasion is strongly reduced by TRPM7 silencing without affecting the cell viability. Conditioned media were further studied, by gel zymography, to detect matrix metalloproteinase (MMP secretion in PDAC cells. Our results show that MMP-2, urokinase plasminogen activator (uPA, and heat-shock protein 90α (Hsp90α secretions are significantly decreased in TRPM7-deficient PDAC cells. Moreover, TRPM7 expression in human PDAC lymph node metastasis is correlated to the channel expression in primary tumor. Taken together, our results show that TRPM7 is involved in PDAC cell invasion through regulation of Hsp90α/uPA/MMP-2 proteolytic axis, confirming that this channel could be a promising biomarker and possibly a target for PDAC metastasis therapy.

  2. Comparative Expression Analysis of HSP70, HSP90, IL-4, TNF, KITLG and KIT-receptor Gene between Varicocele-Induced and Non-Varicocele Testes of Dog

    Directory of Open Access Journals (Sweden)

    Hossein Hassanpour

    2017-09-01

    Full Text Available Background This study was designed to create an experimental varicocele model by a simple surgical procedure in dog with minimum invasion and to investigate the effect of varicocele-induced infertility on the expression of six related genes (HSP90, HSP70, IL-4, TNF, KITLG and KIT receptor. Materials and Methods In this experimental study, the proximal part of the pampini-form plexus of dog testes was partially occluded without abdominal incision which was confirmed by venographic examination. To evaluate varicocele in its acute form, dogs were castrated after 15 days and testes were dissected. Histopathologic evaluation was undertaken and the relative expression of the six genes was assessed by quantitative realtime polymerase chain reaction (PCR. Results Microscopic changes showed tubule degeneration. The Johnson score was significantly decreased in the varicocele testes when compared with non-varicocele testes. Expressions of HSP90, TNF, KITLG and the KIT-receptor gene were significantly downregulated (P=0.029, 0.047, 0.004 and 0.035 respectively in varicocele-induced testes while HSP70 was upregulated (P=0.018. IL-4 did not show differential expression (P=0.377. Conclusion We conclude that partial occlusion of the proximal part of the pampiniform plexus induces varicocele in the testis of dog. Differential expression of the mentioned genes may be responsible for the pathophysiology of varicocele and related subfertility.

  3. Hsp90 inhibition destabilizes Ezh2 protein in alloreactive T cells and reduces graft-versus-host disease in mice.

    Science.gov (United States)

    Huang, Qingrong; He, Shan; Tian, Yuanyuan; Gu, Yuting; Chen, Pan; Li, Changhong; Huang, Jiefang; Liu, Yongnian; Yu, Hongshuang; Jin, Min; Hu, Shaoyan; Tong, Qing; Ma, Anqi; Jin, Jian; Hexner, Elizabeth; Fung, Henry; Reshef, Ran; Zhang, Yi; Zhang, Yanyun

    2017-05-18

    Modulating T-cell alloreactivity has been a main strategy to reduce graft-versus-host disease (GVHD), a life-threatening complication after allogeneic hematopoietic stem-cell transplantation (HSCT). Genetic deletion of T-cell Ezh2, which catalyzes trimethylation of histone H3 at lysine 27 (H3K27me3), inhibits GVHD. Therefore, reducing Ezh2-mediated H3K27me3 is thought to be essential for inhibiting GVHD. We tested this hypothesis in mouse GVHD models. Unexpectedly, administration of the Ezh2 inhibitor GSK126, which specifically decreases H3K27me3 without affecting Ezh2 protein, failed to prevent the disease. In contrast, destabilizing T-cell Ezh2 protein by inhibiting Hsp90 using its specific inhibitor AUY922 reduced GVHD in mice undergoing allogeneic HSCT. In vivo administration of AUY922 selectively induced apoptosis of activated T cells and decreased the production of effector cells producing interferon γ and tumor necrosis factor α, similar to genetic deletion of Ezh2. Introduction of Ezh2 into alloreactive T cells restored their expansion and production of effector cytokines upon AUY922 treatment, suggesting that impaired T-cell alloreactivity by inhibiting Hsp90 is achieved mainly through depleting Ezh2. Mechanistic analysis revealed that the enzymatic SET domain of Ezh2 directly interacted with Hsp90 to prevent Ezh2 from rapid degradation in activated T cells. Importantly, pharmacological inhibition of Hsp90 preserved antileukemia activity of donor T cells, leading to improved overall survival of recipient mice after allogeneic HSCT. Our findings identify the Ezh2-Hsp90 interaction as a previously unrecognized mechanism essential for T-cell responses and an effective target for controlling GVHD. © 2017 by The American Society of Hematology.

  4. Hsp90 interacts specifically with viral RNA and differentially regulates replication initiation of Bamboo mosaic virus and associated satellite RNA.

    Directory of Open Access Journals (Sweden)

    Ying Wen Huang

    Full Text Available Host factors play crucial roles in the replication of plus-strand RNA viruses. In this report, a heat shock protein 90 homologue of Nicotiana benthamiana, NbHsp90, was identified in association with partially purified replicase complexes from BaMV-infected tissue, and shown to specifically interact with the 3' untranslated region (3' UTR of BaMV genomic RNA, but not with the 3' UTR of BaMV-associated satellite RNA (satBaMV RNA or that of genomic RNA of other viruses, such as Potato virus X (PVX or Cucumber mosaic virus (CMV. Mutational analyses revealed that the interaction occurs between the middle domain of NbHsp90 and domain E of the BaMV 3' UTR. The knockdown or inhibition of NbHsp90 suppressed BaMV infectivity, but not that of satBaMV RNA, PVX, or CMV in N. benthamiana. Time-course analysis further revealed that the inhibitory effect of 17-AAG is significant only during the immediate early stages of BaMV replication. Moreover, yeast two-hybrid and GST pull-down assays demonstrated the existence of an interaction between NbHsp90 and the BaMV RNA-dependent RNA polymerase. These results reveal a novel role for NbHsp90 in the selective enhancement of BaMV replication, most likely through direct interaction with the 3' UTR of BaMV RNA during the initiation of BaMV RNA replication.

  5. Hsp 70/Hsp 90 organizing protein as a nitrosylation target in cystic fibrosis therapy

    Science.gov (United States)

    Marozkina, Nadzeya V.; Yemen, Sean; Borowitz, Molly; Liu, Lei; Plapp, Melissa; Sun, Fei; Islam, Rafique; Erdmann-Gilmore, Petra; Townsend, R. Reid; Lichti, Cheryl F.; Mantri, Sneha; Clapp, Phillip W.; Randell, Scott H.; Gaston, Benjamin; Zaman, Khalequz

    2010-01-01

    The endogenous signaling molecule S-nitrosoglutathione (GSNO) and other S-nitrosylating agents can cause full maturation of the abnormal gene product ΔF508 cystic fibrosis (CF) transmembrane conductance regulator (CFTR). However, the molecular mechanism of action is not known. Here we show that Hsp70/Hsp90 organizing protein (Hop) is a critical target of GSNO, and its S-nitrosylation results in ΔF508 CFTR maturation and cell surface expression. S-nitrosylation by GSNO inhibited the association of Hop with CFTR in the endoplasmic reticulum. This effect was necessary and sufficient to mediate GSNO-induced cell-surface expression of ΔF508 CFTR. Hop knockdown using siRNA recapitulated the effect of GSNO on ΔF508 CFTR maturation and expression. Moreover, GSNO acted additively with decreased temperature, which promoted mutant CFTR maturation through a Hop-independent mechanism. We conclude that GSNO corrects ΔF508 CFTR trafficking by inhibiting Hop expression, and that combination therapies—using differing mechanisms of action—may have additive benefits in treating CF. PMID:20534503

  6. Hsp 70/Hsp 90 organizing protein as a nitrosylation target in cystic fibrosis therapy.

    Science.gov (United States)

    Marozkina, Nadzeya V; Yemen, Sean; Borowitz, Molly; Liu, Lei; Plapp, Melissa; Sun, Fei; Islam, Rafique; Erdmann-Gilmore, Petra; Townsend, R Reid; Lichti, Cheryl F; Mantri, Sneha; Clapp, Phillip W; Randell, Scott H; Gaston, Benjamin; Zaman, Khalequz

    2010-06-22

    The endogenous signaling molecule S-nitrosoglutathione (GSNO) and other S-nitrosylating agents can cause full maturation of the abnormal gene product DeltaF508 cystic fibrosis (CF) transmembrane conductance regulator (CFTR). However, the molecular mechanism of action is not known. Here we show that Hsp70/Hsp90 organizing protein (Hop) is a critical target of GSNO, and its S-nitrosylation results in DeltaF508 CFTR maturation and cell surface expression. S-nitrosylation by GSNO inhibited the association of Hop with CFTR in the endoplasmic reticulum. This effect was necessary and sufficient to mediate GSNO-induced cell-surface expression of DeltaF508 CFTR. Hop knockdown using siRNA recapitulated the effect of GSNO on DeltaF508 CFTR maturation and expression. Moreover, GSNO acted additively with decreased temperature, which promoted mutant CFTR maturation through a Hop-independent mechanism. We conclude that GSNO corrects DeltaF508 CFTR trafficking by inhibiting Hop expression, and that combination therapies--using differing mechanisms of action--may have additive benefits in treating CF.

  7. Specific Arabidopsis HSP90.2 alleles recapitulate RAR1 cochaperone function in plant NB-LRR disease resistance protein regulation.

    Science.gov (United States)

    Hubert, David A; He, Yijian; McNulty, Brian C; Tornero, Pablo; Dangl, Jeffery L

    2009-06-16

    Both plants and animals require the activity of proteins containing nucleotide binding (NB) domain and leucine-rich repeat (LRR) domains for proper immune system function. NB-LRR proteins in plants (NLR proteins in animals) also require conserved regulation via the proteins SGT1 and cytosolic HSP90. RAR1, a protein specifically required for plant innate immunity, interacts with SGT1 and HSP90 to maintain proper NB-LRR protein steady-state levels. Here, we present the identification and characterization of specific mutations in Arabidopsis HSP90.2 that suppress all known phenotypes of rar1. These mutations are unique with respect to the many mutant alleles of HSP90 identified in all systems in that they can bypass the requirement for a cochaperone and result in the recovery of client protein accumulation and function. Additionally, these mutations separate HSP90 ATP hydrolysis from HSP90 function in client protein folding and/or accumulation. By recapitulating the activity of RAR1, these novel hsp90 alleles allow us to propose that RAR1 regulates the physical open-close cycling of a known "lid structure" that is used as a dynamic regulatory HSP90 mechanism. Thus, in rar1, lid cycling is locked into a conformation favoring NB-LRR client degradation, likely via SGT1 and the proteasome.

  8. Zr-89-trastuzumab PET visualises HER2 downregulation by the HSP90 inhibitor NVP-AUY922 in a human tumour xenograft

    NARCIS (Netherlands)

    Munnink, Thijs H. Oude; de Korte, Maarten A.; Nagengast, Wouter B.; Timmer-Bosscha, Hetty; Schroder, Carolina P.; de Jong, Johan R.; van Dongen, Guus A. M. S.; Jensen, Michael Rugaard; Quadt, Cornelia; Lub-de Hooge, Marjolijn N.; de Vries, Elisabeth G. E.

    NVP-AUY922, a potent heat shock protein (HSP) 90 inhibitor, downregulates the expression of many oncogenic proteins, including the human epidermal growth factor receptor-2 (HER2). Because HER2 downregulation is a potential biomarker for early response to HSP90-targeted therapies, we used the

  9. Molecular chaperons and co-chaperons, Hsp90, RAR1, and SGT1 negatively regulate bacterial wilt disease caused by Ralstonia solanacearum in Nicotiana benthamiana.

    Science.gov (United States)

    Ito, Makoto; Ohnishi, Kouhei; Hikichi, Yasufumi; Kiba, Akinori

    2015-01-01

    Ralstonia solanacearum is the causal agent of bacterial wilt disease. To better understand the molecular mechanisms involved in interaction between Nicotiana benthamiana and R. solanacearum, we focused on Hsp90, RAR1 and SGT1. Appearances of wilt symptom were significantly suppressed in Hsp90, RAR1 and SGT1-silenced plants compared with control plants. In RAR1-silenced plants, population of R. solanacearum increased in a similar manner to control plants. In contrast, multiplication of R. solanacearum was significantly suppressed in Hsp90 and SGT1-silenced plants. In addition, expression of PR genes were increased in Hsp90 and SGT1-silenced plants challenged with R. solanacearum. Therefore, RAR1 might be required for disease development or suppression of disease tolerance. These results also suggested that Hsp90 and/or SGT1 might play an important role in suppression of plant defenses leading to disease susceptibility and disease development.

  10. Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants.

    Science.gov (United States)

    Liu, Yule; Burch-Smith, Tessa; Schiff, Michael; Feng, Suhua; Dinesh-Kumar, Savithramma P

    2004-01-16

    SGT1 and Rar1 are important signaling components of resistance (R) gene-mediated plant innate immune responses. Here we report that SGT1 and Rar1 associate with the molecular chaperone Hsp90. In addition, we show that Hsp90 associates with the resistance protein N that confers resistance to tobacco mosaic virus. This suggests that Hsp90-SGT1-Rar1 and R proteins might exist in one complex. Suppression of Hsp90 in Nicotiana benthamiana plants shows that it plays an important role in plant growth and development. In addition, Hsp90 suppression in NN plants compromises N-mediated resistance to tobacco mosaic virus. Our results reveal a new role for SGT1- and Rar1-associated chaperone machinery in R gene-mediated defense signaling.

  11. Oncogenic MST1R activity in pancreatic and gastric cancer represents a valid target of HSP90 inhibitors.

    Science.gov (United States)

    Moser, Christian; Lang, Sven A; Hackl, Christina; Zhang, Hong; Lundgren, Karen; Hong, Victor; McKenzie, Andres; Weber, Bernhard; Park, Jung S; Schlitt, Hans J; Geissler, Edward K; Jung, Young D; Stoeltzing, Oliver

    2012-02-01

    To evaluate the effects of HSP90 blockade by EC154 on the oncogenic receptor tyrosine kinase macrophage-stimulating 1 receptor (MST1R) in gastric and pancreatic cancer. Impact of EC154 on signaling pathways was investigated by western blotting. Cancer cell migration was evaluated in Boyden chambers. Transcriptional regulation of MST1R was examined by using promoter-luciferase reporter constructs. Effects on MST1R expression, and tumor growth were investigated in in vivo tumor models. MST1R was expressed by cancer cells without evidence of MST1R mutations. EC154 led to an effective inhibition of cancer cell growth, down-regulated MST1R, diminished its promoter activity, and disrupted oncogenic macrophage-stimulating protein 1 (MSP1) signaling. Moreover, pro-migratory activities of cancer cells were dramatically inhibited. In vivo, treatment with EC154 significantly reduced tumor growth, while MST1R expression was down-regulated. Wild-type MST1R is an HSP90 client protein that can be targeted in gastrointestinal cancer using HSP90 inhibitors.

  12. In vitro Cytotoxic Activities of the Oral Platinum(IV) Prodrug Oxoplatin and HSP90 Inhibitor Ganetespib against a Panel of Gastric Cancer Cell Lines.

    Science.gov (United States)

    Klameth, Lukas; Rath, Barbara; Hamilton, Gerhard

    2017-01-01

    Gastric cancer exhibits a poor prognosis and is the third most common cause of cancer death worldwide. Chemotherapy of metastatic gastric cancer is based on combinations of platinum drugs and fluoropyrimidines, with added agents. Oxoplatin is a stable oral platinum(IV) prodrug which is converted to a highly active tetrachlorido(IV) complex under acidic conditions. In the present work, we studied the cytotoxic effects of oxoplatin against a panel of four gastric cancer cell lines in vitro. Furthermore, the role of HSP90 in chemoresistance of these lines was investigated using the specific inhibitor ganetespib. The KATO-III, MKN-1, MKN-28, MKN-45 lines were used in MTT chemosensitivity, cell cycle and apoptosis assays. KATO-III is a signet ring diffuse cell type, MKN-1 an adenosquamous primary, MKN-28 a well-differentiated intestinal type and the MKN-45 a poorly differentiated, diffuse type gastric carcinoma line. Cytotoxicity was tested in MTT assays and intracellular signal transduction with proteome profiler Western blot arrays. Interactions of platinum drugs and ganetespib were calculated with help of the Chou-Talalay method. The prodrug oxoplatin revealed low activity against the four gastric cancer cell lines, whereas the platinum tetrachlorido(IV) complex and cisplatin gave IC50 values of 1-3 µg/ml with increasing chemoresistance observed in the order of MKN-1, KATO-III, MKN-28 to MKN-45. With exception of KATO-III and MKN-28/oxoplatin, all other cell lines featured marked synergistic toxicity with clinically achievable concentrations of ganetespib. Oral administration of a platinum agent such as oxoplatin would be of great value for patients and care providers alike. These results suggest that the oncogene-stabilizing HSP90 chaperone represents an important mediator of chemoresistance in gastric cancer. Ganetespib reduced the phosphorylation of p53, Akt1/2/3 and PRAS40, as well as of WNK1, a kinase which regulates intracellular chloride concentrations

  13. The synthetic heat shock protein 90 (Hsp90) inhibitor EC141 induces degradation of Bcr-Abl p190 protein and apoptosis of Ph-positive acute lymphoblastic leukemia cells.

    Science.gov (United States)

    Tong, Wei-Gang; Estrov, Zeev; Wang, Yongtao; O'Brien, Susan; Faderl, Stefan; Harris, David M; Van Pham, Quin; Hazan-Halevy, Inbal; Liu, Zhiming; Koch, Patricia; Kantarjian, Hagop; Keating, Michael J; Ferrajoli, Alessandra

    2011-12-01

    The prognosis of patients with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) is poor. Chemotherapy is rarely curative and tyrosine kinase inhibitors (TKIs) induce only transient responses. Heat shock protein 90 (Hsp90) is a chaperone protein that is important in signal transduction, cell cycle control, and transcription regulation in both normal and leukemia cells. In the current study, we tested the growth inhibitory and apoptotic effects of a novel Hsp90 inhibitor, EC141 on the Ph+ ALL lines Z-119, Z-181, and Z-33, as well as primary bone marrow-derived blasts from patients with newly diagnosed Ph+ ALL. We found that EC141 inhibited the growth of Ph+ ALL cells in a concentration-dependent manner with IC(50) ranged from 1 to 10 nM. EC141 also inhibited the proliferation of primary bone marrow-derived blasts using the ALL blast colony assay. EC141 down-regulated Hsp90 and up-regulated Hsp70 protein levels, inhibited CrkL phosphorylation, and induced degradation of Bcr-Abl p190 protein through ubiquitin-dependent proteasomal pathway. Furthermore, exposure of Ph+ ALL cells to EC141 resulted in activation of caspase-3, cleavage of poly (ADP-ribose) polymerase (PARP), and induction of apoptosis. In conclusion, our data suggest that EC141 is a potent Hsp90 inhibitor with activity against Ph+ ALL. Further studies to investigate the anticancer effect of EC141 either as a single agent, or in combination in Ph+ ALL and other hematological malignancies are warranted.

  14. Role of ARF6, Rab11 and external Hsp90 in the trafficking and recycling of recombinant-soluble Neisseria meningitidis adhesin A (rNadA) in human epithelial cells.

    Science.gov (United States)

    Bozza, Giuseppe; Capitani, Mirco; Montanari, Paolo; Benucci, Barbara; Biancucci, Marco; Nardi-Dei, Vincenzo; Caproni, Elena; Barrile, Riccardo; Picciani, Benedetta; Savino, Silvana; Aricò, Beatrice; Rappuoli, Rino; Pizza, Mariagrazia; Luini, Alberto; Sallese, Michele; Merola, Marcello

    2014-01-01

    Neisseria meningitidis adhesin A (NadA) is a meningococcus surface protein thought to assist in the adhesion of the bacterium to host cells. We have previously shown that NadA also promotes bacterial internalization in a heterologous expression system. Here we have used the soluble recombinant NadA (rNadA) lacking the membrane anchor region to characterize its internalization route in Chang epithelial cells. Added to the culture medium, rNadA internalizes through a PI3K-dependent endocytosis process not mediated by the canonical clathrin or caveolin scaffolds, but instead follows an ARF6-regulated recycling pathway previously described for MHC-I. The intracellular pool of rNadA reaches a steady state level within one hour of incubation and colocalizes in endocytic vesicles with MHC-I and with the extracellularly labeled chaperone Hsp90. Treatment with membrane permeated and impermeable Hsp90 inhibitors 17-AAG and FITC-GA respectively, lead to intracellular accumulation of rNadA, strongly suggesting that the extracellular secreted pool of the chaperone is involved in rNadA intracellular trafficking. A significant number of intracellular vesicles containing rNadA recruit Rab11, a small GTPase associated to recycling endosomes, but do not contain transferrin receptor (TfR). Interestingly, cell treatment with Hsp90 inhibitors, including the membrane-impermeable FITC-GA, abolished Rab11-rNadA colocalization but do not interfere with Rab11-TfR colocalization. Collectively, these results are consistent with a model whereby rNadA internalizes into human epithelial cells hijacking the recycling endosome pathway and recycle back to the surface of the cell via an ARF6-dependent, Rab11 associated and Hsp90-regulated mechanism. The present study addresses for the first time a meningoccoccal adhesin mechanism of endocytosis and suggests a possible entry pathway engaged by N. meningitidis in primary infection of human epithelial cells.

  15. Role of ARF6, Rab11 and external Hsp90 in the trafficking and recycling of recombinant-soluble Neisseria meningitidis adhesin A (rNadA in human epithelial cells.

    Directory of Open Access Journals (Sweden)

    Giuseppe Bozza

    Full Text Available Neisseria meningitidis adhesin A (NadA is a meningococcus surface protein thought to assist in the adhesion of the bacterium to host cells. We have previously shown that NadA also promotes bacterial internalization in a heterologous expression system. Here we have used the soluble recombinant NadA (rNadA lacking the membrane anchor region to characterize its internalization route in Chang epithelial cells. Added to the culture medium, rNadA internalizes through a PI3K-dependent endocytosis process not mediated by the canonical clathrin or caveolin scaffolds, but instead follows an ARF6-regulated recycling pathway previously described for MHC-I. The intracellular pool of rNadA reaches a steady state level within one hour of incubation and colocalizes in endocytic vesicles with MHC-I and with the extracellularly labeled chaperone Hsp90. Treatment with membrane permeated and impermeable Hsp90 inhibitors 17-AAG and FITC-GA respectively, lead to intracellular accumulation of rNadA, strongly suggesting that the extracellular secreted pool of the chaperone is involved in rNadA intracellular trafficking. A significant number of intracellular vesicles containing rNadA recruit Rab11, a small GTPase associated to recycling endosomes, but do not contain transferrin receptor (TfR. Interestingly, cell treatment with Hsp90 inhibitors, including the membrane-impermeable FITC-GA, abolished Rab11-rNadA colocalization but do not interfere with Rab11-TfR colocalization. Collectively, these results are consistent with a model whereby rNadA internalizes into human epithelial cells hijacking the recycling endosome pathway and recycle back to the surface of the cell via an ARF6-dependent, Rab11 associated and Hsp90-regulated mechanism. The present study addresses for the first time a meningoccoccal adhesin mechanism of endocytosis and suggests a possible entry pathway engaged by N. meningitidis in primary infection of human epithelial cells.

  16. Hsp90 inhibitors block outgrowth of EBV-infected malignant cells in vitro and in vivo through an EBNA1-dependent mechanism.

    Science.gov (United States)

    Sun, Xiaoping; Barlow, Elizabeth A; Ma, Shidong; Hagemeier, Stacy R; Duellman, Sarah J; Burgess, Richard R; Tellam, Judy; Khanna, Rajiv; Kenney, Shannon C

    2010-02-16

    EBV causes infectious mononucleosis and is associated with certain malignancies. EBV nuclear antigen 1 (EBNA1) mediates EBV genome replication, partition, and transcription, and is essential for persistence of the viral genome in host cells. Here we demonstrate that Hsp90 inhibitors decrease EBNA1 expression and translation, and that this effect requires the Gly-Ala repeat domain of EBNA1. Hsp90 inhibitors induce the death of established, EBV-transformed lymphoblastoid cell lines at doses nontoxic to normal cells, and this effect is substantially reversed when lymphoblastoid cell lines are stably infected with a retrovirus expressing a functional EBNA1 mutant lacking the Gly-Ala repeats. Hsp90 inhibitors prevent EBV transformation of primary B cells, and strongly inhibit the growth of EBV-induced lymphoproliferative disease in SCID mice. These results suggest that Hsp90 inhibitors may be particularly effective for treating EBV-induced diseases requiring the continued presence of the viral genome.

  17. Co-crystalization and in vitro biological characterization of 5-aryl-4-(5-substituted-2-4-dihydroxyphenyl-1,2,3-thiadiazole Hsp90 inhibitors.

    Directory of Open Access Journals (Sweden)

    Swee Y Sharp

    Full Text Available A potential therapeutic strategy for targeting cancer that has gained much interest is the inhibition of the ATP binding and ATPase activity of the molecular chaperone Hsp90. We have determined the structure of the human Hsp90α N-terminal domain in complex with a series of 5-aryl-4-(5-substituted-2-4-dihydroxyphenyl-1,2,3-thiadiazoles. The structures provide the molecular details for the activity of these inhibitors. One of these inhibitors, ICPD 34, causes a structural change that affects a mobile loop, which adopts a conformation similar to that seen in complexes with ADP, rather than the conformation generally seen with the pyrazole/isoxazole-resorcinol class of inhibitors. Competitive binding to the Hsp90 N-terminal domain was observed in a biochemical assay, and these compounds showed antiproliferative activity and induced apoptosis in the HCT116 human colon cancer cell line. These inhibitors also caused induction of the heat shock response with the upregulation of Hsp72 and Hsp27 protein expression and the depletion of Hsp90 clients, CRAF, ERBB2 and CDK4, thus confirming that antiproliferative activity was through the inhibition of Hsp90. The presence of increased levels of the cleavage product of PARP indicated apoptosis in response to Hsp90 inhibitors. This work provides a framework for the further optimization of thiadiazole inhibitors of Hsp90. Importantly, we demonstrate that the thiadiazole inhibitors display a more limited core set of interactions relative to the clinical trial candidate NVP-AUY922, and consequently may be less susceptible to resistance derived through mutations in Hsp90.

  18. PRDM14 directly interacts with heat shock proteins HSP90α and glucose-regulated protein 78.

    Science.gov (United States)

    Moriya, Chiharu; Taniguchi, Hiroaki; Nagatoishi, Satoru; Igarashi, Hisayoshi; Tsumoto, Kouhei; Imai, Kohzoh

    2018-02-01

    PRDM14 is overexpressed in various cancers and can regulate cancer phenotype under certain conditions. Inhibiting PRDM14 expression in breast and pancreatic cancers has been reported to reduce cancer stem-like phenotypes, which are associated with aggressive tumor properties. Therefore, PRDM14 is considered a promising target for cancer therapy. To develop a pharmaceutical treatment, the mechanism and interacting partners of PRDM14 need to be clarified. Here, we identified the proteins interacting with PRDM14 in triple-negative breast cancer (TNBC) cells, which do not express the three most common types of receptor (estrogen receptors, progesterone receptors, and HER2). We obtained 13 candidates that were pulled down with PRDM14 in TNBC HCC1937 cells and identified them by mass spectrometry. Two candidates-glucose-regulated protein 78 (GRP78) and heat shock protein 90-α (HSP90α)-were confirmed in immunoprecipitation assay in two TNBC cell lines (HCC1937 and MDA-MB231). Surface plasmon resonance analysis using GST-PRDM14 showed that these two proteins directly interacted with PRDM14 and that the interactions required the C-terminal region of PRDM14, which includes zinc finger motifs. We also confirmed the interactions in living cells by NanoLuc luciferase-based bioluminescence resonance energy transfer (NanoBRET) assay. Moreover, HSP90 inhibitors (17DMAG and HSP990) significantly decreased breast cancer stem-like CD24-  CD44+ and side population (SP) cells in HCC1937 cells, but not in PRDM14 knockdown HCC1937 cells. The combination of the GRP78 inhibitor HA15 and PRDM14 knockdown significantly decreased cell proliferation and SP cell number in HCC1937 cells. These results suggest that HSP90α and GRP78 interact with PRDM14 and participate in cancer regulation. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  19. MicroPET/CT Imaging of AXL Downregulation by HSP90 Inhibition in Triple-Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Wanqin Wang

    2017-01-01

    Full Text Available AXL receptor tyrosine kinase is overexpressed in a number of solid tumor types including triple-negative breast cancer (TNBC. AXL is considered an important regulator of epithelial-to-mesenchymal transition (EMT and a potential therapeutic target for TNBC. In this work, we used microPET/CT with 64Cu-labeled anti-human AXL antibody (64Cu-anti-hAXL to noninvasively interrogate the degradation of AXL in vivo in response to 17-allylamino-17-demethoxygeldanamycin (17-AAG, a potent inhibitor of HSP90. 17-AAG treatment caused significant decline in AXL expression in orthotopic TNBC MDA-MB-231 tumors, inhibited EMT, and delayed tumor growth in vivo, resulting in significant reduction in tumor uptake of 64Cu-anti-hAXL as clearly visualized by microPET/CT. Our data indicate that 64Cu-anti-hAXL can be useful for monitoring anti-AXL therapies and for assessing inhibition of HSP90 molecular chaperone using AXL as a molecular surrogate.

  20. Cellular growth kinetics distinguish a cyclophilin inhibitor from an HSP90 inhibitor as a selective inhibitor of hepatitis C virus.

    Directory of Open Access Journals (Sweden)

    Rudolf K F Beran

    Full Text Available During antiviral drug discovery, it is critical to distinguish molecules that selectively interrupt viral replication from those that reduce virus replication by adversely affecting host cell viability. In this report we investigate the selectivity of inhibitors of the host chaperone proteins cyclophilin A (CypA and heat-shock protein 90 (HSP90 which have each been reported to inhibit replication of hepatitis C virus (HCV. By comparing the toxicity of the HSP90 inhibitor, 17-(Allylamino-17-demethoxygeldanamycin (17-AAG to two known cytostatic compounds, colchicine and gemcitabine, we provide evidence that 17-AAG exerts its antiviral effects indirectly through slowing cell growth. In contrast, a cyclophilin inhibitor, cyclosporin A (CsA, exhibited selective antiviral activity without slowing cell proliferation. Furthermore, we observed that 17-AAG had little antiviral effect in a non-dividing cell-culture model of HCV replication, while CsA reduced HCV titer by more than two orders of magnitude in the same model. The assays we describe here are useful for discriminating selective antivirals from compounds that indirectly affect virus replication by reducing host cell viability or slowing cell growth.

  1. 2.4 Å resolution crystal structure of human TRAP1 NM , the Hsp90 paralog in the mitochondrial matrix

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Nuri; Lee, Jungsoon; Kim, Ji-Hyun; Chang, Changsoo; Tsai, Francis T. F.; Lee, Sukyeong

    2016-07-13

    TRAP1 is an organelle-specific Hsp90 paralog that is essential for neoplastic growth. As a member of the Hsp90 family, TRAP1 is presumed to be a general chaperone facilitating the late-stage folding of Hsp90 client proteins in the mitochondrial matrix. Interestingly, TRAP1 cannot replace cytosolic Hsp90 in protein folding, and none of the known Hsp90 co-chaperones are found in mitochondria. Thus, the three-dimensional structure of TRAP1 must feature regulatory elements that are essential to the ATPase activity and chaperone function of TRAP1. Here, the crystal structure of a human TRAP1NMdimer is presented, featuring an intact N-domain and M-domain structure, bound to adenosine 5'-β,γ-imidotriphosphate (ADPNP). The crystal structure together with epitope-mapping results shows that the TRAP1 M-domain loop 1 contacts the neighboring subunit and forms a previously unobserved third dimer interface that mediates the specific interaction with mitochondrial Hsp70.

  2. Integration of gene dosage and gene expression in non-small cell lung cancer, identification of HSP90 as potential target.

    Directory of Open Access Journals (Sweden)

    Mariëlle I Gallegos Ruiz

    Full Text Available BACKGROUND: Lung cancer causes approximately 1.2 million deaths per year worldwide, and non-small cell lung cancer (NSCLC represents 85% of all lung cancers. Understanding the molecular events in non-small cell lung cancer (NSCLC is essential to improve early diagnosis and treatment for this disease. METHODOLOGY AND PRINCIPAL FINDINGS: In an attempt to identify novel NSCLC related genes, we performed a genome-wide screening of chromosomal copy number changes affecting gene expression using microarray based comparative genomic hybridization and gene expression arrays on 32 radically resected tumor samples from stage I and II NSCLC patients. An integrative analysis tool was applied to determine whether chromosomal copy number affects gene expression. We identified a deletion on 14q32.2-33 as a common alteration in NSCLC (44%, which significantly influenced gene expression for HSP90, residing on 14q32. This deletion was correlated with better overall survival (P = 0.008, survival was also longer in patients whose tumors had low expression levels of HSP90. We extended the analysis to three independent validation sets of NSCLC patients, and confirmed low HSP90 expression to be related with longer overall survival (P = 0.003, P = 0.07 and P = 0.04. Furthermore, in vitro treatment with an HSP90 inhibitor had potent antiproliferative activity in NSCLC cell lines. CONCLUSIONS: We suggest that targeting HSP90 will have clinical impact for NSCLC patients.

  3. Heat Shock Protein 90 (Hsp90) as a Molecular Target for the Development of Novel Drugs Against the Dermatophyte Trichophyton rubrum

    Science.gov (United States)

    Jacob, Tiago R.; Peres, Nalu T. A.; Martins, Maíra P.; Lang, Elza A. S.; Sanches, Pablo R.; Rossi, Antonio; Martinez-Rossi, Nilce M.

    2015-01-01

    Treatment of fungal infections is difficult due to several reasons, such as side effects of drugs, emergence of resistant strains, and limited number of molecular targets for the drug compounds. In fungi, heat shock proteins (Hsps) have been implicated in several processes with the conserved molecular chaperone Hsp90 emerging as a potential target for antifungal therapy. It plays key cellular roles by eliciting molecular response to environmental changes, morphogenesis, antifungal resistance, and fungal pathogenicity. Here, we evaluated the transcription profiles of hsp genes of the most prevalent dermatophyte Trichophyton rubrum in response to different environmental challenges including nutrient availability, interaction with cells and molecules of the host tissue, and drug exposure. The results suggest that each Hsp responds to a specific stress condition and that the cohort of Hsps facilitates fungal survival under various environmental challenges. Chemical inhibition of Hsp90 resulted in increased susceptibility of the fungus to itraconazole and micafungin, and decreased its growth in human nails in vitro. Moreover, some hsp and related genes were modulated by Hsp90 at the transcriptional level. We are suggesting a role of Hsp90 in the pathogenicity and drug susceptibility of T. rubrum as well as the regulation of other Hsps. The synergism observed between the inhibition of Hsp90 and the effect of itraconazole or micafungin in reducing the fungal growth is of great interest as a novel and potential strategy to treat dermatophytoses. PMID:26617583

  4. Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity.

    Science.gov (United States)

    Botër, Marta; Amigues, Béatrice; Peart, Jack; Breuer, Christian; Kadota, Yasuhiro; Casais, Catarina; Moore, Geoffrey; Kleanthous, Colin; Ochsenbein, Francoise; Shirasu, Ken; Guerois, Raphaël

    2007-11-01

    SGT1 (for suppressor of G2 allele of skp1) and RAR1 (for required for Mla12 resistance) are highly conserved eukaryotic proteins that interact with the molecular chaperone HSP90 (for heat shock protein90). In plants, SGT1, RAR1, and HSP90 are essential for disease resistance triggered by a number of resistance (R) proteins. Here, we present structural and functional characterization of plant SGT1 proteins. Random mutagenesis of Arabidopsis thaliana SGT1b revealed that its CS (for CHORD-SGT1) and SGS (for SGT1 specific) domains are essential for disease resistance. NMR-based interaction surface mapping and mutational analyses of the CS domain showed that the CHORD II domain of RAR1 and the N-terminal domain of HSP90 interact with opposite sides of the CS domain. Functional analysis of the CS mutations indicated that the interaction between SGT1 and HSP90 is required for the accumulation of Rx, a potato (Solanum tuberosum) R protein. Biochemical reconstitution experiments suggest that RAR1 may function to enhance the SGT1-HSP90 interaction by promoting ternary complex formation.

  5. Inhibiting heat shock protein 90 (HSP90 limits the formation of liver cysts induced by conditional deletion of Pkd1 in mice.

    Directory of Open Access Journals (Sweden)

    Zachary B Smithline

    Full Text Available Polycystic liver disease (PLD occurs in 75-90% of patients affected by autosomal dominant polycystic kidney disease (ADPKD, which affects 1∶400-1,000 adults and arises from inherited mutations in the PKD1 or PKD2 genes. PLD can lead to bile duct obstructions, infected or bleeding cysts, and hepatomegaly, which can diminish quality of life. At present, no effective, approved therapy exists for ADPKD or PLD. We recently showed that inhibition of the molecular chaperone heat shock protein 90 (HSP90 with a small molecule inhibitor, STA-2842, induced the degradation of multiple HSP90-dependent client proteins that contribute to ADPKD pathogenesis and slowed the progression of renal cystogenesis in mice with conditional deletion of Pkd1. Here, we analyzed the effects of STA-2842 on liver size and cystic burden in Pkd-/- mice with established PLD. Using magnetic resonance imaging over time, we demonstrate that ten weeks of STA-2842 treatment significantly reduced both liver mass and cystic index suggesting selective elimination of cystic tissue. Pre-treatment cystic epithelia contain abundant HSP90; the degree of reduction in cysts was accompanied by inhibition of proliferation-associated signaling proteins EGFR and others, and induced cleavage of caspase 8 and PARP1, and correlated with degree of HSP90 inhibition and with inactivation of ERK1/2. Our results suggest that HSP90 inhibition is worth further evaluation as a therapeutic approach for patients with PLD.

  6. Measuring the pharmacodynamic effects of a novel Hsp90 inhibitor on HER2/neu expression in mice using Zr-DFO-trastuzumab.

    Directory of Open Access Journals (Sweden)

    Jason P Holland

    Full Text Available BACKGROUND: The positron-emitting radionuclide (89Zr (t(1/2 = 3.17 days was used to prepare (89Zr-radiolabeled trastuzumab for use as a radiotracer for characterizing HER2/neu-positive breast tumors. In addition, pharmacodynamic studies on HER2/neu expression levels in response to therapeutic doses of PU-H71 (a specific inhibitor of heat-shock protein 90 [Hsp90] were conducted. METHODOLOGY/PRINCIPAL FINDINGS: Trastuzumab was functionalized with desferrioxamine B (DFO and radiolabeled with [(89Zr]Zr-oxalate at room temperature using modified literature methods. ImmunoPET and biodistribution experiments in female, athymic nu/nu mice bearing sub-cutaneous BT-474 (HER2/neu positive and/or MDA-MB-468 (HER2/neu negative tumor xenografts were conducted. The change in (89Zr-DFO-trastuzumab tissue uptake in response to high- and low-specific-activity formulations and co-administration of PU-H71 was evaluated by biodistribution studies, Western blot analysis and immunoPET. (89Zr-DFO-trastuzumab radiolabeling proceeded in high radiochemical yield and specific-activity 104.3+/-2.1 MBq/mg (2.82+/-0.05 mCi/mg of mAb. In vitro assays demonstrated >99% radiochemical purity with an immunoreactive fraction of 0.87+/-0.07. In vivo biodistribution experiments revealed high specific BT-474 uptake after 24, 48 and 72 h (64.68+/-13.06%ID/g; 71.71+/-10.35%ID/g and 85.18+/-11.10%ID/g, respectively with retention of activity for over 120 h. Pre-treatment with PU-H71 was followed by biodistribution studies and immunoPET of (89Zr-DFO-trastuzumab. Expression levels of HER2/neu were modulated during the first 24 and 48 h post-administration (29.75+/-4.43%ID/g and 41.42+/-3.64%ID/g, respectively. By 72 h radiotracer uptake (73.64+/-12.17%ID/g and Western blot analysis demonstrated that HER2/neu expression recovered to baseline levels. CONCLUSIONS/SIGNIFICANCE: The results indicate that (89Zr-DFO-trastuzumab provides quantitative and highly-specific delineation of HER2/neu

  7. The targeted inhibition of mitochondrial Hsp90 overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chunlan [Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan, 602-714 (Korea, Republic of); Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 (China); Oh, Joon Seok; Yoo, Seung Hee; Lee, Jee Suk [Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan, 602-714 (Korea, Republic of); Yoon, Young Geol [Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan, 602-714 (Korea, Republic of); Department of Biomedical Science, Institute for Biomedical and Health Sciences, Jungwon University, Chungbuk, 367-805 (Korea, Republic of); Oh, Yoo Jin; Jang, Min Seok [Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan, 602-714 (Korea, Republic of); Lee, Sang Yeob [Department of Rheumatology, Dong-A University College of Medicine, Busan, 602-714 (Korea, Republic of); Yang, Jun [Department of Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, Zhejiang, 310036 China (China); Lee, Sang Hwa [Department of Microbiology and, Dong-A University College of Medicine, Busan, 602-714 (Korea, Republic of); Kim, Hye Young [Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan, 602-714 (Korea, Republic of); Yoo, Young Hyun, E-mail: yhyoo@dau.ac.kr [Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan, 602-714 (Korea, Republic of)

    2013-01-01

    Previous studies have reported that a Gamitrinib variant containing triphenylphosphonium (G-TPP) binds to mitochondrial Hsp90 and rapidly inhibits its activity, thus inducing the apoptotic pathway in the cells. Accordingly, G-TPP shows a potential as a promising drug for the treatment of cancer. A cell can die from different types of cell death such as apoptosis, necrosis, necroptosis, and autophagic cell death. In this study, we further investigated the mechanisms and modes of cell death in the G-TPP-treated Hep3B and U937 cell lines. We discovered that G-TPP kills the U937 cells through the apoptotic pathway and the overexpression of Bcl-2 significantly inhibits U937 cell death to G-TPP. We further discovered that G-TPP kills the Hep3B cells by activating necroptosis in combination with the partial activation of caspase-dependent apoptosis. Importantly, G-TPP overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis. We also observed that G-TPP induces compensatory autophagy in the Hep3B cell line. We further found that whereas there is a Bcl-2-Beclin 1 interaction in response to G-TPP, silencing the beclin 1 gene failed to block LC3-II accumulation in the Hep3B cells, indicating that G-TPP triggers Beclin 1-independent protective autophagy in Hep3B cells. Taken together, these data reveal that G-TPP induces cell death through a combination of death pathways, including necroptosis and apoptosis, and overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis. These findings are important for the therapeutic exploitation of necroptosis as an alternative cell death program to bypass the resistance to apoptosis. Highlights: ► G-TPP binds to mitochondrial Hsp90. ► G-TPP induces apoptosis in U937 human leukemia cancer cells. ► G-TPP induces combination of death pathways in Hep3B cell. ► G-TPP overcomes the resistance conferred by Bcl-2 in Hep3B cells via necroptosis. ► G-TPP triggers Beclin 1-independent

  8. Multi-faceted proteomic characterization of host protein complement of Rift Valley fever virus virions and identification of specific heat shock proteins, including HSP90, as important viral host factors.

    Directory of Open Access Journals (Sweden)

    Jonathan E Nuss

    Full Text Available Rift Valley fever is a potentially fatal disease of humans and domestic animals caused by Rift Valley fever virus (RVFV. Infection with RVFV in ruminants can cause near 100% abortion rates and recent outbreaks in naïve human populations have suggested case fatality rates of greater than thirty percent. To elucidate the roles that host proteins play during RVFV infection, proteomic analysis of RVFV virions was conducted using complementary analytical approaches, followed by functional validation studies of select identified host factors. Coupling the more traditional Gel LC/MS/MS approach (SDS PAGE followed by liquid chromatography tandem mass spectrometry with an alternative technique that preserves protein complexes allowed the protein complement of these viral particles to be thoroughly examined. In addition to viral proteins present within the virions and virion-associated host proteins, multiple macromolecular complexes were identified. Bioinformatic analysis showed that host chaperones were among over-represented protein families associated with virions, and functional experiments using siRNA gene silencing and small molecule inhibitors identified several of these heat shock proteins, including heat shock protein 90 (HSP90, as important viral host factors. Further analysis indicated that HSP inhibition effects occur during the replication/transcription phase of the virus life cycle, leading to significant lowering of viral titers without compromising the functional capacity of released virions. Overall, these studies provide much needed further insight into interactions between RVFV and host cells, increasing our understanding of the infection process and suggesting novel strategies for anti-viral development. In particular, considering that several HSP90 inhibitors have been advancing through clinical trials for cancer treatment, these results also highlight the exciting potential of repurposing HSP90 inhibitors to treat RVF.

  9. MicroRNA-27b plays a role in pulmonary arterial hypertension by modulating peroxisome proliferator-activated receptor γ dependent Hsp90-eNOS signaling and nitric oxide production

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Rui; Bao, Chunrong; Jiang, Lianyong; Liu, Hao; Yang, Yang; Mei, Ju; Ding, Fangbao, E-mail: dbcar126@126.com

    2015-05-01

    Pulmonary artery endothelial dysfunction is associated with pulmonary arterial hypertension (PAH). Based on recent studies showing that microRNA (miR)-27b is aberrantly expressed in PAH, we hypothesized that miR-27b may contribute to pulmonary endothelial dysfunction and vascular remodeling in PAH. The effect of miR-27b on pulmonary endothelial dysfunction and the underlying mechanism were investigated in human pulmonary artery endothelial cells (HPAECs) in vitro and in a monocrotaline (MCT)-induced model of PAH in vivo. miR-27b expression was upregulated in MCT-induced PAH and inversely correlated with the levels of peroxisome proliferator-activated receptor (PPAR)-γ, and miR-27b inhibition attenuated MCT-induced endothelial dysfunction and remodeling and prevented PAH associated right ventricular hypertrophy and systolic pressure in rats. PPARγ was confirmed as a direct target of miR-27b in HPAECs and shown to mediate the effect of miR-27b on the disruption of endothelial nitric oxide synthase (eNOS) coupling to Hsp90 and the suppression of NO production associated with the PAH phenotype. We showed that miR-27b plays a role endothelial function and NO release and elucidated a potential mechanism by which miR-27b regulates Hsp90-eNOS and NO signaling by modulating PPARγ expression, providing potential therapeutic targets for the treatment of PAH. - Highlights: • miR-27b plays a role in endothelial function and NO release. • miR-27b inhibition ameliorates MCT-induced endothelial dysfunction and PAH. • miR-27b targets PPARγ in HPAECs. • miR-27b regulates PPARγ dependent Hsp90-eNOS and NO signaling.

  10. Novel SNP identification in exon 3 of HSP90AA1 gene and their association with heat tolerance traits in Karan Fries (Bos taurus × Bos indicus) cows under tropical climatic condition.

    Science.gov (United States)

    Kumar, Rakesh; Gupta, Ishwar Dayal; Verma, Archana; Singh, Sohan Vir; Verma, Nishant; Vineeth, M R; Magotra, Ankit; Das, Ramendra

    2016-04-01

    Heat shock proteins (HSPs) act as molecular chaperones those are preferentially transcribed in respose to heat stress and the polymorphism in HSP genes associated with heat tolerance traits in cows. HSP90AA1 gene has been mapped on Bos taurus autosome 21 (BTA-21) and spans nearly 5368 bp comprising of 11 exons out of which the first exon does not translate. The present study was done on Karan Fries (5/8 HF × 3/8 Tharparkar) cows reared in tropical climate with the objectives of identifying single-nucleotide polymorphisms (SNPs) in targeted regions (exon 3) of HSP90AA1 gene and analyzing their association with heat tolerance traits in Karan Fries cows. Respiration rate (RR) and rectal temperature (RT) were recorded once daily for four consecutive days during probable extreme hours in different seasons or temperature humidity index (THI), viz., winter, spring, and summer. For detecting single-nucleotide polymorphisms, sequence data were analyzed using BioEdit software (version 7.2). Comparative sequence analysis of HSP90AA1 gene showed point mutation, viz., g.1209A>G (exon 3) as compared to Bos taurus (NCBI Ref Seq: AC_000178.1). Association analysis indicated that THI was influenced (P G were categorized into three genotypes, i.e., AA, AG, and GG, and the least squares means (LSMEANS) of RR, RT, and HTC for GG (homozygous) genotype were significantly lower (P < 0.01) than AA (homozygous) and AG (heterozygous) genotypes. These findings may partly suggest that cows with GG genotypes were favored for heat tolerance trait, which can be used as an aid to selection for thermo-tolerance Karan Fries cows for better adaptation in subtropical and tropical hot climate.

  11. Specific Arabidopsis HSP90.2 alleles recapitulate RAR1 cochaperone function in plant NB-LRR disease resistance protein regulation

    OpenAIRE

    Hubert, David A.; He, Yijian; McNulty, Brian C.; Tornero, Pablo; Jeffery L Dangl

    2009-01-01

    Both plants and animals require the activity of proteins containing nucleotide binding (NB) domain and leucine-rich repeat (LRR) domains for proper immune system function. NB-LRR proteins in plants (NLR proteins in animals) also require conserved regulation via the proteins SGT1 and cytosolic HSP90. RAR1, a protein specifically required for plant innate immunity, interacts with SGT1 and HSP90 to maintain proper NB-LRR protein steady-state levels. Here, we present the identification and charac...

  12. The caste- and age-specific expression signature of honeybee heat shock genes shows an alternative splicing-dependent regulation of Hsp90.

    Science.gov (United States)

    Aamodt, Randi M

    2008-11-01

    I report the investigation of the age- and caste-specific expression patterns of eight genes involved in protein maintenance and repair in wing muscle tissue of the honeybee Apis mellifera. mRNA levels of seven heat shock genes and the protein repair gene pcmt (encoding L-isoaspartyl-O-methyltransferase) were measured in a comparative study of queens and ageing workers. Two hsp90 orthologs, transcribed from the same locus, showed different age- and caste-dependent expression patterns suggesting an alternative splicing-dependent regulatory mechanism. One transcript showed decreasing expression levels with worker age and four times higher levels in queens than workers on average, while the other variant had much higher and even expression levels. An hsp22-like gene was sevenfold upregulated in workers from the newly emerged-stage and showed an age-dependent decreasing slope for the subsequent stages. Honeybee ageing seems therefore not to be accompanied by increase in the heat shock response at the level of gene expression. The method used provides very sensitive measurements of a limited number of genes, and this study is one of the first of the regulation of expression of protein protection and repair genes during aging, performed in an un-manipulated model organisms living in a natural environment.

  13. Dynamic Nucleotide-dependent Interactions of Cysteine- and Histidine-rich Domain (CHORD)-containing Hsp90 Cochaperones Chp-1 and Melusin with Cochaperones PP5 and Sgt1*

    Science.gov (United States)

    Hong, Tae-Joon; Kim, Sangkyu; Wi, Ah Ram; Lee, Peter; Kang, Miae; Jeong, Jae-Hoon; Hahn, Ji-Sook

    2013-01-01

    Mammals have two cysteine- and histidine-rich domain (CHORD)-containing Hsp90 cochaperones, Chp-1 and melusin, which are homologs of plant Rar1. It has been shown previously that Rar1 CHORD directly interacts with ADP bound to the nucleotide pocket of Hsp90. Here, we report that ADP and ATP can bind to Hsp90 cochaperones Chp-1 and PP5, inducing their conformational changes. Furthermore, we demonstrate that Chp-1 and melusin can interact with cochaperones PP5 and Sgt1 and with each other in an ATP-dependent manner. Based on the known structure of the Rar1-Hsp90 complex, His-186 has been identified as an important residue of Chp-1 for ADP/ATP binding. His-186 is necessary for the nucleotide-dependent interaction of Chp-1 not only with Hsp90 but also with Sgt1. In addition, Ca2+, which is known to bind to melusin, enhances the interactions of melusin with Hsp90 and Sgt1. Furthermore, melusin acquires the ADP preference for Hsp90 binding in the presence of Ca2+. Our newly discovered nucleotide-dependent interactions between cochaperones might provide additional complexity to the dynamics of the Hsp90 chaperone system, also suggesting potential Hsp90-independent roles for these cochaperones. PMID:23184943

  14. Geldanamycin, an inhibitor of Hsp90, increases paclitaxel-mediated toxicity in ovarian cancer cells through sustained activation of the p38/H2AX axis.

    Science.gov (United States)

    Mo, Qingqing; Zhang, Yu; Jin, Xin; Gao, Yue; Wu, Yuan; Hao, Xing; Gao, Qinglei; Chen, Pingbo

    2016-11-01

    Paclitaxel is a mitotic inhibitor used in ovarian cancer chemotherapy. Unfortunately, due to the rapid genetic and epigenetic changes in adaptation to stress induced by anticancer drugs, cancer cells are often able to become resistant to single or multiple anticancer agents. However, it remains largely unknown how paclitaxel resistance happens. In this study, we generated a cell line of acquired resistance to paclitaxel therapy, A2780T, which is cross-resistant to other antimitotic drugs, such as PLK1 inhibitor or AURKA inhibitor. Immunoblotting revealed significant alterations in cell-cycle-related and apoptotic-related proteins involved in key signaling pathways. In particular, phosphorylation of p38, which activates H2AX, was significantly decreased in A2780T cells compared to the parental A2780 cells. Geldanamycin (GA), an inhibitor of Hsp90, sustained activation of the p38/H2AX axis, and A2780T cells were shown to be more sensitive to GA compared to A2780 cells. Furthermore, treatment of A2780 and A2780T cells with GA significantly enhanced sensitivity to paclitaxel. Meanwhile, GA cooperated with paclitaxel to suppress tumor growth in a mouse ovarian cancer xenograft model. In conclusion, GA may sensitize a subset of ovarian cancer to paclitaxel, particularly those tumors in which resistance is driven by inactivation of p38/H2AX axis.

  15. Activating transcription factor-3 (ATF3 functions as a tumor suppressor in colon cancer and is up-regulated upon heat-shock protein 90 (Hsp90 inhibition

    Directory of Open Access Journals (Sweden)

    Dietmeier Wolfgang

    2010-12-01

    Full Text Available Abstract Background Activating transcription factor-3 (ATF3 is involved in the complex process of cellular stress response. However, its exact role in cancer is discussed controversially because both tumor suppressive and oncogenic effects have been described. Here we followed-up on our previous observation that inhibition of Hsp90 may increase ATF3 expression and sought to determine the role of ATF3 in colon cancer. Methods Regulation of ATF3 was determined in cancer cells using signaling inhibitors and a heat-shock protein-90 (Hsp90 antagonist. Human HCT116 cancer cells were stably transfected with an ATF3-shRNA or a luciferase-shRNA expression plasmid and alterations in cell motility were assessed in migration assays. The impact of ATF3 down-regulation on cancer growth and metastasis were investigated in a subcutaneous tumor model, a model of hepatic tumor growth and in a model of peritoneal carcinomatosis. Human colon cancer tissues were analyzed for ATF3 expression. Results The results show that therapeutic Hsp90 inhibition substantially up-regulates the expression of ATF3 in various cancer cells, including colon, gastric and pancreatic cancer. This effect was evident both in vitro and in vivo. RNAi mediated knock-down of ATF3 in HCT116 colon cancer cells significantly increased cancer cell migration in vitro. Moreover, in xenogenic mouse models, ATF3 knock-down promoted subcutaneous tumor growth and hepatic metastasis, as well as peritoneal carcinomatosis. Importantly, ATF3 expression was lower in human colon cancer specimens, as compared to corresponding normal surrounding tissues, suggesting that ATF3 may represent a down-regulated tumor suppressor in colon cancer. Conclusion In conclusion, ATF3 down-regulation in colon cancer promotes tumor growth and metastasis. Considering that blocking Hsp90 induces ATF3 expression, Hsp90 inhibition may represent a valid strategy to treat metastatic colon cancer by up-regulating this anti

  16. ATM is required for the prolactin-induced HSP90-mediated increase in cellular viability and clonogenic growth after DNA damage.

    Science.gov (United States)

    Karayazi Atici, Ödül; Urbanska, Anna; Gopal Gopinathan, Sesha; Boutillon, Florence; Goffin, Vincent; Shemanko, Carrie S

    2017-11-24

    Prolactin acts as a survival factor for breast cancer cells, but the prolactin signaling pathway and the mechanism is unknown. Previously, we identified the master chaperone, heat shock protein 90α (HSP90α), as a prolactin-Janus-Kinase-(JAK2)-signal-transducer-and-activator-of-transcription-5-(STAT5) target gene involved in survival, and here we investigated the role of HSP90 in the mechanism of prolactin-induced viability in response to DNA damage. The ataxia-telangiectasia mutated kinase protein (ATM) plays a critical role in the cellular response to double strand DNA damage. Prolactin increased viability of breast cancer cells treated with doxorubicin or etoposide. The increase in cellular resistance is specific to the prolactin receptor, as the prolactin receptor antagonist, Δ1-9-G129R-hPRL, prevented the increase in viability. Two different HSP90 inhibitors, 17-allylamino-17-demethoxy geldanamycin and BIIB021, reduced the prolactin-mediated increase in cell viability of doxorubicin treated cells, and led to a decrease in JAK2, ATM and phospho-ATM protein levels. Inhibitors of JAK2 (G6) and ATM (KU55933) abolished the prolactin-mediated increase in cell viability of DNA damaged cells, supporting the involvement of each, as well as the cross-talk of ATM with the prolactin pathway in the context of DNA damage. Drug synergism was detected between the ATM inhibitor, KU55933, and doxorubicin, and also between the HSP90 inhibitor, BIIB021, and doxorubicin. Short interfering RNA, directed against ATM, prevented the PRL-mediated increase in cell survival in both 2D and 3D collagen gel cultures, and in clonogenic cell survival, after doxorubicin treatment. Our results indicate that ATM contributes to the prolactin-JAK2-STAT5-HSP90 pathway in mediating cellular resistance to DNA damaging agents. Copyright © 2017 Endocrine Society.

  17. Clinical Development of Gamitrinib, a Novel Mitochondrial-Targeted Small Molecule Hsp90 Inhibitor

    Science.gov (United States)

    2014-09-01

    conditions may result from dysfunctional mitochondrial metabolism (see above), and/or increased nitric oxide generation from arginine, a possibility suggested...energy production, including HK- II-dependent glycolysis21, and oxidative phosphorylation (this study), especially under stress conditions of hypoxia ... signalling role of oncogenes in these responses40, have brought into question the function of mitochondrial bioenergetics, and in particular oxidative

  18. Purification and characterization of a human brain galectin-1 ligand.

    Science.gov (United States)

    Chadli, A; LeCaer, J P; Bladier, D; Joubert-Caron, R; Caron, M

    1997-04-01

    Our previous studies have characterized an endogenous lectin from human brain identified as galectin-1. A soluble ligand of galectin-1 was purified from human brain by affinity chromatography and preparative electrophoresis. The purified ligand (termed HBGp82, for human brain galectin-1-binding polypeptide of 82,000 daltons) has an apparent molecular mass of 82 kDa and is glycosylated by N-linked biantennary complex structures. HBGp82 was partially characterized by microsequencing of peptide fragments. Similar peptides were found in a heat shock of protein of 90,000 daltons, hsp90. However, comparison of apparent molecular weights and matrix-assisted laser desorption mass spectrometry clearly showed that HBGp82 differs to some degree from hsp90.

  19. Repurposing L-Menthol for Systems Medicine and Cancer Therapeutics? L-Menthol Induces Apoptosis through Caspase 10 and by Suppressing HSP90.

    Science.gov (United States)

    Faridi, Uzma; Dhawan, Sunita S; Pal, Shaifali; Gupta, Sanchita; Shukla, Ashutosh K; Darokar, Mahendra P; Sharma, Ashok; Shasany, Ajit K

    2016-01-01

    The objective of the present study was to repurpose L-menthol, which is frequently used in oral health and topical formulations, for cancer therapeutics. In this article, we argue that monoterpenes such as L-menthol might offer veritable potentials in systems medicine, for example, as cheaper anti-cancer compounds. Other monoterpenes such as limonene, perillyl alcohol, and geraniol have been shown to induce apoptosis in various cancer cell lines, but their mechanisms of action are yet to be completely elucidated. Earlier, we showed that L-menthol modulates tubulin polymerization and apoptosis to inhibit cancer cell proliferation. In the present report, we used an apoptosis-related gene microarray in conjunction with proteomics analyses, as well as in silico interpretations, to study gene expression modulation in human adenocarcinoma Caco-2 cell line in response to L-menthol treatment. The microarray analysis identified caspase 10 as the important initiator caspase, instead of caspase 8. The proteomics analyses showed downregulation of HSP90 protein (also corroborated by its low transcript abundance), which in turn indicated inhibition of AKT-mediated survival pathway, release of pro-apoptotic factor BAD from BAD and BCLxL complex, besides regulation of other factors related to apoptosis. Based on the combined microarray, proteomics, and in silico data, a signaling pathway for L-menthol-induced apoptosis is being presented for the first time here. These data and literature analysis have significant implications for "repurposing" L-menthol beyond oral medicine, and in understanding the mode of action of plant-derived monoterpenes towards development of cheaper anticancer drugs in future.

  20. Multi-drug loaded micelles delivering chemotherapy and targeted therapies directed against HSP90 and the PI3K/AKT/mTOR pathway in prostate cancer.

    Science.gov (United States)

    Le, Bao; Powers, Ginny L; Tam, Yu Tong; Schumacher, Nicholas; Malinowski, Rita L; Steinke, Laura; Kwon, Glen; Marker, Paul C

    2017-01-01

    Advanced prostate cancers that are resistant to all current therapies create a need for new therapeutic strategies. One recent innovative approach to cancer therapy is the simultaneous use of multiple FDA-approved drugs to target multiple pathways. A challenge for this approach is caused by the different solubility requirements of each individual drug, resulting in the need for a drug vehicle that is non-toxic and capable of carrying multiple water-insoluble antitumor drugs. Micelles have recently been shown to be new candidate drug solubilizers for anti cancer therapy. This study set out to examine the potential use of multi-drug loaded micelles for prostate cancer treatment in preclinical models including cell line and mouse models for prostate cancers with Pten deletions. Specifically antimitotic agent docetaxel, mTOR inhibitor rapamycin, and HSP90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin were incorporated into the micelle system (DR17) and tested for antitumor efficacy. In vitro growth inhibition of prostate cancer cells was greater when all three drugs were used in combination compared to each individual drug, and packaging the drugs into micelles enhanced the cytotoxic effects. At the molecular level DR17 targeted simultaneously several molecular signaling axes important in prostate cancer including androgen receptor, mTOR, and PI3K/AKT. In a mouse genetic model of prostate cancer, DR17 treatment decreased prostate weight, which was achieved by both increasing caspase-dependent cell death and decreasing cell proliferation. Similar effects were also observed when DR17 was administered to nude mice bearing prostate cancer cells xenografts. These results suggest that combining these three cancer drugs in multi-drug loaded micelles may be a promising strategy for prostate cancer therapy.

  1. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90.

    Directory of Open Access Journals (Sweden)

    Shantelle L LaFayette

    2010-08-01

    Full Text Available Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC, which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which

  2. Reactive oxygen species-dependent HSP90 protein cleavage participates in arsenical As(+3)- and MMA(+3)-induced apoptosis through inhibition of telomerase activity via JNK activation.

    Science.gov (United States)

    Shen, Shing-Chuan; Yang, Liang-Yo; Lin, Hui-Yi; Wu, Chin-Yen; Su, Tsung-Hsien; Chen, Yen-Chou

    2008-06-01

    The effects of six arsenic compounds including As(+3), MMA(+3), DMA(+3), As(+5), MMA(+5), and DMA(+5) on the viability of NIH3T3 cells were examined. As(+3) and MMA(+3), but not the others, exhibited significant cytotoxic effects in NIH3T3 cells through apoptosis induction. The apoptotic events such as DNA fragmentation and chromosome condensation induced by As(+3) and MMA(+3) were prevented by the addition of NAC and CAT, and induction of HO-1 gene expression in accordance with cleavage of the HSP90 protein, and suppression of telomerase activity were observed in NIH3T3 cells under As(+3) and MMA(+3) treatments. An increase in the intracellular peroxide level was examined in As(+3)- and MMA(+3)-treated NIH3T3 cells, and As(+3)- and MMA(+3)-induced apoptotic events were blocked by NAC, CAT, and DPI addition. HSP90 inhibitors, GA and RD, significantly attenuated the telomerase activity in NIH3T3 cells with an enhancement of As(+3)- and MMA(+3)-induced cytotoxicity. Suppression of JNKs significantly inhibited As(+3)- and MMA(+3)-induced apoptosis by blocking HSP90 protein cleavage and telomerase reduction in NIH3T3 cells. Furthermore, Hb, SnPP, and dexferosamine showed no effect against As(+3)- and MMA(+3)-induced apoptosis, and overexpression of HO-1 protein or inhibition of HO-1 protein expression did not affect the apoptosis induced by As(+3) or MMA(+3). These data provide the first evidence to indicate that apoptosis induced by As(+3) and MMA(+3) is mediated by an ROS-dependent degradation of HSP90 protein and reduction of telomerase via JNK activation, and HO-1 induction might not be involved.

  3. Chromosomal assignment of six genes (EIF4G3, HSP90, RBBP6, IL8, TERT, and TERC) in four species of the genus Equus.

    Science.gov (United States)

    Vidale, Pamela; Piras, Francesca M; Nergadze, Solomon G; Bertoni, Livia; Verini-Supplizi, Andrea; Adelson, David; Guérin, Gérard; Giulotto, Elena

    2011-01-01

    We mapped six genes (EIF4G3, HSP90, RBBP6, IL8, TERT, and TERC) on the chromosomes of Equus caballus, Equus asinus, Equus grevyi, and Equus burchelli by fluorescence in situ hybridization. Our results add six type I markers to the cytogenetic map of these species and provide new information on the comparative genomics of the genus Equus. Copyright © Taylor & Francis Group, LLC

  4. Downregulation of androgen receptors by NaAsO2via inhibition of AKT-NF-κB and HSP90 in castration resistant prostate cancer.

    Science.gov (United States)

    Kim, Yunlim; Park, Sang Eun; Moon, Jeong-Weon; Kim, Bong-Min; Kim, Ha-Gyeong; Jeong, In Gab; Yoo, Sangjun; Ahn, Jae Beom; You, Dalsan; Pak, Jhang Ho; Kim, Sujong; Hwang, Jung Jin; Kim, Choung-Soo

    2017-07-01

    Androgen and androgen receptor (AR) play essential roles in the development and maintenance of prostate cancer. The recently identified AR splice variants (AR-Vs) have been considered as a plausible mechanism for the primary resistance against androgen deprivation therapy (ADT) in castration-resistant prostate cancer (CRPC). Sodium meta-arsenite (NaAsO 2 ; KML001; Kominox), a trivalent arsenical, is an orally bioavailable and water soluble, which is currently in phase I/II clinical trials for the treatment of prostate cancer. It has a potent anti-cancer effect on prostate cancer cells and xenografts. The aim of this study was to examine the effect of NaAsO 2 on AR signaling in LNCaP and 22Rv1 CRPC cells. We used hormone-sensitive LNCaP cells, hormone-insensitive 22Rv1 cells, and CRPC patient-derived primary cells. We analyzed anti-cancer effect of NaAsO 2 using real-time quantitative reverse transcription-PCR, Western blotting, immunofluorescence staining and CellTiter Glo® luminescent assay. Statistical evaluation of the results was performed by one-way ANOVA. NaAsO 2 significantly reduced the translocation of AR and AR-Vs to the nucleus as well as their level in LNCaP and 22Rv1 cells. Besides, the level of the prostate-specific antigen (PSA), downstream target gene of AR, was also decreased. This compound was also an effective modulator of AKT-dependent NF-κB activation which regulates AR. NaAsO 2 significantly inhibited phosphorylation of AKT and expression and nuclear translocation of NF-κB. We then investigated the effect of NaAsO 2 on AR stabilization. NaAsO 2 promoted HSP90 acetylation by down-regulating HDAC6, which reduces the stability of AR in prostate cancer cells. Here, we show that NaAsO 2 disrupts AR signaling at multiple levels by affecting AR expression, stability, and degradation in primary tumor cell cultures from prostate cancer patients as well as CRPC cell lines. These results suggest that NaAsO 2 could be a novel therapeutics for prostate

  5. Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains.

    Directory of Open Access Journals (Sweden)

    Josh Czemeres

    Full Text Available A fundamental role of the Hsp90 and Cdc37 chaperones in mediating conformational development and activation of diverse protein kinase clients is essential in signal transduction. There has been increasing evidence that the Hsp90-Cdc37 system executes its chaperoning duties by recognizing conformational instability of kinase clients and modulating their folding landscapes. The recent cryo-electron microscopy structure of the Hsp90-Cdc37-Cdk4 kinase complex has provided a framework for dissecting regulatory principles underlying differentiation and recruitment of protein kinase clients to the chaperone machinery. In this work, we have combined atomistic simulations with protein stability and network-based rigidity decomposition analyses to characterize dynamic factors underlying allosteric mechanism of the chaperone-kinase cycle and identify regulatory hotspots that control client recognition. Through comprehensive characterization of conformational dynamics and systematic identification of stabilization centers in the unbound and client- bound Hsp90 forms, we have simulated key stages of the allosteric mechanism, in which Hsp90 binding can induce instability and partial unfolding of Cdk4 client. Conformational landscapes of the Hsp90 and Cdk4 structures suggested that client binding can trigger coordinated dynamic changes and induce global rigidification of the Hsp90 inter-domain regions that is coupled with a concomitant increase in conformational flexibility of the kinase client. This process is allosteric in nature and can involve reciprocal dynamic exchanges that exert global effect on stability of the Hsp90 dimer, while promoting client instability. The network-based rigidity analysis and emulation of thermal unfolding of the Cdk4-cyclin D complex and Hsp90-Cdc37-Cdk4 complex revealed weak spots of kinase instability that are present in the native Cdk4 structure and are targeted by the chaperone during client recruitment. Our findings

  6. Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains.

    Science.gov (United States)

    Czemeres, Josh; Buse, Kurt; Verkhivker, Gennady M

    2017-01-01

    A fundamental role of the Hsp90 and Cdc37 chaperones in mediating conformational development and activation of diverse protein kinase clients is essential in signal transduction. There has been increasing evidence that the Hsp90-Cdc37 system executes its chaperoning duties by recognizing conformational instability of kinase clients and modulating their folding landscapes. The recent cryo-electron microscopy structure of the Hsp90-Cdc37-Cdk4 kinase complex has provided a framework for dissecting regulatory principles underlying differentiation and recruitment of protein kinase clients to the chaperone machinery. In this work, we have combined atomistic simulations with protein stability and network-based rigidity decomposition analyses to characterize dynamic factors underlying allosteric mechanism of the chaperone-kinase cycle and identify regulatory hotspots that control client recognition. Through comprehensive characterization of conformational dynamics and systematic identification of stabilization centers in the unbound and client- bound Hsp90 forms, we have simulated key stages of the allosteric mechanism, in which Hsp90 binding can induce instability and partial unfolding of Cdk4 client. Conformational landscapes of the Hsp90 and Cdk4 structures suggested that client binding can trigger coordinated dynamic changes and induce global rigidification of the Hsp90 inter-domain regions that is coupled with a concomitant increase in conformational flexibility of the kinase client. This process is allosteric in nature and can involve reciprocal dynamic exchanges that exert global effect on stability of the Hsp90 dimer, while promoting client instability. The network-based rigidity analysis and emulation of thermal unfolding of the Cdk4-cyclin D complex and Hsp90-Cdc37-Cdk4 complex revealed weak spots of kinase instability that are present in the native Cdk4 structure and are targeted by the chaperone during client recruitment. Our findings suggested that this

  7. Exosomes from Hepatitis C Infected Patients Transmit HCV Infection and Contain Replication Competent Viral RNA in Complex with Ago2-miR122-HSP90

    Science.gov (United States)

    Kodys, Karen; Bala, Shashi; Szabo, Gyongyi

    2014-01-01

    Antibodies targeting receptor-mediated entry of HCV into hepatocytes confer limited therapeutic benefits. Evidence suggests that exosomes can transfer genetic materials between cells; however, their role in HCV infection remains obscure. Here, we show that exosomes isolated from sera of chronic HCV infected patients or supernatants of J6/JFH1-HCV-infected Huh7.5 cells contained HCV RNA. These exosomes could mediate viral receptor-independent transmission of HCV to hepatocytes. Negative sense HCV RNA, indicative of replication competent viral RNA, was present in exosomes of all HCV infected treatment non-responders and some treatment-naïve individuals. Remarkably, HCV RNA was associated with Ago2, HSP90 and miR-122 in exosomes isolated from HCV-infected individuals or HCV-infected Huh7.5 cell supernatants. Exosome-loading with a miR-122 inhibitor, or inhibition of HSP90, vacuolar H+-ATPases, and proton pumps, significantly suppressed exosome-mediated HCV transmission to naïve cells. Our findings provide mechanistic evidence for HCV transmission by blood-derived exosomes and highlight potential therapeutic strategies. PMID:25275643

  8. Detection of changes in gene regulatory patterns, elicited by perturbations of the Hsp90 molecular chaperone complex, by visualizing multiple experiments with an animation

    Directory of Open Access Journals (Sweden)

    Echeverría Pablo C

    2011-06-01

    Full Text Available Abstract Background To make sense out of gene expression profiles, such analyses must be pushed beyond the mere listing of affected genes. For example, if a group of genes persistently display similar changes in expression levels under particular experimental conditions, and the proteins encoded by these genes interact and function in the same cellular compartments, this could be taken as very strong indicators for co-regulated protein complexes. One of the key requirements is having appropriate tools to detect such regulatory patterns. Results We have analyzed the global adaptations in gene expression patterns in the budding yeast when the Hsp90 molecular chaperone complex is perturbed either pharmacologically or genetically. We integrated these results with publicly accessible expression, protein-protein interaction and intracellular localization data. But most importantly, all experimental conditions were simultaneously and dynamically visualized with an animation. This critically facilitated the detection of patterns of gene expression changes that suggested underlying regulatory networks that a standard analysis by pairwise comparison and clustering could not have revealed. Conclusions The results of the animation-assisted detection of changes in gene regulatory patterns make predictions about the potential roles of Hsp90 and its co-chaperone p23 in regulating whole sets of genes. The simultaneous dynamic visualization of microarray experiments, represented in networks built by integrating one's own experimental with publicly accessible data, represents a powerful discovery tool that allows the generation of new interpretations and hypotheses.

  9. Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90.

    Science.gov (United States)

    Bukong, Terence N; Momen-Heravi, Fatemeh; Kodys, Karen; Bala, Shashi; Szabo, Gyongyi

    2014-10-01

    Antibodies targeting receptor-mediated entry of HCV into hepatocytes confer limited therapeutic benefits. Evidence suggests that exosomes can transfer genetic materials between cells; however, their role in HCV infection remains obscure. Here, we show that exosomes isolated from sera of chronic HCV infected patients or supernatants of J6/JFH1-HCV-infected Huh7.5 cells contained HCV RNA. These exosomes could mediate viral receptor-independent transmission of HCV to hepatocytes. Negative sense HCV RNA, indicative of replication competent viral RNA, was present in exosomes of all HCV infected treatment non-responders and some treatment-naïve individuals. Remarkably, HCV RNA was associated with Ago2, HSP90 and miR-122 in exosomes isolated from HCV-infected individuals or HCV-infected Huh7.5 cell supernatants. Exosome-loading with a miR-122 inhibitor, or inhibition of HSP90, vacuolar H+-ATPases, and proton pumps, significantly suppressed exosome-mediated HCV transmission to naïve cells. Our findings provide mechanistic evidence for HCV transmission by blood-derived exosomes and highlight potential therapeutic strategies.

  10. Degradation of HIF-1alpha under hypoxia combined with induction of Hsp90 polyubiquitination in cancer cells by hypericin: a unique cancer therapy.

    Directory of Open Access Journals (Sweden)

    Tilda Barliya

    Full Text Available The perihydroxylated perylene quinone hypericin has been reported to possess potent anti-metastatic and antiangiogenic activities, generated by targeting diverse crossroads of cancer-promoting processes via unique mechanisms. Hypericin is the only known exogenous reagent that can induce forced poly-ubiquitination and accelerated degradation of heat shock protein 90 (Hsp90 in cancer cells. Hsp90 client proteins are thereby destabilized and rapidly degraded. Hsp70 client proteins may potentially be also affected via preventing formation of hsp90-hsp70 intermediate complexes. We show here that hypericin also induces enhanced degradation of hypoxia-inducible factor 1α (HIF-1α in two human tumor cell lines, U87-MG glioblastoma and RCC-C2VHL-/- renal cell carcinoma and in the non-malignant ARPE19 retinal pigment epithelial cell line. The hypericin-accelerated turnover of HIF-1α, the regulatory precursor of the HIF-1 transcription factor which promotes hypoxic stress and angiogenic responses, overcomes the physiologic HIF-1α protein stabilization which occurs in hypoxic cells. The hypericin effect also eliminates the high HIF-1α levels expressed constitutively in the von-Hippel Lindau protein (pVHL-deficient RCC-C2VHL-/- renal cell carcinoma cell line. Unlike the normal ubiquitin-proteasome pathway-dependent turnover of HIF-α proteins which occurs in normoxia, the hypericin-induced HIF-1α catabolism can occur independently of cellular oxygen levels or pVHL-promoted ubiquitin ligation of HIF-1α. It is mediated by lysosomal cathepsin-B enzymes with cathepsin-B activity being optimized in the cells through hypericin-mediated reduction in intracellular pH. Our findings suggest that hypericin may potentially be useful in preventing growth of tumors in which HIF-1α plays pivotal roles, and in pVHL ablated tumor cells such as renal cell carcinoma through elimination of elevated HIF-1α contents in these cells, scaling down the excessive angiogenesis

  11. Structural and Functional Analysis of SGT1 Reveals That Its Interaction with HSP90 Is Required for the Accumulation of Rx, an R Protein Involved in Plant Immunity[W][OA

    Science.gov (United States)

    Botër, Marta; Amigues, Béatrice; Peart, Jack; Breuer, Christian; Kadota, Yasuhiro; Casais, Catarina; Moore, Geoffrey; Kleanthous, Colin; Ochsenbein, Francoise; Shirasu, Ken; Guerois, Raphaël

    2007-01-01

    SGT1 (for suppressor of G2 allele of skp1) and RAR1 (for required for Mla12 resistance) are highly conserved eukaryotic proteins that interact with the molecular chaperone HSP90 (for heat shock protein90). In plants, SGT1, RAR1, and HSP90 are essential for disease resistance triggered by a number of resistance (R) proteins. Here, we present structural and functional characterization of plant SGT1 proteins. Random mutagenesis of Arabidopsis thaliana SGT1b revealed that its CS (for CHORD-SGT1) and SGS (for SGT1 specific) domains are essential for disease resistance. NMR-based interaction surface mapping and mutational analyses of the CS domain showed that the CHORD II domain of RAR1 and the N-terminal domain of HSP90 interact with opposite sides of the CS domain. Functional analysis of the CS mutations indicated that the interaction between SGT1 and HSP90 is required for the accumulation of Rx, a potato (Solanum tuberosum) R protein. Biochemical reconstitution experiments suggest that RAR1 may function to enhance the SGT1–HSP90 interaction by promoting ternary complex formation. PMID:18032631

  12. Oral administration of an HSP90 inhibitor, 17-DMAG, intervenes tumor-cell infiltration into multiple organs and improves survival period for ATL model mice.

    Science.gov (United States)

    Ikebe, E; Kawaguchi, A; Tezuka, K; Taguchi, S; Hirose, S; Matsumoto, T; Mitsui, T; Senba, K; Nishizono, A; Hori, M; Hasegawa, H; Yamada, Y; Ueno, T; Tanaka, Y; Sawa, H; Hall, W; Minami, Y; Jeang, K T; Ogata, M; Morishita, K; Hasegawa, H; Fujisawa, J; Iha, H

    2013-08-16

    In the peripheral blood leukocytes (PBLs) from the carriers of the human T-lymphotropic virus type-1 (HTLV-1) or the patients with adult T-cell leukemia (ATL), nuclear factor kappaB (NF-κB)-mediated antiapoptotic signals are constitutively activated primarily by the HTLV-1-encoded oncoprotein Tax. Tax interacts with the I κB kinase regulatory subunit NEMO (NF-κB essential modulator) to activate NF-κB, and this interaction is maintained in part by a molecular chaperone, heat-shock protein 90 (HSP90), and its co-chaperone cell division cycle 37 (CDC37). The antibiotic geldanamycin (GA) inhibits HSP90's ATP binding for its proper interaction with client proteins. Administration of a novel water-soluble and less toxic GA derivative, 17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride (17-DMAG), to Tax-expressing ATL-transformed cell lines, C8166 and MT4, induced significant degradation of Tax. 17-DMAG also facilitated growth arrest and cellular apoptosis to C8166 and MT4 and other ATL cell lines, although this treatment has no apparent effects on normal PBLs. 17-DMAG also downregulated Tax-mediated intracellular signals including the activation of NF-κB, activator protein 1 or HTLV-1 long terminal repeat in Tax-transfected HEK293 cells. Oral administration of 17-DMAG to ATL model mice xenografted with lymphomatous transgenic Lck-Tax (Lck proximal promoter-driven Tax transgene) cells or HTLV-1-producing tumor cells dramatically attenuated aggressive infiltration into multiple organs, inhibited de novo viral production and improved survival period. These observations identified 17-DMAG as a promising candidate for the prevention of ATL progression.

  13. Effect of inhibition of the Ubiquitin-Proteasome System and Hsp90 on growth and survival of Rhabdomyosarcoma cells in vitro

    Directory of Open Access Journals (Sweden)

    Peron Marica

    2012-06-01

    Full Text Available Abstract Background The ubiquitin-proteasome system (UPS and the heat shock response (HSR are two critical regulators of cell homeostasis, as their inhibition affects growth and survival of normal cells, as well as stress response and invasiveness of cancer cells. We evaluated the effects of the proteasome inhibitor Bortezomib and of 17-DMAG, a competitive inhibitor of Hsp90, in rhabdomyosarcoma (RMS cells, and analyzed the efficacy of single-agent exposures with combination treatments. Methods To assess cytotoxicity induced by Bortezomib and 17-DMAG in RMS cells, viability was measured by MTT assay after 24, 48 and 72 hours. Western blotting and immunofluorescence analyses were carried out to elucidate the mechanisms of action. Apoptosis was measured by FACS with Annexin-V-FITC and Propidium Iodide. Results Bortezomib and 17-DMAG, when combined at single low-toxic concentrations, enhanced growth inhibition of RMS cells, with signs of autophagy that included intensive cytoplasmic vacuolization and conversion of cytosolic LC3-I protein to its autophagosome-associated form. Treatment with lysosomal inhibitor chloroquine facilitates apoptosis, whereas stimulation of autophagy by rapamycin prevents LC3-I conversion and cell death, suggesting that autophagy is a resistance mechanism in RMS cells exposed to proteotoxic drugs. However, combination treatment also causes caspase-dependent apoptosis, PARP cleavage and Annexin V staining, as simultaneous inhibition of both UPS and HSR systems limits cytoprotective autophagy, exacerbating stress resulting from accumulation of misfolded proteins. Conclusion The combination of proteasome inhibitor Bortezomib with Hsp90 inhibitor 17-DMAG, appears to have important therapeutic advantages in the treatment of RMS cells compared with single-agent exposure, because compensatory survival mechanisms that occur as side effects of treatment may be prevented.

  14. Standardized tape stripping prior to patch testing induces upregulation of Hsp90, Hsp70, IL-33, TNF-α and IL-8/CXCL8 mRNA: new insights into the involvement of 'alarmins'.

    Science.gov (United States)

    Dickel, Heinrich; Gambichler, Thilo; Kamphowe, Jeanette; Altmeyer, Peter; Skrygan, Marina

    2010-10-01

    The strip patch test is recommended if patch test results are presumed to be false-negative. It is under discussion whether the cutaneous inflammation induced by tape stripping is a pivotal element in enhancing the allergic contact dermatitis response. To investigate epidermal mRNA expression of mediators implicated in the regulation of inflammation induced by tape stripping according to our standardized protocol in human skin. Thirty-one healthy volunteers (median age 26 years, range 18-62 years) participated in the study. We measured epidermal mRNAs coding for cytokines [tumour necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin (IL)-1α, IL-1β, IL-33, IL-10, IL-8/CXCL8, chemokine (C-C motif) ligand 2 (CCL2)/MCP-1 (monocyte chemotactic protein-1), chemokine (C-C motif) ligand 5 (CCL5)/RANTES (regulated upon activation normal T-cell expressed, and presumably secreted), IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF)], an adhesion molecule [intercellular adhesion molecule type 1 (ICAM-1)], heat shock proteins (Hsp27, Hsp70 and Hsp90), and the inflammasome complex [NACHT-LRR-PYD-containing protein-3 (NALP3), apoptosis-associated speck-like protein containing a CARD (ASC)/CARD5 (caspase recruitment domain-containing protein-5) and caspase-1] in tape-stripped skin of the upper back relative to untreated skin of the upper back, using quantitative real-time reverse transcription polymerase chain reaction technology. Epidermal mRNA expression levels of TNF-α, Hsp90, Hsp70, IL-33, and IL-8/CXCL8 were significantly upregulated, whereas CCL5/RANTES expression was significantly downregulated 6 hr after standardized tape stripping. Tape stripping the skin according to our standardized protocol shows immunostimulatory effects, with induction of keratinocyte-derived 'alarmins' and cytokines mounting an immune response, which may contribute to the increased sensitivity of the strip patch test versus the patch test. © 2010 John Wiley & Sons A/S.

  15. Ahsa1 and Hsp90 activity confers more severe craniofacial phenotypes in a zebrafish model of hypoparathyroidism, sensorineural deafness and renal dysplasia (HDR

    Directory of Open Access Journals (Sweden)

    Kelly Sheehan-Rooney

    2013-09-01

    The severity of most human birth defects is highly variable. Our ability to diagnose, treat and prevent defects relies on our understanding of this variability. Mutation of the transcription factor GATA3 in humans causes the highly variable hypoparathyroidism, sensorineural deafness and renal dysplasia (HDR syndrome. Although named for a triad of defects, individuals with HDR can also exhibit craniofacial defects. Through a forward genetic screen for craniofacial mutants, we isolated a zebrafish mutant in which the first cysteine of the second zinc finger of Gata3 is mutated. Because mutation of the homologous cysteine causes HDR in humans, these zebrafish mutants could be a quick and effective animal model for understanding the role of gata3 in the HDR disease spectrum. We demonstrate that, unexpectedly, the chaperone proteins Ahsa1 and Hsp90 promote severe craniofacial phenotypes in our zebrafish model of HDR syndrome. The strengths of the zebrafish system, including rapid development, genetic tractability and live imaging, make this an important model for variability.

  16. Combination treatment of renal cell carcinoma with belinostat and 5-fluorouracil: a role for oxidative stress induced DNA damage and HSP90 regulated thymidine synthase.

    Science.gov (United States)

    Kim, Mi Joung; Lee, Jee Suk; Park, Sang Eun; Yi, Hye-Jin; Jeong, In Gab; Kang, Jong Soon; Yun, Jieun; Lee, Joo-Yong; Ro, Seonggu; Lee, Jung Shin; Choi, Eun Kyung; Hwang, Jung Jin; Kim, Choung-Soo

    2015-05-01

    Despite several therapeutic options renal cell carcinoma is associated with a poor clinical outcome. Therefore, we investigated whether combining 5-fluorouracil with the histone deacetylase inhibitor belinostat would exert a synergistic effect on renal cell carcinoma cells in vitro and in vivo. We used SN12C cells treated with 5-fluorouracil and/or belinostat in vitro and in xenograft experiments in vivo. Cell viability and death mechanisms were assessed by MTS assay and Western blot. To investigate the role of reactive oxygen species we used H2DCF-DA, reactive oxygen species scavengers and the roGFP2 construct. Belinostat potentiated the anticancer effect of 5-fluorouracil. It synergistically induced apoptosis by activating caspases and increasing the subG1 cell population. Effects on reactive oxygen species mediated DNA damage included decreased thioredoxin expression and increased levels of TBP-2, γ-H2AX and Ac-H3. Furthermore, belinostat attenuated the 5-fluorouracil mediated induction of thymidylate synthase via HSP90 hyperacetylation. Co-administration of 5-fluorouracil with belinostat similarly reduced tumor volume and weight, and increased γ-H2AX and Ac-H3 levels in the SN12C xenograft model. In combination with 5-fluorouracil the targeted inhibitor of histone deacetylase synergistically inhibited renal cancer cell growth by the blockade of thymidylate synthase induction and the induction of reactive oxygen species mediated DNA damage in vitro and in vivo. Our results suggest that combined treatment with belinostat and 5-fluorouracil may represent a promising new approach to renal cancer. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. Ganetespib, an HSP90 inhibitor, kills Epstein-Barr virus (EBV)-infected B and T cells and reduces the percentage of EBV-infected cells in the blood.

    Science.gov (United States)

    Shatzer, Amber; Ali, Mir A; Chavez, Mayra; Dowdell, Kennichi; Lee, Min-Jung; Tomita, Yusuke; El-Hariry, Iman; Trepel, Jane B; Proia, David A; Cohen, Jeffrey I

    2017-04-01

    HSP90 inhibitors have been shown to kill Epstein-Barr virus (EBV)-infected cells by reducing the level of EBV EBNA-1 and/or LMP1. We treated virus-infected cells with ganetespib, an HSP90 inhibitor currently being evaluated in multiple clinical trials for cancer and found that the drug killed EBV-positive B and T cells and reduced the level of both EBV EBNA-1 and LMP1. Treatment of cells with ganetespib also reduced the level of pAkt. Ganetespib delayed the onset of EBV-positive lymphomas and prolonged survival in SCID mice inoculated with one EBV-transformed B-cell line, but not another B-cell line. The former cell line showed lower levels of EBNA-1 after treatment with ganetespib in vitro. Treatment of a patient with T-cell chronic active EBV with ganetespib reduced the percentage of EBV-positive cells in the peripheral blood. These data indicate that HSP90 inhibitors may have a role in the therapy of certain EBV-associated diseases.

  18. The small-molecule kinase inhibitor D11 counteracts 17-AAG-mediated up-regulation of HSP70 in brain cancer cells.

    Directory of Open Access Journals (Sweden)

    Susanne Schaefer

    Full Text Available Many types of cancer express high levels of heat shock proteins (HSPs that are molecular chaperones regulating protein folding and stability ensuring protection of cells from potentially lethal stress. HSPs in cancer cells promote survival, growth and spreading even in situations of growth factors deprivation by associating with oncogenic proteins responsible for cell transformation. Hence, it is not surprising that the identification of potent inhibitors of HSPs, notably HSP90, has been the primary research focus, in recent years. Exposure of cancer cells to HSP90 inhibitors, including 17-AAG, has been shown to cause resistance to chemotherapeutic treatment mostly attributable to induction of the heat shock response and increased cellular levels of pro-survival chaperones. In this study, we show that treatment of glioblastoma cells with 17-AAG leads to HSP90 inhibition indicated by loss of stability of the EGFR client protein, and significant increase in HSP70 expression. Conversely, co-treatment with the small-molecule kinase inhibitor D11 leads to suppression of the heat shock response and inhibition of HSF1 transcriptional activity. Beside HSP70, Western blot and differential mRNA expression analysis reveal that combination treatment causes strong down-regulation of the small chaperone protein HSP27. Finally, we demonstrate that incubation of cells with both agents leads to enhanced cytotoxicity and significantly high levels of LC3-II suggesting autophagy induction. Taken together, results reported here support the notion that including D11 in future treatment regimens based on HSP90 inhibition can potentially overcome acquired resistance induced by the heat shock response in brain cancer cells.

  19. The Hsp72 and Hsp90α mRNA Responses to Hot Downhill Running Are Reduced Following a Prior Bout of Hot Downhill Running, and Occur Concurrently within Leukocytes and the Vastus Lateralis

    Directory of Open Access Journals (Sweden)

    James A. Tuttle

    2017-07-01

    Full Text Available The leukocyte heat shock response (HSR is used to determine individual's thermotolerance. The HSR and thermotolerance are enhanced following interventions such as preconditioning and/or acclimation/acclimatization. However, it is unclear whether the leukocyte HSR is an appropriate surrogate for the HSR in other tissues implicated within the pathophysiology of exertional heat illnesses (e.g., skeletal muscle, and whether an acute preconditioning strategy (e.g., downhill running can improve subsequent thermotolerance. Physically active, non-heat acclimated participants were split into two groups to investigate the benefits of hot downhill running as preconditioning strategy. A hot preconditioning group (HPC; n = 6 completed two trials (HPC1HOTDOWN and HPC2HOTDOWN of 30 min running at lactate threshold (LT on −10% gradient in 30°C and 50% relative humidity (RH separated by 7 d. A temperate preconditioning group (TPC; n = 5 completed 30 min running at LT on a −1% gradient in 20°C and 50% (TPC1TEMPFLAT and 7 d later completed 30 min running at LT on −10% gradient in 30°C and 50% RH (TPC2HOTDOWN. Venous blood samples and muscle biopsies (vastus lateralis; VL were obtained before, immediately after, 3, 24, and 48 h after each trial. Leukocyte and VL Hsp72, Hsp90α, and Grp78 mRNA relative expression was determined via RT-QPCR. Attenuated leukocyte and VL Hsp72 (2.8 to 1.8 fold and 5.9 to 2.4 fold; p < 0.05 and Hsp90α mRNA (2.9 to 2.4 fold and 5.2 to 2.4 fold; p < 0.05 responses accompanied reductions (p < 0.05 in physiological strain [exercising rectal temperature (−0.3°C and perceived muscle soreness (~ −14%] during HPC2HOTDOWN compared to HPC1HOTDOWN (i.e., a preconditioning effect. Both VL and leukocyte Hsp72 and Hsp90α mRNA increased (p < 0.05 simultaneously following downhill runs and demonstrated a strong relationship (p < 0.01 of similar magnitudes with one another. Hot downhill running is an effective preconditioning strategy

  20. Caracterización in silico de las proteínas del choque térmico Hsp70 y Hsp90 deBemisia tabaci (Hemiptera: Aleyrodidae y su posible actividad adaptativa

    Directory of Open Access Journals (Sweden)

    Eneida Torres Cabra

    2014-06-01

    Full Text Available La mosca blanca, Bemisia tabaci (Hemiptera: Aleyrodidae es una de las plagas más destructivas e invasivas en el mundo, ataca una gran cantidad de cultivos. Se adapta fácilmente a plantas hospederas y a nuevas regiones geográficas, lo que sugiere el desarrollo de mecanismos de control a daños producidos por factores estresantes. Las proteínas Hsp se expresanen los organismos como mecanismo de defensa, actúan como chaperonas en el correcto ensamblaje de las proteínas. En este estudio se realizó una caracterizaciónin silico de las proteínas Hsp70 y Hsp90 de B. tabaci, secuencias obtenidas de NCBI. La determinaciónde los perfiles de hidrofobicidad, polaridad, accesibilidady flexibilidad se obtuvieron con “ProScale” de ExPASy, el perfil de antigenicidad con JaMBW. La secuencia aminoacídica se analizó con GOR IV y SOPMA y la composición de aminoácidos con ProtParam. Para analizar el peso molecular, índice deinestabilidad, índice alifático y gradiente hidropático,con GRAVY. La estructura terciaria se obtuvo con HHpred, y ESyPred3D. Para validar las estructuras 3D se utilizó Procheck, What_check y errat. Hsp70 y Hsp90 de B. tabaci presentan valores bajos de hidrofobicidady altos de polaridad, flexibilidad y accesibilidad, características que le permiten a las proteínas extender su capacidad como chaperonas. La Hsp70tiene una estructura secundaria compuesta por 41-45% alfa hélices, 30-43% coil y menos del 6% en hoja plegada y la Hsp90 por 52 y 53% hélices, 26-34% coily 6% hoja plegada. Las Hsp juegan un rol importante en los insectos debido a su tamaño y corto ciclo de vida, pues la temperatura influye en su distribución y abundancia.

  1. Geldanamycin leads to superoxide formation by enzymatic and non-enzymatic redox cycling. Implications for studies of Hsp90 and endothelial cell nitric-oxide synthase

    National Research Council Canada - National Science Library

    Dikalov, Sergey; Landmesser, Ulf; Harrison, David G

    2002-01-01

    .... Geldanamycin contains a quinone group, which may participate in redox cycling. When geldanamycin was exposed to the flavin-containing enzyme cytochrome P-450 reductase, both semiquinone and superoxide (O(2...

  2. Antipsychotics promote GABAergic interneuron genesis in the adult rat brain: Role of heat-shock protein production.

    Science.gov (United States)

    Kaneta, Hiroo; Ukai, Wataru; Tsujino, Hanako; Furuse, Kengo; Kigawa, Yoshiyasu; Tayama, Masaya; Ishii, Takao; Hashimoto, Eri; Kawanishi, Chiaki

    2017-09-01

    Current antipsychotics reduce positive symptoms and reverse negative symptoms in conjunction with cognitive behavioral issues with the goal of restoring impaired occupational and social functioning. However, limited information is available on their influence on gliogenesis or their neurogenic properties in adult schizophrenia brains, particularly on GABAergic interneuron production. In the present study, we used young adult subventricular zone (SVZ)-derived progenitor cells expressing proteoglycan NG2 cultures to examine the oligodendrocyte and GABAergic interneuron genesis effects of several kinds of antipsychotics on changes in differentiation function induced by exposure to the NMDA receptor antagonist MK-801. We herein demonstrated that antipsychotics promoted or restored changes in the oligodendrocyte/GABAergic interneuron differentiation functions of NG2(+) cells induced by the exposure to MK-801, which was considered to be one of the drug-induced schizophrenia model. We also demonstrated that antipsychotics restored heat-shock protein (HSP) production in NG2(+) cells with differentiation impairment. The antipsychotics olanzapine, aripiprazole, and blonanserin, but not haloperidol increased HSP90 levels, which were reduced by the exposure to MK-801. Our results showed that antipsychotics, particularly those recently synthesized, exerted similar GABAergic interneuron genesis effects on NG2(+) neuronal/glial progenitor cells in the adult rat brain by increasing cellular HSP production, and also suggest that HSP90 may play a crucial role in the pathophysiology of schizophrenia and is a key target for next drug development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. In vitro Cytotoxic Activities of the Oral Platinum(IV) Prodrug Oxoplatin and HSP90 Inhibitor Ganetespib against a Panel of Gastric Cancer Cell Lines

    OpenAIRE

    Klameth, Lukas; Rath, Barbara; Hamilton, Gerhard

    2017-01-01

    Gastric cancer exhibits a poor prognosis and is the third most common cause of cancer death worldwide. Chemotherapy of metastatic gastric cancer is based on combinations of platinum drugs and fluoropyrimidines, with added agents. Oxoplatin is a stable oral platinum(IV) prodrug which is converted to a highly active tetrachlorido(IV) complex under acidic conditions. In the present work, we studied the cytotoxic effects of oxoplatin against a panel of four gastric cancer cell lines in vitro. Fur...

  4. Metallochelating liposomes with associated lipophilised norAbuMDP as biocompatible platform for construction of vaccines with recombinant His-tagged 3 antigens: Preparation, structural study and immune response towards rHsp90

    Czech Academy of Sciences Publication Activity Database

    Mašek, J.; Bartheldyová, E.; Turánek-Knotigová, P.; Škrabalová, M.; Korvasová, Z.; Plocková, J.; Koudelka, Š.; Škodová, P.; Kulich, P.; Křupka, M.; Zachová, K.; Czerneková, L.; Horynová, M.; Kratochvílová, Irena; Miller, A. D.; Zyka, Daniel; Michálek, J.; Vrbová, J.; Šebela, M.; Ledvina, Miroslav; Raška, M.; Turánek, J.

    2011-01-01

    Roč. 151, č. 2 (2011), s. 193-201 ISSN 0168-3659 R&D Projects: GA ČR(CZ) GAP304/10/1951; GA AV ČR KAN200520703; GA AV ČR KAN200100801 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z40550506 Keywords : recombinant vaccine * liposome Subject RIV: EC - Immunology Impact factor: 5.732, year: 2011 http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T3D-520M1P7-1&_user=625012&_coverDate=01%2F21%2F2011&_rdoc=1&_fmt=high&_orig=gateway&_origi

  5. Identification of HSP90 gene from the Chinese oak silkworm ...

    African Journals Online (AJOL)

    ajl user 1

    2012-06-28

    Jun 28, 2012 ... College of Life Science, Anhui Agricultural University, 130 Changjiang West Road 230036, Peoples Republic of China. Accepted 11 June .... Real-time PCR analysis. The primers F3, R3, F18S and R18S are used for real-time quantitative PCR. Total RNA was extracted from hemocytes, fat bodies, midgut ...

  6. Role of Hsp90 in Androgen-Refractory Prostate Cancer

    Science.gov (United States)

    2010-03-01

    amplified cDNA was restriction digested and cloned into the multiple cloning sites (MCS). Lentiviral vectors were next packaged into packaging cell line...provided by Dr. Tso-Pang Yao (Duke University, Durham, NC); MEF cells were maintained in DMEM ( Invitro - gen). Cells were transfected via

  7. Targeting SRC Family Kinases and HSP90 in Lung Cancer

    Science.gov (United States)

    2016-12-01

    protein lysates for analysis by RPPA analysis or Western blotting . Hematoxylin and eosin (H&E) staining was performed on all FFPE tissue from...blue) as predicted by RPPA for multiple Nedd9-null versus Nedd9-wt dissected lung tumors Figure 12. Representative Western blot data and quantitation...null versus Nedd9-wt dissected lung tumors. Figure 12. Representative Western blot data and quantitation from multiple independent experiments of the

  8. Targeting SRC Family Kinases in HSP90 in Lung Cancer

    Science.gov (United States)

    2015-10-01

    other provision of law , no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a...to detect tumor initiation and growth, followed by euthanasia and processing of tissues for mechanistic analysis. Representative images of MRI are

  9. Harvard Aging Brain Study : Dataset and accessibility

    NARCIS (Netherlands)

    Dagley, Alexander; LaPoint, Molly; Huijbers, Willem; Hedden, Trey; McLaren, Donald G.; Chatwal, Jasmeer P.; Papp, Kathryn V.; Amariglio, Rebecca E.; Blacker, Deborah; Rentz, Dorene M.; Johnson, Keith A.; Sperling, Reisa A.; Schultz, Aaron P.

    2017-01-01

    The Harvard Aging Brain Study is sharing its data with the global research community. The longitudinal dataset consists of a 284-subject cohort with the following modalities acquired: demographics, clinical assessment, comprehensive neuropsychological testing, clinical biomarkers, and neuroimaging.

  10. Brain-Science Based Cohort Studies

    Science.gov (United States)

    Koizumi, Hideaki

    2011-01-01

    This article describes a number of human cohort studies based on the concept of brain-science and education. These studies assess the potential effects of new technologies on babies, children and adolescents, and test hypotheses drawn from animal and genetic case studies to see if they apply to people. A flood of information, virtual media,…

  11. Metabolomics studies in brain tissue: A review.

    Science.gov (United States)

    Gonzalez-Riano, Carolina; Garcia, Antonia; Barbas, Coral

    2016-10-25

    Brain is still an organ with a composition to be discovered but beyond that, mental disorders and especially all diseases that curse with dementia are devastating for the patient, the family and the society. Metabolomics can offer an alternative tool for unveiling new insights in the discovery of new treatments and biomarkers of mental disorders. Until now, most of metabolomic studies have been based on biofluids: serum/plasma or urine, because brain tissue accessibility is limited to animal models or post mortem studies, but even so it is crucial for understanding the pathological processes. Metabolomics studies of brain tissue imply several challenges due to sample extraction, along with brain heterogeneity, sample storage, and sample treatment for a wide coverage of metabolites with a wide range of concentrations of many lipophilic and some polar compounds. In this review, the current analytical practices for target and non-targeted metabolomics are described and discussed with emphasis on critical aspects: sample treatment (quenching, homogenization, filtration, centrifugation and extraction), analytical methods, as well as findings considering the used strategies. Besides that, the altered analytes in the different brain regions have been associated with their corresponding pathways to obtain a global overview of their dysregulation, trying to establish the link between altered biological pathways and pathophysiological conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Recent study on primary familial brain calcification

    Directory of Open Access Journals (Sweden)

    You CHEN

    2017-07-01

    Full Text Available Primary familial brain calcification (PFBC, characterized by bilateral, symmetric calcifications in basal ganglia and other brain regions and visualized in neuroimaging and neuropsychiatric manifestations variable in type and severity, is a neurodegenerative disorder with clinical and genetic heterogeneity. The discovery of causative genes (namely SLC20A2, PDGFRB, PDGFB and XPR1 and functional studies indicated that PFBC may be related to inorganic phosphate transport dysfunction and blood-brain barrier deficiency. Since the understanding of PFBC has advanced dramatically in recent years, this review focuses on diagnosis, molecular genetics, genotype-phenotype relationship and treatment in PFBC. DOI: 10.3969/j.issn.1672-6731.2017.07.003

  13. Studies of aluminum in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using /sup 14/C autoradiography to measure the uptake of /sup 14/C 2-deoxy-D-glucose (/sup 14/C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-..mu..m resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The /sup 14/C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of /sup 14/C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10/sup 9/ Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab.

  14. Electric Brain Stimulation No Better Than Meds for Depression: Study

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_166920.html Electric Brain Stimulation No Better Than Meds For Depression: ... can't find relief, stimulating the brain with electric impulses may help. But a new study by ...

  15. PCB disruption of the hypothalamus-pituitary-interrenal axis involves brain glucocorticoid receptor downregulation in anadromous Arctic charr

    Science.gov (United States)

    Aluru, N.; Jorgensen, E.H.; Maule, A.G.; Vijayan, M.M.

    2004-01-01

    We examined whether brain glucocorticoid receptor (GR) modulation by polychlorinated biphenyls (PCBs) was involved in the abnormal cortisol response to stress seen in anadromous Arctic charr (Salvelinus alpinus). Fish treated with Aroclor 1254 (0, 1, 10, and 100 mg/kg body mass) were maintained for 5 mo without feeding in the winter to mimic their seasonal fasting cycle, whereas a fed group with 0 and 100 mg/kg Aroclor was maintained for comparison. Fasting elevated plasma cortisol levels and brain GR content but depressed heat shock protein 90 (hsp90) and interrenal cortisol production capacity. Exposure of fasted fish to Aroclor 1254 resulted in a dose-dependent increase in brain total PCB content. This accumulation in fish with high PCB dose was threefold higher in fasted fish compared with fed fish. PCBs depressed plasma cortisol levels but did not affect in vitro interrenal cortisol production capacity in fasted charr. At high PCB dose, the brain GR content was significantly lower in the fasted fish and this corresponded with a lower brain hsp70 and hsp90 content. The elevation of plasma cortisol levels and upregulation of brain GR content may be an important adaptation to extended fasting in anadromous Arctic charr, and this response was disrupted by PCBs. Taken together, the hypothalamus-pituitary- interrenal axis is a target for PCB impact during winter emaciation in anadromous Arctic charr.

  16. Harvard Aging Brain Study: Dataset and accessibility.

    Science.gov (United States)

    Dagley, Alexander; LaPoint, Molly; Huijbers, Willem; Hedden, Trey; McLaren, Donald G; Chatwal, Jasmeer P; Papp, Kathryn V; Amariglio, Rebecca E; Blacker, Deborah; Rentz, Dorene M; Johnson, Keith A; Sperling, Reisa A; Schultz, Aaron P

    2017-01-01

    The Harvard Aging Brain Study is sharing its data with the global research community. The longitudinal dataset consists of a 284-subject cohort with the following modalities acquired: demographics, clinical assessment, comprehensive neuropsychological testing, clinical biomarkers, and neuroimaging. To promote more extensive analyses, imaging data was designed to be compatible with other publicly available datasets. A cloud-based system enables access to interested researchers with blinded data available contingent upon completion of a data usage agreement and administrative approval. Data collection is ongoing and currently in its fifth year. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The Virtual Mouse Brain: A Computational Neuroinformatics Platform to Study Whole Mouse Brain Dynamics.

    Science.gov (United States)

    Melozzi, Francesca; Woodman, Marmaduke M; Jirsa, Viktor K; Bernard, Christophe

    2017-01-01

    Connectome-based modeling of large-scale brain network dynamics enables causal in silico interrogation of the brain's structure-function relationship, necessitating the close integration of diverse neuroinformatics fields. Here we extend the open-source simulation software The Virtual Brain (TVB) to whole mouse brain network modeling based on individual diffusion magnetic resonance imaging (dMRI)-based or tracer-based detailed mouse connectomes. We provide practical examples on how to use The Virtual Mouse Brain (TVMB) to simulate brain activity, such as seizure propagation and the switching behavior of the resting state dynamics in health and disease. TVMB enables theoretically driven experimental planning and ways to test predictions in the numerous strains of mice available to study brain function in normal and pathological conditions.

  18. Neuroprotective and neurotrophic effects of long term lithium treatment in mouse brain.

    Science.gov (United States)

    Riadh, Nciri; Allagui, Mohamed Salah; Bourogaa, Ezzedine; Vincent, Christian; Croute, Françoise; Elfeki, Abdelfattah

    2011-08-01

    Since the worldwide approval of lithium therapy in 1970, lithium has been used for its anti-manic, antidepressant, and anti-suicidal effects. The last decade has witnessed the following discoveries about its neuroprotective and neurotrophic properties, yet the therapeutic mechanisms at the cellular level remain not-fully defined. We have undertaken the present study to determine if chronic lithium treatment, at therapeutically relevant concentrations, exerts neurotrophic/neuroprotective effects in the mouse brain in vivo. For this purpose, 10 months aged mice were fed for 3 months on food pellets contained 1 g (L1 group) or 2 g (L2 group) lithium carbonate/kg, resulting in serum concentrations of 0.4 and 0.8 mM, respectively. The evaluation of lipid peroxidation level and the activities of catalase, superoxide-dismutase and glutathione-peroxidase showed that chronic Li administration, at therapeutic doses doesn't induce oxidative stress in brain tissue. No changes in the expression levels of molecular chaperones, namely, the HSP70, and HSP90 heat shock proteins and the GRP94 glucose-regulated protein were detected. Moreover, this treatment has caused (1) an increase in the relative brain weight (2) a delay in the age induced cerebral glucose impairment (3) an enhancement of the neurogenesis in hippocampus and enthorinal cortex highlighted by silver impregnation. Under these experimental conditions, no modifications were observed in expression levels of GSK3 and of its downstream target β-catenin proteins. These results suggested that chronic Li administration, at therapeutic doses, has a neuroprotective/neurotrophic properties and its therapeutic mechanism doesn't implicate GSK3 inactivation.

  19. Can Taichi reshape the brain? A brain morphometry study.

    Directory of Open Access Journals (Sweden)

    Gao-Xia Wei

    Full Text Available Although research has provided abundant evidence for Taichi-induced improvements in psychological and physiological well-being, little is known about possible links to brain structure of Taichi practice. Using high-resolution MRI of 22 Tai Chi Chuan (TCC practitioners and 18 controls matched for age, sex and education, we set out to examine the underlying anatomical correlates of long-term Taichi practice at two different levels of regional specificity. For this purpose, parcel-wise and vertex-wise analyses were employed to quantify the difference between TCC practitioners and the controls based on cortical surface reconstruction. We also adopted the Attention Network Test (ANT to explore the effect of TCC on executive control. TCC practitioners, compared with controls, showed significantly thicker cortex in precentral gyrus, insula sulcus and middle frontal sulcus in the right hemisphere and superior temporal gyrus and medial occipito-temporal sulcus and lingual sulcus in the left hemisphere. Moreover, we found that thicker cortex in left medial occipito-temporal sulcus and lingual sulcus was associated with greater intensity of TCC practice. These findings indicate that long-term TCC practice could induce regional structural change and also suggest TCC might share similar patterns of neural correlates with meditation and aerobic exercise.

  20. Brain connectomics imaging in schizophrenia study

    Science.gov (United States)

    Tseng, Wen-Yih Isaac; Chen, Yu-Jen; Hsu, Yung-Chin

    2017-04-01

    Schizophrenia is a debilitating mental disorder of which the biological underpinning is still unclear. Increasing evidence in neuroscience has indicated that schizophrenia arises from abnormal connections within or between networks, hence called dysconnectvity syndrome. Recently, we established an automatic method to analyze integrity of the white matter tracts over the whole brain based on diffusion MRI data, named tract-based automatic analysis (TBAA), and used this method to study white matter connection in patients with schizophrenia. We found that alteration of tract integrity is hereditary and inherent; it is found in siblings and in patients in the early phase of disease. Moreover, patients with good treatment outcome and those with poor outcome show distinctly different patterns of alterations, suggesting that these two groups of patients might be distinguishable based on the difference in tract alteration. In summary, the altered tracts revealed by TBAA might become potential biomarkers or trait markers for schizophrenia.

  1. Multimodal MRI Study of Human Brain Connectivity: Cognitive Networks

    OpenAIRE

    Sala Llonch, Roser

    2015-01-01

    INTRODUCTION: This thesis has been elaborated as a compendium of 6 research studies, in which we have used a variety of methods related with Magnetic Resonance Imaging (MRI) with the objective to characterize brain connectivity and its relationship with cognition in young and aged subjects and in preclinical Alzheimers Disease (AD). Brain Connectivity refers to any pattern of links connecting different areas of the brain. It can be stud­ied at its functional level, by using functional MR...

  2. Longitudinal MRI studies of brain morphometry

    DEFF Research Database (Denmark)

    Skimminge, Arnold Jesper Møller

    High resolution MR images acquired at multiple time points of the brain allow quantification of localized changes induced by external factors such as maturation, ageing or disease progression/recovery. High-dimensional warping of such MR images incorporates changes induced by external factors int...

  3. ADHD Experts Fear Brain-Growth Study Being Misconstrued

    Science.gov (United States)

    Viadero, Debra

    2007-01-01

    This article reports on the results of a groundbreaking brain-imaging study suggesting that attention deficit hyperactivity disorder stems from delayed brain maturation. Implicit in some of the news coverage was the hopeful idea that many--even most--children eventually grow out of the disorder. But that's not exactly true, according to a…

  4. Accelerated Brain Aging in Schizophrenia : A Longitudinal Pattern Recognition Study

    NARCIS (Netherlands)

    Schnack, Hugo G; van Haren, Neeltje E M; Nieuwenhuis, Mireille; Hulshoff Pol, Hilleke E; Cahn, Wiepke; Kahn, René S

    2016-01-01

    OBJECTIVE: Despite the multitude of longitudinal neuroimaging studies that have been published, a basic question on the progressive brain loss in schizophrenia remains unaddressed: Does it reflect accelerated aging of the brain, or is it caused by a fundamentally different process? The authors used

  5. Accelerated brain aging in schizophrenia : A longitudinal pattern recognition study

    NARCIS (Netherlands)

    Schnack, Hugo G.; Van Haren, Neeltje E M; Nieuwenhuis, Mireille; Pol, Hilleke E Hulshoff; Cahn, Wiepke; Kahn, René S.

    2016-01-01

    OBJECTIVE: Despite the multitude of longitudinal neuroimaging studies that have been published, a basic question on the progressive brain loss in schizophrenia remains unaddressed: Does it reflect accelerated aging of the brain, or is it caused by a fundamentally different process? The authors used

  6. [Prognosis in pediatric traumatic brain injury. A dynamic cohort study].

    Science.gov (United States)

    Vázquez-Solís, María G; Villa-Manzano, Alberto I; Sánchez-Mosco, Dalia I; Vargas-Lares, José de Jesús; Plascencia-Fernández, Irma

    2013-01-01

    traumatic brain injury is a main cause of hospital admission and death in children. Our objective was to identify prognostic factors of pediatric traumatic brain injury. this was a dynamic cohort study of traumatic brain injury with 6 months follow-up. The exposition was: mild or moderate/severe traumatic brain injury, searching for prognosis (morbidity-mortality and decreased Glasgow scale). Relative risk and logistic regression was estimated for prognostic factors. we evaluated 440 patients with mild traumatic brain injury and 98 with moderate/severe traumatic brain injury. Morbidity for mild traumatic brain injury was 1 %; for moderate/severe traumatic brain injury, 5 %. There were no deaths. Prognostic factors for moderate/severe traumatic brain injury were associated injuries (RR = 133), fractures (RR = 60), street accidents (RR = 17), night time accidents (RR = 2.3) and weekend accidents (RR = 2). Decreased Glasgow scale was found in 9 %, having as prognostic factors: visible injuries (RR = 3), grown-up supervision (RR = 2.5) and time of progress (RR = 1.6). there should be a prognosis established based on kinetic energy of the injury and not only with Glasgow Scale.

  7. Genome-wide association study of sporadic brain arteriovenous malformations

    NARCIS (Netherlands)

    Weinsheimer, S.; Bendjilali, N.; Nelson, J.; Guo, D.E.; Zaroff, J.G.; Sidney, S.; McCulloch, C.E.; Salman, R. Al-Shahi; Berg, J.N.; Koeleman, B.P.C.; Simon, M.; Bostroem, A.; Fontanella, M.; Sturiale, C.L.; Pola, R.; Puca, A.; Lawton, M.T.; Young, W.L.; Pawlikowska, L.; Klijn, C.J.M.; Kim, H.

    2016-01-01

    BACKGROUND: The pathogenesis of sporadic brain arteriovenous malformations (BAVMs) remains unknown, but studies suggest a genetic component. We estimated the heritability of sporadic BAVM and performed a genome-wide association study (GWAS) to investigate association of common single nucleotide

  8. Study Suggests Brain Is Hard-Wired for Chronic Pain

    Science.gov (United States)

    ... News Release Tuesday, September 17, 2013 NIH-funded study suggests brain is hard-wired for chronic pain ... Apkarian, Ph.D., a senior author of the study and professor of physiology at Northwestern University Feinberg ...

  9. A review of sleep deprivation studies evaluating the brain transcriptome.

    Science.gov (United States)

    Elliott, Alisa S; Huber, Jason D; O'Callaghan, James P; Rosen, Charles L; Miller, Diane B

    2014-01-01

    Epidemiological studies show a positive association between adequate sleep and good health. Further, disrupted sleep may increase the risk for CNS diseases, such as stroke and Alzheimer's disease. However, there has been limited progress in determining how sleep is linked to brain health or how sleep disruption may increase susceptibility to brain insult and disease. Animal studies can aid in understanding these links. In reviewing the animal literature related to the effects of sleep disruption on the brain, we found most of the work was directed toward investigating and characterizing the role of various brain areas or structures in initiating and regulating sleep. In contrast, limited effort has been directed towards understanding how sleep disruption alters the brain's health or susceptibility to insult. We also note many current studies have determined the changes in the brain following compromised sleep by examining, for example, the brain transcriptome or to a more limited extent the proteome. However, these studies have utilized almost exclusively total sleep deprivation (e.g., 24 out of 24 hours) paradigms or single short periods of limited acute sleep deprivation (e.g., 3 out of 24 hours). While such strategies are beneficial in understanding how sleep is controlled, they may not have much translational value for determining links between sleep and brain health or for determining how sleep disruption may increase brain susceptibility to insult. Surprisingly, few studies have determined how the duration and recurrence of sleep deprivation influence the effects seen after sleep deprivation. Our aim in this review was to identify relevant rodent studies from 1980 through 2012 and analyze those that use varying durations of sleep deprivation or restriction in their effort to evaluate the effects of sleep deprivation on the brain transcriptome and to a more limited extent the proteome. We examined how differences in the duration of sleep deprivation affect

  10. Clinical MRS studies of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Hubesch, B.; Marinier, D.S.; Hetherington, H.P.; Twieg, D.B.; Weiner, M.W. (Veterans Administration Medical Center, San Francisco, CA (USA))

    1989-12-01

    Image-guided {sup 31}P and 1H magnetic resonance localized spectroscopy was performed on patients with brain tumors, temporal lobe epilepsy, chronic brain stroke, and deep white matter lesions. Absolute molar concentrations of metabolites, peak area ratios, and pH were obtained. The important findings were that {sup 31}P metabolite concentrations were significantly reduced in tumors, infarcts, and deep white matter lesions. Similarly, {sup 1}H metabolite intensities were reduced in chronic stroke. In the seizure foci of epilepsy patients, in tumors, and in chronic stroke, the pH was more alkaline than the normal pH. Peak area ratios were altered in tumors (reduction of phosphocreatine/inorganic phosphate) and in chronic stroke (large increases in Cr/NAA and Cho/NAA). Finally, the spectroscopic imaging technique offers a versatile alternative to the single point techniques, producing spectra or images of the spatial distribution of individual {sup 31}P metabolites.

  11. Brain pathology after mild traumatic brain injury: an exploratory study by repeated magnetic resonance examination.

    Science.gov (United States)

    Lannsjö, Marianne; Raininko, Raili; Bustamante, Mariana; von Seth, Charlotta; Borg, Jörgen

    2013-09-01

    To explore brain pathology after mild traumatic brain injury by repeated magnetic resonance examination. A prospective follow-up study. Nineteen patients with mild traumatic brain injury presenting with Glasgow Coma Scale (GCS) 14-15. The patients were examined on day 2 or 3 and 3-7 months after the injury. The magnetic resonance protocol comprised conventional T1- and T2-weighted sequences including fluid attenuated inversion recovery (FLAIR), two susceptibility-weighted sequences to reveal haemorrhages, and diffusion-weighted sequences. Computer-aided volume comparison was performed. Clinical outcome was assessed by the Rivermead Post-Concussion Symptoms Questionnaire (RPQ), Hospital Anxiety and Depression Scale (HADS) and Glasgow Outcome Scale Extended (GOSE). At follow-up, 7 patients (37%) reported ≥  3 symptoms in RPQ, 5 reported some anxiety and 1 reported mild depression. Fifteen patients reported upper level of good recovery and 4 patients lower level of good recovery (GOSE 8 and 7, respectively). Magnetic resonance pathology was found in 1 patient at the first examination, but 4 patients (21%) showed volume loss at the second examination, at which 3 of them reported brain volume, demonstrated by computer-aided magnetic resonance imaging volumetry, may be a feasible marker of brain pathology after mild traumatic brain injury.

  12. Maxillofacial injuries and traumatic brain injury--a pilot study.

    Science.gov (United States)

    Rajandram, Rama Krsna; Syed Omar, Syed Nabil; Rashdi, Muhd Fazly Nizam; Abdul Jabar, Mohd Nazimi

    2014-04-01

    Maxillofacial injuries comprising hard tissue as well as soft tissue injuries can be associated with traumatic brain injuries due to the impact of forces transmitted through the head and neck. To date, the role of maxillofacial injury on brain injury has not been properly documented with some saying it has a protective function on the brain while others opposing this idea. This cross-sectional retrospective study evaluated all patients with maxillofacial injuries. The aim of the study was to analyze the occurrence and relationship of maxillofacial injuries with traumatic brain injuries. We retrospectively studied the hospital charts of all trauma patients seen at the accident and emergency department of UKM Medical Centre from November 2010 until November 2011. A detail analysis was then carried out on all patients who satisfied the inclusion and exclusion criteria. A total of 11294 patients were classified as trauma patients in which 176 patients had facial fractures and 292 did not have facial fractures. Middle face fractures was the most common pattern of facial fracture seen. Traumatic brain injury was present in 36.7% of maxillofacial cases. A significant association was found between facial fractures and traumatic brain injury (P maxillofacial injuries with or without facial fractures are at risk of acute or delayed traumatic brain injury. All patients should always have proper radiological investigations together with a proper observation and follow-up schedule. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Brain Connectivity Studies in Schizophrenia: Unravelling the Effects of Antipsychotics

    DEFF Research Database (Denmark)

    Nejad, A.B.; Ebdrup, Bjørn Hylsebeck; Glenthøj, Birte Yding

    2012-01-01

    Impaired brain connectivity is a hallmark of schizophrenia brain dysfunction. However, the effect of drug treatment and challenges on the dysconnectivity of functional networks in schizophrenia is an understudied area. In this review, we provide an overview of functional magnetic resonance imaging...... studies examining dysconnectivity in schizophrenia and discuss the few studies which have also attempted to probe connectivity changes with antipsychotic drug treatment. We conclude with a discussion of possible avenues for further investigation....

  14. Vocal Emotion of Humanoid Robots: A Study from Brain Mechanism

    Directory of Open Access Journals (Sweden)

    Youhui Wang

    2014-01-01

    Full Text Available Driven by rapid ongoing advances in humanoid robot, increasing attention has been shifted into the issue of emotion intelligence of AI robots to facilitate the communication between man-machines and human beings, especially for the vocal emotion in interactive system of future humanoid robots. This paper explored the brain mechanism of vocal emotion by studying previous researches and developed an experiment to observe the brain response by fMRI, to analyze vocal emotion of human beings. Findings in this paper provided a new approach to design and evaluate the vocal emotion of humanoid robots based on brain mechanism of human beings.

  15. Sleep Deprivation Makes the Young Brain Resemble the Elderly Brain: A Large-Scale Brain Networks Study.

    Science.gov (United States)

    Zhou, Xinqi; Wu, Taoyu; Yu, Jing; Lei, Xu

    2017-02-01

    Decreased cognition performance and impaired brain function are similar results of sleep deprivation (SD) and aging, according to mounted supporting evidence. Some investigators even proposed SD as a model of aging. However, few direct comparisons were ever explored between the effects of SD and aging by network module analysis with the resting-state functional magnetic resonance imaging. In this study, both within-module and between-module (BT) connectivities were calculated in the whole brain to describe a complete picture of brain networks' functional connectivity among three groups (young normal sleep, young SD, and old group). The results showed that the BT connectivities in subcortical and cerebellar networks were significantly declined in both the young SD group and old group. There were six other networks, that is, ventral attention, dorsal attention, default mode, auditory, cingulo-opercular, and memory retrieval networks, significantly influenced by aging. Therefore, we speculated that the effects of SD on the young group can be regarded as a simplified model of aging. Moreover, this provided a possible explanation, that is, the old were more tolerable for SD than the young. However, SD may not be a considerable model for aging when discussing the brain regions related to those SD-uninfluenced networks.

  16. Electrical stunning and exsanguination decrease the extracellular volume in the broiler brain as studied with brain impedance recordings

    NARCIS (Netherlands)

    Savenije, B; Lambooij, E; Pieterse, C; Korf, J

    Electrical stunning in the process of slaughtering poultry is used to induce unconsciousness and immobilize the animal for easier processing. Unconsciousness is a function of brain damage. Brain damage has been studied with brain impedance recordings under ischemic conditions. This experiment

  17. Sulforaphane inhibits pancreatic cancer through disrupting Hsp90-p50Cdc37complex and direct interactions with amino acids residues of Hsp90

    NARCIS (Netherlands)

    Li, Yanyan; Karagöz, G. Elif; Seo, Young Ho; Zhang, Tao; Jiang, Yiqun; Yu, Yanke; Duarte, Afonso M.S.; Schwartz, Steven J.; Boelens, Rolf; Carroll, Kate; Rüdiger, Stefan G.D.; Sun, Duxin

    2012-01-01

    Sulforaphane [1-isothiocyanato-4-(methyl-sulfinyl) butane)], an isothiocyanate derived from cruciferous vegetables, has been shown to possess potent chemopreventive activity. We analyzed the effect of sulforaphane on the proliferation of pancreatic cancer cells. Sulforaphane inhibited pancreatic

  18. Studying brain organization via spontaneous fMRI signal.

    Science.gov (United States)

    Power, Jonathan D; Schlaggar, Bradley L; Petersen, Steven E

    2014-11-19

    In recent years, some substantial advances in understanding human (and nonhuman) brain organization have emerged from a relatively unusual approach: the observation of spontaneous activity, and correlated patterns in spontaneous activity, in the "resting" brain. Most commonly, spontaneous neural activity is measured indirectly via fMRI signal in subjects who are lying quietly in the scanner, the so-called "resting state." This Primer introduces the fMRI-based study of spontaneous brain activity, some of the methodological issues active in the field, and some ways in which resting-state fMRI has been used to delineate aspects of area-level and supra-areal brain organization. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Brain activation studies with PET and functional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Yonekura, Yoshiharu [Fukui Medical Univ., Matsuoka (Japan). Biomedical Imaging Research Center; Sadato, Norihiro [Okazaki National Research Inst., Aichi (Japan). National Inst. for Physiological Sciences

    2002-01-01

    Application of PET and functional MRI in brain activation studies is reviewed. 3D-PET images obtained repeatedly after intravenous injection of about 370 MBq of H{sub 2}{sup 15}O can detect a faint blood flow change in the brain. Functional MRI can also detect the blood flow change in the brain due to blood oxygen level-dependent effect. Echo-planar imaging is popular in MRI with 1.5 or 3 T. Images are analyzed by statistical parametric mapping with correction of cerebral regions, anatomical normalization and statistics. PET data give the blood flow change by the H{sub 2}{sup 15}O incorporation into the brain and MRI data, by the scarce tissue oxygen consumption despite the change. Actual images during the cognition task-performance and of frequent artifacts are given. PET is suitable for studies of brain functions like sensibility and emotion and functional MRI, like cortex functions and clinical practices in identification of functional regions prior to surgery and evaluation of functional recovery of damaged brain. (K.H.)

  20. Reelin expression in brain endothelial cells: an electron microscopy study.

    Science.gov (United States)

    Perez-Costas, Emma; Fenton, Erin Y; Caruncho, Hector J

    2015-03-24

    Reelin expression and function have been extensively studied in the brain, although its expression has been also reported in other tissues including blood. This raises the possibility that reelin might be able to cross the blood-brain barrier, which could be functionally relevant. Up-to-date no studies have been conducted to assess if reelin is present in the blood-brain barrier, which is mainly constituted by tightly packed endothelial cells. In this report we assessed the expression of reelin in brain capillaries using immunocytochemistry and electron microscopy. At the light microscope, reelin immunolabeling appeared in specific endothelial cells in brain areas that presented abundant diffuse labeling for this protein (e.g., layer I of the cortex, or the stratum lacunosum moleculare of the hippocampus), while it was mostly absent from capillaries in other brain areas (e.g., deeper cortical layers, or the CA1 layer of the hippocampus). As expected, at the electron microscope reelin labeling was observed in neurons of the cortex, where most of the labeling was associated with the rough endoplasmic reticulum. Importantly, reelin was also observed in some endothelial cells located in small capillaries, which confirmed the findings obtained at the light microscope. In these cells, reelin labeling was located primarily in caveolae (i.e., vesicles of transcytosis), and associated with the plasma membrane of the luminal side of endothelial cells. In addition, some scarce labeling was observed in the nuclear membrane. The presence of reelin immunolabeling in brain endothelial cells, and particularly in caveolar vesicles within these cells, suggests that reelin and/or reelin peptides may be able to cross the blood-brain barrier, which could have important physiological, pathological, and therapeutic implications.

  1. [Minimal brain dysfunction in adolescents (clinical study)].

    Science.gov (United States)

    Lievens, P

    1991-01-01

    Description of the adolescent minimal brain dysfunction (M.B.D.) syndrome (DSM III, Attention deficit disorder, residual type), not easily recognised during adolescence, because the symptomatology of the child hyperkinetic syndrome becomes chiefly social and manifests itself within relationships. But the attention disorders remain. The whole stresses the psychological features of the adolescent: lowering of self-esteem, powerless feelings, paranoid defences, identity, autonomy and authority problems, higher frequency of delinquent behaviour. Biochemical aspects are briefly discussed. The author describes a psychopathological explaining model which allows the understanding of the behavioural symptoms and shows that a same structure underlies the child hyperkinetic syndrome and the M.B.D. syndrome of the adolescent. The M.B.D. is not to be considered as a disease but rather as a psychic handicap in the domains of the intellect, action and affect, which psychosocial expression is determined by the importance of the disorder, the environment, the intelligence quotient, the tolerance of the relative and peers, and the personal history. Three cases are reported.

  2. A Self-Study Tutorial using the Allen Brain Explorer and Brain Atlas to Teach Concepts of Mammalian Neuroanatomy and Brain Function.

    Science.gov (United States)

    Jenks, Bruce G

    2009-01-01

    The Allen Brain Atlas is a repository of neuroanatomical data concerning the mouse brain. The core of the database is a Nissl-stained reference atlas of the brain accompanied by in situ hybridization data for essentially the entire mouse genome. This database is freely available at the Allen Institute for Brain Science website, as is an innovative tool to explore the database, the Brain Explorer. This tool is downloaded and installed on your own computer. I have developed a self-study tutorial, "Explorations with the Allen Brain Explorer", which uses the Brain Explorer and the Brain Atlas to teach fundamentals of mammalian neuroanatomy and brain function. In this tutorial background information and step-by-step exercises on the use of the Brain Explorer are given using PowerPoint as a platform. To do the tutorial both the PowerPoint and the Brain Explorer are opened on the computer and the students switch from one program to the other as they go, in a step-wise fashion, through the various exercises. There are two main groups of exercises, titled "The Basics" and "Explorations", with both groups accessed from a PowerPoint "Start Menu" by clicking on dynamic links to the appropriate exercises. Most exercises have a number of dynamic links to PowerPoint slides where background information for the exercises is given or the neuroanatomical data collected from the Brain Atlas is discussed.

  3. Brain connectivity study of brain tumor patients using MR-PET data: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Ana Carina [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon (Portugal); Ribeiro, Andre Santos [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon (Portugal); Centre for Neuropsychopharmacology, Division of Brain Sciences, Department of Medicine, Imperial College London, London (United Kingdom); Oros-Peusquens, Ana Maria; Langen, Karl Josef; Shah, Jon [Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich (Germany); Ferreira, Hugo Alexandre [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon (Portugal)

    2015-05-18

    Brain activity results from anatomical and functional connections that can be disrupted or altered due to trauma or lesion. This work presents a first approach on the study of whole-brain connectivity of brain tumor patients using the Multimodal Imaging Brain Connectivity (MIBCA) toolbox. Two patients with glioblastoma lesions located in the left hemisphere (one in the motor cortex and the other in the temporal lobe) underwent simultaneous MRI and dynamic PET scans using a 3T MRI scanner with a BrainPET insert. The following data was acquired: T1-w MPRAGE (1x1x1mm{sup 3}), DTI (dir=30, b=0,800s/mm2, 2x2x2mm{sup 3}), and dynamic 18F-FET PET. The MIBCA toolbox was used to automatically pre-process MRI-PET data and to derive imaging and connectivity metrics from the multimodal data. Computed metrics included: cortical thickness from T1-w data; mean diffusivity (MD), fractional anisotropy (FA), node degree, clustering coefficient and pairwise ROI fibre tracking (structural connectivity) from DTI data; and standardized uptake value (SUV) from PET data. For all the metrics, the differences between left and right hemispherical structures were obtained, followed by a 25% threshold (except for SUV thresholded at 15%). Data was visualized in a connectogram, and both structural connectivity and metrics were studied in regions surrounding lesions. Preliminary results showed increased SUV values in regions surrounding the tumor for both patients. Patients also showed changes in structural connectivity involving these regions and also other more spatially distant regions such as the putamen and the pallidum, including decreased number of fibers between the subcortical structures themselves and with frontal regions. These findings suggest that the presence of a tumor may alter both local and more distant structural connections. Presently, a larger patient sample is being studied along with the inclusion of a control group to test the consistency of the findings.

  4. Studying variability in human brain aging in a population-based German cohort—rationale and design of 1000BRAINS

    OpenAIRE

    Svenja eCaspers; Susanne eMoebus; Silke eLux; Noreen ePundt; Holger eSchütz; Mühleisen, Thomas W.; Vincent eGras; Eickhoff, Simon B.; Sandro eRomanzetti; Tony eStöcker; Rüdiger eStirnberg; Kirlangic, Mehmet E.; Martina eMinnerop; Peter ePieperhoff; Ulrich eMödder

    2014-01-01

    The ongoing 1000 brains study (1000BRAINS) is an epidemiological and neuroscientific investigation of structural and functional variability in the human brain during aging. The two recruitment sources are the 10-year follow-up cohort of the German Heinz Nixdorf Recall (HNR) Study, and the HNR MultiGeneration Study cohort, which comprises spouses and offspring of HNR subjects. The HNR is a longitudinal epidemiological investigation of cardiovascular risk factors, with a comprehensive collectio...

  5. A Study of Factors Influencing Brain Drain among Medical ...

    African Journals Online (AJOL)

    This economic situation deeply affected the medical groups that migration became the chorus of the medical personnel. This perennial situation made the study to examine the factors influencing brain drain among the medical personnel in Nigeria, using a selected University Teaching Hospital Complex as a case study.

  6. Study Reveals Brain Biology behind Self-Control

    Science.gov (United States)

    Sparks, Sarah D.

    2011-01-01

    A new neuroscience twist on a classic psychology study offers some clues to what makes one student able to buckle down for hours of homework before a test while his classmates party. The study published in the September 2011 edition of "Proceedings of the National Academy of Science," suggests environmental cues may "hijack" the brain's mechanisms…

  7. Brain-computer interfacing under distraction: an evaluation study

    DEFF Research Database (Denmark)

    Brandl, Stephanie; Frølich, Laura; Höhne, Johannes

    2016-01-01

    Objective. While motor-imagery based brain-computer interfaces (BCIs) have been studied over many years by now, most of these studies have taken place in controlled lab settings. Bringing BCI technology into everyday life is still one of the main challenges in this field of research. Approach...

  8. [Neurotropic effects of heptapeptide mystixin studied on brain tissue sections].

    Science.gov (United States)

    Mokrushin, A A

    2011-01-01

    Neurotropic effects of heptapeptide mystixin have been studied on olfactory cortex neurons in rat brain tissue sections. The application of mystixin onto brain section produced a dose-dependent inhibition of AMPA- and NMDA-receptor-dependent processes. The peptide suppressed the activity of inhibitory processes only at small doses (10, 25, and 50 mg/ml) and potentiated these processes at greater doses (100 and 250 mg/ml). These effects of mystixin are reversible: after washing, the activities of both exciting (except for NMDA-related) and inhibitory mechanisms were restored.

  9. Split My Brain: A Case Study of Seizure Disorder and Brain Function

    Science.gov (United States)

    Omarzu, Julia

    2004-01-01

    This case involves a couple deciding whether or not their son should undergo brain surgery to treat a severe seizure disorder. In examining this dilemma, students apply knowledge of brain anatomy and function. They also learn about brain scanning techniques and discuss the plasticity of the brain.

  10. Volumetric MRI study of the intrauterine growth restriction fetal brain.

    Science.gov (United States)

    Polat, A; Barlow, S; Ber, R; Achiron, R; Katorza, E

    2017-05-01

    Intrauterine growth restriction (IUGR) is a pathologic fetal condition known to affect the fetal brain regionally and associated with future neurodevelopmental abnormalities. This study employed MRI to assess in utero regional brain volume changes in IUGR fetuses compared to controls. Retrospectively, using MRI images of fetuses at 30-34 weeks gestational age, a total of 8 brain regions-supratentorial brain and cavity, cerebral hemispheres, temporal lobes and cerebellum-were measured for volume in 13 fetuses with IUGR due to placental insufficiency and in 21 controls. Volumes and their ratios were assessed for difference using regression models. Reliability was assessed by intraclass correlation coefficients (ICC) between two observers. In both groups, all structures increase in absolute volume during that gestation period, and the rate of cerebellar growth is higher compared to that of supratentorial structures. All structures' absolute volumes were significantly smaller for the IUGR group. Cerebellar to supratentorial ratios were found to be significantly smaller (P IUGR compared to controls. No other significant ratio differences were found. ICC showed excellent agreement. The cerebellar to supratentorial volume ratio is affected in IUGR fetuses. Additional research is needed to assess this as a radiologic marker in relation to long-term outcome. • IUGR is a pathologic fetal condition affecting the brain • IUGR is associated with long-term neurodevelopmental abnormalities; fetal characterization is needed • This study aimed to evaluate regional brain volume differences in IUGR • Cerebellar to supratentorial volume ratios were smaller in IUGR fetuses • This finding may play a role in long-term development of IUGR fetuses.

  11. Does studying abroad induce a brain drain?

    NARCIS (Netherlands)

    Oosterbeek, H.; Webbink, D.

    2011-01-01

    This paper investigates whether studying abroad increases the propensity to live abroad later on. We use an instrumental variable approach based on cut-offs in the ranking of Dutch higher education graduates who applied for a scholarship programme for outstanding students. Applicants ranked above

  12. secondary injury in traumatic brain injury patients - a prospective study

    African Journals Online (AJOL)

    Objective. Secondary insults of hypotension and hypoxia significantly impact on outcome in patients with traumatic brain injury (TBI). More than 4 hours' delay in evacuation of intracranial haematomas has been demonstrated to have an additional impact on outcome. The objective of this study was to document the ...

  13. Prenatal and early postnatal brain development: The Generation R Study

    NARCIS (Netherlands)

    S.J. Roza (Sabine)

    2008-01-01

    textabstractSeveral psychiatric disorders in childhood and adulthood have been hypothesized to be neurodevelopmental in origin. Numerous studies have provided evidence for subtle deviations in brain morphology in children and adults with attention-defi cit hyperactivity disorder, autism spectrum

  14. Psychosis and autism: magnetic resonance imaging study of brain anatomy

    NARCIS (Netherlands)

    Toal, Fiona; Bloemen, Oswald J. N.; Deeley, Quinton; Tunstall, Nigel; Daly, Eileen M.; Page, Lisa; Brammer, Michael J.; Murphy, Kieran C.; Murphy, Declan G. M.

    2009-01-01

    BACKGROUND: Autism-spectrum disorder is increasingly recognised, with recent studies estimating that 1% of children in South London are affected. However, the biology of comorbid mental health problems in people with autism-spectrum disorder is poorly understood. AIMS: To investigate the brain

  15. Adapting Parcellation Schemes to Study Fetal Brain Connectivity in Serial Imaging Studies

    DEFF Research Database (Denmark)

    Cheng, Xi; Wilm, Jakob; Seshamani, Sharmishtaa

    2013-01-01

    A crucial step in studying brain connectivity is the definition of the Regions Of Interest (ROI's) which are considered as nodes of a network graph. These ROI's identified in structural imaging reflect consistent functional regions in the anatomies being compared. However in serial studies...... demonstrate that the fetal brain network exhibits small-world characteristics and a pattern of increased cluster coefficients and decreased global efficiency. These findings may provide a route to creating a new biomarker for healthy fetal brain development....

  16. Operation Brain Trauma Therapy Extended Studies

    Science.gov (United States)

    2015-05-01

    studies with two additional therapies , the aquaporin-4 antagonist AER -271 and the putative cognitive enhancing drug amantadine. AER -271 failed...results have been obtained and are being analyzed. Therapies 8 and 9 ( AER -271 and amantadine) are in various stages of investigation across the...development of cerebral edema. Insults and behavioral testing of therapy 8, AER -271 have been completed and data are being analyzed. Therapy 9, amantadine is

  17. Studies of the brain cannabinoid system using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gatley, S.J.; Volkow, N.D.

    1995-10-01

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available.

  18. Brain Basics

    Medline Plus

    Full Text Available ... Brain Research Glossary Brain Basics (PDF, 10 pages) Introduction Watch the Brain Basics video Welcome. Brain Basics ... depression experience when starting treatment. Gene Studies ... medication. This information may someday make it possible to predict who ...

  19. Software for Brain Network Simulations: A Comparative Study

    Science.gov (United States)

    Tikidji-Hamburyan, Ruben A.; Narayana, Vikram; Bozkus, Zeki; El-Ghazawi, Tarek A.

    2017-01-01

    Numerical simulations of brain networks are a critical part of our efforts in understanding brain functions under pathological and normal conditions. For several decades, the community has developed many software packages and simulators to accelerate research in computational neuroscience. In this article, we select the three most popular simulators, as determined by the number of models in the ModelDB database, such as NEURON, GENESIS, and BRIAN, and perform an independent evaluation of these simulators. In addition, we study NEST, one of the lead simulators of the Human Brain Project. First, we study them based on one of the most important characteristics, the range of supported models. Our investigation reveals that brain network simulators may be biased toward supporting a specific set of models. However, all simulators tend to expand the supported range of models by providing a universal environment for the computational study of individual neurons and brain networks. Next, our investigations on the characteristics of computational architecture and efficiency indicate that all simulators compile the most computationally intensive procedures into binary code, with the aim of maximizing their computational performance. However, not all simulators provide the simplest method for module development and/or guarantee efficient binary code. Third, a study of their amenability for high-performance computing reveals that NEST can almost transparently map an existing model on a cluster or multicore computer, while NEURON requires code modification if the model developed for a single computer has to be mapped on a computational cluster. Interestingly, parallelization is the weakest characteristic of BRIAN, which provides no support for cluster computations and limited support for multicore computers. Fourth, we identify the level of user support and frequency of usage for all simulators. Finally, we carry out an evaluation using two case studies: a large network with

  20. Genome-wide association study of sporadic brain arteriovenous malformations

    OpenAIRE

    Weinsheimer, Shantel; Bendjilali, Nasrine; Nelson, Jeffrey; Guo, Diana E; Zaroff, Jonathan G.; Sidney, Stephen; McCulloch, Charles E.; Al-Shahi Salman, Rustam; Berg, Jonathan N; Bobby P. C. Koeleman; Simon, Matthias; Bostroem, Azize; Fontanella, Marco; Sturiale, Carmelo L; Pola, Roberto

    2016-01-01

    BACKGROUND: The pathogenesis of sporadic brain arteriovenous malformations (BAVMs) remains unknown, but studies suggest a genetic component. We estimated the heritability of sporadic BAVM and performed a genome-wide association study (GWAS) to investigate association of common single nucleotide polymorphisms (SNPs) with risk of sporadic BAVM in the international, multicentre Genetics of Arteriovenous Malformation (GEN-AVM) consortium.METHODS: The Caucasian discovery cohort included 515 BAVM c...

  1. Pathological and immunohistochemical study of lethal primary brain stem injuries

    Directory of Open Access Journals (Sweden)

    Rongchao Sun

    2012-05-01

    Full Text Available Abstract Background Many of the deaths that occur shortly after injury or in hospitals are caused by mild trauma. Slight morphological changes are often found in the brain stems of these patients during autopsy. The purpose of this study is to investigate the histopathological changes involved in primary brain stem injuries (PBSI and their diagnostic significance. Methods A total of 65 patients who had died of PBSI and other conditions were randomly selected. They were divided into 2 groups, an injury group (25 cases and a control group (20 cases. Slides of each patient’s midbrain, pons, and medulla oblongata were prepared and stained with HE, argentaffin, and immunohistochemical agents (GFAP, NF, amyloid-ß, MBP. Under low power (×100 and NF staining, the diameter of the thickest longitudinal axon was measured at its widest point. Ten such diameters were collected for each part of the brain (midbrain, pons, and medulla oblongata. Data were recorded and analyzed statistically. Results Brain stem contusions, astrocyte activity, edema, and pathological changes in the neurons were visibly different in the injury and control groups (P P  Conclusions These histopathological changes may prove beneficial to the pathological diagnosis of PBSI during autopsy. The measurement of axon diameters provides a referent quantitative index for the diagnosis of the specific causes of death involved in PBSI. Virtual Slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1345298818712204

  2. Volumetric MRI study of the intrauterine growth restriction fetal brain

    Energy Technology Data Exchange (ETDEWEB)

    Polat, A.; Barlow, S.; Ber, R.; Achiron, R.; Katorza, E. [Tel Aviv University, Sackler School of Medicine, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer (Israel)

    2017-05-15

    Intrauterine growth restriction (IUGR) is a pathologic fetal condition known to affect the fetal brain regionally and associated with future neurodevelopmental abnormalities. This study employed MRI to assess in utero regional brain volume changes in IUGR fetuses compared to controls. Retrospectively, using MRI images of fetuses at 30-34 weeks gestational age, a total of 8 brain regions - supratentorial brain and cavity, cerebral hemispheres, temporal lobes and cerebellum - were measured for volume in 13 fetuses with IUGR due to placental insufficiency and in 21 controls. Volumes and their ratios were assessed for difference using regression models. Reliability was assessed by intraclass correlation coefficients (ICC) between two observers. In both groups, all structures increase in absolute volume during that gestation period, and the rate of cerebellar growth is higher compared to that of supratentorial structures. All structures' absolute volumes were significantly smaller for the IUGR group. Cerebellar to supratentorial ratios were found to be significantly smaller (P < 0.05) for IUGR compared to controls. No other significant ratio differences were found. ICC showed excellent agreement. The cerebellar to supratentorial volume ratio is affected in IUGR fetuses. Additional research is needed to assess this as a radiologic marker in relation to long-term outcome. (orig.)

  3. Abnormal brain processing of pain in migraine without aura: a high-density EEG brain mapping study

    DEFF Research Database (Denmark)

    Buchgreitz, L; Egsgaard, L L; Jensen, R

    2010-01-01

    In the present study we used high-density EEG brain mapping to investigate spatio-temporal aspects of brain activity in response to experimentally induced muscle pain in 17 patients with migraine without aura and 15 healthy controls. Painful electrical stimuli were applied to the trapezius muscle...... to the tonic muscle pain condition (z = 29 mm vs. z =¿-13 mm, P aura....

  4. A finger exoskeleton for rehabilitation and brain image study.

    Science.gov (United States)

    Tang, Zhenjin; Sugano, Shigeki; Iwata, Hiroyasu

    2013-06-01

    This paper introduces the design, fabrication and evaluation of the second generation prototype of a magnetic resonance compatible finger rehabilitation robot. It can not only be used as a finger rehabilitation training tool after a stroke, but also to study the brain's recovery process during the rehabilitation therapy (ReT). The mechanical design of the current generation has overcome the disadvantage in the previous version[13], which can't provide precise finger trajectories during flexion and extension motion varying with different finger joints' torques. In addition, in order to study the brain activation under different training strategies, three control modes have been developed, compared to only one control mode in the last prototype. The current prototype, like the last version, uses an ultrasonic motor as its actuator to enable the patient to do extension and flexion rehabilitation exercises in two degrees of freedom (DOF) for each finger. Finally, experiments have been carried out to evaluate the performances of this device.

  5. The differential regulation of human ACT1 isoforms by Hsp90 in IL-17 signaling1

    OpenAIRE

    Wu, Ling; Wang, Chenhui; Boisson, Bertrand; Misra, Saurav; Rayman, Patricia; Finke, James H.; Puel, Anne; Casanova, Jean-Laurent; Li, Xiaoxia

    2014-01-01

    IL-17 is a pro-inflammatory cytokine implicated in the pathogenesis of autoimmune diseases including psoriasis. ACT1 is an essential adaptor molecule in the IL-17 signaling pathway. A missense single nucleotide polymorphism (rs33980500; SNP-D10N) that resulted in the substitution of an asparagine for an aspartic acid at position 10 of ACT1 (ACT1-D10N) is associated with psoriasis susceptibility. Due to alternative splicing in humans, SNP-D10N encodes two mutated ACT1 proteins, ACT1-D10N and A...

  6. Expression pattern of PRM2, HSP90 and WNT5A in male partners of ...

    Indian Academy of Sciences (India)

    2012-12-13

    Dec 13, 2012 ... is associated with recurrent spontaneous abortion following natural or assisted conception (Venkatesh et al. 2011b). Stud- ies have suggested that pregnancy is unlikely to occur when sperm nuclear DFI is above a certain threshold value. DFI is the ratio of damaged and (undamaged) native DNA found.

  7. Local Inhibition of HSP90 to Prevent Intimal Hyperplasia after Balloon Injury

    Science.gov (United States)

    2017-10-01

    pluronic gel, intraluminal or both). Harvest and fixation of tissues 14 days post injury. 2) Specific objectives: Obtain IACUC approval...fastest growing treatments for PAD; however, restenosis secondary to intimal hyperplasia (IH) remains a major cause of treatment failure. The...preventing IH. The key contribution of the proposed research will provide a major advance that is expected to lead to development of a new treatment strategy

  8. Clinical Development of Gamitrinib, a Novel Mitochondrial-Targeted Small Molecule Hsp90 Inhibitor

    Science.gov (United States)

    2016-09-01

    characterization of Gamitrinib in anticipation of IND filing and human testing. Specifically, ADME (adsorption, distribution, metabolism and... Testosterone (CYP3A4). Table 1. CYP isoform inhibition. Data are expressed as IC50 concentrations (µM) for both Gamitrinib and the relevant positive...medium to slow clearance of 85.6 ml/min/Kg (Table 7). Importantly, the metabolism of Gamitrinib in vivo differed from that of 17-AAG, as there was no

  9. Expression pattern of PRM2, HSP90 and WNT5A in male partners of ...

    Indian Academy of Sciences (India)

    Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110 029, India; Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi 110 029, India; Department of Biochemistry, All India Institute of Medical Sciences, ...

  10. Clinical Development of Gamitrinib, a Novel Mitochondrial-Targeted Small Molecule Hsp90 Inhibitor

    Science.gov (United States)

    2015-09-01

    University of Pennsylvania Veterinary School Location: Philadelphia, PA Contribution: Collaboration on histologic characterization of TRAP-1 knockout...days, P = .008 by log-rank Mantel-Cox test) (Figure 5C). Histologic analysis of GBMs harvested from mice receiving the combination treatment showed...unknown, but protein folding quality control within the unique anatomy of mitochondria (18) is required to buffer the risk of proteotoxic stress (19

  11. Boosting the effects of hyperthermia-based anticancer treatments by HSP90 inhibition

    NARCIS (Netherlands)

    Vriend, Lianne E. M.; van den Tempel, Nathalie; Oei, Arlene L.; L'Acosta, Mike; Pieterson, Frederique J.; Franken, Nicolaas A. P.; Kanaar, Roland; Krawczyk, Przemek M.

    2017-01-01

    Hyperthermia - application of supra-physiological temperatures to cells, tissues or organs - is a pleiotropic treatment that affects most aspects of cellular metabolism, but its effects on DNA are of special interest in the context of cancer research and treatment. Hyperthermia inhibits repair of

  12. Effect of Resuscitation Fluids on the Expression of hsp90α in ...

    African Journals Online (AJOL)

    International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African. Index Medicus, JournalSeek, Journal Citation Reports/Science Edition, Directory of Open Access Journals. (DOAJ), African Journal Online, Bioline International, Open-J-Gate and Pharmacy Abstracts. INTRODUCTION.

  13. Imaging Heat Shock Protein 90 (Hsp90) Activity in Hormone-Refractory Prostate Cancer

    Science.gov (United States)

    2011-01-01

    same antibody is used alone or conjugated to a high- energy radioisotope for radioimmunotherapy. CONCLUSION The in vivo tumor uptake quantified from PET...emitting enzyme (such s firefly luciferase) in target cells and tissues [19]. In the pres- nce of its substrate (such as d-luciferin), an energy ...gene-expression patterns [19], measuring gene ransfer efficiency [20], monitoring tumor growth and responsePlease cite this article in press as: Niu G

  14. Internet and Social Media Use After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    Science.gov (United States)

    Baker-Sparr, Christina; Hart, Tessa; Bergquist, Thomas; Bogner, Jennifer; Dreer, Laura; Juengst, Shannon; Mellick, David; OʼNeil-Pirozzi, Therese M; Sander, Angelle M; Whiteneck, Gale G

    To characterize Internet and social media use among adults with moderate to severe traumatic brain injury (TBI) and to compare demographic and socioeconomic factors associated with Internet use between those with and without TBI. Ten Traumatic Brain Injury Model Systems centers. Persons with moderate to severe TBI (N = 337) enrolled in the TBI Model Systems National Database and eligible for follow-up from April 1, 2014, to March 31, 2015. Prospective cross-sectional observational cohort study. Internet usage survey. The proportion of Internet users with TBI was high (74%) but significantly lower than those in the general population (84%). Smartphones were the most prevalent means of Internet access for persons with TBI. The majority of Internet users with TBI had a profile account on a social networking site (79%), with more than half of the sample reporting multiplatform use of 2 or more social networking sites. Despite the prevalence of Internet use among persons with TBI, technological disparities remain in comparison with the general population. The extent of social media use among persons with TBI demonstrates the potential of these platforms for social engagement and other purposes. However, further research examining the quality of online activities and identifying potential risk factors of problematic use is recommended.

  15. Longitudinal Examination of Resilience After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    Science.gov (United States)

    Marwitz, Jennifer H; Sima, Adam P; Kreutzer, Jeffrey S; Dreer, Laura E; Bergquist, Thomas F; Zafonte, Ross; Johnson-Greene, Douglas; Felix, Elizabeth R

    2018-02-01

    To evaluate (1) the trajectory of resilience during the first year after a moderate-severe traumatic brain injury (TBI); (2) factors associated with resilience at 3, 6, and 12 months postinjury; and (3) changing relationships over time between resilience and other factors. Longitudinal analysis of an observational cohort. Five inpatient rehabilitation centers. Patients with TBI (N=195) enrolled in the resilience module of the TBI Model Systems study with data collected at 3-, 6-, and 12-month follow-up. Not applicable. Connor-Davidson Resilience Scale. Initially, resilience levels appeared to be stable during the first year postinjury. Individual growth curve models were used to examine resilience over time in relation to demographic, psychosocial, and injury characteristics. After adjusting for these characteristics, resilience actually declined over time. Higher levels of resilience were related to nonminority status, absence of preinjury substance abuse, lower anxiety and disability level, and greater life satisfaction. Resilience is a construct that is relevant to understanding brain injury outcomes and has potential value in planning clinical interventions. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. BRAIN IMAGING IN THE STUDY OF ALZHEIMER'S DISEASE

    Science.gov (United States)

    Reiman, Eric M.; Jagust, William J.

    2012-01-01

    Over the last 20 years, there has been extraordinary progress in brain imaging research and its application to the study of Alzheimer's disease (AD). Brain imaging researchers have contributed to the scientific understanding, early detection and tracking of AD. They have set the stage for imaging techniques to play growing roles in the clinical setting, the evaluation of disease-modifying treatments, and the identification of demonstrably effective prevention therapies. They have developed ground-breaking methods, including positron emission tomography (PET) ligands to measure fibrillar amyloid-β (Aβ) deposition, new magnetic resonance imaging (MRI) pulse sequences, and powerful image analysis techniques, to help in these endeavors. Additional work is needed to develop even more powerful imaging methods, to further clarify the relationship and time course of Aβ and other disease processes in the predisposition to AD, to establish the role of brain imaging methods in the clinical setting, and to provide the scientific means and regulatory approval pathway needed to evaluate the range of promising disease-modifying and prevention therapies as quickly as possible. Twenty years from now, AD may not yet be a distant memory, but the best is yet to come. PMID:22173295

  17. Genome-wide association study of working memory brain activation.

    Science.gov (United States)

    Blokland, Gabriëlla A M; Wallace, Angus K; Hansell, Narelle K; Thompson, Paul M; Hickie, Ian B; Montgomery, Grant W; Martin, Nicholas G; McMahon, Katie L; de Zubicaray, Greig I; Wright, Margaret J

    2017-05-01

    In a population-based genome-wide association (GWA) study of n-back working memory task-related brain activation, we extracted the average percent BOLD signal change (2-back minus 0-back) from 46 regions-of-interest (ROIs) in functional MRI scans from 863 healthy twins and siblings. ROIs were obtained by creating spheres around group random effects analysis local maxima, and by thresholding a voxel-based heritability map of working memory brain activation at 50%. Quality control for test-retest reliability and heritability of ROI measures yielded 20 reliable (r>0.7) and heritable (h(2)>20%) ROIs. For GWA analysis, the cohort was divided into a discovery (n=679) and replication (n=97) sample. No variants survived the stringent multiple-testing-corrected genome-wide significance threshold (pmemory. Variants identified here may be relevant to (the susceptibility to) common disorders affecting brain function. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Brain Functional Connectivity in MS: An EEG-NIRS Study

    Science.gov (United States)

    2015-10-01

    1 AWARD NUMBER: W81XWH-14-1-0582 TITLE: Brain Functional Connectivity in MS: An EEG -NIRS Study PRINCIPAL INVESTIGATOR: Heather Wishart...Functional Connectivity in MS: An EEG -NIRS Study 5b. GRANT NUMBER W81XWH-14-1-0582 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Heather...electrical ( EEG ) and blood volume and blood oxygen-based (NIRS and fMRI) signals, and to use the results to help optimize blood oxygen level

  19. Resilience Following Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    Science.gov (United States)

    Kreutzer, Jeffrey S; Marwitz, Jennifer H; Sima, Adam P; Bergquist, Thomas F; Johnson-Greene, Douglas; Felix, Elizabeth R; Whiteneck, Gale G; Dreer, Laura E

    2016-05-01

    To examine resilience at 3 months after traumatic brain injury (TBI). Cross-sectional analysis of an ongoing observational cohort. Five inpatient rehabilitation centers, with 3-month follow-up conducted primarily by telephone. Persons with TBI (N=160) enrolled in the resilience module of the TBI Model System study with 3-month follow-up completed. Not applicable. Connor-Davidson Resilience Scale. Resilience scores were lower than those of the general population. A multivariable regression model, adjusting for other predictors, showed that higher education, absence of preinjury substance abuse, and less anxiety at follow-up were significantly related to greater resilience. Analysis suggests that lack of resilience may be an issue for some individuals after moderate to severe TBI. Identifying persons most likely at risk for low resilience may be useful in planning clinical interventions. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  20. Non-invasive measurement of brain glycogen by NMR spectroscopy and its application to the study of brain metabolism

    Science.gov (United States)

    Tesfaye, Nolawit; Seaquist, Elizabeth R.; Öz, Gülin

    2011-01-01

    Glycogen is the reservoir for glucose in the brain. Beyond the general agreement that glycogen serves as an energy source in the central nervous system, its exact role in brain energy metabolism has yet to be elucidated. Experiments performed in cell and tissue culture and animals have shown that glycogen content is affected by several factors including glucose, insulin, neurotransmitters, and neuronal activation. The study of in vivo glycogen metabolism has been hindered by the inability to measure glycogen non-invasively, but in the past several years, the development of a non-invasive localized 13C nuclear magnetic resonance (NMR) spectroscopy method has enabled the study of glycogen metabolism in the conscious human. With this technique, 13C-glucose is administered intravenously and its incorporation into and wash-out from brain glycogen is tracked. One application of this method has been to the study of brain glycogen metabolism in humans during hypoglycemia: data have shown that mobilization of brain glycogen is augmented during hypoglycemia and, after a single episode of hypoglycemia, glycogen synthesis rate is increased, suggesting that glycogen stores rebound to levels greater than baseline. Such studies suggest glycogen may serve as a potential energy reservoir in hypoglycemia and may participate in the brain's adaptation to recurrent hypoglycemia and eventual development of hypoglycemia unawareness. Beyond this focused area of study, 13C NMR spectroscopy has a broad potential for application in the study of brain glycogen metabolism and carries the promise of a better understanding of the role of brain glycogen in diabetes and other conditions. PMID:21732401

  1. Disrupted brain network topology in Parkinson's disease: a longitudinal magnetoencephalography study.

    NARCIS (Netherlands)

    Olde Dubbelink, K.T.E.; Hillebrand, A.; Stoffers, D.; Deijen, J.B.; Twisk, J.W.R.; Stam, C.J.; Berendse, H.W.

    2014-01-01

    Although alterations in resting-state functional connectivity between brain regions have previously been reported in Parkinson's disease, the spatial organization of these changes remains largely unknown. Here, we longitudinally studied brain network topology in Parkinson's disease in relation to

  2. External ventricular drain causes brain tissue damage: an imaging study.

    Science.gov (United States)

    Ortolano, Fabrizio; Carbonara, Marco; Stanco, Antonella; Civelli, Vittorio; Carrabba, Giorgio; Zoerle, Tommaso; Stocchetti, Nino

    2017-10-01

    An external ventricular drain (EVD) is used to measure intracranial pressure (ICP) and to drain cerebrospinal fluid (CSF). The procedure is generally safe, but parenchymal sequelae are reported as a possible side effect, with variable incidence. We investigated the mechanical sequelae of EVD insertion and their clinical significance in acute brain-injured patients, with a special focus on hemorrhagic lesions. Mechanical sequelae of EVD insertion were detected in patients by computed tomography (CT) and magnetic resonance imaging (MRI), performed for clinical purposes. In 155 patients we studied the brain tissue surrounding the EVD by CT scan (all patients) and MRI (16 patients); 53 patients were studied at three time points (day 1-2, day 3-10, >10 days after EVD placement) to document the lesion time course. Small hemorrhages, with a hyperdense core surrounded by a hypodense area, were identified by CT scan in 33 patients. The initial average (hyper- + hypodense) lesion volume was 8.16 ml, increasing up to 15 ml by >10 days after EVD insertion. These lesions were not accompanied by neurologic deterioration or ICP elevation. History of arterial hypertension, coagulation abnormalities and multiple EVD insertions were significantly associated with hemorrhages. In 122 non-hemorrhagic patients, we detected very small hypodense areas (average volume 0.38 ml) surrounding the catheter. At later times these hypodensities slightly increased. MRI studies in 16 patients identified both intra- and extracellular edema around the catheters. The extracellular component increased with time. EVD insertion, even when there are no clinically important complications, causes a tissue reaction with minimal bleedings and small areas of brain edema.

  3. The effects of Psychotropic drugs On Developing brain (ePOD) study : methods and design

    NARCIS (Netherlands)

    Bottelier, Marco A.; Schouw, Marieke L. J.; Klomp, Anne; Tamminga, Hyke G. H.; Schrantee, Anouk G. M.; Bouziane, Cheima; de Ruiter, Michiel B.; Boer, Frits; Ruhe, Henricus G.; Denys, Damiaan; Rijsman, Roselyne; Lindauer, Ramon J. L.; Reitsma, Hans B.; Geurts, Hilde M.; Reneman, Liesbeth

    2014-01-01

    Background: Animal studies have shown that methylphenidate (MPH) and fluoxetine (FLX) have different effects on dopaminergic and serotonergic system in the developing brain compared to the developed brain. The effects of Psychotropic drugs On the Developing brain (ePOD) study is a combination of

  4. The effects of Psychotropic drugs On Developing brain (ePOD) study : methods and design

    NARCIS (Netherlands)

    Bottelier, Marco A; Schouw, Marieke L J; Klomp, Anne; Tamminga, Hyke G H; Schrantee, Anouk G M; Bouziane, Cheima; de Ruiter, Michiel B; Boer, Frits; Ruhé, Henricus G; Denys, D.; Rijsman, Roselyne; Lindauer, Ramon J L; Reitsma, Hans B; Geurts, Hilde M; Reneman, Liesbeth

    2014-01-01

    BACKGROUND: Animal studies have shown that methylphenidate (MPH) and fluoxetine (FLX) have different effects on dopaminergic and serotonergic system in the developing brain compared to the developed brain. The effects of Psychotropic drugs On the Developing brain (ePOD) study is a combination of

  5. Time-related morphometric studies of neurofilaments in brain contusions

    Directory of Open Access Journals (Sweden)

    Mariusz Kobek

    2016-03-01

    Full Text Available In forensic pathology age determination of injuries is of key importance. The purpose of the study was to analyze morphometrically changes in neurofilaments following the brain contusion and relate them to the length of the time of survival. To do this, the authors analyzed specimens of brains collected during medicolegal autopsies. According to the available literature, no such study involving material from deceased humans was conducted. The researched material was divided into nine subgroups (10 cases each according to the time of death of persons: immediately at the crime site, 12 hours, 24 hours, 2 days, 3 days, 4 days, 5 days, 6 days and 7 days after head trauma. Neurofilaments were immunohistochemically stained and evaluated quantitatively using the Met-Ilo computer application. The initial results were then analyzed statistically with the one way analysis of variance (ANOVA and the least significant difference (LSD tests. It was calculated that there are significant differences in numbers and area fractions of neurofilaments within 7 days after head trauma. It must be concluded that morphometric analysis of neurofilaments is a promising method but further studies are required.

  6. Memory networks in tinnitus: a functional brain image study.

    Science.gov (United States)

    Laureano, Maura Regina; Onishi, Ektor Tsuneo; Bressan, Rodrigo Affonseca; Castiglioni, Mario Luiz Vieira; Batista, Ilza Rosa; Reis, Marilia Alves; Garcia, Michele Vargas; de Andrade, Adriana Neves; de Almeida, Roberta Ribeiro; Garrido, Griselda J; Jackowski, Andrea Parolin

    2014-01-01

    Tinnitus is characterized by the perception of sound in the absence of an external auditory stimulus. The network connectivity of auditory and non-auditory brain structures associated with emotion, memory and attention are functionally altered in debilitating tinnitus. Current studies suggest that tinnitus results from neuroplastic changes in the frontal and limbic temporal regions. The objective of this study was to use Single-Photon Emission Computed Tomography (SPECT) to evaluate changes in the cerebral blood flow in tinnitus patients with normal hearing compared with healthy controls. Twenty tinnitus patients with normal hearing and 17 healthy controls, matched for sex, age and years of education, were subjected to Single Photon Emission Computed Tomography using the radiotracer ethylenedicysteine diethyl ester, labeled with Technetium 99 m (99 mTc-ECD SPECT). The severity of tinnitus was assessed using the "Tinnitus Handicap Inventory" (THI). The images were processed and analyzed using "Statistical Parametric Mapping" (SPM8). A significant increase in cerebral perfusion in the left parahippocampal gyrus (pFWE <0.05) was observed in patients with tinnitus compared with healthy controls. The average total THI score was 50.8+18.24, classified as moderate tinnitus. It was possible to identify significant changes in the limbic system of the brain perfusion in tinnitus patients with normal hearing, suggesting that central mechanisms, not specific to the auditory pathway, are involved in the pathophysiology of symptoms, even in the absence of clinically diagnosed peripheral changes.

  7. Memory networks in tinnitus: a functional brain image study.

    Directory of Open Access Journals (Sweden)

    Maura Regina Laureano

    Full Text Available Tinnitus is characterized by the perception of sound in the absence of an external auditory stimulus. The network connectivity of auditory and non-auditory brain structures associated with emotion, memory and attention are functionally altered in debilitating tinnitus. Current studies suggest that tinnitus results from neuroplastic changes in the frontal and limbic temporal regions. The objective of this study was to use Single-Photon Emission Computed Tomography (SPECT to evaluate changes in the cerebral blood flow in tinnitus patients with normal hearing compared with healthy controls.Twenty tinnitus patients with normal hearing and 17 healthy controls, matched for sex, age and years of education, were subjected to Single Photon Emission Computed Tomography using the radiotracer ethylenedicysteine diethyl ester, labeled with Technetium 99 m (99 mTc-ECD SPECT. The severity of tinnitus was assessed using the "Tinnitus Handicap Inventory" (THI. The images were processed and analyzed using "Statistical Parametric Mapping" (SPM8.A significant increase in cerebral perfusion in the left parahippocampal gyrus (pFWE <0.05 was observed in patients with tinnitus compared with healthy controls. The average total THI score was 50.8+18.24, classified as moderate tinnitus.It was possible to identify significant changes in the limbic system of the brain perfusion in tinnitus patients with normal hearing, suggesting that central mechanisms, not specific to the auditory pathway, are involved in the pathophysiology of symptoms, even in the absence of clinically diagnosed peripheral changes.

  8. Hexose transport by brain slices: further studies on energy dependence

    Energy Technology Data Exchange (ETDEWEB)

    Kyle-Lillegard, J.; Gold, B.I.

    1983-04-01

    We studied the uptake of (/sup 3/H)2-deoxyglucose ((/sup 3/H)2DG) by slices of rat cerebral cortex in vitro as a model of glucose transport by brain. Slices were incubated with (/sup 3/H)2DG, or with L-(/sup 3/H)glucose as a marker for diffusion; the difference between (/sup 3/H)2DG uptake and L-(/sup 3/H)glucose uptake was defined as net (/sup 3/H)2DG transport. Net (/sup 3/H)2DG transport was a function of incubation temperature, with an estimated temperature coefficient of 1.87 from 15 degrees C to 25 degrees C. The net uptake of (/sup 3/H)2DG was not inhibited by phlorizin or phloretin in concentrations well above the reported Ki of these inhibitors for hexose uptake in other systems. To examine the hypothesis that (/sup 3/H)2DG transport by brain slices is dependent on mitochondrial energy, we studied net (/sup 3/H)2DG uptake by slices which had been preincubated in media designed to alter intracellular ATP stores. The transport process was very sensitive to inhibition by DNP, but the correlation between (/sup 3/H)2DG transport and ATP levels was unclear. In contrast to our published hypothesis that the transport process required mitochondrial energy, these data indicate that dependence on energy is not absolute.

  9. The influence of low-grade glioma on resting state oscillatory brain activity: a magnetoencephalography study

    NARCIS (Netherlands)

    Bosma, I.; Stam, C. J.; Douw, L.; Bartolomei, F.; Heimans, J. J.; van Dijk, B. W.; Postma, T. J.; Klein, M.; Reijneveld, J. C.

    2008-01-01

    In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain activity

  10. The influence of low-grade glioma on resting state oscillatory brain activity: a magnetoencephalography study

    NARCIS (Netherlands)

    Bosma, I.; Stam, C.; Douw, L.; Bartolomei, F.; Heimans, J.; Dijk, van B.; Postma, T.; Klein, M.; Reijneveld, J.

    2008-01-01

    Purpose: In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain

  11. Alteration and reorganization of functional networks: a new perspective in brain injury study

    Directory of Open Access Journals (Sweden)

    Nazareth P. Castellanos

    2011-09-01

    Full Text Available Plasticity is the mechanism underlying brain’s potential capability to compensate injury. Recently several studies have shown that functional connections among brain areas are severely altered by brain injury and plasticity leading to a reorganization of the networks. This new approach studies the impact of brain injury by means of alteration of functional interactions. The concept of functional connectivity refers to the statistical interdependencies between physiological time series simultaneously recorded in various brain areas and it could be an essential tool for brain function studies, being its deviation from healthy reference an indicator for damage. In this article, we review studies investigating functional connectivity changes after brain injury and subsequent recovery, providing an accessible introduction to common mathematical methods to infer functional connectivity, exploring their capabilities, future perspectives and clinical uses in brain injury studies.

  12. Brain Basics

    Medline Plus

    Full Text Available ... brain's structure, studies show that brain growth in children with autism appears to peak early. And as ... grow there are differences in brain development in children who develop bipolar disorder than children who do ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... brain's structure, studies show that brain growth in children with autism appears to peak early. And as they grow there are differences in brain development in children who develop bipolar disorder than children ...

  14. Brain Basics

    Medline Plus

    Full Text Available ... imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies show that brain ... imaging technique that uses magnetic fields to take pictures of the brain's structure. mutation —A change in ...

  15. Brain Basics

    Medline Plus

    Full Text Available ... of the brain's structure, studies show that brain growth in children with autism appears to peak early. And as they grow there are differences in brain development in children who develop bipolar disorder than children ...

  16. Brain Basics

    Medline Plus

    Full Text Available ... the Brain Meet Sarah Sarah is a middle-aged woman who seemed to have it all. She ... brain's structure, studies show that brain growth in children with autism appears to peak early. And as ...

  17. Studying variability in human brain aging in a population-based German cohort – Rationale and design of 1000BRAINS

    Directory of Open Access Journals (Sweden)

    Svenja eCaspers

    2014-07-01

    Full Text Available The ongoing 1000 brains study (1000BRAINS is an epidemiological and neuroscientific investigation of structural and functional variability in the human brain during aging. The two recruitment sources are the 10-year follow-up cohort of the German Heinz Nixdorf Recall (HNR Study, and the HNR MultiGeneration Study cohort, which comprises spouses and offspring of HNR subjects. The HNR is a longitudinal epidemiological investigation of cardiovascular risk factors, with a comprehensive collection of clinical, laboratory, socioeconomic, and environmental data from population-based subjects aged 45-75 years on inclusion. HNR subjects underwent detailed assessments in 2000, 2006, and 2011, and completed annual postal questionnaires on health status. 1000BRAINS accesses these HNR data and applies a separate protocol comprising: neuropsychological tests of attention, memory, executive functions & language; examination of motor skills; ratings of personality, life quality, mood & daily activities; analysis of laboratory and genetic data; and state-of-the-art magnetic resonance imaging (MRI, 3 Tesla of the brain. The latter includes (i 3D-T1- and 3D-T2-weighted scans for structural analyses and myelin mapping; (ii three diffusion imaging sequences optimized for diffusion tensor imaging, high-angular resolution diffusion imaging for detailed fibre tracking and for diffusion kurtosis imaging; (iii resting-state and task-based functional MRI; and (iv fluid-attenuated inversion recovery and MR angiography for the detection of vascular lesions and the mapping of white matter lesions. The unique design of 1000BRAINS allows: (i comprehensive investigation of various influences including genetics, environment and health status on variability in brain structure and function during aging; and (ii identification of the impact of selected influencing factors on specific cognitive subsystems and their anatomical correlates.

  18. Studying variability in human brain aging in a population-based German cohort-rationale and design of 1000BRAINS.

    Science.gov (United States)

    Caspers, Svenja; Moebus, Susanne; Lux, Silke; Pundt, Noreen; Schütz, Holger; Mühleisen, Thomas W; Gras, Vincent; Eickhoff, Simon B; Romanzetti, Sandro; Stöcker, Tony; Stirnberg, Rüdiger; Kirlangic, Mehmet E; Minnerop, Martina; Pieperhoff, Peter; Mödder, Ulrich; Das, Samir; Evans, Alan C; Jöckel, Karl-Heinz; Erbel, Raimund; Cichon, Sven; Nöthen, Markus M; Sturma, Dieter; Bauer, Andreas; Jon Shah, N; Zilles, Karl; Amunts, Katrin

    2014-01-01

    The ongoing 1000 brains study (1000BRAINS) is an epidemiological and neuroscientific investigation of structural and functional variability in the human brain during aging. The two recruitment sources are the 10-year follow-up cohort of the German Heinz Nixdorf Recall (HNR) Study, and the HNR MultiGeneration Study cohort, which comprises spouses and offspring of HNR subjects. The HNR is a longitudinal epidemiological investigation of cardiovascular risk factors, with a comprehensive collection of clinical, laboratory, socioeconomic, and environmental data from population-based subjects aged 45-75 years on inclusion. HNR subjects underwent detailed assessments in 2000, 2006, and 2011, and completed annual postal questionnaires on health status. 1000BRAINS accesses these HNR data and applies a separate protocol comprising: neuropsychological tests of attention, memory, executive functions and language; examination of motor skills; ratings of personality, life quality, mood and daily activities; analysis of laboratory and genetic data; and state-of-the-art magnetic resonance imaging (MRI, 3 Tesla) of the brain. The latter includes (i) 3D-T1- and 3D-T2-weighted scans for structural analyses and myelin mapping; (ii) three diffusion imaging sequences optimized for diffusion tensor imaging, high-angular resolution diffusion imaging for detailed fiber tracking and for diffusion kurtosis imaging; (iii) resting-state and task-based functional MRI; and (iv) fluid-attenuated inversion recovery and MR angiography for the detection of vascular lesions and the mapping of white matter lesions. The unique design of 1000BRAINS allows: (i) comprehensive investigation of various influences including genetics, environment and health status on variability in brain structure and function during aging; and (ii) identification of the impact of selected influencing factors on specific cognitive subsystems and their anatomical correlates.

  19. A placebo-controlled, randomized phase II study of maintenance enzastaurin following whole brain radiation therapy in the treatment of brain metastases from lung cancer

    DEFF Research Database (Denmark)

    Grønberg, Bjørn H; Ciuleanu, Tudor; Fløtten, Øystein

    2012-01-01

    Enzastaurin is a protein kinase C inhibitor with anti-tumor activity. This study was designed to determine if maintenance enzastaurin improved the outcome of whole brain radiotherapy (WBRT) in lung cancer (LC) patients with brain metastases (BMs)....

  20. Suicide after traumatic brain injury: a population study

    DEFF Research Database (Denmark)

    Teasdale, T W; Engberg, A W

    2001-01-01

    OBJECTIVES: To determine the rates of suicide among patients who have had a traumatic brain injury. METHODS: From a Danish population register of admissions to hospital covering the years 1979-93 patients were selected who had had either a concussion (n=126 114), a cranial fracture (n=7560......), or a cerebral contusion or traumatic intracranial haemorrhage (n=11 766). All cases of deaths by the end of the study period were identified. RESULTS: In the three diagnostic groups there had been 750 (0.59%), 46 (0.61%), and 99 (0.84%) cases of suicide respectively. Standardised mortality ratios, stratified...... by sex and age, showed that the incidence of suicide among the three diagnostic groups was increased relative to the general population (3.0, 2.7, and 4.1 respectively). In all diagnosis groups the ratios were higher for females than for males, and lower for patients injured before the age of 21 or after...

  1. What Do Studies of the Brain Tell Us about Learning?

    Science.gov (United States)

    Harlen, Wynne

    2010-01-01

    Until the 1990s, the inside of the brain was a matter of mystery to all except the few, the brain surgeons, revered for their specialist knowledge. Early work was focused on explaining and attempting to treat unusual behaviours and conditions, but interest now extends to the implications of neuroscience for regular education. Non-intrusive imaging…

  2. Brain perfusion studies in the evaluation of acute neurologic abnormalities.

    Science.gov (United States)

    Zuckier, Lionel S; Sogbein, O O

    2013-03-01

    Two categories of single-photon radiopharmaceuticals for brain perfusion exist, nonlipophilic and lipophilic compounds. The former are useful in performing simple flow examinations which today have application primarily in the determination of brain death. The latter also exhibit a parenchymal uptake phase that allows for evaluation of the distribution of blood flow within the brain. The lipophilic radiopharmaceuticals, therefore, have application in the evaluation of patients following catastrophic brain injury and traumatic brain injury (TBI) and in prognosticating the outcome following cerebral vascular accidents. Use of these agents to monitor therapy with thrombolytic agents, although theoretically helpful, is technically difficult due to the need to institute treatment rapidly, without undue delay. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Revisiting hydrocephalus as a model to study brain resilience.

    Directory of Open Access Journals (Sweden)

    Matheus Fernandes De Oliveira

    2012-01-01

    Full Text Available Hydrocephalus is an entity which embraces a variety of diseases whose final result is the enlarged size of cerebral ventricular system, partially or completely. The physiopathology of hydrocephalus lies in the dynamics of circulation of cerebrospinal fluid (CSF. The consequent CSF stasis in hydrocephalus interferes with cerebral and ventricular system development. Children and adults who sustain congenital or acquired brain injury typically experience a diffuse insult that impacts many areas of the brain. Development and recovery after such injuries reflects both restoration and reorganization of cognitive functions. Classic examples were already reported in literature. This suggests the presence of biological mechanisms associated with resilient adaptation of brain networks. We will settle a link between the notable modifications to neurophysiology secondary to hydrocephalus and the ability of neuronal tissue to reassume and reorganize its functions.Key words: hydrocephalus; resilience; brain; neural networks; plasticity.

  4. On longevity and the aging process : a magnetic resonance imaging study of the brain

    NARCIS (Netherlands)

    Altmann-Schneider, Irmhild

    2015-01-01

    The aim of this thesis was to investigate the radiological phenotype of the human brain in familial longevity with regard to brain structure. This study was performed as part of the Leiden Longevity Study – a study population consisting of offspring of long-lived Dutch people who are genetically

  5. The automatic brain: studies on practice and brain function in healthy subjects and patients with schizophrenia

    OpenAIRE

    van Raalten, T.R.

    2009-01-01

    Practice makes perfect. The neural mechanisms behind the behavioral improvement of practice (automatization) however are largely unknown. Here we investigate how practice changes brain function and how this can improve our processing capacity. We also examine whether a deficit in automatization can explain the severely limited processing capacity in schizophrenia. Previous research implicates working memory (WM) in the development of automatization and the ability to improve processing capaci...

  6. Brain-computer interfacing under distraction: an evaluation study

    Science.gov (United States)

    Brandl, Stephanie; Frølich, Laura; Höhne, Johannes; Müller, Klaus-Robert; Samek, Wojciech

    2016-10-01

    Objective. While motor-imagery based brain-computer interfaces (BCIs) have been studied over many years by now, most of these studies have taken place in controlled lab settings. Bringing BCI technology into everyday life is still one of the main challenges in this field of research. Approach. This paper systematically investigates BCI performance under 6 types of distractions that mimic out-of-lab environments. Main results. We report results of 16 participants and show that the performance of the standard common spatial patterns (CSP) + regularized linear discriminant analysis classification pipeline drops significantly in this ‘simulated’ out-of-lab setting. We then investigate three methods for improving the performance: (1) artifact removal, (2) ensemble classification, and (3) a 2-step classification approach. While artifact removal does not enhance the BCI performance significantly, both ensemble classification and the 2-step classification combined with CSP significantly improve the performance compared to the standard procedure. Significance. Systematically analyzing out-of-lab scenarios is crucial when bringing BCI into everyday life. Algorithms must be adapted to overcome nonstationary environments in order to tackle real-world challenges.

  7. Genome-wide association study of sporadic brain arteriovenous malformations.

    Science.gov (United States)

    Weinsheimer, Shantel; Bendjilali, Nasrine; Nelson, Jeffrey; Guo, Diana E; Zaroff, Jonathan G; Sidney, Stephen; McCulloch, Charles E; Al-Shahi Salman, Rustam; Berg, Jonathan N; Koeleman, Bobby P C; Simon, Matthias; Bostroem, Azize; Fontanella, Marco; Sturiale, Carmelo L; Pola, Roberto; Puca, Alfredo; Lawton, Michael T; Young, William L; Pawlikowska, Ludmila; Klijn, Catharina J M; Kim, Helen

    2016-09-01

    The pathogenesis of sporadic brain arteriovenous malformations (BAVMs) remains unknown, but studies suggest a genetic component. We estimated the heritability of sporadic BAVM and performed a genome-wide association study (GWAS) to investigate association of common single nucleotide polymorphisms (SNPs) with risk of sporadic BAVM in the international, multicentre Genetics of Arteriovenous Malformation (GEN-AVM) consortium. The Caucasian discovery cohort included 515 BAVM cases and 1191 controls genotyped using Affymetrix genome-wide SNP arrays. Genotype data were imputed to 1000 Genomes Project data, and well-imputed SNPs (>0.01 minor allele frequency) were analysed for association with BAVM. 57 top BAVM-associated SNPs (51 SNPs with pJAG1 and BNC2. Of the 6 candidate SNPs, 2 in ACVRL1 and MMP3 had a nominal p<0.05 in the replication cohort. We performed the first GWAS of sporadic BAVM in the largest BAVM cohort assembled to date. No GWAS SNPs were replicated, suggesting that common SNPs do not contribute strongly to BAVM susceptibility. However, heritability estimates suggest a modest but significant genetic contribution. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Resting Brain Activity Related to Dispositional Mindfulness: a PET Study

    OpenAIRE

    Gartenschl?ger, Martin; Schreckenberger, Mathias; Buchholz, Hans-Georg; Reiner, Iris; Beutel, Manfred E.; Adler, Julia; Michal, Matthias

    2017-01-01

    Mindfulness denotes a state of consciousness characterized by receptive attention to and awareness of present events and experiences. As a personality trait, it constitutes the ability to become aware of mental activities such as sensations, images, feelings, and thoughts, and to disengage from judgment, conditioned emotions, and their cognitive processing or automatic inhibition. Default brain activity reflects the stream of consciousness and sense of self at rest. Analysis of brain activity...

  9. Weight Gain following Pallidal Deep Brain Stimulation: A PET Study

    OpenAIRE

    Sauleau, Paul; Drapier, Sophie; Duprez, Joan; Houvenaghel, Jean-Fran?ois; Dondaine, Thibaut; Haegelen, Claire; Drapier, Dominique; Jannin, Pierre; Robert, Gabriel; Le Jeune, Florence; V?rin, Marc

    2016-01-01

    The mechanisms behind weight gain following deep brain stimulation (DBS) surgery seem to be multifactorial and suspected depending on the target, either the subthalamic nucleus (STN) or the globus pallidus internus (GPi). Decreased energy expenditure following motor improvement and behavioral and/or metabolic changes are possible explanations. Focusing on GPi target, our objective was to analyze correlations between changes in brain metabolism (measured with PET) and weight gain following GPi...

  10. Brain Biochemistry and Personality: A Magnetic Resonance Spectroscopy Study

    OpenAIRE

    Ryman, Sephira G.; Gasparovic, Chuck; Bedrick, Edward J.; Flores, Ranee A.; Marshall, Alison N.; Jung, Rex E.

    2011-01-01

    To investigate the biochemical correlates of normal personality we utilized proton magnetic resonance spectroscopy ((1)H-MRS). Our sample consisted of 60 subjects ranging in age from 18 to 32 (27 females). Personality was assessed with the NEO Five-Factor Inventory (NEO-FFI). We measured brain biochemistry within the precuneus, the cingulate cortex, and underlying white matter. We hypothesized that brain biochemistry within these regions would predict individual differences across major domai...

  11. Neurophotonics: optical methods to study and control the brain

    Science.gov (United States)

    Doronina-Amitonova, L. V.; Fedotov, I. V.; Fedotov, A. B.; Anokhin, K. V.; Zheltikov, A. M.

    2015-04-01

    Methods of optical physics offer unique opportunities for the investigation of brain and higher nervous activity. The integration of cutting-edge laser technologies and advanced neurobiology opens a new cross-disciplinary area of natural sciences - neurophotonics - focusing on the development of a vast arsenal of tools for functional brain diagnostics, stimulation of individual neurons and neural networks, and the molecular engineering of brain cells aimed at the diagnosis and therapy of neurodegenerative and psychic diseases. Optical fibers help to confront the most challenging problems in brain research, including the analysis of molecular-cellular mechanisms of the formation of memory and behavior. New generation optical fibers provide new solutions for the development of fundamentally new, unique tools for neurophotonics and laser neuroengineering - fiber-optic neuroendoscopes and neurointerfaces. These instruments broaden research horizons when investigating the most complex brain functions, enabling a long-term multiplex detection of fluorescent protein markers, as well as photostimulation of neuronal activity in deep brain areas in living, freely moving animals with an unprecedented spatial resolution and minimal invasiveness. This emerging technology opens new horizons for understanding learning and long-term memory through experiments with living, freely moving mammals. Here, we present a brief review of this rapidly growing field of research.

  12. Second language acquisition after traumatic brain injury: a case study.

    Science.gov (United States)

    Połczyńska-Fiszer, M; Mazaux, J M

    2008-01-01

    Post-traumatic language and memory impairment, as well as a subsequent recovery in monolinguals have been widely documented in the literature, yet little is known about learning the second language after a severe head trauma followed by coma, as well as the relationship of this process with cognitive recovery, psychological status and quality of life. The present study investigates the relationship of learning the second language (English) in the process of rehabilitation, with quality of life in a Polish female university student who, as a result of a car accident, suffered a major closed-head injury and was comatose for a month. The subject was enrolled in an English learning program nine months after the trauma. The experiment lasted six months and comprised monthly meetings. The patient improved the major components of the second language, including vocabulary. Within the 6 months, the subject was gradually capable of learning additional and more complex lexical items. Learning the second language after traumatic brain injury may positively influence emotional well-being, self-esteem, and, perhaps, recovery of quality of life. A long-term beneficial effect of learning L2 was a consequential improvement of the patient's memory.

  13. Prospective memory in pediatric traumatic brain injury: a preliminary study.

    Science.gov (United States)

    McCauley, Stephen R; Levin, Harvey S

    2004-01-01

    Prospective memory (PM) performance was investigated in a preliminary study of children and adolescents ages 10-19 in 3 groups: individuals with orthopedic injuries (not involving the head) requiring hospitalization (Ortho, N = 15), mild traumatic brain injury (TBI, N = 17), and severe TBI (N = 15). All participants with TBI were at least 5 years postinjury and participants in the Ortho group were at least 3 years postinjury. The PM task involved reporting words presented in blue during a category decision task in which words were presented in several different colors and participants were to determine which of two categories the word belonged. Participants were asked to make their choices as quickly as possible. After a 10- to 15-min intervening computer task in which all words were presented in black letters, a large proportion of participants with mild or severe TBI failed to indicate any blue words when they appeared. After a reminder to perform the PM task was given to all at the same point in the task, PM performance increased in the Ortho and Mild TBI groups, but remained comparably impaired in the Severe TBI group. Reaction time (RT) data indicated that mean RT was slower with increasing TBI severity. Further, there was a significant cost in RT for performing the PM task during the ongoing category decision task for all groups. The cost in terms of slowed RT increased with greater TBI severity.

  14. Learning about brain physiology and complexity from the study of the epilepsies.

    Science.gov (United States)

    Garcia-Cairasco, N

    2009-01-01

    The brain is a complex system, which produces emergent properties such as those associated with activity-dependent plasticity in processes of learning and memory. Therefore, understanding the integrated structures and functions of the brain is well beyond the scope of either superficial or extremely reductionistic approaches. Although a combination of zoom-in and zoom-out strategies is desirable when the brain is studied, constructing the appropriate interfaces to connect all levels of analysis is one of the most difficult challenges of contemporary neuroscience. Is it possible to build appropriate models of brain function and dysfunctions with computational tools? Among the best-known brain dysfunctions, epilepsies are neurological syndromes that reach a variety of networks, from widespread anatomical brain circuits to local molecular environments. One logical question would be: are those complex brain networks always producing maladaptive emergent properties compatible with epileptogenic substrates? The present review will deal with this question and will try to answer it by illustrating several points from the literature and from our laboratory data, with examples at the behavioral, electrophysiological, cellular and molecular levels. We conclude that, because the brain is a complex system compatible with the production of emergent properties, including plasticity, its functions should be approached using an integrated view. Concepts such as brain networks, graphics theory, neuroinformatics, and e-neuroscience are discussed as new transdisciplinary approaches dealing with the continuous growth of information about brain physiology and its dysfunctions. The epilepsies are discussed as neurobiological models of complex systems displaying maladaptive plasticity.

  15. Functional characterization of heat-shock protein 90 from Oryza sativa and crystal structure of its N-terminal domain.

    Science.gov (United States)

    Raman, Swetha; Suguna, Kaza

    2015-06-01

    Heat-shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone that is essential for the normal functioning of eukaryotic cells. It plays crucial roles in cell signalling, cell-cycle control and in maintaining proteome integrity and protein homeostasis. In plants, Hsp90s are required for normal plant growth and development. Hsp90s are observed to be upregulated in response to various abiotic and biotic stresses and are also involved in immune responses in plants. Although there are several studies elucidating the physiological role of Hsp90s in plants, their molecular mechanism of action is still unclear. In this study, biochemical characterization of an Hsp90 protein from rice (Oryza sativa; OsHsp90) has been performed and the crystal structure of its N-terminal domain (OsHsp90-NTD) was determined. The binding of OsHsp90 to its substrate ATP and the inhibitor 17-AAG was studied by fluorescence spectroscopy. The protein also exhibited a weak ATPase activity. The crystal structure of OsHsp90-NTD was solved in complex with the nonhydrolyzable ATP analogue AMPPCP at 3.1 Å resolution. The domain was crystallized by cross-seeding with crystals of the N-terminal domain of Hsp90 from Dictyostelium discoideum, which shares 70% sequence identity with OsHsp90-NTD. This is the second reported structure of a domain of Hsp90 from a plant source.

  16. A phase 2 study of radiosurgery and temozolomide for patients with 1 to 4 brain metastases

    Directory of Open Access Journals (Sweden)

    John B. Fiveash, MD

    2016-04-01

    Conclusions: In this study, there was a relatively low risk of distant brain failure observed in the nonmelanoma subgroup receiving temozolamide. However, patient selection factors rather than chemotherapy treatment efficacy are more likely the reason for the relatively low risk of distant brain failure observed in this study. Future trial design should account for these risk factors.

  17. Brain-Based Learning and Classroom Practice: A Study Investigating Instructional Methodologies of Urban School Teachers

    Science.gov (United States)

    Morris, Lajuana Trezette

    2010-01-01

    The purpose of this study was to examine the implementation of brain-based instructional strategies by teachers serving at Title I elementary, middle, and high schools within the Memphis City School District. This study was designed to determine: (a) the extent to which Title I teachers applied brain-based strategies, (b) the differences in…

  18. Image derived input functions for dynamic High Resolution Research Tomograph PET brain studies

    NARCIS (Netherlands)

    Mourik, J.E.M.; van Velden, F.H.P.; Lubberink, J.M.; Kloet, R.W.; van Berckel, B.N.M.; Lammertsma, A.A.; Boellaard, R.

    2008-01-01

    The High Resolution Research Tomograph (HRRT) is a dedicated human brain positron emission tomography (PET) scanner. The aim of the present study was to validate the use of image derived input functions (IDIF) as an alternative for arterial sampling for HRRT human brain studies. To this end, IDIFs

  19. At least eighty percent of brain grey matter is modifiable by physical activity: A review study.

    Science.gov (United States)

    Batouli, Seyed Amir Hossein; Saba, Valiallah

    2017-08-14

    The human brain is plastic, i.e. it can show structural changes in response to the altered environment. Physical activity (PA) is a lifestyle factor which has significant associations with the structural and functional aspects of the human brain, as well as with the mind and body health. Many studies have reported regional/global brain volume increments due to exercising; however, a map which shows the overall extent of the influences of PAs on brain structure is not available. In this study, we collected all the reports on brain structural alterations in association with PA in healthy humans, and next, a brain map of the extent of these effects is provided. The results of this study showed that a large network of brain areas, equal to 82% of the total grey matter volume, were associated with PA. This finding has important implications in utilizing PA as a mediator factor for educational purposes in children, rehabilitation applications in patients, improving the cognitive abilities of the human brain such as in learning or memory, and preventing age-related brain deteriorations. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Impaired topological architecture of brain structural networks in idiopathic Parkinson's disease: a DTI study.

    Science.gov (United States)

    Li, Changhong; Huang, Biao; Zhang, Ruibin; Ma, Qing; Yang, Wanqun; Wang, Lijuan; Wang, Limin; Xu, Qin; Feng, Jieying; Liu, Liqing; Zhang, Yuhu; Huang, Ruiwang

    2017-02-01

    Parkinson's disease (PD) is considered as a neurodegenerative disorder of the brain central nervous system. But, to date, few studies adopted the network model to reveal topological changes in brain structural networks in PD patients. Additionally, although the concept of rich club organization has been widely used to study brain networks in various brain disorders, there is no study to report the changed rich club organization of brain networks in PD patients. Thus, we collected diffusion tensor imaging (DTI) data from 35 PD patients and 26 healthy controls and adopted deterministic tractography to construct brain structural networks. During the network analysis, we calculated their topological properties, and built the rich club organization of brain structural networks for both subject groups. By comparing the between-group differences in topological properties and rich club organizations, we found that the connectivity strength of the feeder and local connections are lower in PD patients compared to those of the healthy controls. Furthermore, using a network-based statistic (NBS) approach, we identified uniformly significantly decreased connections in two modules, the limbic/paralimbic/subcortical module and the cognitive control/attention module, in patients compared to controls. In addition, for the topological properties of brain network topology in the PD patients, we found statistically increased shortest path length and decreased global efficiency. Statistical comparisons of nodal properties were also widespread in the frontal and parietal regions for the PD patients. These findings may provide useful information to better understand the abnormalities of brain structural networks in PD patients.

  1. A study of brain MRI findings and clinical response of bladder empting failure in brain bladder

    Energy Technology Data Exchange (ETDEWEB)

    Miyakoda, Keiichi (Yamashina Aiseikai Hospital, Kyoto (Japan)); Watanabe, Kousuke

    1993-02-01

    In 45 patients (38 males and 7 females; average age:78 years) with brain bladder, who did not have any peripheral neuropathies and spinal disturbance, cerebral findings of MRI (1.5 T) T[sub 2] enhanced image were analyzed in comparison with those of 7 control patients with normal urination after BPH operations. Patients with neurogenic bladder were divided into three groups as follows: 33 patients with a chief complaint of urinary disturbance (Group I), 9 patients with urinary incontinence (Group II) and 3 patients with balanced bladder (Group III). High frequency of lacune (24%) of the globus pallidus and low signalling of the corpus striatum (30%) was found in Group I patients, but low frequency in other Group patients and control patients. Furthermore, pathologic changes with various grades in the globus pallidus were observed in 91% of Group I patients. In the treatment of urinary disturbance, a high improvement rate of micturition disorder (77%) was obtained in patients treated with a combination of dantrolene and TURp (TUIbn for females). However, patients who had clear lacune of the globus pallidus showed the low improvement rate. It should be possible that the globus pallidus contributes to control the movement of the external sphincter and the pelvic base muscles as well as other striated muscles. Moreover, lacune was rarely found in the urination center of the brain-stem on MRI. (author).

  2. PET study of brain maintenance of verbal creative activity.

    Science.gov (United States)

    Bechtereva, N P; Korotkov, A D; Pakhomov, S V; Roudas, M S; Starchenko, M G; Medvedev, S V

    2004-06-01

    This paper deals with the investigation of the brain organization of verbal creativity. Psychological tasks were designed in accordance with two main strategies used by volunteers in solving creative tasks. Regional cerebral blood flow (rCBF) was measured with positron emission tomography (PET) when performing two types of creative tasks in two groups of subjects, each type of the task organizing the creativity process in its own way. Valuable brain correlates of creativity were revealed in the left parieto-temporal regions (Brodmann areas 39 and 40). Copyright 2004 Elsevier B.V.

  3. Study protocol: imaging brain development in the Childhood to Adolescence Transition Study (iCATS).

    Science.gov (United States)

    Simmons, Julian G; Whittle, Sarah L; Patton, George C; Dudgeon, Paul; Olsson, Craig; Byrne, Michelle L; Mundy, Lisa K; Seal, Marc L; Allen, Nicholas B

    2014-04-30

    Puberty is a critical developmental phase in physical, reproductive and socio-emotional maturation that is associated with the period of peak onset for psychopathology. Puberty also drives significant changes in brain development and function. Research to date has focused on gonadarche, driven by the hypothalamic-pituitary-gonadal axis, and yet increasing evidence suggests that the earlier pubertal stage of adrenarche, driven by the hypothalamic-pituitary-adrenal axis, may play a critical role in both brain development and increased risk for disorder. We have established a unique cohort of children who differ in their exposure to adrenarcheal hormones. This presents a unique opportunity to examine the influence of adrenarcheal timing on brain structural and functional development, and subsequent health outcomes. The primary objective of the study is to explore the hypothesis that patterns of structural and functional brain development will mediate the relationship between adrenarcheal timing and indices of affect, self-regulation, and mental health symptoms collected across time (and therefore years of development). Children were recruited based upon earlier or later timing of adrenarche, from a larger cohort, with 128 children (68 female; M age 9.51 years) and one of their parents taking part. Children completed brain MRI structural and functional sequences, provided saliva samples for adrenarcheal hormones and immune biomarkers, hair for long-term cortisol levels, and completed questionnaires, anthropometric measures and an IQ test. Parents completed questionnaires reporting on child behaviour, development, health, traumatic events, and parental report of family environment and parenting style. This study, by examining the neurobiological and behavioural consequences of relatively early and late exposure to adrenarche, has the potential to significantly impact our understanding of pubertal risk processes.

  4. Assessment and Predicting Factors of Repeated Brain Computed Tomography in Traumatic Brain Injury Patients for Risk-Stratified Care Management: A 5-Year Retrospective Study.

    Science.gov (United States)

    Sumritpradit, Preeda; Setthalikhit, Thitipong; Chumnanvej, Sorayouth

    2016-01-01

    Background and Objective. To determine the value of repeated brain CT in TBI cases for risk-stratified care management (RSCM) and to identify predicting factors which will change the neurosurgical management after repeated brain CTs. Methods. A 5-year retrospective study from January 2009 to August 2013 was conducted. The primary outcome was the value of repeated brain CT in TBI cases. The secondary outcome is to identify predicting factors which will change the neurosurgical management after repeated brain CTs. Results. There were 145 consecutive patients with TBI and repeated brain CT after initial abnormal brain CT. Forty-two percent of all cases (N = 61) revealed the progression of intracranial hemorrhage after repeated brain CT. In all 145 consecutive patients, 67.6% of cases (N = 98) were categorized as mild TBI. For mild head injury, 8.2% of cases (N = 8) had undergone neurosurgical management after repeated brain CT. Only 1 from 74 mild TBI patients with repeated brain CT had neurosurgical intervention. Clopidogrel and midline shift more than 2 mm on initial brain CT were significant predicting factors to indicate the neurosurgical management in mild TBI cases. Conclusion. Routine repeated brain CT for RSCM had no clinical benefit in mild TBI cases.

  5. Assessment and Predicting Factors of Repeated Brain Computed Tomography in Traumatic Brain Injury Patients for Risk-Stratified Care Management: A 5-Year Retrospective Study

    Directory of Open Access Journals (Sweden)

    Preeda Sumritpradit

    2016-01-01

    Full Text Available Background and Objective. To determine the value of repeated brain CT in TBI cases for risk-stratified care management (RSCM and to identify predicting factors which will change the neurosurgical management after repeated brain CTs. Methods. A 5-year retrospective study from January 2009 to August 2013 was conducted. The primary outcome was the value of repeated brain CT in TBI cases. The secondary outcome is to identify predicting factors which will change the neurosurgical management after repeated brain CTs. Results. There were 145 consecutive patients with TBI and repeated brain CT after initial abnormal brain CT. Forty-two percent of all cases (N=61 revealed the progression of intracranial hemorrhage after repeated brain CT. In all 145 consecutive patients, 67.6% of cases (N=98 were categorized as mild TBI. For mild head injury, 8.2% of cases (N=8 had undergone neurosurgical management after repeated brain CT. Only 1 from 74 mild TBI patients with repeated brain CT had neurosurgical intervention. Clopidogrel and midline shift more than 2 mm on initial brain CT were significant predicting factors to indicate the neurosurgical management in mild TBI cases. Conclusion. Routine repeated brain CT for RSCM had no clinical benefit in mild TBI cases.

  6. Headache after pediatric traumatic brain injury: a cohort study.

    Science.gov (United States)

    Blume, Heidi K; Vavilala, Monica S; Jaffe, Kenneth M; Koepsell, Thomas D; Wang, Jin; Temkin, Nancy; Durbin, Dennis; Dorsch, Andrea; Rivara, Frederick P

    2012-01-01

    To determine the prevalence of headache 3 and 12 months after pediatric traumatic brain injury (TBI). This is a prospective cohort study of children ages 5 to 17 years in which we analyzed the prevalence of headache 3 and 12 months after mild TBI (mTBI; n = 402) and moderate/severe TBI (n = 60) compared with controls with arm injury (AI; n = 122). The prevalence of headache 3 months after injury was significantly higher after mTBI than after AI overall (43% vs 26%, relative risk [RR]: 1.7 [95% confidence interval (CI): 1.2-2.3]), in adolescents (13-17 years; 46% vs 25%, RR: 1.8 [95% CI: 1.1-3.1]), and in girls (59% vs 24%, RR: 2.4 [95% CI: 1.4-4.2]). The prevalence of headache at 3 months was also higher after moderate/severe TBI than AI in younger children (5-12 years; 60% vs 27%; RR: 2.0 [95% CI: 1.2-3.4]). Twelve months after injury, TBI was not associated with a significantly increased frequency of headache. However, girls with mTBI reported serious headache (≥ 5 of 10 pain scale rating) more often than controls (27% vs 10%, RR: 2.2 [95% CI: 0.9-5.6]). Pediatric TBI is associated with headache. A substantial number of children suffer from headaches months after their head injury. The prevalence of headache during the year after injury is related to injury severity, time after injury, age, and gender. Girls and adolescents appear to be at highest risk of headache in the months after TBI.

  7. Mechanisms of blast induced brain injuries, experimental studies in rats.

    Science.gov (United States)

    Risling, M; Plantman, S; Angeria, M; Rostami, E; Bellander, B-M; Kirkegaard, M; Arborelius, U; Davidsson, J

    2011-01-01

    Traumatic brain injuries (TBI) potentially induced by blast waves from detonations result in significant diagnostic problems. It may be assumed that several mechanisms contribute to the injury. This study is an attempt to characterize the presumed components of the blast induced TBI. Our experimental models include a blast tube in which an anesthetized rat can be exposed to controlled detonations of explosives that result in a pressure wave with a magnitude between 130 and 260 kPa. In this model, the animal is fixed with a metal net to avoid head acceleration forces. The second model is a controlled penetration of a 2mm thick needle. In the third model the animal is subjected to a high-speed sagittal rotation angular acceleration. Immunohistochemical labeling for amyloid precursor protein revealed signs of diffuse axonal injury (DAI) in the penetration and rotation models. Signs of punctuate inflammation were observed after focal and rotation injury. Exposure in the blast tube did not induce DAI or detectable cell death, but functional changes. Affymetrix Gene arrays showed changes in the expression in a large number of gene families including cell death, inflammation and neurotransmitters in the hippocampus after both acceleration and penetration injuries. Exposure to the primary blast wave induced limited shifts in gene expression in the hippocampus. The most interesting findings were a downregulation of genes involved in neurogenesis and synaptic transmission. These experiments indicate that rotational acceleration may be a critical factor for DAI and other acute changes after blast TBI. The further exploration of the mechanisms of blast TBI will have to include a search for long-term effects. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Brain type carnosinase in dementia: a pilot study

    Directory of Open Access Journals (Sweden)

    Papaioannou Alexandra

    2007-11-01

    Full Text Available Abstract Background The pathological processes underlying dementia are poorly understood and so are the markers which identify them. Carnosinase is a dipeptidase found almost exclusively in brain and serum. Carnosinase and its substrate carnosine have been linked to neuropathophysiological processes. Methods Carnosinase activity was measured by a flourometric method in 37 patients attending a Geriatric Outpatient Clinic. There were 17 patients without dementia, 13 had Alzheimer's disease (AD and 7 had mixed dementia (MD. Results The range of serum carnosinase activity for patients without dementia was 14.5 – 78.5 μmol/ml/h. There was no difference in carnosinase activity between patients without dementia (40.3 ± 15.2 μmol/ml/h and patients with AD (44.4 ± 12.4 μmol/ml/h or MD (26.6 ± 15 μmol/ml/h. However, levels in the MD group were significantly lower than the AD group (p = 0.01. This difference remained significant after adjusting for gender, MMSE score, exercise, but not age, one at a time and all combined. The effect of other medical conditions did not remove the significance between the AD and MD groups. The MD group, but not the AD group, demonstrated a significant trend with carnosinase activity decreasing with duration of disease (from first recorded date of diagnosis to date of blood collection (r = -0.76, p = 0.049. There was no association with carnosinase activity and MMSE score in the AD or MD group. Both AD and MD patients on any dementia medication (donepezil, galantamine, memantine had higher carnosinase activity compared to those not taking a dementia medication. Carnosinase activity was higher in patients who regularly exercised (n = 20 compared to those who did not exercise regularly (n = 17(p = 0.006. Conclusion This exploratory study has shown altered activities of the enzyme carnosinase in patients with dementia.

  9. Calcium uptake in brain synaptosomes: a pharmacologic study

    Energy Technology Data Exchange (ETDEWEB)

    Rampe, D.E.

    1986-01-01

    Pinched-off nerve endings (synaptosomes) from rat and guinea pig brain were used as a model to study Ca/sup 2 +/ entry mechanisms in neuronal tissue. Synaptosomes contain high affinity binding sites for both, 1,4-dihydropyridine Ca/sup 2 +/ channel antagonists, and activators. The thermodynamic characteristics of (/sup 3/H)nitrendipine building in synaptosomes were similar to those seen in both cardiac and smooth muscle preparations. Synaptosomes display two distinct K/sup +/-induced Ca/sup 2 +/ entry mechanisms. These are kinetically distinct with the faster of the two terminating in approx. 1 second while the slower persists for approx. minute. The slow phase uptake process is abolished in Na/sup +/-free media, is sensitive to antagonism by 3,4-dichlorobenzamil and displays a more rapid ontogenic appearance relative to the fast phase. It is likely that the slow phase represents Ca/sup 2 +/ entry via Na/sup +//Ca/sup 2 +/ exchange. The rapid inactivation of the fast phase coupled with its voltage dependence suggest that it represents Ca/sup 2 +/ entry via one or more types of voltage dependent Ca/sup 2 +/ channels. These channels may not be dihydropyridin sensitive since neither nitrendipine nor Bay K 8644 were shown to modulate synaptosomal Ca/sup 2 +/ uptake. The benzodiazepine receptor ligands Ro 5-4864, PK 11195 and diazepam all selectively inhibited fast phase Ca/sup 2 +/ entry relative to slow phase entry. In addition, these compounds altered (/sup 3/H)nitrendipine binding affinity. It is concluded that certain benzodiazepine receptor ligands can interact specifically with voltage dependent Ca/sup 2 +/ channels.

  10. A PET study on brain control of micturition in humans

    NARCIS (Netherlands)

    Blok, BFM; Willemsen, ATM; Holstege, G

    Although the brain plays a crucial role in the control of micturition, little is known about the structures involved. Identification of these areas is important because their dysfunction is thought to cause urge incontinence, a major problem in the elderly. In the cat, three areas in the brainstem

  11. Fertility, aging and the brain neuroendocrinological studies in female rats

    NARCIS (Netherlands)

    Franke, A.N.

    2003-01-01

    It is well known that fertility decreases in female mammals with advancing age. In women this decrease already starts around the age of 30 and shows a large variation between individuals. The aim of this thesis was to elucidate changes in the reproductive system, especially in the brain, that may

  12. Physiological Studies of the Brain: Implications for Science Teaching.

    Science.gov (United States)

    Esler, William K.

    1982-01-01

    Speculates that physiological changes resulting from repeated, long-term stimulation in human and laboratory animal brains are related to short- and long-term memory processes. Describes a physiological-based model which may explain many current learning theory principles and can serve as a foundation for developing new learning theories based on…

  13. TENIPOSIDE FOR BRAIN METASTASES OF SMALL-CELL LUNG-CANCER - A PHASE-II STUDY

    NARCIS (Netherlands)

    POSTMUS, PE; SMIT, EF; HAAXMAREICHE, H; VANZANDWIJK, N; ARDIZZONI, A; QUOIX, E; KIRKPATRICK, A; SAHMOUD, T; GIACCONE, G

    Purpose: Here we report the results of a phase II study of teniposide, one of the most active drugs against small-cell lung cancer (SCLC), in patients with brain metastases. Patients and Methods: Patients with SCLC who presented with brain metastases at diagnosis (n = 11) or during follow-up

  14. To enhance evidence-based medical study of secondary brain injury factors

    Directory of Open Access Journals (Sweden)

    Zhou FEI

    2012-02-01

    Full Text Available Objective  To analyze the progress in evidence-based medical study on secondary brain injury factors during the past 10 years and propose the direction and focal points for future research in this field. Methods  The achievements and latest tendency in the study of secondary brain injury factors during the last 10 years were retrieved from the literatures, and duly arranged and analyzed. Results  Remarkable progress has been made in the study of secondary brain injury during the last 10 years. Many factors in the pathophysiological process participating in the production of second brain damage, such as hyperpyrexia, hypoxemia, hypotension, increased intracranial hypertension, decreased cerebral perfusion pressure, arrhythmia, electrolyte disturbances, acid-base imbalance, etc., have been identified. However, for the opportune time of monitoring secondary brain damage and the significance of these findings, further evidence-based study is still necessary. Conclusion  The prevention and treatment of secondary brain injury induced by various brain damage factors are the keys to improving the level of treatment of severe brain injury.

  15. Physical activity, structural brain changes and cognitive decline. The SMART-MR study

    NARCIS (Netherlands)

    Kooistra, M.; Boss, H.M.; van der Graaf, Y.; Kappelle, L.J.; Biessels, G.J.; Geerlings, M.I.

    2014-01-01

    Objective: We aimed to examine the cross-sectional and prospective relationship between leisure time physical activity, brain MRI abnormalities and cognitive performance in patients with vascular disease. Methods: Within the SMART-MR study, 1.5T MRI of the brain and neuropsychological examinations

  16. Brain, nutrition and metabolism : Studies in lean, obese and insulin resistant humans

    NARCIS (Netherlands)

    Versteeg, R.I.

    2017-01-01

    This thesis describes studies on the effects of obesity, weight loss and meal timing on the human brain and glucose metabolism. We investigated effects of meal timing during a hypocaloric diet and weight loss on brain serotonin transporters (SERT) and dopamine transporters (DAT), neuronal activity

  17. Brain Potentials for Derivational Morphology: An ERP Study of Deadjectival Nominalizations in Spanish

    Science.gov (United States)

    Havas, Viktoria; Rodriguez-Fornells, Antoni; Clahsen, Harald

    2012-01-01

    This study investigates brain potentials to derived word forms in Spanish. Two experiments were performed on derived nominals that differ in terms of their productivity and semantic properties but are otherwise similar, an acceptability judgment task and a reading experiment using event-related brain potentials (ERPs) in which correctly and…

  18. An in vivo study on brain microstructure in biological and chronological ageing

    DEFF Research Database (Denmark)

    Altmann-Schneider, Irmhild; de Craen, Anton J M; van den Berg-Huysmans, Annette A

    2015-01-01

    This study aimed to investigate whether magnetization transfer imaging (MTI) parameters of cortical gray and white matter and subcortical gray matter structures differ between subjects enriched for human familial longevity and control subjects to provide a thorough description of the brain phenot...... years - not characterized by preserved macromolecular brain tissue integrity....

  19. Oxytocin, brain physiology, and functional connectivity: a review of intranasal oxytocin fMRI studies.

    Science.gov (United States)

    Bethlehem, Richard A I; van Honk, Jack; Auyeung, Bonnie; Baron-Cohen, Simon

    2013-07-01

    In recent years the neuropeptide oxytocin (OT) has become one of the most studied peptides of the human neuroendocrine system. Research has shown widespread behavioural effects and numerous potential therapeutic benefits. However, little is known about how OT triggers these effects in the brain. Here, we discuss some of the physiological properties of OT in the human brain including the long half-life of neuropeptides, the diffuse projections of OT throughout the brain and interactions with other systems such as the dopaminergic system. These properties indicate that OT acts without clear spatial and temporal specificity. Therefore, it is likely to have widespread effects on the brain's intrinsic functioning. Additionally, we review studies that have used functional magnetic resonance imaging (fMRI) concurrently with OT administration. These studies reveal a specific set of 'social' brain regions that are likely to be the strongest targets for OT's potential to influence human behaviour. On the basis of the fMRI literature and the physiological properties of the neuropeptide, we argue that OT has the potential to not only modulate activity in a set of specific brain regions, but also the functional connectivity between these regions. In light of the increasing knowledge of the behavioural effects of OT in humans, studies of the effects of OT administration on brain function can contribute to our understanding of the neural networks in the social brain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Contribution of Neuroimaging Studies to Understanding Development of Human Cognitive Brain Functions

    Directory of Open Access Journals (Sweden)

    Tomoyo Morita

    2016-09-01

    Full Text Available Humans experience significant physical and mental changes from birth to adulthood, and a variety of perceptual, cognitive, and motor functions mature over the course of approximately 20 years following birth. To deeply understand such developmental processes, merely studying behavioral changes is not sufficient; simultaneous investigation of the development of the brain may lead us to more comprehensive understanding. Recent advances in noninvasive neuroimaging technologies largely contribute to this understanding. Here, it is very important to consider the development of the brain from the perspectives of structure and function because both structure and function of the human brain mature slowly. In this review, we first discuss the process of structural brain development, i.e., how the structure of the brain, which is crucial when discussing functional brain development, changes with age. Second, we introduce some representative studies and the latest studies related to the functional development of the brain, particularly for visual, facial recognition, and social cognition functions, all of which are important for humans. Finally, we summarize how brain science can contribute to developmental study and discuss the challenges that neuroimaging should address in the future.

  1. Brain activity during driving with distraction: an immersive fMRI study

    Directory of Open Access Journals (Sweden)

    Tom A Schweizer

    2013-02-01

    Full Text Available Introduction: Non-invasive measurements of brain activity have an important role to play in understanding driving ability. The current study aimed to identify the neural underpinnings of human driving behavior by visualizing the areas of the brain involved in driving under different levels of demand, such as driving while distracted or making left turns at busy intersections. Methods: To capture brain activity during driving, we placed a driving simulator with a fully functional steering wheel and pedals in a 3.0 Tesla functional magnetic resonance imaging (fMRI system. To identify the brain areas involved while performing different real-world driving maneuvers, participants completed tasks ranging from simple (right turns to more complex (left turns at busy intersections. To assess the effects of driving while distracted, participants were asked to perform an auditory task while driving analogous to speaking on a hands-free device and driving. Results: A widely distributed brain network was identified, especially when making left turns at busy intersections compared to more simple driving tasks. During distracted driving, brain activation shifted dramatically from the posterior, visual and spatial areas to the prefrontal cortex. Conclusions: Our findings suggest that the distracted brain sacrificed areas in the posterior brain important for visual attention and alertness to recruit enough brain resources to perform a secondary, cognitive task. The present findings offer important new insights into the scientific understanding of the neuro-cognitive mechanisms of driving behavior and lay down an important foundation for future clinical research.

  2. Weight Gain following Pallidal Deep Brain Stimulation: A PET Study.

    Science.gov (United States)

    Sauleau, Paul; Drapier, Sophie; Duprez, Joan; Houvenaghel, Jean-François; Dondaine, Thibaut; Haegelen, Claire; Drapier, Dominique; Jannin, Pierre; Robert, Gabriel; Le Jeune, Florence; Vérin, Marc

    2016-01-01

    The mechanisms behind weight gain following deep brain stimulation (DBS) surgery seem to be multifactorial and suspected depending on the target, either the subthalamic nucleus (STN) or the globus pallidus internus (GPi). Decreased energy expenditure following motor improvement and behavioral and/or metabolic changes are possible explanations. Focusing on GPi target, our objective was to analyze correlations between changes in brain metabolism (measured with PET) and weight gain following GPi-DBS in patients with Parkinson's disease (PD). Body mass index was calculated and brain activity prospectively measured using 2-deoxy-2[18F]fluoro-D-glucose PET four months before and four months after the start of GPi-DBS in 19 PD patients. Dopaminergic medication was included in the analysis to control for its possible influence on brain metabolism. Body mass index increased significantly by 0.66 ± 1.3 kg/m2 (p = 0.040). There were correlations between weight gain and changes in brain metabolism in premotor areas, including the left and right superior gyri (Brodmann area, BA 6), left superior gyrus (BA 8), the dorsolateral prefrontal cortex (right middle gyrus, BAs 9 and 46), and the left and right somatosensory association cortices (BA 7). However, we found no correlation between weight gain and metabolic changes in limbic and associative areas. Additionally, there was a trend toward a correlation between reduced dyskinesia and weight gain (r = 0.428, p = 0.067). These findings suggest that, unlike STN-DBS, motor improvement is the major contributing factor for weight gain following GPi-DBS PD, confirming the motor selectivity of this target.

  3. Global gene expression profiling of healthy human brain and its application in studying neurological disorders.

    Science.gov (United States)

    Negi, Simarjeet K; Guda, Chittibabu

    2017-04-18

    Brain function is governed by precise regulation of gene expression across its anatomically distinct structures; however, the expression patterns of genes across hundreds of brain structures are not clearly understood. Here, we describe a gene expression model, which is representative of the healthy human brain transcriptome by using data from the Allen Brain Atlas. Our in-depth gene expression profiling revealed that 84% of genes are expressed in at least one of the 190 brain structures studied. Hierarchical clustering based on gene expression profiles delineated brain regions into structurally tiered spatial groups and we observed striking enrichment for region-specific processes. Further, weighted co-expression network analysis identified 19 robust modules of highly correlated genes enriched with functional associations for neurogenesis, dopamine signaling, immune regulation and behavior. Also, structural distribution maps of major neurotransmission systems in the brain were generated. Finally, we developed a supervised classification model, which achieved 84% and 81% accuracies for predicting autism- and Parkinson's-implicated genes, respectively, using our expression model as a baseline. This study represents the first use of global gene expression profiling from healthy human brain to develop a disease gene prediction model and this generic methodology can be applied to study any neurological disorder.

  4. Introductory study of brain function data processing; No kino joho shori no sendo kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    An investigational study was conducted of the brain function aiming at developing an interface with the same function as humans have. In the study, the most up-to-date information/knowledge and future problems were examined on brain measurement, brain modeling, making a model an element, and the brain function data processing system. As to the brain measurement, the paper took up the multielectrode simultaneous measuring method and the optical multipoint measuring method as an invasive measuring method, and the functional magnetic resonance imaging, near-infrared spectroscopy, magneto-encephalography, and electro-encephalography as a non-invasive measuring method. Relating to the brain modeling, studies were made on senses of sight and smell, the movement control and the learning. As to making a model an element, how to make the modeled function a chip on silicone for example becomes the problem. Reported were two reports on making the sense of sight an element and one report on making the parallel dispersed processing mechanism of brain an element. About the brain function data processing system, three reports were made on the present situation, matters in question, and the future development of the system in the case of catching data processing as a system taking a step ahead from making the model an element. 250 refs., 74 figs., 11 tabs.

  5. Does bracing influence brain activity during knee movement: an fMRI study.

    Science.gov (United States)

    Thijs, Youri; Vingerhoets, Guy; Pattyn, Els; Rombaut, Lies; Witvrouw, Erik

    2010-08-01

    Studies have shown that proprioceptive inputs during active and passive arm movements are processed in the primary and secondary somatosensory cortex and supplementary motor area of the brain. At which level of the central nervous system proprioceptive signals coming from the knee are regulated remains to be elucidated. In order to investigate whether there is a detectable difference in brain activity when various proprioceptive inputs are exerted at the knee, functional magnetic resonance imaging (fMRI) was used. fMRI in 13 healthy, right leg-dominant female volunteers compared brain activation during flexion-extension movements of the right knee under three different conditions: with application of a tight knee brace, with application of a moderate tight knee sleeve, and without application of a brace or sleeve. Brain activation was detected in the primary sensorimotor cortex (left and right paracentral lobule) and in the left superior parietal lobule of the brain. There was a significantly higher level of brain activation with the application of the brace and sleeve, respectively, compared to the condition without a brace or sleeve. A significantly higher cortical activation was also seen when comparing the braced condition with the condition when a sleeve was applied. The results suggest that peripheral proprioceptive input to the knee joint by means of a brace or sleeve seems to influence brain activity during knee movement. The results of this study also show that the intensity of brain activation during knee movement can be influenced by the intensity of proprioceptive stimulation at the joint.

  6. A study of brain networks associated with swallowing using graph-theoretical approaches.

    Directory of Open Access Journals (Sweden)

    Bo Luan

    Full Text Available Functional connectivity between brain regions during swallowing tasks is still not well understood. Understanding these complex interactions is of great interest from both a scientific and a clinical perspective. In this study, functional magnetic resonance imaging (fMRI was utilized to study brain functional networks during voluntary saliva swallowing in twenty-two adult healthy subjects (all females, [Formula: see text] years of age. To construct these functional connections, we computed mean partial correlation matrices over ninety brain regions for each participant. Two regions were determined to be functionally connected if their correlation was above a certain threshold. These correlation matrices were then analyzed using graph-theoretical approaches. In particular, we considered several network measures for the whole brain and for swallowing-related brain regions. The results have shown that significant pairwise functional connections were, mostly, either local and intra-hemispheric or symmetrically inter-hemispheric. Furthermore, we showed that all human brain functional network, although varying in some degree, had typical small-world properties as compared to regular networks and random networks. These properties allow information transfer within the network at a relatively high efficiency. Swallowing-related brain regions also had higher values for some of the network measures in comparison to when these measures were calculated for the whole brain. The current results warrant further investigation of graph-theoretical approaches as a potential tool for understanding the neural basis of dysphagia.

  7. Assessment and Predicting Factors of Repeated Brain Computed Tomography in Traumatic Brain Injury Patients for Risk-Stratified Care Management: A 5-Year Retrospective Study

    OpenAIRE

    Sumritpradit, Preeda; Setthalikhit, Thitipong; Chumnanvej, Sorayouth

    2016-01-01

    Background and Objective. To determine the value of repeated brain CT in TBI cases for risk-stratified care management (RSCM) and to identify predicting factors which will change the neurosurgical management after repeated brain CTs. Methods. A 5-year retrospective study from January 2009 to August 2013 was conducted. The primary outcome was the value of repeated brain CT in TBI cases. The secondary outcome is to identify predicting factors which will change the neurosurgical management after...

  8. Brain biochemistry and personality: a magnetic resonance spectroscopy study.

    Science.gov (United States)

    Ryman, Sephira G; Gasparovic, Chuck; Bedrick, Edward J; Flores, Ranee A; Marshall, Alison N; Jung, Rex E

    2011-01-01

    To investigate the biochemical correlates of normal personality we utilized proton magnetic resonance spectroscopy ((1)H-MRS). Our sample consisted of 60 subjects ranging in age from 18 to 32 (27 females). Personality was assessed with the NEO Five-Factor Inventory (NEO-FFI). We measured brain biochemistry within the precuneus, the cingulate cortex, and underlying white matter. We hypothesized that brain biochemistry within these regions would predict individual differences across major domains of personality functioning. Biochemical models were fit for all personality domains including Neuroticism, Extraversion, Openness, Agreeableness, and Conscientiousness. Our findings involved differing concentrations of Choline (Cho), Creatine (Cre), and N-acetylaspartate (NAA) in regions both within (i.e., posterior cingulate cortex) and white matter underlying (i.e., precuneus) the Default Mode Network (DMN). These results add to an emerging literature regarding personality neuroscience, and implicate biochemical integrity within the default mode network as constraining major personality domains within normal human subjects.

  9. Brain biochemistry and personality: a magnetic resonance spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Sephira G Ryman

    Full Text Available To investigate the biochemical correlates of normal personality we utilized proton magnetic resonance spectroscopy ((1H-MRS. Our sample consisted of 60 subjects ranging in age from 18 to 32 (27 females. Personality was assessed with the NEO Five-Factor Inventory (NEO-FFI. We measured brain biochemistry within the precuneus, the cingulate cortex, and underlying white matter. We hypothesized that brain biochemistry within these regions would predict individual differences across major domains of personality functioning. Biochemical models were fit for all personality domains including Neuroticism, Extraversion, Openness, Agreeableness, and Conscientiousness. Our findings involved differing concentrations of Choline (Cho, Creatine (Cre, and N-acetylaspartate (NAA in regions both within (i.e., posterior cingulate cortex and white matter underlying (i.e., precuneus the Default Mode Network (DMN. These results add to an emerging literature regarding personality neuroscience, and implicate biochemical integrity within the default mode network as constraining major personality domains within normal human subjects.

  10. Physical activity, structural brain changes and cognitive decline. The SMART-MR study.

    Science.gov (United States)

    Kooistra, M; Boss, H M; van der Graaf, Y; Kappelle, L J; Biessels, G J; Geerlings, M I

    2014-05-01

    We aimed to examine the cross-sectional and prospective relationship between leisure time physical activity, brain MRI abnormalities and cognitive performance in patients with vascular disease. Within the SMART-MR study, 1.5 T MRI of the brain and neuropsychological examinations were performed at baseline (n = 1232) and after 3.9 ± 0.4 years follow-up (n = 663). Automatic brain segmentation was used to quantify intracranial (ICV), total brain, ventricular, and white matter lesion (WML) volumes. Brain infarcts were rated visually. Level of physical activity was expressed in metabolic equivalents (MET) hours p/week. With linear regression analysis we examined associations of level of physical activity with brain MRI measures and with cognitive performance, adjusted for potential confounders. For the association with brain infarcts relative risks (RR) were calculated with Poisson regression. At baseline, an increase in physical activity of one SD (39.7 METh/w) was significantly associated with larger total brain volume (B = 0.20% of ICV; 95% CI 0.06; 0.33%). A trend was found for the association of physical activity with smaller ventricular volume (B = -0.04% of ICV; 95% CI -0.09; 0.02%) and with a decreased risk for brain infarcts (RR = 0.91, 95% CI: 0.82-1.02). No association was found with smaller WML volume (B = -0.02% of ICV; 95% CI -0.07; 0.04%). No associations with change in brain structures over time were observed. Also, no associations between physical activity and cognitive performance or cognitive decline were found. These data suggest that leisure time physical activity does not have a significant contribution in preventing or slowing down brain abnormalities and cognitive decline in this cohort of middle-aged individuals already burdened with vascular disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Revisiting hydrocephalus as a model to study brain resilience.

    OpenAIRE

    Matheus Fernandes de Oliveira; Fernando Campos Gomes Pinto; Koshiro eNishikuni; Ricardo Vieira Botelho; Alessandra Moura Lima; José Marcus Rotta

    2012-01-01

    Hydrocephalus is an entity which embraces a variety of diseases whose final result is the enlarged size of cerebral ventricular system, partially or completely. The physiopathology of hydrocephalus lies in the dynamics of circulation of cerebrospinal fluid (CSF). The consequent CSF stasis in hydrocephalus interferes with cerebral and ventricular system development. Children and adults who sustain congenital or acquired brain injury typically experience a diffuse insult that impacts many areas...

  12. Graph theory in brain-to-brain connectivity: A simulation study and an application to an EEG hyperscanning experiment.

    Science.gov (United States)

    Toppi, J; Ciaramidaro, A; Vogel, P; Mattia, D; Babiloni, F; Siniatchkin, M; Astolfi, L

    2015-08-01

    Hyperscanning consists in the simultaneous recording of hemodynamic or neuroelectrical signals from two or more subjects acting in a social context. Well-established methodologies for connectivity estimation have already been adapted to hyperscanning purposes. The extension of graph theory approach to multi-subjects case is still a challenging issue. In the present work we aim to test the ability of the currently used graph theory global indices in describing the properties of a network given by two interacting subjects. The testing was conducted first on surrogate brain-to-brain networks reproducing typical social scenarios and then on real EEG hyperscanning data recorded during a Joint Action task. The results of the simulation study highlighted the ability of all the investigated indexes in modulating their values according to the level of interaction between subjects. However, only global efficiency and path length indexes demonstrated to be sensitive to an asymmetry in the communication between the two subjects. Such results were, then, confirmed by the application on real EEG data. Global efficiency modulated, in fact, their values according to the inter-brain density, assuming higher values in the social condition with respect to the non-social condition.

  13. Resting Brain Activity Related to Dispositional Mindfulness: a PET Study.

    Science.gov (United States)

    Gartenschläger, Martin; Schreckenberger, Mathias; Buchholz, Hans-Georg; Reiner, Iris; Beutel, Manfred E; Adler, Julia; Michal, Matthias

    2017-01-01

    Mindfulness denotes a state of consciousness characterized by receptive attention to and awareness of present events and experiences. As a personality trait, it constitutes the ability to become aware of mental activities such as sensations, images, feelings, and thoughts, and to disengage from judgment, conditioned emotions, and their cognitive processing or automatic inhibition. Default brain activity reflects the stream of consciousness and sense of self at rest. Analysis of brain activity at rest in persons with mindfulness propensity may help to elucidate the neurophysiological basis of this important mental trait. The sample consisted of 32 persons-23 with mental disorders and 9 healthy controls. Dispositional mindfulness (DM) was operationalized by Mindful Attention Awareness Scale (MAAS). Brain activity at rest with eyes closed was assessed by fluorodeoxyglucose positron emission tomography (F-18-FDG PET). After adjustment for depression, anxiety, age and years of education, resting glucose metabolism in superior parietal lobule and left precuneus/Brodmann area (BA) 7 was positively associated with DM. Activity of the left inferior frontal orbital gyrus (BA 47) and bilateral anterior thalamus were inversely associated with DM. DM appears to be associated with increased metabolic activity in some core area of the default mode network (DMN) and areas connected to the DMN, such as BA 7, hosting sense of self functions. Hypometabolism on the other hand was found in some nodes connected to the DMN, such as left inferior frontal orbital gyrus and bilateral thalamus, commonly related to functions of memory retrieval, decision making, or outward attention.

  14. A pilot study of accelerated irradiation for brain metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Michinao; Tokuuye, Koichi; Akine, Yasuyuki; Akimoto, Tetsuo; Ogino, Takashi; Tsukiyama, Iwao; Ono, Ryosuke; Egawa, Sunao (National Cancer Center, Tokyo (Japan). Hospital)

    1992-12-01

    Twenty-eight patients with brain metastases received brain radiotherapy with a total dose of 48 Gy, at 2 Gy per fraction, twice a day with a minimum interfractional period of 4 hours, and 5 days per week. This was intended to shorten the treatment period without increasing the morbidity, since most of these patients had a limited survival expectancy. Twenty-six of the 28 patients completed the radiotherapy. Three of the 26 patients experienced nausea and/or vomiting during the treatment. Radiotherapy was interrupted in two patients: one developed hemiplegia, and the other somnolence, both of which resulted from the progressive intracerebral disease. This radiotherapy regimen appears to be comparable to the conventional scheme in alleviation of symptoms. No patient needed interruption of the planned course of treatment because of acute irradiation toxicity. Based on these results, a multi-institutional randomized trial has been initiated to compare the twice-a-day and once-a-day radiotherapy schemes on patients with brain metastases. (author).

  15. Pilot Study of Propofol-induced Slow Waves as a Pharmacologic Test for Brain Dysfunction after Brain Injury.

    Science.gov (United States)

    Kortelainen, Jukka; Väyrynen, Eero; Huuskonen, Usko; Laurila, Jouko; Koskenkari, Juha; Backman, Janne T; Alahuhta, Seppo; Seppänen, Tapio; Ala-Kokko, Tero

    2017-01-01

    Slow waves (less than 1 Hz) are the most important electroencephalogram signatures of nonrapid eye movement sleep. While considered to have a substantial importance in, for example, providing conditions for single-cell rest and preventing long-term neural damage, a disturbance in this neurophysiologic phenomenon is a potential indicator of brain dysfunction. Since, in healthy individuals, slow waves can be induced with anesthetics, the authors tested the possible association between hypoxic brain injury and slow-wave activity in comatose postcardiac arrest patients (n = 10) using controlled propofol exposure. The slow-wave activity was determined by calculating the low-frequency (less than 1 Hz) power of the electroencephalograms recorded approximately 48 h after cardiac arrest. To define the association between the slow waves and the potential brain injury, the patients' neurologic recovery was then followed up for 6 months. In the patients with good neurologic outcome (n = 6), the low-frequency power of electroencephalogram representing the slow-wave activity was found to substantially increase (mean ± SD, 190 ± 83%) due to the administration of propofol. By contrast, the patients with poor neurologic outcome (n = 4) were unable to generate propofol-induced slow waves. In this experimental pilot study, the comatose postcardiac arrest patients with poor neurologic outcome were unable to generate normal propofol-induced electroencephalographic slow-wave activity 48 h after cardiac arrest. The finding might offer potential for developing a pharmacologic test for prognostication of brain injury by measuring the electroencephalographic response to propofol.

  16. Brain-based devices for the study of nervous systems and the development of intelligent machines.

    Science.gov (United States)

    Krichmar, Jeffrey L; Edelman, Gerald M

    2005-01-01

    The simultaneous study of brain function at all levels of organization is difficult to undertake with current experimental tools. Present day electrophysiology only allows the recording of at most hundreds of neurons while an animal is performing a behavioral task. Because of this limitation and the sheer complexity of the nervous system, computational modeling has become essential in developing theories of brain function. Accordingly, our group has constructed a series of brain-based devices (BBDs), that is, physical devices with simulated nervous systems that guide behavior, to serve as a heuristic for testing theories of brain function. Unlike animal models, BBDs permit analysis of activity at all levels of the nervous system as the device behaves in its environment. Although the principal focus of developing BBDs has been to test theories of brain function, this type of modeling may also provide a basis for robotic design and practical applications.

  17. Brain Basics

    Medline Plus

    Full Text Available ... have been linked to many mental disorders, including autism , obsessive compulsive disorder (OCD) , schizophrenia , and depression . Brain ... studies show that brain growth in children with autism appears to peak early. And as they grow ...

  18. Brain Basics

    Medline Plus

    Full Text Available ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses ... depression experience when starting treatment. Gene Studies Advanced technologies are also making it faster, easier, and more ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... and her husband questions about Sarah's symptoms and family medical history. Epigenetic changes from stress or early- ... brain's structure, studies show that brain growth in children with autism appears to peak early. And as ...

  20. Webinar Presentation: Epidemiologic Studies of the Effects of Toxic Exposures on Brain and Behavior: Neuropsychological Assessment

    Science.gov (United States)

    This presentation, Epidemiologic Studies of the Effects of Toxic Exposures on Brain and Behavior: Neuropsychological Assessment, was given at the NIEHS/EPA Children's Centers 2015 Webinar Series: Interdisciplinary Approaches to Neurodevelopment.

  1. Human Emotion Detection via Brain Waves Study by Using Electroencephalogram (EEG)

    National Research Council Canada - National Science Library

    W.O. A.S. Wan Ismail; M. Hanif; S. B. Mohamed; Noraini Hamzah; Zairi Ismael Rizman

    2016-01-01

    .... This research was conducted to detect or identify human emotion via the study of brain waves. In addition, the research aims to develop computer software that can detect human emotions quickly and easily...

  2. Brain SPECT in subtypes of mild cognitive impairment Findings from the DESCRIPA multicenter study

    NARCIS (Netherlands)

    Nobili, F.; Frisoni, G. B.; Portet, F.; Verhey, F.; Rodriguez, G.; Caroli, A.; Touchon, J.; Calvini, P.; Morbelli, S.; De Carli, F.; Guerra, U.P.; van de Pol, L.A.; Visser, P.J.

    2008-01-01

    The Development of Screening Guidelines and Clinical Criteria of Predementia Alzheimer's Disease (DESCRIPA) multicenter study enrolled patients with MCI or subjective cognitive complaints (SUBJ), a part of whom underwent optional brain perfusion SPECT. These patients were classified as SUBJ (n =

  3. Learning about brain physiology and complexity from the study of the epilepsies

    Directory of Open Access Journals (Sweden)

    N. Garcia-Cairasco

    2009-01-01

    Full Text Available The brain is a complex system, which produces emergent properties such as those associated with activity-dependent plasticity in processes of learning and memory. Therefore, understanding the integrated structures and functions of the brain is well beyond the scope of either superficial or extremely reductionistic approaches. Although a combination of zoom-in and zoom-out strategies is desirable when the brain is studied, constructing the appropriate interfaces to connect all levels of analysis is one of the most difficult challenges of contemporary neuroscience. Is it possible to build appropriate models of brain function and dysfunctions with computational tools? Among the best-known brain dysfunctions, epilepsies are neurological syndromes that reach a variety of networks, from widespread anatomical brain circuits to local molecular environments. One logical question would be: are those complex brain networks always producing maladaptive emergent properties compatible with epileptogenic substrates? The present review will deal with this question and will try to answer it by illustrating several points from the literature and from our laboratory data, with examples at the behavioral, electrophysiological, cellular and molecular levels. We conclude that, because the brain is a complex system compatible with the production of emergent properties, including plasticity, its functions should be approached using an integrated view. Concepts such as brain networks, graphics theory, neuroinformatics, and e-neuroscience are discussed as new transdisciplinary approaches dealing with the continuous growth of information about brain physiology and its dysfunctions. The epilepsies are discussed as neurobiological models of complex systems displaying maladaptive plasticity.

  4. Assessment of SPM in perfusion brain SPECT studies. A numerical simulation study using bootstrap resampling methods.

    Science.gov (United States)

    Pareto, Deborah; Aguiar, Pablo; Pavía, Javier; Gispert, Juan Domingo; Cot, Albert; Falcón, Carles; Benabarre, Antoni; Lomeña, Francisco; Vieta, Eduard; Ros, Domènec

    2008-07-01

    Statistical parametric mapping (SPM) has become the technique of choice to statistically evaluate positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and single photon emission computed tomography (SPECT) functional brain studies. Nevertheless, only a few methodological studies have been carried out to assess the performance of SPM in SPECT. The aim of this paper was to study the performance of SPM in detecting changes in regional cerebral blood flow (rCBF) in hypo- and hyperperfused areas in brain SPECT studies. The paper seeks to determine the relationship between the group size and the rCBF changes, and the influence of the correction for degradations. The assessment was carried out using simulated brain SPECT studies. Projections were obtained with Monte Carlo techniques, and a fan-beam collimator was considered in the simulation process. Reconstruction was performed by using the ordered subsets expectation maximization (OSEM) algorithm with and without compensation for attenuation, scattering, and spatial variant collimator response. Significance probability maps were obtained with SPM2 by using a one-tailed two-sample t-test. A bootstrap resampling approach was used to determine the sample size for SPM to detect the between-group differences. Our findings show that the correction for degradations results in a diminution of the sample size, which is more significant for small regions and low-activation factors. Differences in sample size were found between hypo- and hyperperfusion. These differences were larger for small regions and low-activation factors, and when no corrections were included in the reconstruction algorithm.

  5. Adolescent brain development : A longitudinal twin study into structural brain development and its relation to hormone levels and intelligence

    NARCIS (Netherlands)

    Koenis, M.M.G.

    2017-01-01

    Puberty is a period characterized by major changes in hormone levels, physical appearance, cognition, brain structure and function. The teenage brain undergoes considerable reorganization on a structural and functional level. These changes may be associated with cognitive and social development.

  6. Residential radon exposure and brain cancer: an ecological study in a radon prone area (Galicia, Spain)

    OpenAIRE

    Ruano-Ravina, Alberto; Aragon?s, Nuria; Kelsey, Karl T.; P?rez-R?os, M?nica; Pi?eiro-Lamas, Mar?a; L?pez-Abente, Gonzalo; Juan M. Barros-Dios

    2017-01-01

    We aimed to know if radon concentration is associated with municipal mortality due to brain cancer in Galicia, Spain. We designed an ecological study taking as study unit Galician municipalities. To be included, municipalities had to have at least three radon measurements. We correlated radon concentrations with municipal mortality due to these malignant tumors during the period 1999?2008. We calculated the relative risk of dying of brain cancers for each municipality and correlated this valu...

  7. Role of routine repeat computed tomography of brain in patients with mild and moderate traumatic brain injury: A prospective study

    Science.gov (United States)

    Shah, Jayun M.; Shah, Kairav S.; Kumar, Jinendra; Sundaram, Ponraj K.

    2017-01-01

    Background: Computed tomography (CT) has become the primary investigative modality for traumatic brain injury (TBI) and there are established guidelines for the initial CT (CT-1). There are no specific guidelines for scheduling repeat CT in TBI. This study was carried out to compare the usefulness of unscheduled repeat CT (UCT-2) with scheduled repeat CT (SCT-2) in the presence or absence of neurological deterioration and to identify risk factors associated with radiological worsening (RW). Methods: This prospective study comprised admitted patients with mild and moderate TBI between February and May, 2014 and all patients were subjected to repeat CT brain. Patients with penetrating brain injuries and surgical conditions after CT-1, and age < 5 years were excluded. Positive yield after the second CT (SCT-2 and UCT-2) leading to modification of management were compared between the two groups. Results: In this study, 214 patients (214/222) underwent SCT-2 and 8 underwent UCT-2 (8/222). Surgery was required in 2 (0.9%) from the first group and 7 (87.5%) in the latter. UCT-2 was more likely to show RW warranting surgery as compared to SCT-2 (P < 0.05). In the SCT-2 group, CT-1 had been done within 2 h after trauma in 30 patients and 8 (8/30; 26.7%) showed RW and; after 2 h in the remaining 184 (184/214) with RW seen in 23 (23/184; 12.5%). RW was more common when the CT-1 was within 2 h from trauma (P < 0.05). In our study, the age of the patient and admission Glasgow Coma Scores did not significantly affect the findings in repeat CT. Conclusion: Repeating CT brain is costly besides needing significant logistical support to shift an injured and often unstable patient. SCT-2 is more likely to show RW when CT-1 is done within 2 h after trauma. UCT-2 is more likely to show RW and findings warranting surgery as compared to SCT-2. Hence, a repeat CT may be preferred only in the presence of clinical worsening and when CT-1 is done within 2 h after trauma. PMID:28761517

  8. Targeting brain cells with glutathione-modulated nanoliposomes: in vitro and in vivo study

    Science.gov (United States)

    Salem, Heba F; Ahmed, Sayed M; Hassaballah, Ashraf E; Omar, Mahmoud M

    2015-01-01

    Background The blood–brain barrier prevents many drug moieties from reaching the central nervous system. Therefore, glutathione-modulated nanoliposomes have been engineered to enhance the targeting of flucytosine to the brain. Methods Glutathione-modulated nanoliposomes were prepared by thin-film hydration technique and evaluated in the primary brain cells of rats. Lecithin, cholesterol, and span 65 were mixed at 1:1:1 molar ratio. The molar percentage of PEGylated glutathione varied from 0 mol% to 0.75 mol%. The cellular binding and the uptake of the targeted liposomes were both monitored by epifluorescent microscope and flow cytometry techniques. A biodistribution and a pharmacokinetic study of flucytosine and flucytosine-loaded glutathione–modulated liposomes was carried out to evaluate the in vivo brain-targeting efficiency. Results The size of glutathione-modulated nanoliposomes was glutathione increased to reach the maximum at 0.75 mol%. The uptake of the targeted liposomes by brain cells of the rats was three times greater than that of the nontargeted liposomes. An in vivo study showed that the relative efficiency was 2.632±0.089 and the concentration efficiency was 1.590±0.049, and also, the drug-targeting index was 3.670±0.824. Conclusion Overall, these results revealed that glutathione-PEGylated nanoliposomes enhance the effective delivery of flucytosine to brain and could become a promising new therapeutic option for the treatment of the brain infections. PMID:26229435

  9. Pilot Study on Long Term Effects of HZE Exposure on the Canine Brain

    Science.gov (United States)

    Budinger, T.; Brennan, K.; Pearlstein, R.

    A ground-based pilot experiment was initiated in December 1992 to evaluate the long term effects on health and aging after HZE cosmic radiation of the canine brain. Six adult male beagle dogs (1 yr) from the UC Davis breeding colony at the Laboratory for Energy Related Health Research were researched in this study. Iron nuclei at 600 MeV/amu (180 keV/mm) were used to irradiate the whole brain. The fluence of 3 x 106 iron nuclei/ cm2 mimics the HZE exposure (all > He) for a 2- year mission to Mars. The HZE irradiation was a fully stripped iron particle beam at the LBNL BEVALAC. Using a Raster Scanner we were able to spread the beam to deliver a uniform dose over the brain. The total dose to the brain was 200 cGy. Four dogs were whole brain irradiated with iron and two dogs served as litter-mate controls. The control dogs received a similar amount of background neutron irradiation as the irradiated dogs. One of the control dogs died suddenly 3/98 of intestinal cancer unrelated to the brain irradiation. That brain was not harvested before autolysis had prevented analysis. Periodic PET metabolism and yearly MRI studies have been done on these dog's brain since irradiation. All dogs had yearly physical, neurological and blood chemistry work-ups. PET imaging was performed with the Donner 600-crystal high-resolution PET (2.6 mm resolution) and with the commercial PET, CTI/Siemens ECAT 951 PET Scanner (5 mm resolution). NMR imaging is performed with the 1 5T GE Signa at UCSF using T spoiled gradient imaging.1 sequences for T1 contrast at 1 mm resolution as well as a T2 weighted spin echo imaging sequence at 1 mm resolution. A major goal of this work is to present an accurate method for measuring surface areas and volumes of the irradiated vs the non-irradiated canine brain using MRI data which are isotropic in resolution at the 1 mm level. This allows us to monitor the changes in brain size with aging and radiation exposure. Nine years post irradiation, these dog brains

  10. PET study of cholinergic system in the brain

    Energy Technology Data Exchange (ETDEWEB)

    Shinotoh, Hitoshi [Chiba Univ. (Japan). School of Medicine

    1999-01-01

    Recently, we have developed a method to measure acetylcholinesterase (AChE) activity, a functional marker for cholinergic system, by positron emission tomography (PET) and carbon-11 labeled N-methyl-4-piperidyl acetate. Kinetic analysis of the radioactivity in the brain and the plasma yielded a rate constant ``k 3`` as an index of AChE activity. The ratios for the k 3 values for the cerebral cortex/thalamus/cerebellum/striatum found in healthy participants were 1/ 3/ 8/ 10, respectively, corresponding well with AChE activity ratios in the brain at necropsy (1/ 3/ 8/ 38), except for the striatum. In 23 healthy volunteers (age range: 24-89 years), there was no age-related decline of k 3 values in the cerebral cortex, suggesting AChE activity is preserved in aged cerebral cortex. In 11 patients with Alzheimer`s disease, there was a significant reduction (-24%) of k 3 values in the cerebral cortex and hippocampus, suggesting a loss of ascending cholinergic system from the basal forebrain to the cerebral cortex and hippocampus. In 16 patients with Parkinson`s disease, there was a significant reduction (-18%) of k 3 values in the cerebral cortex. In 10 patients with progressive supra nuclear palsy, there was a significant reduction (-38%) of k 3 values in the thalamus. This technique is useful for investigating central cholinergic system in neuro degenerative disorders with dementia. (author)

  11. Brain-only metastases of small cell lung cancer; efficacy of whole brain radiotherapy. An EORTC phase II study

    NARCIS (Netherlands)

    Postmus, PE; Haaxma-Reiche, H; Gregor, A; Groen, HJM; Lewinski, T; Scolard, T; Kirkpatrick, A; Curran, D; Sahmoud, T; Giaccone, G

    Background and purpose: To evaluate the efficacy of WBRT as a single treatment modality in patients with brain metastases of small cell lung cancer. Patients and methods: The patients had brain metastases of small cell lung cancer without any sign of tumour outside the brain and were treated with 10

  12. Persistent post-traumatic headache vs. migraine: an MRI study demonstrating differences in brain structure.

    Science.gov (United States)

    Schwedt, Todd J; Chong, Catherine D; Peplinski, Jacob; Ross, Katherine; Berisha, Visar

    2017-08-22

    The majority of individuals with post-traumatic headache have symptoms that are indistinguishable from migraine. The overlap in symptoms amongst these individuals raises the question as to whether post-traumatic headache has a unique pathophysiology or if head trauma triggers migraine. The objective of this study was to compare brain structure in individuals with persistent post-traumatic headache (i.e. headache lasting at least 3 months following a traumatic brain injury) attributed to mild traumatic brain injury to that of individuals with migraine. Twenty-eight individuals with persistent post-traumatic headache attributed to mild traumatic brain injury and 28 individuals with migraine underwent brain magnetic resonance imaging on a 3 T scanner. Regional volumes, cortical thickness, surface area and curvature measurements were calculated from T1-weighted sequences and compared between subject groups using ANCOVA. MRI data from 28 healthy control subjects were used to interpret the differences in brain structure between migraine and persistent post-traumatic headache. Differences in regional volumes, cortical thickness, surface area and brain curvature were identified when comparing the group of individuals with persistent post-traumatic headache to the group with migraine. Structure was different between groups for regions within the right lateral orbitofrontal lobe, left caudal middle frontal lobe, left superior frontal lobe, left precuneus and right supramarginal gyrus (p comparing the migraine cohort to healthy controls. In conclusion, persistent post-traumatic headache and migraine are associated with differences in brain structure, perhaps suggesting differences in their underlying pathophysiology. Additional studies are needed to further delineate similarities and differences in brain structure and function that are associated with post-traumatic headache and migraine and to determine their specificity for each of the headache types.

  13. Generalized decrease in brain glucose metabolism during fasting in humans studied by PET

    Energy Technology Data Exchange (ETDEWEB)

    Redies, C.; Hoffer, L.J.; Beil, C.; Marliss, E.B.; Evans, A.C.; Lariviere, F.; Marrett, S.; Meyer, E.; Diksic, M.; Gjedde, A.

    1989-06-01

    In prolonged fasting, the brain derives a large portion of its oxidative energy from the ketone bodies, beta-hydroxybutyrate and acetoacetate, thereby reducing whole body glucose consumption. Energy substrate utilization differs regionally in the brain of fasting rat, but comparable information has hitherto been unavailable in humans. We used positron emission tomography (PET) to study regional brain glucose and oxygen metabolism, blood flow, and blood volume in four obese subjects before and after a 3-wk total fast. Whole brain glucose utilization fell to 54% of control (postabsorptive) values (P less than 0.002). The whole brain rate constant for glucose tracer phosphorylation fell to 51% of control values (P less than 0.002). Both parameters decreased uniformly throughout the brain. The 2-fluoro-2-deoxy-D-glucose lumped constant decreased from a control value of 0.57 to 0.43 (P less than 0.01). Regional blood-brain barrier transfer coefficients for glucose tracer, regional oxygen utilization, blood flow, and blood volume were unchanged.

  14. Brain protein metabolism and the acquisition of new behaviors. II. Immunological studies of the alpha, beta and gamma proteins of goldfish brain.

    Science.gov (United States)

    Shashoua, V E

    1977-02-11

    In a previous study, the labeling pattern of three proteins (alpha, beta and gamma) in goldfish brain was found to change after the animals successfully acquired a new pattern of behavior. In the present study, these proteins were isolated from the brain cytoplasmic fraction, purified by successive gel electrophoresis and used as antigent to immunize rabbits. Antisera containing antibodies to two of the proteins (beta and gamma) were obtained. These gave single precipitin bands when plated against the antigens and a mixture of the total cytoplasmic proteins. The distribution of beta and gamma in brain subcellular fractions and in a variety of goldfish tissues was determined by immunodiffusion methods. gamma was specific to brain. The beta protein cross-reacted but was not identical to a widely distributed substance in plasma, liver and kidney. Both beta and gamma appear to be species specific in that no cross-reactivity was obtained with mouse, chick or rat brain proteins. Immunological methods, in combination with double labeling experiments were used to establish that the beta and gamma antigens were proteins which were normally present in goldfish brain. Both the beta and gamma antisera were equally capable of specifically precipitating the proteins which were differentially labeled after training as well as purified proteins of the same molecular weight present in the brains of control animals. These results suggest that the acquisition of a new pattern of behavior can increase the demand for the synthesis of specific proteins (beta and gamma) normally present in goldfish brain.

  15. A neurological comparative study of the harp seal (Pagophilus groenlandicus) and harbor porpoise (Phocoena phocoena) brain

    DEFF Research Database (Denmark)

    Walløe, Solveig; Eriksen, Nina; Dabelsteen, Torben

    2010-01-01

    The cetacean brain is well studied. However, few comparisons have been done with other marine mammals. In this study, we compared the harp seal (Pagophilus groenlandicus) and the harbor porpoise brain (Phocoena phocoena). Stereological methods were applied to compare three areas of interest...... cells, whereas the harp seal have 6.1 × 10(9) neocortical neurons and 17.5 × 10(9) neocortical glial cells. The harbor porpoise have significantly more neurons and glial cells in the auditory cortex than in the visual cortex, whereas the pattern was opposite for the harp seal. These results...... are the first to provide estimates of the number of neurons and glial cells in the neocortex of the harp seal and harbor porpoise brain and offer new data to the comparative field of mammalian brain evolution....

  16. A biexponential DWI study in rat brain intracellular oedema

    Energy Technology Data Exchange (ETDEWEB)

    Steier, Roy, E-mail: roy.steier@gmail.com [Department of Neurosurgery, Faculty of Medicine University of Pecs, H-7623 Pecs, Ret street 2 (Hungary); Pecs Diagnostic Center, Faculty of Medicine University of Pecs, H-7623 Pecs, Ret street 2 (Hungary); Aradi, Mihaly [Department of Neurosurgery, Faculty of Medicine University of Pecs, H-7623 Pecs, Ret street 2 (Hungary); Pecs Diagnostic Center, Faculty of Medicine University of Pecs, H-7623 Pecs, Ret street 2 (Hungary); Pal, Jozsef [Department of Neurosurgery, Faculty of Medicine University of Pecs, H-7623 Pecs, Ret street 2 (Hungary); Perlaki, Gabor; Orsi, Gergely; Bogner, Peter [Pecs Diagnostic Center, Faculty of Medicine University of Pecs, H-7623 Pecs, Ret street 2 (Hungary); Galyas, Ferenc [Department of Neurosurgery, Faculty of Medicine University of Pecs, H-7623 Pecs, Ret street 2 (Hungary); and others

    2012-08-15

    Purpose: To examine the changes in MR parameters derived from diffusion weighted imaging (DWI) biexponential analysis in an in vivo intracellular brain oedema model, and to apply electron microscopy (EM) to shed more light on the morphological background of MR-related observations. Materials and methods: Intracellular oedema was induced in ten male Wistar rats (380-450 g) by way of water load, using a 20% body weight intraperitoneal injection of 140 mmol/L dextrose solution. A 3T MRI instrument was used to perform serial DWI, and MR specroscopy (water signal) measurements. Following the MR examination the brains of the animals were analyzed for EM. Results: Following the water load induction, apparent diffusion coefficient (ADC) values started declining from 724 {+-} 43 {mu}m{sup 2}/s to 682 {+-} 26 {mu}m{sup 2}/s (p < 0.0001). ADC-fast values dropped from 948 {+-} 122 to 840 {+-} 66 {mu}m{sup 2}/s (p < 0.001). ADC-slow showed a decrease from 226 {+-} 66 to 191 {+-} 74 {mu}m{sup 2}/s (p < 0.05). There was a shift from the slow to the fast component at 110 min time point. The percentage of the fast component demonstrated moderate, yet significant increase from 76.56 {+-} 7.79% to 81.2 {+-} 7.47% (p < 0.05). The water signal was increasing by 4.98 {+-} 3.52% compared to the base line (p < 0.01). The results of the E.M. revealed that water was detected intracellularly, within astrocytic preivascular end-feet and cell bodies. Conclusion: The unexpected volume fraction changes (i.e. increase in fast component) detected in hypotonic oedema appear to be substantially different from those observed in stroke. It may suggest that ADC decrease in stroke, in contrast to general presumptions, cannot be explained only by water shift from extra to intracellular space (i.e. intracellular oedema).

  17. Disrupted small-world brain networks in moderate Alzheimer's disease: a resting-state FMRI study.

    Directory of Open Access Journals (Sweden)

    Xiaohu Zhao

    Full Text Available The small-world organization has been hypothesized to reflect a balance between local processing and global integration in the human brain. Previous multimodal imaging studies have consistently demonstrated that the topological architecture of the brain network is disrupted in Alzheimer's disease (AD. However, these studies have reported inconsistent results regarding the topological properties of brain alterations in AD. One potential explanation for these inconsistent results lies with the diverse homogeneity and distinct progressive stages of the AD involved in these studies, which are thought to be critical factors that might affect the results. We investigated the topological properties of brain functional networks derived from resting functional magnetic resonance imaging (fMRI of carefully selected moderate AD patients and normal controls (NCs. Our results showed that the topological properties were found to be disrupted in AD patients, which showing increased local efficiency but decreased global efficiency. We found that the altered brain regions are mainly located in the default mode network, the temporal lobe and certain subcortical regions that are closely associated with the neuropathological changes in AD. Of note, our exploratory study revealed that the ApoE genotype modulates brain network properties, especially in AD patients.

  18. Brain Basics

    Medline Plus

    Full Text Available ... brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies show that brain growth in children with autism appears to peak early. And as they grow there are differences in ...

  19. Erythropoietin in traumatic brain injury: study protocol for a randomised controlled trial.

    LENUS (Irish Health Repository)

    Nichol, Alistair

    2015-02-08

    Traumatic brain injury is a leading cause of death and disability worldwide. Laboratory and clinical studies demonstrate a possible beneficial effect of erythropoietin in improving outcomes in the traumatic brain injury cohort. However, there are concerns regarding the association of erythropoietin and thrombosis in the critically ill. A large-scale, multi-centre, blinded, parallel-group, placebo-controlled, randomised trial is currently underway to address this hypothesis.

  20. Evidence of a Christmas spirit network in the brain: functional MRI study