WorldWideScience

Sample records for brain hemodynamics requires

  1. Development of BOLD signal hemodynamic responses in the human brain

    NARCIS (Netherlands)

    Arichi, T.; Varela, M.; Melendez-Calderon, A.; Allievi, A.; Merchant, N.; Tusor, N.; Counsell, S.J.; Burdet, E.; Beckmann, Christian; Edwards, A.D.

    2012-01-01

    In the rodent brain the hemodynamic response to a brief external stimulus changes significantly during development. Analogous changes in human infants would complicate the determination and use of the hemodynamic response function (HRF) for functional magnetic resonance imaging (fMRI) in developing

  2. Magnetic resonance imaging based noninvasive measurements of brain hemodynamics in neonates

    DEFF Research Database (Denmark)

    De Vis, Jill B; Alderliesten, Thomas; Hendrikse, Jeroen

    2016-01-01

    Perinatal disturbances of brain hemodynamics can have a detrimental effect on the brain's parenchyma with consequently adverse neurodevelopmental outcome. Noninvasive, reliable tools to evaluate the neonate's brain hemodynamics are scarce. Advances in magnetic resonance imaging have provided new...

  3. Hemodynamic Perturbations in Deep Brain Stimulation Surgery: First Detailed Description

    Directory of Open Access Journals (Sweden)

    Tumul Chowdhury

    2017-08-01

    Full Text Available Background: Hemodynamic perturbations can be anticipated in deep brain stimulation (DBS surgery and may be attributed to multiple factors. Acute changes in hemodynamics may produce rare but severe complications such as intracranial bleeding, transient ischemic stroke and myocardium infarction. Therefore, this retrospective study attempts to determine the incidence of hemodynamic perturbances (rate and related risk factors in patients undergoing DBS surgery.Materials and Methods: After institutional approval, all patients undergoing DBS surgery for the past 10 years were recruited for this study. Demographic characteristics, procedural characteristics and intraoperative hemodynamic changes were noted. Event rate was calculated and the effect of all the variables on hemodynamic perturbations was analyzed by regression model.Results: Total hemodynamic adverse events during DBS surgery was 10.8 (0–42 and treated in 57% of cases.Conclusion: Among all the perioperative variables, the baseline blood pressure including systolic, diastolic, and mean arterial pressure was found to have highly significant effect on these intraoperative hemodynamic perturbations.

  4. Brain Electrodynamic and Hemodynamic Signatures Against Fatigue During Driving

    Directory of Open Access Journals (Sweden)

    Chun-Hsiang Chuang

    2018-03-01

    Full Text Available Fatigue is likely to be gradually cumulated in a prolonged and attention-demanding task that may adversely affect task performance. To address the brain dynamics during a driving task, this study recruited 16 subjects to participate in an event-related lane-departure driving experiment. Each subject was instructed to maintain attention and task performance throughout an hour-long driving experiment. The subjects' brain electrodynamics and hemodynamics were simultaneously recorded via 32-channel electroencephalography (EEG and 8-source/16-detector functional near-infrared spectroscopy (fNIRS. The behavior performance demonstrated that all subjects were able to promptly respond to lane-deviation events, even if the sign of fatigue arose in the brain, which suggests that the subjects were fighting fatigue during the driving experiment. The EEG event-related analysis showed strengthening alpha suppression in the occipital cortex, a common brain region of fatigue. Furthermore, we noted increasing oxygenated hemoglobin (HbO of the brain to fight driving fatigue in the frontal cortex, primary motor cortex, parieto-occipital cortex and supplementary motor area. In conclusion, the increasing neural activity and cortical activations were aimed at maintaining driving performance when fatigue emerged. The electrodynamic and hemodynamic signatures of fatigue fighting contribute to our understanding of the brain dynamics of driving fatigue and address driving safety issues through the maintenance of attention and behavioral performance.

  5. High frequency oscillations in brain hemodynamic response

    Science.gov (United States)

    Akin, Ata; Bolay, Hayrunnisa

    2007-07-01

    Tight autoregulation of vessel tone guarantees proper delivery of nutrients to the tissues. This regulation is maintained at a more delicate level in the brain since any decrease in the supply of glucose and oxygen to neuronal tissues might lead to unrecoverable injury. Functional near infrared spectroscopy has been proposed as a new tool to monitor the cerebrovascular response during cognitive activity. We have observed that during a Stroop task three distinct oscillatory patterns govern the control of the cerebrovascular reactivity: very low frequency (0.02-0.05 Hz), low frequency (0.08-0.12 Hz) and high frequency (0.12-0.18 Hz). High frequency oscillations have been shown to be related to stress level of the subjects. Our findings indicate that as the stress level is increased so does the energy of the high frequency component indicating a higher stimulation from the autonomic nervous system.

  6. Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL.

    Science.gov (United States)

    Su, Pan; Mao, Deng; Liu, Peiying; Li, Yang; Pinho, Marco C; Welch, Babu G; Lu, Hanzhang

    2017-11-01

    Assessment of brain hemodynamics without exogenous contrast agents is of increasing importance in clinical applications. This study aims to develop an MR perfusion technique that can provide noncontrast and multiparametric estimation of hemodynamic markers. We devised an arterial spin labeling (ASL) method based on the principle of MR fingerprinting (MRF), referred to as MRF-ASL. By taking advantage of the rich information contained in MRF sequence, up to seven hemodynamic parameters can be estimated concomitantly. Feasibility demonstration, flip angle optimization, comparison with Look-Locker ASL, reproducibility test, sensitivity to hypercapnia challenge, and initial clinical application in an intracranial steno-occlusive process, Moyamoya disease, were performed to evaluate this technique. Magnetic resonance fingerprinting ASL provided estimation of up to seven parameters, including B1+, tissue T 1 , cerebral blood flow (CBF), tissue bolus arrival time (BAT), pass-through arterial BAT, pass-through blood volume, and pass-through blood travel time. Coefficients of variation of the estimated parameters ranged from 0.2 to 9.6%. Hypercapnia resulted in an increase in CBF by 57.7%, and a decrease in BAT by 13.7 and 24.8% in tissue and vessels, respectively. Patients with Moyamoya disease showed diminished CBF and lengthened BAT that could not be detected with regular ASL. Magnetic resonance fingerprinting ASL is a promising technique for noncontrast, multiparametric perfusion assessment. Magn Reson Med 78:1812-1823, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Hemodynamic control of in patients with concomitant hypertensive disease during brain aneurysm clipping

    OpenAIRE

    Dzyuba, D.O.; Melnik, A.F.; Yavorsky, F.A.

    2018-01-01

    The article describes the state of the problem of hemodynamic control during brain aneurysm clipping in concomitant hypertensive disease. Author studies hemodynamic control by using magnesia therapy with the addition of clonidine solution and infusion of urapidil solution. Based on the results of the study, the advantages of urapidil infusion are given.

  8. Intraoperative brain hemodynamic response assessment with real-time hyperspectral optical imaging (Conference Presentation)

    Science.gov (United States)

    Laurence, Audrey; Pichette, Julien; Angulo-Rodríguez, Leticia M.; Saint Pierre, Catherine; Lesage, Frédéric; Bouthillier, Alain; Nguyen, Dang Khoa; Leblond, Frédéric

    2016-03-01

    Following normal neuronal activity, there is an increase in cerebral blood flow and cerebral blood volume to provide oxygenated hemoglobin to active neurons. For abnormal activity such as epileptiform discharges, this hemodynamic response may be inadequate to meet the high metabolic demands. To verify this hypothesis, we developed a novel hyperspectral imaging system able to monitor real-time cortical hemodynamic changes during brain surgery. The imaging system is directly integrated into a surgical microscope, using the white-light source for illumination. A snapshot hyperspectral camera is used for detection (4x4 mosaic filter array detecting 16 wavelengths simultaneously). We present calibration experiments where phantoms made of intralipid and food dyes were imaged. Relative concentrations of three dyes were recovered at a video rate of 30 frames per second. We also present hyperspectral recordings during brain surgery of epileptic patients with concurrent electrocorticography recordings. Relative concentration maps of oxygenated and deoxygenated hemoglobin were extracted from the data, allowing real-time studies of hemodynamic changes with a good spatial resolution. Finally, we present preliminary results on phantoms obtained with an integrated spatial frequency domain imaging system to recover tissue optical properties. This additional module, used together with the hyperspectral imaging system, will allow quantification of hemoglobin concentrations maps. Our hyperspectral imaging system offers a new tool to analyze hemodynamic changes, especially in the case of epileptiform discharges. It also offers an opportunity to study brain connectivity by analyzing correlations between hemodynamic responses of different tissue regions.

  9. BRAD: Software for BRain Activity Detection from hemodynamic response

    Czech Academy of Sciences Publication Activity Database

    Pidnebesna, Anna; Tomeček, David; Hlinka, Jaroslav

    2018-01-01

    Roč. 156, March (2018), s. 113-119 ISSN 0169-2607 R&D Projects: GA ČR GA13-23940S; GA ČR GA17-01251S; GA ČR GA13-23940S Grant - others:GA MŠk(CZ) LO1611 Institutional support: RVO:67985807 Keywords : deconvolution methods * functional magnetic resonance imaging * hemodynamic response * neuronal activity estimation * Wiener filtering Subject RIV: JC - Computer Hardware ; Software Impact factor: 2.503, year: 2016

  10. Long-term evolution of cerebral hemodynamics after brain irradiation in the rat

    International Nuclear Information System (INIS)

    Keyeux, A.; Ochrymowicz-Bemelmans, D.

    1985-01-01

    Long-term evolution of radioisotope indices, evaluating respectively the cerebral blood flow (CBF), the cerebral blood volume (CBV) and the cephalic specific distribution space of iodoantipyrine (ΔIAP) of rat, was studied after brain irradiation at 20 Gy. Radioinduced hemodynamic alterations evidenced by this approach are biphasic and support the prominent role of circulation impairment in the genesis of delayed brain radionecrosis [fr

  11. Metabolic and hemodynamic evaluation of brain metastases from small cell lung cancer with positron emission tomography

    DEFF Research Database (Denmark)

    Lassen, U; Andersen, P; Daugaard, G

    1998-01-01

    for studies of metabolic and hemodynamic features. This study was performed to determine regional cerebral metabolic rate of glucose (rCMRglu), regional cerebral blood flow (rCBF), and regional cerebral blood volume (rCBV) in brain metastases from small cell lung cancer and the surrounding brain. Tumor r......Brain metastases from small cell lung cancer respond to chemotherapy, but response duration is short and the intracerebral concentration of chemotherapy may be too low because of the characteristics of the blood-brain barrier. Positron emission tomography has been applied in a variety of tumors...

  12. Physiological Aging Influence on Brain Hemodynamic Activity during Task-Switching: A fNIRS Study.

    Science.gov (United States)

    Vasta, Roberta; Cutini, Simone; Cerasa, Antonio; Gramigna, Vera; Olivadese, Giuseppe; Arabia, Gennarina; Quattrone, Aldo

    2017-01-01

    Task-switching (TS) paradigm is a well-known validated tool useful for exploring the neural substrates of cognitive control, in particular the activity of the lateral and medial prefrontal cortex. This work is aimed at investigating how physiological aging influences hemodynamic response during the execution of a color-shape TS paradigm. A multi-channel near infrared spectroscopy (fNIRS) was used to measure hemodynamic activity in 27 young (30.00 ± 7.90 years) and 11 elderly participants (57.18 ± 9.29 years) healthy volunteers (55% male, age range: (19-69) years) during the execution of a TS paradigm. Two holders were placed symmetrically over the left/right hemispheres to record cortical activity [oxy-(HbO) and deoxy-hemoglobin (HbR) concentration] of the dorso-lateral prefrontal cortex (DLPFC), the dorsal premotor cortex (PMC), and the dorso-medial part of the superior frontal gyrus (sFG). TS paradigm requires participants to repeat the same task over a variable number of trials, and then to switch to a different task during the trial sequence. A two-sample t -test was carried out to detect differences in cortical responses between groups. Multiple linear regression analysis was used to evaluate the impact of age on the prefrontal neural activity. Elderly participants were significantly slower than young participants in both color- ( p aging. Multivariate regression analysis revealed that the HbO mean concentration of switching task in the PMC ( p = 0.01, β = -0.321) and of shape single-task in the sFG ( p = 0.003, β = 0.342) were the best predictors of age effects. Our findings demonstrated that TS might be a reliable instrument to gather a measure of cognitive resources in older people. Moreover, the fNIRS-related brain activity extracted from frontoparietal cortex might become a useful indicator of aging effects.

  13. Abnormal hemodynamic response to forepaw stimulation in rat brain after cocaine injection

    Science.gov (United States)

    Chen, Wei; Park, Kicheon; Choi, Jeonghun; Pan, Yingtian; Du, Congwu

    2015-03-01

    Simultaneous measurement of hemodynamics is of great importance to evaluate the brain functional changes induced by brain diseases such as drug addiction. Previously, we developed a multimodal-imaging platform (OFI) which combined laser speckle contrast imaging with multi-wavelength imaging to simultaneously characterize the changes in cerebral blood flow (CBF), oxygenated- and deoxygenated- hemoglobin (HbO and HbR) from animal brain. Recently, we upgraded our OFI system that enables detection of hemodynamic changes in response to forepaw electrical stimulation to study potential brain activity changes elicited by cocaine. The improvement includes 1) high sensitivity to detect the cortical response to single forepaw electrical stimulation; 2) high temporal resolution (i.e., 16Hz/channel) to resolve dynamic variations in drug-delivery study; 3) high spatial resolution to separate the stimulation-evoked hemodynamic changes in vascular compartments from those in tissue. The system was validated by imaging the hemodynamic responses to the forepaw-stimulations in the somatosensory cortex of cocaine-treated rats. The stimulations and acquisitions were conducted every 2min over 40min, i.e., from 10min before (baseline) to 30min after cocaine challenge. Our results show that the HbO response decreased first (at ~4min) followed by the decrease of HbR response (at ~6min) after cocaine, and both did not fully recovered for over 30min. Interestingly, while CBF decreased at 4min, it partially recovered at 18min after cocaine administration. The results indicate the heterogeneity of cocaine's effects on vasculature and tissue metabolism, demonstrating the unique capability of optical imaging for brain functional studies.

  14. Functional connectivity analysis of brain hemodynamics during rubber hand illusion.

    Science.gov (United States)

    Arizono, Naoki; Kondo, Toshiyuki

    2015-08-01

    Embodied cognition has been eagerly studied in the recent neuroscience research field. In particular, hand ownership has been investigated through the rubber hand illusion (RHI). Most of the research measured the brain activities during the RHI by using EEG, fMRI, etc., however, near-infrared spectroscopy (NIRS) has not yet been utilized. Here we attempt to measure the brain activities during the RHI task with NIRS, and analyze the functional connectivity so as to understand the relationship between NIRS features and the state of embodied cognition. For the purpose, we developed a visuo-tactile stimulator in the study. As a result, we found that the subjects felt illusory experience showed significant peaks of oxy-Hb in both prefrontal and premotor cortices during RHI. Furthermore, we confirmed a reliable causality connection from right prefrontal to right premotor cortex. This result suggests that the RHI is associated with the neural circuits underlying motor control. Therefore, we considered that the RHI with the functional connectivity analysis will become an appropriate model investigating a biomarker for neurorehabilitation, and the diagnosis of the mental disorders.

  15. Hyperspectral imaging solutions for brain tissue metabolic and hemodynamic monitoring: past, current and future developments

    Science.gov (United States)

    Giannoni, Luca; Lange, Frédéric; Tachtsidis, Ilias

    2018-04-01

    Hyperspectral imaging (HSI) technologies have been used extensively in medical research, targeting various biological phenomena and multiple tissue types. Their high spectral resolution over a wide range of wavelengths enables acquisition of spatial information corresponding to different light-interacting biological compounds. This review focuses on the application of HSI to monitor brain tissue metabolism and hemodynamics in life sciences. Different approaches involving HSI have been investigated to assess and quantify cerebral activity, mainly focusing on: (1) mapping tissue oxygen delivery through measurement of changes in oxygenated (HbO2) and deoxygenated (HHb) hemoglobin; and (2) the assessment of the cerebral metabolic rate of oxygen (CMRO2) to estimate oxygen consumption by brain tissue. Finally, we introduce future perspectives of HSI of brain metabolism, including its potential use for imaging optical signals from molecules directly involved in cellular energy production. HSI solutions can provide remarkable insight in understanding cerebral tissue metabolism and oxygenation, aiding investigation on brain tissue physiological processes.

  16. Physiological Aging Influence on Brain Hemodynamic Activity during Task-Switching: A fNIRS Study

    Directory of Open Access Journals (Sweden)

    Roberta Vasta

    2018-01-01

    Full Text Available Task-switching (TS paradigm is a well-known validated tool useful for exploring the neural substrates of cognitive control, in particular the activity of the lateral and medial prefrontal cortex. This work is aimed at investigating how physiological aging influences hemodynamic response during the execution of a color-shape TS paradigm. A multi-channel near infrared spectroscopy (fNIRS was used to measure hemodynamic activity in 27 young (30.00 ± 7.90 years and 11 elderly participants (57.18 ± 9.29 years healthy volunteers (55% male, age range: (19–69 years during the execution of a TS paradigm. Two holders were placed symmetrically over the left/right hemispheres to record cortical activity [oxy-(HbO and deoxy-hemoglobin (HbR concentration] of the dorso-lateral prefrontal cortex (DLPFC, the dorsal premotor cortex (PMC, and the dorso-medial part of the superior frontal gyrus (sFG. TS paradigm requires participants to repeat the same task over a variable number of trials, and then to switch to a different task during the trial sequence. A two-sample t-test was carried out to detect differences in cortical responses between groups. Multiple linear regression analysis was used to evaluate the impact of age on the prefrontal neural activity. Elderly participants were significantly slower than young participants in both color- (p < 0.01, t = −3.67 and shape-single tasks (p = 0.026, t = −2.54 as well as switching (p = 0.026, t = −2.41 and repetition trials (p = 0.012, t = −2.80. Differences in cortical activation between groups were revealed for HbO mean concentration of switching task in the PMC (p = 0.048, t = 2.94. In the whole group, significant increases of behavioral performance were detected in switching trials, which positively correlated with aging. Multivariate regression analysis revealed that the HbO mean concentration of switching task in the PMC (p = 0.01, β = −0.321 and of shape single-task in the sFG (p = 0.003, β = 0

  17. CMOS Image Sensor and System for Imaging Hemodynamic Changes in Response to Deep Brain Stimulation.

    Science.gov (United States)

    Zhang, Xiao; Noor, Muhammad S; McCracken, Clinton B; Kiss, Zelma H T; Yadid-Pecht, Orly; Murari, Kartikeya

    2016-06-01

    Deep brain stimulation (DBS) is a therapeutic intervention used for a variety of neurological and psychiatric disorders, but its mechanism of action is not well understood. It is known that DBS modulates neural activity which changes metabolic demands and thus the cerebral circulation state. However, it is unclear whether there are correlations between electrophysiological, hemodynamic and behavioral changes and whether they have any implications for clinical benefits. In order to investigate these questions, we present a miniaturized system for spectroscopic imaging of brain hemodynamics. The system consists of a 144 ×144, [Formula: see text] pixel pitch, high-sensitivity, analog-output CMOS imager fabricated in a standard 0.35 μm CMOS process, along with a miniaturized imaging system comprising illumination, focusing, analog-to-digital conversion and μSD card based data storage. This enables stand alone operation without a computer, nor electrical or fiberoptic tethers. To achieve high sensitivity, the pixel uses a capacitive transimpedance amplifier (CTIA). The nMOS transistors are in the pixel while pMOS transistors are column-parallel, resulting in a fill factor (FF) of 26%. Running at 60 fps and exposed to 470 nm light, the CMOS imager has a minimum detectable intensity of 2.3 nW/cm(2) , a maximum signal-to-noise ratio (SNR) of 49 dB at 2.45 μW/cm(2) leading to a dynamic range (DR) of 61 dB while consuming 167 μA from a 3.3 V supply. In anesthetized rats, the system was able to detect temporal, spatial and spectral hemodynamic changes in response to DBS.

  18. Comparison of Brain Natriuretic Peptide Levels to Simultaneously Obtained Right Heart Hemodynamics in Stable Outpatients with Pulmonary Arterial Hypertension.

    Science.gov (United States)

    Helgeson, Scott A; Imam, J Saadi; Moss, John E; Hodge, David O; Burger, Charles D

    2018-05-01

    Pulmonary arterial hypertension (PAH) is a progressive disease that requires validated biomarkers of disease severity. While PAH is defined hemodynamically by right heart catheterization (RHC), brain natriuretic peptide (BNP) is recommended by guidelines to assess disease status. Retrospectively collected data in 138 group 1 PAH patients were examined for the correlation of BNP levels to simultaneously obtained right heart catheterization (RHC). Patients were mostly Caucasian women, with functional class III symptoms, mean BNP of 406 ± 443 pg/mL, and an average right atrial pressure (RAP) of 9.9 ± 5.7 mm Hg and mean pulmonary artery pressure (mPAP) of 47.3 ± 14.7 mm Hg. Significant correlation was demonstrated between BNP and RAP ( p = 0.021) and mPAP ( p = 0.003). Additional correlation was seen with right heart size on echocardiography: right atrial (RAE; p = 0.04) and right ventricular enlargement ( p = 0.03). An increased BNP level was an independent predictor of mortality ( p right heart hemodynamics. The current results reinforce the use of BNP level as a continuous variable to assess disease severity in group 1 PAH.

  19. Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia

    Science.gov (United States)

    Selb, Juliette; Boas, David A.; Chan, Suk-Tak; Evans, Karleyton C.; Buckley, Erin M.; Carp, Stefan A.

    2014-01-01

    Abstract. Near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) are two diffuse optical technologies for brain imaging that are sensitive to changes in hemoglobin concentrations and blood flow, respectively. Measurements for both modalities are acquired on the scalp, and therefore hemodynamic processes in the extracerebral vasculature confound the interpretation of cortical hemodynamic signals. The sensitivity of NIRS to the brain versus the extracerebral tissue and the contrast-to-noise ratio (CNR) of NIRS to cerebral hemodynamic responses have been well characterized, but the same has not been evaluated for DCS. This is important to assess in order to understand their relative capabilities in measuring cerebral physiological changes. We present Monte Carlo simulations on a head model that demonstrate that the relative brain-to-scalp sensitivity is about three times higher for DCS (0.3 at 3 cm) than for NIRS (0.1 at 3 cm). However, because DCS has higher levels of noise due to photon-counting detection, the CNR is similar for both modalities in response to a physiologically realistic simulation of brain activation. Even so, we also observed higher CNR of the hemodynamic response during graded hypercapnia in adult subjects with DCS than with NIRS. PMID:25453036

  20. Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia.

    Science.gov (United States)

    Selb, Juliette; Boas, David A; Chan, Suk-Tak; Evans, Karleyton C; Buckley, Erin M; Carp, Stefan A

    2014-07-01

    Near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) are two diffuse optical technologies for brain imaging that are sensitive to changes in hemoglobin concentrations and blood flow, respectively. Measurements for both modalities are acquired on the scalp, and therefore hemodynamic processes in the extracerebral vasculature confound the interpretation of cortical hemodynamic signals. The sensitivity of NIRS to the brain versus the extracerebral tissue and the contrast-to-noise ratio (CNR) of NIRS to cerebral hemodynamic responses have been well characterized, but the same has not been evaluated for DCS. This is important to assess in order to understand their relative capabilities in measuring cerebral physiological changes. We present Monte Carlo simulations on a head model that demonstrate that the relative brain-to-scalp sensitivity is about three times higher for DCS (0.3 at 3 cm) than for NIRS (0.1 at 3 cm). However, because DCS has higher levels of noise due to photon-counting detection, the CNR is similar for both modalities in response to a physiologically realistic simulation of brain activation. Even so, we also observed higher CNR of the hemodynamic response during graded hypercapnia in adult subjects with DCS than with NIRS.

  1. The analysis of solutions behaviour of Van der Pol Duffing equation describing local brain hemodynamics

    Science.gov (United States)

    Cherevko, A. A.; Bord, E. E.; Khe, A. K.; Panarin, V. A.; Orlov, K. J.

    2017-10-01

    This article proposes the generalized model of Van der Pol — Duffing equation for describing the relaxation oscillations in local brain hemodynamics. This equation connects the velocity and pressure of blood flow in cerebral vessels. The equation is individual for each patient, since the coefficients are unique. Each set of coefficients is built based on clinical data obtained during neurosurgical operation in Siberian Federal Biomedical Research Center named after Academician E. N. Meshalkin. The equation has solutions of different structure defined by the coefficients and right side. We investigate the equations for different patients considering peculiarities of their vessel systems. The properties of approximate analytical solutions are studied. Amplitude-frequency and phase-frequency characteristics are built for the small-dimensional solution approximations.

  2. Cerebral hemodynamic responses to seizure in the mouse brain: simultaneous near-infrared spectroscopy-electroencephalography study

    Science.gov (United States)

    Lee, Seungduk; Lee, Mina; Koh, Dalkwon; Kim, Beop-Min; Choi, Jee Hyun

    2010-05-01

    We applied near-infrared spectroscopy (NIRS) and electroencephalography (EEG) simultaneously on the mouse brain and investigated the hemodynamic response to epileptic episodes under pharmacologically driven seizure. γ-butyrolactone (GBL) and 4-aminopyridine (4-AP) were applied to induce absence and tonic-clonic seizures, respectively. The epileptic episodes were identified from the single-channel EEG, and the corresponding hemodynamic changes in different regions of the brain were characterized by multichannel frequency-domain NIRS. Our results are the following: (i) the oxyhemoglobin level increases in the case of GBL-treated mice but not 4-AP-treated mice compared to the predrug state; (ii) the dominant response to each absence seizure is a decrease in deoxyhemolobin; (iii) the phase shift between oxy- and deoxyhemoglobin reduces in GBL-treated mice but no 4-AP-treated mice; and (iv) the spatial correlation of hemodynamics increased significantly in 4-AP-treated mice but not in GBL-treated mice. Our results shows that spatiotemporal tracking of cerebral hemodynamics using NIRS can be successfully applied to the mouse brain in conjunction with electrophysiological recording, which will support the study of molecular, cellular, and network origin of neurovascular coupling in vivo.

  3. Estimation Methods for Infinite-Dimensional Systems Applied to the Hemodynamic Response in the Brain

    KAUST Repository

    Belkhatir, Zehor

    2018-05-01

    Infinite-Dimensional Systems (IDSs) which have been made possible by recent advances in mathematical and computational tools can be used to model complex real phenomena. However, due to physical, economic, or stringent non-invasive constraints on real systems, the underlying characteristics for mathematical models in general (and IDSs in particular) are often missing or subject to uncertainty. Therefore, developing efficient estimation techniques to extract missing pieces of information from available measurements is essential. The human brain is an example of IDSs with severe constraints on information collection from controlled experiments and invasive sensors. Investigating the intriguing modeling potential of the brain is, in fact, the main motivation for this work. Here, we will characterize the hemodynamic behavior of the brain using functional magnetic resonance imaging data. In this regard, we propose efficient estimation methods for two classes of IDSs, namely Partial Differential Equations (PDEs) and Fractional Differential Equations (FDEs). This work is divided into two parts. The first part addresses the joint estimation problem of the state, parameters, and input for a coupled second-order hyperbolic PDE and an infinite-dimensional ordinary differential equation using sampled-in-space measurements. Two estimation techniques are proposed: a Kalman-based algorithm that relies on a reduced finite-dimensional model of the IDS, and an infinite-dimensional adaptive estimator whose convergence proof is based on the Lyapunov approach. We study and discuss the identifiability of the unknown variables for both cases. The second part contributes to the development of estimation methods for FDEs where major challenges arise in estimating fractional differentiation orders and non-smooth pointwise inputs. First, we propose a fractional high-order sliding mode observer to jointly estimate the pseudo-state and input of commensurate FDEs. Second, we propose a

  4. Metabolic and hemodynamic activation of postischemic rat brain by cortical spreading depression.

    Science.gov (United States)

    Kocher, M

    1990-07-01

    Following transient ischemia of the brain, the coupling between somatosensory activation and the hemodynamic-metabolic response is abolished for a certain period despite the partial recovery of somatosensory evoked responses. To determine whether this disturbance is due to alterations of the stimulus-induced neuronal excitation or to a breakdown of the coupling mechanisms, cortical spreading depression was used as a metabolic stimulus in rats before and after ischemia. Adult rats were subjected to 30 min of global forebrain ischemia and 3-6 h of recirculation. EEG, cortical direct current (DC) potential, and laser-Doppler flow were continuously recorded. Local CBF (LCBF), local CMRglc (LCMRglc), regional tissue contents of ATP, glucose, and lactate, and regional pH were determined by quantitative autoradiography, substrate-induced bioluminescence, and fluorometry. Amplitude and frequency of the DC shifts did not differ between groups. In control animals, spreading depression induced a 77% rise in cortical glucose consumption, a 66% rise in lactate content, and a drop in tissue pH of 0.3 unit. ATP and glucose contents were not depleted. During the passage of DC shifts, transient increases (less than 2 min) in laser-Doppler flow were observed, followed by a post-spreading depression hypoperfusion. A comparable although less expressed pattern of hemodynamic and metabolic changes was observed in the postischemic rats. Although baseline LCMRglc was depressed after ischemia, it was activated 47% during spreading depression. Lactate increased by 26%, pH decreased by 0.3 unit, and ATP and glucose remained unchanged. The extent of the transient increase in laser-Doppler flow did not differ from that of the control group, and a post-spreading depression hypoperfusion was also found.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Hemodynamic measurements in deep brain tissues of humans by near-infrared time-resolved spectroscopy

    Science.gov (United States)

    Suzuki, Hiroaki; Oda, Motoki; Yamaki, Etsuko; Suzuki, Toshihiko; Yamashita, Daisuke; Yoshimoto, Kenji; Homma, Shu; Yamashita, Yutaka

    2014-03-01

    Using near-infrared time-resolved spectroscopy (TRS), we measured the human head in transmittance mode to obtain the optical properties, tissue oxygenation, and hemodynamics of deep brain tissues in 50 healthy adult volunteers. The right ear canal was irradiated with 3-wavelengths of pulsed light (760, 795, and 835nm), and the photons passing through the human head were collected at the left ear canal. Optical signals with sufficient intensity could be obtained from 46 of the 50 volunteers. By analyzing the temporal profiles based on the photon diffusion theory, we successfully obtained absorption coefficients for each wavelength. The levels of oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (Hb), total hemoglobin (tHb), and tissue oxygen saturation (SO2) were then determined by referring to the hemoglobin spectroscopic data. Compared with the SO2 values for the forehead measurements in reflectance mode, the SO2 values of the transmittance measurements of the human head were approximately 10% lower, and tHb values of the transmittance measurements were always lower than those of the forehead reflectance measurements. Moreover, the level of hemoglobin and the SO2 were strongly correlated between the human head measurements in transmittance mode and the forehead measurements in the reflectance mode, respectively. These results demonstrated a potential application of this TRS system in examining deep brain tissues of humans.

  6. The Changes in the Hemodynamic Activity of the Brain during Motor Imagery Training with the Use of Brain-Computer Interface

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Silchenko, A.V.; Tintěra, J.; Rydlo, J.

    2016-01-01

    Roč. 42, č. 1 (2016), s. 1-12 ISSN 0362-1197 R&D Projects: GA MŠk ED1.1.00/02.0070 Grant - others:GA MŠk(CZ) EE.2.3.20.0073 Institutional support: RVO:67985807 Keywords : brain-computer interface * motor imagery * hemodynamic activity * brain plasticity * functional MRI Subject RIV: IN - Informatics, Computer Science

  7. Mapping of the brain hemodynamic responses to sensorimotor stimulation in a rodent model: A BOLD fMRI study.

    Directory of Open Access Journals (Sweden)

    Salem Boussida

    Full Text Available Blood Oxygenation Level Dependent functional MRI (BOLD fMRI during electrical paw stimulation has been widely used in studies aimed at the understanding of the somatosensory network in rats. However, despite the well-established anatomical connections between cortical and subcortical structures of the sensorimotor system, most of these functional studies have been concentrated on the cortical effects of sensory electrical stimulation. BOLD fMRI study of the integration of a sensorimotor input across the sensorimotor network requires an appropriate methodology to elicit functional activation in cortical and subcortical areas owing to the regional differences in both neuronal and vascular architectures between these brain regions. Here, using a combination of low level anesthesia, long pulse duration of the electrical stimulation along with improved spatial and temporal signal to noise ratios, we provide a functional description of the main cortical and subcortical structures of the sensorimotor rat brain. With this calibrated fMRI protocol, unilateral non-noxious sensorimotor electrical hindpaw stimulation resulted in robust positive activations in the contralateral sensorimotor cortex and bilaterally in the sensorimotor thalamus nuclei, whereas negative activations were observed bilaterally in the dorsolateral caudate-putamen. These results demonstrate that, once the experimental setup allowing necessary spatial and temporal signal to noise ratios is reached, hemodynamic changes related to neuronal activity, as preserved by the combination of a soft anesthesia with a soft muscle relaxation, can be measured within the sensorimotor network. Moreover, the observed responses suggest that increasing pulse duration of the electrical stimulus adds a proprioceptive component to the sensory input that activates sensorimotor network in the brain, and that these activation patterns are similar to those induced by digits paw's movements. These findings may

  8. Cerebrospinal Fluid Enhancement on Fluid Attenuated Inversion Recovery Images After Carotid Artery Stenting with Neuroprotective Balloon Occlusions: Hemodynamic Instability and Blood–Brain Barrier Disruption

    International Nuclear Information System (INIS)

    Ogami, Ryo; Nakahara, Toshinori; Hamasaki, Osamu; Araki, Hayato; Kurisu, Kaoru

    2011-01-01

    Purpose: A rare complication of carotid artery stenting (CAS), prolonged reversible neurological symptoms with delayed cerebrospinal fluid (CSF) space enhancement on fluid attenuated inversion recovery (FLAIR) images, is associated with blood–brain barrier (BBB) disruption. We prospectively identified patients who showed CSF space enhancement on FLAIR images. Methods: Nineteen patients—5 acute-phase and 14 scheduled—underwent 21 CAS procedures. Balloon catheters were navigated across stenoses, angioplasty was performed using a neuroprotective balloon, and stents were placed with after dilation under distal balloon protection. CSF space hyperintensity or obscuration on FLAIR after versus before CAS indicated CSF space enhancement. Correlations with clinical factors were examined. Results: CSF space was enhanced on FLAIR in 12 (57.1%) cases. Postprocedural CSF space enhancement was significantly related to age, stenosis rate, acute-stage procedure, and total occlusion time. All acute-stage CAS patients showed delayed enhancement. Only age was associated with delayed CSF space enhancement in scheduled CAS patients. Conclusions: Ischemic intolerance for severe carotid artery stenosis and temporary neuroprotective balloon occlusion, causing reperfusion injury, seem to be the main factors that underlie BBB disruption with delayed CSF space enhancement shortly after CAS, rather than sudden poststenting hemodynamic change. Our results suggest that factors related to hemodynamic instability or ischemic intolerance seem to be associated with post-CAS BBB vulnerability. Patients at risk for hemodynamic instability or with ischemic intolerance, which decrease BBB integrity, require careful management to prevent intracranial hemorrhagic and other post-CAS complications.

  9. Mapping cell-specific functional connections in the mouse brain using ChR2-evoked hemodynamics (Conference Presentation)

    Science.gov (United States)

    Bauer, Adam Q.; Kraft, Andrew; Baxter, Grant A.; Bruchas, Michael; Lee, Jin-Moo; Culver, Joseph P.

    2017-02-01

    Functional magnetic resonance imaging (fMRI) has transformed our understanding of the brain's functional organization. However, mapping subunits of a functional network using hemoglobin alone presents several disadvantages. Evoked and spontaneous hemodynamic fluctuations reflect ensemble activity from several populations of neurons making it difficult to discern excitatory vs inhibitory network activity. Still, blood-based methods of brain mapping remain powerful because hemoglobin provides endogenous contrast in all mammalian brains. To add greater specificity to hemoglobin assays, we integrated optical intrinsic signal(OIS) imaging with optogenetic stimulation to create an Opto-OIS mapping tool that combines the cell-specificity of optogenetics with label-free, hemoglobin imaging. Before mapping, titrated photostimuli determined which stimulus parameters elicited linear hemodynamic responses in the cortex. Optimized stimuli were then scanned over the left hemisphere to create a set of optogenetically-defined effective connectivity (Opto-EC) maps. For many sites investigated, Opto-EC maps exhibited higher spatial specificity than those determined using spontaneous hemodynamic fluctuations. For example, resting-state functional connectivity (RS-FC) patterns exhibited widespread ipsilateral connectivity while Opto-EC maps contained distinct short- and long-range constellations of ipsilateral connectivity. Further, RS-FC maps were usually symmetric about midline while Opto-EC maps displayed more heterogeneous contralateral homotopic connectivity. Both Opto-EC and RS-FC patterns were compared to mouse connectivity data from the Allen Institute. Unlike RS-FC maps, Thy1-based maps collected in awake, behaving mice closely recapitulated the connectivity structure derived using ex vivo anatomical tracer methods. Opto-OIS mapping could be a powerful tool for understanding cellular and molecular contributions to network dynamics and processing in the mouse brain.

  10. Hemodynamic measurements in rat brain and human muscle using diffuse near-infrared absorption and correlation spectroscopies

    Science.gov (United States)

    Yu, Guoqiang; Durduran, Turgut; Furuya, D.; Lech, G.; Zhou, Chao; Chance, Britten; Greenberg, J. H.; Yodh, Arjun G.

    2003-07-01

    Measurement of concentration, oxygenation, and flow characteristics of blood cells can reveal information about tissue metabolism and functional heterogeneity. An improved multifunctional hybrid system has been built on the basis of our previous hybrid instrument that combines two near-infrared diffuse optical techniques to simultaneously monitor the changes of blood flow, total hemoglobin concentration (THC) and blood oxygen saturation (StO2). Diffuse correlation spectroscopy (DCS) monitors blood flow (BF) by measuring the optical phase shifts caused by moving blood cells, while diffuse photon density wave spectroscopy (DPDW) measures tissue absorption and scattering. Higher spatial resolution, higher data acquisition rate and higher dynamic range of the improved system allow us to monitor rapid hemodynamic changes in rat brain and human muscles. We have designed two probes with different source-detector pairs and different separations for the two types of experiments. A unique non-contact probe mounted on the back of a camera, which allows continuous measurements without altering the blood flow, was employed to in vivo monitor the metabolic responses in rat brain during KCl induced cortical spreading depression (CSD). A contact probe was used to measure changes of blood flow and oxygenation in human muscle during and after cuff occlusion or exercise, where the non-contact probe is not appropriate for monitoring the moving target. The experimental results indicate that our multifunctional hybrid system is capable of in vivo and non-invasive monitoring of the hemodynamic changes in different tissues (smaller tissues in rat brain, larger tissues in human muscle) under different conditions (static versus moving). The time series images of flow during CSD obtained by our technique revealed spatial and temporal hemodynamic changes in rat brain. Two to three fold longer recovery times of flow and oxygenation after cuff occlusion or exercise from calf flexors in a

  11. Re-examine tumor-induced alterations in hemodynamic responses of BOLD fMRI. Implications in presurgical brain mapping

    International Nuclear Information System (INIS)

    Wang, Liya; Ali, Shazia; Fa, Tianning; Mao, Hui; Dandan, Chen; Olson, Jeffrey

    2012-01-01

    Background: Blood oxygenation level dependent (BOLD) fMRI is used for presurgical functional mapping of brain tumor patients. Abnormal tumor blood supply may affect hemodynamic responses and BOLD fMRI signals. Purpose: To perform a multivariate and quantitative investigation of the effect of brain tumors on the hemodynamic responses and its impact on BOLD MRI signal time course, data analysis in order to better understand tumor-induced alterations in hemodynamic responses, and accurately mapping cortical regions in brain tumor patients. Material and Methods: BOLD fMRI data from 42 glioma patients who underwent presurgical mapping of the primary motor cortex (PMC) with a block designed finger tapping paradigm were analyzed, retrospectively. Cases were divided into high grade (n = 24) and low grade (n = 18) groups based on pathology. The tumor volume and distance to the activated PMCs were measured. BOLD signal time courses from selected regions of interest (ROIs) in the PMCs of tumor affected and contralateral unaffected hemispheres were obtained from each patient. Tumor-induced changes of BOLD signal intensity and time to peak (TTP) of BOLD signal time courses were analyzed statistically. Results: The BOLD signal intensity and TTP in the tumor-affected PMCs are altered when compared to that of the unaffected hemisphere. The average BOLD signal level is statistically significant lower in the affected PMCs. The average TTP in the affected PMCs is shorter in the high grade group, but longer in the low grade tumor group compared to the contralateral unaffected hemisphere. Degrees of alterations in BOLD signal time courses are related to both the distance to activated foci and tumor volume with the stronger effect in tumor distance to activated PMC. Conclusion: Alterations in BOLD signal time courses are strongly related to the tumor grade, the tumor volume, and the distance to the activated foci. Such alterations may impair accurate mapping of tumor-affected functional

  12. A Cross-Sectional Study on Cerebral Hemodynamics After Mild Traumatic Brain Injury in a Pediatric Population

    Directory of Open Access Journals (Sweden)

    Corey M. Thibeault

    2018-04-01

    Full Text Available The microvasculature is prominently affected by traumatic brain injury (TBI, including mild TBI (concussion. Assessment of cerebral hemodynamics shows promise as biomarkers of TBI, and may help inform development of therapies aimed at promoting neurologic recovery. The objective of this study was to assess the evolution in cerebral hemodynamics observable with transcranial Doppler (TCD ultrasound in subjects suffering from a concussion at different intervals during recovery. Pediatric subjects between the ages of 14 and 19 years clinically diagnosed with a concussion were observed at different points post-injury. Blood flow velocity in the middle cerebral artery was measured with TCD. After a baseline period, subjects participated in four breath holding challenges. Pulsatility index (PI, resistivity index (RI, the ratio of the first two pulse peaks (P2R, and the mean velocity (MV were computed from the baseline section. The breath hold index (BHI was computed from the challenge sections. TCD detected two phases of hemodynamic changes after concussion. Within the first 48 h, PI, RI, and P2R show a significant difference from the controls (U = −3.10; P < 0.01, U = −2.86; P < 0.01, and U = 2.62; P < 0.01, respectively. In addition, PI and P2R were not correlated (rp = −0.36; P = 0.23. After 48 h, differences in pulsatile features were no longer observable. However, BHI was significantly increased when grouped as 2–3, 4–5, and 6–7 days post-injury (U = 2.72; P < 0.01, U = 2.46; P = 0.014, and U = 2.38; P = 0.018, respectively. To our knowledge, this is the first longitudinal study of concussions using TCD. In addition, these results are the first to suggest the multiple hemodynamic changes after a concussion are observable with TCD and could ultimately lead to a better understanding of the underlying pathophysiology. In addition, the different hemodynamic responses to a

  13. Neuronal inhibition and excitation, and the dichotomic control of brain hemodynamic and oxygen responses

    DEFF Research Database (Denmark)

    Lauritzen, Martin; Mathiesen, Claus; Schaefer, Katharina

    2012-01-01

    under most conditions correlate to excitation of inhibitory interneurons, but there are important exceptions to that rule as described in this paper. Thus, variations in the balance between synaptic excitation and inhibition contribute dynamically to the control of metabolic and hemodynamic responses...

  14. [The Changes in the Hemodynamic Activity of the Brain during Moroe Imagery Training with the Use of Brain-Computer Interface].

    Science.gov (United States)

    Frolov, A A; Husek, D; Silchenko, A V; Tintera, Y; Rydlo, J

    2016-01-01

    With the use of functional MRI (fMRI), we studied the changes in brain hemodynamic activity of healthy subjects during motor imagery training with the use brain-computer interface (BCI), which is based on the recognition of EEG patterns of imagined movements. ANOVA dispersion analysis showed there are 14 areas of the brain where statistically sgnificant changes were registered. Detailed analysis of the activity in these areas before and after training (Student's and Mann-Whitney tests) reduced the amount of areas with significantly changed activity to five; these are Brodmann areas 44 and 45, insula, middle frontal gyrus, and anterior cingulate gyrus. We suggest that these changes are caused by the formation of memory traces of those brain activity patterns which are most accurately recognized by BCI classifiers as correspondent with limb movements. We also observed a tendency of increase in the activity of motor imagery after training. The hemodynamic activity in all these 14 areas during real movements was either approximatly the same or significantly higher than during motor imagery; activity during imagined leg movements was higher that that during imagined arm movements, except for the areas of representation of arms.

  15. Hemodynamic segmentation of brain perfusion images with delay and dispersion effects using an expectation-maximization algorithm.

    Directory of Open Access Journals (Sweden)

    Chia-Feng Lu

    Full Text Available Automatic identification of various perfusion compartments from dynamic susceptibility contrast magnetic resonance brain images can assist in clinical diagnosis and treatment of cerebrovascular diseases. The principle of segmentation methods was based on the clustering of bolus transit-time profiles to discern areas of different tissues. However, the cerebrovascular diseases may result in a delayed and dispersed local perfusion and therefore alter the hemodynamic signal profiles. Assessing the accuracy of the segmentation technique under delayed/dispersed circumstance is critical to accurately evaluate the severity of the vascular disease. In this study, we improved the segmentation method of expectation-maximization algorithm by using the results of hierarchical clustering on whitened perfusion data as initial parameters for a mixture of multivariate Gaussians model. In addition, Monte Carlo simulations were conducted to evaluate the performance of proposed method under different levels of delay, dispersion, and noise of signal profiles in tissue segmentation. The proposed method was used to classify brain tissue types using perfusion data from five normal participants, a patient with unilateral stenosis of the internal carotid artery, and a patient with moyamoya disease. Our results showed that the normal, delayed or dispersed hemodynamics can be well differentiated for patients, and therefore the local arterial input function for impaired tissues can be recognized to minimize the error when estimating the cerebral blood flow. Furthermore, the tissue in the risk of infarct and the tissue with or without the complementary blood supply from the communicating arteries can be identified.

  16. Brain Oscillatory and Hemodynamic Activity in a Bimanual Coordination Task Following Transcranial Alternating Current Stimulation (tACS): A Combined EEG-fNIRS Study.

    Science.gov (United States)

    Berger, Alisa; Pixa, Nils H; Steinberg, Fabian; Doppelmayr, Michael

    2018-01-01

    Motor control is associated with synchronized oscillatory activity at alpha (8-12 Hz) and beta (12-30 Hz) frequencies in a cerebello-thalamo-cortical network. Previous studies demonstrated that transcranial alternating current stimulation (tACS) is capable of entraining ongoing oscillatory activity while also modulating motor control. However, the modulatory effects of tACS on both motor control and its underlying electro- and neurophysiological mechanisms remain ambiguous. Thus, the purpose of this study was to contribute to gathering neurophysiological knowledge regarding tACS effects by investigating the after-effects of 10 Hz tACS and 20 Hz tACS at parietal brain areas on bimanual coordination and its concurrent oscillatory and hemodynamic activity. Twenty-four right-handed healthy volunteers (12 females) aged between 18 and 30 ( M = 22.35 ± 3.62) participated in the study and performed a coordination task requiring bimanual movements. Concurrent to bimanual motor training, participants received either 10 Hz tACS, 20 Hz tACS or a sham stimulation over the parietal cortex (at P3/P4 electrode positions) for 20 min via small gel electrodes (3,14 cm 2 Ag/AgCl, amperage = 1 mA). Before and three time-points after tACS (immediately, 30 min and 1 day), bimanual coordination performance was assessed. Oscillatory activities were measured by electroencephalography (EEG) and hemodynamic changes were examined using functional near-infrared spectroscopy (fNIRS). Improvements of bimanual coordination performance were not differently between groups, thus, no tACS-specific effect on bimanual coordination performance emerged. However, physiological measures during the task revealed significant increases in parietal alpha activity immediately following 10 Hz tACS and 20 Hz tACS which were accompanied by significant decreases of Hboxy concentration in the right hemispheric motor cortex compared to the sham group. Based on the physiological responses, we conclude that t

  17. Brain Oscillatory and Hemodynamic Activity in a Bimanual Coordination Task Following Transcranial Alternating Current Stimulation (tACS: A Combined EEG-fNIRS Study

    Directory of Open Access Journals (Sweden)

    Alisa Berger

    2018-04-01

    Full Text Available Motor control is associated with synchronized oscillatory activity at alpha (8–12 Hz and beta (12–30 Hz frequencies in a cerebello-thalamo-cortical network. Previous studies demonstrated that transcranial alternating current stimulation (tACS is capable of entraining ongoing oscillatory activity while also modulating motor control. However, the modulatory effects of tACS on both motor control and its underlying electro- and neurophysiological mechanisms remain ambiguous. Thus, the purpose of this study was to contribute to gathering neurophysiological knowledge regarding tACS effects by investigating the after-effects of 10 Hz tACS and 20 Hz tACS at parietal brain areas on bimanual coordination and its concurrent oscillatory and hemodynamic activity. Twenty-four right-handed healthy volunteers (12 females aged between 18 and 30 (M = 22.35 ± 3.62 participated in the study and performed a coordination task requiring bimanual movements. Concurrent to bimanual motor training, participants received either 10 Hz tACS, 20 Hz tACS or a sham stimulation over the parietal cortex (at P3/P4 electrode positions for 20 min via small gel electrodes (3,14 cm2 Ag/AgCl, amperage = 1 mA. Before and three time-points after tACS (immediately, 30 min and 1 day, bimanual coordination performance was assessed. Oscillatory activities were measured by electroencephalography (EEG and hemodynamic changes were examined using functional near-infrared spectroscopy (fNIRS. Improvements of bimanual coordination performance were not differently between groups, thus, no tACS-specific effect on bimanual coordination performance emerged. However, physiological measures during the task revealed significant increases in parietal alpha activity immediately following 10 Hz tACS and 20 Hz tACS which were accompanied by significant decreases of Hboxy concentration in the right hemispheric motor cortex compared to the sham group. Based on the physiological responses, we conclude that

  18. Circulating Biologically Active Adrenomedullin (bio-ADM) Predicts Hemodynamic Support Requirement and Mortality During Sepsis.

    Science.gov (United States)

    Caironi, Pietro; Latini, Roberto; Struck, Joachim; Hartmann, Oliver; Bergmann, Andreas; Maggio, Giuseppe; Cavana, Marco; Tognoni, Gianni; Pesenti, Antonio; Gattinoni, Luciano; Masson, Serge

    2017-08-01

    The biological role of adrenomedullin (ADM), a hormone involved in hemodynamic homeostasis, is controversial in sepsis because administration of either the peptide or an antibody against it may be beneficial. Plasma biologically active ADM (bio-ADM) was assessed on days 1, 2, and 7 after randomization of 956 patients with sepsis or septic shock to albumin or crystalloids for fluid resuscitation in the multicenter Albumin Italian Outcome Sepsis trial. We tested the association of bio-ADM and its time-dependent variation with fluid therapy, vasopressor administration, organ failures, and mortality. Plasma bio-ADM on day 1 (median [Q1-Q3], 110 [59-198] pg/mL) was higher in patients with septic shock, associated with 90-day mortality, multiple organ failures and the average extent of hemodynamic support therapy (fluids and vasopressors), and serum lactate time course over the first week. Moreover, it predicted incident cardiovascular dysfunction in patients without shock at enrollment (OR [95% CI], 1.9 [1.4-2.5]; P sepsis, the circulating, biologically active form of ADM may help individualizing hemodynamic support therapy, while avoiding harmful effects. Its possible pathophysiologic role makes bio-ADM a potential candidate for future targeted therapies. ClinicalTrials.gov; No.: NCT00707122. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  19. Estimation Methods for Infinite-Dimensional Systems Applied to the Hemodynamic Response in the Brain

    KAUST Repository

    Belkhatir, Zehor

    2018-01-01

    available measurements is essential. The human brain is an example of IDSs with severe constraints on information collection from controlled experiments and invasive sensors. Investigating the intriguing modeling potential of the brain is, in fact, the main

  20. Decomposition of Near-Infrared Spectroscopy Signals Using Oblique Subspace Projections: Applications in Brain Hemodynamic Monitoring

    Directory of Open Access Journals (Sweden)

    Alexander Caicedo

    2016-11-01

    Full Text Available Clinical data is comprised by a large number of synchronously collected biomedical signals that are measured at different locations. Deciphering the interrelationships of these signals can yield important information about their dependence providing some useful clinical diagnostic data. For instance, by computing the coupling between Near-Infrared Spectroscopy signals (NIRS and systemic variables the status of the hemodynamic regulation mechanisms can be assessed. In this paper we introduce an algorithm for the decomposition of NIRS signals into additive components. The algorithm, SIgnal DEcomposition base on Obliques Subspace Projections (SIDE-ObSP, assumes that the measured NIRS signal is a linear combination of the systemic measurements, following the linear regression model y = Ax + _. SIDE-ObSP decomposes the output such that, each component in the decomposition represents the sole linear influence of one corresponding regressor variable. This decomposition scheme aims at providing a better understanding of the relation between NIRS and systemic variables, and to provide a framework for the clinical interpretation of regression algorithms, thereby, facilitating their introduction into clinical practice. SIDE-ObSP combines oblique subspace projections (ObSP with the structure of a mean average system in order to define adequate signal subspaces. To guarantee smoothness in the estimated regression parameters, as observed in normal physiological processes, we impose a Tikhonov regularization using a matrix differential operator. We evaluate the performance of SIDE-ObSP by using a synthetic dataset, and present two case studies in the field of cerebral hemodynamics monitoring using NIRS. In addition, we compare the performance of this method with other system identification techniques. In the first case study data from 20 neonates during the first three days of life was used, here SIDE-ObSP decoupled the influence of changes in arterial oxygen

  1. Decomposition of Near-Infrared Spectroscopy Signals Using Oblique Subspace Projections: Applications in Brain Hemodynamic Monitoring.

    Science.gov (United States)

    Caicedo, Alexander; Varon, Carolina; Hunyadi, Borbala; Papademetriou, Maria; Tachtsidis, Ilias; Van Huffel, Sabine

    2016-01-01

    Clinical data is comprised by a large number of synchronously collected biomedical signals that are measured at different locations. Deciphering the interrelationships of these signals can yield important information about their dependence providing some useful clinical diagnostic data. For instance, by computing the coupling between Near-Infrared Spectroscopy signals (NIRS) and systemic variables the status of the hemodynamic regulation mechanisms can be assessed. In this paper we introduce an algorithm for the decomposition of NIRS signals into additive components. The algorithm, SIgnal DEcomposition base on Obliques Subspace Projections (SIDE-ObSP), assumes that the measured NIRS signal is a linear combination of the systemic measurements, following the linear regression model y = Ax + ϵ . SIDE-ObSP decomposes the output such that, each component in the decomposition represents the sole linear influence of one corresponding regressor variable. This decomposition scheme aims at providing a better understanding of the relation between NIRS and systemic variables, and to provide a framework for the clinical interpretation of regression algorithms, thereby, facilitating their introduction into clinical practice. SIDE-ObSP combines oblique subspace projections (ObSP) with the structure of a mean average system in order to define adequate signal subspaces. To guarantee smoothness in the estimated regression parameters, as observed in normal physiological processes, we impose a Tikhonov regularization using a matrix differential operator. We evaluate the performance of SIDE-ObSP by using a synthetic dataset, and present two case studies in the field of cerebral hemodynamics monitoring using NIRS. In addition, we compare the performance of this method with other system identification techniques. In the first case study data from 20 neonates during the first 3 days of life was used, here SIDE-ObSP decoupled the influence of changes in arterial oxygen saturation from the

  2. Hemodynamic and metabolic state of hyperfixation with 99mTc-HMPAO brain SPECT in subacute stroke

    International Nuclear Information System (INIS)

    Cho, Ihnho; Hayashida, Kohei; Imakita, Satoshi; Kume, Norihiko; Fukuchi, Kazuki

    2000-01-01

    By means of positron emission tomography (PET), we investigated the hemodynamic and metabolic state of the hyperfixation identified as the increased accumulation with 99m Tc-d, l-hexamethylpropyleneamine oxime (HMPAO) by single photon emission computed tomography (SPECT) in patients with subacute stroke. We studied four patients with subacute stroke having hyperfixed areas evaluated with CBF, CMRO 2 , OEF and CBV by PET. The hyperfixation rate with 99m Tc-HMPAO was obtained by comparing the surplus rate with standardized CBF. The OEF and CMRO 2 values in the hyperfixed areas of 4 patients were significantly lower than those in normal 5 controls (p 99m Tc-HMPAO in the infarct area revealing a mismatch between CMRO 2 and CBF meant relative luxury perfusion. The hyperfixation rate determined by 99m Tc-HMPAO brain SPECT correlated with CBV in the PET study. We can conclude that one of the main factors which caused hyperfixation was vasodilatation as well as the blood brain barrier disruption and the neovascularization. (author)

  3. Age-related changes in brain hemodynamics; A calibrated MRI study

    DEFF Research Database (Denmark)

    De Vis, J B; Hendrikse, J; Bhogal, A

    2015-01-01

    INTRODUCTION: Blood oxygenation-level dependent (BOLD) magnetic resonance imaging signal changes in response to stimuli have been used to evaluate age-related changes in neuronal activity. Contradictory results from these types of experiments have been attributed to differences in cerebral blood....... A dual-echo pseudocontinuous arterial spin labeling (ASL) sequence was performed during normocapnic, hypercapnic, and hyperoxic breathing challenges. Whole brain and regional gray matter values of CBF, ASL cerebrovascular reactivity (CVR), BOLD CVR, oxygen extraction fraction (OEF), and CMRO2 were...... calculated. RESULTS: Whole brain CBF was 49 ± 14 and 40 ± 9 ml/100 g/min in young and older subjects respectively (P brain, in the frontal...

  4. Erotic and disgust-inducing pictures--differences in the hemodynamic responses of the brain.

    Science.gov (United States)

    Stark, Rudolf; Schienle, Anne; Girod, Cornelia; Walter, Bertram; Kirsch, Peter; Blecker, Carlo; Ott, Ulrich; Schäfer, Axel; Sammer, Gebhard; Zimmermann, Mark; Vaitl, Dieter

    2005-09-01

    The aim of this fMRI study was to explore brain structures that are involved in the processing of erotic and disgust-inducing pictures. The stimuli were chosen to trigger approach and withdrawal tendencies, respectively. By adding sadomasochistic (SM) scenes to the design and examining 12 subjects with and 12 subjects without sadomasochistic preferences, we introduced a picture category that induced erotic pleasure in one sample and disgust in the other sample. Since we also presented neutral pictures, all subjects viewed pictures of four different categories: neutral, disgust-inducing, erotic, and SM erotic pictures. The analysis indicated that several brain structures are commonly involved in the processing of disgust-inducing and erotic pictures (occipital cortex, hippocampus, thalamus, and the amygdala). The ventral striatum was specifically activated when subjects saw highly sexually arousing pictures. This indicates the involvement of the human reward system during the processing of visual erotica.

  5. Differences in Brain Hemodynamics in Response to Achromatic and Chromatic Cards of the Rorschach

    Science.gov (United States)

    2016-01-01

    Abstract. In order to investigate the effects of color stimuli of the Rorschach inkblot method (RIM), the cerebral activity of 40 participants with no history of neurological or psychiatric illness was scanned while they engaged in the Rorschach task. A scanned image of the ten RIM inkblots was projected onto a screen in the MRI scanner. Cerebral activation in response to five achromatic color cards and five chromatic cards were compared. As a result, a significant increase in brain activity was observed in bilateral visual areas V2 and V3, parietooccipital junctions, pulvinars, right superior temporal gyrus, and left premotor cortex for achromatic color cards (p chromatic color, significant increase in brain activity was observed in left visual area V4 and left orbitofrontal cortex (p < .001). Furthermore, a conjoint analysis revealed various regions were activated in responding to the RIM. The neuropsychological underpinnings of the response process, as described by Acklin and Wu-Holt (1996), were largely confirmed. PMID:28239255

  6. Assessment of sexual orientation using the hemodynamic brain response to visual sexual stimuli

    DEFF Research Database (Denmark)

    Ponseti, Jorge; Granert, Oliver; Jansen, Olav

    2009-01-01

    in a nonclinical sample of 12 heterosexual men and 14 homosexual men. During fMRI, participants were briefly exposed to pictures of same-sex and opposite-sex genitals. Data analysis involved four steps: (i) differences in the BOLD response to female and male sexual stimuli were calculated for each subject; (ii......) these contrast images were entered into a group analysis to calculate whole-brain difference maps between homosexual and heterosexual participants; (iii) a single expression value was computed for each subject expressing its correspondence to the group result; and (iv) based on these expression values, Fisher...... response patterns of the brain to sexual stimuli contained sufficient information to predict individual sexual orientation with high accuracy. These results suggest that fMRI-based classification methods hold promise for the diagnosis of paraphilic disorders (e.g., pedophilia)....

  7. Localization of Brain Electrical Activity Sources and Hemodynamic Activity Foci during Motor Imagery

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Mokienko, O.; Bobrov, P.; Chernikova, L.; Konovalov, R.

    2014-01-01

    Roč. 40, č. 3 (2014), s. 273-283 ISSN 0362-1197 Grant - others:GA MŠk(CZ) ED1.1.00/02.0070; GA MŠk(CZ) EE.2.3.20.0073 Program:ED Institutional support: RVO:67985807 Keywords : brain computer interface * independent component analysis * EEG pattern classification * motor imagery * inverse EEG problem Subject RIV: IN - Informatics, Computer Science

  8. Cerebral hemodynamics of the aging brain: risk of Alzheimer disease and benefit of aerobic exercise

    Directory of Open Access Journals (Sweden)

    Takashi eTarumi

    2014-01-01

    Full Text Available Alzheimer disease (AD and cerebrovascular disease often coexist with advanced age. Mounting evidence indicates that the presence of vascular disease and its risk factors increase the risk of AD, suggesting a potential overlap of the underlying pathophysiological mechanisms. In particular, atherosclerosis, endothelial dysfunction, and stiffening of central elastic arteries have been shown to associate with AD. Currently, there are no effective treatments for the cure and prevention of AD. Vascular risk factors are modifiable via either pharmacological or lifestyle intervention. In this regard, habitual aerobic exercise is increasingly recognized for its benefits on brain structure and cognitive function. Considering the well-established benefits of regular aerobic exercise on vascular health, exercise-related improvements in brain structure and cognitive function may be mediated by vascular adaptations. In this review, we will present the current evidence for the physiological mechanisms by which vascular health alters the structural and functional integrity of the aging brain and how improvements in vascular health, via regular aerobic exercise, potentially benefits cognitive function.

  9. Multifractals Properties on the Near Infrared Spectroscopy of Human Brain Hemodynamic

    Directory of Open Access Journals (Sweden)

    Truong Quang Dang Khoa

    2012-01-01

    Full Text Available Nonlinear physics presents us with a perplexing variety of complicated fractal objects and strange sets. Naturally one wishes to characterize the objects and describe the events occurring on them. Moreover, most time series found in “real-life” applications appear quite noisy. Therefore, at almost every point in time, they cannot be approximated either by the Taylor series or by the Fourier series of just a few terms. Many experimental time series have fractal features and display singular behavior, the so-called singularities. The multifractal spectrum quantifies the degree of fractals in the processes generating the time series. A novel definition is proposed called full-width Hölder exponents that indicate maximum expansion of multifractal spectrum. The obtained results have demonstrated the multifractal structure of near-infrared spectroscopy time series and the evidence for brain imagery activities.

  10. Cerebral hemodynamic changes of mild traumatic brain injury at the acute stage.

    Directory of Open Access Journals (Sweden)

    Hardik Doshi

    Full Text Available Mild traumatic brain injury (mTBI is a significant public health care burden in the United States. However, we lack a detailed understanding of the pathophysiology following mTBI and its relation to symptoms and recovery. With advanced magnetic resonance imaging (MRI, we can investigate brain perfusion and oxygenation in regions known to be implicated in symptoms, including cortical gray matter and subcortical structures. In this study, we assessed 14 mTBI patients and 18 controls with susceptibility weighted imaging and mapping (SWIM for blood oxygenation quantification. In addition to SWIM, 7 patients and 12 controls had cerebral perfusion measured with arterial spin labeling (ASL. We found increases in regional cerebral blood flow (CBF in the left striatum, and in frontal and occipital lobes in patients as compared to controls (p = 0.01, 0.03, 0.03 respectively. We also found decreases in venous susceptibility, indicating increases in venous oxygenation, in the left thalamostriate vein and right basal vein of Rosenthal (p = 0.04 in both. mTBI patients had significantly lower delayed recall scores on the standardized assessment of concussion, but neither susceptibility nor CBF measures were found to correlate with symptoms as assessed by neuropsychological testing. The increased CBF combined with increased venous oxygenation suggests an increase in cerebral blood flow that exceeds the oxygen demand of the tissue, in contrast to the regional hypoxia seen in more severe TBI. This may represent a neuroprotective response following mTBI, which warrants further investigation.

  11. The comparative characteristic of extra- and intracranial hemodynamics in patients with traumatic brain injury in the long-term period

    Directory of Open Access Journals (Sweden)

    Shkolnyk V.M.

    2017-04-01

    Full Text Available Traumatic brain injury (TBI remains an actual problem of modern medicine, as well as of economic and social sectors. Vascular factor plays a leading role in forming of the clinical presentation of the disease in the long-term period of TBI. The aim of the study was to clarify the characteristics of hemodynamic changes at different levels of cerebral blood supply (main extra- and intracranial arteries and level of cerebral vessels depending on the severity of TBI. We examined 100 patients in the long-term period of mild, moderate and severe TBI. All patients underwent rheoencephalography, ultrasound duplex scanning of the main arteries of the head and neck with transcranial dopplerography and functional test with visual load. Extracranial vascular changes in the long-term period of TBI are characterized by significant increase of carotid intima-media thickness and the diameters of right internal carotid artery and left internal carotid artery together with the severity of TBI. The qualitative analysis of linear blood flow velocity reveals the decrease in the number of patients with a compensatory reaction in the form of its acceleration in the middle cerebral artery with increasing TBI severity but the number of patients with reduced linear blood flow velocity increases. Abnormal autoregulation of the cerebral circulation and reduction of vascular reactivity was established in the majority of patients of all groups. In addition, the incidence of vascular disturbances increased from 1st to 3rd group. According to the results of rheoencephalography, we detected prevailing spastic changes of the curve in all groups of patients. The degree of disturbances manifestations increases with the severity of TBI.

  12. Quantitative assessment of hemodynamic and structural characteristics of in vivo brain tissue using total diffuse reflectance spectrum measured in a non-contact fashion.

    Science.gov (United States)

    Song, Yinchen; Garcia, Sarahy; Frometa, Yisel; Ramella-Roman, Jessica C; Soltani, Mohammad; Almadi, Mohamed; Riera, Jorge J; Lin, Wei-Chiang

    2017-01-01

    Here we present a new methodology that investigates the intrinsic structural and hemodynamic characteristics of in vivo brain tissue, in a non-contact fashion, and can be easily incorporated in an intra-operative environment. Within this methodology, relative total diffuse reflectance spectra (R TD (λ)) were acquired from targets using a hybrid spectroscopy imaging system. A spectral interpretation algorithm was subsequently applied to R TD (λ) to retrieve optical properties related to the compositional and structural characteristics of each target. Estimation errors of the proposed methodology were computationally evaluated using a Monte Carlo simulation model for photon migration under various conditions. It was discovered that this new methodology could handle moderate noise and achieve very high accuracy, but only if the refractive index of the target is known. The accuracy of the technique was also validated using a series of tissue phantom studies, and consistent and accurate estimates of μ s '(λ)/μ a (λ) were obtained from all the phantoms tested. Finally, a small-scale animal study was conducted to demonstrate the clinical utility of the reported method, wherein a forepaw stimulation model was utilized to induce transient hemodynamic responses in somatosensory cortices. With this approach, significant stimulation-related changes (p < 0.001) in cortical hemodynamic and structural characteristics were successfully measured.

  13. Bidirectional interactions between neuronal and hemodynamic responses to transcranial direct current stimulation (tDCS: challenges for brain-state dependent tDCS

    Directory of Open Access Journals (Sweden)

    Anirban eDutta

    2015-08-01

    Full Text Available Transcranial direct current stimulation (tDCS has been shown to modulate cortical neural activity. During neural activity, the electric currents from excitable membranes of brain tissue superimpose in the extracellular medium and generate a potential at scalp, which is referred as the electroencephalogram (EEG. Respective neural activity (energy demand has been shown to be closely related, spatially and temporally, to cerebral blood flow (CBF that supplies glucose (energy supply via neurovascular coupling. The hemodynamic response can be captured by near-infrared spectroscopy (NIRS, which enables continuous monitoring of cerebral oxygenation and blood volume. This neurovascular coupling phenomenon led to the concept of neurovascular unit (NVU that consists of the endothelium, glia, neurons, pericytes, and the basal lamina. Here, recent works suggest NVU as an integrated system working in concert using feedback mechanisms to enable proper brain homeostasis and function where the challenge remains in capturing these mostly nonlinear spatiotemporal interactions within NVU during tDCS. Therefore, we propose EEG-NIRS-based whole-head monitoring of tDCS-induced neuronal and hemodynamic alterations for brain-state dependent tDCS.

  14. Effect of an inhibitor of neuronal nitric oxide synthase 7-nitroindazole on cerebral hemodynamic response and brain excitability in urethane-anesthetized rats

    Czech Academy of Sciences Publication Activity Database

    Brožíčková, Carole; Otáhal, Jakub

    2013-01-01

    Roč. 62, Suppl.1 (2013), S57-S66 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP303/10/0999; GA ČR(CZ) GPP304/11/P386; GA ČR(CZ) GBP304/12/G069 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : cerebral hemodynamic response * brain excitability * neuronal nitric oxide synthase * 7-nitroindazole * rat Subject RIV: FH - Neurology Impact factor: 1.487, year: 2013

  15. Traumatic Brain Injury Has Not Prominent Effects on Cardiopulmonary Indices of Rat after 24 Hours: Hemodynamic, Histopathology, and Biochemical Evidence

    OpenAIRE

    Najafipour, Hamid; Siahposht Khachaki, Ali; Khaksari, Mohammad; Shahouzehi, Beydolah; Joukar, Siyavash; Poursalehi, Hamid Reza

    2014-01-01

    Background: Accidents are the second reason for mortality and morbidity in Iran. Among them, brain injuries are the most important damage. Clarification of the effects of brain injuries on different body systems will help physicians to prioritize their treatment strategies. In this study, the effect of pure brain trauma on the cardiovascular system and lungs 24 hours post trauma was assessed. Methods: Male Wistar rats (n = 32) were divided into sham control and traumatic brain injury (TBI) gr...

  16. Natriuretic peptides and cerebral hemodynamics

    DEFF Research Database (Denmark)

    Guo, Song; Barringer, Filippa; Zois, Nora Elisabeth

    2014-01-01

    Natriuretic peptides have emerged as important diagnostic and prognostic tools for cardiovascular disease. Plasma measurement of the bioactive peptides as well as precursor-derived fragments is a sensitive tool in assessing heart failure. In heart failure, the peptides are used as treatment...... in decompensated disease. In contrast, their biological effects on the cerebral hemodynamics are poorly understood. In this mini-review, we summarize the hemodynamic effects of the natriuretic peptides with a focus on the cerebral hemodynamics. In addition, we will discuss its potential implications in diseases...... where alteration of the cerebral hemodynamics plays a role such as migraine and acute brain injury including stroke. We conclude that a possible role of the peptides is feasible as evaluated from animal and in vitro studies, but more research is needed in humans to determine the precise response...

  17. Utility of N-terminal pro-brain natriuretic peptide for assessing hemodynamic significance of patent ductus arteriosus in dogs undergoing ductal repair.

    Science.gov (United States)

    Hariu, Crystal D; Saunders, Ashley B; Gordon, Sonya G; Norby, Bo; Miller, Matthew W

    2013-09-01

    Determine if plasma N-terminal pro-brain natriuretic peptide (NT-proBNP) correlates with markers of hemodynamically significant patent ductus arteriosus (PDA) in dogs. Ten dogs with PDA and 30 healthy dogs of similar ages. Prospective case series with control population. Dogs with PDA were initially evaluated with thoracic radiographs, transthoracic echocardiography, pulmonary capillary wedge pressure (PCWP) and NT-proBNP. Following ductal occlusion, NT-proBNP and echocardiography were repeated within 24 h and at day 90. PCWP was repeated at day 90. Correlation between NT-proBNP and hemodynamic measurements was assessed, and accuracy of NT-proBNP for identifying PDA severity was estimated. NT-proBNP was significantly higher (median; absolute range) in dogs with PDA (895; 490-7118 pmol/L) than controls (663; 50-1318 pmol/L) (p = 0.025). NT-proBNP decreased significantly 90 days post-ductal closure (597; 154-1858 pmol/L) (p = 0.013). Left atrial and ventricular size decreased significantly within 24 h and at day 90 as did PCWP (day 90 only). NT-proBNP correlated with vertebral heart size (VHS) and indexed left ventricular systolic diameter (iLVIDs); concentrations ≥ 1224 pmol/L distinguished dogs with elevated VHS and iLVIDs. NT-proBNP is elevated in dogs with PDA, decreases following PDA closure and correlates with select radiographic and echocardiographic markers of cardiac remodeling. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Evaluation of brain metabolism and hemodynamics in neonates; Exploration du metabolisme et de l`hemodynamique du cerveau du nouveau-ne

    Energy Technology Data Exchange (ETDEWEB)

    Messer, J. [Centre Hospitalier Universitaire, 67 - Strasbourg (France); Haddad, J.

    1996-09-01

    Evaluation of brain metabolism and hemodynamics has become a necessity in the neonatal period. Cerebral perfusion, oxygen consumption, and/or metabolism can be studied. Doppler, near-infrared tissual spectroscopy, and magnetic resonance spectroscopy are noninvasive techniques that can be used at the bedside. Available techniques for investigating the central nervous system are reviewed, with emphasis on their usefulness for establishing a diagnosis and a prognosis and for making therapeutic decisions. In perinatal asphyxia, these techniques are often useful for guiding therapeutic decisions. It may be appropriate to discuss discontinuation of therapy in patients with cerebral hyperemia, loss of vaso-reactivity to CO{sub 2}, and failure of oxidative phosphorylations responsible for a decrease in the PCr/Pi ratio, an increase in lactate levels, and a decrease in ATP levels. In other situations, these investigations can shed light on pathophysiologic mechanisms in preterm infants. Use of these techniques varies across neonatal units. Each unit should select the techniques that provide the best yields under the conditions prevailing in that unit. (authors). 31 refs., 2 tabs.

  19. Differences in Brain Hemodynamics in Response to Achromatic and Chromatic Cards of the Rorschach: A fMRI Study.

    Science.gov (United States)

    Ishibashi, Masahiro; Uchiumi, Chigusa; Jung, Minyoung; Aizawa, Naoki; Makita, Kiyoshi; Nakamura, Yugo; Saito, Daisuke N

    2016-01-01

    In order to investigate the effects of color stimuli of the Rorschach inkblot method (RIM), the cerebral activity of 40 participants with no history of neurological or psychiatric illness was scanned while they engaged in the Rorschach task. A scanned image of the ten RIM inkblots was projected onto a screen in the MRI scanner. Cerebral activation in response to five achromatic color cards and five chromatic cards were compared. As a result, a significant increase in brain activity was observed in bilateral visual areas V2 and V3, parietooccipital junctions, pulvinars, right superior temporal gyrus, and left premotor cortex for achromatic color cards ( p chromatic color, significant increase in brain activity was observed in left visual area V4 and left orbitofrontal cortex ( p < .001). Furthermore, a conjoint analysis revealed various regions were activated in responding to the RIM. The neuropsychological underpinnings of the response process, as described by Acklin and Wu-Holt (1996), were largely confirmed.

  20. Evaluation of cerebral metabolism in patients with unilateral carotid stenosis by proton MR spectroscopy: a correlative study with cerebral hemodynamics by acetazolamide stress brain perfusion SPECT (acz-SPECT)

    International Nuclear Information System (INIS)

    Kim, Jae Seung; Kim, Geun Eun; Lee, Jeong Hee; Kim, Do Gyun; Kim, Sang Tae; Lee, Hee Kyung

    2001-01-01

    Carotid stenosis may lead not only to cerebral hemodynamic compromise but also cerebral metabolic changes without overt infarction. To investigate the brain metabolic changes as a result of hemodynamic compromise in pts with carotid stenosis, we compared the changes in metabolism of the gray and white matter detected by proton MRS with cortical hemodynamics measured by Acz-SPECT. We prospectively studied symptomatic 18 pts (M/F=15/3, mean ages: 64.4y) with unilateral carotid stenosis. All pts underwent Acz-SPECT and MRS with 3 days. rCBF and rCVR of MCA territory were assessed by Acz-SPECT. Hemodynamic compromise was graded as stage 0 (normal rCBF and rCVR), stage 1 (normal rCBF and reduced rCVR), and stage 2( reduced rCBF and rCVR). Brain metabolism was assessed by measuring the peaks of N-acetyl aspartate (NAA), choline (Cho), and the sum of creatine and phosphocreatine (Cr) from noninfarcted white matter in the both centrum semiovales and gray matter in both MCA territories. On Acz-SPECT, 7 pts showed stage 2 were significantly lower than in pts with stage 0 (p<0.01). The asymmetric ratio of NAA/Cr in pts with state 2 was also significantly lower than in pts with stage 1(p<0.05). The asymmetric ratio of Cho/Cr was increased as hemodynamic stage increased but the differences were not statistically significant among 3 stages. In cortical gray matter, the asymmetric ratios of NAA/Cho and NAA/Cr were decreased statistically significant among 3 stages. In cortical gray matter, the asymmetric ratios of NAA/Cho and NAA/Cr were decreased and that of Cho/Cr was increased as hemodynamic stage increased. However, these differences were not statistically significant among 3 stages. The asymmetric ratios of NAA/Cho of centrum semiovale in pts with reduced rCBF and/or reduced rCVR were lower than in pts with normal perfusion. Our results indicate the metabolic changes detected by proton MRS in patients with carotid stenosis reflect a hemodynamic compromised state

  1. In vivo imaging of cerebral hemodynamics and tissue scattering in rat brain using a surgical microscope camera system

    Science.gov (United States)

    Nishidate, Izumi; Kanie, Takuya; Mustari, Afrina; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu; Kokubo, Yasuaki

    2018-02-01

    We investigated a rapid imaging method to monitor the spatial distribution of total hemoglobin concentration (CHbT), the tissue oxygen saturation (StO2), and the scattering power b in the expression of musp=a(lambda)^-b as the scattering parameters in cerebral cortex using a digital red-green-blue camera. In the method, Monte Carlo simulation (MCS) for light transport in brain tissue is used to specify a relation among the RGB-values and the concentration of oxygenated hemoglobin (CHbO), that of deoxygenated hemoglobin (CHbR), and the scattering power b. In the present study, we performed sequential recordings of RGB images of in vivo exposed brain of rats while changing the fraction of inspired oxygen (FiO2), using a surgical microscope camera system. The time courses of CHbO, CHbR, CHbT, and StO2 indicated the well-known physiological responses in cerebral cortex. On the other hand, a fast decrease in the scattering power b was observed immediately after the respiratory arrest, which is similar to the negative deflection of the extracellular DC potential so-called anoxic depolarization. It is said that the DC shift coincident with a rise in extracellular potassium and can evoke cell deformation generated by water movement between intracellular and extracellular compartments, and hence the light scattering by tissue. Therefore, the decrease in the scattering power b after the respiratory arrest is indicative of changes in light scattering by tissue. The results in this study indicate potential of the method to evaluate the pathophysiological conditions and loss of tissue viability in brain tissue.

  2. Assessment of Cerebral Hemodynamic Changes in Pediatric Patients with Moyamoya Disease Using Probabilistic Maps on Analysis of Basal/Acetazolamide Stress Brain Perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Young; Lee, Jae Sung; Kim, Seung Ki; Wang, Kyu Chang; Cho, Byung Kyu; Chung, June Key; Lee, Myung Chul; Lee, Dong Soo [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2008-06-15

    To evaluate the hemodynamic changes and the predictive factors of the clinical outcome in pediatric patients with moyamoya disease, we analyzed pre/post basal/acetazolamide stress brain perfusion SPECT with automated volume of interest (VOIs) method. Total fifty six (M:F=33:24, age 6.7{+-}3.2 years) pediatric patients with moyamoya disease, who underwent basal/acetazolamide stress brain perfusion SPECT within 6 before and after revascularization surgery (encephalo-duro-arterio-synangiosis (EDAS) with frontal encephalo-galeo-synangiosis (EGS) and EDAS only followed on contralateral hemisphere), and followed-up more than 6 months after post-operative SPECT, were included. A mean follow-up period after post-operative SPECT was 33{+-}21 months. Each patient's SPECT image was spatially normalized to Korean template with the SPM2. For the regional count normalization, the count of pons was used as a reference region. The basal/acetazolamide-stressed cerebral blood flow (CBF), the cerebral vascular reserve index (CVRI), and the extent of area with significantly decreased basal/acetazolamide- stressed rCBF than age-matched normal control were evaluated on both medial frontal, frontal, parietal, occipital lobes, and whole brain in each patient's images. The post-operative clinical outcome was assigned as good, poor according to the presence of transient ischemic attacks and/or fixed neurological deficits by pediatric neurosurgeon. In a paired t-test, basal/acetazolamide-stressed rCBF and the CVRI were significantly improved after revascularization (p<0.05). The significant difference in the pre-operative basal/acetazolamide-stressed rCBF and the CVRI between the hemispheres where EDAS with frontal EGS was performed and their contralateral counterparts where EDAS only was done disappeared after operation (p<0.05). In an independent student t-test, the pre-operative basal rCBF in the medial frontal gyrus, the post-operative CVRI in the frontal lobe and the parietal

  3. Metabolic changes assessed by MRS accurately reflect brain function during drug-induced epilepsy in mice in contrast to fMRI-based hemodynamic readouts.

    Science.gov (United States)

    Seuwen, Aline; Schroeter, Aileen; Grandjean, Joanes; Rudin, Markus

    2015-10-15

    Functional proton magnetic resonance spectroscopy (1H-MRS) enables the non-invasive assessment of neural activity by measuring signals arising from endogenous metabolites in a time resolved manner. Proof-of-principle of this approach has been demonstrated in humans and rats; yet functional 1H-MRS has not been applied in mice so far, although it would be of considerable interest given the many genetically engineered models of neurological disorders established in this species only. Mouse 1H-MRS is challenging as the high demands on spatial resolution typically result in long data acquisition times not commensurable with functional studies. Here, we propose an approach based on spectroscopic imaging in combination with the acquisition of the free induction decay to maximize signal intensity. Highly resolved metabolite maps have been recorded from mouse brain with 12 min temporal resolution. This enabled monitoring of metabolic changes following the administration of bicuculline, a GABA-A receptor antagonist. Changes in levels of metabolites involved in energy metabolism (lactate and phosphocreatine) and neurotransmitters (glutamate) were investigated in a region-dependent manner and shown to scale with the bicuculline dose. GABAergic inhibition induced spectral changes characteristic for increased neurotransmitter turnover and oxidative stress. In contrast to metabolic readouts, BOLD and CBV fMRI responses did not scale with the bicuculline dose indicative of the failure of neurovascular coupling. Nevertheless fMRI measurements supported the notion of increased oxidative stress revealed by functional MRS. Hence, the combined analysis of metabolic and hemodynamic changes in response to stimulation provides complementary insight into processes associated with neural activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Childhood moyamoya disease: hemodynamic MRI

    Energy Technology Data Exchange (ETDEWEB)

    Tzika, A.A. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Robertson, R.L. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Barnes, P.D. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Vajapeyam, S. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Burrows, P.E. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Treves, S.T. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Scott, R.M. l [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States)

    1997-09-01

    Background. Childhood moyamoya disease is a rare progressive cerebrovascular disease. Objective. To evaluate cerebral hemodynamics using dynamic Gd-DTPA-enhanced imaging in children with moyamoya disease. Materials and methods. Eight children (2-11 years of age) with the clinical and angiographic findings typical of moyamoya disease, before and/or after surgical intervention (pial synangiosis), underwent conventional MR imaging (MRI) and hemodynamic MR imaging (HMRI). HMRI used a spoiled gradient-echo with low flip angle (10 deg) and long TE (TR/TE = 24/15 ms) to minimize T 1 effects and emphasize T 2{sup *} weighting. Raw and calculated hemodynamic images were reviewed. Three-dimensional time-of-flight MR angiography (MRA) and perfusion brain single photon emission computed tomography (SPECT) were also performed. Results. Abnormal hemodynamic maps resulting from vascular stenosis or occlusion and basal collaterals were observed in six patient studies. HMRI depicted perfusion dynamics of affected cerebrovascular territories, detected cortical perfusion deficits, and complemented conventional MRI and MRA. HMRI findings were consistent with those of catheter angiography and perfusion SPECT. Conclusion. Our preliminary experience suggests that HMRI may be of value in the preoperative and postoperative evaluation of surgical interventions in moyamoya disease. (orig.). With 4 figs., 3 tabs.

  5. Childhood moyamoya disease: hemodynamic MRI

    International Nuclear Information System (INIS)

    Tzika, A.A.; Robertson, R.L.; Barnes, P.D.; Vajapeyam, S.; Burrows, P.E.; Treves, S.T.; Scott, R.M. I

    1997-01-01

    Background. Childhood moyamoya disease is a rare progressive cerebrovascular disease. Objective. To evaluate cerebral hemodynamics using dynamic Gd-DTPA-enhanced imaging in children with moyamoya disease. Materials and methods. Eight children (2-11 years of age) with the clinical and angiographic findings typical of moyamoya disease, before and/or after surgical intervention (pial synangiosis), underwent conventional MR imaging (MRI) and hemodynamic MR imaging (HMRI). HMRI used a spoiled gradient-echo with low flip angle (10 deg) and long TE (TR/TE = 24/15 ms) to minimize T 1 effects and emphasize T 2 * weighting. Raw and calculated hemodynamic images were reviewed. Three-dimensional time-of-flight MR angiography (MRA) and perfusion brain single photon emission computed tomography (SPECT) were also performed. Results. Abnormal hemodynamic maps resulting from vascular stenosis or occlusion and basal collaterals were observed in six patient studies. HMRI depicted perfusion dynamics of affected cerebrovascular territories, detected cortical perfusion deficits, and complemented conventional MRI and MRA. HMRI findings were consistent with those of catheter angiography and perfusion SPECT. Conclusion. Our preliminary experience suggests that HMRI may be of value in the preoperative and postoperative evaluation of surgical interventions in moyamoya disease. (orig.). With 4 figs., 3 tabs

  6. The minimal energetic requirement of sustained awareness after brain injury

    DEFF Research Database (Denmark)

    Stender, Johan; Mortensen, Kristian Nygaard; Thibaut, Aurore

    2016-01-01

    of glucose has been proposed as an indicator of consciousness [2 and 3]. Likewise, FDG-PET may contribute to the clinical diagnosis of disorders of consciousness (DOCs) [4 and 5]. However, current methods are non-quantitative and have important drawbacks deriving from visually guided assessment of relative...... changes in brain metabolism [4]. We here used FDG-PET to measure resting state brain glucose metabolism in 131 DOC patients to identify objective quantitative metabolic indicators and predictors of awareness. Quantitation of images was performed by normalizing to extracerebral tissue. We show that 42......% of normal cortical activity represents the minimal energetic requirement for the presence of conscious awareness. Overall, the cerebral metabolic rate accounted for the current level, or imminent return, of awareness in 94% of the patient population, suggesting a global energetic threshold effect...

  7. FGF signaling is required for brain left-right asymmetry and brain midline formation.

    Science.gov (United States)

    Neugebauer, Judith M; Yost, H Joseph

    2014-02-01

    Early disruption of FGF signaling alters left-right (LR) asymmetry throughout the embryo. Here we uncover a role for FGF signaling that specifically disrupts brain asymmetry, independent of normal lateral plate mesoderm (LPM) asymmetry. When FGF signaling is inhibited during mid-somitogenesis, asymmetrically expressed LPM markers southpaw and lefty2 are not affected. However, asymmetrically expressed brain markers lefty1 and cyclops become bilateral. We show that FGF signaling controls expression of six3b and six7, two transcription factors required for repression of asymmetric lefty1 in the brain. We found that Z0-1, atypical PKC (aPKC) and β-catenin protein distribution revealed a midline structure in the forebrain that is dependent on a balance of FGF signaling. Ectopic activation of FGF signaling leads to overexpression of six3b, loss of organized midline adherins junctions and bilateral loss of lefty1 expression. Reducing FGF signaling leads to a reduction in six3b and six7 expression, an increase in cell boundary formation in the brain midline, and bilateral expression of lefty1. Together, these results suggest a novel role for FGF signaling in the brain to control LR asymmetry, six transcription factor expressions, and a midline barrier structure. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Detection of hemodynamic impairment using magnetic resonance angiography in patients with internal carotid artery stenoocclusive disease. Comparison with quantitative brain perfusion single-photon emission computed tomography

    International Nuclear Information System (INIS)

    Hirooka, Ryonoshin; Ogasawara, Kuniaki

    2008-01-01

    Cerebrovascular reactivity (CVR) to acetazolamideis a key parameter in determining the severity of hemodynamic impairment in patients with major cerebral artery occlusive disease. The aim of the present study is to validate the accuracy of magnetic resonance angiography (MRA) for detecting hemodynamic impairment by correlating detectability of the middle cerebral artery obtained by MRA with CVR measured by single-photon emission computed tomography (SPECT) in patients with internal carotid artery (ICA) occlusive disease. Ninety-four patients with chronic ICA occlusion underwent single slab three-dimensional time-of-flight MRA and SPECT. SPECT-CVR was calculated by measured cerebral blood flow before and after acetazolamide challenge. CVR was significantly lower in patients without detection of any portion (M1, M2 or M3) of the MCA than in those with detection of all portions. When SPECT-CVR lower than the mean- 2 standard deviation (SD) obtained in normal subjects was defined as reduced and the SPECT-CVR was assumed as the true determinant of hemodynamic impairment, MRA provided 92% sensitivity and 73% specificity, with 96% negative predictive value for detecting patients with reduced CVR. The present MRA method is effective for the identification of patients with hemodynamic impairment. (author)

  9. Occupational exposure in hemodynamic

    International Nuclear Information System (INIS)

    Silva, Amanda J.; Fernandes, Ivani M.; Silva, Paula P. Nou; Sordi, Gian Maria A.A.; Carneiro, Janete C.G.G.

    2011-01-01

    This paper has an objective to perform a radiometric survey at a hemodynamic service. Besides, it was intended to evaluate the effective dose of health professionals and to provide data which can contribute with minimization of exposures during the realization of hemodynamic procedure. The radiometric survey was realized in the real environment of work simulating the conditions of a hemodynamic study with a ionization chamber

  10. Encephalic hemodynamic phases in subarachnoid hemorrhage: how to improve the protective effect in patient prognoses

    Directory of Open Access Journals (Sweden)

    Marcelo de Lima Oliveira

    2015-01-01

    Full Text Available Subarachnoid hemorrhage is frequently associated with poor prognoses. Three different hemodynamic phases were identified during subarachnoid hemorrhage: oligemia, hyperemia, and vasospasm. Each phase is associated with brain metabolic changes. In this review, we correlated the hemodynamic phases with brain metabolism and potential treatment options in the hopes of improving patient prognoses.

  11. The usefulness of the ivy sign on fluid-attenuated intensity recovery images in improved brain hemodynamic changes after superficial temporal artery-middle cerebral artery anastomosis in adult patients with moyamoya disease.

    Science.gov (United States)

    Lee, Jung Keun; Yoon, Byul Hee; Chung, Seung Young; Park, Moon Sun; Kim, Seong Min; Lee, Do Sung

    2013-10-01

    MR perfusion and single photon emission computerized tomography (SPECT) are well known imaging studies to evaluate hemodynamic change between prior to and following superficial temporal artery (STA)-middle cerebral artery (MCA) anastomosis in moyamoya disease. But their side effects and invasiveness make discomfort to patients. We evaluated the ivy sign on MR fluid attenuated inversion recovery (FLAIR) images in adult patients with moyamoya disease and compared it with result of SPECT and MR perfusion images. We enrolled twelve patients (thirteen cases) who were diagnosed with moyamoya disease and underwent STA-MCA anastomosis at our medical institution during a period ranging from September of 2010 to December of 2012. The presence of the ivy sign on MR FLAIR images was classified as Negative (0), Minimal (1), and Positive (2). Regions were classified into four territories: the anterior cerebral artery (ACA), the anterior MCA, the posterior MCA and the posterior cerebral artery. Ivy signs on preoperative and postoperative MR FLAIR were improved (8 and 4 in the ACA regions, 13 and 4 in the anterior MCA regions and 19 and 9 in the posterior MCA regions). Like this result, the cerebrovascular reserve (CVR) on SPECT was significantly increased in the sum of CVR in same regions after STA-MCA anastomosis. After STA-MCA anastomosis, ivy signs were decreased in the cerebral hemisphere. As compared with conventional diagnostic modalities such as SPECT and MR perfusion images, the ivy sign on MR FLAIR is considered as a useful indicator in detecting brain hemodynamic changes between preoperatively and postoperatively in adult moyamoya patients.

  12. Serial cerebral hemodynamic change after extracranial-intracranial (EC-IC) bypass surgery: evaluated by acetazolamide stress brain perfusion SPECT(acz-SPECT)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Il Ki; Kim, Jae Seung; Ahn, Jae Sung; Im, Ki Chun; Kim, Euy Nyong; Mun, Dae Hyeog [Asan Medical Center, Seoul (Korea, Republic of)

    2005-07-01

    We evaluated serial cerebral hemodynamic changes after EC-IC bypass surgery in symptomatic pts with atherosclerotic occlusion of internal carotid (lCA) or mid-cerebral artery (MCA) using Acz-SPECT. 25 symptomatic pts (M/F 19/6, 53{+-}10 y) with ICA and MCA occlusion (16 uni - and 9 bilateral) prospectively underwent Acz-SPECT using Tc-99m ECD before and 1 week after EC-IC bypass surgery. Of these, 16 underwent additional f/u Acz-SPECT 5 mo later. Cerebral perfusion and perfusion reserve of MCA territory were evaluated visually and SPECT findings were classified into 4 groups: N/N; R/N; N/R; and R/R (perfusion/perfusion reserve: N = normal, R = reduced). For semiquantitative analysis, all SPECT images were normalized to MNI template and mean counts of MCA territory and cerebellum were obtained by AAL. Cerebral perfusion index (PI =C{sub region}/C{sub cere}) and perfusion reserve index (RI = (PI{sub Acz} - PI{sub basal}) /Pl{sub basal}) were calculated. Preop SPECT findings of ipsilateral MCA in 25 pts were R/N (4%), N/R (12%), and R/R (84% ). Early postop SPECT showed improvement of perfusion (26%) and/or reserve (68%) in ipsilateral MCA. Of 16 pts with 5mo f/u SPECT, 6 (38%) showed further improvement of perfusion or reserve. However, 4 (25%) showed aggravation of perfusion and one of these underwent revision surgery. Preop PI (1.1{+-}0.1) and RI (0.11{+-}0.07) of ipsilateral MCA were significantly lower than those of contralateral hemispheres (p<0.05). After surgery, PIs of bilateral MCA did not change at early postop period but improved in ipsilateral MCA at 5mo. Rls of ipsilateral MCA increased significantly (68%) at early postop period (P<0.001) and then did not changed. Cerebral perfusion and perfusion reserve changed with different manner during 5 mo after bypass surgery and perfusion reserve changed more dramatically than perfusion. Acz-SPECT is a feasible method for evaluating cerebral hemodynamic change after EC-IC bypass surgery.

  13. Obesity and renal hemodynamics

    NARCIS (Netherlands)

    Bosma, R. J.; Krikken, J. A.; van der Heide, J. J. Homan; de Jong, P. E.; Navis, G. J.

    2006-01-01

    Obesity is a risk factor for renal damage in native kidney disease and in renal transplant recipients. Obesity is associated with several renal risk factors such as hypertension and diabetes that may convey renal risk, but obesity is also associated with an unfavorable renal hemodynamic profile

  14. Functional Connectivity of Multiple Brain Regions Required for the Consolidation of Social Recognition Memory.

    Science.gov (United States)

    Tanimizu, Toshiyuki; Kenney, Justin W; Okano, Emiko; Kadoma, Kazune; Frankland, Paul W; Kida, Satoshi

    2017-04-12

    Social recognition memory is an essential and basic component of social behavior that is used to discriminate familiar and novel animals/humans. Previous studies have shown the importance of several brain regions for social recognition memories; however, the mechanisms underlying the consolidation of social recognition memory at the molecular and anatomic levels remain unknown. Here, we show a brain network necessary for the generation of social recognition memory in mice. A mouse genetic study showed that cAMP-responsive element-binding protein (CREB)-mediated transcription is required for the formation of social recognition memory. Importantly, significant inductions of the CREB target immediate-early genes c-fos and Arc were observed in the hippocampus (CA1 and CA3 regions), medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), and amygdala (basolateral region) when social recognition memory was generated. Pharmacological experiments using a microinfusion of the protein synthesis inhibitor anisomycin showed that protein synthesis in these brain regions is required for the consolidation of social recognition memory. These findings suggested that social recognition memory is consolidated through the activation of CREB-mediated gene expression in the hippocampus/mPFC/ACC/amygdala. Network analyses suggested that these four brain regions show functional connectivity with other brain regions and, more importantly, that the hippocampus functions as a hub to integrate brain networks and generate social recognition memory, whereas the ACC and amygdala are important for coordinating brain activity when social interaction is initiated by connecting with other brain regions. We have found that a brain network composed of the hippocampus/mPFC/ACC/amygdala is required for the consolidation of social recognition memory. SIGNIFICANCE STATEMENT Here, we identify brain networks composed of multiple brain regions for the consolidation of social recognition memory. We

  15. Prognostic value of noninvasive hemodynamic evaluation of the acute effect of levosimendan in advanced heart failure.

    Science.gov (United States)

    Malfatto, Gabriella; Della Rosa, Francesco; Rella, Valeria; Villani, Alessandra; Branzi, Giovanna; Blengino, Simonetta; Giglio, Alessia; Facchini, Mario; Parati, Gianfranco

    2014-04-01

    Optimization of inotropic treatment in worsening heart failure sometimes requires invasive hemodynamic assessment in selected patients. Impedance cardiography (ICG) may be useful for a noninvasive hemodynamic evaluation. ICG was performed in 40 patients (69 ± 8 years; left ventricular ejection fraction 27.5 ± 5.6%; New York Heart Association 3.18 ± 0.34; Interagency Registry for Mechanically Assisted Circulatory Support 5.48 ± 0.96, before and after infusion of Levosimendan (0.1–0.2 µg/kg per min for up to 24 h). Echocardiogram, ICG [measuring cardiac index (CI), total peripheral resistances (TPRs) and thoracic fluid content (TFC)] and plasma levels of brain natriuretic peptide (BNP) were obtained; in nine patients, right heart catheterization was also carried out. When right catheterization and ICG were performed simultaneously, a significant relationship was observed between values of CI and TPR, and between TFC and pulmonary wedge pressure. ICG detected the Levosimendan-induced recovery of the hemodynamic status, associated with improved systolic and diastolic function and reduction in BNP levels. One-year mortality was 4.4%. At multivariate analysis, independent predictors of mortality were: no improvement in the severity of mitral regurgitation, a persistent restrictive filling pattern (E/E’ > 15), a reduction of BNP levels below 30% and a change below 10% in CI, TPR and TFC. When combined, absence of hemodynamic improvement at ICG could predict 1-year mortality with better sensitivity (86%) and specificity (85%) than the combination of echocardiographic and BNP criteria only (sensitivity 80% and specificity 36%). Noninvasive hemodynamic evaluation of heart failure patients during infusion of inodilator drugs is reliable and may help in their prognostic stratification.

  16. Effects of acute nicotine on hemodynamics and binding of [11C]raclopride to dopamine D2,3 receptors in pig brain.

    Science.gov (United States)

    Cumming, Paul; Rosa-Neto, Pedro; Watanabe, Hideaki; Smith, Donald; Bender, Dirk; Clarke, Paul B S; Gjedde, Albert

    2003-07-01

    Positive reinforcing properties of nicotine and the psychostimulants have been attributed to elevated dopamine release in the basal ganglia. It is well known that the specific binding of [(11)C]raclopride to dopamine D(2,3) receptors in living striatum is reduced by cocaine and amphetamines, revealing increased competition between endogenous dopamine and [(11)C]raclopride for dopamine D(2,3) receptors. However, the sensitivity of [(11)C]raclopride binding to nicotine-induced dopamine release is less well documented. In order to provide the basis for mapping effects of nicotine, we first optimized reference tissue methods for quantifying [(11)C]raclopride binding sites in striatum of living pigs (n = 16). In the same animals, the rate of cerebral blood flow (CBF) was mapped using [(15)O]water. Neither a low dose of nicotine (50 mu kg(-1), iv) nor a high dose of nicotine (500 microg kg(-1), iv) altered CBF in the pig brain, an important condition for calculating the binding of radioligands when using a reference tissue to estimate the free ligand concentration. The methods of Logan and of Lammertsma were compared using the cerebellum or the occipital cortex as reference tissues for calculating the binding potential (pB) of [(11)C]raclolpride in brain. Irrespective of the method used, the mean undrugged baseline pB in striatum (ca. 2.0) was significantly asymmetric, with highest binding in the left caudate and right putamen. Test-retest estimates of pB were stable. Subtraction of Logan pB maps revealed that the low dose of nicotine reduced the pB of [(11)C]raclopride by 10% in a cluster of voxels in the left anteroventral striatum, but this effect did not persist after correction for multiple comparisons. The high dose of nicotine (n = 9) acutely reduced pB by 10% bilaterally in the ventral striatum; 3 h after the high nicotine dose, the reductions had shifted dorsally and caudally into the caudate and putamen. Evidently, nicotine challenge enhances the competition

  17. Apc1 is required for maintenance of local brain organizers and dorsal midbrain survival.

    Science.gov (United States)

    Paridaen, Judith T M L; Danesin, Catherine; Elas, Abu Tufayal; van de Water, Sandra; Houart, Corinne; Zivkovic, Danica

    2009-07-15

    The tumor suppressor Apc1 is an intracellular antagonist of the Wnt/beta-catenin pathway, which is vital for induction and patterning of the early vertebrate brain. However, its role in later brain development is less clear. Here, we examined the mechanisms underlying effects of an Apc1 zygotic-effect mutation on late brain development in zebrafish. Apc1 is required for maintenance of established brain subdivisions and control of local organizers such as the isthmic organizer (IsO). Caudal expansion of Fgf8 from IsO into the cerebellum is accompanied by hyperproliferation and abnormal cerebellar morphogenesis. Loss of apc1 results in reduced proliferation and apoptosis in the dorsal midbrain. Mosaic analysis shows that Apc is required cell-autonomously for maintenance of dorsal midbrain cell fate. The tectal phenotype occurs independently of Fgf8-mediated IsO function and is predominantly caused by stabilization of beta-catenin and subsequent hyperactivation of Wnt/beta-catenin signalling, which is mainly mediated through LEF1 activity. Chemical activation of the Wnt/beta-catenin in wild-type embryos during late brain maintenance stages phenocopies the IsO and tectal phenotypes of the apc mutants. These data demonstrate that Apc1-mediated restriction of Wnt/beta-catenin signalling is required for maintenance of local organizers and tectal integrity.

  18. Hemodynamics and vasopressor support in therapeutic hypothermia after cardiac arrest: prognostic implications.

    Science.gov (United States)

    Bro-Jeppesen, John; Kjaergaard, Jesper; Søholm, Helle; Wanscher, Michael; Lippert, Freddy K; Møller, Jacob E; Køber, Lars; Hassager, Christian

    2014-05-01

    Inducing therapeutic hypothermia (TH) in Out-of-Hospital Cardiac Arrest (OHCA) can be challenging due to its impact on central hemodynamics and vasopressors are frequently used to maintain adequate organ perfusion. The aim of this study was to assess the association between level of vasopressor support and mortality. In a 6-year period, 310 comatose OHCA patients treated with TH were included. Temperature, hemodynamic parameters and level of vasopressors were registered from admission to 24h after rewarming. Level of vasopressor support was assessed by the cardiovascular sub-score of Sequential Organ Failure Assessment (SOFA). The population was stratified by use of dopamine as first line intervention (D-group) or use of dopamine+norepinephrine/epinephrine (DA-group). Primary endpoint was 30-day mortality and secondary endpoint was in-hospital cause of death. Patients in the DA-group carried a 49% all-cause 30-day mortality rate compared to 23% in the D-group, plog-rank<0.0001, corresponding to an adjusted hazard ratio (HR) of 2.0 (95% CI: 1.3-3.0), p=0.001). The DA-group had an increased 30-day mortality due to neurological injury (HR=1.7 (95% CI: 1.1-2.7), p=0.02). Cause of death was anoxic brain injury in 78%, cardiovascular failure in 18% and multi-organ failure in 4%. The hemodynamic changes of TH reversed at normothermia, although the requirement for vasopressor support (cardiovascular SOFA≥3) persisted in 80% of patients. In survivors after OHCA treated with TH the induced hemodynamic changes reversed after normothermia, while the need for vasopressor support persisted. Patients requiring addition of norepinephrine/epinephrine on top of dopamine had an increased 30-day all-cause mortality, as well as death from neurological injury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Brain Sexual Differentiation and Requirement of SRY: Why or Why Not?

    Directory of Open Access Journals (Sweden)

    Cheryl S. Rosenfeld

    2017-11-01

    Full Text Available Brain sexual differentiation is orchestrated by precise coordination of sex steroid hormones. In some species, programming of select male brain regions is dependent upon aromatization of testosterone to estrogen. In mammals, these hormones surge during the organizational and activational periods that occur during perinatal development and adulthood, respectively. In various fish and reptiles, incubation temperature during a critical embryonic period results in male or female sexual differentiation, but this can be overridden in males by early exposure to estrogenic chemicals. Testes development in mammals requires a Y chromosome and testis determining gene SRY (in humans/Sry (all other therian mammals, although there are notable exceptions. Two species of spiny rats: Amami spiny rat (Tokudaia osimensis and Tokunoshima spiny rat (Tokudaia tokunoshimensis and two species of mole voles (Ellobius lutescens and Ellobius tancrei, lack a Y chromosome/Sry and possess an XO chromosome system in both sexes. Such rodent species, prototherians (monotremes, who also lack Sry, and fish and reptile species that demonstrate temperature sex determination (TSD seemingly call into question the requirement of Sry for brain sexual differentiation. This review will consider brain regions expressing SRY/Sry in humans and rodents, respectively, and potential roles of SRY/Sry in the brain will be discussed. The evidence from various taxa disputing the requirement of Sry for brain sexual differentiation in mammals (therians and prototherians and certain fish and reptilian species will be examined. A comparative approach to address this question may elucidate other genes, pathways, and epigenetic modifications stimulating brain sexual differentiation in vertebrate species, including humans.

  20. Multivariate spatial Gaussian mixture modeling for statistical clustering of hemodynamic parameters in functional MRI

    International Nuclear Information System (INIS)

    Fouque, A.L.; Ciuciu, Ph.; Risser, L.; Fouque, A.L.; Ciuciu, Ph.; Risser, L.

    2009-01-01

    In this paper, a novel statistical parcellation of intra-subject functional MRI (fMRI) data is proposed. The key idea is to identify functionally homogenous regions of interest from their hemodynamic parameters. To this end, a non-parametric voxel-based estimation of hemodynamic response function is performed as a prerequisite. Then, the extracted hemodynamic features are entered as the input data of a Multivariate Spatial Gaussian Mixture Model (MSGMM) to be fitted. The goal of the spatial aspect is to favor the recovery of connected components in the mixture. Our statistical clustering approach is original in the sense that it extends existing works done on univariate spatially regularized Gaussian mixtures. A specific Gibbs sampler is derived to account for different covariance structures in the feature space. On realistic artificial fMRI datasets, it is shown that our algorithm is helpful for identifying a parsimonious functional parcellation required in the context of joint detection estimation of brain activity. This allows us to overcome the classical assumption of spatial stationarity of the BOLD signal model. (authors)

  1. Cerebrovascular Hemodynamics in Women.

    Science.gov (United States)

    Duque, Cristina; Feske, Steven K; Sorond, Farzaneh A

    2017-12-01

    Sex and gender, as biological and social factors, significantly influence health outcomes. Among the biological factors, sex differences in vascular physiology may be one specific mechanism contributing to the observed differences in clinical presentation, response to treatment, and clinical outcomes in several vascular disorders. This review focuses on the cerebrovascular bed and summarizes the existing literature on sex differences in cerebrovascular hemodynamics to highlight the knowledge deficit that exists in this domain. The available evidence is used to generate mechanistically plausible and testable hypotheses to underscore the unmet need in understanding sex-specific mechanisms as targets for more effective therapeutic and preventive strategies. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. Cerebral hemodynamics in migraine

    DEFF Research Database (Denmark)

    Hachinski, V C; Olesen, Jes; Norris, J W

    1977-01-01

    Clinical and angiographic findings in migraine are briefly reviewed in relation to cerebral hemodynamic changes shown by regional cerebral blood flow (rCBF) studies. Three cases of migraine studied by the intracarotid xenon 133 method during attacks are reported. In classic migraine, with typical...... prodromal symptoms, a decrease in cerebral blood flow has been demonstrated during the aura. Occasionally, this flow decrease persists during the headache phase. In common migraine, where such prodromata are not seen, a flow decrease has not been demonstrated. During the headache phase of both types...... of migraine, rCBF has usually been found to be normal or in the high range of normal values. The high values may represent postischemic hyperemia, but are probably more frequently secondary to arousal caused by pain. Thus, during the headache phase rCBF may be subnormal, normal or high. These findings do...

  3. Risk factors for local failure requiring salvage neurosurgery after radiosurgery for brain metastases

    International Nuclear Information System (INIS)

    Weltman, Eduardo; Hanriot, Rodrigo de Morais; Prisco, Flavio Eduardo; Nadalin, Wladimir; Brandt, Reynaldo Andre; Moreira, Frederico Rafael

    2004-01-01

    Objective: the aim of this study is to select the risk factors for local failure requiring salvage neurosurgery in patients with brain metastases treated with stereotactic radiosurgery in a single institution. Methods: the follow-up of 123 patients, with 255 brain metastases treated with radiosurgery at the Radiation Oncology Department of the Hospital Israelita Albert Einstein from July 1993 to August 2001, was retrospectively analyzed. The criteria for salvage neurosurgery were tumor volume enlargement, or tumor persistence leading to severe neurological symptoms, life threatening situation or critical steroid dependence. We considered the case as local failure when the histopathologic evaluation showed morphologically preserved cancer cells (tumor recurrence, persistence or progression). We applied the Fisher's exact test to evaluate the statistical correlation between local failure and primary tumor histology, volume of the brain metastases, prescribed radiosurgery dose, and whole brain radiotherapy. Results: fourteen of 123 patients (11%) underwent salvage neurosurgery. Histology showed preserved cancer cells with necrosis and/or bleeding in 11 cases (9% of the total accrual), and only necrosis with or without bleeding (without preserved cancer cells) in three cases. The primary tumor histology among the 11 patients considered with active neoplasia was malignant melanoma in five cases (21% of the patients with melanoma), breast adenocarcinoma in three (16% of the patients with breast cancer), and other histology in the remaining three. Breast cancer diagnosis, non-elective whole brain irradiation, volume of the brain metastases, and the prescribed radiosurgery dose did not correlate with the risk of local failure. Patients treated with elective whole brain radiotherapy showed fewer local failures, when compared to all patients receiving whole brain radiotherapy, and to the patients not receiving this treatment, with incidence of failure in 4%,7% and 14

  4. Hemodynamic imaging of cerebrovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Grond, J. van der; Hendrikse, J.; Osch, M.J.P. van [Dept. of Radiology, University Hospital Utrecht (Netherlands)

    2001-11-01

    MR can provide data on perfusion, oxygen consumption and oxygen metabolism, which can be of great value in stroke research. This article reviews the possibilities and current status of the MR techniques with respect to intracranial hemodynamic changes. (orig.)

  5. Brain glutamine synthesis requires neuronal-born aspartate as amino donor for glial glutamate formation.

    Science.gov (United States)

    Pardo, Beatriz; Rodrigues, Tiago B; Contreras, Laura; Garzón, Miguel; Llorente-Folch, Irene; Kobayashi, Keiko; Saheki, Takeyori; Cerdan, Sebastian; Satrústegui, Jorgina

    2011-01-01

    The glutamate-glutamine cycle faces a drain of glutamate by oxidation, which is balanced by the anaplerotic synthesis of glutamate and glutamine in astrocytes. De novo synthesis of glutamate by astrocytes requires an amino group whose origin is unknown. The deficiency in Aralar/AGC1, the main mitochondrial carrier for aspartate-glutamate expressed in brain, results in a drastic fall in brain glutamine production but a modest decrease in brain glutamate levels, which is not due to decreases in neuronal or synaptosomal glutamate content. In vivo (13)C nuclear magnetic resonance labeling with (13)C(2)acetate or (1-(13)C) glucose showed that the drop in brain glutamine is due to a failure in glial glutamate synthesis. Aralar deficiency induces a decrease in aspartate content, an increase in lactate production, and lactate-to-pyruvate ratio in cultured neurons but not in cultured astrocytes, indicating that Aralar is only functional in neurons. We find that aspartate, but not other amino acids, increases glutamate synthesis in both control and aralar-deficient astrocytes, mainly by serving as amino donor. These findings suggest the existence of a neuron-to-astrocyte aspartate transcellular pathway required for astrocyte glutamate synthesis and subsequent glutamine formation. This pathway may provide a mechanism to transfer neuronal-born redox equivalents to mitochondria in astrocytes.

  6. Study on brain hemodynamics function according to data of rheoencephalography during multimodality treatment of oncologic patients with the use of general controlled artificial hyperthermia with hyperglycemia or with large insulin doses

    International Nuclear Information System (INIS)

    Lysenko, E.V.

    1990-01-01

    For the first time the effect of single and multiple treatments of artificial hyperthermia (AHT) with hyperglycemia (HG) or with large insulin doses on cerebral circulation of oncologic patients is studied. Cerebral hemodynamics was studied by rheoencephalography. The conclusion is made about the unidirectional AHT effect regardless of the bacrground used. 5 refs.; 4 tabs

  7. Prognostic significance of blood-brain barrier disruption in patients with severe nonpenetrating traumatic brain injury requiring decompressive craniectomy.

    Science.gov (United States)

    Ho, Kwok M; Honeybul, Stephen; Yip, Cheng B; Silbert, Benjamin I

    2014-09-01

    The authors assessed the risk factors and outcomes associated with blood-brain barrier (BBB) disruption in patients with severe, nonpenetrating, traumatic brain injury (TBI) requiring decompressive craniectomy. At 2 major neurotrauma centers in Western Australia, a retrospective cohort study was conducted among 97 adult neurotrauma patients who required an external ventricular drain (EVD) and decompressive craniectomy during 2004-2012. Glasgow Outcome Scale scores were used to assess neurological outcomes. Logistic regression was used to identify factors associated with BBB disruption, defined by a ratio of total CSF protein concentrations to total plasma protein concentration > 0.007 in the earliest CSF specimen collected after TBI. Of the 252 patients who required decompressive craniectomy, 97 (39%) required an EVD to control intracranial pressure, and biochemical evidence of BBB disruption was observed in 43 (44%). Presence of disruption was associated with more severe TBI (median predicted risk for unfavorable outcome 75% vs 63%, respectively; p = 0.001) and with worse outcomes at 6, 12, and 18 months than was absence of BBB disruption (72% vs 37% unfavorable outcomes, respectively; p = 0.015). The only risk factor significantly associated with increased risk for BBB disruption was presence of nonevacuated intracerebral hematoma (> 1 cm diameter) (OR 3.03, 95% CI 1.23-7.50; p = 0.016). Although BBB disruption was associated with more severe TBI and worse long-term outcomes, when combined with the prognostic information contained in the Corticosteroid Randomization after Significant Head Injury (CRASH) prognostic model, it did not seem to add significant prognostic value (area under the receiver operating characteristic curve 0.855 vs 0.864, respectively; p = 0.453). Biochemical evidence of BBB disruption after severe nonpenetrating TBI was common, especially among patients with large intracerebral hematomas. Disruption of the BBB was associated with more severe

  8. Cerebral hemodynamics and functional prognosis in hydrocephalus

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Osamu; Nishikawa, Michio; Watanabe, Shu; Yamakawa, Hiroyasu; Kinoshita, Yoshimasa; Uno, Akira; Handa, Hajime (Hamamatsu Rosai Hospital, Shizuoka (Japan))

    1989-11-01

    The functional outcome of cerebral hemodynamics in the chronic stage of juvenile hydrocephalus was determined using single photon emission computed tomography (SPECT). Five patients including three with aqueductal stenosis, one with post-meningitic hydrocephalus, and one case with hydrocephalus having developed after repair of a huge occipital encephalocele. Early images of cerebral blood flow (CBF) were obtained 25 minutes after intravenous injection of 123-I-iodoamphetamine (IMP), and late images were scanned 3 hours later. Cerebral blood volume (CBV) was also measured using {sup 99m}Tc in three patients. Twenty cases with adult communicating hydrocephalus were also investigated from the point of view of shunt effectiveness. Although there was no remarkable change in the cerebrovascular bed in the juvenile cases, CBF of the remnant brain parenchyma was good irrespective of the degree of ventricular dilatation. There was a periventricular-related IMP uptake in each case; however, it somehow matched the ventricular span. Functional outcome one to 23 years after the initial shunt operation was good in every case, despite multiple shunt revisions. Redistribution on late images had no bearing on clinical states. In adult cases, 8 patients with effective shunting demonstrated a relatively localized periventricular low perfusion, with preoperative increased cerebrospinal fluid (CSF) pressure. On the contrary, 12 patients with no improvement with or without ventricular-reduced IMP uptake, despite low CSF pressure. The present study indicates that periventricular hemodynamics may play an important role in cerebral function compromised by hydrocephalus. (J.P.N.).

  9. Cerebral hemodynamics and functional prognosis in hydrocephalus

    International Nuclear Information System (INIS)

    Hirai, Osamu; Nishikawa, Michio; Watanabe, Shu; Yamakawa, Hiroyasu; Kinoshita, Yoshimasa; Uno, Akira; Handa, Hajime

    1989-01-01

    The functional outcome of cerebral hemodynamics in the chronic stage of juvenile hydrocephalus was determined using single photon emission computed tomography (SPECT). Five patients including three with aqueductal stenosis, one with post-meningitic hydrocephalus, and one case with hydrocephalus having developed after repair of a huge occipital encephalocele. Early images of cerebral blood flow (CBF) were obtained 25 minutes after intravenous injection of 123-I-iodoamphetamine (IMP), and late images were scanned 3 hours later. Cerebral blood volume (CBV) was also measured using 99m Tc in three patients. Twenty cases with adult communicating hydrocephalus were also investigated from the point of view of shunt effectiveness. Although there was no remarkable change in the cerebrovascular bed in the juvenile cases, CBF of the remnant brain parenchyma was good irrespective of the degree of ventricular dilatation. There was a periventricular-related IMP uptake in each case; however, it somehow matched the ventricular span. Functional outcome one to 23 years after the initial shunt operation was good in every case, despite multiple shunt revisions. Redistribution on late images had no bearing on clinical states. In adult cases, 8 patients with effective shunting demonstrated a relatively localized periventricular low perfusion, with preoperative increased cerebrospinal fluid (CSF) pressure. On the contrary, 12 patients with no improvement with or without ventricular-reduced IMP uptake, despite low CSF pressure. The present study indicates that periventricular hemodynamics may play an important role in cerebral function compromised by hydrocephalus. (J.P.N.)

  10. Expression and knockdown of zebrafish folliculin suggests requirement for embryonic brain morphogenesis.

    Science.gov (United States)

    Kenyon, Emma J; Luijten, Monique N H; Gill, Harmeet; Li, Nan; Rawlings, Matthew; Bull, James C; Hadzhiev, Yavor; van Steensel, Maurice A M; Maher, Eamonn; Mueller, Ferenc

    2016-07-08

    Birt-Hogg-Dubé syndrome (BHD) is a dominantly inherited familial cancer syndrome characterised by the development of benign skin fibrofolliculomas, multiple lung and kidney cysts, spontaneous pneumothorax and susceptibility to renal cell carcinoma. BHD is caused by mutations in the gene encoding Folliculin (FLCN). Little is known about what FLCN does in a healthy individual and how best to treat those with BHD. As a first approach to developing a vertebrate model for BHD we aimed to identify the temporal and spatial expression of flcn transcripts in the developing zebrafish embryo. To gain insights into the function of flcn in a whole organism system we generated a loss of function model of flcn by the use of morpholino knockdown in zebrafish. flcn is expressed broadly and upregulated in the fin bud, somites, eye and proliferative regions of the brain of the Long-pec stage zebrafish embryos. Together with knockdown phenotypes, expression analysis suggest involvement of flcn in zebrafish embryonic brain development. We have utilised the zFucci system, an in vivo, whole organism cell cycle assay to study the potential role of flcn in brain development. We found that at the 18 somite stage there was a significant drop in cells in the S-M phase of the cell cycle in flcn morpholino injected embryos with a corresponding increase of cells in the G1 phase. This was particularly evident in the brain, retina and somites of the embryo. Timelapse analysis of the head region of flcn morpholino injected and mismatch control embryos shows the temporal dynamics of cell cycle misregulation during development. In conclusion we show that zebrafish flcn is expressed in a non-uniform manner and is likely required for the maintenance of correct cell cycle regulation during embryonic development. We demonstrate the utilisation of the zFucci system in testing the role of flcn in cell proliferation and suggest a function for flcn in regulating cell proliferation in vertebrate embryonic

  11. Correlation between electrical and hemodynamic responses during visual stimulation with graded contrasts

    Science.gov (United States)

    Si, Juanning; Zhang, Xin; Li, Yuejun; Zhang, Yujin; Zuo, Nianming; Jiang, Tianzi

    2016-09-01

    Brain functional activity involves complex cellular, metabolic, and vascular chain reactions, making it difficult to comprehend. Electroencephalography (EEG) and functional near infrared spectroscopy (fNIRS) have been combined into a multimodal neuroimaging method that captures both electrophysiological and hemodynamic information to explore the spatiotemporal characteristics of brain activity. Because of the significance of visually evoked functional activity in clinical applications, numerous studies have explored the amplitude of the visual evoked potential (VEP) to clarify its relationship with the hemodynamic response. However, relatively few studies have investigated the influence of latency, which has been frequently used to diagnose visual diseases, on the hemodynamic response. Moreover, because the latency and the amplitude of VEPs have different roles in coding visual information, investigating the relationship between latency and the hemodynamic response should be helpful. In this study, checkerboard reversal tasks with graded contrasts were used to evoke visual functional activity. Both EEG and fNIRS were employed to investigate the relationship between neuronal electrophysiological activities and the hemodynamic responses. The VEP amplitudes were linearly correlated with the hemodynamic response, but the VEP latency showed a negative linear correlation with the hemodynamic response.

  12. Lagrangian postprocessing of computational hemodynamics.

    Science.gov (United States)

    Shadden, Shawn C; Arzani, Amirhossein

    2015-01-01

    Recent advances in imaging, modeling, and computing have rapidly expanded our capabilities to model hemodynamics in the large vessels (heart, arteries, and veins). This data encodes a wealth of information that is often under-utilized. Modeling (and measuring) blood flow in the large vessels typically amounts to solving for the time-varying velocity field in a region of interest. Flow in the heart and larger arteries is often complex, and velocity field data provides a starting point for investigating the hemodynamics. This data can be used to perform Lagrangian particle tracking, and other Lagrangian-based postprocessing. As described herein, Lagrangian methods are necessary to understand inherently transient hemodynamic conditions from the fluid mechanics perspective, and to properly understand the biomechanical factors that lead to acute and gradual changes of vascular function and health. The goal of the present paper is to review Lagrangian methods that have been used in post-processing velocity data of cardiovascular flows.

  13. [Effect of complex sanatorium treatment including magnetotherapy on hemodynamics in patients with arterial hypertension].

    Science.gov (United States)

    Efremushkin, G G; Duruda, N V

    2003-01-01

    Forty nine patients with arterial hypertension of stage I-II received combined sanatorium treatment. Of them, 21 had adjuvant total magnetotherapy. All the patients were examined for parameters of central, cerebral hemodynamics and microcirculation. The adjuvant magnetotherapy produced a beneficial effect on hypertension: clinical symptoms attenuated, arterial pressure became more stable, hemodynamics improved, duration of hospitalization reduced, requirement in hypotensive drugs diminished.

  14. Hemodynamic Effects of Glucagon - A Literature Review

    DEFF Research Database (Denmark)

    Meidahl Petersen, Kasper; Bøgevig, Søren; Holst, Jens Juul

    2018-01-01

    Context: Glucagon's effects on hemodynamic parameters - most notably heart rate and cardiac contractility - are overlooked. The glucagon receptor is a central target in novel and anticipated type 2 diabetes therapies and hemodynamic consequences of glucagon signaling have therefore become increas...

  15. p53 is required for brain growth but is dispensable for resistance to nutrient restriction during Drosophila larval development.

    Science.gov (United States)

    Contreras, Esteban G; Sierralta, Jimena; Glavic, Alvaro

    2018-01-01

    Animal growth is influenced by the genetic background and the environmental circumstances. How genes promote growth and coordinate adaptation to nutrient availability is still an open question. p53 is a transcription factor that commands the cellular response to different types of stresses. In adult Drosophila melanogaster, p53 regulates the metabolic adaptation to nutrient restriction that supports fly viability. Furthermore, the larval brain is protected from nutrient restriction in a phenomenon called 'brain sparing'. Therefore, we hypothesised that p53 may regulate brain growth and show a protective role over brain development under nutrient restriction. Here, we studied the function of p53 during brain growth in normal conditions and in animals subjected to developmental nutrient restriction. We showed that p53 loss of function reduced animal growth and larval brain size. Endogenous p53 was expressed in larval neural stem cells, but its levels and activity were not affected by nutritional stress. Interestingly, p53 knockdown only in neural stem cells was sufficient to decrease larval brain growth. Finally, we showed that in p53 mutant larvae under nutrient restriction, the energy storage levels were not altered, and these larvae generated adults with brains of similar size than wild-type animals. Using genetic approaches, we demonstrate that p53 is required for proper growth of the larval brain. This developmental role of p53 does not have an impact on animal resistance to nutritional stress since brain growth in p53 mutants under nutrient restriction is similar to control animals.

  16. [Hemodynamic changes in hypoglycemic shock].

    Science.gov (United States)

    Gutiérrez, C; Piza, R; Chousleb, A; Hidalgo, M A; Ortigosa, J L

    1977-01-01

    Severe hypoglycemia may be present in seriously ill patients; if it is not corrected opportunely a series of neuroendocrinal mechanisms take place aimed at correcting metabolic alterations. These mechanisms can produce hemodynamic alterations as well. Nine mongrel dogs were studied with continuous registration of: blood pressure, central venous pressure, cardiac frequency, respiratory frequency, electrocardiogram and first derivative (Dp/Dt). Six dogs received crystalline (fast acting) insuline intravenously (group 1). After hemodynamic changes were registered hypoglycemia was corrected with 50 per cent glucose solution. Complementary insuline doses were administered to three dogs (group 2); in this group hypoglycemia was not corrected. In group 1 during hypoglycemia there was an increase in blood pressure, central venous pressure, cardiac frequency, respiratory frequency and Dp/Dt, and changes in QT and T wave on the EKG; these changes were partially reversible after hypoglycemia was corrected. The above mentioned alterations persisted in group 2, breathing became irregular irregular and respiratory arrest supervened. It can be inferred that the hemodynamic response to hypoglycemia is predominantly adrenergic. The role of catecolamines, glucocorticoides, glucagon, insuline, cyclic AMP in metabolic and hemodynamic alterations consecutive to hypoglycemia are discussed.

  17. Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons

    Science.gov (United States)

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Portes, Jacob P.; Timerman, Dmitriy

    2016-01-01

    Brain hemodynamics serve as a proxy for neural activity in a range of noninvasive neuroimaging techniques including functional magnetic resonance imaging (fMRI). In resting-state fMRI, hemodynamic fluctuations have been found to exhibit patterns of bilateral synchrony, with correlated regions inferred to have functional connectivity. However, the relationship between resting-state hemodynamics and underlying neural activity has not been well established, making the neural underpinnings of functional connectivity networks unclear. In this study, neural activity and hemodynamics were recorded simultaneously over the bilateral cortex of awake and anesthetized Thy1-GCaMP mice using wide-field optical mapping. Neural activity was visualized via selective expression of the calcium-sensitive fluorophore GCaMP in layer 2/3 and 5 excitatory neurons. Characteristic patterns of resting-state hemodynamics were accompanied by more rapidly changing bilateral patterns of resting-state neural activity. Spatiotemporal hemodynamics could be modeled by convolving this neural activity with hemodynamic response functions derived through both deconvolution and gamma-variate fitting. Simultaneous imaging and electrophysiology confirmed that Thy1-GCaMP signals are well-predicted by multiunit activity. Neurovascular coupling between resting-state neural activity and hemodynamics was robust and fast in awake animals, whereas coupling in urethane-anesthetized animals was slower, and in some cases included lower-frequency (resting-state hemodynamics in the awake and anesthetized brain are coupled to underlying patterns of excitatory neural activity. The patterns of bilaterally-symmetric spontaneous neural activity revealed by wide-field Thy1-GCaMP imaging may depict the neural foundation of functional connectivity networks detected in resting-state fMRI. PMID:27974609

  18. The nursing perspective on monitoring hemodynamics and oxygen transport.

    Science.gov (United States)

    Tucker, Dawn; Hazinski, Mary Fran

    2011-07-01

    Maintenance of adequate systemic oxygen delivery requires careful clinical assessment integrated with hemodynamic measurements and calculations to detect and treat conditions that may compromise oxygen delivery and lead to life-threatening shock, respiratory failure, or cardiac arrest. The bedside nurse constantly performs such assessments and measurements to detect subtle changes and trends in patient condition. The purpose of this editorial is to highlight nursing perspectives about the hemodynamic and oxygen transport monitoring systems summarized in the Pediatric Cardiac Intensive Care Society Evidence- Based Review and Consensus Statement on Monitoring of Hemodynamics and Oxygen Transport Balance. There is no substitute for the observations of a knowledgeable and experienced clinician who understands the patient's condition and potential causes of deterioration and is able to evaluate response to therapy.

  19. A sliding mode observer for hemodynamic characterization under modeling uncertainties

    KAUST Repository

    Zayane, Chadia

    2014-06-01

    This paper addresses the case of physiological states reconstruction in a small region of the brain under modeling uncertainties. The misunderstood coupling between the cerebral blood volume and the oxygen extraction fraction has lead to a partial knowledge of the so-called balloon model describing the hemodynamic behavior of the brain. To overcome this difficulty, a High Order Sliding Mode observer is applied to the balloon system, where the unknown coupling is considered as an internal perturbation. The effectiveness of the proposed method is illustrated through a set of synthetic data that mimic fMRI experiments.

  20. Information needs and requirements in patients with brain tumours and their relatives.

    Science.gov (United States)

    Reinert, Christiane; Rathberger, Katharina; Klinkhammer-Schalke, Monika; Kölbl, Oliver; Proescholdt, Martin; Riemenschneider, Markus J; Schuierer, Gerhard; Hutterer, Markus; Gerken, Michael; Hau, Peter

    2018-06-01

    Patients with brain tumours face a number of medical and social challenges. Previous studies have shown that these patients and their relatives need a high level of patient-oriented information and counselling. However, these needs are often underestimated. In this single-centre cross-sectional study, we evaluated, for the first time, the information needs of patients with brain tumours and their relatives depending on diagnosis, age and level of education. The participants were interviewed using pre-specified questionnaires. Answers were evaluated descriptively using standard statistical methods. A total of 888 questionnaires were sent out. The return rate was 50.7%. The majority of patients (nP = 103; 59.9%) and a higher proportion of relatives (nR = 103; 72.5%; p = 0.019) wished to receive a maximum of information. The majority (79.7% of patients; 83.1% of relatives) also stated that they preferred a personal, face-to-face meeting as primary source of information. The need for information increased with education (p = 0.015), and decreased with tumour grade (p = 0.025) and age (p = 0.118). Our data indicate that patients with brain tumours and their relatives have high information needs throughout their disease and continuously require information and counselling. Optimal provision of information is based on personal preferences, which needs to be evaluated appropriately. Patient-oriented information and counselling are parts of a successful communication strategy that can improve cancer care significantly.

  1. GSK-3beta is required for memory reconsolidation in adult brain.

    Directory of Open Access Journals (Sweden)

    Tetsuya Kimura

    Full Text Available Activation of GSK-3beta is presumed to be involved in various neurodegenerative diseases, including Alzheimer's disease (AD, which is characterized by memory disturbances during early stages of the disease. The normal function of GSK-3beta in adult brain is not well understood. Here, we analyzed the ability of heterozygote GSK-3beta knockout (GSK+/- mice to form memories. In the Morris water maze (MWM, learning and memory performance of GSK+/- mice was no different from that of wild-type (WT mice for the first 3 days of training. With continued learning on subsequent days, however, retrograde amnesia was induced in GSK+/- mice, suggesting that GSK+/- mice might be impaired in their ability to form long-term memories. In contextual fear conditioning (CFC, context memory was normally consolidated in GSK+/- mice, but once the original memory was reactivated, they showed reduced freezing, suggesting that GSK+/- mice had impaired memory reconsolidation. Biochemical analysis showed that GSK-3beta was activated after memory reactivation in WT mice. Intraperitoneal injection of a GSK-3 inhibitor before memory reactivation impaired memory reconsolidation in WT mice. These results suggest that memory reconsolidation requires activation of GSK-3beta in the adult brain.

  2. Comprehensive cognitive and cerebral hemodynamic evaluation after cranioplasty

    Directory of Open Access Journals (Sweden)

    Coelho F

    2014-05-01

    Full Text Available Fernanda Coelho,1 Arthur Maynart Oliveira,2 Wellingson Silva Paiva,2 Fabio Rios Freire,1 Vanessa Tome Calado,1 Robson Luis Amorim,2 Iuri Santana Neville,2 Almir Ferreira de Andrade,2 Edson Bor-Seng-Shu,3 Renato Anghinah,1 Manoel Jacobsen Teixeira21Neurorehabilitation Group, Division of Neurology, 2Division of Neurosurgery, 3Neurosonology and Cerebral Hemodynamics Group, University of São Paulo Medical School, São Paulo, BrazilAbstract: Decompressive craniectomy is an established procedure to lower intracranial pressure and can save patients' lives. However, this procedure is associated with delayed cognitive decline and cerebral hemodynamics complications. Studies show the benefits of cranioplasty beyond cosmetic aspects, including brain protection, and functional and cerebrovascular aspects, but a detailed description of the concrete changes following this procedure are lacking. In this paper, the authors report a patient with trephine syndrome who underwent cranioplasty; comprehensive cognitive and cerebral hemodynamic evaluations were performed prior to and following the cranioplasty. The discussion was based on a critical literature review.Keywords: cranioplasty, decompressive craniotomy, perfusion CT, traumatic brain injury, cognition, neuropsychological test

  3. Hemodynamics in Korean Hemorrhagic Fever

    International Nuclear Information System (INIS)

    Han, Ji Young; Lee, Jung Sang; Koh, Chang Soon; Lee, Mun Ho

    1974-01-01

    The author in an attempt to evaluate hemodynamic changes in the clinical stages of Korean hemorrhagic fever measured plasma volume, cardiac output and effective renal plasma flow utilizing radioisoto as during various phases of the disease. Cardiac output was measured by radiocardiography with external monitoring method using RIHSA. Effective renal plasma flow was obtained from blood clearance curve drawn by external monitoring after radiohippuran injection according to the method described by Razzak et al. The study was carried out in thirty-eight cases of Korean hemorrhagic fever and the following conclusions were obtained. 1) Plasma volume was increased in the patients during the oliguric and hypertensive-diuretic phases, while it was normal in the patients during the normotensive-diuretic phase. 2) Cardiac index was increased in the patients during the oliguric phase and was slightly increased in the patients at the hypertensive diuretic phase. It was normal in the other phases. 3) Total peripheral resistance was increased in the hypertensive patients during diuretic phase, while it was normal in the rest of phases. 4) Effective renal plasma flow was significantly reduced in the patients during the oliguric and diuretic phases as well as at one month after the oliguric onset. There was no significant difference between the oliguric and the early diuretic phases. Renal plasma flow in the group of patients at one month after the oliguric onset was about 45% of the normal, however, it returned to normal level at six months after the onset. 5) Clinical syndrome of relative hypervolemia was observed in some patients during the oliguric phase or hypertensive diuretic phase. Characteristic hemodynamic findings were high cardiac output and normal to relatively increased peripheral resistance these cases. Relatively increased circulating blood volumes due to decreased effective vascular space was suggested for the mechanism of relative hypervolemia. 6) Cardiac

  4. Impact of Intra-Extracranial Hemodynamics on Cerebral Ischemia by Arterial Hypertension (Part 2

    Directory of Open Access Journals (Sweden)

    Alexander G. Kruglov, PhD, ScD

    2012-06-01

    Full Text Available The association between hemodynamic and biochemical parameters of cerebral blood flow have been studied in man, using mathematical methods of statistics. The values have been obtained through catheterization using a probe jammed at the level of the bulb of the superior jugular vein. Relationships with central hemodynamic parameters have been evaluated, including the right atrium, the right ventricle, and the left ventricle, as well as with pressure and biochemical values of the arterial bed. Data have been acquired in patients with stable arterial hypertension. Analysis of all relationship between hemodynamic and biochemical parameters has shown that the uniform hemodynamic zone: Sin.P. – SJV – SEV – the right atrium, normally participates in regulation of gaseous exchange in the human brain depending on the minimum pressure on the way of outflow from the brain. In stable arterial hypertension, this type of regulation is lost. On the basis of the results of this study, it has been concluded that blood viscosity is normally a primary controlled parameter of homeostasis. In stable arterial hypertension, homeostatic control of factors determining rheological and thrombogenic properties of blood, as well as participating in the development of brain ischemic conditions is lost. This increases risk of disturbances in central hemodynamics.

  5. Neonatal Hemodynamics: From Developmental Physiology to Comprehensive Monitoring

    Directory of Open Access Journals (Sweden)

    Sabine L. Vrancken

    2018-04-01

    Full Text Available Maintenance of neonatal circulatory homeostasis is a real challenge, due to the complex physiology during postnatal transition and the inherent immaturity of the cardiovascular system and other relevant organs. It is known that abnormal cardiovascular function during the neonatal period is associated with increased risk of severe morbidity and mortality. Understanding the functional and structural characteristics of the neonatal circulation is, therefore, essential, as therapeutic hemodynamic interventions should be based on the assumed underlying (pathophysiology. The clinical assessment of systemic blood flow (SBF by indirect parameters, such as blood pressure, capillary refill time, heart rate, urine output, and central-peripheral temperature difference is inaccurate. As blood pressure is no surrogate for SBF, information on cardiac output and systemic vascular resistance should be obtained in combination with an evaluation of end organ perfusion. Accurate and reliable hemodynamic monitoring systems are required to detect inadequate tissue perfusion and oxygenation at an early stage before this result in irreversible damage. Also, the hemodynamic response to the initiated treatment should be re-evaluated regularly as changes in cardiovascular function can occur quickly. New insights in the understanding of neonatal cardiovascular physiology are reviewed and several methods for current and future neonatal hemodynamic monitoring are discussed.

  6. Hemodynamics in diabetic orthostatic hypotension

    DEFF Research Database (Denmark)

    Hilsted, J; Parving, H H; Christensen, N J

    1981-01-01

    Hemodynamic variables (blood pressure, cardiac output, heart rate, plasma volume, splanchnic blood flow, and peripheral subcutaneous blood flow) and plasma concentrations of norepinephrine, epinephrine, and renin were measured in the supine position and after 30 min of quiet standing. This was done...... in normal subjects (n = 7) and in juvenile-onset diabetic patients without neuropathy (n = 8), with slight neuropathy (decreased beat-to-beat variation in heart rate during hyperventilation) (n = 8), and with severe neuropathy including orthostatic hypotension (n = 7). Blood pressure decreased precipitously...

  7. Optimal hemodynamic response model for functional near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Muhammad Ahmad Kamran

    2015-06-01

    Full Text Available Functional near-infrared spectroscopy (fNIRS is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650-950 nm wavelengths. The cortical hemodynamic response (HR differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF is modeled by using two Gamma functions with six unknown parameters. The HRF model is supposed to be linear combination of HRF, baseline and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown. An objective function is developed as a square of the residuals with constraints on twelve free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using ten real and fifteen simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis, i.e., (t-value >tcritical and p-value < 0.05.

  8. GLUT2-mediated glucose uptake and availability are required for embryonic brain development in zebrafish.

    Science.gov (United States)

    Marín-Juez, Rubén; Rovira, Mireia; Crespo, Diego; van der Vaart, Michiel; Spaink, Herman P; Planas, Josep V

    2015-01-01

    Glucose transporter 2 (GLUT2; gene name SLC2A2) has a key role in the regulation of glucose dynamics in organs central to metabolism. Although GLUT2 has been studied in the context of its participation in peripheral and central glucose sensing, its role in the brain is not well understood. To decipher the role of GLUT2 in brain development, we knocked down slc2a2 (glut2), the functional ortholog of human GLUT2, in zebrafish. Abrogation of glut2 led to defective brain organogenesis, reduced glucose uptake and increased programmed cell death in the brain. Coinciding with the observed localization of glut2 expression in the zebrafish hindbrain, glut2 deficiency affected the development of neural progenitor cells expressing the proneural genes atoh1b and ptf1a but not those expressing neurod. Specificity of the morphant phenotype was demonstrated by the restoration of brain organogenesis, whole-embryo glucose uptake, brain apoptosis, and expression of proneural markers in rescue experiments. These results indicate that glut2 has an essential role during brain development by facilitating the uptake and availability of glucose and support the involvement of glut2 in brain glucose sensing.

  9. Apc1 is required for maintenance of local brain organizers and dorsal midbrain survival.

    NARCIS (Netherlands)

    Paridaen, J.T.M.; Danesin, C.; Elas, A.T.; van de Water, S.G.P.; Houart, C.; Zivkovic, D.

    2009-01-01

    The tumor suppressor Apc1 is an intracellular antagonist of the Wnt/beta-catenin pathway, which is vital for induction and patterning of the early vertebrate brain. However, its role in later brain development is less clear. Here, we examined the mechanisms underlying effects of an Apc1

  10. Cerebral hemodynamic and metabolic changes in fulminant hepatic failure

    Directory of Open Access Journals (Sweden)

    Fernando Mendes Paschoal Junior

    Full Text Available ABSTRACT Intracranial hypertension and brain swelling are a major cause of morbidity and mortality of patients suffering from fulminant hepatic failure (FHF. The pathogenesis of these complications has been investigated in man, in experimental models and in isolated cell systems. Currently, the mechanism underlying cerebral edema and intracranial hypertension in the presence of FHF is multi-factorial in etiology and only partially understood. The aim of this paper is to review the pathophysiology of cerebral hemodynamic and metabolism changes in FHF in order to improve understanding of intracranial dynamics complication in FHF.

  11. Toxoplasma gondii Requires Glycogen Phosphorylase for Balancing Amylopectin Storage and for Efficient Production of Brain Cysts.

    Science.gov (United States)

    Sugi, Tatsuki; Tu, Vincent; Ma, Yanfen; Tomita, Tadakimi; Weiss, Louis M

    2017-08-29

    In immunocompromised hosts, latent infection with Toxoplasma gondii can reactivate from tissue cysts, leading to encephalitis. A characteristic of T. gondii bradyzoites in tissue cysts is the presence of amylopectin granules. The regulatory mechanisms and role of amylopectin accumulation in this organism are not fully understood. The T. gondii genome encodes a putative glycogen phosphorylase (TgGP), and mutants were constructed to manipulate the activity of TgGP and to evaluate the function of TgGP in amylopectin storage. Both a stop codon mutant (Pru/TgGP S25stop [expressing a Ser-to-stop codon change at position 25 in TgGP]) and a phosphorylation null mutant (Pru/TgGP S25A [expressing a Ser-to-Ala change at position 25 in TgGp]) mutated at Ser25 displayed amylopectin accumulation, while the phosphorylation-mimetic mutant (Pru/TgGP S25E [expressing a Ser-to-Glu change at position 25 in TgGp]) had minimal amylopectin accumulation under both tachyzoite and bradyzoite growth conditions. The expression of active TgGP S25S or TgGP S25E restored amylopectin catabolism in Pru/TgGP S25A To understand the relation between GP and calcium-dependent protein kinase 2 (CDPK2), which was recently reported to regulate amylopectin consumption, we knocked out CDPK2 in these mutants. Pru Δcdpk2 /TgGP S25E had minimal amylopectin accumulation, whereas the Δcdpk2 phenotype in the other GP mutants and parental lines displayed amylopectin accumulation. Both the inactive S25A and hyperactive S25E mutant produced brain cysts in infected mice, but the numbers of cysts produced were significantly less than the number produced by the S25S wild-type GP parasite. Complementation that restored amylopectin regulation restored brain cyst production to the control levels seen in infected mice. These data suggest that T. gondii requires tight regulation of amylopectin expression for efficient production of cysts and persistent infections and that GP phosphorylation is a regulatory mechanism

  12. STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis.

    Science.gov (United States)

    Priego, Neibla; Zhu, Lucía; Monteiro, Cátia; Mulders, Manon; Wasilewski, David; Bindeman, Wendy; Doglio, Laura; Martínez, Liliana; Martínez-Saez, Elena; Cajal, Santiago Ramón Y; Megías, Diego; Hernández-Encinas, Elena; Blanco-Aparicio, Carmen; Martínez, Lola; Zarzuela, Eduardo; Muñoz, Javier; Fustero-Torres, Coral; Pineiro, Elena; Hernández-Laín, Aurelio; Bertero, Luca; Poli, Valeria; Sánchez-Martínez, Melchor; Menendez, Javier A; Soffietti, Riccardo; Bosch-Barrera, Joaquim; Valiente, Manuel

    2018-06-11

    The brain microenvironment imposes a particularly intense selective pressure on metastasis-initiating cells, but successful metastases bypass this control through mechanisms that are poorly understood. Reactive astrocytes are key components of this microenvironment that confine brain metastasis without infiltrating the lesion. Here, we describe that brain metastatic cells induce and maintain the co-option of a pro-metastatic program driven by signal transducer and activator of transcription 3 (STAT3) in a subpopulation of reactive astrocytes surrounding metastatic lesions. These reactive astrocytes benefit metastatic cells by their modulatory effect on the innate and acquired immune system. In patients, active STAT3 in reactive astrocytes correlates with reduced survival from diagnosis of intracranial metastases. Blocking STAT3 signaling in reactive astrocytes reduces experimental brain metastasis from different primary tumor sources, even at advanced stages of colonization. We also show that a safe and orally bioavailable treatment that inhibits STAT3 exhibits significant antitumor effects in patients with advanced systemic disease that included brain metastasis. Responses to this therapy were notable in the central nervous system, where several complete responses were achieved. Given that brain metastasis causes substantial morbidity and mortality, our results identify a novel treatment for increasing survival in patients with secondary brain tumors.

  13. Sex-specific signaling in the blood-brain barrier is required for male courtship in Drosophila.

    Directory of Open Access Journals (Sweden)

    Valbona Hoxha

    Full Text Available Soluble circulating proteins play an important role in the regulation of mating behavior in Drosophila melanogaster. However, how these factors signal through the blood-brain barrier (bbb to interact with the sex-specific brain circuits that control courtship is unknown. Here we show that male identity of the blood-brain barrier is necessary and that male-specific factors in the bbb are physiologically required for normal male courtship behavior. Feminization of the bbb of adult males significantly reduces male courtship. We show that the bbb-specific G-protein coupled receptor moody and bbb-specific Go signaling in adult males are necessary for normal courtship. These data identify sex-specific factors and signaling processes in the bbb as important regulators of male mating behavior.

  14. Brain Sexual Differentiation and Requirement of SRY: Why or Why Not?

    OpenAIRE

    Rosenfeld, Cheryl S.

    2017-01-01

    Brain sexual differentiation is orchestrated by precise coordination of sex steroid hormones. In some species, programming of select male brain regions is dependent upon aromatization of testosterone to estrogen. In mammals, these hormones surge during the organizational and activational periods that occur during perinatal development and adulthood, respectively. In various fish and reptiles, incubation temperature during a critical embryonic period results in male or female sexual differenti...

  15. Effect of Mobile Phone-Induced Electromagnetic Field on Brain Hemodynamics and Human Stem Cell Functioning: Possible Mechanistic Link to Cancer Risk and Early Diagnostic Value of Electronphotonic Imaging.

    Science.gov (United States)

    Bhargav, Hemant; Srinivasan, T M; Varambally, S; Gangadhar, B N; Koka, Prasad

    2015-01-01

    The mobile phones (MP) are low power radio devices which work on electromagnetic fields (EMFs), in the frequency range of 900-1800 MHz. Exposure to MPEMFs may affect brain physiology and lead to various health hazards including brain tumors. Earlier studies with positron emission tomography (PET) have found alterations in cerebral blood flow (CBF) after acute exposure to MPEMFs. It is widely accepted that DNA double-strand breaks (DSBs) and their misrepair in stem cells are critical events in the multistage origination of various leukemia and tumors, including brain tumors such as gliomas. Both significant misbalance in DSB repair and severe stress response have been triggered by MPEMFs and EMFs from cell towers. It has been shown that stem cells are most sensitive to microwave exposure and react to more frequencies than do differentiated cells. This may be important for cancer risk assessment and indicates that stem cells are the most relevant cellular model for validating safe mobile communication signals. Recently developed technology for recording the human bio-electromagnetic (BEM) field using Electron photonic Imaging (EPI) or Gas Discharge Visualisation (GDV) technique provides useful information about the human BEM. Studies have recorded acute effects of Mobile Phone Electromagnetic Fields (MPEMFs) using EPI and found quantifiable effects on human BEM field. Present manuscript reviews evidences of altered brain physiology and stem cell functioning due to mobile phone/cell tower radiations, its association with increased cancer risk and explores early diagnostic value of EPI imaging in detecting EMF induced changes on human BEM.

  16. Early disrupted neurovascular coupling and changed event level hemodynamic response function in type 2 diabetes: an fMRI study.

    Science.gov (United States)

    Duarte, João V; Pereira, João M S; Quendera, Bruno; Raimundo, Miguel; Moreno, Carolina; Gomes, Leonor; Carrilho, Francisco; Castelo-Branco, Miguel

    2015-10-01

    Type 2 diabetes (T2DM) patients develop vascular complications and have increased risk for neurophysiological impairment. Vascular pathophysiology may alter the blood flow regulation in cerebral microvasculature, affecting neurovascular coupling. Reduced fMRI signal can result from decreased neuronal activation or disrupted neurovascular coupling. The uncertainty about pathophysiological mechanisms (neurodegenerative, vascular, or both) underlying brain function impairments remains. In this cross-sectional study, we investigated if the hemodynamic response function (HRF) in lesion-free brains of patients is altered by measuring BOLD (Blood Oxygenation Level-Dependent) response to visual motion stimuli. We used a standard block design to examine the BOLD response and an event-related deconvolution approach. Importantly, the latter allowed for the first time to directly extract the true shape of HRF without any assumption and probe neurovascular coupling, using performance-matched stimuli. We discovered a change in HRF in early stages of diabetes. T2DM patients show significantly different fMRI response profiles. Our visual paradigm therefore demonstrated impaired neurovascular coupling in intact brain tissue. This implies that functional studies in T2DM require the definition of HRF, only achievable with deconvolution in event-related experiments. Further investigation of the mechanisms underlying impaired neurovascular coupling is needed to understand and potentially prevent the progression of brain function decrements in diabetes.

  17. Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants.

    Science.gov (United States)

    Lin, Pei-Yi; Roche-Labarbe, Nadege; Dehaes, Mathieu; Carp, Stefan; Fenoglio, Angela; Barbieri, Beniamino; Hagan, Katherine; Grant, P Ellen; Franceschini, Maria Angela

    2013-03-14

    Perinatal brain injury remains a significant cause of infant mortality and morbidity, but there is not yet an effective bedside tool that can accurately screen for brain injury, monitor injury evolution, or assess response to therapy. The energy used by neurons is derived largely from tissue oxidative metabolism, and neural hyperactivity and cell death are reflected by corresponding changes in cerebral oxygen metabolism (CMRO₂). Thus, measures of CMRO₂ are reflective of neuronal viability and provide critical diagnostic information, making CMRO₂ an ideal target for bedside measurement of brain health. Brain-imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) yield measures of cerebral glucose and oxygen metabolism, but these techniques require the administration of radionucleotides, so they are used in only the most acute cases. Continuous-wave near-infrared spectroscopy (CWNIRS) provides non-invasive and non-ionizing radiation measures of hemoglobin oxygen saturation (SO₂) as a surrogate for cerebral oxygen consumption. However, SO₂ is less than ideal as a surrogate for cerebral oxygen metabolism as it is influenced by both oxygen delivery and consumption. Furthermore, measurements of SO₂ are not sensitive enough to detect brain injury hours after the insult, because oxygen consumption and delivery reach equilibrium after acute transients. We investigated the possibility of using more sophisticated NIRS optical methods to quantify cerebral oxygen metabolism at the bedside in healthy and brain-injured newborns. More specifically, we combined the frequency-domain NIRS (FDNIRS) measure of SO2 with the diffuse correlation spectroscopy (DCS) measure of blood flow index (CBFi) to yield an index of CMRO₂ (CMRO₂i). With the combined FDNIRS/DCS system we are able to quantify cerebral metabolism and hemodynamics. This represents an improvement over CWNIRS for detecting brain health, brain

  18. Electrophysiological and hemodynamic mismatch responses in rats listening to human speech syllables.

    Directory of Open Access Journals (Sweden)

    Mahdi Mahmoudzadeh

    Full Text Available Speech is a complex auditory stimulus which is processed according to several time-scales. Whereas consonant discrimination is required to resolve rapid acoustic events, voice perception relies on slower cues. Humans, right from preterm ages, are particularly efficient to encode temporal cues. To compare the capacities of preterms to those observed in other mammals, we tested anesthetized adult rats by using exactly the same paradigm as that used in preterm neonates. We simultaneously recorded neural (using ECoG and hemodynamic responses (using fNIRS to series of human speech syllables and investigated the brain response to a change of consonant (ba vs. ga and to a change of voice (male vs. female. Both methods revealed concordant results, although ECoG measures were more sensitive than fNIRS. Responses to syllables were bilateral, but with marked right-hemispheric lateralization. Responses to voice changes were observed with both methods, while only ECoG was sensitive to consonant changes. These results suggest that rats more effectively processed the speech envelope than fine temporal cues in contrast with human preterm neonates, in whom the opposite effects were observed. Cross-species comparisons constitute a very valuable tool to define the singularities of the human brain and species-specific bias that may help human infants to learn their native language.

  19. Immunologic, hemodynamic, and adrenal incompetence in cirrhosis

    DEFF Research Database (Denmark)

    Risør, Louise Madeleine; Bendtsen, Flemming; Møller, Søren

    2015-01-01

    dysfunction, but is not responsive to volume expansion. Recent research indicates that development of hepatic nephropathy represents a continuous spectrum of functional and structural dysfunction and may be precipitated by the inherent immunologic, adrenal, and hemodynamic incompetence in cirrhosis. New...... research explores several new markers of renal dysfunction that may replace serum creatinine in the future and give new insight on the hepatic nephropathy. Our understanding of the pathophysiological mechanisms causing the immunologic, adrenal, and hemodynamic incompetence, and the impact on renal...

  20. Central Hemodynamics and Microcirculation in Critical Conditions

    Directory of Open Access Journals (Sweden)

    A. A. Kosovskikh

    2013-01-01

    Full Text Available Objective: to compare central hemodynamic and microcirculatory changes in critical conditions caused by different factors and to reveal their possible differences for a further differentiated approach to intensive therapy. Subjects and methods. The study covered 16 subjects with severe concomitant injury (mean age 41.96±2.83 years and 19 patients with general purulent peritonitis (mean age 45.34±2.16 years. Their follow-up was 7 days. The central hemodynamics was estimated by transpulmonary thermodilution using a Pulsion PiCCO Plus system (Pulsion Medical Systems, Germany. The microcirculatory bed was evaluated by cutaneous laser Doppler flowmetry using a LAKK-02 capillary blood flow laser analyzer (LAZMA Research-and-Production Association, Russian Federation. Results. The pattern of central hemodynamic and microcirculatory disorders varies with the trigger that has led to a critical condition. Central hemodynamics should be stabilized to ensure the average level of tissue perfusion in victims with severe concomitant injury. In general purulent peritonitis, microcirculatory disorders may persist even if the macrohemodynamic parameters are normal. Conclusion. The macrohemodynamic and microcirculatory differences obtained during the study suggest that a complex of intensive therapy should be differentiated and, if the latter is used, it is necessary not only to be based on the central hemodynamics, but also to take into consideration functional changes in microcirculation. Key words: severe concomitant injury, general purulent peritonitis, micro-circulation, central hemodynamics, type of circulation.

  1. Do all roads lead to Rome? A comparison of brain networks derived from inter-subject volumetric and metabolic covariance and moment-to-moment hemodynamic correlations in old individuals.

    Science.gov (United States)

    Di, Xin; Gohel, Suril; Thielcke, Andre; Wehrl, Hans F; Biswal, Bharat B

    2017-11-01

    Relationships between spatially remote brain regions in human have typically been estimated by moment-to-moment correlations of blood-oxygen-level dependent signals in resting-state using functional MRI (fMRI). Recently, studies using subject-to-subject covariance of anatomical volumes, cortical thickness, and metabolic activity are becoming increasingly popular. However, question remains on whether these measures reflect the same inter-region connectivity and brain network organizations. In the current study, we systematically analyzed inter-subject volumetric covariance from anatomical MRI images, metabolic covariance from fluorodeoxyglucose positron emission tomography images from 193 healthy subjects, and resting-state moment-to-moment correlations from fMRI images of a subset of 44 subjects. The correlation matrices calculated from the three methods were found to be minimally correlated, with higher correlation in the range of 0.31, as well as limited proportion of overlapping connections. The volumetric network showed the highest global efficiency and lowest mean clustering coefficient, leaning toward random-like network, while the metabolic and resting-state networks conveyed properties more resembling small-world networks. Community structures of the volumetric and metabolic networks did not reflect known functional organizations, which could be observed in resting-state network. The current results suggested that inter-subject volumetric and metabolic covariance do not necessarily reflect the inter-regional relationships and network organizations as resting-state correlations, thus calling for cautions on interpreting results of inter-subject covariance networks.

  2. Levosimendan for Hemodynamic Support after Cardiac Surgery.

    Science.gov (United States)

    Landoni, Giovanni; Lomivorotov, Vladimir V; Alvaro, Gabriele; Lobreglio, Rosetta; Pisano, Antonio; Guarracino, Fabio; Calabrò, Maria G; Grigoryev, Evgeny V; Likhvantsev, Valery V; Salgado-Filho, Marcello F; Bianchi, Alessandro; Pasyuga, Vadim V; Baiocchi, Massimo; Pappalardo, Federico; Monaco, Fabrizio; Boboshko, Vladimir A; Abubakirov, Marat N; Amantea, Bruno; Lembo, Rosalba; Brazzi, Luca; Verniero, Luigi; Bertini, Pietro; Scandroglio, Anna M; Bove, Tiziana; Belletti, Alessandro; Michienzi, Maria G; Shukevich, Dmitriy L; Zabelina, Tatiana S; Bellomo, Rinaldo; Zangrillo, Alberto

    2017-05-25

    Acute left ventricular dysfunction is a major complication of cardiac surgery and is associated with increased mortality. Meta-analyses of small trials suggest that levosimendan may result in a higher rate of survival among patients undergoing cardiac surgery. We conducted a multicenter, randomized, double-blind, placebo-controlled trial involving patients in whom perioperative hemodynamic support was indicated after cardiac surgery, according to prespecified criteria. Patients were randomly assigned to receive levosimendan (in a continuous infusion at a dose of 0.025 to 0.2 μg per kilogram of body weight per minute) or placebo, for up to 48 hours or until discharge from the intensive care unit (ICU), in addition to standard care. The primary outcome was 30-day mortality. The trial was stopped for futility after 506 patients were enrolled. A total of 248 patients were assigned to receive levosimendan and 258 to receive placebo. There was no significant difference in 30-day mortality between the levosimendan group and the placebo group (32 patients [12.9%] and 33 patients [12.8%], respectively; absolute risk difference, 0.1 percentage points; 95% confidence interval [CI], -5.7 to 5.9; P=0.97). There were no significant differences between the levosimendan group and the placebo group in the durations of mechanical ventilation (median, 19 hours and 21 hours, respectively; median difference, -2 hours; 95% CI, -5 to 1; P=0.48), ICU stay (median, 72 hours and 84 hours, respectively; median difference, -12 hours; 95% CI, -21 to 2; P=0.09), and hospital stay (median, 14 days and 14 days, respectively; median difference, 0 days; 95% CI, -1 to 2; P=0.39). There was no significant difference between the levosimendan group and the placebo group in rates of hypotension or cardiac arrhythmias. In patients who required perioperative hemodynamic support after cardiac surgery, low-dose levosimendan in addition to standard care did not result in lower 30-day mortality than placebo

  3. Radiation protection in hemodynamics work process: the look of the multidisciplinary team

    International Nuclear Information System (INIS)

    Borges, Laurete Medeiros; Klauberg, Daniela; Huhn, Andrea; Melo, Juliana Almeida Coelho de

    2014-01-01

    The study was conducted in a hemodynamics service of a public hospital in Florianopolis, SC, Brazil. Qualitative research with the participation of 13 professionals from a multidisciplinary team: doctors, technicians, technologists in radiology and nurses. The research material was extracted from the observations, semi-structured interviews and documentary analysis. The responses were grouped into three categories relating to: training of hemodynamic professionals and the perception of radiological protection in the work process; occupational exposure and safety of the professionals of Hemodynamics; and continuing education in hemodynamic service. Professionals are daily exposed to ionizing radiation, and for being long procedures, lead to high levels of exposure in workers. In hemodynamic services the risk of biological effects are cumulative, because radiodiagnostic procedures include issuing the higher doses of ionizing radiation in which the personnel exposure is critical. The workforce in the service researched mostly consists of technical professionals who reported little knowledge of radiation protection and ionizing radiation and that this issue was not addressed during their training. However, despite mention little knowledge about radiological protection, participants demonstrated understand the biological effects, especially with regard to pathologies caused by frequent exposure without protection to ionizing radiation. These professionals said they have no knowledge of the proper use of radiological protection equipment and the dosimeter, and that the institution does not provide all individual protective equipment required for the procedures performed in the hemodynamic service. Permanent education in hemodynamic service is very important part in the work process, though, cited by participants as little effectiveness in the institution, even when the professionals show interest in the area. Knowledge of the team providing hemodynamic service calls

  4. Automated analysis of plethysmograms for functional studies of hemodynamics

    Science.gov (United States)

    Zatrudina, R. Sh.; Isupov, I. B.; Gribkov, V. Yu.

    2018-04-01

    The most promising method for the quantitative determination of cardiovascular tone indicators and of cerebral hemodynamics indicators is the method of impedance plethysmography. The accurate determination of these indicators requires the correct identification of the characteristic points in the thoracic impedance plethysmogram and the cranial impedance plethysmogram respectively. An algorithm for automatic analysis of these plethysmogram is presented. The algorithm is based on the hard temporal relationships between the phases of the cardiac cycle and the characteristic points of the plethysmogram. The proposed algorithm does not require estimation of initial data and selection of processing parameters. Use of the method on healthy subjects showed a very low detection error of characteristic points.

  5. [The role of nutritional factors on the structure and function of the brain: an update on dietary requirements].

    Science.gov (United States)

    Bourre, J-M

    2004-09-01

    The brain is an organ elaborated and functioning from substances present in the diet. Dietary regulation of blood glucose level (via ingestion of food with a low glycemic index ensuring a low insulin level) improves the quality and duration of intellectual performance, if only because at rest the adult brain consumes 50 p. 100 of dietary carbohydrates, 80 p. 100 of them for energy purposes. The nature of the amino acid composition of dietary proteins contributes to good cerebral function; tryptophan plays a special role. Many indispensable amino acids present in dietary proteins help to elaborate neurotransmitters and neuromodulators. Omega-3 fatty acids provided the first coherent experimental demonstration of the effect of dietary nutrients on the structure and function of the brain. First it was shown that the differentiation and functioning of cultured brain cells requires omega-3 fatty acids. It was then demonstrated that alpha-linolenic acid (ALA) deficiency alters the course of brain development, perturbs the composition and physicochemical properties of brain cell membranes, neurones, oligodendrocytes, and astrocytes (ALA). This leads to physicochemical modifications, induces biochemical and physiological perturbations, and results in neurosensory and behavioral upset. Consequently, the nature of polyunsaturated fatty acids (in particular omega-3) present in formula milks for infants (premature and term) conditions the visual and cerebral abilities, including intellectual abilities. Moreover, dietary omega-3 fatty acids are certainly involved in the prevention of some aspects of cardiovascular disease (including at the level of cerebral vascularization), and in some neuropsychiatric disorders, particularly depression, as well as in dementia, notably Alzheimer's disease. Their deficiency can prevent the satisfactory renewal of membranes and thus accelerate cerebral aging. Iron is necessary to ensure oxygenation, to produce energy in the cerebral parenchyma

  6. Optimal hemodynamic response model for functional near-infrared spectroscopy.

    Science.gov (United States)

    Kamran, Muhammad A; Jeong, Myung Yung; Mannan, Malik M N

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650-950 nm wavelengths. The cortical hemodynamic response (HR) differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF) is modeled by two Gamma functions with six unknown parameters (four of them to model the shape and other two to scale and baseline respectively). The HRF model is supposed to be a linear combination of HRF, baseline, and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown). An objective function is developed as a square of the residuals with constraints on 12 free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using 10 real and 15 simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis (i.e., t-value > t critical and p-value < 0.05).

  7. Prevention of hemodynamic and vascular albumin filtration changes in diabetic rats by aldose reductase inhibitors

    International Nuclear Information System (INIS)

    Tilton, R.G.; Chang, K.; Pugliese, G.; Eades, D.M.; Province, M.A.; Sherman, W.R.; Kilo, C.; Williamson, J.R.

    1989-01-01

    This study investigated hemodynamic changes in diabetic rats and their relationship to changes in vascular albumin permeation and increased metabolism of glucose to sorbitol. The effects of 6 wk of streptozocin-induced diabetes and three structurally different inhibitors of aldose reductase were examined on (1) regional blood flow (assessed with 15-microns 85Sr-labeled microspheres) and vascular permeation by 125I-labeled bovine serum albumin (BSA) and (2) glomerular filtration rate (assessed by plasma clearance of 57Co-labeled EDTA) and urinary albumin excretion (determined by radial immunodiffusion assay). In diabetic rats, blood flow was significantly increased in ocular tissues (anterior uvea, posterior uvea, retina, and optic nerve), sciatic nerve, kidney, new granulation tissue, cecum, and brain. 125I-BSA permeation was increased in all of these tissues except brain. Glomerular filtration rate and 24-h urinary albumin excretion were increased 2- and 29-fold, respectively, in diabetic rats. All three aldose reductase inhibitors completely prevented or markedly reduced these hemodynamic and vascular filtration changes and increases in tissue sorbitol levels in the anterior uvea, posterior uvea, retina, sciatic nerve, and granulation tissue. These observations indicate that early diabetes-induced hemodynamic changes and increased vascular albumin permeation and urinary albumin excretion are aldose reductase-linked phenomena. Discordant effects of aldose reductase inhibitors on blood flow and vascular albumin permeation in some tissues suggest that increased vascular albumin permeation is not entirely attributable to hemodynamic change

  8. Successful treatment of inverted Takotsubo cardiomyopathy after severe traumatic brain injury with milrinone after dobutamine failure.

    Science.gov (United States)

    Mrozek, Ségolène; Srairi, Mohamed; Marhar, Fouad; Delmas, Clément; Gaussiat, François; Abaziou, Timothée; Larcher, Claire; Atthar, Vincent; Menut, Rémi; Fourcade, Olivier; Geeraerts, Thomas

    2016-01-01

    Takotsubo cardiomyopathy can occur at the early phase of severe acute brain injuries. In the case of cardiac output decrease or shock, the optimal treatment is still a matter of debate. Due to massive stress hormone release, the infusion of catecholamines may have limited effects and may even aggravate cardiac failure. Other inotropic agents may be an option. Levosimendan has been shown to have potential beneficial effects in this setting, although milrinone has not been studied. We report a case of a young female presenting with inverted Takotsubo cardiomyopathy syndrome after severe traumatic brain injury. Due to hemodynamic instability and increasing levels of infused norepinephrine, dobutamine infusion was begun but rapidly stopped due to tachyarrhythmia. Milrinone infusion stabilized the patient's hemodynamic status and improved cardiac output without deleterious effects. Milrinone could be a good alternative when inotropes are required in Takotsubo cardiomyopathy and when dobutamine infusion is associated with tachyarrhythmia. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Drosophila Vps13 Is Required for Protein Homeostasis in the Brain.

    Directory of Open Access Journals (Sweden)

    Jan J Vonk

    Full Text Available Chorea-Acanthocytosis is a rare, neurodegenerative disorder characterized by progressive loss of locomotor and cognitive function. It is caused by loss of function mutations in the Vacuolar Protein Sorting 13A (VPS13A gene, which is conserved from yeast to human. The consequences of VPS13A dysfunction in the nervous system are still largely unspecified. In order to study the consequences of VPS13A protein dysfunction in the ageing central nervous system we characterized a Drosophila melanogaster Vps13 mutant line. The Drosophila Vps13 gene encoded a protein of similar size as human VPS13A. Our data suggest that Vps13 is a peripheral membrane protein located to endosomal membranes and enriched in the fly head. Vps13 mutant flies showed a shortened life span and age associated neurodegeneration. Vps13 mutant flies were sensitive to proteotoxic stress and accumulated ubiquitylated proteins. Levels of Ref(2P, the Drosophila orthologue of p62, were increased and protein aggregates accumulated in the central nervous system. Overexpression of the human Vps13A protein in the mutant flies partly rescued apparent phenotypes. This suggests a functional conservation of human VPS13A and Drosophila Vps13. Our results demonstrate that Vps13 is essential to maintain protein homeostasis in the larval and adult Drosophila brain. Drosophila Vps13 mutants are suitable to investigate the function of Vps13 in the brain, to identify genetic enhancers and suppressors and to screen for potential therapeutic targets for Chorea-Acanthocytosis.

  10. Presenilins are required for maintenance of neural stem cells in the developing brain

    Directory of Open Access Journals (Sweden)

    Kim Woo-Young

    2008-01-01

    Full Text Available Abstract The early embryonic lethality of mutant mice bearing germ-line deletions of both presenilin genes precluded the study of their functions in neural development. We therefore employed the Cre-loxP technology to generate presenilin conditional double knockout (PS cDKO mice, in which expression of both presenilins is inactivated in neural progenitor cells (NPC or neural stem cells and their derivative neurons and glia beginning at embryonic day 11 (E11. In PS cDKO mice, dividing NPCs labeled by BrdU are decreased in number beginning at E13.5. By E15.5, fewer than 20% of NPCs remain in PS cDKO mice. The depletion of NPCs is accompanied by severe morphological defects and hemorrhages in the PS cDKO embryonic brain. Interkinetic nuclear migration of NPCs is also disrupted in PS cDKO embryos, as evidenced by displacement of S-phase and M-phase nuclei in the ventricular zone of the telencephalon. Furthermore, the depletion of neural progenitor cells in PS cDKO embryos is due to NPCs exiting cell cycle and differentiating into neurons rather than reentering cell cycle between E13.5 and E14.5 following PS inactivation in most NPCs. The length of cell cycle, however, is unchanged in PS cDKO embryos. Expression of Notch target genes, Hes1 and Hes5, is significantly decreased in PS cDKO brains, whereas Dll1 expression is up-regulated, indicating that Notch signaling is effectively blocked by PS inactivation. These findings demonstrate that presenilins are essential for neural progenitor cells to re-enter cell cycle and thus ensure proper expansion of neural progenitor pool during embryonic neural development.

  11. Drosophila Clock Is Required in Brain Pacemaker Neurons to Prevent Premature Locomotor Aging Independently of Its Circadian Function.

    Directory of Open Access Journals (Sweden)

    Alexandra Vaccaro

    2017-01-01

    Full Text Available Circadian clocks control many self-sustained rhythms in physiology and behavior with approximately 24-hour periodicity. In many organisms, oxidative stress and aging negatively impact the circadian system and sleep. Conversely, loss of the clock decreases resistance to oxidative stress, and may reduce lifespan and speed up brain aging and neurodegeneration. Here we examined the effects of clock disruptions on locomotor aging and longevity in Drosophila. We found that lifespan was similarly reduced in three arrhythmic mutants (ClkAR, cyc0 and tim0 and in wild-type flies under constant light, which stops the clock. In contrast, ClkAR mutants showed significantly faster age-related locomotor deficits (as monitored by startle-induced climbing than cyc0 and tim0, or than control flies under constant light. Reactive oxygen species accumulated more with age in ClkAR mutant brains, but this did not appear to contribute to the accelerated locomotor decline of the mutant. Clk, but not Cyc, inactivation by RNA interference in the pigment-dispersing factor (PDF-expressing central pacemaker neurons led to similar loss of climbing performance as ClkAR. Conversely, restoring Clk function in these cells was sufficient to rescue the ClkAR locomotor phenotype, independently of behavioral rhythmicity. Accelerated locomotor decline of the ClkAR mutant required expression of the PDF receptor and correlated to an apparent loss of dopaminergic neurons in the posterior protocerebral lateral 1 (PPL1 clusters. This neuronal loss was rescued when the ClkAR mutation was placed in an apoptosis-deficient background. Impairing dopamine synthesis in a single pair of PPL1 neurons that innervate the mushroom bodies accelerated locomotor decline in otherwise wild-type flies. Our results therefore reveal a novel circadian-independent requirement for Clk in brain circadian neurons to maintain a subset of dopaminergic cells and avoid premature locomotor aging in Drosophila.

  12. Hemodynamics in patients with hypertensive intracerebral hemorrhage

    International Nuclear Information System (INIS)

    Kitahara, Tetsuhiro

    1997-01-01

    Cerebral hemodynamics in 15 patients with hypertensive intracerebral hemorrhage (HICH) were evaluated by measuring cerebral blood flow (CBF) and cerebrovascular reserve capacity, using stable xenon-enhanced computed tomography. Their hematomas were removed by stereotactic aqua stream aspiration. The hemispheric and thalamic CBFs of patients with HICH were lower than those of hypertensive patients without hematomas. However, the hemispheric CBF increased according to how much of the hematoma was removed surgically. Thus, hemodynamics in patients with HICH can be improved by surgical hematoma removal, although some adjunct therapies are necessary in order to prevent secondary edema and the delayed neuronal death. (author)

  13. Remote effects in treated dogs survived acute radiation sickness. Hemodynamics at various times after irradiation

    International Nuclear Information System (INIS)

    Kostesha, N.Ya.; Lopukhova, V.V.

    1993-01-01

    Dogs were exposed to X-radiation at a dose of 15 Gy; part of them received a complex treatment. The morphological of internal organs of control dogs were made before death (on days 4 to 15 after irradiation). The treated dogs were killed 0.5-2 years following irradiation. Hemodynamics normalization was noted in 1.5-2 years in the liver, brain cortex, adrenals, insular tissue of the pancreas, and lymph nodes

  14. Hemodynamic changes in rats after radioprotective combination of cystamine administered subcutaneously and 5-methoxytryptamine injected intramuscularly

    International Nuclear Information System (INIS)

    Kuna, P.

    1976-01-01

    Administration of cystamine (20 mg base/kg s.c.) and 5-methoxytryptamine (10 mg base/kg i.m.) with 12 minutes delay to anesthetized rats induced the depression of whole cardiovascular system, hemoconcentration and great blood flow decrease in the radiosensitive tissues. Distribution of lowered cardiac output preferred the fractions to brain, heart, liver and lungs. Hemodynamic responses to protective combination may participate in its radioprotective action. (orig.) [de

  15. Diffuse optical monitoring of cerebral hemodynamics in experimental and clinical neurology

    OpenAIRE

    Blanco Núñez, Igor D.

    2015-01-01

    The study of the brain using diffuse optical methods has progressed rapidly in the recent years. The possibility of studying the cerebral microvasculature in addition to the portability and low cost of these devices, opens a new door in the study of the cerebral pathophysiologies. In this scenario, the study of the cerebral hemodynamics of ischemic patients might allow neurologists to improve the performance of the early medical treatments and therapies used up to date. In this thesis, I ...

  16. Short-term hemodynamic effect of angiotensin-converting enzyme inhibition in patients with severe aortic stenosis

    DEFF Research Database (Denmark)

    Dalsgaard, Morten; Iversen, Kasper; Kjaergaard, Jesper

    2014-01-01

    vs 0.8 ± 6 pmol/L, P = .04, respectively). No episodes of symptomatic hypotension were noted, and other hemodynamic parameters remained unchanged. CONCLUSION: Angiotensin-converting enzyme inhibition in severe AS caused a decrease in LVESV and N-terminal pro-brain natriuretic peptide with other...

  17. Coagulopathy and transfusion requirements in war related penetrating traumatic brain injury. A single centre study in a French role 3 medical treatment facility in Afghanistan.

    Science.gov (United States)

    Bordes, J; Joubert, C; Esnault, P; Montcriol, A; Nguyen, C; Meaudre, E; Dulou, R; Dagain, A

    2017-05-01

    Traumatic brain injury associated coagulopathy is frequent, either in isolated traumatic brain injury in civilian practice and in combat traumatic brain injury. In war zone, it is a matter of concern because head and neck are the second most frequent site of wartime casualty burden. Data focusing on transfusion requirements in patients with war related TBI coagulopathy are limited. A descriptive analysis was conducted of 77 penetrating traumatic brain injuries referred to a French role 3 medical treatment facility in Kabul, Afghanistan, deployed on the Kabul International Airport (KaIA), over a 30 months period. On 77 patients, 23 died during the prehospital phase and were not included in the study. Severe traumatic brain injury represented 50% of patients. Explosions were the most common injury mechanism. Extracranial injuries were present in 72% of patients. Traumatic brain injury coagulopathy was diagnosed in 67% of patients at role 3 admission. Red blood cell units (RBCu) were transfused in 39 (72%) patients, French lyophilized plasma (FLYP) in 41 (76%), and fresh whole blood (FWB) in 17 (31%). The results of this study support previous observations of coagulopathy as a frequent complication of traumatic brain injury. The majority of patients with war related penetrating traumatic brain injury presented with extracranial lesions. Most of them required a high level of transfusion capacity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Symptom-Hemodynamic Mismatch and Heart Failure Event Risk

    Science.gov (United States)

    Lee, Christopher S.; Hiatt, Shirin O.; Denfeld, Quin E.; Mudd, James O.; Chien, Christopher; Gelow, Jill M.

    2014-01-01

    Background Heart failure (HF) is a heterogeneous condition of both symptoms and hemodynamics. Objective The goal of this study was to identify distinct profiles among integrated data on physical and psychological symptoms and hemodynamics, and quantify differences in 180-day event-risk among observed profiles. Methods A secondary analysis of data collected during two prospective cohort studies by a single group of investigators was performed. Latent class mixture modeling was used to identify distinct symptom-hemodynamic profiles. Cox proportional hazards modeling was used to quantify difference in event-risk (HF emergency visit, hospitalization or death) among profiles. Results The mean age (n=291) was 57±13 years, 38% were female, and 61% had class III/IV HF. Three distinct symptom-hemodynamic profiles were identified. 17.9% of patients had concordant symptoms and hemodynamics (i.e. moderate physical and psychological symptoms matched the comparatively hemodynamic profile), 17.9% had severe symptoms and average hemodynamics, and 64.2% had poor hemodynamics and mild symptoms. Compared to those in the concordant profile, both profiles of symptom-hemodynamic mismatch were associated with a markedly increased event-risk (severe symptoms hazards ratio = 3.38, p=0.033; poor hemodynamics hazards ratio = 3.48, p=0.016). Conclusions A minority of adults with HF have concordant symptoms and hemodynamics. Either profile of symptom-hemodynamic mismatch in HF is associated with a greater risk of healthcare utilization for HF or death. PMID:24988323

  19. Modulation of brain activity during a Stroop inhibitory task by the kind of cognitive control required.

    Directory of Open Access Journals (Sweden)

    Julien Grandjean

    Full Text Available This study used a proportion congruency manipulation in the Stroop task in order to investigate, at the behavioral and brain substrate levels, the predictions derived from the Dual Mechanisms of Control (DMC account of two distinct modes of cognitive control depending on the task context. Three experimental conditions were created that varied the proportion congruency: mostly incongruent (MI, mostly congruent (MC, and mostly neutral (MN contexts. A reactive control strategy, which corresponds to transient interference resolution processes after conflict detection, was expected for the rare conflicting stimuli in the MC context, and a proactive strategy, characterized by a sustained task-relevant focus prior to the occurrence of conflict, was expected in the MI context. Results at the behavioral level supported the proactive/reactive distinction, with the replication of the classic proportion congruent effect (i.e., less interference and facilitation effects in the MI context. fMRI data only partially supported our predictions. Whereas reactive control for incongruent trials in the MC context engaged the expected fronto-parietal network including dorsolateral prefrontal cortex (DLPFC and anterior cingulate cortex, proactive control in the MI context was not associated with any sustained lateral prefrontal cortex activations, contrary to our hypothesis. Surprisingly, incongruent trials in the MI context elicited transient activation in common with incongruent trials in the MC context, especially in DLPFC, superior parietal lobe, and insula. This lack of sustained activity in MI is discussed in reference to the possible involvement of item-specific rather than list-wide mechanisms of control in the implementation of a high task-relevant focus.

  20. Effects of L-glutamine supplementation on maternal and fetal hemodynamics in gestating ewes exposed to alcohol

    OpenAIRE

    Sawant, Onkar B.; Ramadoss, Jayanth; Hankins, Gary D.; Wu, Guoyao; Washburn, Shannon E.

    2014-01-01

    Not much is known about effects of gestational alcohol exposure on maternal and fetal cardiovascular adaptations. This study determined whether maternal binge alcohol exposure and L-glutamine supplementation could affect maternal-fetal hemodynamics and fetal regional brain blood flow during the brain growth spurt period. Pregnant sheep were randomly assigned to one of four groups: saline control, alcohol (1.75–2.5 g/kg body weight), glutamine (100 mg/kg body weight) or alcohol + glutamine. A ...

  1. Hemodynamic significance of internal carotid artery disease

    DEFF Research Database (Denmark)

    Schroeder, T

    1988-01-01

    Neurologic symptoms in the region of an internal carotid artery stenosis are considered to be embolic in most instances. Only in a subgroup has carotid occlusive disease with impairment of the collateral supply, caused a state of hemodynamic failure with marked reduction of perfusion pressure. Th...

  2. Direct cortical hemodynamic mapping of somatotopy of pig nostril sensation by functional near-infrared cortical imaging (fNCI).

    Science.gov (United States)

    Uga, Minako; Saito, Toshiyuki; Sano, Toshifumi; Yokota, Hidenori; Oguro, Keiji; Rizki, Edmi Edison; Mizutani, Tsutomu; Katura, Takusige; Dan, Ippeita; Watanabe, Eiju

    2014-05-01

    Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique for the noninvasive monitoring of human brain activation states utilizing the coupling between neural activity and regional cerebral hemodynamics. Illuminators and detectors, together constituting optodes, are placed on the scalp, but due to the presence of head tissues, an inter-optode distance of more than 2.5cm is necessary to detect cortical signals. Although direct cortical monitoring with fNIRS has been pursued, a high-resolution visualization of hemodynamic changes associated with sensory, motor and cognitive neural responses directly from the cortical surface has yet to be realized. To acquire robust information on the hemodynamics of the cortex, devoid of signal complications in transcranial measurement, we devised a functional near-infrared cortical imaging (fNCI) technique. Here we demonstrate the first direct functional measurement of temporal and spatial patterns of cortical hemodynamics using the fNCI technique. For fNCI, inter-optode distance was set at 5mm, and light leakage from illuminators was prevented by a special optode holder made of a light-shielding rubber sheet. fNCI successfully detected the somatotopy of pig nostril sensation, as assessed in comparison with concurrent and sequential somatosensory-evoked potential (SEP) measurements on the same stimulation sites. Accordingly, the fNCI system realized a direct cortical hemodynamic measurement with a spatial resolution comparable to that of SEP mapping on the rostral region of the pig brain. This study provides an important initial step toward realizing functional cortical hemodynamic monitoring during neurosurgery of human brains. Copyright © 2014. Published by Elsevier Inc.

  3. Estimation of equivalent dose on the ends of hemodynamic physicians during neurological procedures

    International Nuclear Information System (INIS)

    Squair, Peterson L.; Souza, Luiz C. de; Oliveira, Paulo Marcio C. de

    2005-01-01

    The estimation of doses in the hands of physicists during hemodynamic procedures is important to verify the application of radiation protection related to the optimization and limit of dose, principles required by the Portaria 453/98 of Ministry of Health/ANVISA, Brazil. It was checked the levels of exposure of the hands of doctors during the use of the equipment in hemodynamic neurological procedures through dosimetric rings with thermoluminescent dosemeters detectors of LiF: Mg, Ti (TLD-100), calibrated in personal Dose equivalent HP (0.07). The average equivalent dose in the end obtained was 41.12. μSv per scan with an expanded uncertainty of 20% for k = 2. This value is relative to the hemodynamic Neurology procedure using radiological protection procedures accessible to minimize the dose

  4. Hemodynamic disturbances in cerebral ischemia; Correlation between positron emission tomographic and angiographic findings

    Energy Technology Data Exchange (ETDEWEB)

    Tenjin, Hiroshi; Ueda, Satoshi; Mizukawa, Norihiko; Imahori, Yoshio; Hino, Akihiko; Ohmori, Yoshio [Kyoto Prefectural Univ. of Medicine (Japan); Nakahashi, Hisamitsu

    1993-04-01

    Proper treatment of ischemic stroke requires better understanding of cerebral hemodynamic changes. The hemodynamic changes associated with ischemia were measured using positron emission tomography and related to angiographic findings in the subacute and chronic stages of 17 ischemia patients who showed symptoms of main trunk stenosis of the internal carotid artery system. The hemodynamic factors, cerebral blood flow, cerebral blood volume, cerebral metabolic rate for oxygen, oxygen extraction fraction, and flow/volume ratio, were measured in regions of interest determined from the angiographic stenosis (over 50%) and compared in each stage. The cerebral blood flow and flow/volume ratio in the territory downstream of the main trunk stenosis and cerebral metabolic rate for oxygen in the whole cortex were decreased in the subacute stage. In the chronic stage, cerebral blood flow and flow/volume ratio decreased mainly in borderzone areas. (author).

  5. Circadian monitoring of ECG findings and central hemodynamics in cancer patients at radiotherapy planning

    International Nuclear Information System (INIS)

    Tolkachov, Yu.A.; Vasil'jev, L.Ya.; Svinarenko, A.V.

    2003-01-01

    Fifty-seven patients aged 34-67 were examined. Considerable circadian fluctuations of main hemodynamic and ECG parameters, which can suggest disorders of circadian rhythms or limit chemoradiotherapy were not noticed in different cancers. Functional criteria of biorhythm state require further investigation

  6. Venous hemodynamic changes in lower limb venous disease

    DEFF Research Database (Denmark)

    Lee, Byung Boong; Nicolaides, Andrew N; Myers, Kenneth

    2016-01-01

    ). Their aim was to confirm or dispel long-held hemodynamic principles and to provide a comprehensive review of venous hemodynamic concepts underlying the pathophysiology of lower limb venous disorders, their usefulness for investigating patients and the relevant hemodynamic changes associated with various...... forms of treatment. Chapter 1 is devoted to basic hemodynamic concepts and normal venous physiology. Chapter 2 presents the mechanism and magnitude of hemodynamic changes in acute deep vein thrombosis indicating their pathophysiological and clinical significance. Chapter 3 describes the hemodynamic...... changes that occur in different classes of chronic venous disease and their relation to the anatomic extent of disease in the macrocirculation and microcirculation. The next four chapters (Chapters 4-7) describe the hemodynamic changes resulting from treatment by compression using different materials...

  7. Assessment of Cerebral Hemodynamics in Traumatic Brain Injury

    National Research Council Canada - National Science Library

    Latka, M; Turalska, M; West, B. J; Kolodziej, W; Latka, D

    2006-01-01

    ... (Glasgow Outcome Scale GOS =1) the average gain = 0.45 calculated at f=0.05 Hz significantly exceeds that of 17 patients with GOS=2: wavelet gain = 0.24 with p = 4 10 (exp -5) (Kruskal-Wallis test...

  8. Assessment of pedophilia using hemodynamic brain response to sexual stimuli

    DEFF Research Database (Denmark)

    Ponseti, Jorge; Granert, Oliver; Jansen, Olav

    2012-01-01

    Accurately assessing sexual preference is important in the treatment of child sex offenders. Phallometry is the standard method to identify sexual preference; however, this measure has been criticized for its intrusiveness and limited reliability.......Accurately assessing sexual preference is important in the treatment of child sex offenders. Phallometry is the standard method to identify sexual preference; however, this measure has been criticized for its intrusiveness and limited reliability....

  9. Assessment of Cerebral Hemodynamics in Traumatic Brain Injury

    National Research Council Canada - National Science Library

    Latka, M; Turalska, M; West, B. J; Kolodziej, W; Latka, D

    2006-01-01

    We employ complex continuous wavelet transforms to develop a consistent mathematical framework capable of quantifying both cerebrospinal compensatory reserve and cerebrovascular pressure reactivity...

  10. Central hemodynamic responses during serial exercise tests in heart failure patients using implantable hemodynamic monitors.

    Science.gov (United States)

    Ohlsson, A; Steinhaus, D; Kjellström, B; Ryden, L; Bennett, T

    2003-06-01

    Exercise testing is commonly used in patients with congestive heart failure for diagnostic and prognostic purposes. Such testing may be even more valuable if invasive hemodynamics are acquired. However, this will make the test more complex and expensive and only provides information from isolated moments. We studied serial exercise tests in heart failure patients with implanted hemodynamic monitors allowing recording of central hemodynamics. Twenty-one NYHA Class II-III heart failure patients underwent maximal exercise tests and submaximal bike or 6-min hall walk tests to quantify their hemodynamic responses and to study the feasibility of conducting exercise tests in patients with such devices. Patients were followed for 2-3 years with serial exercise tests. During maximal tests (n=70), heart rate increased by 52+/-19 bpm while S(v)O(2) decreased by 35+/-10% saturation units. RV systolic and diastolic pressure increased 29+/-11 and 11+/-6 mmHg, respectively, while pulmonary artery diastolic pressure increased 21+/-8 mmHg. Submaximal bike (n=196) and hall walk tests (n=172) resulted in S(v)O(2) changes of 80 and 91% of the maximal tests, while RV pressures ranged from 72 to 79% of maximal responses. An added potential value of implantable hemodynamic monitors in heart failure patients may be to quantitatively determine the true hemodynamic profile during standard non-invasive clinical exercise tests and to compare that to hemodynamic effects of regular exercise during daily living. It would be of interest to study whether such information could improve the ability to predict changes in a patient's clinical condition and to improve tailoring patient management.

  11. Photoacoustic microscopy of cerebral hemodynamic and oxygen-metabolic responses to anesthetics

    Science.gov (United States)

    Cao, Rui; Li, Jun; Ning, Bo; Sun, Naidi; Wang, Tianxiong; Zuo, Zhiyi; Hu, Song

    2017-02-01

    General anesthetics are known to have profound effects on cerebral hemodynamics and neuronal activities. However, it remains a challenge to directly assess anesthetics-induced hemodynamic and oxygen-metabolic changes from the true baseline under wakefulness at the microscopic level, due to the lack of an enabling technology for high-resolution functional imaging of the awake mouse brain. To address this challenge, we have developed head-restrained photoacoustic microscopy (PAM), which enables simultaneous imaging of the cerebrovascular anatomy, total concentration and oxygen saturation of hemoglobin (CHb and sO2), and blood flow in awake mice. From these hemodynamic measurements, two important metabolic parameters, oxygen extraction fraction (OEF) and the cerebral metabolic rate of oxygen (CMRO2), can be derived. Side-by-side comparison of the mouse brain under wakefulness and anesthesia revealed multifaceted cerebral responses to isoflurane, a volatile anesthetic widely used in preclinical research and clinical practice. Key observations include elevated cerebral blood flow (CBF) and reduced oxygen extraction and metabolism.

  12. Hemodynamic monitoring in the critically ill.

    Science.gov (United States)

    Voga, G

    1995-06-01

    Monitoring of vital functions is one of the most important and essential tools in the management of critically ill patients in the ICU. Today it is possible to detect and analyze a great variety of physiological signals by various noninvasive and invasive techniques. An intensivist should be able to select and perform the most appropriate monitoring method for the individual patient considering risk-benefit ratio of the particular monitoring technique and the need for immediate therapy, specific diagnosis, continuous monitoring and evaluation of morphology should be included. Despite rapid development of noninvasive monitoring techniques, invasive hemodynamic monitoring in still one of the most basic ICU procedures. It enables monitoring of pressures, flow and saturation, pressures in the systemic and pulmonary circulation, estimation of cardiac performance and judgment of the adequacy of the cardiocirculatory system. Carefully and correctly obtained information are basis for proper hemodynamic assessment which usually effects the therapeutic decisions.

  13. Biology and hemodynamics of aneurismal vasculopathies

    International Nuclear Information System (INIS)

    Pereira, Vitor Mendes; Brina, Olivier; Gonzalez, Ana Marcos; Narata, Ana Paula; Ouared, Rafik; Karl-Olof, Lovblad

    2013-01-01

    Aneurysm vasculopathies represents a group of vascular disorders that share a common morphological diagnosis: a vascular dilation, the aneurysm. They can have a same etiology and a different clinical presentation or morphology, or have different etiology and very similar anatomical geometry. The biology of the aneurysm formation is a complex process that will be a result of an endogenous predisposition and epigenetic factors later on including the intracranial hemodynamics. We describe the biology of saccular aneurysms, its growth and rupture, as well as, current concepts of hemodynamics derived from application of computational flow dynamics on patient specific vascular models. Furthermore, we describe different aneurysm phenotypes and its extremely variability on morphological and etiological presentation

  14. Hemodynamic significance of internal carotid artery disease

    DEFF Research Database (Denmark)

    Schroeder, T

    1988-01-01

    Neurologic symptoms in the region of an internal carotid artery stenosis are considered to be embolic in most instances. Only in a subgroup has carotid occlusive disease with impairment of the collateral supply, caused a state of hemodynamic failure with marked reduction of perfusion pressure...... stenosis. This is considered a result of chronic low perfusion pressure with subsequent loss of autoregulation, and autoregulatory control is first regained after some days.(ABSTRACT TRUNCATED AT 400 WORDS)...

  15. HEMODYNAMIC EFFECTS OF XENON ANESTHESIA IN CHILDREN

    Directory of Open Access Journals (Sweden)

    M. V. Bykov

    2014-01-01

    Full Text Available The study was aimed at hemodynamic effects of xenon on operative interventions in children. Patients and methods: the study involved 30 5-17-year-old children – 10 (33.3% girls and 20 (66.7% boys with ASA score 1-3 admitted for surgical treatment. The children underwent endotracheal anesthesia with xenon-oxygen mixture (Xe:O2 = 60-65:30% and fentanyl (2.5‑3.5  mcg/kg per hour for the following operations: appendectomy – 10 (33.3% patients, herniotomy – 8 (26.7% patients, Ivanissevich procedure – 6 (20.0% patients, plastic surgery of posttraumatic defects of skin and soft tissues – 4 (13.3% patients, abdominal adhesiotomy – 2 (6.7% patients. Central hemodynamics was studied echocardiographically (Philips HD 11, the Netherlands using the Teichholz technique along the cephalocaudal axis (parasternal access. Results: the anesthesia was notable for hemodynamic stability during the operation: as a result, a statistically significant (p < 0.05 increase in systolic, diastolic and mean arterial pressure by 10, 18 and 17%, respectively, was observed. Conclusion: the analysis demonstrated that xenon anesthesia improves lusitropic myocardial function statistically significantly increasing cardiac output by 12% by way of increasing stroke volume by 30%. 

  16. A Novel Technique for Identifying Patients with ICU Needs Using Hemodynamic Features

    Directory of Open Access Journals (Sweden)

    A. Jalali

    2012-01-01

    Full Text Available Identification of patients requiring intensive care is a critical issue in clinical treatment. The objective of this study is to develop a novel methodology using hemodynamic features for distinguishing such patients requiring intensive care from a group of healthy subjects. In this study, based on the hemodynamic features, subjects are divided into three groups: healthy, risky and patient. For each of the healthy and patient subjects, the evaluated features are based on the analysis of existing differences between hemodynamic variables: Blood Pressure and Heart Rate. Further, four criteria from the hemodynamic variables are introduced: circle criterion, estimation error criterion, Poincare plot deviation, and autonomic response delay criterion. For each of these criteria, three fuzzy membership functions are defined to distinguish patients from healthy subjects. Furthermore, based on the evaluated criteria, a scoring method is developed. In this scoring method membership degree of each subject is evaluated for the three classifying groups. Then, for each subject, the cumulative sum of membership degree of all four criteria is calculated. Finally, a given subject is classified with the group which has the largest cumulative sum. In summary, the scoring method results in 86% sensitivity, 94.8% positive predictive accuracy and 82.2% total accuracy.

  17. Prolonged hemodynamic response during incidental facial emotion processing in inter-episode bipolar I disorder.

    Science.gov (United States)

    Rosenfeld, Ethan S; Pearlson, Godfrey D; Sweeney, John A; Tamminga, Carol A; Keshavan, Matcheri S; Nonterah, Camilla; Stevens, Michael C

    2014-03-01

    This fMRI study examined whether hemodynamic responses to affectively-salient stimuli were abnormally prolonged in remitted bipolar disorder, possibly representing a novel illness biomarker. A group of 18 DSM-IV bipolar I-diagnosed adults in remission and a demographically-matched control group performed an event-related fMRI gender-discrimination task in which face stimuli had task-irrelevant neutral, happy or angry expressions designed to elicit incidental emotional processing. Participants' brain activation was modeled using a "fully informed" SPM5 basis set. Mixed-model ANOVA tested for diagnostic group differences in BOLD response amplitude and shape within brain regions-of-interest selected from ALE meta-analysis of previous comparable fMRI studies. Bipolar-diagnosed patients had a generally longer duration and/or later-peaking hemodynamic response in amygdala and numerous prefrontal cortex brain regions. Data are consistent with existing models of bipolar limbic hyperactivity, but the prolonged frontolimbic response more precisely details abnormalities recognized in previous studies. Prolonged hemodynamic responses were unrelated to stimulus type, task performance, or degree of residual mood symptoms, suggesting an important novel trait vulnerability brain dysfunction in bipolar disorder. Bipolar patients also failed to engage pregenual cingulate and left orbitofrontal cortex-regions important to models of automatic emotion regulation-while engaging a delayed dorsolateral prefrontal cortex response not seen in controls. These results raise questions about whether there are meaningful relationships between bipolar dysfunction of specific ventromedial prefrontal cortex regions believed to automatically regulate emotional reactions and the prolonged responses in more lateral aspects of prefrontal cortex.

  18. The Ly6 protein coiled is required for septate junction and blood brain barrier organisation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Assia Hijazi

    Full Text Available BACKGROUND: Genetic analysis of the Drosophila septate junctions has greatly contributed to our understanding of the mechanisms controlling the assembly of these adhesion structures, which bear strong similarities with the vertebrate tight junctions and the paranodal septate junctions. These adhesion complexes share conserved molecular components and have a common function: the formation of paracellular barriers restraining the diffusion of solutes through epithelial and glial envelopes. METHODOLOGY/PRINCIPAL FINDINGS: In this work we characterise the function of the Drosophila cold gene, that codes for a protein belonging to the Ly6 superfamily of extracellular ligands. Analysis of cold mutants shows that this gene is specifically required for the organisation of the septate junctions in epithelial tissues and in the nervous system, where its contribution is essential for the maintenance of the blood-brain barrier. We show that cold acts in a cell autonomous way, and we present evidence indicating that this protein could act as a septate junction component. CONCLUSION/SIGNIFICANCE: We discuss the specific roles of cold and three other Drosophila members of the Ly6 superfamily that have been shown to participate in a non-redundant way in the process of septate junction assembly. We propose that vertebrate Ly6 proteins could fulfill analogous roles in tight junctions and/or paranodal septate junctions.

  19. The Ly6 protein coiled is required for septate junction and blood brain barrier organisation in Drosophila.

    Science.gov (United States)

    Hijazi, Assia; Haenlin, Marc; Waltzer, Lucas; Roch, Fernando

    2011-03-15

    Genetic analysis of the Drosophila septate junctions has greatly contributed to our understanding of the mechanisms controlling the assembly of these adhesion structures, which bear strong similarities with the vertebrate tight junctions and the paranodal septate junctions. These adhesion complexes share conserved molecular components and have a common function: the formation of paracellular barriers restraining the diffusion of solutes through epithelial and glial envelopes. In this work we characterise the function of the Drosophila cold gene, that codes for a protein belonging to the Ly6 superfamily of extracellular ligands. Analysis of cold mutants shows that this gene is specifically required for the organisation of the septate junctions in epithelial tissues and in the nervous system, where its contribution is essential for the maintenance of the blood-brain barrier. We show that cold acts in a cell autonomous way, and we present evidence indicating that this protein could act as a septate junction component. We discuss the specific roles of cold and three other Drosophila members of the Ly6 superfamily that have been shown to participate in a non-redundant way in the process of septate junction assembly. We propose that vertebrate Ly6 proteins could fulfill analogous roles in tight junctions and/or paranodal septate junctions.

  20. Steroid modulation of the chloride ionophore in rat brain: structure-activity requirements, regional dependence and mechanism of action

    Energy Technology Data Exchange (ETDEWEB)

    Gee, K.W.; Bolger, M.B.; Brinton, R.E.; Coirini, H.; McEwen, B.S.

    1988-08-01

    Further in vitro studies of steroids active at the gamma-aminobutyric acidA (GABAA) receptor regulated Cl- channel labeled by (35S)-t-butylbicyclophosphorothionate ((35S)TBPS) reveal additional structural requirements necessary for activity. Evaluation of selected steroids for activity against TBPS-induced convulsions show similar requirements for activity. Interestingly, steroids (e.g., 5 alpha-pregnan-3 alpha, 20 alpha-diol) were identified that have high potency but limited efficacy as modulators of (35S)TBPS binding. These characteristics are reminiscent of the clinically useful benzodiazepines (BZs) such as clonazepam. However, interactions between the prototypical anesthetic-barbiturate, sodium pentobarbital, and steroids active at the Cl- channel suggest that they do not share a common site of action as allosteric modulators of (35S)TBPS and BZ receptor binding. The most potent steroid evaluated, 5 alpha-pregnan-3 alpha-ol-20-one, modulates (35S)TBPS binding at low concentrations (IC50 approximately 17 nM) in a regionally dependent manner. All (35S)TBPS binding sites appear to be functionally coupled to a steroid modulatory site. Because several of the active steroids are metabolites of progesterone, their ability to inhibit the binding of (3H)promegestrone to the cytosolic progestin receptor in rat uterus was evaluated. Those steroids showing potent activity at the GABAA receptor-Cl- ionophore were inactive at the intracellular progestin receptor. Such specificity coupled with their high potency provide additional support for the hypothesis that some of these steroids may be involved in the homeostatic regulation of brain excitability via the GABAA-BZ receptor complex.

  1. Occupational exposure in hemodynamic; Exposicao ocupacional em hemodinamica

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Amanda J.; Fernandes, Ivani M.; Silva, Paula P. Nou; Sordi, Gian Maria A.A.; Carneiro, Janete C.G.G., E-mail: ajsilva@ipen.b, E-mail: imfernandes@ipen.b, E-mail: ppsilva@ipen.b, E-mail: gmsordi@ipen.b, E-mail: janetegc@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-10-26

    This paper has an objective to perform a radiometric survey at a hemodynamic service. Besides, it was intended to evaluate the effective dose of health professionals and to provide data which can contribute with minimization of exposures during the realization of hemodynamic procedure. The radiometric survey was realized in the real environment of work simulating the conditions of a hemodynamic study with a ionization chamber

  2. Efficient hemodynamic event detection utilizing relational databases and wavelet analysis

    Science.gov (United States)

    Saeed, M.; Mark, R. G.

    2001-01-01

    Development of a temporal query framework for time-oriented medical databases has hitherto been a challenging problem. We describe a novel method for the detection of hemodynamic events in multiparameter trends utilizing wavelet coefficients in a MySQL relational database. Storage of the wavelet coefficients allowed for a compact representation of the trends, and provided robust descriptors for the dynamics of the parameter time series. A data model was developed to allow for simplified queries along several dimensions and time scales. Of particular importance, the data model and wavelet framework allowed for queries to be processed with minimal table-join operations. A web-based search engine was developed to allow for user-defined queries. Typical queries required between 0.01 and 0.02 seconds, with at least two orders of magnitude improvement in speed over conventional queries. This powerful and innovative structure will facilitate research on large-scale time-oriented medical databases.

  3. Central and peripheral hemodynamics in exercising humans

    DEFF Research Database (Denmark)

    Calbet, J A L; González-Alonso, J; Helge, J W

    2015-01-01

    In humans, arm exercise is known to elicit larger increases in arterial blood pressure (BP) than leg exercise. However, the precise regulation of regional vascular conductances (VC) for the distribution of cardiac output with exercise intensity remains unknown. Hemodynamic responses were assessed...... perfusion pressure to increase O2 delivery, allowing a similar peak VO2 per kg of muscle mass in both extremities. In summary, despite a lower Qpeak during arm cranking the cardiovascular strain is much higher than during leg pedalling. The adjustments of regional conductances during incremental exercise...... to exhaustion depend mostly on the relative intensity of exercise and are limb-specific....

  4. Pain and hemodynamic effects in aortofemoral angiography

    International Nuclear Information System (INIS)

    Nyman, U.; Nilsson, P.; Westergren, A.

    1982-01-01

    Two new contrast media, iohexol (non-ionic monomer) and ioxaglate (monoacidic dimer), were compared with the non-ionic metrizamide during aortofemoral angiography in a single blind randomized trial in 2 groups of patients with 20 in each. The degree of heat and pain produced by iohexol and ioxaglate did not differ significantly from that produced by metrizamide, while subsequent injections of metrizoate caused significantly more heat and pain. The hemodynamic effects recorded in 10 patients in each group showed that iohexol and ioxaglate induced a decrease in vascular resistance, decrease in blood pressure and increase in heart rate not differing significantly from that induced by metrizamide. (Auth.)

  5. The estimation of hemodynamic signals measured by fNIRS response to cold pressor test

    Science.gov (United States)

    Ansari, M. A.; Fazliazar, E.

    2018-04-01

    The estimation of cerebral hemodynamic signals has an important role for monitoring the stage of neurological diseases. Functional Near-Infrared Spectroscopy (fNIRS) can be used for monitoring of brain activities. fNIRS utilizes light in the near-infrared spectrum (650-1000 nm) to study the response of the brain vasculature to the changes in neural activities, called neurovascular coupling, within the cortex when cognitive activation occurs. The neurovascular coupling may be disrupted in the brain pathological condition. Therefore, we can also use fNIRS to diagnosis brain pathological conditions or to monitor the efficacy of related treatments. The Cold pressor test (CPT), followed by immersion of dominant hand or foot in the ice water, can induce cortical activities. The perception of pain induced by CPT can be related to cortical neurovascular coupling. Hence, the variation of cortical hemodynamic signals during CPT can be an indicator for studying neurovascular coupling. Here, we study the effect of pain induced by CPT on the temporal variation of concentration of oxyhemoglobin [HbO2] and deoxyhemoglobin [Hb] in the healthy brains. We use fNIRS data collected on forehead during a CPT from 11 healthy subjects, and the average data are compared with post-stimulus pain rating scores. The results show that the variation of [Hb] and [HbO2] are positively correlated with self-reported scores during the CPT. These results depict that fNIRS can be potentially applied to study the decoupling of neurovascular process in brain pathological conditions.

  6. Patient-Specific Modeling of Intraventricular Hemodynamics

    Science.gov (United States)

    Vedula, Vijay; Marsden, Alison

    2017-11-01

    Heart disease is the one of the leading causes of death in the world. Apart from malfunctions in electrophysiology and myocardial mechanics, abnormal hemodynamics is a major factor attributed to heart disease across all ages. Computer simulations offer an efficient means to accurately reproduce in vivo flow conditions and also make predictions of post-operative outcomes and disease progression. We present an experimentally validated computational framework for performing patient-specific modeling of intraventricular hemodynamics. Our modeling framework employs the SimVascular open source software to build an anatomic model and employs robust image registration methods to extract ventricular motion from the image data. We then employ a stabilized finite element solver to simulate blood flow in the ventricles, solving the Navier-Stokes equations in arbitrary Lagrangian-Eulerian (ALE) coordinates by prescribing the wall motion extracted during registration. We model the fluid-structure interaction effects of the cardiac valves using an immersed boundary method and discuss the potential application of this methodology in single ventricle physiology and trans-catheter aortic valve replacement (TAVR). This research is supported in part by the Stanford Child Health Research Institute and the Stanford NIH-NCATS-CTSA through Grant UL1 TR001085 and partly through NIH NHLBI R01 Grant 5R01HL129727-02.

  7. Hemodynamic Simulations in Dialysis Access Fistulae

    Science.gov (United States)

    McGah, Patrick; Leotta, Daniel; Beach, Kirk; Riley, James; Aliseda, Alberto

    2010-11-01

    Arteriovenous fistulae are created surgically to provide adequate access for dialysis in patients with End-Stage Renal Disease. It has long been hypothesized that the hemodynamic and mechanical forces (such as wall shear stress, wall stretch, or flow- induced wall vibrations) constitute the primary external influence on the remodeling process. Given that nearly 50% of fistulae fail after one year, understanding fistulae hemodynamics is an important step toward improving patency in the clinic. We perform numerical simulations of the flow in patient-specific models of AV fistulae reconstructed from 3D ultrasound scans with physiologically-realistic boundary conditions also obtained from Doppler ultrasound. Comparison of the flow features in different geometries and configurations e.g. end-to-side vs. side-to-side, with the in vivo longitudinal outcomes will allow us to hypothesize which flow conditions are conducive to fistulae success or failure. The flow inertia and pulsatility in the simulations (mean Re 700, max Re 2000, Wo 4) give rise to complex secondary flows and coherent vortices, further complicating the spatio- temporal variability of the wall pressure and shear stresses. Even in mature fistulae, the anastomotic regions are subjected to non-physiological shear stresses (>10.12pcPa) which may potentially lead to complications.

  8. Review: hemodynamic response to carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Penney, D.G.

    1988-04-01

    Historically, and at present, carbon monoxide is a major gaseous poison responsible for widespread morbidity and mortality. From threshold to maximal nonlethal levels, a variety of cardiovascular changes occur, both immediately and in the long term, whose homeostatic function it is to renormalize tissue oxygen delivery. However, notwithstanding numerous studies over the past century, the literature remains equivocal regarding the hemodynamic responses in animals and humans, although CO hypoxia is clearly different in several respects from hypoxic hypoxia. Factors complicating interpretation of experimental findings include species, CO dose level and rate, route of CO delivery, duration, level of exertion, state of consciousness, and anesthetic agent used. Augmented cardiac output usually observed with moderate COHb may be compromised in more sever poisoning for the same reasons, such that regional or global ischemia result. The hypotension usually seen in most animal studies is thought to be a primary cause of CNS damage resulting from acute CO poisoning, yet the exact mechanism(s) remains unproven in both animals and humans, as does the way in which CO produces hypotension. This review briefly summarizes the literature relevant to the short- and long-term hemodynamic responses reported in animals and humans. It concludes by presenting an overview using data from a single species in which the most complete work has been done to date.

  9. Oxytocin modulates hemodynamic responses to monetary incentives in humans

    Science.gov (United States)

    Mickey, Brian J.; Heffernan, Joseph; Heisel, Curtis; Peciña, Marta; Hsu, David T.; Zubieta, Jon-Kar; Love, Tiffany M.

    2016-01-01

    Oxytocin is a neuropeptide widely recognized for its role in regulating social and reproductive behavior. Increasing evidence from animal models suggests that oxytocin also modulates reward circuitry in non-social contexts, but evidence in humans is lacking. Here we examined the effects of oxytocin administration on reward circuit function in 18 healthy men as they performed a monetary incentive task. The blood oxygenation level dependent (BOLD) signal was measured using functional magnetic resonance imaging in the context of a randomized, double-blind, placebo-controlled, crossover trial of intranasal oxytocin. We found that oxytocin increases the BOLD signal in the midbrain (substantia nigra and ventral tegmental area) during the late phase of the hemodynamic response to incentive stimuli. Oxytocin’s effects on midbrain responses correlated positively with its effects on positive emotional state. We did not detect an effect of oxytocin on responses in the nucleus accumbens. Whole-brain analyses revealed that oxytocin attenuated medial prefrontal cortical deactivation specifically during anticipation of loss. Our findings demonstrate that intranasal administration of oxytocin modulates human midbrain and medial prefrontal function during motivated behavior. These findings suggest that endogenous oxytocin is a neurochemical mediator of reward behaviors in humans – even in a non-social context – and that the oxytocinergic system is a potential target of pharmacotherapy for psychiatric disorders that involve dysfunction of reward circuitry. PMID:27614896

  10. Oxytocin modulates hemodynamic responses to monetary incentives in humans.

    Science.gov (United States)

    Mickey, Brian J; Heffernan, Joseph; Heisel, Curtis; Peciña, Marta; Hsu, David T; Zubieta, Jon-Kar; Love, Tiffany M

    2016-12-01

    Oxytocin is a neuropeptide widely recognized for its role in regulating social and reproductive behavior. Increasing evidence from animal models suggests that oxytocin also modulates reward circuitry in non-social contexts, but evidence in humans is lacking. We examined the effects of oxytocin administration on reward circuit function in 18 healthy men as they performed a monetary incentive task. The blood oxygenation level-dependent (BOLD) signal was measured using functional magnetic resonance imaging in the context of a randomized, double-blind, placebo-controlled, crossover trial of intranasal oxytocin. We found that oxytocin increases the BOLD signal in the midbrain (substantia nigra and ventral tegmental area) during the late phase of the hemodynamic response to incentive stimuli. Oxytocin's effects on midbrain responses correlated positively with its effects on positive emotional state. We did not detect an effect of oxytocin on responses in the nucleus accumbens. Whole-brain analyses revealed that oxytocin attenuated medial prefrontal cortical deactivation specifically during anticipation of loss. Our findings demonstrate that intranasal administration of oxytocin modulates human midbrain and medial prefrontal function during motivated behavior. These findings suggest that endogenous oxytocin is a neurochemical mediator of reward behaviors in humans-even in a non-social context-and that the oxytocinergic system is a potential target of pharmacotherapy for psychiatric disorders that involve dysfunction of reward circuitry.

  11. [Some electrophysiological and hemodynamic characteristics of auditory selective attention in norm and schizophrenia].

    Science.gov (United States)

    Lebedeva, I S; Akhadov, T A; Petriaĭkin, A V; Kaleda, V G; Barkhatova, A N; Golubev, S A; Rumiantseva, E E; Vdovenko, A M; Fufaeva, E A; Semenova, N A

    2011-01-01

    Six patients in the state of remission after the first episode ofjuvenile schizophrenia and seven sex- and age-matched mentally healthy subjects were examined by fMRI and ERP methods. The auditory oddball paradigm was applied. Differences in P300 parameters didn't reach the level of significance, however, a significantly higher hemodynamic response to target stimuli was found in patients bilaterally in the supramarginal gyrus and in the right medial frontal gyrus, which points to pathology of these brain areas in supporting of auditory selective attention.

  12. New approach to intracardiac hemodynamic measurements in small animals

    DEFF Research Database (Denmark)

    Eskesen, Kristian; Olsen, Niels T; Dimaano, Veronica L

    2012-01-01

    Invasive measurements of intracardiac hemodynamics in animal models have allowed important advances in the understanding of cardiac disease. Currently they are performed either through a carotid arteriotomy or via a thoracotomy and apical insertion. Both of these techniques have disadvantages...... and are not conducive to repeated measurements. Therefore, the purpose of this study was to develop a new technique for measuring intracardiac hemodynamics....

  13. Invasive hemodynamic characterization of heart failure with preserved ejection fraction

    DEFF Research Database (Denmark)

    Andersen, Mads Jønsson; Borlaug, Barry A

    2014-01-01

    Recent hemodynamic studies have advanced our understanding of heart failure with preserved ejection fraction (HFpEF). Despite improved pathophysiologic insight, clinical trials have failed to identify an effective treatment for HFpEF. Invasive hemodynamic assessment can diagnose or exclude HFp...

  14. Mechanisms controlling renal hemodynamics and electrolyte excretion during amino acids

    International Nuclear Information System (INIS)

    Woods, L.L.; Mizelle, H.L.; Montani, J.P.; Hall, J.E.

    1986-01-01

    Our purpose was to investigate the mechanisms by which increased plasma amino acids elevate renal blood flow (RBF) and glomerular filtration rate (GFR). Since transport of amino acids and Na + is linked in the proximal tubule, the authors hypothesized that increased amino acids might stimulate proximal tubular Na + reabsorption (PR/sub Na/) and thus increase RBF and GFR by a macula densa feedback mechanism. A solution of four amino acids (Ala, Ser, Gly, Pro) was infused intravenously into anesthetized dogs with normal kidneys (NK) and with kidneys in which the tubuloglomerular feedback mechanism was blunted by lowering renal artery pressure (LPK) or blocked by making the kidneys nonfiltering (NFK). In NK, RBF and GFR increased by 35 +/- 4% and 30 +/- 7% after 90 min of amino acid infusion, while PR/sub Na/ (estimated from lithium clearance) and O 2 consumption increased by 31 +/- 5% and 29 +/- 5% and distal Na + delivery remained relatively constant. Autoregulation of RBF and GFR in response to step deceases in renal artery pressure was impaired during amino acids in NK. The hemodynamic responses to amino acids were abolished in LPK and NFK. Infusion of the nonmetabolized α-aminoisobutyric acid into NK produced changes in renal hemodynamics that were similar to the responses observed with the four metabolizable amino acids. These data are consistent with the hypothesis that elevation of plasma amino acids increases RBF and GFR by a mechanism that requires an intact macula densa feedback. Metabolism of the amino acids does not appear to be necessary for these changes to occur

  15. Mechanisms controlling renal hemodynamics and electrolyte excretion during amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Woods, L.L.; Mizelle, H.L.; Montani, J.P.; Hall, J.E.

    1986-08-01

    Our purpose was to investigate the mechanisms by which increased plasma amino acids elevate renal blood flow (RBF) and glomerular filtration rate (GFR). Since transport of amino acids and Na is linked in the proximal tubule, the authors hypothesized that increased amino acids might stimulate proximal tubular Na reabsorption (PR/sub Na/) and thus increase RBF and GFR by a macula densa feedback mechanism. A solution of four amino acids (Ala, Ser, Gly, Pro) was infused intravenously into anesthetized dogs with normal kidneys (NK) and with kidneys in which the tubuloglomerular feedback mechanism was blunted by lowering renal artery pressure (LPK) or blocked by making the kidneys nonfiltering (NFK). In NK, RBF and GFR increased by 35 +/- 4% and 30 +/- 7% after 90 min of amino acid infusion, while PR/sub Na/ (estimated from lithium clearance) and O2 consumption increased by 31 +/- 5% and 29 +/- 5% and distal Na delivery remained relatively constant. Autoregulation of RBF and GFR in response to step deceases in renal artery pressure was impaired during amino acids in NK. The hemodynamic responses to amino acids were abolished in LPK and NFK. Infusion of the nonmetabolized -aminoisobutyric acid into NK produced changes in renal hemodynamics that were similar to the responses observed with the four metabolizable amino acids. These data are consistent with the hypothesis that elevation of plasma amino acids increases RBF and GFR by a mechanism that requires an intact macula densa feedback. Metabolism of the amino acids does not appear to be necessary for these changes to occur.

  16. Functional Connectivity of Resting Hemodynamic Signals in Submillimeter Orientation Columns of the Visual Cortex.

    Science.gov (United States)

    Vasireddi, Anil K; Vazquez, Alberto L; Whitney, David E; Fukuda, Mitsuhiro; Kim, Seong-Gi

    2016-09-07

    Resting-state functional magnetic resonance imaging has been increasingly used for examining connectivity across brain regions. The spatial scale by which hemodynamic imaging can resolve functional connections at rest remains unknown. To examine this issue, deoxyhemoglobin-weighted intrinsic optical imaging data were acquired from the visual cortex of lightly anesthetized ferrets. The neural activity of orientation domains, which span a distance of 0.7-0.8 mm, has been shown to be correlated during evoked activity and at rest. We performed separate analyses to assess the degree to which the spatial and temporal characteristics of spontaneous hemodynamic signals depend on the known functional organization of orientation columns. As a control, artificial orientation column maps were generated. Spatially, resting hemodynamic patterns showed a higher spatial resemblance to iso-orientation maps than artificially generated maps. Temporally, a correlation analysis was used to establish whether iso-orientation domains are more correlated than orthogonal orientation domains. After accounting for a significant decrease in correlation as a function of distance, a small but significant temporal correlation between iso-orientation domains was found, which decreased with increasing difference in orientation preference. This dependence was abolished when using artificially synthetized orientation maps. Finally, the temporal correlation coefficient as a function of orientation difference at rest showed a correspondence with that calculated during visual stimulation suggesting that the strength of resting connectivity is related to the strength of the visual stimulation response. Our results suggest that temporal coherence of hemodynamic signals measured by optical imaging of intrinsic signals exists at a submillimeter columnar scale in resting state.

  17. Improving Perioperative Outcomes Through Minimally Invasive and Non-invasive Hemodynamic Monitoring Techniques

    Directory of Open Access Journals (Sweden)

    Takashige Yamada

    2018-05-01

    Full Text Available An increasing number of patients require precise intraoperative hemodynamic monitoring due to aging and comorbidities. To prevent undesirable outcomes from intraoperative hypotension or hypoperfusion, appropriate threshold settings are required. These setting can vary widely from patient to patient. Goal-directed therapy techniques allow for flow monitoring as the standard for perioperative fluid management. Based on the concept of personalized medicine, individual assessment and treatment are more advantageous than conventional or uniform interventions. The recent development of minimally and noninvasive monitoring devices make it possible to apply detailed control, tracking, and observation of broad patient populations, all while reducing adverse complications. In this manuscript, we review the monitoring features of each device, together with possible advantages and disadvantages of their use in optimizing patient hemodynamic management.

  18. Brain and muscle oxygenation monitoring using near-infrared spectroscopy (NIRS) during all-night sleep

    Science.gov (United States)

    Zhang, Zhongxing; Khatami, Ramin

    2013-03-01

    The hemodynamic changes during natural human sleep are still not well understood. NIRS is ideally suited for monitoring the hemodynamic changes during sleep due to the properties of local measurement, totally safe application and good tolerance to motion. Several studies have been conducted using NIRS in both normal subjects and patients with various sleep disorders during sleep to characterize the hemodynamic changing patterns during different sleep stages and during different symptoms such as obstructive apneas. Here we assessed brain and muscle oxygenation changes in 7 healthy adults during all-night sleep with combined polysomnography measurement to test the notion if hemodynamic changes in sleep are indeed brain specific. We found that muscle and brain showed similar hemodynamic changes during sleep initiation. A decrease in HbO2 and tissue oxygenation index (TOI) while an increase in HHb was observed immediately after sleep onset, and an opposite trend was found after transition with progression to deeper slow-wave sleep (SWS) stage. Spontaneous low frequency oscillations (LFO) and very low frequency oscillations (VLFO) were smaller (Levene's test, psleep (LS) and rapid-eye-movement (REM) sleep in both brain and muscle. Spectral analysis of the NIRS signals measured from brain and muscle also showed reductions in VLFO and LFO powers during SWS with respect to LS and REM sleep. These results indicate a systemic attenuation rather than local cerebral reduction of spontaneous hemodynamic activity in SWS. A systemic physiological mechanism may exist to regulate the hemodynamic changes in brain and muscle during sleep.

  19. Endothelial β-Catenin Signaling Is Required for Maintaining Adult Blood-Brain Barrier Integrity and Central Nervous System Homeostasis.

    Science.gov (United States)

    Tran, Khiem A; Zhang, Xianming; Predescu, Dan; Huang, Xiaojia; Machado, Roberto F; Göthert, Joachim R; Malik, Asrar B; Valyi-Nagy, Tibor; Zhao, You-Yang

    2016-01-12

    The blood-brain barrier (BBB) formed by brain endothelial cells interconnected by tight junctions is essential for the homeostasis of the central nervous system. Although studies have shown the importance of various signaling molecules in BBB formation during development, little is known about the molecular basis regulating the integrity of the adult BBB. Using a mouse model with tamoxifen-inducible endothelial cell-restricted disruption of ctnnb1 (iCKO), we show here that endothelial β-catenin signaling is essential for maintaining BBB integrity and central nervous system homeostasis in adult mice. The iCKO mice developed severe seizures accompanied by neuronal injury, multiple brain petechial hemorrhages, and central nervous system inflammation, and all had postictal death. Disruption of endothelial β-catenin induced BBB breakdown and downregulation of the specific tight junction proteins claudin-1 and -3 in adult brain endothelial cells. The clinical relevance of the data is indicated by the observation of decreased expression of claudin-1 and nuclear β-catenin in brain endothelial cells of hemorrhagic lesions of hemorrhagic stroke patients. These results demonstrate the prerequisite role of endothelial β-catenin in maintaining the integrity of adult BBB. The results suggest that BBB dysfunction secondary to defective β-catenin transcription activity is a key pathogenic factor in hemorrhagic stroke, seizure activity, and central nervous system inflammation. © 2015 American Heart Association, Inc.

  20. Gender-specific hemodynamics in prefrontal cortex during a verbal working memory task by near-infrared spectroscopy.

    Science.gov (United States)

    Li, Ting; Luo, Qingming; Gong, Hui

    2010-05-01

    The presence or absence of gender differences in working memory, localized in the prefrontal cortex (PFC), has been debated in a few fMRI studies. However, the hypothesis of gender differences in PFC function has not been elaborated, and comparisons among hemodynamic parameters designed to test for gender differences are scarce. We utilized near-infrared spectroscopy during verbal N-back tasks on 26 male and 24 female healthy volunteers. Changes in the concentrations of oxy- (Delta[oxy-Hb]), deoxy- (Delta[deoxy-Hb]) and total hemoglobin (Delta[tot-Hb]) were recorded simultaneously. Delta[oxy-Hb] and Delta[tot-Hb] exhibited obvious gender differences, but Delta[deoxy-Hb] did not. Males showed bilateral activation with slight left-side dominance, whereas females showed left activation. The activation in males was more wide-spread and stronger than in females. Furthermore, females required a lower hemodynamic supply than males to obtain comparable performance, and only females exhibited positive correlations between hemodynamic parameters and behavioral performance. The results reinforce the existence of a gender effect in hemodynamic-based functional imaging studies. Our findings suggest that females possess more efficient hemodynamics in the PFC during working memory and emphasize the importance of studying the PFC to further a scientific understanding of gender differences.

  1. Assessment of the hemodynamic changes after EDAS combined with bifrontal EGS in pediatric patients with moyamoya disease

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yoo Sung; Kim, Yu Kyeong; Lee, Jae Sung; Kim, Seung Ki; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    To assess the effect of encephaloduroarteriosynangiosis (EDAS) with or without bifrontal encephalogaleosynangiosis (EGS) in children with moyamoya disease, we evaluated cerebral hemodynamic changes using brain Tc-99m HMPAO SPECT. Total 34 pediatric patients (M: F=12:22, mean age;93 yrs) enrolled. Bypass surgery for both hemispheres (EDAS with EGS on one side, and EDAS on the other side) in 25 patients, unilateral EDAS with EGS in 7, and unilateral EDAS only in 2 were underwent. Perfusion SPECT before surgery, and 4 to 18 months after final surgery were done. The vascular territories for ICA, MCA and the brain regions for the frontal, parietal, temporal, and the occipital cortices were determined using standard ROls based on K-SPAM. Additionally, medial frontal cortex was selected to assess the effect of EGS. Basal/acetazolamide challenged cerebral blood flow (CBF), and cerebral vascular index (CVRI) were determined using normalized regional brain uptake to the cerebellum. 24 patients became symptom free, and 6 were improved but having some residual symptoms at the last follow up period. The other 3 were worsened after operation. Overall basal/acetazolamide stress CBF and CVRI for each brain region after surgery were increased, however, only the changes of CVRI were significant. Meanwhile, the improvement of CBF or CVRI in the brain regions ipsilateral to the hemisphere having EDAS with EGS was not significantly different when compared with those for the brain regions with EDAS only. Also, the hemodynamic improvement for the mesial frontal cortex in patients after EDAS with EGS was not significant, and showed no difference with those in patient with EDAS only. Quantitative perfusion SPECT demonstrated the hemodynamic improvement after EDAS with or without EGS in pediatric moyamoya disease. Cerebrovascular reserve showed meaningful improvement after surgery, implicating the effect of vascular anastomosis in ischemic areas.

  2. Assessment of the hemodynamic changes after EDAS combined with bifrontal EGS in pediatric patients with moyamoya disease

    International Nuclear Information System (INIS)

    Song, Yoo Sung; Kim, Yu Kyeong; Lee, Jae Sung; Kim, Seung Ki; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul

    2007-01-01

    To assess the effect of encephaloduroarteriosynangiosis (EDAS) with or without bifrontal encephalogaleosynangiosis (EGS) in children with moyamoya disease, we evaluated cerebral hemodynamic changes using brain Tc-99m HMPAO SPECT. Total 34 pediatric patients (M: F=12:22, mean age;93 yrs) enrolled. Bypass surgery for both hemispheres (EDAS with EGS on one side, and EDAS on the other side) in 25 patients, unilateral EDAS with EGS in 7, and unilateral EDAS only in 2 were underwent. Perfusion SPECT before surgery, and 4 to 18 months after final surgery were done. The vascular territories for ICA, MCA and the brain regions for the frontal, parietal, temporal, and the occipital cortices were determined using standard ROls based on K-SPAM. Additionally, medial frontal cortex was selected to assess the effect of EGS. Basal/acetazolamide challenged cerebral blood flow (CBF), and cerebral vascular index (CVRI) were determined using normalized regional brain uptake to the cerebellum. 24 patients became symptom free, and 6 were improved but having some residual symptoms at the last follow up period. The other 3 were worsened after operation. Overall basal/acetazolamide stress CBF and CVRI for each brain region after surgery were increased, however, only the changes of CVRI were significant. Meanwhile, the improvement of CBF or CVRI in the brain regions ipsilateral to the hemisphere having EDAS with EGS was not significantly different when compared with those for the brain regions with EDAS only. Also, the hemodynamic improvement for the mesial frontal cortex in patients after EDAS with EGS was not significant, and showed no difference with those in patient with EDAS only. Quantitative perfusion SPECT demonstrated the hemodynamic improvement after EDAS with or without EGS in pediatric moyamoya disease. Cerebrovascular reserve showed meaningful improvement after surgery, implicating the effect of vascular anastomosis in ischemic areas

  3. [Myocardial contractility and hemodynamics in hypothyroidism].

    Science.gov (United States)

    Selivonenko, V G

    1977-01-01

    The author determined the phasic structure of the systole of the left ventricle by the method of polycardiography and hemodynamics in 20 patients suffering from hypothyrodism. Blood plasma and erythrocyte electrolytes were examined at the same time. Patients with hypothyroidism displayed a phasic syndrome of hypodynamia and a marked correlation between the phase of the synchronous contraction, the period of ejection, the strength of contraction of the left ventricle and the electrolyte content. Sodium and magnesium produced the greatest influence on the phasic structure of the systole; potassium and calcium had a lesser effect. The heart stroke volume diminished; as to the cardiac index, expenditure of the energy of cardiac contractions directed to the maintenance of movement of 1 litre of the minute blood volume; the external work, and the peripheral vascular resistance displayed no significant change.

  4. Hemodynamic stress testing using pacing tachycardia

    International Nuclear Information System (INIS)

    McKay, R.G.; Grossman, W.

    1986-01-01

    A trial pacing was first introduced in 1967 by Sowton and co-workers as a stress test which could be used in the cardiac catheterization laboratory to evaluate patients with schemic heart disease. Sowton noted that artificially increasing the heart rate by pacing the right atrium could usually induce angina in patients with symptomatic coronary artery disease. Since Sowton's original description, numerous investigators have described characteristic pacing-induced electrocardiographic changes, derangements of myocardial lactate metabolism, hemodynamic abnormalities, regional wall abnormalities, and defects in thallium scintigraphy. Although agreement on the overall usefulness of atrial pacing has not been uniform, it is clear that the technique can safely and reliably induce ischemia in most patients with coronary artery disease and that information obtained during the pacing-induced ischemic state can often be helpful in the diagnosis and treatment of the patient's underlying disease

  5. Hemodynamic characteristics of early stage hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Kudo, Masatoshi; Tomita, Shusuke; Tochio, Hitoshi

    1992-01-01

    Hemodynamic characteristics were studied by using in vivo vascular imaging techniques in 17 resected early stage hepatocellular carcinoma (e-HCC) by comparing them with 49 resected advanced HCCs (ad-HCC) less than 3 cm in diameter. In this study, e-HCC was defined as the nodule being uniformly composed of well-differentiated HCC or adenomatous hyperplastic nodule containing well-differentiated HCC foci within the nodule. In vivo vascular imaging techniques are as follows; US angiography with intraarterial CO 2 microbubbles were performed to assess the tumor arterial vascularity, and CT during arterial portography (CTAP) was performed to assess the portal perfusion within the nodule. Of 17 e-HCC nodules 5 were hypervascular, 5 were isovascular, 4 were hypovascular, and 3 were vascular spot in hypovascular pattern in contrast to 49 ad-HCC nodules, 43 of which were hypervascular and 6 were isovascular. Of 14 e-HCCs, 9 nodules showed perfusion defect and 5 did not on CTAP, whereas all 37 ad-HCCs on which CTAP was performed, showed perfusion defect. Forty-one percent (7/17) of e-HCC showed fatty metamorphosis in contrast to 8% (4/49) of ad-HCC. In conclusion, hemodynamic characteristics of e-HCC are summarized as follows. (1) Arterial tumor neovascularization is relatively low. (2) Portal perfusion is present in some of e-HCC cases. (3) Hypoperfusion state both from arterial and portal supply is present in some of e-HCC cases. (4) Vascular spot in hypovascular pattern is characteristic arterial pattern in AH containing HCC foci. (5) Fatty metamorphosis may be related with hypoperfusion state of the nodule in e-HCC. (author)

  6. Hemodynamic effects of sodium bicarbonate administration.

    Science.gov (United States)

    Katheria, A C; Brown, M K; Hassan, K; Poeltler, D M; Patel, D A; Brown, V K; Sauberan, J B

    2017-05-01

    To describe the hemodynamic changes that occur with sodium bicarbonate (NaHCO 3 ) administration in premature neonates. This retrospective study included premature neonates 23 to 31+6 weeks of gestational age who underwent continuous cardiac and cerebral monitoring as participants in prospective trials at our institution, and who received NaHCO 3 infused over 30 min in the first 24 h of life. Blood pressure (BP), heart rate, cardiac output (CO), SpO 2 and cerebral oximetry (StO 2 ) were captured every 2 s. A baseline was established for all continuous data and averaged over the 10 min before NaHCO 3 administration. Baseline was compared with measurements over 10 min epochs until 80 min after administration. Arterial blood gases before and within 1 h of administration were also compared. Significance was set at P<0.05. A total of 36 subjects received NaHCO 3 (1.3±0.3 mEq kg -1 ) in the first 24 h (14±8.5 h) of life. NaHCO 3 administration increased pH (7.23 vs 7.28, P<0.01) and decreased base deficit (-8.9 vs -6.8, P<0.01) and PaCO 2 (45 vs 43 mm Hg, P<0.05). There was a transient but significant (P<0.05) decrease in systemic BP coinciding with an increase in cerebral oxygenation without an increase in oxygen extraction. CO did not change. Early postnatal NaHCO 3 administration does not acutely improve CO but does cause transient fluctuations in cerebral and cardiovascular hemodynamics in extremely premature infants.

  7. Early enteral nutrition in critically ill patients with hemodynamic instability: an evidence-based review and practical advice.

    Science.gov (United States)

    Yang, Shuofei; Wu, Xingjiang; Yu, Wenkui; Li, Jieshou

    2014-02-01

    Early enteral nutrition (EEN) in critically ill patients is associated with significant benefit as well as elevated risk of complications. Concomitant use of EEN with vasopressors has been associated with nonocclusive bowel necrosis in critically ill patients with hemodynamic instability. The decision when to initiate enteral nutrition in hemodynamically unstable patients that require vasoactive substances remains a clinical dilemma. This review summarizes the effect of EEN and vasoactive agents on gastrointestinal blood flow and perfusion in critically ill patients, based on current evidence. Animal and clinical data involving simultaneous administration of EEN and vasoactive agents for hemodynamic instability are reviewed, and the factors related to the safety and effectiveness of EEN support in this patient population are analyzed. Moreover, practical recommendations are provided. Additional randomized clinical trials are warranted to provide cutting-edge evidence-based guidance about this issue for practitioners of critical care.

  8. Ionizing radiation occupational exposure in the hemodynamics services

    International Nuclear Information System (INIS)

    Gronchi, Claudia Carla

    2004-01-01

    The purpose of this research is to study the ionizing radiation occupational exposure in the hemodynamic services of two large scale hospitals (Hospital A and Hospital B) of the Sao Paulo city. The research looked into annual doses that 279 professionals of the hemodynamic services were exposed to between 1991 and 2002. The data analyzed was collected from the database of the Instituto de Pesquisas Energeticas e Nucleares (IPEN) for Hospital A, and from the Radiological Protection Department of Hospital B. Besides this, measures of hands and crystalline lens equivalent doses were performed during hemodynamic procedures of the physicians, assistant physicians and nursing assistants with TL dosimeters (CaSO 4 :Dy + Teflon R) produced at IPEN. The safety procedures adopted by the hospitals were verified with the aid of a specific questionnaire for the hemodynamic services. Finally, a profile of the professionals that work in cardiac catheterism laboratories of the hemodynamic services was delineated, considering the variables of individual monitoring time, age and sex. This study allowed for observation of the behavior of the professionals' annual doses of these hemodynamic services in relation to the Comissao Nacional de Energia Nuclear and the Secretaria de Vigilancia Sanitaria limits. It showed that the annual doses of the same specialized occupations would vary from one hospital to another. It further showed the need of individual monitoring of the physicians' unprotected body parts (hands and crystalline lens) during the hemodynamic procedures. (author)

  9. Congenital heart malformations induced by hemodynamic altering surgical interventions

    Directory of Open Access Journals (Sweden)

    Madeline eMidgett

    2014-08-01

    Full Text Available Embryonic heart formation results from a dynamic interplay between genetic and environmental factors. Blood flow during early embryonic stages plays a critical role in heart development, as interactions between flow and cardiac tissues generate biomechanical forces that modulate cardiac growth and remodeling. Normal hemodynamic conditions are essential for proper cardiac development, while altered blood flow induced by surgical manipulations in animal models result in heart defects similar to those seen in humans with congenital heart disease. This review compares the altered hemodynamics, changes in tissue properties, and cardiac defects reported after common surgical interventions that alter hemodynamics in the early chick embryo, and shows that interventions produce a wide spectrum of cardiac defects. Vitelline vein ligation and left atrial ligation decrease blood pressure and flow; and outflow tract banding increases blood pressure and flow velocities. These three surgical interventions result in many of the same cardiac defects, which indicate that the altered hemodynamics interfere with common looping, septation and valve formation processes that occur after intervention and that shape the four-chambered heart. While many similar defects develop after the interventions, the varying degrees of hemodynamic load alteration among the three interventions also result in varying incidence and severity of cardiac defects, indicating that the hemodynamic modulation of cardiac developmental processes is strongly dependent on hemodynamic load.

  10. Permanent education that approaches radiation protection in hemodynamic service

    International Nuclear Information System (INIS)

    Flor, Rita de Cassia; Anjos, Djeniffer Valdirene dos

    2011-01-01

    In the hemodynamic services that apply ionizing radiation yet exist the necessity of capacitation of workers for actuation in those areas. So, this qualitative study performed in a hemodynamic service at Sao Jose, Santa Catarina, Brazil, had the objective to analyse how are developed the permanent education programs and the real necessity of workers. The results have shown that the workers are longing for their qualification and formation, as generally they are admitted with not any qualification for those services. So, the workers that realize the on duty hemodynamic service praxis must do it in a conscious manner and the E P is a way for to adopt good practice in radiological protection

  11. Non-invasive prediction of hemodynamically significant coronary artery stenoses by contrast density difference in coronary CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Hell, Michaela M., E-mail: michaela.hell@uk-erlangen.de [Department of Cardiology, University of Erlangen (Germany); Dey, Damini [Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Taper Building, Room A238, 8700 Beverly Boulevard, Los Angeles, CA 90048 (United States); Marwan, Mohamed; Achenbach, Stephan; Schmid, Jasmin; Schuhbaeck, Annika [Department of Cardiology, University of Erlangen (Germany)

    2015-08-15

    Highlights: • Overestimation of coronary lesions by coronary computed tomography angiography and subsequent unnecessary invasive coronary angiography and revascularization is a concern. • Differences in plaque characteristics and contrast density difference between hemodynamically significant and non-significant stenoses, as defined by invasive fractional flow reserve, were assessed. • At a threshold of ≥24%, contrast density difference predicted hemodynamically significant lesions with a specificity of 75%, sensitivity of 33%, PPV of 35% and NPV of 73%. • The determination of contrast density difference required less time than transluminal attenuation gradient measurement. - Abstract: Objectives: Coronary computed tomography angiography (CTA) allows the detection of obstructive coronary artery disease. However, its ability to predict the hemodynamic significance of stenoses is limited. We assessed differences in plaque characteristics and contrast density difference between hemodynamically significant and non-significant stenoses, as defined by invasive fractional flow reserve (FFR). Methods: Lesion characteristics of 59 consecutive patients (72 lesions) in whom invasive FFR was performed in at least one coronary artery with moderate to high-grade stenoses in coronary CTA were evaluated by two experienced readers. Coronary CTA data sets were acquired on a second-generation dual-source CT scanner using retrospectively ECG-gated spiral acquisition or prospectively ECG-triggered axial acquisition mode. Plaque volume and composition (non-calcified, calcified), remodeling index as well as contrast density difference (defined as the percentage decline in luminal CT attenuation/cross-sectional area over the lesion) were assessed using a semi-automatic software tool (Autoplaq). Additionally, the transluminal attenuation gradient (defined as the linear regression coefficient between intraluminal CT attenuation and length from the ostium) was determined

  12. In vivo study of rat cortical hemodynamics using a stereotaxic-apparatus-compatible photoacoustic microscope.

    Science.gov (United States)

    Guo, Heng; Chen, Qian; Qi, Weizhi; Chen, Xingxing; Xi, Lei

    2018-04-19

    Brain imaging is an important technique in cognitive neuroscience. In this article, we designed a stereotaxic-apparatus-compatible photoacoustic microscope for the studies of rat cortical hemodynamics. Compared with existing optical resolution photoacoustic microscopy (ORPAM) systems, the probe owns feature of fast, light and miniature. In this microscope, we integrated a miniaturized ultrasound transducer with a center frequency of 10 MHz to detect photoacoustic signals and a 2-dimensional (2D) microelectromechanical system (MEMS) scanner to achieve raster scanning of the optical focus. Based on phantom evaluation, this imaging probe has a high lateral resolution of 3.8 μm and an effective imaging domain of 2 × 2 mm 2 . Different from conventional ORPAMs, combining with standard stereotaxic apparatus enables broad studies of rodent brains without any motion artifact. To show its capability, we successfully captured red blood cell flow in the capillary, monitored the vascular changes during bleeding and blood infusion and visualized cortical hemodynamics induced by middle cerebral artery occlusion. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A 4D Digital Phantom for Patient-Specific Simulation of Brain CT Perfusion Protocols

    NARCIS (Netherlands)

    Boom, R. van den; Manniesing, R.; Oei, M.T.H.; Woude, W.J. van der; Smit, E.J.; Laue, H.O.A.; Ginneken, B. van; Prokop, M.

    2014-01-01

    Purpose Optimizing CT brain perfusion protocols is a challenge because of the complex interaction between image acquisition, calculation of perfusion data and patient hemodynamics. Several digital phantoms have been developed to avoid unnecessary patient exposure or suboptimum choice of parameters.

  14. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo

    Science.gov (United States)

    Yao, Junjie; Xia, Jun; Maslov, Konstantin I.; Nasiriavanaki, Mohammadreza; Tsytsarev, Vassiliy; Demchenko, Alexei V.; Wang, Lihong V.

    2012-01-01

    We have demonstrated the feasibility of imaging mouse brain metabolism using photoacoustic computed tomography (PACT), a fast, noninvasive and functional imaging modality with optical contrast and acoustic resolution. Brain responses to forepaw stimulations were imaged transdermally and transcranially. 2-NBDG, which diffuses well across the blood-brain-barrier, provided exogenous contrast for photoacoustic imaging of glucose response. Concurrently, hemoglobin provided endogenous contrast for photoacoustic imaging of hemodynamic response. Glucose and hemodynamic responses were quantitatively decoupled by using two-wavelength measurements. We found that glucose uptake and blood perfusion around the somatosensory region of the contralateral hemisphere were both increased by stimulations, indicating elevated neuron activity. While the glucose response area was more homogenous and confined within the somatosensory region, the hemodynamic response area had a clear vascular pattern and spread wider than the somatosensory region. Our results demonstrate that 2-NBDG-enhanced PACT is a promising tool for noninvasive studies of brain metabolism. PMID:22940116

  15. Functional brain networks underlying detection and integration of disconfirmatory evidence.

    Science.gov (United States)

    Lavigne, Katie M; Metzak, Paul D; Woodward, Todd S

    2015-05-15

    Processing evidence that disconfirms a prior interpretation is a fundamental aspect of belief revision, and has clear social and clinical relevance. This complex cognitive process requires (at minimum) an alerting stage and an integration stage, and in the current functional magnetic resonance imaging (fMRI) study, we used multivariate analysis methodology on two datasets in an attempt to separate these sequentially-activated cognitive stages and link them to distinct functional brain networks. Thirty-nine healthy participants completed one of two versions of an evidence integration experiment involving rating two consecutive animal images, both of which consisted of two intact images of animal faces morphed together at different ratios (e.g., 70/30 bird/dolphin followed by 10/90 bird/dolphin). The two versions of the experiment differed primarily in terms of stimulus presentation and timing, which facilitated functional interpretation of brain networks based on differences in the hemodynamic response shapes between versions. The data were analyzed using constrained principal component analysis for fMRI (fMRI-CPCA), which allows distinct, simultaneously active task-based networks to be separated, and these were interpreted using both temporal (task-based hemodynamic response shapes) and spatial (dominant brain regions) information. Three networks showed increased activity during integration of disconfirmatory relative to confirmatory evidence: (1) a network involved in alerting to the requirement to revise an interpretation, identified as the salience network (dorsal anterior cingulate cortex and bilateral insula); (2) a sensorimotor response-related network (pre- and post-central gyri, supplementary motor area, and thalamus); and (3) an integration network involving rostral prefrontal, orbitofrontal and posterior parietal cortex. These three networks were staggered in their peak activity (alerting, responding, then integrating), but at certain time points (e

  16. Near-infrared spectroscopy assessment of divided visual attention task-invoked cerebral hemodynamics during prolonged true driving

    Science.gov (United States)

    Li, Ting; Zhao, Yue; Sun, Yunlong; Gao, Yuan; Su, Yu; Hetian, Yiyi; Chen, Min

    2015-03-01

    Driver fatigue is one of the leading causes of traffic accidents. It is imperative to develop a technique to monitor fatigue of drivers in real situation. Near-infrared spectroscopy (fNIRS) is now capable of measuring brain functional activity noninvasively in terms of hemodynamic responses sensitively, which shed a light to us that it may be possible to detect fatigue-specified brain functional activity signal. We developed a sensitive, portable and absolute-measure fNIRS, and utilized it to monitor cerebral hemodynamics on car drivers during prolonged true driving. An odd-ball protocol was employed to trigger the drivers' visual divided attention, which is a critical function in safe driving. We found that oxyhemoglobin concentration and blood volume in prefrontal lobe dramatically increased with driving duration (stand for fatigue degree; 2-10 hours), while deoxyhemoglobin concentration increased to the top at 4 hours then decreased slowly. The behavior performance showed clear decrement only after 6 hours. Our study showed the strong potential of fNIRS combined with divided visual attention protocol in driving fatigue degree monitoring. Our findings indicated the fNIRS-measured hemodynamic parameters were more sensitive than behavior performance evaluation.

  17. Hemodynamic changes during robotic radical prostatectomy

    Directory of Open Access Journals (Sweden)

    Vanlal Darlong

    2012-01-01

    Full Text Available Background: Effect on hemodynamic changes and experience of robot-assisted laparoscopic radical prostatectomy (RALRP in steep Trendelenburg position (45° with high-pressure CO 2 pneumoperitoneum is very limited. Therefore, we planned this prospective clinical trial to study the effect of steep Tredelenburg position with high-pressure CO 2 pneumoperitoneum on hemodynamic parameters in a patient undergoing RALRP using FloTrac/Vigileo™1.10. Methods: After ethical approval and informed consent, 15 patients scheduled for RALRP were included in the study. In the operation room, after attaching standard monitors, the radial artery was cannulated. Anesthesia was induced with fentanyl (2 μg/kg and thiopentone (4-7 mg/kg, and tracheal intubation was facilitated by vecuronium bromide (0.1 mg/kg. The patient′s right internal jugular vein was cannulated and the Pre Sep™ central venous oximetry catheter was connected to it. Anesthesia was maintained with isoflurane in oxygen and nitrous oxide and intermittent boluses of vecuronium. Intermittent positive-pressure ventilation was provided to maintain normocapnea. After CO 2 pneumoperitoneum, position of the patient was gradually changed to 45° Trendelenburg over 5 min. The robot was then docked and the robot-assisted surgery started. Intraoperative monitoring included central venous pressure (CVP, stroke volume (SV, stroke volume variation (SVV, cardiac output (CO, cardiac index (CI and central venous oxygen saturation (ScvO 2 . Results: After induction of anesthesia, heart rate (HR, SV, CO and CI were decreased significantly from the baseline value (P>0.05. SV, CO and CI further decreased significantly after creating pneumoperitoneum (P>0.05. At the 45° Trendelenburg position, HR, SV, CO and CI were significantly decreased compared with baseline. Thereafter, CO and CI were persistently low throughout the 45° Trendelenburg position (P=0.001. HR at 20 min and 1 h, SV and mean arterial blood pressure

  18. The hemodynamic repercussions of the autonomic modulations in ...

    African Journals Online (AJOL)

    Igor Victorovich Lakhno

    2017-01-16

    Jan 16, 2017 ... autonomic balance, arterial and venous hemodynamic Doppler indices and CTG variables in case of nor- mal fetal ... score of decelerations. Results: The .... puter electrocardiographic system ''Cardiolab Baby Card” (Scien-.

  19. Regional variation in interhemispheric coordination of intrinsic hemodynamic fluctuations.

    Science.gov (United States)

    Stark, David E; Margulies, Daniel S; Shehzad, Zarrar E; Reiss, Philip; Kelly, A M Clare; Uddin, Lucina Q; Gee, Dylan G; Roy, Amy K; Banich, Marie T; Castellanos, F Xavier; Milham, Michael P

    2008-12-17

    Electrophysiological studies have long demonstrated a high degree of correlated activity between the left and right hemispheres, however little is known about regional variation in this interhemispheric coordination. Whereas cognitive models and neuroanatomical evidence suggest differences in coordination across primary sensory-motor cortices versus higher-order association areas, these have not been characterized. Here, we used resting-state functional magnetic resonance imaging data acquired from 62 healthy volunteers to examine interregional correlation in spontaneous low-frequency hemodynamic fluctuations. Using a probabilistic atlas, we correlated probability-weighted time series from 112 regions comprising the entire cerebrum. We then examined regional variation in correlated activity between homotopic regions, contrasting primary sensory-motor cortices, unimodal association areas, and heteromodal association areas. Consistent with previous studies, robustly correlated spontaneous activity was noted between all homotopic regions, which was significantly higher than that between nonhomotopic (heterotopic and intrahemispheric) regions. We further demonstrated substantial regional variation in homotopic interhemispheric correlations that was highly consistent across subjects. Specifically, there was a gradient of interhemispheric correlation, with highest correlations across primary sensory-motor cortices (0.758, SD=0.152), significantly lower correlations across unimodal association areas (0.597, SD=0.230) and still lower correlations across heteromodal association areas (0.517, SD=0.226). These results demonstrate functional differences in interhemispheric coordination related to the brain's hierarchical subdivisions. Synchrony across primary cortices may reflect networks engaged in bilateral sensory integration and motor coordination, whereas lower coordination across heteromodal association areas is consistent with functional lateralization of these regions

  20. Hemodynamic changes after levothyroxine treatment in subclinical hypothyroidism

    DEFF Research Database (Denmark)

    Faber, J; Petersen, L; Wiinberg, N

    2002-01-01

    by LT(4) (p treatment in SH results in changes in hemodynamic parameters of potentially beneficial character. SH and overt hypothyroidism should......In hypothyroidism, lack of thyroid hormones results in reduced cardiac function (cardiac output [CO]), and an increase of systemic vascular resistance (SVR). We speculated whether hemodynamic regulation in subjects with subclinical hypothyroidism (SH) (defined as mildly elevated thyrotropin [TSH......) and T(3) estimates) LT(4) treatment resulted in 6% reduction in supine MAP (p treatment (p

  1. Reliability of oscillometric central hemodynamic responses to an orthostatic challenge

    OpenAIRE

    Stoner, Lee; Bonner, Chantel; Credeur, Daniel; Lambrick, Danielle; Faulkner, James; Wadsworth, Daniel; Williams, Michelle A.

    2015-01-01

    BackgroundMonitoring central hemodynamic responses to an orthostatic challenge may provide important insight into autonomic nervous system function. Oscillometric pulse wave analysis devices have recently emerged, presenting clinically viable options for investigating central hemodynamic properties. The purpose of the current study was to determine whether oscillometric pulse wave analysis can be used to reliably (between-day) assess central blood pressure and central pressure augmentation (a...

  2. Postural hemodynamic changes after turning to prone position

    Directory of Open Access Journals (Sweden)

    Микола Віталійович Лизогуб

    2015-03-01

    Full Text Available Background of study. Prone position is one of the most complex positions for anesthesiologist as it is accompanied by several physiological changes that can lead to specific complications. Hemodynamic changes are most controversial.Aim of study was to establish hemodynamic changes in non-anaesthetized patients in prone position depending on body mass index.Material and methods. We examined central hemodynamics in 40 patients the day before surgery using thoracic rheography in supine position, in prone position 5 min after turning and in prone position 20 min after turning. Patients were divided into 2 groups according to body mass index (18-25 and 26-35.Results. Patients with normal body weight did not have any hemodynamic changes after turning to prone position. Patients with increased body weight had higher cardiac index. After turning to prone position obese patients’ cardiac output and cardiac index reduced 22% comparing with supine position. After 20 min in prone position these hemodynamic parameters were found to be reduced to the same level.Conclusion. Significant hemodynamic changes after turning from supine to prone position were revealed only in patients with increased body mass index. In these patients cardiac index in prone position was reduced by 22% comparing to supine position

  3. CT of hemodynamically unstable abdominal trauma

    International Nuclear Information System (INIS)

    Petridis, A.; Pilavaki, M.; Vafiadis, E.; Palladas, P.; Finitsis, S.; Drevelegas, A.

    1999-01-01

    This article is an appraisal of the use of CT in the management of patients with unstable abdominal trauma. We examined 41 patients with abdominal trauma using noncontrast dynamic CT. In 17 patients a postcontrast dynamic CT was also carried out. On CT, 25 patients had hemoperitoneum. Thirteen patients had splenic, 12 hepatic, 6 pancreatic, 8 bowel and mesenteric, 12 renal and 2 vascular injuries. Seven patients had retroperitoneal and 2 patients adrenal hematomas. All but five lesions (three renal, one pancreatic, and one splenic) were hypodense when CT was performed earlier than 8 h following the injury. Postcontrast studies (n = 17), revealed 4 splenic, 3 hepatic, 1 pancreatic, 3 renal, and 2 bowel and mesenteric injuries beyond what was found on noncontrast CT. Surgical confirmation (n = 21) was obtained in 81.81 % of splenic, 66.66 % of hepatic, 83.33 % of pancreatic, 100 % of renal, 100 % of retroperitoneal, and 85.71 % of bowel and mesenteric injuries. The majority of false diagnoses was obtained with noncontrast studies. Computed tomography is a remarkable method for evaluation and management of patients with hemodynamically unstable abdominal trauma, but only if it is revealed in the emergency room. Contrast injection, when it could be done, revealed lesions that were not suspected on initial plain scans. (orig.)

  4. CT of hemodynamically unstable abdominal trauma

    Energy Technology Data Exchange (ETDEWEB)

    Petridis, A.; Pilavaki, M.; Vafiadis, E.; Palladas, P.; Finitsis, S.; Drevelegas, A. [Department of Radiology, General Hospital ``G. Papanikolaou,`` Thessaloniki (Greece)

    1999-03-01

    This article is an appraisal of the use of CT in the management of patients with unstable abdominal trauma. We examined 41 patients with abdominal trauma using noncontrast dynamic CT. In 17 patients a postcontrast dynamic CT was also carried out. On CT, 25 patients had hemoperitoneum. Thirteen patients had splenic, 12 hepatic, 6 pancreatic, 8 bowel and mesenteric, 12 renal and 2 vascular injuries. Seven patients had retroperitoneal and 2 patients adrenal hematomas. All but five lesions (three renal, one pancreatic, and one splenic) were hypodense when CT was performed earlier than 8 h following the injury. Postcontrast studies (n = 17), revealed 4 splenic, 3 hepatic, 1 pancreatic, 3 renal, and 2 bowel and mesenteric injuries beyond what was found on noncontrast CT. Surgical confirmation (n = 21) was obtained in 81.81 % of splenic, 66.66 % of hepatic, 83.33 % of pancreatic, 100 % of renal, 100 % of retroperitoneal, and 85.71 % of bowel and mesenteric injuries. The majority of false diagnoses was obtained with noncontrast studies. Computed tomography is a remarkable method for evaluation and management of patients with hemodynamically unstable abdominal trauma, but only if it is revealed in the emergency room. Contrast injection, when it could be done, revealed lesions that were not suspected on initial plain scans. (orig.) With 6 figs., 5 tabs., 20 refs.

  5. [Hemodynamic phenomena in retrobulhar and eyeball vessels].

    Science.gov (United States)

    Modrzejewska, Monika

    2011-01-01

    The purpose of this review was to evaluate factors connected with blood flow and indices regulating vascular diameter and some parameters influencing retrobulbar circulation such as type of vascular resistance, anatomical structure of vascular wall and vessel lumen. Neurogenic and angiogenic factors, rheological blood composition, presence of anatomical and pathological obstructions on blood flow pathway as well as degree of development of collateral circulation pathways--have influence on the volume and blood flow velocity in eyeball. There were discussed bulbar circulation hemodynamics, emphasizing the importance of perfusion pressure. The role of risk factors was underlined for pathological lesions in vessels supplying blood to eyeball and in ophthalmic artery (OA) and its collaterals, in central retinal artery (CRA) as well as posterior ciliary arteries (PCAs), and in venous system carrying away blood from eye. IN CONCLUSION--the results of many studies of retrobulbar blood flow in different types of ophthalmic diseases of the vascular etiopathogenesis indicate that registry of the mean values of blood flow parameters and vascular resistance indices parallel to measurement of blood flow spectrum in OA, CRA, PCAs arteries, might contribute much information to explain or to evaluate nature of pathological changes in retinal and choroidal circulation.

  6. Patent ductus arteriosus and brain volume

    NARCIS (Netherlands)

    Lemmers, Petra M A; Benders, Manon J N L; D'Ascenzo, Rita; Zethof, Jorine; Alderliesten, Thomas; Kersbergen, Karina J; Isgum, Ivana; de Vries, Linda S; Groenendaal, Floris; van Bel, Frank

    2016-01-01

    Background and Objectives: A hemodynamically significant patent ductus arteriosus (PDA) can compromise perfusion and oxygenation of the preterm brain. Reports suggest that PDA is associated with increased mortality and morbidity. We hypothesize that long-standing low cerebral oxygenation due to PDA

  7. Comparison on driving fatigue related hemodynamics activated by auditory and visual stimulus

    Science.gov (United States)

    Deng, Zishan; Gao, Yuan; Li, Ting

    2018-02-01

    As one of the main causes of traffic accidents, driving fatigue deserves researchers' attention and its detection and monitoring during long-term driving require a new technique to realize. Since functional near-infrared spectroscopy (fNIRS) can be applied to detect cerebral hemodynamic responses, we can promisingly expect its application in fatigue level detection. Here, we performed three different kinds of experiments on a driver and recorded his cerebral hemodynamic responses when driving for long hours utilizing our device based on fNIRS. Each experiment lasted for 7 hours and one of the three specific experimental tests, detecting the driver's response to sounds, traffic lights and direction signs respectively, was done every hour. The results showed that visual stimulus was easier to cause fatigue compared with auditory stimulus and visual stimulus induced by traffic lights scenes was easier to cause fatigue compared with visual stimulus induced by direction signs in the first few hours. We also found that fatigue related hemodynamics caused by auditory stimulus increased fastest, then traffic lights scenes, and direction signs scenes slowest. Our study successfully compared audio, visual color, and visual character stimulus in sensitivity to cause driving fatigue, which is meaningful for driving safety management.

  8. Radiation protection in hemodynamics work process: the look of the multidisciplinary team; Protecao radiologica no processo de trabalho em hemodinamica: o olhar da equipe multidisciplinar

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Laurete Medeiros; Klauberg, Daniela; Huhn, Andrea; Melo, Juliana Almeida Coelho de, E-mail: laurete@ifsc.edu.br, E-mail: danielaklauberg@hotmail.com, E-mail: andrea.huhn@ifsc.edu.br, E-mail: julianac@ifsc.edu.br [Instituto Federal de Santa Catarina (IFSC), Florianopolis, SC (Brazil)

    2014-07-01

    The study was conducted in a hemodynamics service of a public hospital in Florianopolis, SC, Brazil. Qualitative research with the participation of 13 professionals from a multidisciplinary team: doctors, technicians, technologists in radiology and nurses. The research material was extracted from the observations, semi-structured interviews and documentary analysis. The responses were grouped into three categories relating to: training of hemodynamic professionals and the perception of radiological protection in the work process; occupational exposure and safety of the professionals of Hemodynamics; and continuing education in hemodynamic service. Professionals are daily exposed to ionizing radiation, and for being long procedures, lead to high levels of exposure in workers. In hemodynamic services the risk of biological effects are cumulative, because radiodiagnostic procedures include issuing the higher doses of ionizing radiation in which the personnel exposure is critical. The workforce in the service researched mostly consists of technical professionals who reported little knowledge of radiation protection and ionizing radiation and that this issue was not addressed during their training. However, despite mention little knowledge about radiological protection, participants demonstrated understand the biological effects, especially with regard to pathologies caused by frequent exposure without protection to ionizing radiation. These professionals said they have no knowledge of the proper use of radiological protection equipment and the dosimeter, and that the institution does not provide all individual protective equipment required for the procedures performed in the hemodynamic service. Permanent education in hemodynamic service is very important part in the work process, though, cited by participants as little effectiveness in the institution, even when the professionals show interest in the area. Knowledge of the team providing hemodynamic service calls

  9. Hemodynamic challenge to early mobilization after cardiac surgery: A pilot study

    Directory of Open Access Journals (Sweden)

    Tiziano Cassina

    2016-01-01

    Full Text Available Background: Active mobilization is a key component in fast-track surgical strategies. Following major surgery, clinicians are often reluctant to mobilize patients arguing that circulatory homeostasis would be impaired as a result of myocardial stunning, fluid shift, and autonomic dysfunction. Aims: We examined the feasibility and safety of a mobilization protocol 12-24 h after elective cardiac surgery. Setting and Design: This observational study was performed in a tertiary nonacademic cardiovascular Intensive Care Unit. Materials and Methods: Over a 6-month period, we prospectively evaluated the hemodynamic response to a two-staged mobilization procedure in 53 consecutive patients. Before, during, and after the mobilization, hemodynamics parameters were recorded, including the central venous oxygen saturation (ScvO 2 , lactate concentrations, mean arterial pressure (MAP, heart rate (HR, right atrial pressure (RAP, and arterial oxygen saturation (SpO 2 . Any adverse events were documented. Results: All patients successfully completed the mobilization procedure. Compared with the supine position, mobilization induced significant increases in arterial lactate (34.6% [31.6%, 47.6%], P = 0.0022 along with reduction in RAP (−33% [−21%, −45%], P 10% and nine of them (17% required treatment. Hypotensive patients experienced a greater decrease in ScvO 2 (−18 ± 5% vs. −9 ± 4%, P = 0.004 with similar changes in RAP and HR. All hemodynamic parameters, but arterial lactate, recovered baseline values after resuming the horizontal position. Conclusions: Early mobilization after cardiac surgery appears to be a safe procedure as far as it is performed under close hemodynamic and clinical monitoring in an intensive care setting.

  10. Occupational doses in medical staff during hemodynamic procedures

    International Nuclear Information System (INIS)

    Alonso, Thessa C.; Silva, Teogenes A. da

    2008-01-01

    The main objective of an occupational radiation program for workers is to keep radiation exposures under control and to assure that radiation protection principles are followed. Due to different types of interventionist medical exams, usually the medical staffs are highly exposed to radiation, which it emphasizes that it is required safety procedures for dose reduction. In this work, studies were concerned with individual doses of medical staff that are directly engaged to interventionist procedures at hemodynamic services. Dose values from a data bank of the CDTN Individual Monitoring Service (IMS) were analyzed and measurements with film type and thermoluminescent (TL) dosimeters were performed for comparison purposes. Additionally, the influence of the use of a lead apron on the individual dose was investigated. Results suggested that the medical staff does not care about wearing the routine personal dosimeter and that the registered doses may not be representative to the actual annual effective doses. They also showed that effective doses are highly dependent on the characteristics and conditions of the lead apron that is worn by the medical staff. It is concluded that it is important to have personal dosimetric system up-graded for reliable measurements, to define an adequate algorithm for determining the effective dose and to train the medical staff to follow the basic radiation protection principle of optimization. (author)

  11. A dimensionless parameter for classifying hemodynamics in intracranial

    Science.gov (United States)

    Asgharzadeh, Hafez; Borazjani, Iman

    2015-11-01

    Rupture of an intracranial aneurysm (IA) is a disease with high rates of mortality. Given the risk associated with the aneurysm surgery, quantifying the likelihood of aneurysm rupture is essential. There are many risk factors that could be implicated in the rupture of an aneurysm. However, the most important factors correlated to the IA rupture are hemodynamic factors such as wall shear stress (WSS) and oscillatory shear index (OSI) which are affected by the IA flows. Here, we carry out three-dimensional high resolution simulations on representative IA models with simple geometries to test a dimensionless number (first proposed by Le et al., ASME J Biomech Eng, 2010), denoted as An number, to classify the flow mode. An number is defined as the ratio of the time takes the parent artery flow transports across the IA neck to the time required for vortex ring formation. Based on the definition, the flow mode is vortex if An>1 and it is cavity if AnOSI on the human subject IA. This work was supported partly by the NIH grant R03EB014860, and the computational resources were partly provided by CCR at UB. We thank Prof. Hui Meng and Dr. Jianping Xiang for providing us the database of aneurysms and helpful discussions.

  12. New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain.

    Science.gov (United States)

    Venkat, Poornima; Chopp, Michael; Chen, Jieli

    2016-06-30

    The brain has high metabolic and energy needs and requires continuous cerebral blood flow (CBF), which is facilitated by a tight coupling between neuronal activity, CBF, and metabolism. Upon neuronal activation, there is an increase in energy demand, which is then met by a hemodynamic response that increases CBF. Such regional CBF increase in response to neuronal activation is observed using neuroimaging techniques such as functional magnetic resonance imaging and positron emission tomography. The mechanisms and mediators (eg, nitric oxide, astrocytes, and ion channels) that regulate CBF-metabolism coupling have been extensively studied. The neurovascular unit is a conceptual model encompassing the anatomical and metabolic interactions between the neurons, vascular components, and glial cells in the brain. It is compromised under disease states such as stroke, diabetes, hypertension, dementias, and with aging, all of which trigger a cascade of inflammatory responses that exacerbate brain damage. Hence, tight regulation and maintenance of neurovascular coupling is central for brain homeostasis. This review article also discusses the waste clearance pathways in the brain such as the glymphatic system. The glymphatic system is a functional waste clearance pathway that removes metabolic wastes and neurotoxins from the brain along paravascular channels. Disruption of the glymphatic system burdens the brain with accumulating waste and has been reported in aging as well as several neurological diseases.

  13. Principle of cerebral hemodynamic perfusion in SPECT and new evaluation method of hemodynamic reserve capacity using {sup 99m}Tc tracer

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Masaaki; Mukai, Hironobu; Tada, Motoyuki; Miyazaki, Yoshiharu; Takimoto, Masamori; Shiozaki, Jun; Inoue, Hisashi [Noto General Hospital, Nanao, Ishikawa (Japan)

    2002-07-01

    We performed quantitative measurements of cerebral blood flow (CBF) using {sup 99m}Tc tracer by the Patlak Plot method with reference to normal aging and cerebrovascular reserve (CVR) capacity and then investigated a new evaluation method of CVR. Aging and decrease of ADL were significantly associated with reduction of the mean hemispheric CBF. In the acetazolamide (ACZ) stress test, these retrospective data showed some overlap in each ischemic grade on the relationship between rCBF and CVR response for the predictability of EC/IC bypass surgery. In these controversial problems, we must reconfirm the principle of cerebral hemodynamic perfusion in SPECT. First, retention tracer is distributed via the microcirculatory system to brain tissue. Second, therefore, we should understand not only the circulation of major vessels, but also the dynamics and rheology in parenchymal microcirculation to determine brain SPECT and CVR capacity. In the next step, we approached the new evaluation method of CVR capacity using {sup 99m}Tc tracer by a serial dynamic SPECT with a slip-ring rotational gamma camera. These preliminally findings suggest that a serial dynamic SPECT may be more useful for analyzing the pathophysiology on brain circulation and CVR than conventional approaches. (author)

  14. A novel approach to calibrate the Hemodynamic Model using functional Magnetic Resonance Imaging (fMRI) measurements

    KAUST Repository

    Khoram, Nafiseh

    2016-01-21

    Background The calibration of the hemodynamic model that describes changes in blood flow and blood oxygenation during brain activation is a crucial step for successfully monitoring and possibly predicting brain activity. This in turn has the potential to provide diagnosis and treatment of brain diseases in early stages. New Method We propose an efficient numerical procedure for calibrating the hemodynamic model using some fMRI measurements. The proposed solution methodology is a regularized iterative method equipped with a Kalman filtering-type procedure. The Newton component of the proposed method addresses the nonlinear aspect of the problem. The regularization feature is used to ensure the stability of the algorithm. The Kalman filter procedure is incorporated here to address the noise in the data. Results Numerical results obtained with synthetic data as well as with real fMRI measurements are presented to illustrate the accuracy, robustness to the noise, and the cost-effectiveness of the proposed method. Comparison with Existing Method(s) We present numerical results that clearly demonstrate that the proposed method outperforms the Cubature Kalman Filter (CKF), one of the most prominent existing numerical methods. Conclusion We have designed an iterative numerical technique, called the TNM-CKF algorithm, for calibrating the mathematical model that describes the single-event related brain response when fMRI measurements are given. The method appears to be highly accurate and effective in reconstructing the BOLD signal even when the measurements are tainted with high noise level (as high as 30%).

  15. Nicotinamide nucleotide transhydrogenase (Nnt) links the substrate requirement in brain mitochondria for hydrogen peroxide removal to the thioredoxin/peroxiredoxin (Trx/Prx) system.

    Science.gov (United States)

    Lopert, Pamela; Patel, Manisha

    2014-05-30

    Mitochondrial reactive oxygen species are implicated in the etiology of multiple neurodegenerative diseases, including Parkinson disease. Mitochondria are known to be net producers of ROS, but recently we have shown that brain mitochondria can consume mitochondrial hydrogen peroxide (H2O2) in a respiration-dependent manner predominantly by the thioredoxin/peroxiredoxin system. Here, we sought to determine the mechanism linking mitochondrial respiration with H2O2 catabolism in brain mitochondria and dopaminergic cells. We hypothesized that nicotinamide nucleotide transhydrogenase (Nnt), which utilizes the proton gradient to generate NADPH from NADH and NADP(+), provides the link between mitochondrial respiration and H2O2 detoxification through the thioredoxin/peroxiredoxin system. Pharmacological inhibition of Nnt in isolated brain mitochondria significantly decreased their ability to consume H2O2 in the presence, but not absence, of respiration substrates. Nnt inhibition in liver mitochondria, which do not require substrates to detoxify H2O2, had no effect. Pharmacological inhibition or lentiviral knockdown of Nnt in N27 dopaminergic cells (a) decreased H2O2 catabolism, (b) decreased NADPH and increased NADP(+) levels, and (c) decreased basal, spare, and maximal mitochondrial oxygen consumption rates. Nnt-deficient cells possessed higher levels of oxidized mitochondrial Prx, which rendered them more susceptible to steady-state increases in H2O2 and cell death following exposure to subtoxic levels of paraquat. These data implicate Nnt as the critical link between the metabolic and H2O2 antioxidant function in brain mitochondria and suggests Nnt as a potential therapeutic target to improve the redox balance in conditions of oxidative stress associated with neurodegenerative diseases. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Early Cerebral Hemodynamic, Metabolic, and Histological Changes in Hypoxic-Ischemic Fetal Lambs during Postnatal Life.

    Science.gov (United States)

    Rey-Santano, Carmen; Mielgo, Victoria E; Gastiasoro, Elena; Murgia, Xabier; Lafuente, Hector; Ruiz-Del-Yerro, Estibaliz; Valls-I-Soler, Adolf; Hilario, Enrique; Alvarez, Francisco J

    2011-01-01

    The hemodynamic, metabolic, and biochemical changes produced during the transition from fetal to neonatal life may be aggravated if an episode of asphyxia occurs during fetal life. The aim of the study was to examine regional cerebral blood flow (RCBF), histological changes, and cerebral brain metabolism in preterm lambs, and to analyze the role of oxidative stress in the first hours of postnatal life following severe fetal asphyxia. Eighteen chronically instrumented newborn lambs were randomly assigned to either a control group or the hypoxic-ischemic (HI) group, in which case fetal asphyxia was induced just before delivery. All the animals were maintained on intermittent positive pressure ventilation for 3 h after delivery. During the HI insult, the injured group developed acidosis, hypoxia, hypercapnia, lactic acidosis, and tachycardia (relative to the control group), without hypotension. The intermittent positive pressure ventilation transiently improved gas exchange and cardiovascular parameters. After HI injury and during ventilatory support, there continued to be an increased RCBF in inner regions among the HI group, but no significant differences were detected in cortical flow compared to the control group. Also, the magnitude of the increase in TUNEL positive cells (apoptosis) and antioxidant enzymes, and decrease of ATP reserves was significantly greater in the brain regions where the RCBF was not higher. In conclusion, our findings identify early metabolic, histological, and hemodynamic changes involved in brain damage in premature asphyxiated lambs. Such changes have been described in human neonates, so our model could be useful to test the safety and the effectiveness of different neuroprotective or ventilation strategies applied in the first hours after fetal HI injury.

  17. Early cerebral hemodynamic, metabolic and histological changes in hypoxic-ischemic fetal lambs during postnatal life

    Directory of Open Access Journals (Sweden)

    Carmen eRey-Santano

    2011-09-01

    Full Text Available The hemodynamic, metabolic and biochemical changes produce during transition from fetal to neonatal life could be aggravated if asphyctic event occur during fetal life. The aim of the study was to examine the regional cerebral blood flow (RCBF, histological changes, and cerebral brain metabolism in preterm lambs, and to analyze the role of oxidative stress for the first hours of postnatal life following severe fetal asphyxia. 18 chronically instrumented fetal lambs were assigned to: hypoxic-ischemic group, following fetal asphyxia animals were delivered and maintained on intermittent-positive-pressure-ventilation for 3 hours, and non-injured animals that were managed similarly to the previous group and used as control group. During hypoxic-ischemic insult, injured group developed acidosis, hypoxia, hypercapnia, latacidaemia and tachycardia in comparison to control group, without hypotension. Intermittent-positive-pressure-ventilation transiently improved gas exchange and cardiovascular parameters. After HI injury and during ventilation-support, the increased RCBF in inner zones was maintained for hypoxic-ischemic group, but cortical flow did not exhibit differences compared to the control group. Also, the increase of TUNEL positive cells (apoptosis and antioxidant enzymes, and decrease of ATP reserves was significantly higher in the brain regions where the RCBF were not increased.In conclusion, early metabolic, histological and hemodynamic changes involved in brain damage have been intensively investigated and reported in premature asphyctic lambs for the first 3 hours of postnatal life. Those changes have been described in human neonates, so our model could be useful to test the security and the effectiveness of different neuroprotective or ventilatory strategies when are applied in the first hours after fetal hypoxic-ischemic injury.

  18. Echocardiographic Evaluation of Hemodynamics in Neonates and Children

    Directory of Open Access Journals (Sweden)

    Yogen Singh

    2017-09-01

    Full Text Available Hemodynamic instability and inadequate cardiac performance are common in critically ill children. The clinical assessment of hemodynamic status is reliant upon physical examination supported by the clinical signs such as heart rate, blood pressure, capillary refill time, and measurement of the urine output and serum lactate. Unfortunately, all of these parameters are surrogate markers of cardiovascular well-being and they provide limited direct information regarding the adequacy of blood flow and tissue perfusion. A bedside point-of-care echocardiography can provide real-time hemodynamic information by assessing cardiac function, loading conditions (preload and afterload and cardiac output. The echocardiography has the ability to provide longitudinal functional assessment in real time, which makes it an ideal tool for monitoring hemodynamic assessment in neonates and children. It is indispensable in the management of patients with shock, pulmonary hypertension, and patent ductus arteriosus. The echocardiography is the gold standard diagnostic tool to assess hemodynamic stability in patients with pericardial effusion, cardiac tamponade, and cardiac abnormalities such as congenital heart defects or valvar disorders. The information from echocardiography can be used to provide targeted treatment in intensive care settings such as need of fluid resuscitation versus inotropic support, choosing appropriate inotrope or vasopressor, and in providing specific interventions such as selective pulmonary vasodilators in pulmonary hypertension. The physiological information gathered from echocardiography may help in making timely, accurate, and appropriate diagnosis and providing specific treatment in sick patients. There is no surprise that use of bedside point-of-care echocardiography is rapidly gaining interest among neonatologists and intensivists, and it is now being used in clinical decision making for patients with hemodynamic instability. Like any

  19. When the brain speaks for itself : exploiting hemodynamic brain signals for motor-independent communication

    NARCIS (Netherlands)

    Sorger, B.

    2010-01-01

    Communication is an essential element of human interaction but can be compromised in several clinical conditions. In the so-called 'locked-in' syndrome (LIS), resulting from a severe motor paralysis, patients are literally confined to their own bodies, while at the same time being fully conscious

  20. Impact of Clipping versus Coiling on Postoperative Hemodynamics and Pulmonary Edema after Subarachnoid Hemorrhage

    Directory of Open Access Journals (Sweden)

    Nobutaka Horie

    2014-01-01

    Full Text Available Volume management is critical for assessment of cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH. This multicenter prospective cohort study compared the impact of surgical clipping versus endovascular coiling on postoperative hemodynamics and pulmonary edema in patients with SAH. Hemodynamic parameters were measured for 14 days using a transpulmonary thermodilution system. The study included 202 patients, including 160 who underwent clipping and 42 who underwent coiling. There were no differences in global ejection fraction (GEF, cardiac index, systemic vascular resistance index, or global end-diastolic volume index between the clipping and coiling groups in the early period. However, extravascular lung water index (EVLWI and pulmonary vascular permeability index (PVPI were significantly higher in the clipping group in the vasospasm period. Postoperative C-reactive protein (CRP level was higher in the clipping group and was significantly correlated with postoperative brain natriuretic peptide level. Multivariate analysis found that PVPI and GEF were independently associated with high EVLWI in the early period, suggesting cardiogenic edema, and that CRP and PVPI, but not GEF, were independently associated with high EVLWI in the vasospasm period, suggesting noncardiogenic edema. In conclusion, clipping affects postoperative CRP level and may thereby increase noncardiogenic pulmonary edema in the vasospasm period. His trial is registered with University Hospital Medical Information Network UMIN000003794.

  1. Time-Frequency Characterization of Cerebral Hemodynamics of Migraine Sufferers as Assessed by NIRS Signals

    Directory of Open Access Journals (Sweden)

    Filippo Molinari

    2010-01-01

    Full Text Available Near-infrared spectroscopy (NIRS is a noninvasive system for the real-time monitoring of the concentration of oxygenated (O2Hb and reduced (HHb hemoglobin in the brain cortex. O2Hb and HHb concentrations vary in response to cerebral autoregulation. Sixty-eight women (14 migraineurs without aura, 49 migraineurs with aura, and 5 controls performed breath-holding and hyperventilation during NIRS recordings. Signals were processed using the Choi-Williams time-frequency transform in order to measure the power variation of the very-low frequencies (VLF: 20–40 mHz and of the low frequencies (LF: 40–140 mHz. Results showed that migraineurs without aura present different LF and VLF power levels than controls and migraineurs with aura. The accurate power measurement of the time-frequency analysis allowed for the discrimination of the subjects' hemodynamic patterns. The time-frequency analysis of NIRS signals can be used in clinical practice to assess cerebral hemodynamics.

  2. Time-Frequency Characterization of Cerebral Hemodynamics of Migraine Sufferers as Assessed by NIRS Signals

    Directory of Open Access Journals (Sweden)

    Liboni William

    2010-01-01

    Full Text Available Abstract Near-infrared spectroscopy (NIRS is a noninvasive system for the real-time monitoring of the concentration of oxygenated ( and reduced (HHb hemoglobin in the brain cortex. and HHb concentrations vary in response to cerebral autoregulation. Sixty-eight women (14 migraineurs without aura, 49 migraineurs with aura, and 5 controls performed breath-holding and hyperventilation during NIRS recordings. Signals were processed using the Choi-Williams time-frequency transform in order to measure the power variation of the very-low frequencies (VLF: 20–40 mHz and of the low frequencies (LF: 40–140 mHz. Results showed that migraineurs without aura present different LF and VLF power levels than controls and migraineurs with aura. The accurate power measurement of the time-frequency analysis allowed for the discrimination of the subjects' hemodynamic patterns. The time-frequency analysis of NIRS signals can be used in clinical practice to assess cerebral hemodynamics.

  3. Transcranial diffuse optical monitoring of microvascular cerebral hemodynamics after thrombolysis in ischemic stroke

    Science.gov (United States)

    Zirak, Peyman; Delgado-Mederos, Raquel; Dinia, Lavinia; Carrera, David; Martí-Fàbregas, Joan; Durduran, Turgut

    2014-01-01

    The ultimate goal of therapeutic strategies for ischemic stroke is to reestablish the blood flow to the ischemic region of the brain. However, currently, the local cerebral hemodynamics (microvascular) is almost entirely inaccessible for stroke clinicians at the patient bed-side, and the recanalization of the major cerebral arteries (macrovascular) is the only available measure to evaluate the therapy, which does not always reflect the local conditions. Here we report the case of an ischemic stroke patient whose microvascular cerebral blood flow and oxygenation were monitored by a compact hybrid diffuse optical monitor during thrombolytic therapy. This monitor combined diffuse correlation spectroscopy and near-infrared spectroscopy. The reperfusion assessed by hybrid diffuse optics temporally correlated with the recanalization of the middle cerebral artery (assessed by transcranial-Doppler) and was in agreement with the patient outcome. This study suggests that upon further investigation, diffuse optics might have a potential for bed-side acute stroke monitoring and therapy guidance by providing hemodynamics information at the microvascular level.

  4. Hemodynamics Modeling and Simulation of Anterior Communicating Artery Aneurysms

    Directory of Open Access Journals (Sweden)

    Jianjun Li

    2014-07-01

    Full Text Available It is a general agreement that hemodynamics plays very important role in the initiation, growth, and rupture of cerebral aneurysms and hemodynamics in the anterior communicating artery aneurysms is considered the most complex in all cerebral aneurysms and it is difficult to find some reasonable relationship between the hemodynamics parameters and the rupture risk. In this paper, the 3D geometries of four anterior communicating artery aneurysms were generated from the CTA data and the computational models with bilateral feeding arteries for the four aneurysms were constructed. The blood flow was simulated by computational fluid dynamics software and the hemodynamics parameters such as velocity, wall shear stress, and oscillatory shear index were calculated. The following results were observed: one of the four models only needs the left feeding artery; the max normalized wall shear stress locates at the aneurysmal neck of the largest aneurysm; the max oscillatory shear index locates at the aneurysmal sac of the largest aneurysm. The conclusion was drawn that the anterior communicating artery aneurysm has higher rupture risk from the hemodynamics viewpoint if the max wall shear stress locates at the neck and the max oscillatory shear index locates at the dome.

  5. Association of Cardiac Hemodynamic Factors With Severity of White Matter Hyperintensities in Chronic Valvular Heart Disease.

    Science.gov (United States)

    Lee, Woo-Jin; Jung, Keun-Hwa; Ryu, Young Jin; Kim, Jeong-Min; Lee, Soon-Tae; Chu, Kon; Kim, Manho; Lee, Sang Kun; Roh, Jae-Kyu

    2018-01-01

    The cerebral white matter hyperintensity (WMH) is frequently noted in patients with chronic heart disease. Long-term alteration of cardiac hemodynamics might have an influence on the mechanism of cerebral WMH. To investigate the association between chronically altered cardiac hemodynamics and severity of cerebral WMH in patients with chronic valvular heart disease. This cross-sectional analysis identified 303 consecutive patients at a tertiary referral center between 2008 and 2016 who were 50 years or older, and diagnosed with severe chronic valvular heart disease and underwent cardiac catherization, echocardiography, and received brain magnetic resonance imaging. Among these patients, 71 with other demonstrated cardiac disease, central nervous system disease, and/or without sufficient catheterization data were excluded, and the remaining 232 patients were included in further analyses. The site and mechanism of valve diseases, as well as clinical and medication profiles, were reviewed. Cardiac catheterization parameters such as right atrial (RA) mean pressure, right ventricular pressure, and aortic mean pressure were obtained. Comprehensive echocardiographic hemodynamic markers such as left ventricular (LV) ejection fraction, LV mass index, LV end diastolic volume, cardiac index, and E/e' ratio were also obtained. White matter hyperintensity volume was quantitatively evaluated using volumetric analysis. This study included 232 patients (103 men [44.4%] and 129 women [55.6%]; mean [SD] (range) age, 65.6 [8.8] (51-88) years) in the final analysis. The mean (SD) WMH volume was 5.93 (7.14) mL (median [interquartile range], 4.33 [1.33-8.62] mL), and mean (SD) RA pressure was 10.0 (4.7) mm Hg. From the catheterization data, 147 patients (63.4%) were classified as having a disease involving the mitral valve; 93 (40.1%), aortic valve; 37 (15.9%), tricuspid valve; and 4 (1.7%), pulmonary valve. In multivariate linear regression analysis, adjusting the type and mechanism of

  6. Hemodynamic and neuropathological analysis in rats with aluminum trichloride-induced Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Szu-Ming Chen

    Full Text Available BACKGROUND AND AIMS: Hemodynamic normality is crucial to maintaining the integrity of cerebral vessels and, therefore, preserving the cognitive functions of Alzheimer's disease patients. This study investigates the implications of the hemodynamic changes and the neuropathological diversifications of AlCl3-induced AD. METHODS: The experimental animals were 8- to 12-wk-old male Wistar rats. The rats were randomly divided into 2 groups: a control group and a (+control group. Food intake, water intake, and weight changes were recorded daily for 22 wk. Synchronously, the regional cerebral blood flow (rCBF of the rats with AlCl3-induced AD were measured using magnetic resonance imaging (MRI. The hemorheological parameters were analyzed using a computerized auto-rotational rheometer. The brain tissue of the subjects was analyzed using immunohistological chemical (IHC staining to determine the beta-amyloid (Aβ levels. RESULTS: The results of hemodynamic analysis revealed that the whole blood viscosity (WBV, fibrinogen, plasma viscosity and RBC aggregation index (RAI in (+control were significantly higher than that of control group, while erythrocyte electrophoresis (EI of whole blood in (+control were significantly lower than that of control group. The results of acetylcholinesterase-RBC (AChE-RBCin the (+control group was significantly higher than that of the control group. The results also show that the reduction of rCBF in rats with AlCl3-induced AD was approximately 50% to 60% that of normal rats. IHC stain results show that significantly more Aβ plaques accumulated in the hippocampus and cortex of the (+control than in the control group. CONCLUSION: The results accentuate the importance of hemorheology and reinforce the specific association between hemodynamic and neuropathological changes in rats with AlCl3-induced AD. Hemorheological parameters, such as WBV and fibrinogen, and AChE-RBC were ultimately proven to be useful biomarkers of the

  7. Ocular hemodynamics and glaucoma: the role of mathematical modeling.

    Science.gov (United States)

    Harris, Alon; Guidoboni, Giovanna; Arciero, Julia C; Amireskandari, Annahita; Tobe, Leslie A; Siesky, Brent A

    2013-01-01

    To discuss the role of mathematical modeling in studying ocular hemodynamics, with a focus on glaucoma. We reviewed recent literature on glaucoma, ocular blood flow, autoregulation, the optic nerve head, and the use of mathematical modeling in ocular circulation. Many studies suggest that alterations in ocular hemodynamics play a significant role in the development, progression, and incidence of glaucoma. Although there is currently a limited number of studies involving mathematical modeling of ocular blood flow, regulation, and diseases (such as glaucoma), preliminary modeling work shows the potential of mathematical models to elucidate the mechanisms that contribute most significantly to glaucoma progression. Mathematical modeling is a useful tool when used synergistically with clinical and laboratory data in the study of ocular blood flow and glaucoma. The development of models to investigate the relationship between ocular hemodynamic alterations and glaucoma progression will provide a unique and useful method for studying the pathophysiology of glaucoma.

  8. Invasive and noninvasive hemodynamic monitoring of patients with cerebrovascular accidents.

    Science.gov (United States)

    Velmahos, G C; Wo, C C; Demetriades, D; Bishop, M H; Shoemaker, W C

    1998-01-01

    Seventeen patients with hemodynamic instability from acute cerebrovascular accidents were evaluated shortly after arrival at the emergency department of a university-run county hospital with both invasive Swan-Ganz pulmonary artery catheter placement and a new, noninvasive, thoracic electrical bioimpedance device. Values were recorded and temporal patterns of survivors and nonsurvivors were described. Cardiac indices obtained simultaneously by the 2 techniques were compared. Of the 17 patients, 11 (65%) died. Survivors had higher values than nonsurvivors for mean arterial pressure, cardiac index, and oxygen saturation, delivery, and consumption at comparable times. Cardiac index values, as measured by invasive and noninvasive methods, were correlated. We concluded that hemodynamic monitoring in an acute care setting may recognize temporal circulatory patterns associated with outcome. Noninvasive electrical bioimpedance technology offers a new method for early hemodynamic evaluation. Further research in this area is warranted. PMID:9682626

  9. [Unit of hemodynamics: the production of the knowledge].

    Science.gov (United States)

    Linch, Graciele Fernanda da Costa; Guido, Laura de Azevedo; Pitthan, Luiza de Oliveira; Umann, Juliane

    2009-12-01

    This study aimed at doing an integrative review that has as objective to investigate what has been published on nursing in hemodynamic in the following data bases: Scientific Electronic Library Online (SciELO), Medical Literature Analysis and Retrieval System Online (MEDLINE), Latin American and Caribbean Health Sciences (LILACS), and Nursing Database (BDENF); with the descriptors: Enfermagem and Hemodinâmica and Nursing and Hemodynamics. The data indicate that the studies in his majority were developed by nurses, and made a list to the presence of nursing, there were still boarded aspects made a list to the reprocess of catheters and health of the professionals of nursing. Nevertheless, it is noticeable that the publication of works connected with the thematic of hemodynamic is limited. However, they demonstrate the predominance of inquiries and reports making a list to the aspects of the presence of nursing in this sector which may represent the necessities and the problems that permeate the work.

  10. Hemodynamic effects of a novel pharmacologic stress agent, Higemine

    International Nuclear Information System (INIS)

    Zhang, X.L.; Liu, X.J.; Tao, Z.H.; Shi, R.F.

    2002-01-01

    Objective: Higenamine (dl-demethylcodaurine) (HG), which was isolated from aconitum japonicum. This study was to evaluate the hemodynamic effects of HG in animal study. Methods: We compared the hemodynamic effects of HG (0.5-4μg/min/kg) with Dobutamine (Dob) (5-30μg/min/kg) in 6 dogs: heart rate (HR), blood pressure (BP), coronary blood flow (CBF), myocardial oxygen consumption (MOC) were measured. Tolerability and safety of HG (1-500μg/mg/min) were evaluated in 8 dogs. Results: Comparison of hemodynamic effects between Dob an HG was presented. SBP: systolic blood pressure; DP: diastolic blood pressure; P<0.01; P<0.05. Diastolic BP slightly decreased, but systolic BP did not change significantly during HG infusion. There was no significant ECG abnormalities and side effects during HG infusion. Conclusion: HG might be a safe and useful pharmacologic stress agent, especially for patients with severe hypertension

  11. Hemodynamic effects of innominate artery occlusive disease on anterior cerebral artery.

    Science.gov (United States)

    Tan, Teng-Yeow; Lien, Li-Ming; Schminke, Ulf; Tesh, Paul; Reynolds, Patrick S; Tegeler, Charles H

    2002-01-01

    Stenoses of the innominate artery (IA) may affect flow conditions in the carotid arteries. However, alternating flow in ipsilateral anterior cerebral artery (ACA) due to IA stenosis is extremely rare. A 49-year-old woman who was evaluated for symptomatic cerebrovascular disease presented with right latent subclavian and right carotid system steal. Transcranial Doppler examination displayed systolic deceleration wave-forms in the right terminal internal carotid artery and alternating flow in the right ACA. Magnetic resonance angiography demonstrated tight stenosis of the right IA. For a thorough study of the hemodynamic effects of IA stenosis, a combination of duplex and transcranial Doppler examination is required.

  12. Short separation regression improves statistical significance and better localizes the hemodynamic response obtained by near-infrared spectroscopy for tasks with differing autonomic responses.

    Science.gov (United States)

    Yücel, Meryem A; Selb, Juliette; Aasted, Christopher M; Petkov, Mike P; Becerra, Lino; Borsook, David; Boas, David A

    2015-07-01

    Autonomic nervous system response is known to be highly task-dependent. The sensitivity of near-infrared spectroscopy (NIRS) measurements to superficial layers, particularly to the scalp, makes it highly susceptible to systemic physiological changes. Thus, one critical step in NIRS data processing is to remove the contribution of superficial layers to the NIRS signal and to obtain the actual brain response. This can be achieved using short separation channels that are sensitive only to the hemodynamics in the scalp. We investigated the contribution of hemodynamic fluctuations due to autonomous nervous system activation during various tasks. Our results provide clear demonstrations of the critical role of using short separation channels in NIRS measurements to disentangle differing autonomic responses from the brain activation signal of interest.

  13. The influence of systemic hemodynamics and oxygen transport on cerebral oxygen saturation in neonates after the Norwood procedure.

    Science.gov (United States)

    Li, Jia; Zhang, Gencheng; Holtby, Helen; Guerguerian, Anne-Marie; Cai, Sally; Humpl, Tilman; Caldarone, Christopher A; Redington, Andrew N; Van Arsdell, Glen S

    2008-01-01

    Ischemic brain injury is an important morbidity in neonates after the Norwood procedure. Its relationship to systemic hemodynamic oxygen transport is poorly understood. Sixteen neonates undergoing the Norwood procedure were studied. Continuous cerebral oxygen saturation was measured by near-infrared spectroscopy. Continuous oxygen consumption was measured by respiratory mass spectrometry. Pulmonary and systemic blood flow, systemic vascular resistance, oxygen delivery, and oxygen extraction ratio were derived with measurements of arterial, and superior vena cava and pulmonary venous gases and pressures at 2- to 4-hour intervals during the first 72 hours in the intensive care unit. Mean cerebral oxygen saturation was 66% +/- 12% before the operation, reduced to 51% +/- 13% on arrival in the intensive care unit, and remained low during the first 8 hours; it increased to 56% +/- 9% at 72 hours, still significantly lower than the preoperative level (P blood flow and oxygen delivery (P blood flow (P = .001) and hemoglobin (P = .02) and negatively correlated with systemic vascular resistance (P = .003). It was not correlated with oxygen consumption (P > .05). Cerebral oxygen saturation decreased significantly in neonates during the early postoperative period after the Norwood procedure and was significantly influenced by systemic hemodynamic and metabolic events. As such, hemodynamic interventions to modify systemic oxygen transport may provide further opportunities to reduce the risk of cerebral ischemia and improve neurodevelopmental outcomes.

  14. Monitoring Local Regional Hemodynamic Signal Changes during Motor Execution and Motor Imagery Using Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Naoki eIso

    2016-01-01

    Full Text Available The aim of this study was to clarify the topographical localization of motor-related regional hemodynamic signal changes during motor execution (ME and motor imagery (MI by using near-infrared spectroscopy (NIRS, as this technique is more clinically expedient than established methods (e.g. fMRI. Twenty right-handed healthy subjects participated in this study. The experimental protocol was a blocked design consisting of 3 cycles of 20 s of task performance and 30 s of rest. The tapping sequence task was performed with their fingers under 4 conditions: ME and MI with the right or left hand. Hemodynamic brain activity was measured with NIRS to monitor changes in oxygenated hemoglobin (oxy-Hb concentration. Oxy-Hb in the somatosensory motor cortex (SMC increased significantly only during contralateral ME and showed a significant interaction between task and hand. There was a main effect of hand in the left SMC. Although there were no significant main effects or interactions in the supplemental motor area (SMA and premotor area (PMA, oxy-Hb increased substantially under all conditions. These results clarified the topographical localization by motor-related regional hemodynamic signal changes during ME and MI by using NIRS.

  15. Myeloablative temozolomide enhances CD8⁺ T-cell responses to vaccine and is required for efficacy against brain tumors in mice.

    Directory of Open Access Journals (Sweden)

    Luis A Sanchez-Perez

    Full Text Available Temozolomide (TMZ is an alkylating agent shown to prolong survival in patients with high grade glioma and is routinely used to treat melanoma brain metastases. A prominent side effect of TMZ is induction of profound lymphopenia, which some suggest may be incompatible with immunotherapy. Conversely, it has been proposed that recovery from chemotherapy-induced lymphopenia may actually be exploited to potentiate T-cell responses. Here, we report the first demonstration of TMZ as an immune host-conditioning regimen in an experimental model of brain tumor and examine its impact on antitumor efficacy of a well-characterized peptide vaccine. Our results show that high-dose, myeloablative (MA TMZ resulted in markedly reduced CD4(+, CD8(+ T-cell and CD4(+Foxp3(+ TReg counts. Adoptive transfer of naïve CD8(+ T cells and vaccination in this setting led to an approximately 70-fold expansion of antigen-specific CD8(+ T cells over controls. Ex vivo analysis of effector functions revealed significantly enhanced levels of pro-inflammatory cytokine secretion from mice receiving MA TMZ when compared to those treated with a lower lymphodepletive, non-myeloablative (NMA dose. Importantly, MA TMZ, but not NMA TMZ was uniquely associated with an elevation of endogenous IL-2 serum levels, which we also show was required for optimal T-cell expansion. Accordingly, in a murine model of established intracerebral tumor, vaccination-induced immunity in the setting of MA TMZ-but not lymphodepletive, NMA TMZ-led to significantly prolonged survival. Overall, these results may be used to leverage the side-effects of a clinically-approved chemotherapy and should be considered in future study design of immune-based treatments for brain tumors.

  16. Blunt splenic injury and severe brain injury: a decision analysis and implications for care

    Science.gov (United States)

    Alabbasi, Thamer; Nathens, Avery B.; Tien, Col Homer

    2015-01-01

    Background The initial nonoperative management (NOM) of blunt splenic injuries in hemodynamically stable patients is common. In soldiers who experience blunt splenic injuries with concomitant severe brain injury while on deployment, however, NOM may put the injured soldier at risk for secondary brain injury from prolonged hypotension. Methods We conducted a decision analysis using a Markov process to evaluate 2 strategies for managing hemodynamically stable patients with blunt splenic injuries and severe brain injury — immediate splenectomy and NOM — in the setting of a field hospital with surgical capability but no angiography capabilities. We considered the base case of a 40-year-old man with a life expectancy of 78 years who experienced blunt trauma resulting in a severe traumatic brain injury and an isolated splenic injury with an estimated failure rate of NOM of 19.6%. The primary outcome measured was life expectancy. We assumed that failure of NOM would occur in the setting of a prolonged casualty evacuation, where surgical capability was not present. Results Immediate splenectomy was the slightly more effective strategy, resulting in a very modest increase in overall survival compared with NOM. Immediate splenectomy yielded a survival benefit of only 0.4 years over NOM. Conclusion In terms of overall survival, we would not recommend splenectomy unless the estimated failure rate of NOM exceeded 20%, which corresponds to an American Association for the Surgery of Trauma grade III splenic injury. For military patients for whom angiography may not be available at the field hospital and who require prolonged evacuation, immediate splenectomy should be considered for grade III–V injuries in the presence of severe brain injury. PMID:26100770

  17. The effect of intravenous PACAP38 on cerebral hemodynamics in healthy volunteers

    DEFF Research Database (Denmark)

    Birk, Steffen; Sitarz, John Thomas; Petersen, Kenneth Ahrend

    2007-01-01

    .9+/-22.4% (Peffect on rCBF in healthy volunteers. The marked increase in heart rate and the reduction in rCBF caused by decreased P(et)CO(2) are important dose-limiting factors to consider in future clinical studies.......PACAP38 is an endogenous peptide located in trigeminal perivascular nerve fibers in the brain. It reduces neuronal loss and infarct size in animal stroke models and has been proposed a candidate substance for human clinical studies of stroke. The effect on systemic hemodynamics and regional......CBF was measured with SPECT and (133)Xe inhalation and mean blood flow velocity in the middle cerebral artery was measured with transcranial Doppler ultrasonography. End tidal partial pressure of CO(2) (P(et)CO(2)) and vital parameters were recorded throughout the 2 hour study period. PACAP38 decreased rCBF in all...

  18. Hemodynamics and vasopressor support in therapeutic hypothermia after cardiac arrest

    DEFF Research Database (Denmark)

    Bro-Jeppesen, John; Kjaergaard, Jesper; Søholm, Helle

    2014-01-01

    AIM: Inducing therapeutic hypothermia (TH) in Out-of-Hospital Cardiac Arrest (OHCA) can be challenging due to its impact on central hemodynamics and vasopressors are frequently used to maintain adequate organ perfusion. The aim of this study was to assess the association between level of vasopres......AIM: Inducing therapeutic hypothermia (TH) in Out-of-Hospital Cardiac Arrest (OHCA) can be challenging due to its impact on central hemodynamics and vasopressors are frequently used to maintain adequate organ perfusion. The aim of this study was to assess the association between level...

  19. Hemodynamic causes of exercise intolerance in Fontan patients

    DEFF Research Database (Denmark)

    Hebert, Anders; Jensen, Annette S; Mikkelsen, Ulla Ramer

    2014-01-01

    BACKGROUND: Exercise intolerance is frequent among Fontan patients and an important determinant for quality of life. This study investigated the hemodynamic causes of impaired exercise capacity in Fontan patients with particular focus on the influence of stroke volume index (SVI) and heart rate (HR...... patients and controls respectively. CONCLUSION: SVI decreased significantly in Fontan patients near the end of maximal effort exercise. The low SVI at maximal exercise was the most important hemodynamic factor limiting exercise capacity in Fontan patients, whereas chronotropic impairment had a smaller...

  20. Efficient solution methodology for calibrating the hemodynamic model using functional Magnetic Resonance Imaging (fMRI) measurements

    KAUST Repository

    Zambri, Brian

    2015-11-05

    Our aim is to propose a numerical strategy for retrieving accurately and efficiently the biophysiological parameters as well as the external stimulus characteristics corresponding to the hemodynamic mathematical model that describes changes in blood flow and blood oxygenation during brain activation. The proposed method employs the TNM-CKF method developed in [1], but in a prediction/correction framework. We present numerical results using both real and synthetic functional Magnetic Resonance Imaging (fMRI) measurements to highlight the performance characteristics of this computational methodology. © 2015 IEEE.

  1. Efficient solution methodology for calibrating the hemodynamic model using functional Magnetic Resonance Imaging (fMRI) measurements

    KAUST Repository

    Zambri, Brian; Djellouli, Rabia; Laleg-Kirati, Taous-Meriem

    2015-01-01

    Our aim is to propose a numerical strategy for retrieving accurately and efficiently the biophysiological parameters as well as the external stimulus characteristics corresponding to the hemodynamic mathematical model that describes changes in blood flow and blood oxygenation during brain activation. The proposed method employs the TNM-CKF method developed in [1], but in a prediction/correction framework. We present numerical results using both real and synthetic functional Magnetic Resonance Imaging (fMRI) measurements to highlight the performance characteristics of this computational methodology. © 2015 IEEE.

  2. p75 neurotrophin receptor cleavage by α- and γ-secretases is required for neurotrophin-mediated proliferation of brain tumor-initiating cells.

    Science.gov (United States)

    Forsyth, Peter A; Krishna, Niveditha; Lawn, Samuel; Valadez, J Gerardo; Qu, Xiaotao; Fenstermacher, David A; Fournier, Michelle; Potthast, Lisa; Chinnaiyan, Prakash; Gibney, Geoffrey T; Zeinieh, Michele; Barker, Philip A; Carter, Bruce D; Cooper, Michael K; Kenchappa, Rajappa S

    2014-03-21

    Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target.

  3. Ongoing right ventricular hemodynamics in heart failure: clinical value of measurements derived from an implantable monitoring system.

    Science.gov (United States)

    Adamson, Philip B; Magalski, Anthony; Braunschweig, Frieder; Böhm, Michael; Reynolds, Dwight; Steinhaus, David; Luby, Allyson; Linde, Cecilia; Ryden, Lars; Cremers, Bodo; Takle, Teri; Bennett, Tom

    2003-02-19

    This study examined the characteristics of continuously measured right ventricular (RV) hemodynamic information derived from an implantable hemodynamic monitor (IHM) in heart failure patients. Hemodynamic monitoring might improve the day-to-day management of patients with chronic heart failure (CHF). Little is known about the characteristics of long-term hemodynamic information in patients with CHF or how such information relates to meaningful clinical events. Thirty-two patients with CHF received a permanent RV IHM system similar to a single-lead pacemaker. Right ventricular systolic and diastolic pressures, heart rate, and pressure derivatives were continuously measured for nine months without using the data for clinical decision-making or management of patients. Data were then made available to clinical providers, and the patients were followed up for 17 months. Pressure characteristics during optimal volume, clinically determined volume-overload exacerbations, and volume depletion events were examined. The effect of IHM on hospitalizations was examined using the patients' historical controls. Long-term RV pressure measurements had either marked variability or minimal time-related changes. During 36 volume-overload events, RV systolic pressures increased by 25 +/- 4% (p < 0.05) and heart rate increased by 11 +/- 2% (p < 0.05). Pressure increases occurred in 9 of 12 events 4 +/- 2 days before the exacerbations requiring hospitalization. Hospitalizations before using IHM data for clinical management averaged 1.08 per patient year and decreased to 0.47 per patient-year (57% reduction, p < 0.01) after hemodynamic data were used. Long-term ambulatory pressure measurements from an IHM may be helpful in guiding day-to-day clinical management, with a potentially favorable impact on CHF hospitalizations.

  4. Quantification of collateral flow in humans: a comparison of angiographic, electrocardiographic and hemodynamic variables

    NARCIS (Netherlands)

    van Liebergen, R. A.; Piek, J. J.; Koch, K. T.; de Winter, R. J.; Schotborgh, C. E.; Lie, K. I.

    1999-01-01

    Evaluation of collateral vascular circulation according to hemodynamic variables and its relation to myocardial ischemia. There is limited information regarding the hemodynamic quantification of recruitable collateral vessels. Angiography of the donor coronary artery was performed before and during

  5. Methylene Blue Is Effective to Reverse Refractory Hemodynamic Instability due to Dimethoate Poisoning

    Directory of Open Access Journals (Sweden)

    Nick Youssefi

    2015-09-01

    Conclusion:MB treatment was effective to reverse hypotension and restore hemodynamic instability caused by dimethoate poisoning. This index case may pave way to further investigation of MB therapy for OP-induced hemodynamic instabilities.

  6. Acute coronary hemodynamic effects of equihypotensive doses of nisoldipine and diltiazem

    NARCIS (Netherlands)

    H. Suryapranata (Harry); P.W.J.C. Serruys (Patrick); A.L. Soward; J. Planellas; G. Vanhaleweyk; P.G. Hugenholtz (Paul)

    1985-01-01

    textabstractThe hemodynamic effects of nisoldipine and diltiazem were investigated in two groups of patients undergoing investigation for suspected coronary artery disease. Emphasis was placed on the coronary hemodynamic changes. Approximately equihypotensive doses of these two calcium channel

  7. Hemodynamic and neuro-monitoring for neurocritically ill patients: An international survey of intensivists.

    Science.gov (United States)

    Sivakumar, Sanjeev; Taccone, Fabio S; Rehman, Mohammed; Hinson, Holly; Naval, Neeraj; Lazaridis, Christos

    2017-06-01

    To investigate multimodality systemic and neuro-monitoring practices in acute brain injury (ABI) and to analyze differences among "neurointensivists" (NI; clinical practice comprised >1/3 by neurocritical care), and other intensivists (OI). Anonymous 22-question Web-based survey among physician members of SCCM and ESICM. Six hundred fifty-five responded (66% completion rate); 422 (65%) were OI, and 226 (35%) were NI. More NI follow hemodynamic protocols for TBI (44.5% vs 33%, P=.007) and SAH (38% vs 21%, P<.001). For CPP optimization, NI use more arterial-waveform-analysis (AWA) (45% vs 35%, P=.019), and ultrasound (37.5% vs 28%, P=.023); NI use more PbtO 2 (28% vs 10%, P<.001). In the case scenario of raised ICP/low PbtO 2 , most employ analgesia and/or sedation (47%) and osmotherapy (38%). More NI use pressure reactivity (vasopressor use OI 23% vs NI 34.5%, P=.014). For DCI, more NI target cardiac index (CI) (35% vs 21%, P<.001), and fluid responsiveness (62.5% vs 53%, P=.03). Also, NI use more angiography (57% vs 43.5%, P=.004), TCD (56.5% vs 38%, P<.001), CTP (32% vs16%, P<.001), and PbtO 2 (18% vs 7.5%, P=.001). Intensivists with exposure to ABI patients employ more neuro- and hemodynamic monitoring. We found large heterogeneity and low overall use of advanced brain-physiology parameters. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A sensorimotor area in the songbird brain is required for production of vocalizations in the song learning period of development.

    Science.gov (United States)

    Piristine, Hande C; Choetso, Tenzin; Gobes, Sharon M H

    2016-11-01

    Sensory feedback is essential for acquiring and maintaining complex motor behaviors, including birdsong. In zebra finches, auditory feedback reaches the song control circuits primarily through the nucleus interfacialis nidopalii (Nif), which provides excitatory input to HVC (proper name)-a premotor region essential for the production of learned vocalizations. Despite being one of the major inputs to the song control pathway, the role of Nif in generating vocalizations is not well understood. To address this, we transiently inactivated Nif in late juvenile zebra finches. Upon Nif inactivation (in both hemispheres or on one side only), birds went from singing stereotyped zebra finch song to uttering highly variable and unstructured vocalizations resembling sub-song, an early juvenile song form driven by a basal ganglia circuit. Simultaneously inactivating Nif and LMAN (lateral magnocellular nucleus of the anterior nidopallium), the output nucleus of a basal ganglia circuit, inhibited song production altogether. These results suggest that Nif is required for generating the premotor drive for song. Permanent Nif lesions, in contrast, have only transient effects on vocal production, with song recovering within a day. The sensorimotor nucleus Nif thus produces a premotor drive to the motor pathway that is acutely required for generating learned vocalizations, but once permanently removed, the song system can compensate for its absence. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1213-1225, 2016. © 2016 Wiley Periodicals, Inc.

  9. Focal Hemodynamic Responses in the Stimulated Hemisphere During High-Definition Transcranial Direct Current Stimulation.

    Science.gov (United States)

    Muthalib, Makii; Besson, Pierre; Rothwell, John; Perrey, Stéphane

    2017-07-17

    High-definition transcranial direct current stimulation (HD-tDCS) using a 4 × 1 electrode montage has been previously shown using modeling and physiological studies to constrain the electric field within the spatial extent of the electrodes. The aim of this proof-of-concept study was to determine if functional near-infrared spectroscopy (fNIRS) neuroimaging can be used to determine a hemodynamic correlate of this 4 × 1 HD-tDCS electric field on the brain. In a three session cross-over study design, 13 healthy males received one sham (2 mA, 30 sec) and two real (HD-tDCS-1 and HD-tDCS-2, 2 mA, 10 min) anodal HD-tDCS targeting the left M1 via a 4 × 1 electrode montage (anode on C3 and 4 return electrodes 3.5 cm from anode). The two real HD-tDCS sessions afforded a within-subject replication of the findings. fNIRS was used to measure changes in brain hemodynamics (oxygenated hemoglobin integral-O 2 Hb int ) during each 10 min session from two regions of interest (ROIs) in the stimulated left hemisphere that corresponded to "within" (L in ) and "outside" (L out ) the spatial extent of the 4 × 1 electrode montage, and two corresponding ROIs (R in and R out ) in the right hemisphere. The ANOVA showed that both real anodal HD-tDCS compared to sham induced a significantly greater O 2 Hb int in the L in than L out ROIs of the stimulated left hemisphere; while there were no significant differences between the real and sham sessions for the right hemisphere ROIs. Intra-class correlation coefficients showed "fair-to-good" reproducibility for the left stimulated hemisphere ROIs. The greater O 2 Hb int "within" than "outside" the spatial extent of the 4 × 1 electrode montage represents a hemodynamic correlate of the electrical field distribution, and thus provides a prospective reliable method to determine the dose of stimulation that is necessary to optimize HD-tDCS parameters in various applications. © 2017 International Neuromodulation Society.

  10. Hemodynamic monitoring in different cortical layers with a single fiber optical system

    Science.gov (United States)

    Yu, Linhui; Noor, M. Sohail; Kiss, Zelma H. T.; Murari, Kartikeya

    2018-02-01

    Functional monitoring of highly-localized deep brain structures is of great interest. However, due to light scattering, optical methods have limited depth penetration or can only measure from a large volume. In this research, we demonstrate continuous measurement of hemodynamics in different cortical layers in response to thalamic deep brain stimulation (DBS) using a single fiber optical system. A 200-μm-core-diameter multimode fiber is used to deliver and collect light from tissue. The fiber probe can be stereotaxically implanted into the brain region of interest at any depth to measure the di use reflectance spectra from a tissue volume of 0.02-0.03 mm3 near the fiber tip. Oxygenation is then extracted from the reflectance spectra using an algorithm based on Monte Carlo simulations. Measurements were performed on the surface (cortical layer I) and at 1.5 mm depth (cortical layer VI) of the motor cortex in anesthetized rats with thalamic DBS. Preliminary results revealed the oxygenation changes in response to DBS. Moreover, the baseline as well as the stimulus-evoked change in oxygenation were different at the two depths of cortex.

  11. Prospective evaluation of intraoperative hemodynamics in liver transplantation with whole, partial and DCD grafts

    NARCIS (Netherlands)

    Sainz-Barriga, M; Reyntjens, K; Costa, M G; Scudeller, L; Rogiers, X; Wouters, P; de Hemptinne, B; Troisi, R I

    The interaction of systemic hemodynamics with hepatic flows at the time of liver transplantation (LT) has not been studied in a prospective uniform way for different types of grafts. We prospectively evaluated intraoperative hemodynamics of 103 whole and partial LT. Liver graft hemodynamics were

  12. Is the antiproteinuric effect of dipyridamole hemodynamically mediated

    NARCIS (Netherlands)

    de Jong, P. E.; van der Meer, J.; van der Hem, G. K.; de Zeeuw, D.

    1988-01-01

    We studied the acute antiproteinuric and renal hemodynamic effect of dipyridamole 30–60 mg intravenously in 13 salt-depleted patients with the nephrotic syndrome of different etiology. Whereas mean arterial pressure did not change, a small fall in glomerular filtration rate with a concomitant fall

  13. Relationship Between Serum Uric Acid Levels and Intrarenal Hemodynamic Parameters

    Directory of Open Access Journals (Sweden)

    Hideki Uedono

    2015-06-01

    Full Text Available Background/Aims: Hyperuricemia has been reported to affect renal hemodynamics in rat models. We evaluate the relationship between serum uric acid and intrarenal hemodynamic parameters in humans, utilizing the plasma clearance of para-aminohippurate (CPAH and inulin (Cin. Methods: Renal and glomerular hemodynamics were assessed by simultaneous measurement of CPAH and Cin in 58 subjects. Of these, 19 subjects were planned to provide a kidney for transplantation; 26 had diabetes without proteinuria; and 13 had mild proteinuria. Renal and glomerular hemodynamics were calculated using Gomez`s formulae. Results: Cin was more than 60 ml/min/1.73m2 in all subjects. Serum uric acid levels correlated significantly with vascular resistance at the afferent arteriole (Ra (r = 0.354, p = 0.006 but not with that of the efferent arteriole (Re. Serum uric acid levels (β = 0.581, p = a after adjustment for several confounders (R2 = 0.518, p = Conclusions: These findings suggest, for the first time in humans, that higher serum uric acid levels are associated significantly with Ra in subjects with Cin > 60 ml/min/1.73m2. The increase in Ra in subjects with higher uric acid levels may be related to dysfunction of glomerular perfusion.

  14. White-collar workers' hemodynamic responses during working hours.

    Science.gov (United States)

    Liu, Xinxin; Iwakiri, Kazuyuki; Sotoyama, Midori

    2017-08-08

    In the present study, two investigations were conducted at a communication center, to examine white-collar workers' hemodynamic responses during working hours. In investigation I, hemodynamic responses were measured on a working day; and in investigation II, cardiovascular responses were verified on both working and non-working days. In investigation I, blood pressure, cardiac output, heart rate, stroke volume, and total peripheral resistance were measured in 15 workers during working hours (from 9:00 am to 18:00 pm) on one working day. Another 40 workers from the same workplace participated in investigation II, in which blood pressure and heart rate were measured between the time workers arose in the morning until they went to bed on 5 working days and 2 non-working days. The results showed that blood pressure increased and remained at the same level during working hours. The underlying hemodynamics of maintaining blood pressure, however, changed between the morning and the afternoon on working days. Cardiac responses increased in the afternoon, suggesting that cardiac burdens increase in the afternoon on working days. The present study suggested that taking underlying hemodynamic response into consideration is important for managing the work-related cardiovascular burden of white-collar workers.

  15. Monitoring Detrusor Oxygenation and Hemodynamics Noninvasively during Dysfunctional Voiding

    Science.gov (United States)

    Macnab, Andrew J.; Stothers, Lynn S.; Shadgan, Babak

    2012-01-01

    The current literature indicates that lower urinary tract symptoms (LUTSs) related to benign prostatic hyperplasia (BPH) have a heterogeneous pathophysiology. Pressure flow studies (UDSs) remain the gold standard evaluation methodology for such patients. However, as the function of the detrusor muscle depends on its vasculature and perfusion, the underlying causes of LUTS likely include abnormalities of detrusor oxygenation and hemodynamics, and available treatment options include agents thought to act on the detrusor smooth muscle and/or vasculature. Hence, near infrared spectroscopy (NIRS), an established optical methodology for monitoring changes in tissue oxygenation and hemodynamics, has relevance as a means of expanding knowledge related to the pathophysiology of BPH and potential treatment options. This methodological report describes how to conduct simultaneous NIRS monitoring of detrusor oxygenation and hemodynamics during UDS, outlines the clinical implications and practical applications of NIRS, explains the principles of physiologic interpretation of NIRS voiding data, and proposes an exploratory hypothesis that the pathophysiological causes underlying LUTS include detrusor dysfunction due to an abnormal hemodynamic response or the onset of oxygen debt during voiding. PMID:23019422

  16. Clinical review: Update on hemodynamic monitoring - a consensus of 16.

    NARCIS (Netherlands)

    Vincent, J.L.; Rhodes, A.; Perel, A.; Martin, G.S.; Rocca, G.D.; Vallet, B.; Pinsky, M.R.; Hofer, C.K.; Teboul, J.L.; Boode, W.P. de; Scolletta, S.; Viellard-Baron, A.; Backer, D. de; Walley, K.R.; Maggiorini, M.; Singer, M.

    2011-01-01

    Hemodynamic monitoring plays a fundamental role in the management of acutely ill patients. With increased concerns about the use of invasive techniques, notably the pulmonary artery catheter, to measure cardiac output, recent years have seen an influx of new, less-invasive means of measuring

  17. Acute hemodynamic response to vasodilators in primary pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Kulkarni H

    1996-01-01

    Full Text Available Acute hemodynamic effects of high flow oxygen (O2 inhalation, sublingual isosorbide dinitrate (ISDN, intravenous aminophylline (AMN and sublingual nifedipine (NIF were studied in 32 patients with primary pulmonary hypertension (PPH. In 30 out of 32 patients the basal ratio of pulmonary to systemic vascular resistance (Rp/Rs was > 0.5 (mean = 0.77 +/- 0.20. Oxygen caused significant decrease in the mean resistance ratio to 0.68 +/- 0.20 (p = 0.005. ISDN, AMN and NIF caused increase in the resistance ratio to 0.79 +/- 0.26; 0.78 +/- 0.26; and 0.80 +/- 0.23 respectively. O2, ISDN, AMN and NIF caused a fall of Rp/Rs in 21 (65.6%, 10 (31.2%, 10(31.2% and 9(28.1% patients respectively. Thus, of the four drugs tested high flow O2 inhalation resulted in fall of Rp/Rs in two thirds of patients whereas ISDN, AMN and NIF caused a mean rise in Rp/Rs. One third of patients did respond acutely to the latter three drugs. Acute hemodynamic studies are useful before prescribing vasodilators in patients with PPH since more of the commonly used drugs like ISDN, AMN, NIF could have detrimental hemodynamic responses in some patients. However, great caution should be exercised before performing hemodynamic study as the procedure has definite mortality and morbidity.

  18. Monitoring Detrusor Oxygenation and Hemodynamics Noninvasively during Dysfunctional Voiding

    Directory of Open Access Journals (Sweden)

    Andrew J. Macnab

    2012-01-01

    Full Text Available The current literature indicates that lower urinary tract symptoms (LUTSs related to benign prostatic hyperplasia (BPH have a heterogeneous pathophysiology. Pressure flow studies (UDSs remain the gold standard evaluation methodology for such patients. However, as the function of the detrusor muscle depends on its vasculature and perfusion, the underlying causes of LUTS likely include abnormalities of detrusor oxygenation and hemodynamics, and available treatment options include agents thought to act on the detrusor smooth muscle and/or vasculature. Hence, near infrared spectroscopy (NIRS, an established optical methodology for monitoring changes in tissue oxygenation and hemodynamics, has relevance as a means of expanding knowledge related to the pathophysiology of BPH and potential treatment options. This methodological report describes how to conduct simultaneous NIRS monitoring of detrusor oxygenation and hemodynamics during UDS, outlines the clinical implications and practical applications of NIRS, explains the principles of physiologic interpretation of NIRS voiding data, and proposes an exploratory hypothesis that the pathophysiological causes underlying LUTS include detrusor dysfunction due to an abnormal hemodynamic response or the onset of oxygen debt during voiding.

  19. Initial approach to hypertension in the hemodynamics unit: review article

    Directory of Open Access Journals (Sweden)

    Gustavo Teixeira Fulton Schimit

    2013-06-01

    Full Text Available Correct identification and early management of hypertensive disorders should be a part of the therapeutic repertoire of every professional working in hemodynamics units. Based on recent publications, this study aims to propose a practical approach to the identification and early management of these disorders in this type of service.

  20. Dietary melatonin alters uterine artery hemodynamics in pregnant holstein heifers

    Science.gov (United States)

    The objective was to examine uterine artery hemodynamics and maternal serum profiles in pregnant heifers supplemented with dietary melatonin (MEL) or no supplementation (CON). In addition, melatonin receptor–mediated responses in steroid metabolism were examined using a bovine endometrial epithelial...

  1. Effects of an interatrial shunt on rest and exercise hemodynamics

    DEFF Research Database (Denmark)

    Kaye, David; Shah, Sanjiv J; Borlaug, Barry A

    2014-01-01

    BACKGROUND: A treatment based on an interatrial shunt device has been proposed for counteracting elevated pulmonary capillary wedge pressure (PCWP) in patients with heart failure and mildly reduced or preserved ejection fraction (HFpEF). We tested the theoretical hemodynamic effects of this appro...

  2. Physiological basis of clinically used coronary hemodynamic indices

    NARCIS (Netherlands)

    Spaan, Jos A. E.; Piek, Jan J.; Hoffman, Julien I. E.; Siebes, Maria

    2006-01-01

    In deriving clinically used hemodynamic indices such as fractional flow reserve and coronary flow velocity reserve, simplified models of the coronary circulation are used. In particular, myocardial resistance is assumed to be independent of factors such as heart contraction and driving pressure.

  3. Anterior prefrontal hemodynamic connectivity in conscious 3- to 7-year-old children with typical development and autism spectrum disorder.

    Directory of Open Access Journals (Sweden)

    Mitsuru Kikuchi

    Full Text Available Socio-communicative impairments are salient features of autism spectrum disorder (ASD from a young age. The anterior prefrontal cortex (aPFC, or Brodmann area 10, is a key processing area for social function, and atypical development of this area is thought to play a role in the social deficits in ASD. It is important to understand these brain functions in developing children with ASD. However, these brain functions have not yet been well described under conscious conditions in young children with ASD. In the present study, we focused on the brain hemodynamic functional connectivity between the right and the left aPFC in children with ASD and typically developing (TD children and investigated whether there was a correlation between this connectivity and social ability. Brain hemodynamic fluctuations were measured non-invasively by near-infrared spectroscopy (NIRS in 3- to 7-year-old children with ASD (n = 15 and gender- and age-matched TD children (n = 15. The functional connectivity between the right and the left aPFC was assessed by measuring the coherence for low-frequency spontaneous fluctuations (0.01-0.10 Hz during a narrated picture-card show. Coherence analysis demonstrated that children with ASD had a significantly higher inter-hemispheric connectivity with 0.02-Hz fluctuations, whereas a power analysis did not demonstrate significant differences between the two groups in terms of low frequency fluctuations (0.01-0.10 Hz. This aberrant higher connectivity in children with ASD was positively correlated with the severity of social deficit, as scored with the Autism Diagnostic Observation Schedule. This is the first study to demonstrate aberrant brain functional connectivity between the right and the left aPFC under conscious conditions in young children with ASD.

  4. Intraosseous anesthesia in hemodynamic studies in children with cardiopathy.

    Science.gov (United States)

    Aliman, Ana Cristina; Piccioni, Marilde de Albuquerque; Piccioni, João Luiz; Oliva, José Luiz; Auler Júnior, José Otávio Costa

    2011-01-01

    Intraosseous (IO) access has been used with good results in emergency situations, when venous access is not available for fluids and drugs infusion. The objective of this study was to evaluate IO a useful technique for anesthesia and fluids infusion during hemodynamic studies and when peripheral intravascular access is unobtainable. The setting was an university hospital hemodynamics unit, and the subjects were twenty one infants with congenital heart disease enrolled for elective hemodynamic study diagnosis. This study compared the effectiveness of IO access in relation to IV access for infusion of anesthetics agents (ketamine, midazolam, and fentanyl) and fluids during hemodynamic studies. The anesthetic induction time, procedure duration, anesthesia recovery time, adequate hydration, and IV and IO puncture complications were compared between groups. The puncture time was significantly smaller in IO group (3.6 min) that in IV group (9.6 min). The anesthetic onset time (56.3 second) for the IV group was faster than IO group (71.3 second). No significant difference between groups were found in relation to hydration (IV group, 315.5 mL vs IO group, 293.2 mL), and anesthesia recovery time (IO group, 65.2 min vs IV group, 55.0 min). The puncture site was reevaluated after 7 and 15 days without signs of infection or other complications. Results showed superiority for IO infusion when considering the puncture time of the procedure. Due to its easy manipulation and efficiency, hydration and anesthesia by IO access was satisfactory for hemodynamic studies without the necessity of other infusion access. Copyright © 2011 Elsevier Editora Ltda. All rights reserved.

  5. Reliability of oscillometric central hemodynamic responses to an orthostatic challenge.

    Science.gov (United States)

    Stoner, Lee; Bonner, Chantel; Credeur, Daniel; Lambrick, Danielle; Faulkner, James; Wadsworth, Daniel; Williams, Michelle A

    2015-08-01

    Monitoring central hemodynamic responses to an orthostatic challenge may provide important insight into autonomic nervous system function. Oscillometric pulse wave analysis devices have recently emerged, presenting clinically viable options for investigating central hemodynamic properties. The purpose of the current study was to determine whether oscillometric pulse wave analysis can be used to reliably (between-day) assess central blood pressure and central pressure augmentation (augmentation index) responses to a 5 min orthostatic challenge (modified tilt-table). Twenty healthy adults (26.4 y (SD 5.2), 55% F, 24.7 kg/m(2) (SD 3.8)) were tested on 3 different mornings in the fasted state, separated by a maximum of 7 days. Central hemodynamic variables were assessed on the left arm using an oscillometric device. Repeated measures analysis of variance indicated a significant main effect of the modified tilt-table for all central hemodynamic variables (P response to the tilt, central diastolic pressure increased by 4.5 mmHg (CI: 2.6, 6.4), central systolic blood pressure increased by 2.3 (CI: 4.4, 0.16) mmHg, and augmentation index decreased by an absolute - 5.3%, (CI: -2.7, -7.9%). The intra-class correlation coefficient values for central diastolic pressure (0.83-0.86), central systolic blood pressure (0.80-0.87) and AIx (0.79-0.82) were above the 0.75 criterion in both the supine and tilted positions, indicating excellent between-day reliability. Central hemodynamic responses to an orthostatic challenge can be assessed with acceptable between-day reliability using oscillometric pulse wave analysis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Decreased Vertebral Artery Hemodynamics in Patients with Loss of Cervical Lordosis.

    Science.gov (United States)

    Bulut, Mehmet Deniz; Alpayci, Mahmut; Şenköy, Emre; Bora, Aydin; Yazmalar, Levent; Yavuz, Alpaslan; Gülşen, İsmail

    2016-02-15

    BACKGROUND Because loss of cervical lordosis leads to disrupted biomechanics, the natural lordotic curvature is considered to be an ideal posture for the cervical spine. The vertebral arteries proceed in the transverse foramen of each cervical vertebra. Considering that the vertebral arteries travel in close anatomical relationship to the cervical spine, we speculated that the loss of cervical lordosis may affect vertebral artery hemodynamics. The aim of this study was to compare the vertebral artery values between subjects with and without loss of cervical lordosis. MATERIAL AND METHODS Thirty patients with loss of cervical lordosis and 30 controls matched for age, sex, and body mass index were included in the study. Sixty vertebral arteries in patients with loss of cervical lordosis and 60 in controls without loss of cervical lordosis were evaluated by Doppler ultrasonography. Vertebral artery hemodynamics, including lumen diameter, flow volume, peak systolic velocity, end-diastolic velocity, and resistive index, were measured, and determined values were statistically compared between the patient and the control groups. RESULTS The means of diameter (p=0.003), flow volume (p=0.002), and peak systolic velocity (p=0.014) in patients were significantly lower as compared to controls. However, there was no significant difference between the 2 groups in terms of the end-diastolic velocity (p=0.276) and resistive index (p=0.536) parameters. CONCLUSIONS The present study revealed a significant association between loss of cervical lordosis and decreased vertebral artery hemodynamics, including diameter, flow volume, and peak systolic velocity. Further studies are required to confirm these findings and to investigate their possible clinical implications.

  7. [Part II: basic hemodynamic monitoring and the use of pulmonary artery catheter].

    Science.gov (United States)

    Dias, Fernando Suparregui; Rezende, Ederlon; Mendes, Ciro Leite; Réa-Neto, Alvaro; David, Cid Marcos; Schettino, Guilherme; Lobo, Suzana Margareth Ajeje; Barros, Alberto; Silva, Eliézer; Friedman, Gilberto; Amaral, José Luiz Gomes do; Park, Marcelo; Monachini, Maristela; Oliveira, Mirella Cristine de; Assunção, Murillo Santucci César; Akamine, Nelson; Mello, Patrícia Veiga C; Pereira, Renata Andréa Pietro; Costa Filho, Rubens; Araújo, Sebastião; Félix Pinto, Sérgio; Ferreira, Sérgio; Mitushima, Simone Mattoso; Agareno, Sydney; Brilhante, Yuzeth Nóbrega de Assis

    2006-03-01

    Monitoring of vital functions is one of the most important tools in the management of critically ill patients. Nowadays is possible to detect and analyze a great deal of physiologic data using a lot of invasive and non-invasive methods. The intensivist must be able to select and carry out the most appropriate monitoring technique according to the patient requirements and taking into account the benefit/risk ratio. Despite the fast development of non invasive monitoring techniques, invasive hemodynamic monitoring using Pulmonary Artery Catheter still is one of the basic procedures in Critical Care. The aim was to define recommendations about clinical utility of basic hemodynamic monitoring methods and the Use of Pulmonary Artery Catheter. Modified Delphi methodology was used to create and quantify the consensus between the participants. AMIB indicated a coordinator who invited more six experts in the area of monitoring and hemodynamic support to constitute the Consensus Advisory Board. Twenty-five physicians and nurses selected from different regions of the country completed the expert panel, which reviewed the pertinent bibliography listed at the MEDLINE in the period from 1996 to 2004. Recommendations were made based on 55 questions about the use of central venous pressure, invasive arterial pressure, pulmonary artery catheter and its indications in different settings. Evaluation of central venous pressure and invasive arterial pressure, besides variables obtained by the PAC allow the understanding of cardiovascular physiology that is of great value to the care of critically ill patients. However, the correct use of these tools is fundamental to achieve the benefits due to its use.

  8. Central Hemodynamics and Oxygen Transport in Various Activation of Patients Operated On Under Extracorporeal Circulation

    Directory of Open Access Journals (Sweden)

    Ye. V. Dzybinskaya

    2009-01-01

    Full Text Available Objective: to study central hemodynamics, the determinants of myocardial oxygen balance, and the parameters of oxygen transport in various activation of patients after surgery under extracorporeal circulation. Subjects and methods. Thirty-four patients aged 57.8±2.5 years who had coronary heart disease were divided into 2 groups: 1 those with late activation (artificial ventilation time 157±9 min and 2 those with immediate activation (artificial ventilation time 33±6 min. Group 2 patients were, if required, given fentanyl, midazolam, or myorelaxants. Results. During activation, there were no intergroup differences in the mean levels of the major parameters of cardiac pump function, in the determinants of coronary blood flow (coronary perfusion gradients and myocardial oxygen demand (the product of heart rate by systolic blood pressure, and in the parameters of oxygen transport, including arterial lactatemia. After tracheal extubation, the left ventricular pump coefficient was increased considerably (up to 3.8±0.2 and 4.4±0.2 gm/mm Hg/m2 in Groups 1 and 2, respectively; p<0.05 with minimum inotropic support (dopamine and/or dobutamine being used at 2.7±0.3 and 2.4±0.3 mg/kg/min, respectively. In both groups, there were no close correlations between the indices of oxygen delivery and consumption at all stages of the study, which was indicative of no transport-dependent oxygen uptake. Conclusion. When the early activation protocol was followed up, the maximum acceleration of early activation, including that using specific antagonists of anesthetics, has no negative impact on central hemodynamics, the determinants of myocardial oxygen balance and transport in patients operated on under extracorporeal circulation. Key words: early activation, surgery under extracorporeal circulation, tracheal extubation in the operating-room, central hemodynamics, oxygen transport.

  9. Utility of Angle Correction for Hemodynamic Measurements with Doppler Echocardiography.

    Science.gov (United States)

    Sigurdsson, Martin I; Eoh, Eun J; Chow, Vinca W; Waldron, Nathan H; Cleve, Jayne; Nicoara, Alina; Swaminathan, Madhav

    2018-04-06

    The routine application angle correction (AnC) in hemodynamic measurements with transesophageal echocardiography currently is not recommended but potentially could be beneficial. The authors hypothesized that AnC can be applied reliably and may change grading of aortic stenosis (AS). Retrospective analysis. Single institution, university hospital. During phase I, use of AnC was assessed in 60 consecutive patients with intraoperative transesophageal echocardiography. During phase II, 129 images from a retrospective cohort of 117 cases were used to quantify AS by mean pressure gradient. A panel of observers used custom-written software in Java to measure intra-individual and inter-individual correlation in AnC application, correlation with preoperative transthoracic echocardiography gradients, and regrading of AS after AnC. For phase I, the median AnC was 21 (16-35) degrees, and 17% of patients required no AnC. For phase II, the median AnC was 7 (0-15) degrees, and 37% of assessed images required no AnC. The mean inter-individual and intra-individual correlation for AnC was 0.50 (95% confidence interval [CI] 0.49-0.52) and 0.87 (95% CI 0.82-0.92), respectively. AnC did not improve agreement with the transthoracic echocardiography mean pressure gradient. The mean inter-rater and intra-rater agreement for grading AS severity was 0.82 (95% CI 0.81-0.83) and 0.95 (95% CI 0.91-0.95), respectively. A total of 241 (7%) AS gradings were reclassified after AnC was applied, mostly when the uncorrected mean gradient was within 5 mmHg of the severity classification cutoff. AnC can be performed with a modest inter-rater and intra-rater correlation and high degree of inter-rater and intra-rater agreement for AS severity grading. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. p75 Neurotrophin Receptor Cleavage by α- and γ-Secretases Is Required for Neurotrophin-mediated Proliferation of Brain Tumor-initiating Cells*

    Science.gov (United States)

    Forsyth, Peter A.; Krishna, Niveditha; Lawn, Samuel; Valadez, J. Gerardo; Qu, Xiaotao; Fenstermacher, David A.; Fournier, Michelle; Potthast, Lisa; Chinnaiyan, Prakash; Gibney, Geoffrey T.; Zeinieh, Michele; Barker, Philip A.; Carter, Bruce D.; Cooper, Michael K.; Kenchappa, Rajappa S.

    2014-01-01

    Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target. PMID:24519935

  11. An optical brain computer interface for environmental control.

    Science.gov (United States)

    Ayaz, Hasan; Shewokis, Patricia A; Bunce, Scott; Onaral, Banu

    2011-01-01

    A brain computer interface (BCI) is a system that translates neurophysiological signals detected from the brain to supply input to a computer or to control a device. Volitional control of neural activity and its real-time detection through neuroimaging modalities are key constituents of BCI systems. The purpose of this study was to develop and test a new BCI design that utilizes intention-related cognitive activity within the dorsolateral prefrontal cortex using functional near infrared (fNIR) spectroscopy. fNIR is a noninvasive, safe, portable and affordable optical technique with which to monitor hemodynamic changes, in the brain's cerebral cortex. Because of its portability and ease of use, fNIR is amenable to deployment in ecologically valid natural working environments. We integrated a control paradigm in a computerized 3D virtual environment to augment interactivity. Ten healthy participants volunteered for a two day study in which they navigated a virtual environment with keyboard inputs, but were required to use the fNIR-BCI for interaction with virtual objects. Results showed that participants consistently utilized the fNIR-BCI with an overall success rate of 84% and volitionally increased their cerebral oxygenation level to trigger actions within the virtual environment.

  12. Chronic monitoring of cortical hemodynamics in behaving, freely-moving rats using a miniaturized head-mounted optical microscope

    Science.gov (United States)

    Sigal, Iliya; Gad, Raanan; Koletar, Margaret; Ringuette, Dene; Stefanovic, Bojana; Levi, Ofer

    2016-03-01

    Growing interest within the neurophysiology community in assessing healthy and pathological brain activity in animals that are awake and freely-behaving has triggered the need for optical systems that are suitable for such longitudinal studies. In this work we report label-free multi-modal imaging of cortical hemodynamics in the somatosensory cortex of awake, freely-behaving rats, using a novel head-mounted miniature optical microscope. The microscope employs vertical cavity surface emitting lasers (VCSELs) at three distinct wavelengths (680 nm, 795 nm, and 850 nm) to provide measurements of four hemodynamic markers: blood flow speeds, HbO, HbR, and total Hb concentration, across a > 2 mm field of view. Blood flow speeds are extracted using Laser Speckle Contrast Imaging (LSCI), while oxygenation measurements are performed using Intrinsic Optical Signal Imaging (IOSI). Longitudinal measurements on the same animal are made possible over the course of > 6 weeks using a chronic window that is surgically implanted into the skull. We use the device to examine changes in blood flow and blood oxygenation in superficial cortical blood vessels and tissue in response to drug-induced absence-like seizures, correlating motor behavior with changes in blood flow and blood oxygenation in the brain.

  13. Evaluation of plain radiograph in mitral stenosis related to hemodynamics

    International Nuclear Information System (INIS)

    Choe, Ku Ok; Suh, Jung Ho; Park, Chang Yun; Choi, Byung So

    1973-01-01

    Mitral stenosis, the most frequent heart disease in adult, showed relatively characteristic pulmonary findings in plain chest X-ray. In recent years the knowledge of the altered physiology of hemodynamics could offer considerable amount of hemodynamic barrier in plain chest. But the value of several parameters was still controversial. In this study a variety of roentgen signs were related to physiologic data and those were acquired by the cardiac catheterization in total of 67 cases of mitral stenosis. 1. Correlation of DPA/DHT ratio (Diameter of pulmonary arterial segment/ Diameter of hemithorax X 100) to hemodynamic data; The pulmonary arterial segments was dilated by two factors, the one was pulmonary blood flow and the other the blood pressure within it. In mitral stenosis, the cardiac output was decreased to quite uniform level, hence measurement of pulmonary arterial segment might be valuable. The correlation coefficient of DPA/ DHT ratio to hemodynamic data were as follows: 0.54 to mean pulmonary artery pressure, 0.32 to pulmonary capillary wedge pressure, -0.37 to mitral valvular area and 0.07 to pulmonary vascular resistance. No significant difference was noted in between pure mitral stenosis and mitral stenosis associated with other valvular disease. 2. Correlation of diameter of right descending pulmonary artery to hemodynamic data: The measurement was made near the first bifurcation of right descending pulmonary artery at its widest point. Pulmonary vascular pattern was best correlated (r=0.71). Another had rough correlation: 0.05 to mean pulmonary artery pressure, 0.31 to pulmonary capillary wedge pressure, -0.44 to mitral valvular area in correlation coefficient. No pulmonary arterial hypertension was observed in the cases diameter of less than 12 mm, but all except two cases had pulmonary hypertension in which diameter exceeded 16 mm. According to increase of the mean pulmonary arterial pressure, the same increment in pressure increased change

  14. Evaluation of plain radiograph in mitral stenosis related to hemodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Ku Ok; Suh, Jung Ho; Park, Chang Yun; Choi, Byung So [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1973-04-15

    Mitral stenosis, the most frequent heart disease in adult, showed relatively characteristic pulmonary findings in plain chest X-ray. In recent years the knowledge of the altered physiology of hemodynamics could offer considerable amount of hemodynamic barrier in plain chest. But the value of several parameters was still controversial. In this study a variety of roentgen signs were related to physiologic data and those were acquired by the cardiac catheterization in total of 67 cases of mitral stenosis. 1. Correlation of DPA/DHT ratio (Diameter of pulmonary arterial segment/ Diameter of hemithorax X 100) to hemodynamic data; The pulmonary arterial segments was dilated by two factors, the one was pulmonary blood flow and the other the blood pressure within it. In mitral stenosis, the cardiac output was decreased to quite uniform level, hence measurement of pulmonary arterial segment might be valuable. The correlation coefficient of DPA/ DHT ratio to hemodynamic data were as follows: 0.54 to mean pulmonary artery pressure, 0.32 to pulmonary capillary wedge pressure, -0.37 to mitral valvular area and 0.07 to pulmonary vascular resistance. No significant difference was noted in between pure mitral stenosis and mitral stenosis associated with other valvular disease. 2. Correlation of diameter of right descending pulmonary artery to hemodynamic data: The measurement was made near the first bifurcation of right descending pulmonary artery at its widest point. Pulmonary vascular pattern was best correlated (r=0.71). Another had rough correlation: 0.05 to mean pulmonary artery pressure, 0.31 to pulmonary capillary wedge pressure, -0.44 to mitral valvular area in correlation coefficient. No pulmonary arterial hypertension was observed in the cases diameter of less than 12 mm, but all except two cases had pulmonary hypertension in which diameter exceeded 16 mm. According to increase of the mean pulmonary arterial pressure, the same increment in pressure increased change

  15. Malignant neuroleptic syndrome following deep brain stimulation surgery: a case report

    Directory of Open Access Journals (Sweden)

    Stavrinou Lampis C

    2011-06-01

    Full Text Available Abstract Background The neuroleptic malignant syndrome is an uncommon but dangerous complication characterized by hyperthermia, autonomic dysfunction, altered mental state, hemodynamic dysregulation, elevated serum creatine kinase, and rigor. It is most often caused by an adverse reaction to anti-psychotic drugs or abrupt discontinuation of neuroleptic or anti-parkinsonian agents. To the best of our knowledge, it has never been reported following the common practice of discontinuation of anti-parkinsonian drugs during the pre-operative preparation for deep brain stimulation surgery for Parkinson's disease. Case presentation We present the first case of neuroleptic malignant syndrome associated with discontinuation of anti-parkinsonian medication prior to deep brain stimulation surgery in a 54-year-old Caucasian man. Conclusion The characteristic neuroleptic malignant syndrome symptoms can be attributed to other, more common causes associated with deep brain stimulation treatment for Parkinson's disease, thus requiring a high index of clinical suspicion to timely establish the correct diagnosis. As more centers become eligible to perform deep brain stimulation, neurologists and neurosurgeons alike should be aware of this potentially fatal complication. Timely activation of the deep brain stimulation system may be important in accelerating the patient's recovery.

  16. Malignant neuroleptic syndrome following deep brain stimulation surgery: a case report.

    Science.gov (United States)

    Themistocleous, Marios S; Boviatsis, Efstathios J; Stavrinou, Lampis C; Stathis, Pantelis; Sakas, Damianos E

    2011-06-29

    The neuroleptic malignant syndrome is an uncommon but dangerous complication characterized by hyperthermia, autonomic dysfunction, altered mental state, hemodynamic dysregulation, elevated serum creatine kinase, and rigor. It is most often caused by an adverse reaction to anti-psychotic drugs or abrupt discontinuation of neuroleptic or anti-parkinsonian agents. To the best of our knowledge, it has never been reported following the common practice of discontinuation of anti-parkinsonian drugs during the pre-operative preparation for deep brain stimulation surgery for Parkinson's disease. We present the first case of neuroleptic malignant syndrome associated with discontinuation of anti-parkinsonian medication prior to deep brain stimulation surgery in a 54-year-old Caucasian man. The characteristic neuroleptic malignant syndrome symptoms can be attributed to other, more common causes associated with deep brain stimulation treatment for Parkinson's disease, thus requiring a high index of clinical suspicion to timely establish the correct diagnosis. As more centers become eligible to perform deep brain stimulation, neurologists and neurosurgeons alike should be aware of this potentially fatal complication. Timely activation of the deep brain stimulation system may be important in accelerating the patient's recovery.

  17. Hidden Markov event sequence models: toward unsupervised functional MRI brain mapping.

    Science.gov (United States)

    Faisan, Sylvain; Thoraval, Laurent; Armspach, Jean-Paul; Foucher, Jack R; Metz-Lutz, Marie-Noëlle; Heitz, Fabrice

    2005-01-01

    Most methods used in functional MRI (fMRI) brain mapping require restrictive assumptions about the shape and timing of the fMRI signal in activated voxels. Consequently, fMRI data may be partially and misleadingly characterized, leading to suboptimal or invalid inference. To limit these assumptions and to capture the broad range of possible activation patterns, a novel statistical fMRI brain mapping method is proposed. It relies on hidden semi-Markov event sequence models (HSMESMs), a special class of hidden Markov models (HMMs) dedicated to the modeling and analysis of event-based random processes. Activation detection is formulated in terms of time coupling between (1) the observed sequence of hemodynamic response onset (HRO) events detected in the voxel's fMRI signal and (2) the "hidden" sequence of task-induced neural activation onset (NAO) events underlying the HROs. Both event sequences are modeled within a single HSMESM. The resulting brain activation model is trained to automatically detect neural activity embedded in the input fMRI data set under analysis. The data sets considered in this article are threefold: synthetic epoch-related, real epoch-related (auditory lexical processing task), and real event-related (oddball detection task) fMRI data sets. Synthetic data: Activation detection results demonstrate the superiority of the HSMESM mapping method with respect to a standard implementation of the statistical parametric mapping (SPM) approach. They are also very close, sometimes equivalent, to those obtained with an "ideal" implementation of SPM in which the activation patterns synthesized are reused for analysis. The HSMESM method appears clearly insensitive to timing variations of the hemodynamic response and exhibits low sensitivity to fluctuations of its shape (unsustained activation during task). Real epoch-related data: HSMESM activation detection results compete with those obtained with SPM, without requiring any prior definition of the expected

  18. ECG Markers of Hemodynamic Improvement in Patients with Pulmonary Hypertension

    Directory of Open Access Journals (Sweden)

    Marcin Waligóra

    2018-01-01

    Full Text Available Introduction. Several diagnostic tests have been recommended for risk assessment in pulmonary hypertension (PH, but the role of electrocardiography (ECG in monitoring of PH patients has not been yet established. Therefore the aim of the study was to evaluate which ECG patterns characteristic for pulmonary hypertension can predict hemodynamic improvement in patients treated with targeted therapies. Methods. Consecutive patients with pulmonary arterial hypertension (PAH or chronic thromboembolic pulmonary hypertension (CTEPH were eligible to be included if they had had performed two consecutive right heart catheterization (RHC procedures before and after starting of targeted therapies. Patients were followed up from June 2009 to July 2017. ECG patterns of right ventricular hypertrophy according to American College of Cardiology Foundation were assessed. Results. We enrolled 80 patients with PAH and 11 patients with inoperable CTEPH. The follow-up RHC was performed within 12.6±10.0 months after starting therapy. Based on median change of pulmonary vascular resistance, we divided our patients into two subgroups: with and without significant hemodynamic improvement. RV1, max⁡RV1,2 + max⁡SI,aVL-SV1, and PII improved along with the improvement of hemodynamic parameters including PVR. They predicted hemodynamic improvement with similarly good accuracy as shown in ROC analysis: RV1 (AUC: 0.75; 95% CI: 0.63–0.84, PII (AUC: 0.67, 95% CI: 0.56–0.77, and max⁡RV1,2+max⁡SI,aVL-SV1 (0.73; 95% CI: 0.63–0.82. In Cox regression only change in RV1 remained significant mortality predictor (HR: 1.12, 95% CI: 1.01–1.24. Conclusion. Electrocardiogram may be useful in predicting hemodynamic effects of targeted therapy in precapillary pulmonary hypertension. Decrease of RV1, max⁡RV1,2+max⁡SI,aVL-SV1, and PII corresponds with hemodynamic improvement after treatment. Of these changes a decrease of R wave amplitude in V1 is associated with better

  19. Implant experience with an implantable hemodynamic monitor for the management of symptomatic heart failure.

    Science.gov (United States)

    Steinhaus, David; Reynolds, Dwight W; Gadler, Fredrik; Kay, G Neal; Hess, Mike F; Bennett, Tom

    2005-08-01

    Management of congestive heart failure is a serious public health problem. The use of implantable hemodynamic monitors (IHMs) may assist in this management by providing continuous ambulatory filling pressure status for optimal volume management. The Chronicle system includes an implanted monitor, a pressure sensor lead with passive fixation, an external pressure reference (EPR), and data retrieval and viewing components. The tip of the lead is placed near the right ventricular outflow tract to minimize risk of sensor tissue encapsulation. Implant technique and lead placement is similar to that of a permanent pacemaker. After the system had been successfully implanted in 148 patients, the type and frequency of implant-related adverse events were similar to a single-chamber pacemaker implant. R-wave amplitude was 15.2 +/- 6.7 mV and the pressure waveform signal was acceptable in all but two patients in whom presence of artifacts required lead repositioning. Implant procedure time was not influenced by experience, remaining constant throughout the study. Based on this evaluation, permanent placement of an IHM in symptomatic heart failure patients is technically feasible. Further investigation is warranted to evaluate the use of the continuous hemodynamic data in management of heart failure patients.

  20. Differentiation of Constriction and Restriction: Complex Cardiovascular Hemodynamics.

    Science.gov (United States)

    Geske, Jeffrey B; Anavekar, Nandan S; Nishimura, Rick A; Oh, Jae K; Gersh, Bernard J

    2016-11-29

    Differentiation of constrictive pericarditis (CP) from restrictive cardiomyopathy (RCM) is a complex and often challenging process. Because CP is a potentially curable cause of heart failure and therapeutic options for RCM are limited, distinction of these 2 conditions is critical. Although different in regard to etiology, prognosis, and treatment, CP and RCM share a common clinical presentation of predominantly right-sided heart failure, in the absence of significant left ventricular systolic dysfunction or valve disease, due to impaired ventricular diastolic filling. Fundamental to the diagnosis of either condition is a clear understanding of the underlying hemodynamic principles and pathophysiology. We present a contemporary review of the pathophysiology, hemodynamics, diagnostic assessment, and therapeutic approach to patients presenting with CP and RCM. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  1. The hemodynamic basis of exercise intolerance in tricuspid regurgitation

    DEFF Research Database (Denmark)

    Andersen, Mads Jønsson; Nishimura, Rick a; Borlaug, Barry A

    2014-01-01

    ≥3 TR underwent high-fidelity invasive hemodynamic exercise testing with simultaneous expired gas analysis and were compared with 13 age- and sex-matched controls. At rest, TR subjects had lower pulmonary blood flow (3.6±0.4 versus 5.1±1.9 L/min; P=0.01), increased right atrial pressure (12±5 versus.......001). TR subjects displayed higher pulmonary capillary wedge pressure with exercise, but this was solely because of RA hypertension (27±9 versus 8±3 mm Hg; P......BACKGROUND:Patients with severe tricuspid regurgitation (TR) frequently present with exertional fatigue and dyspnea, but the hemodynamic basis for exercise limitation in people with TR remains unclear. METHODS AND RESULTS:Twelve subjects with normal left ventricular (LV) ejection fraction and grade...

  2. Hemodynamic effects of microgravity and their ground-based simulations

    Science.gov (United States)

    Lobachik, V. I.; Abrosimov, S. V.; Zhidkov, V. V.; Endeka, D. K.

    Hemodynamic effects of simulated microgravity were investigated, in various experiments, using radioactive isotopes, in which 40 healthy men, aged 35 to 42 years, took part. Blood shifts were evaluated qualitatively and quantitatively. Simulation studies included bedrest, head-down tilt (-5° and -15°), and vertical water immersion, it was found that none of the methods could entirely simulate hemodynamic effects of microgravity. Subjective sensations varied in a wide range. They cannot be used to identify reliably the effects of real and simulated microgravity. Renal fluid excretion in real and simulated microgravity was different in terms of volume and time. The experiments yielded data about the general pattern of circulation with blood displaced to the upper body.

  3. Systemic and intracardiac hemodynamic disturbance in complicated forms of hepatocirrhosis

    International Nuclear Information System (INIS)

    Mjasnik, B.N.; Chodzibekov, M.C.; Achmedzanova, S.S.

    1990-01-01

    On the base of radionuclide investigation of systemic and intracardiac hemodynamics was shown that the rate of kinetic variants of hemocirculation does not depend on the stage of portal hypertension in complicated forms of hepatocirrhosis. Blood redistribution in these patients creates volumentrical overload of cardiac ventricles and pulmonary circulation, that is conditioned of additional tension of cardiac muscle and especially of right ventricle myocardium, which reserve rapidly ran out. Operations which increase blood shunt from portal system to superior vena cava raise preload of myocardium that makes the high risk in appearance of cardiac insufficiency, especially of right ventricle in early post operative period. The received data indicated on necessity to take into account the state of intracardiac hemodynamics in selection of surgical approach in patients with complicated forms of hepatocirrhosis. (orig.) [de

  4. Use of active dosemeters as a optimization tool in hemodynamics

    International Nuclear Information System (INIS)

    Nunes, Rafael; Pereira, Dirceu D.; Rodrigues, Barbara B.D.; Ferreira, Esmeralci

    2016-01-01

    Interventional cardiology procedures are, in general, associated with high doses in patients and professionals. The objective of this study is to measure the radiation levels received by professionals .The professional dosimetry was performed in a department of Hemodynamics of University Hospital in Rio de Janeiro. were followed 331 coronary angiography (CA) and 26 percutaneous transluminal coronary angioplasty (PTCA) procedures. For this, were used active dosemeters to measure the radiation levels at the chest of interventional professionals. The results show that average personal equivalent dose of doctors, per procedure was 100 e 154 μSv. On average, nursing technicians and radiologist receive 12 and 10% of doses of physicians, respectively, during CA procedures. From the results, it appears that the doses of hemodynamics exceed the annual dose limit of the standards. The use of lead shielding is presented as an effective action to reduce doses in these workers. (author)

  5. Use of frontal lobe hemodynamics as reinforcement signals to an adaptive controller.

    Directory of Open Access Journals (Sweden)

    Marcello M DiStasio

    Full Text Available Decision-making ability in the frontal lobe (among other brain structures relies on the assignment of value to states of the animal and its environment. Then higher valued states can be pursued and lower (or negative valued states avoided. The same principle forms the basis for computational reinforcement learning controllers, which have been fruitfully applied both as models of value estimation in the brain, and as artificial controllers in their own right. This work shows how state desirability signals decoded from frontal lobe hemodynamics, as measured with near-infrared spectroscopy (NIRS, can be applied as reinforcers to an adaptable artificial learning agent in order to guide its acquisition of skills. A set of experiments carried out on an alert macaque demonstrate that both oxy- and deoxyhemoglobin concentrations in the frontal lobe show differences in response to both primarily and secondarily desirable (versus undesirable stimuli. This difference allows a NIRS signal classifier to serve successfully as a reinforcer for an adaptive controller performing a virtual tool-retrieval task. The agent's adaptability allows its performance to exceed the limits of the NIRS classifier decoding accuracy. We also show that decoding state desirabilities is more accurate when using relative concentrations of both oxyhemoglobin and deoxyhemoglobin, rather than either species alone.

  6. Inflammation- and tumor-induced anorexia and weight loss require MyD88 in hematopoietic/myeloid cells but not in brain endothelial or neural cells.

    Science.gov (United States)

    Ruud, Johan; Wilhelms, Daniel Björk; Nilsson, Anna; Eskilsson, Anna; Tang, Yan-Juan; Ströhle, Peter; Caesar, Robert; Schwaninger, Markus; Wunderlich, Thomas; Bäckhed, Fredrik; Engblom, David; Blomqvist, Anders

    2013-05-01

    Loss of appetite is a hallmark of inflammatory diseases. The underlying mechanisms remain undefined, but it is known that myeloid differentiation primary response gene 88 (MyD88), an adaptor protein critical for Toll-like and IL-1 receptor family signaling, is involved. Here we addressed the question of determining in which cells the MyD88 signaling that results in anorexia development occurs by using chimeric mice and animals with cell-specific deletions. We found that MyD88-knockout mice, which are resistant to bacterial lipopolysaccharide (LPS)-induced anorexia, displayed anorexia when transplanted with wild-type bone marrow cells. Furthermore, mice with a targeted deletion of MyD88 in hematopoietic or myeloid cells were largely protected against LPS-induced anorexia and displayed attenuated weight loss, whereas mice with MyD88 deletion in hepatocytes or in neural cells or the cerebrovascular endothelium developed anorexia and weight loss of similar magnitude as wild-type mice. Furthermore, in a model for cancer-induced anorexia-cachexia, deletion of MyD88 in hematopoietic cells attenuated the anorexia and protected against body weight loss. These findings demonstrate that MyD88-dependent signaling within the brain is not required for eliciting inflammation-induced anorexia. Instead, we identify MyD88 signaling in hematopoietic/myeloid cells as a critical component for acute inflammatory-driven anorexia, as well as for chronic anorexia and weight loss associated with malignant disease.

  7. The hemodynamic tolerability and feasibility of sustained low efficiency dialysis in the management of critically ill patients with acute kidney injury

    Directory of Open Access Journals (Sweden)

    Nisenbaum Rosane

    2010-11-01

    Full Text Available Abstract Background Minimization of hemodynamic instability during renal replacement therapy (RRT in patients with acute kidney injury (AKI is often challenging. We examined the relative hemodynamic tolerability of sustained low efficiency dialysis (SLED and continuous renal replacement therapy (CRRT in critically ill patients with AKI. We also compared the feasibility of SLED administration with that of CRRT and intermittent hemodialysis (IHD. Methods This cohort study encompassed four critical care units within a single university-affiliated medical centre. 77 consecutive critically ill patients with AKI who were treated with CRRT (n = 30, SLED (n = 13 or IHD (n = 34 and completed at least two RRT sessions were included in the study. Overall, 223 RRT sessions were analyzed. Hemodynamic instability during a given session was defined as the composite of a > 20% reduction in mean arterial pressure or any escalation in pressor requirements. Treatment feasibility was evaluated based on the fraction of the prescribed therapy time that was delivered. An interrupted session was designated if Results Hemodynamic instability occurred during 22 (56.4% SLED and 43 (50.0% CRRT sessions (p = 0.51. In a multivariable analysis that accounted for clustering of multiple sessions within the same patient, the odds ratio for hemodynamic instability with SLED was 1.20 (95% CI 0.58-2.47, as compared to CRRT. Session interruption occurred in 16 (16.3, 30 (34.9 and 11 (28.2 of IHD, CRRT and SLED therapies, respectively. Conclusions In critically ill patients with AKI, the administration of SLED is feasible and provides comparable hemodynamic control to CRRT.

  8. Pharmacological Modulation of Hemodynamics in Adult Zebrafish In Vivo.

    Directory of Open Access Journals (Sweden)

    Daniel Brönnimann

    Full Text Available Hemodynamic parameters in zebrafish receive increasing attention because of their important role in cardiovascular processes such as atherosclerosis, hematopoiesis, sprouting and intussusceptive angiogenesis. To study underlying mechanisms, the precise modulation of parameters like blood flow velocity or shear stress is centrally important. Questions related to blood flow have been addressed in the past in either embryonic or ex vivo-zebrafish models but little information is available for adult animals. Here we describe a pharmacological approach to modulate cardiac and hemodynamic parameters in adult zebrafish in vivo.Adult zebrafish were paralyzed and orally perfused with salt water. The drugs isoprenaline and sodium nitroprusside were directly applied with the perfusate, thus closely resembling the preferred method for drug delivery in zebrafish, namely within the water. Drug effects on the heart and on blood flow in the submental vein were studied using electrocardiograms, in vivo-microscopy and mathematical flow simulations.Under control conditions, heart rate, blood flow velocity and shear stress varied less than ± 5%. Maximal chronotropic effects of isoprenaline were achieved at a concentration of 50 μmol/L, where it increased the heart rate by 22.6 ± 1.3% (n = 4; p < 0.0001. Blood flow velocity and shear stress in the submental vein were not significantly increased. Sodium nitroprusside at 1 mmol/L did not alter the heart rate but increased blood flow velocity by 110.46 ± 19.64% (p = 0.01 and shear stress by 117.96 ± 23.65% (n = 9; p = 0.03.In this study, we demonstrate that cardiac and hemodynamic parameters in adult zebrafish can be efficiently modulated by isoprenaline and sodium nitroprusside. Together with the suitability of the zebrafish for in vivo-microscopy and genetic modifications, the methodology described permits studying biological processes that are dependent on hemodynamic alterations.

  9. Morphological and hemodynamic analysis of mirror posterior communicating artery aneurysms.

    Directory of Open Access Journals (Sweden)

    Jinyu Xu

    Full Text Available BACKGROUND AND PURPOSE: Hemodynamic factors are commonly believed to play an important role in the pathogenesis, progression, and rupture of cerebral aneurysms. In this study, we aimed to identify significant hemodynamic and morphological parameters that discriminate intracranial aneurysm rupture status using 3-dimensional-angiography and computational fluid dynamics technology. MATERIALS AND METHODS: 3D-DSA was performed in 8 patients with mirror posterior communicating artery aneurysms (Pcom-MANs. Each pair was divided into ruptured and unruptured groups. Five morphological and three hemodynamic parameters were evaluated for significance with respect to rupture. RESULTS: The normalized mean wall shear stress (WSS of the aneurysm sac in the ruptured group was significantly lower than that in the unruptured group (0.52±0.20 versus 0.81±0.21, P = .012. The percentage of the low WSS area in the ruptured group was higher than that in the unruptured group (4.11±4.66% versus 0.02±0.06%, P = .018. The AR was 1.04±0.21 in the ruptured group, which was significantly higher than 0.70±0.17 in the unruptured group (P = .012. By contrast, parameters that had no significant differences between the two groups were OSI (P = .674, aneurysm size (P = .327, size ratio (P = .779, vessel angle (P = 1.000 and aneurysm inclination angle (P = 1.000. CONCLUSIONS: Pcom-MANs may be a useful disease model to investigate possible causes of aneurysm rupture. The ruptured aneurysms manifested lower WSS, higher percentage of low WSS area, and higher AR, compared with the unruptured one. And hemodynamics is as important as morphology in discriminating aneurysm rupture status.

  10. Continuous Hemodynamic Monitoring in Acute Stroke: An Exploratory Analysis

    Directory of Open Access Journals (Sweden)

    Ayan Sen

    2014-07-01

    Full Text Available Introduction: Non-invasive, continuous hemodynamic monitoring is entering the clinical arena. The primary objective of this study was to test the feasibility of such monitoring in a pilot sample of Emergency Department (ED stroke patients. Secondary objectives included analysis of hemodynamic variability and correlation of continuous blood pressure measurements with standard measurements. Methods: This study was a secondary analysis of 7 stroke patients from a prospectively collected data set of patients that received 2 hours of hemodynamic monitoring in the ED. Stroke patients were included if hemorrhagic or ischemic stroke was confirmed by neuroimaging, and symptom onset was within 24 hours. They were excluded for the presence of a stroke mimic or transient ischemic attack. Monitoring was performed using the Nexfin device (Edwards Lifesciences, Irvine CA. Results: The mean age of the cohort was 71 ± 17 years, 43% were male, and the mean National Institute of Health Stroke Scale (NIHSS was 6.9 ± 5.5. Two patients had hemorrhagic stroke. We obtained 42,456 hemodynamic data points, including beat-to-beat blood pressure measurements with variability of 18 mmHg and cardiac indices ranging from 1.8 to 3.6 l/min/m2. The correlation coefficient between continuous blood pressure measurements with the Nexfin device and standard ED readings was 0.83. Conclusion: This exploratory investigation revealed that continuous, noninvasive monitoring in the ED is feasible in acute stroke. Further research is currently underway to determine how such monitoring may impact outcomes in stroke or replace the need for invasive monitoring. [West J Emerg Med. 2014;15(4:–0.

  11. Invasive hemodynamic monitoring in the postoperative period of cardiac surgery

    Directory of Open Access Journals (Sweden)

    Desanka Dragosavac

    1999-08-01

    Full Text Available OBJETIVE: To assess the hemodynamic profile of cardiac surgery patients with circulatory instability in the early postoperative period (POP. METHODS: Over a two-year period, 306 patients underwent cardiac surgery. Thirty had hemodynamic instability in the early POP and were monitored with the Swan-Ganz catheter. The following parameters were evaluated: cardiac index (CI, systemic and pulmonary vascular resistance, pulmonary shunt, central venous pressure (CVP, pulmonary capillary wedge pressure (PCWP, oxygen delivery and consumption, use of vasoactive drugs and of circulatory support. RESULTS: Twenty patients had low cardiac index (CI, and 10 had normal or high CI. Systemic vascular resistance was decreased in 11 patients. There was no correlation between oxygen delivery (DO2 and consumption (VO2, p=0.42, and no correlation between CVP and PCWP, p=0.065. Pulmonary vascular resistance was decreased in 15 patients and the pulmonary shunt was increased in 19. Two patients with CI < 2L/min/m² received circulatory support. CONCLUSION: Patients in the POP of cardiac surgery frequently have a mixed shock due to the systemic inflammatory response syndrome (SIRS. Therefore, invasive hemodynamic monitoring is useful in handling blood volume, choice of vasoactive drugs, and indication for circulatory support.

  12. Hemodynamic response during aneurysm clipping surgery among experienced neurosurgeons.

    Science.gov (United States)

    Bunevicius, Adomas; Bilskiene, Diana; Macas, Andrius; Tamasauskas, Arimantas

    2016-02-01

    Neurosurgery is a challenging field associated with high levels of mental stress. The goal of this study was to investigate the hemodynamic response of experienced neurosurgeons during aneurysm clipping surgery and to evaluate whether neurosurgeons' hemodynamic responses are associated with patients' clinical statuses. Four vascular neurosurgeons (all male; mean age 51 ± 10 years; post-residency experience ≥7 years) were studied during 42 aneurysm clipping procedures. Blood pressure (BP) and heart rate (HR) were assessed at rest and during seven phases of surgery: before the skin incision, after craniotomy, after dural opening, after aneurysm neck dissection, after aneurysm clipping, after dural closure and after skin closure. HR and BP were significantly greater during surgery relative to the rest situation (p ≤ 0.03). There was a statistically significant increase in neurosurgeons' HR (F [6, 41] = 10.88, p neurosurgeon experience, the difference in BP as a function of aneurysm rupture was not significant (p > 0.08). Aneurysm location, intraoperative aneurysm rupture, admission WFNS score, admission Glasgow Coma Scale scores and Fisher grade were not associated with neurosurgeons' intraoperative HR and BP (all p > 0.07). Aneurysm clipping surgery is associated with significant hemodynamic system activation among experienced neurosurgeons. The greatest HR and BP were after aneurysm neck dissection and clipping. Aneurysm location and patient clinical status were not associated with intraoperative changes of neurosurgeons' HR and BP.

  13. Hemodynamics alter arterial low-density lipoprotein metabolism

    International Nuclear Information System (INIS)

    Warty, V.S.; Calvo, W.J.; Berceli, S.A.; Pham, S.M.; Durham, S.J.; Tanksale, S.K.; Klein, E.C.; Herman, I.M.; Borovetz, H.S.

    1989-01-01

    We have investigated the role of hemodynamic factors on low-density lipoprotein transport and metabolism in the intact arterial wall. Freshly excised canine carotid blood vessels were exposed to well-defined pulsatile flow in vitro for continuous periods up to 20 hours. We chose to impose the following hemodynamic conditions on our test carotid arteries: normotension, hypertension (at physiologic flow conditions), and hypertension coupled with elevated flow of canine serum perfusate. In several experiments the effect of endothelial denudation was examined in carotid arteries exposed to normotensive pulsatile flow. A trapped ligand method was used for quantitating low-density lipoprotein uptake and metabolism in the arterial wall. The distribution of both intact and degraded low-density lipoprotein fractions was determined from measurements of radiolabelled low-density lipoprotein activity within thin radial sections of perfused arteries. Our results suggest that both hypertensive hemodynamic simulations exacerbate the uptake of low-density lipoprotein within the arterial wall (by a factor of three to nine). The percentage of low-density lipoprotein that undergoes irreversible degradation falls from 41% under normotensive conditions to below 30% when hypertensive conditions are imposed, indicating that degradative processes are not proportionally elevated with the accelerated influx. A similar pattern is observed for deendothelialized vessels

  14. Quantifying the abnormal hemodynamics of sickle cell anemia

    Science.gov (United States)

    Lei, Huan; Karniadakis, George

    2012-02-01

    Sickle red blood cells (SS-RBC) exhibit heterogeneous morphologies and abnormal hemodynamics in deoxygenated states. A multi-scale model for SS-RBC is developed based on the Dissipative Particle Dynamics (DPD) method. Different cell morphologies (sickle, granular, elongated shapes) typically observed in deoxygenated states are constructed and quantified by the Asphericity and Elliptical shape factors. The hemodynamics of SS-RBC suspensions is studied in both shear and pipe flow systems. The flow resistance obtained from both systems exhibits a larger value than the healthy blood flow due to the abnormal cell properties. Moreover, SS-RBCs exhibit abnormal adhesive interactions with both the vessel endothelium cells and the leukocytes. The effect of the abnormal adhesive interactions on the hemodynamics of sickle blood is investigated using the current model. It is found that both the SS-RBC - endothelium and the SS-RBC - leukocytes interactions, can potentially trigger the vicious ``sickling and entrapment'' cycles, resulting in vaso-occlusion phenomena widely observed in micro-circulation experiments.

  15. Hemodynamic and tubular changes induced by contrast media.

    Science.gov (United States)

    Caiazza, Antonella; Russo, Luigi; Sabbatini, Massimo; Russo, Domenico

    2014-01-01

    The incidence of acute kidney injury induced by contrast media (CI-AKI) is the third cause of AKI in hospitalized patients. Contrast media cause relevant alterations both in renal hemodynamics and in renal tubular cell function that lead to CI-AKI. The vasoconstriction of intrarenal vasculature is the main hemodynamic change induced by contrast media; the vasoconstriction is accompanied by a cascade of events leading to ischemia and reduction of glomerular filtration rate. Cytotoxicity of contrast media causes apoptosis of tubular cells with consequent formation of casts and worsening of ischemia. There is an interplay between the negative effects of contrast media on renal hemodynamics and on tubular cell function that leads to activation of renin-angiotensin system and increased production of reactive oxygen species (ROS) within the kidney. Production of ROS intensifies cellular hypoxia through endothelial dysfunction and alteration of mechanisms regulating tubular cells transport. The physiochemical characteristics of contrast media play a critical role in the incidence of CI-AKI. Guidelines suggest the use of either isoosmolar or low-osmolar contrast media rather than high-osmolar contrast media particularly in patients at increased risk of CI-AKI. Older age, presence of atherosclerosis, congestive heart failure, chronic renal disease, nephrotoxic drugs, and diuretics may multiply the risk of CI-AKI.

  16. A study of the hemodynamics of anterior communicating artery aneurysms

    Science.gov (United States)

    Cebral, Juan R.; Castro, Marcelo A.; Putman, Christopher M.

    2006-03-01

    In this study, the effects of unequal physiologic flow conditions in the internal carotid arteries on the intra-aneurysmal hemodynamics of anterior communicating artery aneurysms were investigated. Patient-specific vascular computational fluid dynamics models of five cerebral aneurysms were constructed from bilateral 3D rotational angiography images. The aneurysmal hemodynamics was analyzed under a range of physiologic flow conditions including the effects of unequal mean flows and phase shifts between the flow waveforms of the left and right internal carotid arteries. A total of five simulations were performed for each patient, and unsteady wall shear stress (WSS) maps were created for each flow condition. Time dependent curves of average WSS magnitude over selected regions on the aneurysms were constructed and used to analyze the influence of the inflow conditions. It was found that mean flow imbalances in the feeding vessels tend to shift the regions of elevated WSS (flow impingement region) towards the dominating inflow jet and to change the magnitude of the WSS peaks. However, the overall qualitative appearance of the WSS distribution and velocity simulations is not substantially affected. In contrast, phase differences tend to increase the temporal complexity of the hemodynamic patterns and to destabilize the intra-aneurysmal flow pattern. However, these effects are less important when the A1 confluence is less symmetric, i.e. dominated by one of the A1 segments. Conditions affecting the flow characteristics in the parent arteries of cerebral aneurysms with more than one avenue of inflow should be incorporated into flow models.

  17. Vascular Adaptation to Exercise in Humans: Role of Hemodynamic Stimuli

    Science.gov (United States)

    Green, Daniel J.; Hopman, Maria T. E.; Padilla, Jaume; Laughlin, M. Harold; Thijssen, Dick H. J.

    2017-01-01

    On the 400th anniversary of Harvey's Lumleian lectures, this review focuses on “hemodynamic” forces associated with the movement of blood through arteries in humans and the functional and structural adaptations that result from repeated episodic exposure to such stimuli. The late 20th century discovery that endothelial cells modify arterial tone via paracrine transduction provoked studies exploring the direct mechanical effects of blood flow and pressure on vascular function and adaptation in vivo. In this review, we address the impact of distinct hemodynamic signals that occur in response to exercise, the interrelationships between these signals, the nature of the adaptive responses that manifest under different physiological conditions, and the implications for human health. Exercise modifies blood flow, luminal shear stress, arterial pressure, and tangential wall stress, all of which can transduce changes in arterial function, diameter, and wall thickness. There are important clinical implications of the adaptation that occurs as a consequence of repeated hemodynamic stimulation associated with exercise training in humans, including impacts on atherosclerotic risk in conduit arteries, the control of blood pressure in resistance vessels, oxygen delivery and diffusion, and microvascular health. Exercise training studies have demonstrated that direct hemodynamic impacts on the health of the artery wall contribute to the well-established decrease in cardiovascular risk attributed to physical activity. PMID:28151424

  18. Dynamic cerebral autoregulation measured with coherent hemodynamics spectroscopy (CHS)

    Science.gov (United States)

    Kainerstorfer, Jana M.; Sassaroli, Angelo; Tgavalekos, Kristen T.; Fantini, Sergio

    2015-03-01

    Coherent Hemodynamics Spectroscopy (CHS) is a novel technique for non-invasive measurements of local microcirculation quantities such as the capillary blood transit times and dynamic autoregulation. The basis of CHS is to measure, for instance with near-infrared spectroscopy (NIRS), peripheral coherent hemodynamic changes that are induced by controlled perturbations in the systemic mean arterial pressure (MAP). In this study, the MAP perturbation was induced by the fast release of two pneumatic cuffs placed around the subject's thighs after they were kept inflated (at 200 mmHg) for two minutes. The resulting transient changes in cerebral oxy- (O) and deoxy- (D) hemoglobin concentrations measured with NIRS on the prefrontal cortex are then described by a novel hemodynamic model, from which quantifiable parameters such as the capillary blood transit time and a cutoff frequency for cerebral autoregulation are obtained. We present results on eleven healthy volunteers in a protocol involving measurements during normal breathing and during hyperventilation, which is known to cause a hypocapnia-induced increase in cerebral autoregulation. The measured capillary transit time was unaffected by hyperventilation (normal breathing: 1.1±0.1 s; hyperventilation: 1.1±0.1 s), whereas the cutoff frequency of autoregulation, which increases for higher autoregulation efficiency, was indeed found to be significantly greater during hyperventilation (normal breathing: 0.017±0.002 Hz; hyperventilation: 0.034±0.005 Hz). These results provide a validation of local cerebral autoregulation measurements with the new technique of CHS.

  19. A Novel Stretch Sensor to Measure Venous Hemodynamics

    Directory of Open Access Journals (Sweden)

    Syrpailyne Wankhar

    2018-07-01

    Full Text Available Chronic venous insufficiency is a debilitating condition causing varicose veins and venous ulcers. The pathophysiology includes reflux and venous obstruction. The diagnosis is often made by clinical examination and confirmed by Venous Doppler studies. Plethysmography helps to quantitatively examine the reflux and diagnose the burden of deep venous pathology to better understand venous hemodynamics, which is not elicited by venous duplex examination alone. However, most of these tests are qualitative, expensive, and not easily available. In this paper, we demonstrate the potential use of a novel stretch sensor in the assessment of venous hemodynamics during different maneuvers by measuring the change in calf circumference. We designed the stretch sensor by using semiconductor strain gauges pasted onto a small metal bar to form a load cell. The elastic and Velcro material attached to the load cell form a belt. It converts the change in limb circumference to a proportional tension (force of distension when placed around the calf muscle. We recorded the change in limb circumference from arrays of stretch sensors by using an in-house data acquisition system. We calculated the venous volume (VV, venous filling index (VFI, ejection fraction (EF and residual venous volume (RVV on two normal subjects and on two patients to assess venous hemodynamics. The values (VV > 60 ml, VFI 60%, RVV 2ml/s, EF 35% in patients were comparable to those reported in the literature.

  20. Hemodynamic stroke: A rare pitfall in cranio cervical junction surgery

    Directory of Open Access Journals (Sweden)

    Jan Frederick Cornelius

    2014-01-01

    Full Text Available Surgical C1C2-stabilization may be complicated by arterial-arterial embolism or arterial injury. Another potential complication is hemodynamic stroke. The latter might be induced in patients with poor posterior fossa collateralization (risk factor 1 when the vertebral artery (VA is compressed during reduction (risk factor 2. We report a clinical case where this rare situation occurred: A 72-year old patient was undergoing C1C2-stabilization for subluxation due to rheumatoid arthritis. Preoperative computed tomography angiography (CTA had shown poor collaterals in the posterior fossa. Furthermore, intraoperative Doppler ultrasound (US detected unilateral VA occlusion during reduction. It appeared to be a high-risk situation for hemodynamic stroke. Surgical inspection of the VA found osteofibrous compressing elements. Arterial decompression was performed resulting in the normal flow as detected by US. Subsequently, C1C2-stabilization could be realized. The clinical and radiological outcome was very favorable. In C1C2-stabilization precise analysis of preoperative CTA and intraoperative US are important to detect risk factors of hemodynamic stroke. Using these data may prevent this rare, but potentially life-threatening complication.

  1. [Hemodynamics, the autonomic nervous system and water metabolism as criteria for developing the general adaptation syndrome in pregnant women].

    Science.gov (United States)

    Gur'ianov, V A; Shepetovskaia, N L; Pivovarova, G M; Tolmachev, G N; Volodin, A V

    2007-01-01

    By taking into account the fact that the autonomic nervous and cardiovascular systems (ANS and CVS) are the major links of development of the general adaptation syndrome in pregnancy, which are affected by all the processes involved in the development of the syndrome, the author analyzed the state of these systems in healthy non-pregnant and pregnant women (HNPW and HPW) and in pregnant women with gestosis. HNPW were found to have already a prerequisite for impairing pregnancy adaptive processes as ANS and CVS dysfunction. In HPW, these impairments were more pronounced. In the pregnant women, impaired adaptive processes manifested themselves as excess sympathicotonia in 72% and parasympathicotonia in 23% of cases despite the treatment performed, which was accompanied by hypokinetic hemodynamics in 53 and 50%, respectively. In hyper- and eukinetic hemodynamics, there were no physiologically required decreases in total peripheral vascular resistance while in hypokinetic hemodynamics, there was its pathological increase. Such disorders enhance the significance of abdominal compartment syndrome, aortocaval compression, ischemia-reperfusion, hydrodynamic and membranogenic (capillary leakage) factors of impaired water metabolism, which contributes to adaptation derangement. Based on the findings, the authors have created a developmental modulation algorithm for the general adaptation syndrome by completed pregnancy and surgical delivery.

  2. Effects of L-glutamine supplementation on maternal and fetal hemodynamics in gestating ewes exposed to alcohol.

    Science.gov (United States)

    Sawant, Onkar B; Ramadoss, Jayanth; Hankins, Gary D; Wu, Guoyao; Washburn, Shannon E

    2014-08-01

    Not much is known about effects of gestational alcohol exposure on maternal and fetal cardiovascular adaptations. This study determined whether maternal binge alcohol exposure and L-glutamine supplementation could affect maternal-fetal hemodynamics and fetal regional brain blood flow during the brain growth spurt period. Pregnant sheep were randomly assigned to one of four groups: saline control, alcohol (1.75-2.5 g/kg body weight), glutamine (100 mg/kg body weight) or alcohol + glutamine. A chronic weekend binge drinking paradigm between gestational days (GD) 99 and 115 was utilized. Fetuses were surgically instrumented on GD 117 ± 1 and studied on GD 120 ± 1. Binge alcohol exposure caused maternal acidemia, hypercapnea, and hypoxemia. Fetuses were acidemic and hypercapnic, but not hypoxemic. Alcohol exposure increased fetal mean arterial pressure, whereas fetal heart rate was unaltered. Alcohol exposure resulted in ~40 % reduction in maternal uterine artery blood flow. Labeled microsphere analyses showed that alcohol induced >2-fold increases in fetal whole brain blood flow. The elevation in fetal brain blood flow was region-specific, particularly affecting the developing cerebellum, brain stem, and olfactory bulb. Maternal L-glutamine supplementation attenuated alcohol-induced maternal hypercapnea, fetal acidemia and increases in fetal brain blood flow. L-Glutamine supplementation did not affect uterine blood flow. Collectively, alcohol exposure alters maternal and fetal acid-base balance, decreases uterine blood flow, and alters fetal regional brain blood flow. Importantly, L-glutamine supplementation mitigates alcohol-induced acid-base imbalances and alterations in fetal regional brain blood flow. Further studies are warranted to elucidate mechanisms responsible for alcohol-induced programming of maternal uterine artery and fetal circulation adaptations in pregnancy.

  3. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo

    Science.gov (United States)

    Yao, Junjie; Xia, Jun; Maslov, Konstantin; Avanaki, Mohammadreza R. N.; Tsytsarev, Vassiliy; Demchenko, Alexei V.; Wang, Lihong V.

    2013-03-01

    To control the overall action of the body, brain consumes a large amount of energy in proportion to its volume. In humans and many other species, the brain gets most of its energy from oxygen-dependent metabolism of glucose. An abnormal metabolic rate of glucose and/or oxygen usually reflects a diseased status of brain, such as cancer or Alzheimer's disease. We have demonstrated the feasibility of imaging mouse brain metabolism using photoacoustic computed tomography (PACT), a fast, noninvasive and functional imaging modality with optical contrast and acoustic resolution. Brain responses to forepaw stimulations were imaged transdermally and transcranially. 2-NBDG, which diffuses well across the blood-brain-barrier, provided exogenous contrast for photoacoustic imaging of glucose response. Concurrently, hemoglobin provided endogenous contrast for photoacoustic imaging of hemodynamic response. Glucose and hemodynamic responses were quantitatively unmixed by using two-wavelength measurements. We found that glucose uptake and blood perfusion around the somatosensory region of the contralateral hemisphere were both increased by stimulations, indicating elevated neuron activity. The glucose response amplitude was about half that of the hemodynamic response. While the glucose response area was more homogenous and confined within the somatosensory region, the hemodynamic response area showed a clear vascular pattern and spread about twice as wide as that of the glucose response. The PACT of mouse brain metabolism was validated by high-resolution open-scalp OR-PAM and fluorescence imaging. Our results demonstrate that 2-NBDG-enhanced PACT is a promising tool for noninvasive studies of brain metabolism.

  4. Toward Intelligent Hemodynamic Monitoring: A Functional Approach

    Directory of Open Access Journals (Sweden)

    Pierre Squara

    2012-01-01

    Full Text Available Technology is now available to allow a complete haemodynamic analysis; however this is only used in a small proportion of patients and seems to occur when the medical staff have the time and inclination. As a result of this, significant delays occur between an event, its diagnosis and therefore, any treatment required. We can speculate that we should be able to collect enough real time information to make a complete, real time, haemodynamic diagnosis in all critically ill patients. This article advocates for “intelligent haemodynamic monitoring”. Following the steps of a functional analysis, we answered six basic questions. (1 What is the actual best theoretical model for describing haemodynamic disorders? (2 What are the needed and necessary input/output data for describing this model? (3 What are the specific quality criteria and tolerances for collecting each input variable? (4 Based on these criteria, what are the validated available technologies for monitoring each input variable, continuously, real time, and if possible non-invasively? (5 How can we integrate all the needed reliably monitored input variables into the same system for continuously describing the global haemodynamic model? (6 Is it possible to implement this global model into intelligent programs that are able to differentiate clinically relevant changes as opposed to artificial changes and to display intelligent messages and/or diagnoses?

  5. Reflectance diffuse optical tomography. Its application to human brain mapping

    International Nuclear Information System (INIS)

    Ueda, Yukio; Yamanaka, Takeshi; Yamashita, Daisuke; Suzuki, Toshihiko; Ohmae, Etsuko; Oda, Motoki; Yamashita, Yutaka

    2005-01-01

    We report the successful application of reflectance diffuse optical tomography (DOT) using near-infrared light with the new reconstruction algorithm that we developed to the observation of regional hemodynamic changes in the brain under specific mental tasks. Our results reveal the heterogeneous distribution of oxyhemoglobin and deoxyhemoglobin in the brain, showing complementary images of oxyhemoglobin and deoxyhemoglobin changes in certain regions. We conclude that our reflectance DOT has practical potential for human brain mapping, as well as in the diagnostic imaging of brain diseases. (author)

  6. Laparoscopic Splenectomy in Hemodynamically Stable Blunt Trauma.

    Science.gov (United States)

    Huang, Gregory S; Chance, Elisha A; Hileman, Barbara M; Emerick, Eric S; Gianetti, Emily A

    2017-01-01

    No criteria define indications for laparoscopic splenectomy in trauma. This investigation compared characteristics of trauma patients and outcomes between laparoscopic and open splenectomies. Patients were identified retrospectively by using ICD-9 codes. Included patients were 18 or older, with a blunt splenic injury from January 1, 2011, through December 31, 2014, and required splenectomy. Excluded patients had penetrating trauma, successful nonoperative management, or successful embolization. Variables included demographics, presenting characteristics, injury severity scores, abdominal abbreviated injury scores, splenic injury grade, surgical indication and approach (open or laparoscopic), surgery length, intra-operative blood loss, transfusions, length of stay, complications, mortality, and discharge disposition. Forty-one patients underwent open splenectomy, and 11 underwent laparoscopic splenectomy. The mean age was 48.7 years, and men comprised the sample majority (36/52). The groups were well matched for age, abdominal injury scores, and admission vital signs. The open group had a significantly lower level of consciousness and more acidosis compared with the laparoscopic group. Most laparoscopic splenectomies were performed after failed nonoperative management or embolization. The indications for open splenectomy were a positive focused assessment with sonography for trauma and computed tomography results. Laparoscopic patients had significantly longer times between presentation and surgery and longer operations, but had significantly less blood loss and fewer transfusions compared with the open group. There were no differences in mortality, length of stay, complications, or discharge dispositions. Laparoscopic splenectomy is useful in patients with blunt trauma in whom conservative management produced no improvement and who do not have other injuries to preclude laparoscopy.

  7. Longitudinal Hemodynamics of Transcatheter and Surgical Aortic Valves in the PARTNER Trial.

    Science.gov (United States)

    Douglas, Pamela S; Leon, Martin B; Mack, Michael J; Svensson, Lars G; Webb, John G; Hahn, Rebecca T; Pibarot, Philippe; Weissman, Neil J; Miller, D Craig; Kapadia, Samir; Herrmann, Howard C; Kodali, Susheel K; Makkar, Raj R; Thourani, Vinod H; Lerakis, Stamatios; Lowry, Ashley M; Rajeswaran, Jeevanantham; Finn, Matthew T; Alu, Maria C; Smith, Craig R; Blackstone, Eugene H

    2017-11-01

    index, and aortic valve mean gradient up to 3 years, with no association with Doppler velocity index or valve area. Reintervention occurred in 20 patients (0.8%) after TAVR and in 1 (0.3%) after SAVR and became less frequent over time. Reintervention was caused by structural deterioration of transcatheter heart valves in only 5 patients. Severely abnormal hemodynamics on echocardiograms were also infrequent and not associated with excess death or reintervention for either TAVR or SAVR. This large, core laboratory-based study of transcatheter heart valves revealed excellent durability of the transcatheter heart valves and SAVR. Abnormal findings in individual patients, suggestive of valve thrombosis or structural deterioration, were rare in this protocol-driven database and require further investigation. clinicaltrials.gov Identifier: NCT00530894.

  8. The central hemodynamics at the newborns from the radionuclide contaminated territories

    International Nuclear Information System (INIS)

    Kalyuzhin, V.G.; Voskresenskaya, T.V.; Deryugina, O.A.; Adas'ko, V.I.; Platonova, O.A.

    1995-01-01

    As known the cardiovascular system has enough high radiosensitivity. The operation features of the central part of a cardiovascular system of newborns living on contaminated territories were studied. The screening research of a cardiovascular system state of 50 newborns from regions with contamination by 137 Cs more than 15 Ci/sq.km were conducted. The obtained data were compared with results of the similar investigation of 30 newborns from a control 'clean' regions. Is revealed that for newborns from a contaminated zone the more stressed in comparison with one from control group the hemodynamics adaptation process of the central link of a cardiovascular system is characteristic, especially in the first days of a life. For newborns with the disadaptation of a cardiovascular system the constant control for the circulatory homeostasis parameters and more sparing mode of a care in the first days of a life is required. 7 refs., 1 tab

  9. Advanced hemodynamic monitoring in intensive care medicine : A German web-based survey study.

    Science.gov (United States)

    Saugel, B; Reese, P C; Wagner, J Y; Buerke, M; Huber, W; Kluge, S; Prondzinsky, R

    2018-04-01

    Advanced hemodynamic monitoring is recommended in patients with complex circulatory shock. To evaluate the current attitudes and beliefs among German intensivists, regarding advanced hemodynamic monitoring, the actual hemodynamic management in clinical practice, and the barriers to using it. Web-based survey among members of the German Society of Medical Intensive Care and Emergency Medicine. Of 284 respondents, 249 (87%) agreed that further hemodynamic assessment is needed to determine the type of circulatory shock if no clear clinical diagnosis can be made. In all, 281 (99%) agreed that echocardiography is helpful for this purpose (transpulmonary thermodilution: 225 [79%]; pulmonary artery catheterization: 126 [45%]). More than 70% of respondents agreed that blood flow variables (cardiac output, stroke volume) should be measured in patients with hemodynamic instability. The parameters most respondents agreed should be assessed in a patient with hemodynamic instability were mean arterial pressure, cardiac output, and serum lactate. Echocardiography is available in 99% of ICUs (transpulmonary thermodilution: 91%; pulmonary artery catheter: 63%). The respondents stated that, in clinical practice, invasive arterial pressure measurements and serum lactate measurements are performed in more than 90% of patients with hemodynamic instability (cardiac output monitoring in about 50%; transpulmonary thermodilution in about 40%). The respondents did not feel strong barriers to the use of advanced hemodynamic monitoring in clinical practice. This survey study shows that German intensivists deem advanced hemodynamic assessment necessary for the differential diagnosis of circulatory shock and to guide therapy with fluids, vasopressors, and inotropes in ICU patients.

  10. Brain herniation

    Science.gov (United States)

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  11. Post-Treatment Hemodynamics of a Basilar Aneurysm and Bifurcation

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J; Hartman, J; Rodriguez, J; Maitland, D

    2008-01-16

    Aneurysm re-growth and rupture can sometimes unexpectedly occur following treatment procedures that were initially considered to be successful at the time of treatment and post-operative angiography. In some cases, this can be attributed to surgical clip slippage or endovascular coil compaction. However, there are other cases in which the treatment devices function properly. In these instances, the subsequent complications are due to other factors, perhaps one of which is the post-treatment hemodynamic stress. To investigate whether or not a treatment procedure can subject the parent artery to harmful hemodynamic stresses, computational fluid dynamics simulations are performed on a patient-specific basilar aneurysm and bifurcation before and after a virtual endovascular treatment. The simulations demonstrate that the treatment procedure produces a substantial increase in the wall shear stress. Analysis of the post-treatment flow field indicates that the increase in wall shear stress is due to the impingement of the basilar artery flow upon the aneurysm filling material and to the close proximity of a vortex tube to the artery wall. Calculation of the time-averaged wall shear stress shows that there is a region of the artery exposed to a level of wall shear stress that can cause severe damage to endothelial cells. The results of this study demonstrate that it is possible for a treatment procedure, which successfully excludes the aneurysm from the vascular system and leaves no aneurysm neck remnant, to elevate the hemodynamic stresses to levels that are injurious to the immediately adjacent vessel wall.

  12. Closure technique after carotid endarterectomy influences local hemodynamics.

    Science.gov (United States)

    Harrison, Gareth J; How, Thien V; Poole, Robert J; Brennan, John A; Naik, Jagjeeth B; Vallabhaneni, S Rao; Fisher, Robert K

    2014-08-01

    Meta-analysis supports patch angioplasty after carotid endarterectomy (CEA); however, studies indicate considerable variation in practice. The hemodynamic effect of a patch is unclear and this study attempted to elucidate this and guide patch width selection. Four groups were selected: healthy volunteers and patients undergoing CEA with primary closure, trimmed patch (5 mm), or 8-mm patch angioplasty. Computer-generated three-dimensional models of carotid bifurcations were produced from transverse ultrasound images recorded at 1-mm intervals. Rapid prototyping generated models for flow visualization studies. Computational fluid dynamic studies were performed for each model and validated by flow visualization. Mean wall shear stress (WSS) and oscillatory shear index (OSI) maps were created for each model using pulsatile inflow at 300 mL/min. WSS of OSI >0.3 were considered pathological, predisposing to accretion of intimal hyperplasia. The resultant WSS and OSI maps were compared. The four groups comprised 8 normal carotid arteries, 6 primary closures, 6 trimmed patches, and seven 8-mm patches. Flow visualization identified flow separation and recirculation at the bifurcation increased with a patch and was related to the patch width. Computational fluid dynamic identified that primary closure had the fewest areas of low WSS or elevated OSI but did have mild common carotid artery stenoses at the proximal arteriotomy that caused turbulence. Trimmed patches had more regions of abnormal WSS and OSI at the bifurcation, but 8-mm patches had the largest areas of deleteriously low WSS and high OSI. Qualitative comparison among the four groups confirmed that incorporation of a patch increased areas of low WSS and high OSI at the bifurcation and that this was related to patch width. Closure technique after CEA influences the hemodynamic profile. Patching does not appear to generate favorable flow dynamics. However, a trimmed 5-mm patch may offer hemodynamic benefits over an 8

  13. Diagnosis of hemodynamic compromise in patients with chronic cerebral ischemia

    International Nuclear Information System (INIS)

    Kuroda, Satoshi; Sakuragi, Mitsugi; Motomiya, Mineo; Nakagawa, Tango; Mitsumori, Kenji; Tsuru, Mitsuo; Takigawa, Shugo; Kamiyama, Hiroyasu; Abe, Hiroshi.

    1990-01-01

    To evaluate the efficacy of tests for selecting patients with hemodynamic compromise, measurement of cerebral blood volume (CBV) with 99m Tc-RBC single photon emission computed tomography (SPECT) was performed in thirteen patients with occlusive cerebrovascular disease, and was compared with results obtained by 133 Xe SPECT and acetazolamide (Diamox) test. All patients in our study suffered TIA, RIND, or minor completed stroke. Cerebral angiography demonstrated severe stenosis or occlusion in the ipsilateral internal carotid artery or middle cerebral artery, although plain CT scan or MRI revealed no or, if any, only localized infarcted lesions. Regional cerebral blood volume (rCBV) was measured with 99m Tc-RBC SPECT and regional cerebral blood flow (rCBF) was measured with 133 Xe SPECT before and after intravenous injection of 10 - 12 mg/kg acetazolamide (Diamox). Our results suggest that the ipsilateral rCBV/rCBF (mean transit time) is a more sensitive index of the cerebral perfusion reserve than the use of only rCBV or rCBF of the ipsilateral hemisphere. Also, the ipsilateral rCBV/rCBF is significantly correlated (r= -0.72) with the Diamox reactivity of rCBF, which is considered to represent the cerebral vasodilatory capacity in patients with chronic cerebral ischemia. Postoperative SPECT study revealed remarkable improvement of ipsilateral rCBV/rCBF and Diamox reactivity in four patients who underwent EC/IC bypass surgery to improve the hemodynamic compromise. In conclusion, our results suggest that the measurement of rCBV/rCBF with 133 Xe SPECT and 99m Tc-RBC SPECT is useful for detecting the hemodynamic compromise in patients with occlusive cerebrovascular disease. (author)

  14. Hemodynamic study of cervical carotid arteries using DSA

    International Nuclear Information System (INIS)

    Kumashiro, Masayuki; Araki, Osamu; Matsunaga, Morio; Shigeyasu, Makio

    1986-01-01

    Although intravenous digital subtraction angiography (IVDSA) has been widely utilized as a means of morphological examination for the detection of intracranial or extracranial vascular lesions, it has thus for contributed little to quantitative assessment in hemodynamics. In the present study, a fundamental analysis of the hemodynamics on the cervical carotid artery was performed with a relative perfusion efficiency (Rath et al., 1979). This was not related to the measurement of time, such as the mean transit time, but was based on Sapirstein's principle. After the intravenous administration of the contrast material, dynamic DSA was performed using our equipment, Shimadzu DAR-100. After setting the region of interest in common carotid arteries on DSA images by means of a microdensitometer (Sakura PDS-15) combined with a computer (NEC ACOS-460), time-density curves were obtained on both sides. Thereafter, the RPE was calculated as a ratio of two integrals from the zero time to the earlier peak time of the time-density curves with respect to the time. The flow model with the hydro-dynamic system was used to detect the relationship between the RPEs and the ratios of the actual flows in the system. The results of this experiment showed a high correlation between the RPEs and the flows (r = 0.85, p < 0.001). In normal subjects (n = 28), the mean of the RPEs was 1.07 ± 0.27 (S.D.). The RPEs showed significantly lower values in the 5 patients with severe stenosis of the internal carotid artery (0.76 ± 0.15, p < 0.02), as well as even more significantly lower values in the 9 patients with a complete occlusion of the internal carotid artery (0.64 ± 0.19, p < 0.001). The RPE measurement with IVDSA has been shown to be useful for recognizing the cervical hemodynamic changes in patients with occlusive cervicovascular disease. (author)

  15. Separating genetic and hemodynamic defects in neuropilin 1 knockout embryos.

    Science.gov (United States)

    Jones, Elizabeth A V; Yuan, Li; Breant, Christine; Watts, Ryan J; Eichmann, Anne

    2008-08-01

    Targeted inactivation of genes involved in murine cardiovascular development frequently leads to abnormalities in blood flow. As blood fluid dynamics play a crucial role in shaping vessel morphology, the presence of flow defects generally prohibits the precise assignment of the role of the mutated gene product in the vasculature. In this study, we show how to distinguish between genetic defects caused by targeted inactivation of the neuropilin 1 (Nrp1) receptor and hemodynamic defects occurring in homozygous knockout embryos. Our analysis of a Nrp1 null allele bred onto a C57BL/6 background shows that vessel remodeling defects occur concomitantly with the onset of blood flow and cause death of homozygous mutants at E10.5. Using mouse embryo culture, we establish that hemodynamic defects are already present at E8.5 and continuous circulation is never established in homozygous mutants. The geometry of yolk sac blood vessels is altered and remodeling into yolk sac arteries and veins does not occur. To separate flow-induced deficiencies from those caused by the Nrp1 mutation, we arrested blood flow in cultured wild-type and mutant embryos and followed their vascular development. We find that loss of Nrp1 function rather than flow induces the altered geometry of the capillary plexus. Endothelial cell migration, but not replication, is altered in Nrp1 mutants. Gene expression analysis of endothelial cells isolated from freshly dissected wild-type and mutants and after culture in no-flow conditions showed down-regulation of the arterial marker genes connexin 40 and ephrin B2 related to the loss of Nrp1 function. This method allows genetic defects caused by loss-of-function of a gene important for cardiovascular development to be isolated even in the presence of hemodynamic defects.

  16. Effect of dialysate temperature on hemodynamic stability among hemodialysis patients

    International Nuclear Information System (INIS)

    Azar, Ahmad Taher

    2009-01-01

    Cooling the dialysate below 36.5 degree C is an important factor that contributes to hemody-namic stability in patients during hemodialysis (HD). In this study, the effect of dialysate tempe-rature on hemodynamic stability, patients' perception of dialysis discomfort and post dialysis fatigue were assessed in a group of patients on HD. A total of 50 patients, all of whom were on 3-times-perweek dialysis regimen, were studied. Patients were assessed during six dialysis sessions; in three sessions, the dialysate temperature was normal (37 degree C) and in three other sessions, the dialysate temperature was low (35 degree C). Specific scale questionnaires were used in each dialysis session, to evaluate the symptoms during the dialysis procedure as well as post-dialysis fatigue, and respective scores were noted. The results showed that usage of low dialysate temperature was associated with the following: higher post dialysis systolic blood pressure (P< 0.05) and lower post dialysis heart rate (P<0.01), with similar ultrafiltration rates, better intra-dialysis symptoms score and post-dialysis fatigue scores (P< 0.001, and P<0.001, respectively), shorter post-dialysis fatigue period (P<0.001) as well as higher urea removal (P< 00001) and Kt/V (P< 0.0001). Patients' perceptions were measured by a questionnaire, which showed that 76% of them felt more energetic after dialysis with cool dialysate and requested to be always dialyzed with cool dialysate. Low temperature dialysate is particularly beneficial for highly symptomatic patients, improves tolerance to dialysis in hypotensive patients and helps increase ultrafiltration while maintaining hemodynamic stability during and after dialysis. (author)

  17. Predicting ICU hemodynamic instability using continuous multiparameter trends.

    Science.gov (United States)

    Cao, Hanqing; Eshelman, Larry; Chbat, Nicolas; Nielsen, Larry; Gross, Brian; Saeed, Mohammed

    2008-01-01

    Identifying hemodynamically unstable patients in a timely fashion in intensive care units (ICUs) is crucial because it can lead to earlier interventions and thus to potentially better patient outcomes. Current alert algorithms are typically limited to detecting dangerous conditions only after they have occurred and suffer from high false alert rates. Our objective was to predict hemodynamic instability at least two hours before a major clinical intervention (e.g., vasopressor administration), while maintaining a low false alert rate. From the MIMIC II database, containing ICU minute-by-minute heart rate (HR) and invasive arterial blood pressure (BP) monitoring trend data collected between 2001 and 2005, we identified 132 stable and 104 unstable patients that met our stability-instability criteria and had sufficient data points. We first derived additional physiological parameters of shock index, rate pressure product, heart rate variability, and two measures of trending based on HR and BP. Then we developed 220 statistical features and systematically selected a small set to use for classification. We applied multi-variable logistic regression modeling to do classification and implemented validation via bootstrapping. Area under receiver-operating curve (ROC) 0.83+/-0.03, sensitivity 0.75+/-0.06, and specificity 0.80+/-0.07; if the specificity is targeted at 0.90, then the sensitivity is 0.57+/-0.07. Based on our preliminary results, we conclude that the algorithms we developed using HR and BP trend data may provide a promising perspective toward reliable predictive alerts for hemodynamically unstable patients.

  18. Mathematical modeling of renal hemodynamics in physiology and pathophysiology.

    Science.gov (United States)

    Sgouralis, Ioannis; Layton, Anita T

    2015-06-01

    In addition to the excretion of metabolic waste and toxin, the kidney plays an indispensable role in regulating the balance of water, electrolyte, acid-base, and blood pressure. For the kidney to maintain proper functions, hemodynamic control is crucial. In this review, we describe representative mathematical models that have been developed to better understand the kidney's autoregulatory processes. We consider mathematical models that simulate glomerular filtration, and renal blood flow regulation by means of the myogenic response and tubuloglomerular feedback. We discuss the extent to which these modeling efforts have expanded the understanding of renal functions in health and disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Effects of Dietary Nitrates on Systemic and Cerebrovascular Hemodynamics

    Directory of Open Access Journals (Sweden)

    Vernon Bond

    2013-01-01

    Full Text Available Cerebral blood flow dysregulation is often associated with hypertension. We hypothesized that a beetroot juice (BRJ treatment could decrease blood pressure and cerebrovascular resistance (CVR. We subjected 12 healthy females to control and BRJ treatments. Cerebrovascular resistance index (CVRI, systolic blood pressure (SBP, total vascular resistance (TVR, and the heart rate-systolic pressure product (RPP measured at rest and at two exercise workloads were lower after the BRJ treatment. CVRI, SBP, and RPP were lower without a lower TVR at the highest exercise level. These findings suggest improved systemic and cerebral hemodynamics that could translate into a dietary treatment for hypertension.

  20. Portal hemodynamics in chronic portal-systemic encephalopathy

    International Nuclear Information System (INIS)

    Takashi, Motohide; Igarashi, Masahiko; Hino, Shinichi; Takayasu, Kenichi; Goto, Nobuaki; Musha, Hirotaka; Ohnishi, Kunihiko; Okuda, Kunio

    1985-01-01

    A portal hemodynamic study was made in 7 consecutive patients with chronic portal-systemic encephalopathy by percutaneous transhepatic catheterization of the portal vein and injecting contrast medium into the superior mesenteric vein or by superior mesenteric arterial portography in comparison with patients without encephalopathy studied by percutaneous catheterization of these veins. It is suggested that chronic portal-systemic encephalopathy is a result of a large collateral route shunting a large proportion of the superior mesenteric venous blood into systemic circulation, and that development of such collaterals precludes formation of large esophageal varices. (Auth.)

  1. Hemodynamic mechanisms underlying the incomplete tolerance to caffeine's pressor effects.

    Science.gov (United States)

    Farag, Noha H; Vincent, Andrea S; McKey, Barbara S; Whitsett, Thomas L; Lovallo, William R

    2005-06-01

    Blood pressure (BP) and cardiovascular hemodynamics were assessed at baseline and after caffeine administration in a 4-week, placebo-controlled, double-blind, randomized, crossover trial of caffeine tolerance formation. Half of the subjects developed tolerance to the pressor effect of caffeine, whereas the other half continued to show increases in BP after caffeine ingestion (F = 16.7, p <0.0001). In the subjects who did not develop tolerance, peripheral resistance increased incrementally as the daily dose of caffeine increased (F = 2.8, p = 0.05).

  2. NADPH oxidase and lipid raft-associated redox signaling are required for PCB153-induced upregulation of cell adhesion molecules in human brain endothelial cells

    International Nuclear Information System (INIS)

    Eum, Sung Yong; Andras, Ibolya; Hennig, Bernhard; Toborek, Michal

    2009-01-01

    Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells. These effects were impeded by inhibitors of EGFR, JAKs, or Src activity. In addition, pharmacological inhibition of NADPH oxidase or disruption of lipid rafts by cholesterol depleting agents blocked PCB153-induced phosphorylation of JAK and Src kinases and upregulation of CAMs. In contrast, silencing of caveolin-1 by siRNA interference did not affect upregulation of ICAM-1 and VCAM-1 in brain endothelial cells stimulated by PCB153. Results of the present study indicate that lipid raft-dependent NADPH oxidase/JAK/EGFR signaling mechanisms regulate the expression of CAMs in brain endothelial cells and adhesion of leukocytes to endothelial monolayers. Due to its role in leukocyte infiltration, induction of CAMs may contribute to PCB-induced cerebrovascular disorders and neurotoxic effects in the CNS.

  3. Neurovascular coupling and energy metabolism in the developing brain

    Science.gov (United States)

    Kozberg, M.; Hillman, E.

    2016-01-01

    In the adult brain, increases in local neural activity are almost always accompanied by increases in local blood flow. However, many functional imaging studies of the newborn and developing human brain have observed patterns of hemodynamic responses that differ from adult responses. Among the proposed mechanisms for the observed variations is that neurovascular coupling itself is still developing in the perinatal brain. Many of the components thought to be involved in actuating and propagating this hemodynamic response are known to still be developing postnatally, including perivascular cells such as astrocytes and pericytes. Both neural and vascular networks expand and are then selectively pruned over the first year of human life. Additionally, the metabolic demands of the newborn brain are still evolving. These changes are highly likely to affect early postnatal neurovascular coupling, and thus may affect functional imaging signals in this age group. This chapter will discuss the literature relating to neurovascular development. Potential effects of normal and aberrant development of neurovascular coupling on the newborn brain will also be explored, as well as ways to effectively utilize imaging techniques that rely on hemodynamic modulation such as fMRI and NIRS in younger populations. PMID:27130418

  4. Quantitative assessment of cerebral hemodynamic parameters by QUASAR arterial spin labeling in Alzheimer's disease and cognitively normal Elderly adults at 3-tesla.

    Science.gov (United States)

    Mak, Henry K F; Chan, Queenie; Zhang, Zhipeng; Petersen, Esben T; Qiu, Deqiang; Zhang, Linda; Yau, Kelvin K W; Chu, Leung-Wing; Golay, Xavier

    2012-01-01

    QUASAR arterial spin labeling (ASL) was used to investigate the role of vascular impairment in Alzheimer's disease (AD). We hypothesized that the hemodynamic parameters monitoring cerebrovascular integrity, i.e., cerebral blood flow (CBF), arterial blood volume (aBV), and arterial transit time (aTT), would be affected. 13 AD patients and 15 healthy control (HC) subjects underwent 3T MRI scanning. Two separate blood flow acquisitions were obtained with 1 slice overlap for whole brain coverage. CBF, aBV, and aTT maps were calculated using in-house software. Preprocessing and statistical analyses were performed on SPM5. Region-of-interest (ROI) studies of ten selected cerebral regions were also conducted. There were significant differences in mini mental status exam (MMSE) (AD: 16.3 ± 4.55, HC: 28.5 ± 2.00) and Alzheimer's disease assessment scale-cognitive subscale (ADAS-cog) scores (AD: 25.25 ± 9.64, HC: 5.51 ± 2.62) between the 2 groups (p QUASAR ASL, we found patterns of regional hemodynamic impairment typical of moderate AD, suggesting underlying vascular abnormality. As potential biomarkers, these hemodynamic parameters could differentiate patients from volunteers, and possibly indicate the conversion from healthy aging to mild cognitive impairment to AD.

  5. Hemodynamic measurement using four-dimensional phase-contrast MRI: Quantification of hemodynamic parameters and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Ho Jin; Lee, Sang Joon [POSTECH Biotech Center, Pohang University of Science and Technology, Pohang (Korea, Republic of); Kim, Guk Bae; Kweon, Ji Hoon; Kim, Young Hak; Lee, Deok Hee; Yang, Dong Hyun; KIm, Nam Kug [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2016-07-15

    Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions.

  6. Hemodynamic Measurement Using Four-Dimensional Phase-Contrast MRI: Quantification of Hemodynamic Parameters and Clinical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Hojin [POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Kim, Guk Bae [Asan Institute of Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Kweon, Jihoon [Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Lee, Sang Joon [POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Kim, Young-Hak [Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Lee, Deok Hee; Yang, Dong Hyun [Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Kim, Namkug [Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of)

    2016-11-01

    Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions.

  7. HEMODYNAMIC AND LACTIC ACID RESPONSES TO PROPRIOCEPTIVE NEUROMUSCULAR FACILITATION EXERCISE

    Directory of Open Access Journals (Sweden)

    Zuhal Gültekin

    2006-09-01

    Full Text Available The hemodynamic and metabolic responses to proprioceptive neuromuscular facilitation (PNF exercise were examined in 32 male university students (aged 19-28 years. Ten repetitions of PNF exercises were applied to the subjects' dominant upper extremities in the following order: as an agonist pattern flexion, adduction and external rotation; and as an antagonist pattern extension, abduction and internal rotation. Heart rate (HR, systolic blood pressure (SBP, diastolic blood pressure (DBP, double product (DP, and blood lactate concentration (La were determined before, immediately after, and at 1st, 3rd, and 5th minutes after PNF exercise. A one-way ANOVA with repeated measures indicated significant differences in HR, SBP, DBP, DP and La immediately after PNF exercise. HR increased from 81 (±10 to 108 (±15 b·min-1 (p < 0.01, SBP increased from 117 (±10 to 125 (±11 mmHg (p < 0.01, DBP increased from 71 (±10 to 75 (±8 mmHg (p < 0.01, DP increased from 96 (±16 to 135 (±24 (p < 0.01, and La increased from 0.69 (±0.31 to 3.99 (±14.63 mmol·L-1 (p < 0.01. Thus PNF exercise resulted in increased hemodynamic responses and blood lactate concentration that indicate a high strain on the cardiovascular system and anaerobic metabolism in healthy subjects

  8. EVALUATION OF DEXMEDETOMIDINE ON HEMODYNAMICS IN PATIENTS UNDERGOING LAPAROSCOPIC CHOLECYSTECTOMY

    Directory of Open Access Journals (Sweden)

    Penchalaiah

    2015-09-01

    Full Text Available BACKGROUND: Dexmedetomidine a newer generation highly selective alpha - 2 adrenergic agonist are well known to inhibit catecholamine release. The present study compares the effects of intravenously administered dexmedetomidine to attenuate hemodynamic response to pneumoperitoneum to laparoscopic cholecystectomy under general anaesthesia. METHODOLOGY: 60 patients ASA Physical status I and II, aged between 18 and 50 years of either sex, scheduled for elective laparoscopic cholecy stectomy were randomized in to 2 groups ( group D and S inn a double blind fashion to receive either Dexmedetomidine ( 1microgram/kg in 100ml of 0.9% normal saline or only 0.9%plain normal saline respectively. It is given 30 min prior to induction. Patient vitals like HR, SBP, DBP, MAP were monitored during the study at various time intervals. RESULTS: Following intubation and pneumoperitoneum there significant rise in HR, MAP, SBP, DBP in group S but no significant rise in Group D. CONCLUSION: Dexmedetomid ine given in a dose of 1microgram/kg as a premedication is e ffective in attenuating the hemodynamic responses in laparoscopic surgery

  9. The Effect of Hemodynamics on Cerebral Aneurysm Morphology

    Science.gov (United States)

    Metcalfe, Ralph; Mantha, Aishwarya; Karmonik, Christof; Strother, Charles

    2004-11-01

    One of the difficulties in applying principles of hemodynamics to the study of blood flow in aneurysms are the drastic variations in possible shape of both the aneurysms and the parent arteries in the region of interest. We have taken data from three para-opthalmic internal carotid artery aneurysms using 3D-digital subtraction angiography (3D-DSA) and performed CFD simulations of steady and unsteady flows through the three different cases using the same pressure gradients and pulsatile flow waveforms (based on the Ku model for flow through the Carotid bifurcation). We have found that the total pressure differential within the aneurysms is consistent with the direction of flow, and that the dynamic pressure gradient within the aneurysm is very small compared with the static pressure variations. Wall shear stresses were highest near regions of sharp arterial curvature, but always remained low inside the aneurysm. These results suggest a more complex role for hemodynamics in aneurysm generation, growth and rupture.

  10. Study of retrobulbar hemodynamics in diabetes via color doppler ultrasound

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2014-09-01

    Full Text Available AIM: To explore the changes of retrobulbar hemodynamics in diabetes via color doppler ultrasound. METHODS: Totally 80 patients(160 eyeswith eye diseases in type 2 diabetes from June 2010 to May 2013 in our hospital were enrolled as research group. By fundus photography and direct ophthalmoscopy, patients were assigned to diabetes without retinopathy group(DNR subgroup, non-proliferative diabetic retinopathy group(NPDR subgroupand proliferative diabetic retinopathy group(PDR subgroup. Of 60 healthy patients(120 eyesover the same period were chosen as control group. The doppler parameters of central retinal artery(CRA, posterior ciliary artery(PCAand ophthalmic artery(OAwere measured.RESULTS: There were significant differences on circulatory parameters of CRA, PCA and OA between both groups(PPPCONCLUSION: The monitoring of retinal blood flow and analysis of blood spectrum morphology via color doppler ultrasound can effectively evaluate the degree of diabetic retinopathy lesions, especially before DR vascular disease. Early detection can reveal the hemodynamic change pattern of DR, facilitating the prevention of diabetic eye complications and improvement of the quality of life.

  11. Complex Coronary Hemodynamics - Simple Analog Modelling as an Educational Tool.

    Science.gov (United States)

    Parikh, Gaurav R; Peter, Elvis; Kakouros, Nikolaos

    2017-01-01

    Invasive coronary angiography remains the cornerstone for evaluation of coronary stenoses despite there being a poor correlation between luminal loss assessment by coronary luminography and myocardial ischemia. This is especially true for coronary lesions deemed moderate by visual assessment. Coronary pressure-derived fractional flow reserve (FFR) has emerged as the gold standard for the evaluation of hemodynamic significance of coronary artery stenosis, which is cost effective and leads to improved patient outcomes. There are, however, several limitations to the use of FFR including the evaluation of serial stenoses. In this article, we discuss the electronic-hydraulic analogy and the utility of simple electrical modelling to mimic the coronary circulation and coronary stenoses. We exemplify the effect of tandem coronary lesions on the FFR by modelling of a patient with sequential disease segments and complex anatomy. We believe that such computational modelling can serve as a powerful educational tool to help clinicians better understand the complexity of coronary hemodynamics and improve patient care.

  12. Hemodynamic transition driven by stent porosity in sidewall aneurysms.

    Science.gov (United States)

    Bouillot, Pierre; Brina, Olivier; Ouared, Rafik; Lovblad, Karl-Olof; Farhat, Mohamed; Pereira, Vitor Mendes

    2015-05-01

    The healing process of intracranial aneurysms (IAs) treated with flow diverter stents (FDSs) depends on the IA flow modifications and on the epithelization process over the neck. In sidewall IA models with straight parent artery, two main hemodynamic regimes with different flow patterns and IA flow magnitude were broadly observed for unstented and high porosity stented IA on one side, and low porosity stented IA on the other side. The hemodynamic transition between these two regimes is potentially involved in thrombosis formation. In the present study, CFD simulations and multi-time lag (MTL) particle imaging velocimetry (PIV) measurements were combined to investigate the physical nature of this transition. Measurable velocity fields and non-measurable shear stress and pressure fields were assessed experimentally and numerically in the aneurysm volume in the presence of stents with various porosities. The two main regimes observed in both PIV and CFD showed typical flow features of shear and pressure driven regimes. In particular, the waveform of the averaged IA velocities was matching both the shear stress waveform at IA neck or the pressure gradient waveform in parent artery. Moreover, the transition between the two regimes was controlled by stent porosity: a decrease of stent porosity leads to an increase (decrease) of pressure differential (shear stress) through IA neck. Finally, a good PIV-CFD agreement was found except in transitional regimes and low motion eddies due to small mismatch of PIV-CFD running conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Life Satisfaction and Hemodynamic Reactivity to Mental Stress.

    Science.gov (United States)

    Schwerdtfeger, Andreas; Gaisbachgrabner, Kerstin; Traunmüller, Claudia

    2017-06-01

    Satisfaction with life has been considered a health-protective variable, which could impact cardiovascular morbidity and mortality. However, few studies have examined the physiological pathways involved in the potentially salutary effect of life satisfaction. It was hypothesized that life satisfaction should be associated with a cardiovascular response profile that signals challenge (i.e., higher cardiac output, lower peripheral resistance), rather than threat during a mental stress task. A sample of 75 healthy, medication-free men without clinical signs of psychological disorders who worked full-time and occupied highly demanding positions participated in this study. They performed two mental stress tasks (n-back) with varying degrees of difficulty. The tasks were embedded between a baseline and a recovery period. Cardiovascular and hemodynamic variables (heart rate, blood pressure, cardiac output, total peripheral resistance) were recorded by means of impedance cardiography. Individuals who were more satisfied with their life displayed higher cardiac output and lower peripheral resistance levels during the stress tasks, indicating a challenge rather than a threat profile. Findings were robust when controlled for physical activity, smoking, age, and depressive symptoms. Life satisfaction could be positively correlated with beneficial hemodynamic stress reactivity, indicating that individuals with higher levels of life satisfaction can more adaptively cope with stress. Increased cardiac output and decreased peripheral resistance during stress may constitute one route through which life satisfaction can benefit health.

  14. Detecting the Subtle Shape Differences in Hemodynamic Responses at the Group Level

    Directory of Open Access Journals (Sweden)

    Gang eChen

    2015-10-01

    Full Text Available The nature of the hemodynamic response (HDR is still not fully understood due to the multifaceted processes involved. Aside from the overall amplitude, the response may vary across cognitive states, tasks, brain regions, and subjects with respect to characteristics such as rise and fall speed, peak duration, undershoot shape, and overall duration. Here we demonstrate that the fixed-shape or adjusted-shape methods may fail to detect some shape subtleties. In contrast, the estimated-shape method (ESM through multiple basis functions can provide the opportunity to identify some subtle shape differences and achieve higher statistical power at both individual and group levels. Previously, some dimension reduction approaches focused on the peak magnitude, or made inferences based on the area under the curve or interaction, which can lead to potential misidentifications. By adopting a generic framework of multivariate modeling (MVM, we showcase a hybrid approach that is validated by simulations and real data. Unlike the few analyses that were limited to main effect, two- or three-way interactions, we extend the approach to an inclusive platform that is more adaptable than the conventional GLM, achieving a practical equipoise among representation, false positive control, statistical power, and modeling flexibility.

  15. CT perfusion mapping of hemodynamic disturbances associated to acute spontaneous intracerebral hemorrhage

    International Nuclear Information System (INIS)

    Fainardi, Enrico; Borrelli, Massimo; Saletti, Andrea; Ceruti, Stefano; Tamarozzi, Riccardo; Schivalocchi, Roberta; Cavallo, Michele; Azzini, Cristiano; Chieregato, Arturo

    2008-01-01

    We sought to quantify perfusion changes associated to acute spontaneous intracerebral hemorrhage (SICH) by means of computed tomography perfusion (CTP) imaging. We studied 89 patients with supratentorial SICH at admission CT by using CTP scanning obtained within 24 h after symptom onset. Regional cerebral blood flow (rCBF), cerebral blood volume (rCBV) and mean transit time (rMTT) levels were measured in four different regions of interest manually outlined on CT scan: (1) hemorrhagic core; (2) perihematomal low-density area; (3) 1 cm rim of normal-appearing brain tissue surrounding the perilesional area; and (4) a mirrored area, including the clot and the perihematomal region, located in the non-lesioned contralateral hemisphere. rCBF, rCBV, and rMTT mean levels showed a centrifugal distribution with a gradual increase from the core to the periphery (p 20 ml) hematomas (p<0.01 and p <0.02, respectively). Multi-parametric CTP mapping of acute SICH indicates that perfusion values show a progressive improvement from the core to the periphery. In the first 24 h, perihemorrhagic region was hypoperfused with CTP values which were not suggestive of ischemic penumbra destined to survive but more likely indicative of edema formation. These findings also argue for a potential influence of early amounts of bleeding on perihematomal hemodynamic abnormalities. (orig.)

  16. Cerebral Hemodynamics in a Healthy Population Measured by Dynamic Susceptibility Contrast MR Imaging

    International Nuclear Information System (INIS)

    Helenius, J.; Soinne, L.; Tatlisumak, T.; Kaste, M.; Aronen, H.J.

    2003-01-01

    Purpose: To establish reference data and to study age-dependency for cerebral perfusion in various regions of the brain in a healthy population. Material and Methods: Eighty healthy subjects of both genders from 22 to 85 years of age were studied with spin echo echo-planar dynamic susceptibility contrast MR imaging (DSC MRI) at 1.5 T. Cerebral blood volume (CBV), cerebral blood flow (CBF), and contrast agent mean transit time (MTT) were calculated bilaterally for 20 distinct neuro anatomic structures. Results: In gray matter, the following values were found (mean ± SD): CBV (4.6 ± 1.0 ml/100 g), CBF (94.2 ± 23.0 ml/100 g/min), and MTT (3.0 ± 0.6 s), and in white matter: CBV (1.3 ± 0.4 ml/100 g), CBF (19.6 ± 5.8 ml/100 g/min), and MTT (4.3 ± 0.7 s). The perfusion parameters did not change with age, except for a tendency to an increase in gray matter MTT and CBV. Males exhibited higher MTT and CBV than females. No hemispheric difference was found in either gender. Conclusion: Cerebral hemodynamics can be assessed with DSC MRI. Age itself seems to have only a marginal effect on cerebral perfusion in healthy population

  17. Cerebral Hemodynamics in a Healthy Population Measured by Dynamic Susceptibility Contrast MR Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Helenius, J.; Soinne, L.; Tatlisumak, T.; Kaste, M. [Helsinki Univ. Central Hospital (Finland). Dept. of Neurology; Perkioe, J.; Salonen, O.; Savolainen, S. [Helsinki Univ. Central Hospital (Finland). Dept. of Radiology; Oestergaard, L. [Aarhus Univ. Hospital (Denmark). Dept. of Neuroradiology; Carano, R.A.D. [Synarc Inc., San Francisco, CA (United States); Aronen, H.J. [Helsinki Brain Research Center (Finland). Functional Brain Imaging Unit

    2003-09-01

    Purpose: To establish reference data and to study age-dependency for cerebral perfusion in various regions of the brain in a healthy population. Material and Methods: Eighty healthy subjects of both genders from 22 to 85 years of age were studied with spin echo echo-planar dynamic susceptibility contrast MR imaging (DSC MRI) at 1.5 T. Cerebral blood volume (CBV), cerebral blood flow (CBF), and contrast agent mean transit time (MTT) were calculated bilaterally for 20 distinct neuro anatomic structures. Results: In gray matter, the following values were found (mean {+-} SD): CBV (4.6 {+-} 1.0 ml/100 g), CBF (94.2 {+-} 23.0 ml/100 g/min), and MTT (3.0 {+-} 0.6 s), and in white matter: CBV (1.3 {+-} 0.4 ml/100 g), CBF (19.6 {+-} 5.8 ml/100 g/min), and MTT (4.3 {+-} 0.7 s). The perfusion parameters did not change with age, except for a tendency to an increase in gray matter MTT and CBV. Males exhibited higher MTT and CBV than females. No hemispheric difference was found in either gender. Conclusion: Cerebral hemodynamics can be assessed with DSC MRI. Age itself seems to have only a marginal effect on cerebral perfusion in healthy population.

  18. Caffeine differentially alters cortical hemodynamic activity during working memory: a near infrared spectroscopy study.

    Science.gov (United States)

    Heilbronner, Urs; Hinrichs, Hermann; Heinze, Hans-Jochen; Zaehle, Tino

    2015-10-01

    Caffeine is a widely used stimulant with potentially beneficial effects on cognition as well as vasoconstrictive properties. In functional magnetic imaging research, caffeine has gained attention as a potential enhancer of the blood oxygenation level-dependent (BOLD) response. In order to clarify changes of oxy- and deoxyhemoglobin (HbO and HbR) induced by caffeine during a cognitive task, we investigated a working memory (WM) paradigm (visual 2-back) using near-infrared spectroscopy (NIRS). Behaviorally, caffeine had no effect on the WM performance but influenced reaction times in the 0-back condition. NIRS data demonstrate caffeine-dependent alterations of the course of the hemodynamic response. The intake of 200 mg caffeine caused a significant decrease of the HbO response between 20 and 40 s after the onset of a 2-back task in the bilateral inferior frontal cortex (IFC). In parallel, the HbR response of the left IFC was significantly increased due to caffeine intake. In line with previous results, we did not detect an effect of caffeine on most aspects of behavior. Effects of caffeine on brain vasculature were detected as general reduction of HbO. Neuronal effects of caffeine are reflected in an increased concentration of HbR in the left hemisphere when performing a verbal memory task and suggest influences on metabolism.

  19. Differential hemodynamic effects of exercise and volume expansion in people with and without heart failure

    DEFF Research Database (Denmark)

    Andersen, Mads Jønsson; Olson, Thomas P; Melenovsky, Vojtech

    2015-01-01

    BACKGROUND:Invasive hemodynamic exercise testing is commonly used in the evaluation of patients with suspected heart failure with preserved ejection fraction (HFpEF) or pulmonary hypertension. Saline loading has been suggested as an alternative provocative maneuver, but the hemodynamic changes...

  20. Impact of Diversity of Morphological Characteristics and Reynolds number on Local Hemodynamics in Basilar Aneurysms

    DEFF Research Database (Denmark)

    Rafat, Marjan; Dabagh, Mahsa; Heller, Martin

    2018-01-01

    management. Existing aneurysm hemodynamics studies generally evaluate limited geometries or Reynolds numbers (Re), which are difficult to apply to a wide range of patient-specific cases. We focused on the association between hemodynamic characteristics and morphology. We assessed several two-dimensional (2D...

  1. Journal of Clinical Monitoring and Computing 2015 end of year summary : cardiovascular and hemodynamic monitoring

    NARCIS (Netherlands)

    Bendjelid, Karim; Rex, Steffen; Scheeren, Thomas; Saugel, Bernd

    Hemodynamic monitoring is essential in critically ill patients. In this regard, the Journal of Clinical Monitoring and Computing (JCMC) has become an ideal platform for publishing cardiovascular and hemodynamic monitoring-related research, as reflected by an increasing number of articles related to

  2. Year in review in journal of clinical monitoring and computing 2014 : cardiovascular and hemodynamic monitoring

    NARCIS (Netherlands)

    Bendjelid, Karim; Rex, Steffen; Scheeren, Thomas; Critchley, Lester

    Hemodynamic instability is a common sign in critically ill patients and its importance has been increasingly recognized during the last 20 years. Indeed, It is now appreciated that an adequate hemodynamic monitoring associated to reactive vigorous therapy is able to decrease the present ominous

  3. Fermented ginseng, GBCK25, ameliorates hemodynamic function on experimentally induced myocardial injury

    Directory of Open Access Journals (Sweden)

    Adithan Aravinthan

    2016-10-01

    Full Text Available In the present study, we investigated whether treatment with GBCK25 facilitated the recovery of hemodynamic parameters, left ventricle systolic pressure, left ventricular developed pressure, and electrocardiographic changes. GBCK25 significantly prevented the decrease in hemodynamic parameters and ameliorated the electrocardiographic abnormality. These results indicate that GBCK25 has distinct cardioprotective effects in rat heart.

  4. Short-term vascular hemodynamic responses to isometric exercise in young adults and in the elderly

    NARCIS (Netherlands)

    Hartog, R. (Renee); D. Bolignano (Davide); E.J.G. Sijbrands (Eric); Pucci, G. (Giacomo); F.U.S. Mattace Raso (Francesco)

    2018-01-01

    textabstractBackground: Vascular aging is known to induce progressive stiffening of the large elastic arteries, altering vascular hemodynamics under both rest and stress conditions. In this study, we aimed to investigate changes in vascular hemodynamics in response to isometric handgrip exercise

  5. Some hemodynamic changes in the organism following exposure to X-and gamma-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bliznakov, V; Mikhailov, A [Meditsinska Akademiya, Sofia (Bulgaria). Nauchen Inst. po Rentgenologiya i Radiobiologiya

    1982-01-01

    The hemodynamic response to dosed exercise of 705 physicians, nurses, roentgen technicians and hospital attendants, working with X-ray diagnostic and therapeutic devices, was studied. The doses received on professional irradiation proved to be below the threshold ones. A significantly increased incidence was recorded in cases of atonic hemodynamic response, mainly in medical workers, employed in X-ray departments.

  6. Use of lignocaine or nitroglycerine for blunting of hemodynamic stress response during electroconvulsive therapy

    Directory of Open Access Journals (Sweden)

    Muhammad Umar Zahoor

    2014-01-01

    Conclusion: NTG provided more hemodynamic stability in post-ECT period as compared to lignocaine which only prevented a surge in HR without any effect on MAP. We conclude that NTG can safely be instituted for anaesthesia in ECT patients for prevention of hemodynamic stress response.

  7. Novel Use of a Noninvasive Hemodynamic Monitor in a Personalized, Active Learning Simulation

    Science.gov (United States)

    Zoller, Jonathan K.; He, Jianghua; Ballew, Angela T.; Orr, Walter N.; Flynn, Brigid C.

    2017-01-01

    The present study furthered the concept of simulation-based medical education by applying a personalized active learning component. We tested this novel approach utilizing a noninvasive hemodynamic monitor with the capability to measure and display in real time numerous hemodynamic parameters in the exercising participant. Changes in medical…

  8. [Digital electroencephalography in brain death diagnostics : Technical requirements and results of a survey on the compatibility with medical guidelines of digital EEG systems from providers in Germany].

    Science.gov (United States)

    Walter, U; Noachtar, S; Hinrichs, H

    2018-02-01

    The guidelines of the German Medical Association and the German Society for Clinical Neurophysiology and Functional Imaging (DGKN) require a high procedural and technical standard for electroencephalography (EEG) as an ancillary method for diagnosing the irreversible cessation of brain function (brain death). Nowadays, digital EEG systems are increasingly being applied in hospitals. So far it is unclear to what extent the digital EEG systems currently marketed in Germany meet the guidelines for diagnosing brain death. In the present article, the technical und safety-related requirements for digital EEG systems and the EEG documentation for diagnosing brain death are described in detail. On behalf of the DGKN, the authors sent out a questionnaire to all identified distributors of digital EEG systems in Germany with respect to the following technical demands: repeated recording of the calibration signals during an ongoing EEG recording, repeated recording of all electrode impedances during an ongoing EEG recording, assessability of intrasystem noise and galvanic isolation of measurement earthing from earthing conductor (floating input). For 15 of the identified 20 different digital EEG systems the specifications were provided by the distributors (among them all distributors based in Germany). All of these EEG systems are provided with a galvanic isolation (floating input). The internal noise can be tested with all systems; however, some systems do not allow repeated recording of the calibration signals and/or the electrode impedances during an ongoing EEG recording. The majority but not all of the currently available digital EEG systems offered for clinical use are eligible for use in brain death diagnostics as per German guidelines.

  9. Thoracic aorta 3D hemodynamics in pediatric and young adult patients with bicuspid aortic valve.

    Science.gov (United States)

    Allen, Bradley D; van Ooij, Pim; Barker, Alex J; Carr, Maria; Gabbour, Maya; Schnell, Susanne; Jarvis, Kelly B; Carr, James C; Markl, Michael; Rigsby, Cynthia; Robinson, Joshua D

    2015-10-01

    To evaluate the 3D hemodynamics in the thoracic aorta of pediatric and young adult bicuspid aortic valve (BAV) patients. 4D flow MRI was performed in 30 pediatric and young adult BAV patients (age: 13.9 ± 4.4 (range: [3.4, 20.7]) years old, M:F = 17:13) as part of this Institutional Review Board-approved study. Nomogram-based aortic root Z-scores were calculated to assess aortic dilatation and degree of aortic stenosis (AS) severity was assessed on MRI. Data analysis included calculation of time-averaged systolic 3D wall shear stress (WSSsys ) along the entire aorta wall, and regional quantification of maximum and mean WSSsys and peak systolic velocity (velsys ) in the ascending aorta (AAo), arch, and descending aorta (DAo). The 4D flow MRI AAo velsys was also compared with echocardiography peak velocity measurements. There was a positive correlation with both mean and max AAo WSSsys and peak AAo velsys (mean: r = 0.84, P max: r = 0.94, P max: rS  = 0.70, P < 0.001). AAo peak velocity was significantly higher when measured with echo compared with 4D flow MRI (2.1 ± 0.98 m/s versus 1.27 ± 0.49 m/s, P < 0.001). In pediatric and young adult patients with BAV, AS and peak ascending aorta velocity are associated with increased AAo WSS, while aortic dilation, age, and body surface area do not significantly impact AAo hemodynamics. Prospective studies are required to establish the role of WSS as a risk-stratification tool in these patients. © 2015 Wiley Periodicals, Inc.

  10. Relationship Between Cerebral Oxygenation and Hemodynamic and Oxygen Transport Parameters in Surgery for Acquired Heart Diseases

    Directory of Open Access Journals (Sweden)

    A. I. Lenkin

    2012-01-01

    Full Text Available Objective: to evaluate the relationship between cerebral oxygenation and hemodynamic and oxygen transport parameters in surgical correction of concomitant acquired heart diseases. Subjects and methods. Informed consent was received from 40 patients who required surgery because of concomitant (two or more acquired heart defects. During procedure, perioperative monitoring of oxygen transport and cerebral oxygenation was performed with the aid of PiCCO2 monitor (Pulsion Medical Systems, Germany and a Fore-Sight cerebral oximeter (CASMED, USA. Anesthesia was maintained with propofol and fen-tanyl, by monitoring the depth of anesthesia. Early postoperative intensive therapy was based on the protocol for early targeted correction of hemodynamic disorders. Oxygen transport and cerebral oxygenation parameters were estimated intraopera-tively and within 24 postoperative hours. A statistical analysis including evaluation of Spearman correlations was performed with the aid of SPSS 15.0. Results. During perfusion, there was a relationship between cerebral oximetry values and hemat-ocrit levels, and oxygen partial pressure in the venous blood. Furthermore, a negative correlation between cerebral oximetry values and blood lactate levels was found 30 minutes after initiation of extracorporeal circulation (EC. During the study, there was a positive correlation between cerebral oxygenation and values of cardiac index, central venous saturation, and oxygen delivery index. There was a negative relationship between cerebral oxygenation and extravascular lung water at the beginning of surgery and a correlation between cerebral oximetry values and oxygenation index by the end of the first 24 postoperative hours. Conclusion. The cerebral oxygenation values correlate -with the main determinants of oxygen transport during EC and after cardiac surgical procedures. Cerebral oximetry may be used in early targeted therapy for the surgical correction of acquired combined

  11. The effect of combined conventional and modified ultrafiltration on mechanical ventilation and hemodynamic changes in congenital heart surgery

    Directory of Open Access Journals (Sweden)

    Mohsen Ziyaeifard

    2016-01-01

    Full Text Available Background: Cardiopulmonary bypass is associated with increased fluid accumulation around the heart which influences pulmonary and cardiac diastolic function. The aim of this study was to compare the effects of modified ultrafiltration (MUF versus conventional ultrafiltration (CUF on duration of mechanical ventilation and hemodynamic status in children undergoing congenital heart surgery. Materials and Methods: A randomized clinical trial was conducted on 46 pediatric patients undergoing cardiopulmonary bypass throughout their congenital heart surgery. Arteriovenous MUF plus CUF was performed in 23 patients (intervention group and sole CUF was performed for other 23 patients (control group. In MUF group, arterial cannula was linked to the filter inlet through the arterial line, and for 10 min, 10 ml/kg/min of blood was filtered and returned via cardioplegia line to the right atrium. Different parameters including hemodynamic variables, length of mechanical ventilation, Intensive Care Unit (ICU stay, and inotrope requirement were compared between the two groups. Results: At immediate post-MUF phase, there was a statistically significant increase in the mean arterial pressure, systolic blood pressure, and diastolic blood pressure (P < 0.05 only in the study group. Furthermore, there was a significant difference in time of mechanical ventilation (P = 0.004 and ICU stay (P = 0.007 between the two groups. Inotropes including milrinone (P = 0.04, epinephrine (P = 0.001, and dobutamine (P = 0.002 were used significantly less frequently for patients in the intervention than the control group. Conclusion: Administration of MUF following surgery improves hemodynamic status of patients and also significantly decreases the duration of mechanical ventilation and inotrope requirement within 48 h after surgery.

  12. Physical and computational fluid dynamics models for the hemodynamics of the artiodactyl carotid rete.

    Science.gov (United States)

    O'Brien, Haley D; Bourke, Jason

    2015-12-07

    In the mammalian order Artiodactyla, the majority of arterial blood entering the intracranial cavity is supplied by a large arterial meshwork called the carotid rete. This vascular structure functionally replaces the internal carotid artery. Extensive experimentation has demonstrated that the artiodactyl carotid rete drives one of the most effective selective brain cooling mechanisms among terrestrial vertebrates. Less well understood is the impact that the unique morphology of the carotid rete may have on the hemodynamics of blood flow to the cerebrum. It has been hypothesized that, relative to the tubular internal carotid arteries of most other vertebrates, the highly convoluted morphology of the carotid rete may increase resistance to flow during extreme changes in cerebral blood pressure, essentially protecting the brain by acting as a resistor. We test this hypothesis by employing simple and complex physical models to a 3D surface rendering of the carotid rete of the domestic goat, Capra hircus. First, we modeled the potential for increased resistance across the carotid rete using an electrical circuit analog. The extensive branching of the rete equates to a parallel circuit that is bound in series by single tubular arteries, both upstream and downstream. This method calculated a near-zero increase in resistance across the rete. Because basic equations do not incorporate drag, shear-stress, and turbulence, we used computational fluid dynamics to simulate the impact of these computationally intensive factors on resistance. Ultimately, both simple and complex models demonstrated negligible changes in resistance and blood pressure across the arterial meshwork. We further tested the resistive potential of the carotid rete by simulating blood pressures known to occur in giraffes. Based on these models, we found resistance (and blood pressure mitigation as a whole) to be an unlikely function for the artiodactyl carotid rete. Copyright © 2015 Elsevier Ltd. All

  13. Self-regulation strategy, feedback timing and hemodynamic properties modulate learning in a simulated fMRI neurofeedback environment.

    Directory of Open Access Journals (Sweden)

    Ethan F Oblak

    2017-07-01

    Full Text Available Direct manipulation of brain activity can be used to investigate causal brain-behavior relationships. Current noninvasive neural stimulation techniques are too coarse to manipulate behaviors that correlate with fine-grained spatial patterns recorded by fMRI. However, these activity patterns can be manipulated by having people learn to self-regulate their own recorded neural activity. This technique, known as fMRI neurofeedback, faces challenges as many participants are unable to self-regulate. The causes of this non-responder effect are not well understood due to the cost and complexity of such investigation in the MRI scanner. Here, we investigated the temporal dynamics of the hemodynamic response measured by fMRI as a potential cause of the non-responder effect. Learning to self-regulate the hemodynamic response involves a difficult temporal credit-assignment problem because this signal is both delayed and blurred over time. Two factors critical to this problem are the prescribed self-regulation strategy (cognitive or automatic and feedback timing (continuous or intermittent. Here, we sought to evaluate how these factors interact with the temporal dynamics of fMRI without using the MRI scanner. We first examined the role of cognitive strategies by having participants learn to regulate a simulated neurofeedback signal using a unidimensional strategy: pressing one of two buttons to rotate a visual grating that stimulates a model of visual cortex. Under these conditions, continuous feedback led to faster regulation compared to intermittent feedback. Yet, since many neurofeedback studies prescribe implicit self-regulation strategies, we created a computational model of automatic reward-based learning to examine whether this result held true for automatic processing. When feedback was delayed and blurred based on the hemodynamics of fMRI, this model learned more reliably from intermittent feedback compared to continuous feedback. These results

  14. Self-regulation strategy, feedback timing and hemodynamic properties modulate learning in a simulated fMRI neurofeedback environment.

    Science.gov (United States)

    Oblak, Ethan F; Lewis-Peacock, Jarrod A; Sulzer, James S

    2017-07-01

    Direct manipulation of brain activity can be used to investigate causal brain-behavior relationships. Current noninvasive neural stimulation techniques are too coarse to manipulate behaviors that correlate with fine-grained spatial patterns recorded by fMRI. However, these activity patterns can be manipulated by having people learn to self-regulate their own recorded neural activity. This technique, known as fMRI neurofeedback, faces challenges as many participants are unable to self-regulate. The causes of this non-responder effect are not well understood due to the cost and complexity of such investigation in the MRI scanner. Here, we investigated the temporal dynamics of the hemodynamic response measured by fMRI as a potential cause of the non-responder effect. Learning to self-regulate the hemodynamic response involves a difficult temporal credit-assignment problem because this signal is both delayed and blurred over time. Two factors critical to this problem are the prescribed self-regulation strategy (cognitive or automatic) and feedback timing (continuous or intermittent). Here, we sought to evaluate how these factors interact with the temporal dynamics of fMRI without using the MRI scanner. We first examined the role of cognitive strategies by having participants learn to regulate a simulated neurofeedback signal using a unidimensional strategy: pressing one of two buttons to rotate a visual grating that stimulates a model of visual cortex. Under these conditions, continuous feedback led to faster regulation compared to intermittent feedback. Yet, since many neurofeedback studies prescribe implicit self-regulation strategies, we created a computational model of automatic reward-based learning to examine whether this result held true for automatic processing. When feedback was delayed and blurred based on the hemodynamics of fMRI, this model learned more reliably from intermittent feedback compared to continuous feedback. These results suggest that different

  15. Self-regulation strategy, feedback timing and hemodynamic properties modulate learning in a simulated fMRI neurofeedback environment

    Science.gov (United States)

    Sulzer, James S.

    2017-01-01

    Direct manipulation of brain activity can be used to investigate causal brain-behavior relationships. Current noninvasive neural stimulation techniques are too coarse to manipulate behaviors that correlate with fine-grained spatial patterns recorded by fMRI. However, these activity patterns can be manipulated by having people learn to self-regulate their own recorded neural activity. This technique, known as fMRI neurofeedback, faces challenges as many participants are unable to self-regulate. The causes of this non-responder effect are not well understood due to the cost and complexity of such investigation in the MRI scanner. Here, we investigated the temporal dynamics of the hemodynamic response measured by fMRI as a potential cause of the non-responder effect. Learning to self-regulate the hemodynamic response involves a difficult temporal credit-assignment problem because this signal is both delayed and blurred over time. Two factors critical to this problem are the prescribed self-regulation strategy (cognitive or automatic) and feedback timing (continuous or intermittent). Here, we sought to evaluate how these factors interact with the temporal dynamics of fMRI without using the MRI scanner. We first examined the role of cognitive strategies by having participants learn to regulate a simulated neurofeedback signal using a unidimensional strategy: pressing one of two buttons to rotate a visual grating that stimulates a model of visual cortex. Under these conditions, continuous feedback led to faster regulation compared to intermittent feedback. Yet, since many neurofeedback studies prescribe implicit self-regulation strategies, we created a computational model of automatic reward-based learning to examine whether this result held true for automatic processing. When feedback was delayed and blurred based on the hemodynamics of fMRI, this model learned more reliably from intermittent feedback compared to continuous feedback. These results suggest that different

  16. Brain-lung crosstalk in critical care: how protective mechanical ventilation can affect the brain homeostasis.

    Science.gov (United States)

    Mazzeo, A T; Fanelli, V; Mascia, L

    2013-03-01

    The maintenance of brain homeostasis against multiple internal and external challenges occurring during the acute phase of acute brain injury may be influenced by critical care management, especially in its respiratory, hemodynamic and metabolic components. The occurrence of acute lung injury represents the most frequent extracranial complication after brain injury and deserves special attention in daily practice as optimal ventilatory strategy for patients with acute brain and lung injury are potentially in conflict. Protecting the lung while protecting the brain is thus a new target in the modern neurointensive care. This article discusses the essentials of brain-lung crosstalk and focuses on how mechanical ventilation may exert an active role in the process of maintaining or treatening brain homeostasis after acute brain injury, highlighting the following points: 1) the role of inflammation as common pathomechanism of both acute lung and brain injury; 2) the recognition of ventilatory induced lung injury as determinant of systemic inflammation affecting distal organs, included the brain; 3) the possible implication of protective mechanical ventilation strategy on the patient with an acute brain injury as an undiscovered area of research in both experimental and clinical settings.

  17. Studies on the Hemodynamic Change in Cirrhosis of the Liver

    International Nuclear Information System (INIS)

    Kim, Jung Il; Lee, Jung Sang; Koh, Chang Soon

    1970-01-01

    Cardiac output, plasma volume and renal plasma flow were determined to evaluate hemodynamic changes in 29 patients with cirrhosis of the liver. The results obtained were as follows. 1) The mean plasma volume was 3793±895 ml and it was significantly higher than the normal controls. The mean blood volume (5266±1222 ml) and blood volume per kg body weight (95.7±23.41 ml) were also increased significantly. The mean plasma volume per kg body weight (69.1±19.1 ml) showed increased tendency and the mean difference between blood volume and plasma volume per kg body weight (26.4±7.05 ml) was in lower limit of normal range. 2) The mean cardiac output was 7708±2652 ml/min and it was significantly increased. The mean cardiac index (4924±1998 ml/min/M 2 ), stroke volume (96.2±34.2 ml/beat), stroke index (62.3±27.34 ml/beat/M 2 ) and fractional cardiac index (1.54±0.577) were also increased significantly. The mean total peripheral resistance was 1664±753.8 dynes sec cm -5 M 2 and it was significantly lower than the normal controls. 3) The mean renal plasma flow was 537±146.8 ml/min/1.73M 2 and it was normal to decreased tendency. The mean endogenous creatinine clearance (66.7±23.0 ml/min/1.73M 2 ) was significantly decreased. Filtration fraction was variable, but it was slightly lower than normal in most cases. The mean renal fraction of cardiac output (11.4±6.27%) was relatively decreased. 4) Although renal plasma flow was normal or decreased in general, it was definitely diminished in patients with creatinine clearance less than 60 ml/min/1.73M 2 , resistant ascites, and signs of azotemia (elevated BUN and serum creatinine). 5) Diminished glomerular filtration rate with low filtration fraction and decreased renal fraction of cardiac output observed strongly supported increased renal afferent arteriolar resistance. 6) Renal circulatory impairment preceded azotemia or oroliguria in cirrhosis. 7) Clinical findings and liver function were not correlated with

  18. Diastolic pressure underestimates age-related hemodynamic impairment.

    Science.gov (United States)

    Galarza, C R; Alfie, J; Waisman, G D; Mayorga, L M; Cámera, L A; del Río, M; Vasvari, F; Limansky, R; Farías, J; Tessler, J; Cámera, M I

    1997-10-01

    It has been hypothesized that as large arteries become more rigid with age, the pattern of hypertension changes from diastolic to systolic. Thus, diastolic blood pressure (DBP) may lose its ability to reflect the increase in vascular resistance with age. To assess this, we studied the age-related changes in blood pressure pattern and its steady-state and pulsatile determinants. We performed an epidemiological analysis based on a national survey of 10,462 subjects from Argentina. A hemodynamic analysis (impedance cardiography) was then carried out in 636 consecutive hypertensive patients (age, 25 to 74 years). Whereas the rate of increment in the prevalence of mild to moderate hypertension (MMH) reached a plateau after the sixth decade, isolated and borderline systolic forms of hypertension began a steep and sustained rise. Among patients with MMH, DBP remained stable from the third to the seventh decade, whereas SBP maintained a sustained increase. Despite similar DBP, the systemic vascular resistance index increased 47% (P<.01) and the cardiac index decreased 27% (P<.01), whereas the ratio of stroke volume to pulse pressure, an index of arterial compliance, decreased 45% (P<.01). However, there were no significant differences between older patients with MMH and those with isolated systolic hypertension in the level of SBP, vascular resistance, stroke volume, and cardiac index. Compared with age-matched normotensive control subjects, the ratio of stroke volume to pulse pressure was much more reduced in isolated systolic hypertension (48%) than in MMH (30%). In summary, the present study, carried out in a large sample of hypertensive subjects with a wide age range, showed a simultaneous impairment in vascular resistance and arterial compliance associated with aging in different patterns of hypertension. The magnitude of these changes, with opposite effects on DBP but additive effects on SBP, suggests that a hemodynamic mechanism could determine the transition in the

  19. Estimating Hemodynamic Responses to the Wingate Test Using Thoracic Impedance

    Directory of Open Access Journals (Sweden)

    Todd A. Astorino, Curtis Bovee, Ashley DeBoe

    2015-12-01

    Full Text Available Techniques including direct Fick and Doppler echocardiography are frequently used to assess hemodynamic responses to exercise. Thoracic impedance has been shown to be a noninvasive alternative to these methods for assessing these responses during graded exercise to exhaustion, yet its feasibility during supramaximal bouts of exercise is relatively unknown. We used thoracic impedance to estimate stroke volume (SV and cardiac output (CO during the Wingate test (WAnT and compared these values to those from graded exercise testing (GXT. Active men (n = 9 and women (n = 7 (mean age = 24.8 ± 5.9 yr completed two Wingate tests and two graded exercise tests on a cycle ergometer. During exercise, heart rate (HR, SV, and CO were continuously estimated using thoracic impedance. Repeated measures analysis of variance was used to identify potential differences in hemodynamic responses across protocols. Results: Maximal SV (138.6 ± 37.4 mL vs. 135.6 ± 26.9 mL and CO (24.5 ± 6.1 L·min-1 vs. 23.7 ± 5.1 L·min-1 were similar (p > 0.05 between repeated Wingate tests. Mean maximal HR was higher (p < 0.01 for GXT (185 ± 7 b·min-1 versus WAnT (177 ± 11 b·min-1, and mean SV was higher in response to WAnT (137.1 ± 32.1 mL versus GXT (123.0 ± 32.0 mL, leading to similar maximal cardiac output between WAnT and GXT (23.9 ± 5.6 L·min-1 vs. 22.5 ± 6.0 L·min-1. Our data show no difference in hemodynamic responses in response to repeated administrations of the Wingate test. In addition, the Wingate test elicits similar cardiac output compared to progressive cycling to VO2max.

  20. The value of brain scanning in cerebro-vascular disease by CT

    International Nuclear Information System (INIS)

    Huber, G.; Emde, H.

    1980-01-01

    Brain scanning by scintigraphy and CT studies of the brain are complementary methods. The precise demonstration of the anatomy and the pathology of the brain by CT is supplemented by brain scintigraphy due to the latter's value to assess the hemodynamic properties of a lesion and thus provide important clues to its site and sometimes even its histology. This is especially true in vascular brain disease thus either dispensing the need for an invasive procedure such as angiography or providing information for a specific approach. (orig.) 891 MG/orig. 892 MKO [de

  1. Radioprotection in the infirmary praxis in service of hemodynamic

    International Nuclear Information System (INIS)

    Flor, Rita de Cassia; Gelbcke, Francine Lima

    2011-01-01

    Qualitative study made in a hemodynamic service at Santa Catarina, Brazil, viewing to analyse the attitude of workers in infirmary related to the use of radioprotection measurements in interventionist procedures. A methodology of Labor Psycho dynamics was used through the observations, collective interviews and the document analysis. Totally it was realized 36 encounters, completed a total of 54 observation hours. The results have shown that the workers used defense strategies for justification the not use of some radioprotection measurements. Yet, become evident that the measurements related to the distance from the radiation source and the exposure time have not used sometimes, perhaps due to negligence. Finally, it was concluded that, some attitudes adopted by the workers referred to the lack of a continued educational program

  2. Intraoperative hemodynamic monitoring during liver transplantation: goals and devices

    DEFF Research Database (Denmark)

    Nissen, Peter; Frederiksen, H J; Secher, N H

    2010-01-01

    With the introduction of orthotopic liver transplantation (OLT) almost 40 years ago, changes in the cardiovascular system that manifest during the different phases of the operation combined, sometimes with massive hemorrhage in likely critically ill patients have been a challenge. Here hemodynamic...... monitoring of the patients during OLT is addressed with focus on maintaining the patients' central blood volume (CBV) and methods and devices that can serve that purpose are listed. It is considered that a stable CBV maintains cerebral blood flow and oxygenation and thereby the well-being of the patient......, while even a small reduction in blood pressure affects cerebral blood flow and oxygenation if it reflects a reduced CBV and thereby cardiac output. In that regard it is accepted that for the patient going through OLT cardiac output (~8 L/min-1) and also venous oxygen saturation (~85%) are larger than...

  3. Milrinone use for hemodynamic instability in patent ductus arteriosus ligation.

    Science.gov (United States)

    Halliday, Matthew; Kavarana, Minoo; Ebeling, Myla; Kiger, James

    2017-03-01

    Determine if prophylactic milrinone improves cardiovascular or long-term clinical outcomes in preterm neonates who receive surgical patent ductus arteriosus (PDA) ligation. Retrospective review of 45 infants over a 4-year period that received a PDA ligation at one institution. Data were collected on morbidity and mortality outcomes for all infants as well as milrinone therapy perioperatively. Of the 45 infants that were studied 15 received milrinone in the perioperative period of PDA ligation and the remaining 30 infants did not receive milrinone. The use of milrinone showed no statistically significant improvement in acute markers of hemodynamic stability. There was also no statistically significant difference in morbidity and mortality outcomes in milrinone group compared to the non-milrinone group. Prophylactic milrinone use for premature infants following PDA ligation does not show a significant cardiovascular or long-term clinical benefit.

  4. Hemodynamic signals of mixed messages during a social exchange.

    Science.gov (United States)

    Zucker, Nancy L; Green, Steven; Morris, James P; Kragel, Philip; Pelphrey, Kevin A; Bulik, Cynthia M; LaBar, Kevin S

    2011-06-22

    This study used functional magnetic resonance imaging to characterize hemodynamic activation patterns recruited when the participants viewed mixed social communicative messages during a common interpersonal exchange. Mixed messages were defined as conflicting sequences of biological motion and facial affect signals that are unexpected within a particular social context (e.g. observing the reception of a gift). Across four social vignettes, valenced facial expressions were crossed with rejecting and accepting gestures in a virtual avatar responding to presentation of a gift from the participant. The results indicate that conflicting facial affect and gesture activated superior temporal sulcus, a region implicated in expectancy violations, as well as inferior frontal gyrus and putamen. Scenarios conveying rejection differentially activated the insula and putamen, regions implicated in embodied cognition, and motivated learning, as well as frontoparietal cortex. Characterizing how meaning is inferred from integration of conflicting nonverbal communicative cues is essential to understand nuances and complexities of human exchange.

  5. Ocular hemodynamics in patients with rhegmatogenous retinal detachment

    Directory of Open Access Journals (Sweden)

    N. H. Zavgorodnya

    2014-10-01

    Full Text Available Aim. In case of retinal detachment atrophic processes lead to irreversible loss of functions within 4–6 days, it happens on underlying low ocular blood flow. In order to evaluate the degree of violation of regional hemodynamics in patients with retinal detachment two groups of patients were examined: the main group (52 patients with rhegmatogenous retinal detachment and the control group (24 myopic patients with lattice form of peripheral chorioretinal dystrophy. Methods and results. Doppler and reography results had been compared, significant decrease of blood flow in patients with retinal detachment was found. No differences between affected and fellow eye in these patients, close negative correlation between the level of ocular blood flow and the degree of myopia in the control group. Conclusion. This demonstrates the feasibility of actions to improve regional blood flow in patients operated on for retinal detachment.

  6. [Damage control in trauma patients with hemodynamic instability].

    Science.gov (United States)

    Müller, Thorben; Doll, Dietrich; Kliebe, Frank; Ruchholtz, Steffen; Kühne, Christian

    2010-10-01

    The term "Damage-control" is borrowed from naval terminology. It means the initial control of a damaged ship. Because of the lethal triad in multiple injured patients the classical concept of definitive surgically therapy in the acute phase of the injury has a high rate of complications such as exsanguination, sepsis, heart failure and multiple organ failure. The core idea of the damage control concept was to minimize the additional trauma by surgical operations in these critical patients in the first phase. This means temporary control of a hemorrhage and measures for stopping abdominal contamination. After 24 - 48 hours in the intensive care unit and correction of physiological disturbances further interventions are performed for definitively treatment of the injuries. Summarized, the damage control strategy comprises an abbreviated operation, intensive care unit resuscitation, and a return to the operating room for the definitive operation after hemodynamic stabilisation of the patient. © Georg Thieme Verlag Stuttgart · New York.

  7. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  8. Pulsatile flow effects on the hemodynamics of intracranial aneurysms.

    Science.gov (United States)

    Le, Trung B; Borazjani, Iman; Sotiropoulos, Fotis

    2010-11-01

    High-resolution numerical simulations are carried out to systematically investigate the effect of the incoming flow waveform on the hemodynamics and wall shear stress patterns of an anatomic sidewall intracranial aneurysm model. Various wave forms are constructed by appropriately scaling a typical human waveform such that the waveform maximum and time-averaged Reynolds numbers, the Womersley number (α), and the pulsatility index (PI) are systematically varied within the human physiologic range. We show that the waveform PI is the key parameter that governs the vortex dynamics across the aneurysm neck and the flow patterns within the dome. At low PI, the flow in the dome is similar to a driven cavity flow and is characterized by a quasi-stationary shear layer that delineates the parent artery flow from the recirculating flow within the dome. At high PI, on the other hand, the flow is dominated by vortex ring formation, transport across the neck, and impingement and breakdown at the distal wall of the aneurysm dome. We further show that the spatial and temporal characteristics of the wall shear stress field on the aneurysm dome are strongly correlated with the vortex dynamics across the neck. We finally argue that the ratio between the characteristic time scale of transport by the mean flow across the neck and the time scale of vortex ring formation can be used to predict for a given sidewall aneurysm model the critical value of the waveform PI for which the hemodynamics will transition from the cavity mode to the vortex ring mode.

  9. Hemodynamic Effect of Laser Therapy in Spontaneously Hypertensive Rats

    Energy Technology Data Exchange (ETDEWEB)

    Tomimura, Suely, E-mail: suelytomimura@uol.com.br [Programa de Pós-Graduação em Biofotônica em Ciências da Saúde da Universidade Nove de Julho (UNINOVE) (Brazil); Silva, Bianca Passos Assumpção [Programa de Graduação e Pós-Graduação em Medicina da UNINOVE (Brazil); Sanches, Iris Callado [Laboratório de Fisiologia Translacional da UNINOVE (Brazil); Canal, Marina [Programa de Graduação e Pós-Graduação em Medicina da UNINOVE (Brazil); Consolim-Colombo, Fernanda [Programa de Graduação e Pós-Graduação em Medicina da UNINOVE (Brazil); Unidade de Hipertensão e Central Médica de Laser do Instituto do Coração - Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (InCor/HC-FMUSP), São Paulo, SP (Brazil); Conti, Felipe Fernandes; Angelis, Katia De [Laboratório de Fisiologia Translacional da UNINOVE (Brazil); Chavantes, Maria Cristina [Programa de Pós-Graduação em Biofotônica em Ciências da Saúde da Universidade Nove de Julho (UNINOVE) (Brazil); Programa de Graduação e Pós-Graduação em Medicina da UNINOVE (Brazil); Unidade de Hipertensão e Central Médica de Laser do Instituto do Coração - Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (InCor/HC-FMUSP), São Paulo, SP (Brazil)

    2014-08-15

    Systemic arterial hypertension (SAH) is considered to be the greatest risk factor for the development of neuro-cardiovascular pathologies, thus constituting a severe Public Health issue in the world. The Low-Level Laser Therapy (LLLT), or laser therapy, activates components of the cellular structure, therefore converting luminous energy into photochemical energy and leading to biophysical and biochemical reactions in the mitochondrial respiratory chain. The LLLT promotes cellular and tissue photobiomodulation by means of changes in metabolism, leading to molecular, cellular and systemic changes. The objective of this study was to analyze the action of low-level laser in the hemodynamic modulation of spontaneously hypertensive rats, in the long term. Animals (n = 16) were randomly divided into the Laser Group (n = 8), which received three weekly LLLT irradiations for seven weeks, and into the Sham Group (n = 8), which received three weekly simulations of laser for seven weeks, accounting for 21 applications in each group. After seven weeks, animals were cannulated by the implantation of a catheter in the left carotid artery. On the following day, the systemic arterial pressure was recorded. The Laser Group showed reduced levels of mean blood pressure, with statistically significant reduction (169 ± 4 mmHg* vs. 182 ± 4 mmHg from the Sham Group) and reduced levels of diastolic pressure (143 ± 4 mmHg* vs. 157 ± 3 mmHg from the Sham Group), revealing a 13 and 14 mmHg decrease, respectively. Besides, there was a concomitant important decline in heart rate (312 ± 14 bpm vs. 361 ± 13 bpm from the Sham Group). Therefore, laser therapy was able to produce hemodynamic changes, thus reducing pressure levels in spontaneously hypertensive rats.

  10. Hemodynamic parameters change earlier than tissue oxygen tension in hemorrhage.

    Science.gov (United States)

    Pestel, Gunther J; Fukui, Kimiko; Kimberger, Oliver; Hager, Helmut; Kurz, Andrea; Hiltebrand, Luzius B

    2010-05-15

    Untreated hypovolemia results in impaired outcome. This study tests our hypothesis whether general hemodynamic parameters detect acute blood loss earlier than monitoring parameters of regional tissue beds. Eight pigs (23-25 kg) were anesthetized and mechanically ventilated. A pulmonary artery catheter and an arterial catheter were inserted. Tissue oxygen tension was measured with Clark-type electrodes in the jejunal and colonic wall, in the liver, and subcutaneously. Jejunal microcirculation was assessed by laser Doppler flowmetry (LDF). Intravascular volume was optimized using difference in pulse pressure (dPP) to keep dPP below 13%. Sixty minutes after preparation, baseline measurements were taken. At first, 5% of total blood volume was withdrawn, followed by another 5% increment, and then in 10% increments until death. After withdrawal of 5% of estimated blood volume, dPP increased from 6.1% +/- 3.0% to 20.8% +/- 2.7% (P < 0.01). Mean arterial pressure (MAP), mean pulmonary artery pressure (PAP) and pulmonary artery occlusion pressure (PAOP) decreased with a blood loss of 10% (P < 0.01). Cardiac output (CO) changed after a blood loss of 20% (P < 0.05). Tissue oxygen tension in central organs, and blood flow in the jejunal muscularis decreased (P < 0.05) after a blood loss of 20%. Tissue oxygen tension in the skin, and jejunal mucosa blood flow decreased (P < 0.05) after a blood loss of 40% and 50%, respectively. In this hemorrhagic pig model systemic hemodynamic parameters were more sensitive to detect acute hypovolemia than tissue oxygen tension measurements or jejunal LDF measurements. Acute blood loss was detected first by dPP. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  11. Hemodynamic Effect of Laser Therapy in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Suely Tomimura

    2014-08-01

    Full Text Available Systemic arterial hypertension (SAH is considered to be the greatest risk factor for the development of neuro-cardiovascular pathologies, thus constituting a severe Public Health issue in the world. The Low-Level Laser Therapy (LLLT, or laser therapy, activates components of the cellular structure, therefore converting luminous energy into photochemical energy and leading to biophysical and biochemical reactions in the mitochondrial respiratory chain. The LLLT promotes cellular and tissue photobiomodulation by means of changes in metabolism, leading to molecular, cellular and systemic changes. The objective of this study was to analyze the action of low-level laser in the hemodynamic modulation of spontaneously hypertensive rats, in the long term. Animals (n = 16 were randomly divided into the Laser Group (n = 8, which received three weekly LLLT irradiations for seven weeks, and into the Sham Group (n = 8, which received three weekly simulations of laser for seven weeks, accounting for 21 applications in each group. After seven weeks, animals were cannulated by the implantation of a catheter in the left carotid artery. On the following day, the systemic arterial pressure was recorded. The Laser Group showed reduced levels of mean blood pressure, with statistically significant reduction (169 ± 4 mmHg* vs. 182 ± 4 mmHg from the Sham Group and reduced levels of diastolic pressure (143 ± 4 mmHg* vs. 157 ± 3 mmHg from the Sham Group, revealing a 13 and 14 mmHg decrease, respectively. Besides, there was a concomitant important decline in heart rate (312 ± 14 bpm vs. 361 ± 13 bpm from the Sham Group. Therefore, laser therapy was able to produce hemodynamic changes, thus reducing pressure levels in spontaneously hypertensive rats.

  12. Arterial stiffness, central hemodynamics, and cardiovascular risk in hypertension

    Science.gov (United States)

    Palatini, Paolo; Casiglia, Edoardo; Gąsowski, Jerzy; Głuszek, Jerzy; Jankowski, Piotr; Narkiewicz, Krzysztof; Saladini, Francesca; Stolarz-Skrzypek, Katarzyna; Tikhonoff, Valérie; Van Bortel, Luc; Wojciechowska, Wiktoria; Kawecka-Jaszcz, Kalina

    2011-01-01

    This review summarizes several scientific contributions at the recent Satellite Symposium of the European Society of Hypertension, held in Milan, Italy. Arterial stiffening and its hemodynamic consequences can be easily and reliably measured using a range of noninvasive techniques. However, like blood pressure (BP) measurements, arterial stiffness should be measured carefully under standardized patient conditions. Carotid-femoral pulse wave velocity has been proposed as the gold standard for arterial stiffness measurement and is a well recognized predictor of adverse cardiovascular outcome. Systolic BP and pulse pressure in the ascending aorta may be lower than pressures measured in the upper limb, especially in young individuals. A number of studies suggest closer correlation of end-organ damage with central BP than with peripheral BP, and central BP may provide additional prognostic information regarding cardiovascular risk. Moreover, BP-lowering drugs can have differential effects on central aortic pressures and hemodynamics compared with brachial BP. This may explain the greater beneficial effect provided by newer antihypertensive drugs beyond peripheral BP reduction. Although many methodological problems still hinder the wide clinical application of parameters of arterial stiffness, these will likely contribute to cardiovascular assessment and management in future clinical practice. Each of the abovementioned parameters reflects a different characteristic of the atherosclerotic process, involving functional and/or morphological changes in the vessel wall. Therefore, acquiring simultaneous measurements of different parameters of vascular function and structure could theoretically enhance the power to improve risk stratification. Continuous technological effort is necessary to refine our methods of investigation in order to detect early arterial abnormalities. Arterial stiffness and its consequences represent the great challenge of the twenty-first century for

  13. Leonardo da Vinci and the first hemodynamic observations.

    Science.gov (United States)

    Martins e Silva, J

    2008-02-01

    Leonardo da Vinci was a genius whose accomplishments and ideas come down to us today, five centuries later, with the freshness of innovation and the fascination of discovery. This brief review begins with a summary of Leonardo's life and a description of the most important works of art that he bequeathed us, and then concentrates on his last great challenge. There was a point at which Leonardo's passion for art gave way to the study of human anatomy, not only to improve his drawing but to go beyond what had been simply a representation of form to understand the underlying functioning. Among his many interests, we focus on his study of the heart and blood vessels, which he observed carefully in animals and human autopsies, and reproduced in drawings of great quality with annotations of astonishing acuteness. The experience that he had acquired from observing the flow of water in currents and around obstacles, and the conclusions that he drew concerning hydrodynamics, were central to his interpretation of the mechanisms of the heart and of blood flow, to which he devoted much of his time between 1508 and 1513. From these studies, immortalized in drawings of great clarity, come what are acknowledged to be the first hemodynamic records, in which Leonardo demonstrates the characteristics of blood flow in the aorta and great vessels and the importance of blood reflux and the formation of eddies in the sinus in aortic valve his assiduous and careful observations, and his subsequent deductions, Leonardo put forward detailed findings on hemodynamic questions that advanced technology has only recently enabled us to confirm.

  14. Hemodynamic, ventilator, and ECG changes in pediatric patients undergoing extraction

    Directory of Open Access Journals (Sweden)

    Y K Sanadhya

    2013-01-01

    Full Text Available Background: Dental treatment induces pain anxiety and fear. This study was conducted to assess the changes in hemodynamic, ventilator, and electrocardiograph changes during extraction procedure among 12-15-year-old children and compare these changes with anxiety, fear, and pain. Materials and Methods: A purposive sample of 60 patients selected based on inclusion and exclusion criteria underwent study procedure in the dental OPD of a medical college and hospital. The anxiety, fear, and pain were recorded by dental anxiety scale, dental fear scale, and visual analogue scale, respectively, before the start of the procedure. The systolic blood pressure, diastolic blood pressure, heart rate, oxygen saturation, and electrocardiogram changes were monitored during the extraction procedure. The recording was taken four times (preinjection phase, injection, extraction, and postextraction and was analyzed. Results: At the preinjection phase the mean vales were systolic blood pressure (128 ± 11.2, diastolic blood pressure (85.7 ± 6.3, heart rate (79.7 ± 9.3, and oxygen saturation (97.9 ± 5.8. These values increased in injection phases and decreased in extraction phase and the least values were found after 10 min of procedure and this relation was significant for all parameters except oxygen saturation (P = 0.48, NS. ECG abnormalities were seen among 22 patients and were significant before and after injection of Local anesthetic (P = 0.0001, S. Conclusions: Anxiety, fear, and pain have an effect on hemodynamic, ventilator, and cardiovascular parameters during the extraction procedure and hence behavioral management has to be emphasized among children in dental clinics.

  15. Hemodynamic changes by drug interaction of adrenaline with chlorpromazine.

    Science.gov (United States)

    Higuchi, Hitoshi; Yabuki, Akiko; Ishii-Maruhama, Minako; Tomoyasu, Yumiko; Maeda, Shigeru; Miyawaki, Takuya

    2014-01-01

    Adrenaline (epinephrine) is included in dental local anesthesia for the purpose of vasoconstriction. In Japan, adrenaline is contraindicated for use in patients receiving antipsychotic therapy, because the combination of adrenaline and an antipsychotic is considered to cause severe hypotension; however, there is insufficient evidence supporting this claim. The purpose of the present study was to clarify the changes in hemodynamics caused by drug interaction between adrenaline and an antipsychotic and to evaluate the safety of the combined use of adrenaline and an antipsychotic in an animal study. Male Sprague-Dawley rats were anesthetized with sodium pentobarbital. A catheter was inserted into the femoral artery to measure blood pressure and pulse rate. Rats were pretreated by intraperitoneal injection of chlorpromazine or chlorpromazine and propranolol, and after 20 minutes, saline or 1 of 3 different doses of adrenaline was administered by intraperitoneal injection. Changes in the ratio of mean arterial blood pressure and pulse rate were measured after the injection of adrenaline. Significant hypotension and tachycardia were observed after the injection of adrenaline in the chlorpromazine-pretreated rats. These effects were in a dose-dependent manner, and 100 μg/kg adrenaline induced significant hemodynamic changes. Furthermore, in the chlorpromazine and propranolol-pretreated rats, modest hypertension was induced by adrenaline, but hypotension and tachycardia were not significantly shown. Hypotension was caused by a drug interaction between adrenaline and chlorpromazine through the activation of the β-adrenergic receptor and showed a dose-dependent effect. Low-dose adrenaline similar to what might be used in human dental treatment did not result in a significant homodynamic change.

  16. The RNA-binding protein, ZC3H14, is required for proper poly(A) tail length control, expression of synaptic proteins, and brain function in mice.

    Science.gov (United States)

    Rha, Jennifer; Jones, Stephanie K; Fidler, Jonathan; Banerjee, Ayan; Leung, Sara W; Morris, Kevin J; Wong, Jennifer C; Inglis, George Andrew S; Shapiro, Lindsey; Deng, Qiudong; Cutler, Alicia A; Hanif, Adam M; Pardue, Machelle T; Schaffer, Ashleigh; Seyfried, Nicholas T; Moberg, Kenneth H; Bassell, Gary J; Escayg, Andrew; García, Paul S; Corbett, Anita H

    2017-10-01

    A number of mutations in genes that encode ubiquitously expressed RNA-binding proteins cause tissue specific disease. Many of these diseases are neurological in nature revealing critical roles for this class of proteins in the brain. We recently identified mutations in a gene that encodes a ubiquitously expressed polyadenosine RNA-binding protein, ZC3H14 (Zinc finger CysCysCysHis domain-containing protein 14), that cause a nonsyndromic, autosomal recessive form of intellectual disability. This finding reveals the molecular basis for disease and provides evidence that ZC3H14 is essential for proper brain function. To investigate the role of ZC3H14 in the mammalian brain, we generated a mouse in which the first common exon of the ZC3H14 gene, exon 13 is removed (Zc3h14Δex13/Δex13) leading to a truncated ZC3H14 protein. We report here that, as in the patients, Zc3h14 is not essential in mice. Utilizing these Zc3h14Δex13/Δex13mice, we provide the first in vivo functional characterization of ZC3H14 as a regulator of RNA poly(A) tail length. The Zc3h14Δex13/Δex13 mice show enlarged lateral ventricles in the brain as well as impaired working memory. Proteomic analysis comparing the hippocampi of Zc3h14+/+ and Zc3h14Δex13/Δex13 mice reveals dysregulation of several pathways that are important for proper brain function and thus sheds light onto which pathways are most affected by the loss of ZC3H14. Among the proteins increased in the hippocampi of Zc3h14Δex13/Δex13 mice compared to control are key synaptic proteins including CaMK2a. This newly generated mouse serves as a tool to study the function of ZC3H14 in vivo. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Assessing the feasibility of the Healthy Life in Suriname Study: using advanced hemodynamics to evaluate cardiovascular risk

    Directory of Open Access Journals (Sweden)

    Jet Q. Aartman

    2017-06-01

    Full Text Available ABSTRACT Objectives To determine the feasibility of assessing population cardiovascular risk with advanced hemodynamics in the Healthy Life in Suriname (HELISUR study. Methods This was a preliminary study conducted in May – June 2012 using the Technical-Economic-Legal-Operational-Scheduling (TELOS method to assess the feasibility of the HELISUR—a large-scale, cross-sectional population study of cardiovascular risk factors and disease in Suriname. Suriname, a middle-income country in South America with a population of mostly African and Asian ethnicity, has a high risk of cardiovascular disease. A total of 135 volunteers 18 – 70 years of age participated. A health questionnaire was tested in a primary health care center, and non-invasive cardiovascular evaluations were performed in an academic health center. The cardiovascular evaluation included sitting, supine, and standing blood pressure, and intermediate endpoints, such as cardiac output, peripheral vascular resistance, pulse wave velocity, and augmentation index. Results The TELOS testing found that communicating by cellular phone was most effective for appointment adherence, and that completion of the questionnaire often required assistance from a trained interviewer; modifications to improve the clarity of the questions are recommended. Regarding the extended cardiovascular assessments of peripheral and central hemodynamics, the findings showed these to be technically and operationally feasible and well tolerated by participants, in terms of burden and duration. Conclusions Findings of this feasibility assessment indicate that large-scale, detailed evaluations of cardiovascular risk, including a questionnaire and advanced central and peripheral hemodynamics, are feasible in a high-risk population in a middle-income setting.

  18. Effects of nutrients (in food) on the structure and function of the nervous system: update on dietary requirements for brain. Part 1: micronutrients.

    Science.gov (United States)

    Bourre, J M

    2006-01-01

    The objective of this update is to give an overview of the effects of dietary nutrients on the structure and certain functions of the brain. As any other organ, the brain is elaborated from substances present in the diet (sometimes exclusively, for vitamins, minerals, essential amino-acids and essential fatty acids, including omega- 3 polyunsaturated fatty acids). However, for long it was not fully accepted that food can have an influence on brain structure, and thus on its function, including cognitive and intellectuals. In fact, most micronutrients (vitamins and trace-elements) have been directly evaluated in the setting of cerebral functioning. For instance, to produce energy, the use of glucose by nervous tissue implies the presence of vitamin B1; this vitamin modulates cognitive performance, especially in the elderly. Vitamin B9 preserves brain during its development and memory during ageing. Vitamin B6 is likely to benefit in treating premenstrual depression. Vitamins B6 and B12, among others, are directly involved in the synthesis of some neurotransmitters. Vitamin B12 delays the onset of signs of dementia (and blood abnormalities), provided it is administered in a precise clinical timing window, before the onset of the first symptoms. Supplementation with cobalamin improves cerebral and cognitive functions in the elderly; it frequently improves the functioning of factors related to the frontal lobe, as well as the language function of those with cognitive disorders. Adolescents who have a borderline level of vitamin B12 develop signs of cognitive changes. In the brain, the nerve endings contain the highest concentrations of vitamin C in the human body (after the suprarenal glands). Vitamin D (or certain of its analogues) could be of interest in the prevention of various aspects of neurodegenerative or neuroimmune diseases. Among the various vitamin E components (tocopherols and tocotrienols), only alpha-tocopherol is actively uptaken by the brain and is

  19. Brain surgery

    Science.gov (United States)

    Craniotomy; Surgery - brain; Neurosurgery; Craniectomy; Stereotactic craniotomy; Stereotactic brain biopsy; Endoscopic craniotomy ... cut depends on where the problem in the brain is located. The surgeon creates a hole in ...

  20. Brain Malformations

    Science.gov (United States)

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  1. The effect of dynamic visual noise on brain hemodynamic response during concrete word production task

    OpenAIRE

    高村, 真広; 西本, 美花; 林, 俊介; 山本, 文枝; 宮谷, 真人

    2014-01-01

    二重課題法や脳活動測定などの手法を用いた先行研究から,具象単語の意味処理に視覚イメージ処理が関与することが示唆されている。しかし,これまでの研究では主に単語の意味判断課題や記憶課題が用いられ、単語産出課題を用いた詳細な検討は行われていない。本研究では,具象単語の産出数や産出時の脳活動に視覚妨害課題が及ぼす影響を調べ,具象単語産出における視覚イメージ処理の関与を検討した。10名の成人女性に単語産出課題を実施し,近赤外分光法で課題遂行中の脳血流反応を記録した。単語産出課題は,単語の種類(具象・抽象)×視覚妨害(あり・なし)の4条件で行った。結果,単品産出数には視覚妨害の影響はみられず,具象単語がより多く産出された。脳血流反応では,具象単語条件において左前頭で有意な視覚妨害の効果がみられた。抽象単語条件では有意な視覚妨害の効果はみられなかった。この結果は,具象単語の産出に視覚処理が関与することを示唆する。...

  2. Endovascular management of renal transplant dysfunction secondary to hemodynamic effects related to ipsilateral femoral arteriovenous graft

    Science.gov (United States)

    Salsamendi, Jason; Pereira, Keith; Quintana, David; Bleicher, Drew; Tabbara, Marwan; Goldstein, Michael; Narayanan, Govindarajan

    2016-01-01

    Hemodialysis access options become complex in long-term treatment for patients with renal disease, while awaiting renal transplantation (RT). Once upper extremity sites are exhausted, lower extremities are used. RT is preferably in the contralateral iliac fossa, rarely ipsilateral. In current literature, RT dysfunction secondary to the hemodynamic effects of an ipsilateral femoral arteriovenous graft (AVG) has been rarely described. To our knowledge, AVG ligation is the only published technique for hemodynamic correction of an ipsilateral AVG. We present a simple, potentially reversible endovascular approach to manage the hemodynamic effects of an AVG, without potentially permanently losing future AVG access. PMID:26899147

  3. [Indicators of general, cerebral, and regional hemodynamics in myopic schoolchildren aged 13-15 years].

    Science.gov (United States)

    Iastrebtseva, T A; Chuprov, A D; Plotnikova, Iu A

    2002-01-01

    110 schoolchildren aged 13-15 years were examined. 24 of them had pseudomyopia and 6 patients myopia of various forms. A control group consisted of 38 children. Central hemodynamics was estimated by average dynamic pressure, cerebral hemodynamics--by rheoencephalography, regional hemodynamics--by dopplerography of the internal carotid and suprapubic arteries. It was found that with myopia progression, the average dynamic pressure positively comes down with reduction of reographic waves amplitude in rheogram. The blood flow rate in internal carotid and suprapubic arteries has no substantial impact on myopia course. Predisposition to arterial hypotension is a risk factor for myopia development and progression.

  4. Novel use of a noninvasive hemodynamic monitor in a personalized, active learning simulation.

    Science.gov (United States)

    Zoller, Jonathan K; He, Jianghua; Ballew, Angela T; Orr, Walter N; Flynn, Brigid C

    2017-06-01

    The present study furthered the concept of simulation-based medical education by applying a personalized active learning component. We tested this novel approach utilizing a noninvasive hemodynamic monitor with the capability to measure and display in real time numerous hemodynamic parameters in the exercising participant. Changes in medical knowledge concerning physiology were examined with a pre-and posttest. Simply by observation of one's own hemodynamic variables, the understanding of complex physiological concepts was significantly enhanced. Copyright © 2017 the American Physiological Society.

  5. Up-regulation of cerebral cytochrome-c-oxidase and hemodynamics by transcranial infrared laser stimulation: A broadband near-infrared spectroscopy study.

    Science.gov (United States)

    Wang, Xinlong; Tian, Fenghua; Reddy, Divya D; Nalawade, Sahil S; Barrett, Douglas W; Gonzalez-Lima, Francisco; Liu, Hanli

    2017-12-01

    Transcranial infrared laser stimulation (TILS) is a noninvasive form of brain photobiomulation. Cytochrome-c-oxidase (CCO), the terminal enzyme in the mitochondrial electron transport chain, is hypothesized to be the primary intracellular photoacceptor. We hypothesized that TILS up-regulates cerebral CCO and causes hemodynamic changes. We delivered 1064-nm laser stimulation to the forehead of healthy participants ( n = 11), while broadband near-infrared spectroscopy was utilized to acquire light reflectance from the TILS-treated cortical region before, during, and after TILS. Placebo experiments were also performed for accurate comparison. Time course of spectroscopic readings were analyzed and fitted to the modified Beer-Lambert law. With respect to the placebo readings, we observed (1) significant increases in cerebral concentrations of oxidized CCO (Δ[CCO]; >0.08 µM; p 0.8 µM; p 0.5 µM; p < 0.01) during and after TILS, and (2) linear interplays between Δ[CCO] versus Δ[HbO] and between Δ[CCO] versus Δ[HbT]. Ratios of Δ[CCO]/Δ[HbO] and Δ[CCO]/Δ[HbT] were introduced as TILS-induced metabolic-hemodynamic coupling indices to quantify the coupling strength between TILS-enhanced cerebral metabolism and blood oxygen supply. This study provides the first demonstration that TILS causes up-regulation of oxidized CCO in the human brain, and contributes important insight into the physiological mechanisms.

  6. Intraoperative Hemodynamic and Echocardiographic Measurements Associated With Severe Right Ventricular Failure After Left Ventricular Assist Device Implantation.

    Science.gov (United States)

    Gudejko, Michael D; Gebhardt, Brian R; Zahedi, Farhad; Jain, Ankit; Breeze, Janis L; Lawrence, Matthew R; Shernan, Stanton K; Kapur, Navin K; Kiernan, Michael S; Couper, Greg; Cobey, Frederick C

    2018-06-05

    Severe right ventricular failure (RVF) after left ventricular assist device (LVAD) implantation increases morbidity and mortality. We investigated the association between intraoperative right heart hemodynamic data, echocardiographic parameters, and severe versus nonsevere RVF. A review of LVAD patients between March 2013 and March 2016 was performed. Severe RVF was defined by the need for a right ventricular mechanical support device, inotropic, and/or inhaled pulmonary vasodilator requirements for >14 days. From a chart review, the right ventricular failure risk score was calculated and right heart hemodynamic data were collected. Pulmonary artery pulsatility index (PAPi) [(pulmonary artery systolic pressure - pulmonary artery diastolic pressure)/central venous pressure (CVP)] was calculated for 2 periods: (1) 30 minutes before cardiopulmonary bypass (CPB) and (2) after chest closure. Echocardiographic data were recorded pre-CPB and post-CPB by a blinded reviewer. Univariate logistic regression models were used to examine the performance of hemodynamic and echocardiographic metrics. A total of 110 LVAD patients were identified. Twenty-five did not meet criteria for RVF. Of the remaining 85 patients, 28 (33%) met criteria for severe RVF. Hemodynamic factors associated with severe RVF included: higher CVP values after chest closure (18 ± 9 vs 13 ± 5 mm Hg; P = .0008) in addition to lower PAPi pre-CPB (1.2 ± 0.6 vs 1.7 ± 1.0; P = .04) and after chest closure (0.9 ± 0.5 vs 1.5 ± 0.8; P = .0008). Post-CPB echocardiographic findings associated with severe RVF included: larger right atrial diameter major axis (5.4 ± 0.9 vs 4.9 ± 1.0 cm; P = .03), larger right ventricle end-systolic area (22.6 ± 8.4 vs 18.5 ± 7.9 cm; P = .03), lower fractional area of change (20.2 ± 10.8 vs 25.9 ± 12.6; P = .04), and lower tricuspid annular plane systolic excursion (0.9 ± 0.2 vs 1.1 ± 0.3 cm; P = .008). Right ventricular failure risk score was not a significant predictor of

  7. Comparison of Hemodynamic Effects and Negative Predictive Value of Normal Adenosine Gated Myocardial Perfusion Scan With or Without Caffeine Abstinence

    International Nuclear Information System (INIS)

    Zaman, Maseeh uz; Fatima, Nosheen; Zaman, Areeba; Zaman, Unaiza; Tahseen, Rabia

    2016-01-01

    or ECG criteria for infarction (3/30 in group A and 3/20 group B). Event-free survival (EFS) for fatal MI was 100% for both the groups while EFS for nonfatal MI was 90% for group A and 85% for group B (nonsignificant P values). Kaplan–Meier survival plot also depicted nonsignificant EFS for nonfatal MI. This study did not find any significant attenuation effect upon adenosine-induced hemodynamic response and similar NPV of a normal GMPI in patients with or without caffeine abstinence. We assume that better designed prospective studies are required to validate findings of our study and provide justification for revision of guidelines about caffeine abstinence

  8. Robust Brain-Computer Interfaces

    NARCIS (Netherlands)

    Reuderink, B.

    2011-01-01

    A brain-computer interface (BCI) enables direct communication from the brain to devices, bypassing the traditional pathway of peripheral nerves and muscles. Current BCIs aimed at patients require that the user invests weeks, or even months, to learn the skill to intentionally modify their brain

  9. Prediction of human errors by maladaptive changes in event-related brain networks

    NARCIS (Netherlands)

    Eichele, T.; Debener, S.; Calhoun, V.D.; Specht, K.; Engel, A.K.; Hugdahl, K.; Cramon, D.Y. von; Ullsperger, M.

    2008-01-01

    Humans engaged in monotonous tasks are susceptible to occasional errors that may lead to serious consequences, but little is known about brain activity patterns preceding errors. Using functional Mill and applying independent component analysis followed by deconvolution of hemodynamic responses, we

  10. Is aortopathy in bicuspid aortic valve disease a congenital defect or a result of abnormal hemodynamics? A critical reappraisal of a one-sided argument.

    Science.gov (United States)

    Girdauskas, Evaldas; Borger, Michael A; Secknus, Maria-Anna; Girdauskas, Gracijus; Kuntze, Thomas

    2011-06-01

    Although there is adequate evidence that bicuspid aortic valve (BAV) is an inheritable disorder, there is a great controversy regarding the pathogenesis of dilatation of the proximal aorta. The hemodynamic theory was the first explanation for BAV aortopathy. The genetic theory, however, has become increasingly popular over the last decade and can now be viewed as the clearly dominant one. The widespread belief that BAV disease is a congenital disorder of vascular connective tissue has led to more aggressive treatment recommendations of the proximal aorta in such patients, approaching aortic management recommendations for patients with Marfan syndrome. There is emerging evidence that the 'clinically normal' BAV is associated with abnormal flow patterns and asymmetrically increased wall stress in the proximal aorta. Recent in vitro and in vivo studies on BAV function provide a unique hemodynamic insight into the different phenotypes of BAV disease and asymmetry of corresponding aortopathy even in the presence of a 'clinically normal' BAV. On the other hand, there is a subgroup of young male patients with BAV and a root dilatation phenotype, who may present the predominantly genetic form of BAV disease. In the face of these important findings, we feel that a critical review of this clinical problem is timely and appropriate, as the prevailing BAV-aortopathy theory undoubtedly affects the surgical approach to this common clinical entity. Thorough analysis of the recent literature shows a growing amount of evidence supporting the hemodynamic theory of aortopathy in patients with BAV disease. Data from recent studies requires a reevaluation of our overwhelming support of the genetic theory, and obliges us to acknowledge that hemodynamics plays an important role in the development of this disease process. Given the marked heterogeneity of BAV disease, further studies are required in order to more precisely determine which theory is the 'correct' one for explaining the

  11. The incidence of serious hemodynamic changes in physically-limited patients following oral dipyridamole challenge before thallium-201 scintigraphy

    International Nuclear Information System (INIS)

    Kahn, D.; Argenyi, E.A.; Berbaum, K.; Rezai, K.

    1990-01-01

    Dipyridamole has liberalized referrals for stress TI-201 chloride (thallium) studies at the Iowa City Veterans Administration Medical Center. Seventy-five percent of referrals now receive dipyridamole and, unlike patients who tolerate conventional exercise testing, these patients are often quite debilitated. Therefore, the hemodynamic consequences of dipyridamole were reviewed in 120 consecutive, physically-limited patients referred for thallium scintigraphy following an average oral dose of 5.4 mg/kg. Each patient's blood pressure was measured every 5 minutes for 1 hour after dipyridamole and compared with several clinical factors to determine if blood pressure change was predictable. In all patients, blood pressure changed from 136 +/- 21/83 +/- 15 (mean +/- 1 SD) to 117 +/- 25/72 +/- 15 following dipyridamole administration. One hundred nine of the 120 patients had a blood pressure decline from 137 +/- 21/82 +/- 12 to 113 +/- 21/70 +/- 13. Of the 109, 43% (N = 47) had a systolic blood pressure decline greater than 20 mmHg, 16% (n = 18) greater than 40 mmHg, and 13% (n = 14) greater than 50 mmHg. Thirteen percent (n = 14) required emergent reversal of the dipyridamole with aminophylline. Significant hypotension is relatively common but generally unpredictable after oral dipyridamole. Therefore, patient eligibility criteria should be carefully considered; strict hemodynamic monitoring must be routine in the usual patient undergoing thallium scintigraphy after oral dipyridamole challenge

  12. Angiographic and hemodynamic evaluation of the mesoatrial shunt in patients with Budd-Chiari syndrome and inferior vena caval obstruction

    International Nuclear Information System (INIS)

    Redmond, P.L.; Kadir, S.; Cameron, J.L.; Kaufman, S.L.; White, R.I. Jr.

    1986-01-01

    Obstruction of the inferior vena cava (IVC) is not uncommon in patients with the Budd-Chiari syndrome. The caval obstruction may be due to thrombus or compression by an enlarged caudate lobe. Conventional portosystemic shunts are not possible in the presence of an obstructed IVC; the mesoatrial shunt is indicated in these patients. Between 1973 and 1986, the authors studied 13 patients (ten female, three male) with Budd-Chiari syndrome and IVC obstruction in whom mesoatrial shunts were subsequently constructed. Polycythemia rubra vera was the most common predisposing condition. Preoperative evaluation included US, scintigraphy, CT, and angiography (hepatic arteriography, hepatic venography and pressure measurements, inferior vena cavography, arterial portography). Postoperatively shunts were assessed angiographically and hemodynamically, and several patients underwent CT. The shunts were catheterized via a brachial or femoral venous approach, which allowed pressures along the shunt from the superior mesenteric vein to the right atrium to be measured. The mesoatrial shunt is a relatively new procedure which is indicated in patients with the Budd-Chiari syndrome complicated by IVC obstruction. Shunt patency may be demonstrated arteriographically or with CT, but hemodynamic evaluation with measurement of pressure gradients is required to assess shunt function

  13. Acute Responses of a Physical Training Session with a Nintendo Wii on Hemodynamic Variables of an Individual with Multiple Sclerosis.

    Science.gov (United States)

    Monteiro Junior, Renato Sobral; Dantas, Aretha; de Souza, Cíntia Pereira; da Silva, Elirez Bezerra

    2012-12-01

    Multiple sclerosis is a neurological illness that decreases motor functions. This disease can cause weakness of cardiorespiratory muscles and impaired functional capacity and quality of life. Therefore it requires preventive treatments. This study investigated the acute responses of a virtual physical training session with the Nintendo(®) (Kyoto, Japan) Wii™ on hemodynamic variables of an individual with multiple sclerosis (relapsing-remitting). A 34-year-old man with multiple sclerosis with previous experience in aerobic, strength, and functional training (2 years) was tested. His Expanded Disability Status Scale was 2.5. We compared the heart rate, blood pressure, and double product obtained at rest and during (heart rate) and after the Nintendo Wii games "Boxing" and "Sword Play." In rest, the variables were measured in the supine position. Our results showed positive hemodynamic alterations after execution of both games. The peak of heart rate was 121 beats per minute (65% of maximal heart rate) and 104 beats per minute (56% of maximal heart rate) for "Boxing" and "Sword Play," respectively. The training session with "Boxing" was able to stimulate the heart rate to achieve the recommended values for the maintenance of physical fitness in accordance with the American College of Sports Medicine guidelines. We conclude that an exercise training program with the Nintendo Wii may improve physical fitness in people with multiple sclerosis. Moreover, these activities could improve affective status and perhaps maintain the individual engaged at treatment program.

  14. A sliding mode observer for hemodynamic characterization under modeling uncertainties

    KAUST Repository

    Zayane, Chadia; Laleg-Kirati, Taous-Meriem

    2014-01-01

    This paper addresses the case of physiological states reconstruction in a small region of the brain under modeling uncertainties. The misunderstood coupling between the cerebral blood volume and the oxygen extraction fraction has lead to a partial

  15. Hemodynamic determinants of dyspnea improvement in acute decompensated heart failure.

    Science.gov (United States)

    Solomonica, Amir; Burger, Andrew J; Aronson, Doron

    2013-01-01

    Dyspnea relief constitutes a major treatment goal and a key measure of treatment efficacy in decompensated heart failure. However, there are no data with regard to the relationship between hemodynamic measurements during treatment and dyspnea improvement. We studied 233 patients assigned to right heart catheterization in the Vasodilation in the Management of Acute Congestive Heart Failure trial. Dyspnea (assessed using a 7-point Likert scale) and hemodynamic parameters were measured simultaneously at 15 and 30 minutes and 1, 2, 3, 6, and 24 hours. Dyspnea relief was defined as moderate or marked improvement. There was a time-dependent association between the reductions in pulmonary capillary wedge pressure (PCWP; 25.4, 24.6, 24.0, 23.5, 23.4, 21.5, and 19.9 mm Hg) and the percentage of patients achieving dyspnea relief (17.7%, 24.6%, 32.2%, 36.2%, 37.8%, 47.4%, and 66.1%, in the respective time points). Multivariable logistic generalized estimating equations modeling demonstrated that reductions of both PCWP and mean pulmonary artery pressure were independently associated with dyspnea relief. Compared with the highest PCWP quartile, the adjusted odds ratios for dyspnea relief were 0.92 (95% confidence interval [CI], 0.67-1.29), 1.07 (95% CI, 0.75-1.55), and 1.80 (95% CI, 1.22-2.65) in the third, second, and first PCWP quartiles, respectively (P(trend)=0.003). Compared with the highest mean pulmonary artery pressure quartile, the adjusted odds ratios for dyspnea relief were 2.0 (95% CI, 1.41-2.82), 2.23 (95% CI, 1.52-3.27), and 2.98 (95% CI, 1.91-4.66) in the third, second, and first mean pulmonary artery pressure quartiles, respectively (P(trend)<0.0001). A clinically significant improvement in dyspnea is associated with a reduction in both PCWP and mean pulmonary artery pressure.

  16. The Influence of Age on Hemodynamic Parameters During Rest and Exercise in Healthy Individuals

    DEFF Research Database (Denmark)

    Wolsk, Emil; Bakkestrøm, Rine; Thomsen, Jacob H

    2017-01-01

    OBJECTIVES: The authors sought to obtain hemodynamic estimates across a wide age span and in both sexes for future reference and compare these estimates with current guideline diagnostic hemodynamic thresholds for abnormal filling pressure and pulmonary hypertension. BACKGROUND: At present....... METHODS: Sixty-two healthy participants, evenly distributed with respect to age (20 to 80 years) and sex (32 women/30 men), were prospectively enrolled in the study. Participants were all deemed healthy by medical history, echocardiography, exercise test, spirometry, blood tests, and electrocardiogram....... Participants had hemodynamic parameters measured using right heart catheterization during rest, passive leg raise, and incremental exercise. RESULTS: During rest, all hemodynamic parameters were similar between age groups, apart from blood pressure. During leg raise and incremental exercise...

  17. Experts' opinion on management of hemodynamics in ARDS patients: focus on the effects of mechanical ventilation

    NARCIS (Netherlands)

    Vieillard-Baron, A.; Matthay, M.; Teboul, J. L.; Bein, T.; Schultz, M.; Magder, S.; Marini, J. J.

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is frequently associated with hemodynamic instability which appears as the main factor associated with mortality. Shock is driven by pulmonary hypertension, deleterious effects of mechanical ventilation (MV) on right ventricular (RV) function, and

  18. Hemodynamic pattern in myocardial infarction patients at the common stages of rehabilitation

    International Nuclear Information System (INIS)

    Perepech, N.B.

    1986-01-01

    Integrated body rheography, radiocardiography and radionuclide ventriculography were used to investigate hemodynamic changes in 101 myocardial infarction patients during the hospital stage of the disease. Changes in major hemodynamic parameters were demonstrated by the end of the 1st week and when walking was resumed. At the resumed-walking stage, the mechanism of declining stroke and cardiac indices was shown to depend on physical activation rates. Hemodynamic response is mostly conditioned by myocardial insufficiency when walking is resumed rapidly during the 2nd week, and by smaller venous return due to hypovolemia where it is resumed slowly during the 4th week. Expanding motion regimens at slow rates results in persistent hemodynamic disturbances in myocardial infarction patients

  19. Hemodynamic comparison of mild and severe preeclampsia: concept of stroke systemic vascular resistance index.

    Science.gov (United States)

    Scardo, J; Kiser, R; Dillon, A; Brost, B; Newman, R

    1996-01-01

    Our purpose was to compare baseline hemodynamic parameters of mild and severe preeclampsia. Patients admitted to the Medical University Labor and Delivery Unit with the diagnosis of preeclampsia who had not received prior antihypertensive or magnesium sulfate therapy were recruited for noninvasive hemodynamic monitoring with thoracic electrical bioimpedance. After stabilization in the lateral recumbent position, hemodynamic monitoring was begun. Baseline hemodynamic parameters, mean arterial pressure (MAP), heart rate (HR), systemic vascular resistance index (SVRI), cardiac index (CI), and stroke index (SI) were recorded. Stroke systemic vascular resistance index (SSVRI), the resistance imposed by vasculature on each beat of the heart, was calculated for each patient by multiplying SVRI by HR. For statistical analysis, unpaired Student's t-tests (two-tailed) were utilized (P preclampsia appears to be a more intensely vasoconstricted state than mild preeclampsia. Although CI is inversely proportional to SVRI, increased HR in severe preeclampsia prevents this expected decrease in cardiac output.

  20. Hemodynamic deterioration precedes onset of ventricular tachyarrhythmia after Heartmate II implantation.

    Science.gov (United States)

    Yaksh, Ameeta; Kik, Charles; Knops, Paul; Zwiers, Korinne; van Ettinger, Maarten J B; Manintveld, Olivier C; de Wijs, Marcel C J; van der Kemp, Peter; Bogers, Ad J J C; de Groot, Natasja M S

    2016-07-08

    Early postoperative ventricular tachyarrhythmia (PoVT) after left ventricular assist device (LVAD) implantation are common and associated with higher mortality-rates. At present, there is no data on initiation of these PoVT and the role of alterations in cardiac hemodynamics. A LVAD was implanted in a patient with end-stage heart failure due to a ischemic cardiomyopathy. Alterations in cardiac rhythm and hemodynamics preceding PoVT-episodes during the first five postoperative days were examined by using continuous recordings of cardiac rhythm and various hemodynamic parameters. All PoVT (N=120) were monomorphic, most often preceded by short-long-short-sequences or regular SR and initiated by ventricular runs. Prior to PoVT, mean arterial pressure decreased; heart rate and ST-segments deviations increased. PoVT are caused by different underlying electrophysiological mechanisms. Yet, they are all monomorphic and preceded by hemodynamic deterioration due to myocardial ischemia.

  1. A review of the hemodynamic effects of external leg and lower body compression.

    Science.gov (United States)

    Helmi, M; Gommers, D; Groeneveld, A B J

    2014-03-01

    External leg and lower body compression (ELC) has been used for decades in the prevention of deep vein thrombosis and the treatment of leg ischemia. Because of systemic effects, the methods have regained interest in anesthesia, surgery and critical care. This review intends to summarize hemodynamic effects and their mechanisms. Compilation of relevant literature published in English as full paper and retrieved from Medline. By compressing veins, venous stasis is diminished and venous return and arterial blood flow are increased. ELC has been suggested to improve systemic hemodynamics, in different clinical settings, such as postural hypotension, anesthesia, surgery, shock, cardiopulmonary resuscitation and mechanical ventilation. However, the hemodynamic alterations depend upon the magnitude, extent, cycle, duration and thus the modality of ELC, when applied in a static or intermittent fashion (by pneumatic inflation), respectively. ELC may help future research and optimizing treatment of hemodynamically unstable, surgical or critically ill patients, independent of plasma volume expansion.

  2. Comparison of the hemodynamic effects of etomidate between hypertensive and normotensive patients

    Directory of Open Access Journals (Sweden)

    Hayrettin Daşkaya

    2014-06-01

    Full Text Available Objective: Comparison of the hemodynamic effect of ethomidate induction in normotensive and hypertensive patients. Methods: Forty ASA 1-2 patients were included. After informed consent were obtained, patients were divided into two group; Group H: Hypertensive patients, Group N: Normotensive patients. Fentanile and midazolam were administrated for premedication. Anesthesia induction was performed by etomidate 0.3 mg/kg and rocuronium 0.6 mg/kg. Arterial pressures and heart rates were measured at certain intervals: control, pre-intubation and 1, 3 and 5 min post-intubation. Myoclonic movements and hemodynamic parameters were noted by an anesthetist who was masked to the groups. Results: Hemodynamic parameters were higher in hypertensive patients but were in clinically tolerable limits. Conclusion: No hemodynamic instability was observed in anesthesia induction with ethomidate in neither hypertensive nor normotensive patients. J Clin Exp Invest 2014; 5 (2: 164-168

  3. Process-specific analysis in episodic memory retrieval using fast optical signals and hemodynamic signals in the right prefrontal cortex

    Science.gov (United States)

    Dong, Sunghee; Jeong, Jichai

    2018-02-01

    Objective. Memory is formed by the interaction of various brain functions at the item and task level. Revealing individual and combined effects of item- and task-related processes on retrieving episodic memory is an unsolved problem because of limitations in existing neuroimaging techniques. To investigate these issues, we analyze fast and slow optical signals measured from a custom-built continuous wave functional near-infrared spectroscopy (CW-fNIRS) system. Approach. In our work, we visually encode the words to the subjects and let them recall the words after a short rest. The hemodynamic responses evoked by the episodic memory are compared with those evoked by the semantic memory in retrieval blocks. In the fast optical signal, we compare the effects of old and new items (previously seen and not seen) to investigate the item-related process in episodic memory. The Kalman filter is simultaneously applied to slow and fast optical signals in different time windows. Main results. A significant task-related HbR decrease was observed in the episodic memory retrieval blocks. Mean amplitude and peak latency of a fast optical signal are dependent upon item types and reaction time, respectively. Moreover, task-related hemodynamic and item-related fast optical responses are correlated in the right prefrontal cortex. Significance. We demonstrate that episodic memory is retrieved from the right frontal area by a functional connectivity between the maintained mental state through retrieval and item-related transient activity. To the best of our knowledge, this demonstration of functional NIRS research is the first to examine the relationship between item- and task-related memory processes in the prefrontal area using single modality.

  4. Process-specific analysis in episodic memory retrieval using fast optical signals and hemodynamic signals in the right prefrontal cortex.

    Science.gov (United States)

    Dong, Sunghee; Jeong, Jichai

    2018-02-01

    Memory is formed by the interaction of various brain functions at the item and task level. Revealing individual and combined effects of item- and task-related processes on retrieving episodic memory is an unsolved problem because of limitations in existing neuroimaging techniques. To investigate these issues, we analyze fast and slow optical signals measured from a custom-built continuous wave functional near-infrared spectroscopy (CW-fNIRS) system. In our work, we visually encode the words to the subjects and let them recall the words after a short rest. The hemodynamic responses evoked by the episodic memory are compared with those evoked by the semantic memory in retrieval blocks. In the fast optical signal, we compare the effects of old and new items (previously seen and not seen) to investigate the item-related process in episodic memory. The Kalman filter is simultaneously applied to slow and fast optical signals in different time windows. A significant task-related HbR decrease was observed in the episodic memory retrieval blocks. Mean amplitude and peak latency of a fast optical signal are dependent upon item types and reaction time, respectively. Moreover, task-related hemodynamic and item-related fast optical responses are correlated in the right prefrontal cortex. We demonstrate that episodic memory is retrieved from the right frontal area by a functional connectivity between the maintained mental state through retrieval and item-related transient activity. To the best of our knowledge, this demonstration of functional NIRS research is the first to examine the relationship between item- and task-related memory processes in the prefrontal area using single modality.

  5. Staging Hemodynamic Failure With Blood Oxygen-Level-Dependent Functional Magnetic Resonance Imaging Cerebrovascular Reactivity: A Comparison Versus Gold Standard (15O-)H2O-Positron Emission Tomography.

    Science.gov (United States)

    Fierstra, Jorn; van Niftrik, Christiaan; Warnock, Geoffrey; Wegener, Susanne; Piccirelli, Marco; Pangalu, Athina; Esposito, Giuseppe; Valavanis, Antonios; Buck, Alfred; Luft, Andreas; Bozinov, Oliver; Regli, Luca

    2018-03-01

    Increased stroke risk correlates with hemodynamic failure, which can be assessed with ( 15 O-)H 2 O positron emission tomography (PET) cerebral blood flow (CBF) measurements. This gold standard technique, however, is not established for routine clinical imaging. Standardized blood oxygen-level-dependent (BOLD) functional magnetic resonance imaging+CO 2 is a noninvasive and potentially widely applicable tool to assess whole-brain quantitative cerebrovascular reactivity (CVR). We examined the agreement between the 2 imaging modalities and hypothesized that quantitative CVR can be a surrogate imaging marker to assess hemodynamic failure. Nineteen data sets of subjects with chronic cerebrovascular steno-occlusive disease (age, 60±11 years; 4 women) and unilaterally impaired perfusion reserve on Diamox-challenged ( 15 O-)H 2 O PET were studied and compared with a standardized BOLD functional magnetic resonance imaging+CO 2 examination within 6 weeks (8±19 days). Agreement between quantitative CBF- and CVR-based perfusion reserve was assessed. Hemodynamic failure was staged according to PET findings: stage 0: normal CBF, normal perfusion reserve; stage I: normal CBF, decreased perfusion reserve; and stage II: decreased CBF, decreased perfusion reserve. The BOLD CVR data set of the same subjects was then matched to the corresponding stage of hemodynamic failure. PET-based stage I versus stage II could also be clearly separated with BOLD CVR measurements (CVR for stage I 0.11 versus CVR for stage II -0.03; P the affected hemisphere and middle cerebral artery territory ( P the affected hemisphere and middle cerebral artery territory and for identifying hemodynamic failure stage II. BOLD CVR may, therefore, be considered for prospective studies assessing stroke risk in patients with chronic cerebrovascular steno-occlusive disease, in particular because it can potentially be implemented in routine clinical imaging. © 2018 American Heart Association, Inc.

  6. The effect of blood transfusion on cerebral hemodynamics in preterm infants.

    Science.gov (United States)

    Koyano, Kosuke; Kusaka, Takashi; Nakamura, Shinji; Nakamura, Makoto; Konishi, Yukihiko; Miki, Takanori; Ueno, Masaki; Yasuda, Saneyuki; Okada, Hitoshi; Nishida, Tomoko; Isobe, Kenichi; Itoh, Susumu

    2013-07-01

    Anemia of prematurity commonly occurs in infants with very low birth weight; blood transfusion is an important treatment. However, there is no clear evidence to support the criteria currently widely used, based on blood hemoglobin (bHb) and hematocrit indices. Previous studies showed that overtransfusion or a low threshold for transfusion could induce complications or neurologic sequelae, respectively. We hypothesized that a cerebral hemodynamic index may provide an appropriate criterion for determining the need for transfusion in anemic preterm infants. We used near-infrared time-resolved spectroscopy to measure cerebral hemoglobin oxygen saturation (ScO2 ) and cerebral blood volume (CBV) before and after transfusion in 19 infants (24 measurements) with anemia of prematurity. The median gestational age was 27 weeks 0 days, median birth weight was 751 g, and median postconceptual age at transfusion was 30 weeks 4 days. bHb levels before and after transfusion (mean ± SD) were 9.3 ± 1.4 and 13.7 ± 1.3 g/dL, respectively. After transfusion, CBV significantly decreased from 2.63 ± 0.60 to 2.13 ± 0.26 mL/100 g of brain, and ScO2 significantly increased from 72.8 ± 4.3% to 74.7 ± 4.2%. After transfusion, CBV changes were significantly greater with low compared to high pretransfusion Hb levels. This reflected the physiologic response to severe anemia in premature infants, which is to increase CBV and decrease ScO2 . Therefore, CBV and ScO2 may be useful markers for determining the need for transfusion in very-low-birth-weight infants. © 2012 American Association of Blood Banks.

  7. Hemodynamic effects of dexmedetomidine during intra-operative electrocorticography for epilepsy surgery

    Directory of Open Access Journals (Sweden)

    G Chaitanya

    2014-01-01

    Full Text Available Background: Dexmedetomidine, a predominant alpha-2-adrenergic agonist has been used in anesthetic practice to provide good sedation. The drug is being recently used in neuroanesthesia during awake surgery for brain tumors and in functional neurosurgery. Materials and Methods: This prospective study analyzed the hemodynamic effects of dexmedetomidine infusion during electrocorticography in patients undergoing surgery for mesial temporal sclerosis. Dexmedetomidine infusion was administered during intra-operative electrocorticography recording, 15 minutes after the end tidal MAC of N 2 O and isoflurane were decreased to zero. Anesthesia was maintained with O 2 :air mixture = 50:50, vecuronium and fentanyl. Heart rate (HR, mean arterial pressure (MAP and end tidal carbon dioxide (ETCO 2 were recorded across at induction, 2 min prior to dexmedetomidine (PreDEX, 5 min during dexmedetomidine infusion (DEX; 1 μg/kg, 5 min after stopping dexmedetomidine and 10 minutes after stopping dexmedetomidine. Results: Forty patients with mesial temporal sclerosis (M: F = 27:13, mean age = 28.15 ± 10.9 years; duration of epilepsy = 12.0 ± 7.9 years underwent anterior temporal lobe resection with amygdalohippocampectomy for drug-resistant epilepsy. Infusion of dexmedetomidine caused a transient fall in HR in 87.5% of patients and an increase in MAP in 62.5% of patients, which showed a tendency to revert back towards PreDEX values within 10 min after stopping the infusion. Sixty-five percent of the patients showed ≤25% reduction and 10% of them showed >25% reduction in HR. 47.5% of the patients showed ≤25% increase and 15% of them showed >25% increase in MAP. These changes were over a narrow range and within physiological limits. Conclusion: The infusion of dexmedetomidine for a short period causes reduction of HR and increase in MAP in patients, however the variations are within acceptable range.

  8. Voluntary Modulation of Hemodynamic Responses in Swallowing Related Motor Areas: A Near-Infrared Spectroscopy-Based Neurofeedback Study.

    Directory of Open Access Journals (Sweden)

    Silvia Erika Kober

    Full Text Available In the present study, we show for the first time that motor imagery of swallowing, which is defined as the mental imagination of a specific motor act without overt movements by muscular activity, can be successfully used as mental strategy in a neurofeedback training paradigm. Furthermore, we demonstrate its effects on cortical correlates of swallowing function. Therefore, N = 20 healthy young adults were trained to voluntarily increase their hemodynamic response in swallowing related brain areas as assessed with near-infrared spectroscopy (NIRS. During seven training sessions, participants received either feedback of concentration changes in oxygenated hemoglobin (oxy-Hb group, N = 10 or deoxygenated hemoglobin (deoxy-Hb group, N = 10 over the inferior frontal gyrus (IFG during motor imagery of swallowing. Before and after the training, we assessed cortical activation patterns during motor execution and imagery of swallowing. The deoxy-Hb group was able to voluntarily increase deoxy-Hb over the IFG during imagery of swallowing. Furthermore, swallowing related cortical activation patterns were more pronounced during motor execution and imagery after the training compared to the pre-test, indicating cortical reorganization due to neurofeedback training. The oxy-Hb group could neither control oxy-Hb during neurofeedback training nor showed any cortical changes. Hence, successful modulation of deoxy-Hb over swallowing related brain areas led to cortical reorganization and might be useful for future treatments of swallowing dysfunction.

  9. Prefrontal hemodynamic responses and the degree of flow experience among occupational therapy students during their performance of a cognitive task

    Directory of Open Access Journals (Sweden)

    Kazuki Hirao

    2014-09-01

    Full Text Available Purpose: Although flow experience is positively associated with motivation to learn, the biological basis of flow experience is poorly understood. Accumulation of evidence on the underlying brain mechanisms related to flow is necessary for a deeper understanding of the motivation to learn. The purpose of this study is to investigate the relationship between flow experience and brain function using near-infrared spectroscopy (NIRS during the performance of a cognitive task. Methods: Sixty right-handed occupational therapy (OT students participated in this study. These students performed a verbal fluency test (VFT while 2-channel NIRS was used to assess changes in oxygenated hemoglobin concentration (oxygenated hemoglobin [oxy-Hb] in the prefrontal cortex. Soon after that, the OT students answered the flow questionnaire (FQ to assess the degree of flow experience during the VFT. Results: Average oxy-Hb in the prefrontal cortex had a significant negative correlation with the satisfaction scores on the FQ. Conclusion: Satisfaction during the flow experience correlated with prefrontal hemodynamic suppression. This finding may assist in understanding motivation to learn and related flow experience.

  10. BIG1 is required for the survival of deep layer neurons, neuronal polarity, and the formation of axonal tracts between the thalamus and neocortex in developing brain.

    Directory of Open Access Journals (Sweden)

    Jia-Jie Teoh

    Full Text Available BIG1, an activator protein of the small GTPase, Arf, and encoded by the Arfgef1 gene, is one of candidate genes for epileptic encephalopathy. To know the involvement of BIG1 in epileptic encephalopathy, we analyzed BIG1-deficient mice and found that BIG1 regulates neurite outgrowth and brain development in vitro and in vivo. The loss of BIG1 decreased the size of the neocortex and hippocampus. In BIG1-deficient mice, the neuronal progenitor cells (NPCs and the interneurons were unaffected. However, Tbr1+ and Ctip2+ deep layer (DL neurons showed spatial-temporal dependent apoptosis. This apoptosis gradually progressed from the piriform cortex (PIR, peaked in the neocortex, and then progressed into the hippocampus from embryonic day 13.5 (E13.5 to E17.5. The upper layer (UL and DL order in the neocortex was maintained in BIG1-deficient mice, but the excitatory neurons tended to accumulate before their destination layers. Further pulse-chase migration assay showed that the migration defect was non-cell autonomous and secondary to the progression of apoptosis into the BIG1-deficient neocortex after E15.5. In BIG1-deficient mice, we observed an ectopic projection of corticothalamic axons from the primary somatosensory cortex (S1 into the dorsal lateral geniculate nucleus (dLGN. The thalamocortical axons were unable to cross the diencephalon-telencephalon boundary (DTB. In vitro, BIG1-deficient neurons showed a delay in neuronal polarization. BIG1-deficient neurons were also hypersensitive to low dose glutamate (5 μM, and died via apoptosis. This study showed the role of BIG1 in the survival of DL neurons in developing embryonic brain and in the generation of neuronal polarity.

  11. Computational medical imaging and hemodynamics framework for functional analysis and assessment of cardiovascular structures.

    Science.gov (United States)

    Wong, Kelvin K L; Wang, Defeng; Ko, Jacky K L; Mazumdar, Jagannath; Le, Thu-Thao; Ghista, Dhanjoo

    2017-03-21

    Cardiac dysfunction constitutes common cardiovascular health issues in the society, and has been an investigation topic of strong focus by researchers in the medical imaging community. Diagnostic modalities based on echocardiography, magnetic resonance imaging, chest radiography and computed tomography are common techniques that provide cardiovascular structural information to diagnose heart defects. However, functional information of cardiovascular flow, which can in fact be used to support the diagnosis of many cardiovascular diseases with a myriad of hemodynamics performance indicators, remains unexplored to its full potential. Some of these indicators constitute important cardiac functional parameters affecting the cardiovascular abnormalities. With the advancement of computer technology that facilitates high speed computational fluid dynamics, the realization of a support diagnostic platform of hemodynamics quantification and analysis can be achieved. This article reviews the state-of-the-art medical imaging and high fidelity multi-physics computational analyses that together enable reconstruction of cardiovascular structures and hemodynamic flow patterns within them, such as of the left ventricle (LV) and carotid bifurcations. The combined medical imaging and hemodynamic analysis enables us to study the mechanisms of cardiovascular disease-causing dysfunctions, such as how (1) cardiomyopathy causes left ventricular remodeling and loss of contractility leading to heart failure, and (2) modeling of LV construction and simulation of intra-LV hemodynamics can enable us to determine the optimum procedure of surgical ventriculation to restore its contractility and health This combined medical imaging and hemodynamics framework can potentially extend medical knowledge of cardiovascular defects and associated hemodynamic behavior and their surgical restoration, by means of an integrated medical image diagnostics and hemodynamic performance analysis framework.

  12. Endothelial cell impact on smooth muscle cell properties: role of hemodynamic forces

    OpenAIRE

    Killeen, Maria T.

    2009-01-01

    The vascular endothelium is a dynamic cell monolayer located at the interface of the vessel wall and bloodstream, where it regulates the physiological effects of humoral and hemodynamic stimuli on vessel tone and remodelling. Hemodynamic forces are of particular interest and include shear stress, the frictional force generated by blood as it drags against the endothelium, and cyclic strain, transmural pressure due to the pulsatile nature of blood flow. Both forces can profoundly modulate vasc...

  13. The Effect of Inlet Waveforms on Computational Hemodynamics of Patient-Specific Intracranial Aneurysms

    OpenAIRE

    Xiang, J.; Siddiqui, A.H.; Meng, H.

    2014-01-01

    Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic qu...

  14. [Cerebral hemodynamics in patients with neurosensory hearing loss before and after magnetotherapy].

    Science.gov (United States)

    Morenko, V M; Enin, I P

    2001-01-01

    Magnetotherapy effects on cerebral hemodynamics were studied using rheoencephalography (REG). When the treatment results and changes in cerebral hemodynamics were compared it was evident that normalization or improvement of vascular status in vertebrobasilar and carotid territories registered at REG results in better hearing. This confirms the role of vascular factor in pathogenesis of neurosensory hypoacusis of different etiology and effectiveness of magnetotherapy in such patients.

  15. Relationship between systemic hemodynamics and ambulatory blood pressure level are sex dependent.

    Science.gov (United States)

    Alfie, J; Waisman, G D; Galarza, C R; Magi, M I; Vasvari, F; Mayorga, L M; Cámera, M I

    1995-12-01

    Sex-related differences in systemic hemodynamics were analyzed by means of cardiac index and systemic vascular resistance according to the level of daytime ambulatory blood pressure. In addition, we assessed the relations between ambulatory blood pressure measurements and systemic hemodynamics in male and female patients. We prospectively included 52 women and 53 men referred to our unit for evaluation of arterial hypertension. Women and men were grouped according to the level of daytime mean arterial pressure: or = 110 mm Hg. Patients underwent noninvasive evaluation of resting hemodynamics (impedance cardiography) and 24-hour ambulatory blood pressure monitoring. Compared with women men with lower daytime blood pressure had a 12% higher systemic vascular resistance index (P = NS) and a 14% lower cardiac index (P < .02), whereas men with higher daytime blood pressure had a 25% higher vascular resistance (P < .003) and a 21% lower cardiac index (P < .0004). Furthermore, in men systemic vascular resistance correlated positively with both daytime and nighttime systolic and diastolic blood pressures, whereas cardiac index correlated negatively only with daytime diastolic blood pressure. In contrast, women did not exhibit any significant correlation between hemodynamic parameters and ambulatory blood pressure measurements. In conclusion, sex-related differences in systemic hemodynamics were more pronounced in the group with higher daytime hypertension. The relations between systemic hemodynamics and ambulatory blood pressure level depended on the sex of the patient. In men a progressive circulatory impairment underlies the increasing level of ambulatory blood pressure, but this was not observed in women.

  16. Lack of evidence for an association between hemodynamic variables and hematoma growth in spontaneous intracerebral hemorrhage.

    Science.gov (United States)

    Jauch, Edward C; Lindsell, Christopher J; Adeoye, Opeolu; Khoury, Jane; Barsan, William; Broderick, Joseph; Pancioli, Arthur; Brott, Thomas

    2006-08-01

    Early hematoma expansion in spontaneous intracerebral hemorrhage (ICH) is associated with worse clinical outcome. We hypothesized that hemodynamic parameters are associated with the increase in hematoma volume owing to their relationship to blood vessel wall stresses. We performed a post hoc analysis of clinical and computed tomography (CT) data from patients enrolled in a prospective observational study of ICH patients presenting within 3 hours from symptom onset. Hematoma volumes were measured at hospital arrival and at 1 and 20 hours from presentation. Blood pressure and heart rate, recorded at 19 time points between presentation and 20 hours, were used to derive hemodynamic variables. Multivariable logistic-regression models were constructed to assess the relation between hemodynamic parameters and hematoma growth, adjusted for clinical covariates. From the original study, 98 patients underwent baseline and 1-hour CT scans; of these, 65 had 20-hour CT scans. Substantial hematoma growth was observed in 28% within the first hour. Of the 65 patients not undergoing surgery within 20 hours, 37% experienced hematoma growth by 20 hours. Neither baseline or peak hemodynamic parameters nor changes in hemodynamic parameters were significantly associated with hematoma growth at either 1 or 20 hours. We found no blood pressure or heart rate parameters, individually or in combination, that were associated with hematoma growth. Our data suggest the influence of hemodynamic parameters on vessel wall stress to be an unlikely target for intervention in reducing the risk of early hematoma growth in ICH.

  17. Cerebral hematocrit decreases with hemodynamic compromise in carotid artery occlusion: a PET study.

    Science.gov (United States)

    Yamauchi, H; Fukuyama, H; Nagahama, Y; Katsumi, Y; Okazawa, H

    1998-01-01

    This study investigated whether in patients with internal carotid artery occlusion the regional cerebral hematocrit correlates with cerebral hemodynamics or metabolic state and, if so, how the regional cerebral hematocrit changes in the hemodynamically compromised region. We used positron emission tomography to study seven patients with unilateral internal carotid artery occlusion and no cortical infarction in the chronic stage. The distributions of red blood cell and plasma volumes were assessed using oxygen-15-labeled carbon monoxide and copper-62-labeled human serum albumin-dithiosemicarbazone tracers, respectively. The calculated hematocrit value was compared with the hemodynamic and metabolic parameters measured with the oxygen-15 steady-state technique. In the cerebral cortex, the value of the cerebral hematocrit varied but was correlated with the hemodynamic and metabolic status. Stepwise regression analysis revealed that the large vessel hematocrit, the cerebral metabolic rate of oxygen, and the cerebral blood flow or the oxygen extraction fraction accounted for a significant proportion of variance of the cerebral hematocrit. The oxygen extraction fraction and the cerebral metabolic rate of oxygen negatively correlated with the cerebral hematocrit, whereas the cerebral blood flow correlated positively: patients with reduced blood supply relative to metabolic demand (decreased blood flow with increased oxygen extraction fraction) showed low hematocrit values. In carotid artery occlusion in the chronic stage, regional cerebral hematocrit may vary according to cerebral hemodynamics and metabolic status. Regional cerebral hematocrit may decrease with hemodynamic compromise unless oxygen metabolism concomitantly decreases.

  18. [System analytical approach of lung function and hemodynamics].

    Science.gov (United States)

    Naszlady, Attila; Kiss, Lajos

    2009-02-15

    The authors critically analyse the traditional views in physiology and complete them with new statements based on computer model simulations of lung function and of hemodynamics. Conclusions are derived for the clinical practice as follows: the four-dimensional function curves are similar in both systems; there is a "waterfall" zone in the pulmonary blood perfusion; the various time constants of pulmonary regions can modify the blood gas values; pulmonary capillary pressure is equal to pulmonary arterial diastole pressure; heart is not a pressure pump, but a flow source; ventricles are loaded by the input impedance of the arterial systems and not by the total vascular (ohmlike) resistance; optimum heart rate in rest depends on the length of the aorta; this law of heart rate, based on the principle of resonance is valid along the mammalian allometric line; tachycardia decreases the input impedance; using positive end expiratory pressure respirators the blood gas of pulmonary artery should be followed; coronary circulation should be assessed in beat per milliliter, the milliliter per minute may be false. These statements are compared to related references.

  19. Hemodynamic forces regulate developmental patterning of atrial conduction.

    Directory of Open Access Journals (Sweden)

    Michael C Bressan

    Full Text Available Anomalous action potential conduction through the atrial chambers of the heart can lead to severe cardiac arrhythmia. To date, however, little is known regarding the mechanisms that pattern proper atrial conduction during development. Here we demonstrate that atrial muscle functionally diversifies into at least two heterogeneous subtypes, thin-walled myocardium and rapidly conducting muscle bundles, during a developmental window just following cardiac looping. During this process, atrial muscle bundles become enriched for the fast conduction markers Cx40 and Nav1.5, similar to the precursors of the fast conduction Purkinje fiber network located within the trabeculae of the ventricles. In contrast to the ventricular trabeculae, however, atrial muscle bundles display an increased proliferation rate when compared to the surrounding myocardium. Interestingly, mechanical loading of the embryonic atrial muscle resulted in an induction of Cx40, Nav1.5 and the cell cycle marker Cyclin D1, while decreasing atrial pressure via in vivo ligation of the vitelline blood vessels results in decreased atrial conduction velocity. Taken together, these data establish a novel model for atrial conduction patterning, whereby hemodynamic stretch coordinately induces proliferation and fast conduction marker expression, which in turn promotes the formation of large diameter muscle bundles to serve as preferential routes of conduction.

  20. Effect of Aspirin Supplementation on Hemodynamics in Older Firefighters.

    Science.gov (United States)

    Lane-Cordova, Abbi D; Ranadive, Sushant M; Yan, Huimin; Kappus, Rebecca M; Sun, Peng; Bunsawat, Kanokwan; Smith, Denise L; Horn, Gavin P; Ploutz-Snyder, Robert; Fernhall, B O

    2015-12-01

    Cardiovascular events are the leading cause of line-of-duty fatality for firefighters. Aspirin reduces the risk of cardiovascular events in men and may reduce fatalities in older (>40 yr) firefighters. We hypothesized that both chronic and acute aspirin supplementation would improve vascular function after live firefighting but that chronic supplementation would also improve resting hemodynamics. Twenty-four firefighters (40-60 yr) were randomly assigned to acute or chronic aspirin supplementation or placebo in a balanced, crossover design. Arterial stiffness, brachial and central blood pressures, as well as forearm vasodilatory capacity and blood flow were measured at rest and immediately after live firefighting. Total hyperemic blood flow (area under the curve (AUC)) was increased (P 0.05 for interaction). Arterial stiffness/central blood pressure increased (P < 0.04) with no effect of aspirin (from 0.0811 ± 0.001 to 0.0844 ± 0.003 m·s·mm⁻¹ Hg⁻¹ in aspirin condition versus 0.0802 ± 0.002 to 0.0858 ± 0.002 m·s⁻¹·mm Hg⁻¹ in placebo condition), whereas peripheral and central systolic and pulse pressures decreased after firefighting across conditions (P < 0.05). Live firefighting resulted in increased AUC and pressure-controlled arterial stiffness and decreased blood pressure in older firefighters, but aspirin supplementation did not affect macro- or microvascular responsiveness at rest or after firefighting.

  1. Remote Left Ventricular Hemodynamic Monitoring Using a Novel Intracardiac Sensor.

    Science.gov (United States)

    Mondritzki, Thomas; Boehme, Philip; White, Jason; Park, Jin Woo; Hoffmann, Jessica; Vogel, Julia; Kolkhof, Peter; Walsh, Stuart; Sandner, Peter; Bischoff, Erwin; Dinh, Wilfried; Hüser, Jörg; Truebel, Hubert

    2018-05-01

    Heart failure (HF) remains the most common reason for hospital admission in patients aged >65 years. Despite modern drug therapy, mortality and readmission rates for patients hospitalized with HF remain high. This necessitates further research to identify early patients at risk for readmission to limit hospitalization by timely adjustment of medical therapy. Implantable devices can monitor left ventricular (LV) hemodynamics and remotely and continuously detect the early signs of decompensation to trigger interventions and reduce the risk of hospitalization for HF. Here, we report the first preclinical study validating a new batteryless and easy to implant LV-microelectromechanical system to assess LV performance. A miniaturized implantable wireless pressure sensor was adapted for implantation in the LV apex. The LV-microelectromechanical system sensor was tested in a canine model of HF. The wireless pressure sensor measurements were compared with invasive left heart catheter-derived measurements at several time points. During different pharmacological challenge studies with dobutamine or vasopressin, the device was equally sensitive compared with invasive standard procedures. No adverse events or any observable reaction related to the implantation and application of the device for a period of 35 days was observed. Our miniaturized wireless pressure sensor placed in the LV (LV-microelectromechanical system) has the potential to become a new telemetric tool to earlier identify patients at risk for HF decompensation and to guide the treatment of patients with HF. © 2018 American Heart Association, Inc.

  2. Adrenergic Metabolic and Hemodynamic Effects of Octopamine in the Liver

    Directory of Open Access Journals (Sweden)

    Adelar Bracht

    2013-11-01

    Full Text Available The fruit extracts of Citrus aurantium (bitter orange are traditionally used as weight-loss products and as appetite suppressants. A component of these extracts is octopamine, which is an adrenergic agent. Weight-loss and adrenergic actions are always related to metabolic changes and this work was designed to investigate a possible action of octopamine on liver metabolism. The isolated perfused rat liver was used to measure catabolic and anabolic pathways and hemodynamics. Octopamine increased glycogenolysis, glycolysis, oxygen uptake, gluconeogenesis and the portal perfusion pressure. Octopamine also accelerated the oxidation of exogenous fatty acids (octanoate and oleate, as revealed by the increase in 14CO2 production derived from 14C labeled precursors. The changes in glycogenolysis, oxygen uptake and perfusion pressure were almost completely abolished by α1-adrenergic antagonists. The same changes were partly sensitive to the β-adrenergic antagonist propranolol. It can be concluded that octopamine accelerates both catabolic and anabolic processes in the liver via adrenergic stimulation. Acceleration of oxygen uptake under substrate-free perfusion conditions also means acceleration of the oxidation of endogenous fatty acids, which are derived from lipolysis. All these effects are compatible with an overall stimulating effect of octopamine on metabolism, which is compatible with its reported weight-loss effects in experimental animals.

  3. Right Ventricular Hemodynamics in Patients with Pulmonary Hypertension

    Science.gov (United States)

    Browning, James; Fenster, Brett; Hertzberg, Jean; Schroeder, Joyce

    2012-11-01

    Recent advances in cardiac magnetic resonance imaging (CMR) have allowed for characterization of blood flow in the right ventricle (RV), including calculation of vorticity and circulation, and qualitative visual assessment of coherent flow patterns. In this study, we investigate qualitative and quantitative differences in right ventricular hemodynamics between subjects with pulmonary hypertension (PH) and normal controls. Fifteen (15) PH subjects and 10 age-matched controls underwent same day 3D time resolved CMR and echocardiography. Echocardiography was used to determine right ventricular diastolic function as well as pulmonary artery systolic pressure (PASP). Velocity vectors, vorticity vectors, and streamlines in the RV were visualized in Paraview and total RV Early (E) and Atrial (A) wave diastolic vorticity was quantified. Visualizations of blood flow in the RV are presented for PH and normal subjects. The hypothesis that PH subjects exhibit different RV vorticity levels than normals during diastole is tested and the relationship between RV vorticity and PASP is explored. The mechanics of RV vortex formation are discussed within the context of pulmonary arterial pressure and right ventricular diastolic function coincident with PH.

  4. Hemodynamic Modeling of Surgically Repaired Coarctation of the Aorta.

    Science.gov (United States)

    Olivieri, Laura J; de Zélicourt, Diane A; Haggerty, Christopher M; Ratnayaka, Kanishka; Cross, Russell R; Yoganathan, Ajit P

    2011-12-01

    PURPOSE: Late morbidity of surgically repaired coarctation of the aorta includes early cardiovascular and cerebrovascular disease, shortened life expectancy, abnormal vasomodulator response, hypertension and exercise-induced hypertension in the absence of recurrent coarctation. Observational studies have linked patterns of arch remodeling (Gothic, Crenel, and Romanesque) to late morbidity, with Gothic arches having the highest incidence. We evaluated flow in native and surgically repaired aortic arches to correlate respective hemodynamic indices with incidence of late morbidity. METHODS: Three dimensional reconstructions of each remodeled arch were created from an anatomic stack of magnetic resonance (MR) images. A structured mesh core with a boundary layer was generated. Computational fluid dynamic (CFD) analysis was performed assuming peak flow conditions with a uniform velocity profile and unsteady turbulent flow. Wall shear stress (WSS), pressure and velocity data were extracted. RESULTS: The region of maximum WSS was located in the mid-transverse arch for the Crenel, Romanesque and Native arches. Peak WSS was located in the isthmus of the Gothic model. Variations in descending aorta flow patterns were also observed among the models. CONCLUSION: The location of peak WSS is a primary difference among the models tested, and may have clinical relevance. Specifically, the Gothic arch had a unique location of peak WSS with flow disorganization in the descending aorta. Our results suggest that varied patterns and locations of WSS resulting from abnormal arch remodeling may exhibit a primary effect on clinical vascular dysfunction.

  5. Dietary melatonin alters uterine artery hemodynamics in pregnant Holstein heifers.

    Science.gov (United States)

    Brockus, K E; Hart, C G; Gilfeather, C L; Fleming, B O; Lemley, C O

    2016-04-01

    The objective was to examine uterine artery hemodynamics and maternal serum profiles in pregnant heifers supplemented with dietary melatonin (MEL) or no supplementation (CON). In addition, melatonin receptor-mediated responses in steroid metabolism were examined using a bovine endometrial epithelial culture system. Twenty singleton pregnant Holstein heifers were supplemented with 20 mg of melatonin (n = 10) or no melatonin supplementation (control; n = 10) from days 190 to 262 of gestation. Maternal measurements were recorded on days 180 (baseline), 210, 240, and 262 of gestation. Total uterine blood flow was increased by 25% in the MEL-treated heifers compared with the CON. Concentrations of progesterone were decreased in MEL vs CON heifers. Total serum antioxidant capacity was increased by 43% in MEL-treated heifers when compared with CON. Activity of cytochrome P450 1A, 2C, and superoxide dismutase was increased in bovine endometrial epithelial cells treated with melatonin, whereas the melatonin receptor antagonist, luzindole, negated the increase in cytochrome P450 2C activity. Moreover, estradiol or progesterone treatment altered bovine uterine melatonin receptor expression, which could potentiate the melatonin-mediated responses during late gestation. The observed increase in total uterine blood flow during melatonin supplementation could be related to its antioxidant properties. Compromised pregnancies are typically accompanied by increased oxidative stress; therefore, melatonin could serve as a therapeutic supplementation strategy. This could lead to further fetal programming implications in conjunction with offspring growth and development postnatally. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Prevalence and hemodynamic effects of leaning during CPR

    Science.gov (United States)

    Niles, Dana E.; Sutton, Robert M.; Nadkarni, Vinay M.; Glatz, Andrew; Zuercher, Mathias; Maltese, Matthew R.; Eilevstjønn, Joar; Abella, Benjamin S.; Becker, Lance B.; Berg, Robert A.

    2013-01-01

    Background Cardiopulmonary resuscitation (CPR) guidelines recommend complete release between chest compressions (CC). Objective Evaluate the hemodynamic effects of leaning (incomplete chest wall release) during CPR and the prevalence of leaning during CPR. Results In piglet ventricular fibrillation cardiac arrests, 10% and 20% (1.8 kg and 3.6 kg, respectively), leaning during CPR increased right atrial pressures, decreased coronary perfusion pressures, and decreased cardiac index and left ventricular myocardial blood flow by nearly 50%. In contrast, residual leaning of a 260 g accelerometer/ force feedback device did not adversely affect cardiac index or myocardial blood flow. Among 108 adult in-hospital CPR events, leaning ≥2.5 kg was demonstrable in 91% of the events and 12% of the evaluated CC. For 12 children with in-hospital CPR, 28% of CC had residual leaning ≥2.5 kg and 89% had residual leaning ≥0.5 kg. Conclusions Leaning during CPR increases intrathoracic pressure, decreases coronary perfusion pressure, and decreases cardiac output and myocardial blood flow. Leaning is common during CPR. PMID:22208173

  7. Hemodynamics before and after bleb formation in cerebral aneurysms

    Science.gov (United States)

    Cebral, Juan R.; Radaelli, Alessandro; Frangi, Alejandro; Putman, Christopher M.

    2007-03-01

    We investigate whether blebs in cerebral aneurysms form in regions of low or high wall shear stress (WSS), and how the intraaneurysmal hemodynamic pattern changes after bleb formation. Seven intracranial aneurysms harboring well defined blebs were selected from our database and subject-specific computational models were constructed from 3D rotational angiography. For each patient, a second anatomical model representing the aneurysm before bleb formation was constructed by smoothing out the bleb. Computational fluid dynamics simulations were performed under pulsatile flow conditions for both models of each aneurysm. In six of the seven aneurysms, the blebs formed in a region of elevated WSS associated to the inflow jet impaction zone. In one, the bleb formed in a region of low WSS associated to the outflow zone. In this case, the inflow jet maintained a fairly concentrated structure all the way to the outflow zone, while in the other six aneurysms it dispersed after impacting the aneurysm wall. In all aneurysms, once the blebs formed, new flow recirculation regions were formed inside the blebs and the blebs progressed to a state of low WSS. Assuming that blebs form due to a focally damaged arterial wall, these results seem to indicate that the localized injury of the vessel wall may be caused by elevated WSS associated with the inflow jet. However, the final shape of the aneurysm is probably also influenced by the peri-aneurysmal environment that can provide extra structural support via contact with structures such as bone or dura matter.

  8. Effects of adenosine infusion into renal interstitium on renal hemodynamics

    International Nuclear Information System (INIS)

    Pawlowska, D.; Granger, J.P.; Knox, F.G.

    1987-01-01

    This study was designed to investigate the hemodynamic effects of exogenous adenosine in the interstitium of the rat kidney. Adenosine or its analogues were infused into the renal interstitium by means of chronically implanted capsules. In fusion of adenosine decreased glomerular filtration rate (GFR) from 0.81 +/- 0.06 to 0.37 +/- 0.06 ml/min while having no effect on renal blood flow (RBF). The metabolically stable analogue, 2-chloradenosine (2-ClAdo), decreased GFR from 0.73 +/- 0.07 to 021 +/- 0.06 ml/min. Interstitial infusion of theophylline, an adenosine receptor antagonist, completely abolished the effects of adenosine and 2-ClAdo on GFR. The distribution of adenosine, when infused into the renal interstitium, was determined using radiolabeled 5'-(N-ethyl)-carboxamidoadenosine (NECA), a metabolically stable adenosine agonist. After continuous infusion, [ 3 H]NECA was distributed throughout the kidney. The effects of NECA to reduce GFR were similar to those of adenosine and 2-ClAdo. They conclude that increased levels of adenosine in the renal interstitium markedly decrease GFR without affecting RBF in steady-state conditions. The marked effects of adenosine agonists during their infusion into the renal interstitium and the complete blockade of these effects by theophylline suggest an extracellular action of adenosine

  9. Evaluation of collective protection equipment in a hemodynamic room

    International Nuclear Information System (INIS)

    Casagrande, Saman; Silva, Ana Maria Marques da; Real, Jessica Villa; Luz, Renata Matos da

    2014-01-01

    Interventional radiology has high occupational dose rates. The use of personal protective equipment (PPE) and collective protection (ECP) help to reduce the dose delivered to the individuals occupationally exposed (IOE). In order to minimize the exposure of IOE's in interventionists procedures, evaluated the attenuation of the secondary radiation produced by collective protection equipment (CPE), was used a chest non-anthropomorphic phantom of polymethylmethacrylates (PMMA), with column simulator in aluminum, with variable thicknesses and kerma rate measures the air by varying the frequency tables 15 and 30 frames / s and different exposure modes. Data were acquired initially at the height of 1.25 m, using the following combinations of the ECP: (I) unshielded, (II) with plumbum display, (III) combining skirt + display. Measured at a height of 0.5 m were acquired with and without skirt. The attenuation ranged from 83.8% to 95.4% for a thickness of 25 cm. The maximum attenuation occurred with the combination of display and skirt. There was a 5 time increase in air kerma rate to be used cine display mode, when compared to the low mode. By analyzing the frequency of the frames were obtained differences up to 3 times higher for 30 frames / s, when compared with 15 frames / s. The results show the importance of using ECP in hemodynamics services, which together with the PPE, ensure adequate protection for IOEs

  10. Mining data from hemodynamic simulations via Bayesian emulation

    Directory of Open Access Journals (Sweden)

    Nair Prasanth B

    2007-12-01

    Full Text Available Abstract Background: Arterial geometry variability is inevitable both within and across individuals. To ensure realistic prediction of cardiovascular flows, there is a need for efficient numerical methods that can systematically account for geometric uncertainty. Methods and results: A statistical framework based on Bayesian Gaussian process modeling was proposed for mining data generated from computer simulations. The proposed approach was applied to analyze the influence of geometric parameters on hemodynamics in the human carotid artery bifurcation. A parametric model in conjunction with a design of computer experiments strategy was used for generating a set of observational data that contains the maximum wall shear stress values for a range of probable arterial geometries. The dataset was mined via a Bayesian Gaussian process emulator to estimate: (a the influence of key parameters on the output via sensitivity analysis, (b uncertainty in output as a function of uncertainty in input, and (c which settings of the input parameters result in maximum and minimum values of the output. Finally, potential diagnostic indicators were proposed that can be used to aid the assessment of stroke risk for a given patient's geometry.

  11. Evaluation of the occupational dose in hemodynamic procedures

    International Nuclear Information System (INIS)

    Silva, Amanda J. da; Fernandes, Ivani M.; Sordi, Gian Maria A.A.; Carneiro, Janete C. Gaburo

    2010-01-01

    The purpose of this study was to evaluate the dose received by health professionals in a hemodynamic service. It was necessary to know the profile of these professional, to carry out a survey the occupational external doses during the years 2000 to 2009 and to evaluate the distribution of the effective dose from the special procedures guided by fluoroscopy. A self-applied questionnaire was used to delineate the profile of health professionals, taking into account variables such as gender, age, individual monitoring time, number of jobs and tasks performed in the sector. In addition, it was performed an examination of the external individual monitoring doses from the records of the institution. The sample was composed of 35 professionals, 11 males and 24 females, with mean age of (43.0 +- 10.4) years. The average monitoring time of individuals analyzed within the institution was (11.3 +- 9.1) years, considering the period before the study. The minimum record dose level was 0.2 mSv and the maximum dose was 22.7 mSv. Doctors and nursing assistants were the professionals more exposed to radiation, due probably remaining closer to the examination table and X-ray tube during the interventional procedure. (author)

  12. Maternal hemodynamics: a method to classify hypertensive disorders of pregnancy.

    Science.gov (United States)

    Ferrazzi, Enrico; Stampalija, Tamara; Monasta, Lorenzo; Di Martino, Daniela; Vonck, Sharona; Gyselaers, Wilfried

    2018-01-01

    The classification of hypertensive disorders of pregnancy is based on the time at the onset of hypertension, proteinuria, and other associated complications. Maternal hemodynamic interrogation in hypertensive disorders of pregnancy considers not only the peripheral blood pressure but also the entire cardiovascular system, and it might help to classify the different clinical phenotypes of this syndrome. This study aimed to examine cardiovascular parameters in a cohort of patients affected by hypertensive disorders of pregnancy according to the clinical phenotypes that prioritize fetoplacental characteristics and not the time at onset of hypertensive disorders of pregnancy. At the fetal-maternal medicine unit of Ziekenhuis Oost-Limburg (Genk, Belgium), maternal cardiovascular parameters were obtained through impedance cardiography using a noninvasive continuous cardiac output monitor with the patients placed in a standing position. The patients were classified as pregnant women with hypertensive disorders of pregnancy who delivered appropriate- and small-for-gestational-age fetuses. Normotensive pregnant women with an appropriate-for-gestational-age fetus at delivery were enrolled as the control group. The possible impact of obesity (body mass index ≥30 kg/m 2 ) on maternal hemodynamics was reassessed in the same groups. Maternal age, parity, body mass index, and blood pressure were not significantly different between the hypertensive disorders of pregnancy/appropriate-for-gestational-age and hypertensive disorders of pregnancy/small-for-gestational-age groups. The mean uterine artery pulsatility index was significantly higher in the hypertensive disorders of pregnancy/small-for-gestational-age group. The cardiac output and cardiac index were significantly lower in the hypertensive disorders of pregnancy/small-for-gestational-age group (cardiac output 6.5 L/min, cardiac index 3.6) than in the hypertensive disorders of pregnancy/appropriate-for-gestational-age group

  13. Hemodynamic changes after propacetamol administration in patients with febrile UTI in the ED.

    Science.gov (United States)

    Kang, Soo; Durey, Areum; Suh, Young Ju; Kim, Ah Jin

    2018-06-01

    Clinical studies have indicated that transient hypotension can occur after propacetamol administration. This study aimed to analyze the hemodynamic changes after propacetamol administration in patients visiting the ED due to febrile UTI. We also examined the incidence of propacetamol-induced hypotension and compared the clinical characteristics of patients with persistent hypotension, defined as requiring additional fluids or vasopressors, to those with transient hypotension. A retrospective analysis of the electronic medical records of patients who visited the ED between June 2015 and May 2016, were diagnosed with febrile UTI, and treated with propacetamol, was conducted. We included 195 patients in this study; of these, 87 (44.6%) showed hypotension. In all patients, significant decreases in systolic blood pressure (SBP; 135.06±20.45mmHg vs 117.70±16.41mmHg), diastolic blood pressure (DBP; 79.74±12.17mmHg vs 69.69±10.96mmHg), and heart rate (97.46±17.14mmHg vs 90.72±14.90mmHg) were observed after propacetamol administration. The basal SBP and DBP were higher in the hypotension than in the non-hypotension group (basal SBP: 144.4±22.3mmHg vs 127.6±15.3mmHg; basal DBP: 83.3±12.6mmHg vs 76.9±11.0mmHg). Patients with persistent hypotension had a lower baseline BP, which was not elevated despite fever, and a higher rate of bacteremia than those with transient hypotension. Although febrile UTI patients treated with propacetamol in the ED showed hemodynamic changes, these changes did not have a large effect on their prognosis. However, in patients who showed bacteremia or a normal initial BP despite fever, the possibility of developing persistent hypotension should be considered. Copyright © 2017. Published by Elsevier Inc.

  14. Compression stockings significantly improve hemodynamic performance in post-thrombotic syndrome irrespective of class or length.

    Science.gov (United States)

    Lattimer, Christopher R; Azzam, Mustapha; Kalodiki, Evi; Makris, Gregory C; Geroulakos, George

    2013-07-01

    Graduated elastic compression (GEC) stockings have been demonstrated to reduce the morbidity associated with post-thrombotic syndrome. The ideal length or compression strength required to achieve this is speculative and related to physician preference and patient compliance. The aim of this study was to evaluate the hemodynamic performance of four different stockings and determine the patient's preference. Thirty-four consecutive patients (40 legs, 34 male) with post-thrombotic syndrome were tested with four different stockings (Mediven plus open toe, Bayreuth, Germany) of their size in random order: class 1 (18-21 mm Hg) and class II (23-32 mm Hg), below-knee (BK) and above-knee thigh-length (AK). The median age, Venous Clinical Severity Score, Venous Segmental Disease Score, and Villalta scale were 62 years (range, 31-81 years), 8 (range, 1-21), 5 (range, 2-10), and 10 (range, 2-22), respectively. The C of C0-6EsAs,d,pPr,o was C0 = 2, C2 = 1, C3 = 3, C4a = 12, C4b = 7, C5 = 12, C6 = 3. Obstruction and reflux was observed on duplex in 47.5% legs, with deep venous reflux alone in 45%. Air plethysmography was used to measure the venous filling index (VFI), venous volume, and time to fill 90% of the venous volume. Direct pressure measurements were obtained while lying and standing using the PicoPress device (Microlab Elettronica, Nicolò, Italy). The pressure sensor was placed underneath the test stocking 5 cm above and 2 cm posterior to the medial malleolus. At the end of the study session, patients stated their preferred stocking based on comfort. The VFI, venous volume, and time to fill 90% of the venous volume improved significantly with all types of stocking versus no compression. In class I, the VFI (mL/s) improved from a median of 4.9 (range, 1.7-16.3) without compression to 3.7 (range, 0-14) BK (24.5%) and 3.6 (range, 0.6-14.5) AK (26.5%). With class II, the corresponding improvement was to 4.0 (range, 0.3-16.2) BK (18.8%) and 3.7 (range, 0.5-14.2) AK (24

  15. Which Criteria are More Valuable in Defining Hemodynamic Significance of Patent Ductus Arteriosus in Premature Infants? Respiratory or Echocardiographic?

    Directory of Open Access Journals (Sweden)

    İrfan Oğuz Şahin

    2017-03-01

    Full Text Available Aim: Patent ductus arteriosus (PDA is a frequent health problem in premature infants. Pharmacologic closure is recommended only for hemodynamically significant PDA (hsPDA that is defined according to the clinical and echocardiographic criteria. The aim of this study was to explore the value of commonly used criteria in defining hsPDA and predicting the required number of courses of ibuprofen treatment to close PDA in premature infants. Methods: Sixty premature infants with a gestational age of ≤33 weeks were evaluated prospectively. Clinical and echocardiographic criteria [O2 requirement, ductus diameter (DD and left atrial-to-aortic root diameter ratio (LA:Ao] were used to define hsPDA. Clinical improvement after pharmacologic closure of PDA and association between the criteria and required number of ibuprofen courses were investigated. Results: O2 requirement decreased by PDA closure but was not different between patients with hsPDA and the others with PDA. Also, O2 requirement was not found to be associated with required number of ibuprofen courses. DD and LA:Ao were greater in patients with hsPDA. DD was found to be associated with required number of courses of ibuprofen treatment. Conclusion: Although there was an improvement in O2 requirement with PDA closure, echocardiographic criteria were found to be more valuable in defining hsPDA. DD should also be used to estimate the duration of treatment.

  16. Influence of an acetate- and a lactate-based balanced infusion solution on acid base physiology and hemodynamics: an observational pilot study.

    Science.gov (United States)

    Hofmann-Kiefer, Klaus F; Chappell, Daniel; Kammerer, Tobias; Jacob, Matthias; Paptistella, Michaela; Conzen, Peter; Rehm, Markus

    2012-07-06

    The current pilot study compares the impact of an intravenous infusion of Ringer's lactate to an acetate-based solution with regard to acid-base balance. The study design included the variables of the Stewart approach and focused on the effective strong ion difference. Because adverse hemodynamic effects have been reported when using acetate buffered solutions in hemodialysis, hemodynamics were also evaluated. Twenty-four women who had undergone abdominal gynecologic surgery and who had received either Ringer's lactate (Strong Ion Difference 28 mmol/L; n = 12) or an acetate-based solution (Strong Ion Difference 36.8 mmol/L; n = 12) according to an established clinical protocol and its precursor were included in the investigation. After induction of general anesthesia, a set of acid-base variables, hemodynamic values and serum electrolytes was measured three times during the next 120 minutes. Patients received a mean dose of 4,054 ± 450 ml of either one or the other of the solutions. In terms of mean arterial blood pressure and norepinephrine requirements there were no differences to observe between the study groups. pH and serum HCO3- concentration decreased slightly but significantly only with Ringer's lactate. In addition, the acetate-based solution kept the plasma effective strong ion difference more stable than Ringer's lactate. Both of the solutions provided hemodynamic stability. Concerning consistency of acid base parameters none of the solutions seemed to be inferior, either. Whether the slight advantages observed for the acetate-buffered solution in terms of stability of pH and plasma HCO3- are clinically relevant, needs to be investigated in a larger randomized controlled trial.

  17. Correlation between local hemodynamics and lesion distribution in a novel aortic regurgitation murine model of atherosclerosis.

    Science.gov (United States)

    Hoi, Yiemeng; Zhou, Yu-Qing; Zhang, Xiaoli; Henkelman, R Mark; Steinman, David A

    2011-05-01

    Following surgical induction of aortic valve regurgitation (AR), extensive atherosclerotic plaque development along the descending thoracic and abdominal aorta of Ldlr⁻/⁻ mice has been reported, with distinct spatial distributions suggestive of a strong local hemodynamic influence. The objective of this study was to test, using image-based computational fluid dynamics (CFD), whether this is indeed the case. The lumen geometry was reconstructed from micro-CT scanning of a control Ldlr⁻/⁻ mouse, and CFD simulations were carried out for both AR and control flow conditions derived from Doppler ultrasound measurements and literature data. Maps of time-averaged wall shear stress magnitude (TAWSS), oscillatory shear index (OSI) and relative residence time (RRT) were compared against the spatial distributions of plaque stained with oil red O, previously acquired in a group of AR and control mice. Maps of OSI and RRT were found to be consistent with plaque distributions in the AR mice and the absence of plaque in the control mice. TAWSS was uniformly lower under control vs. AR flow conditions, suggesting that levels (> 100 dyn/cm²) exceeded those required to alone induce a pro-atherogenic response. Simulations of a straightened CFD model confirmed the importance of anatomical curvature for explaining the spatial distribution of lesions in the AR mice. In summary, oscillatory and retrograde flow induced in the AR mice, without concomitant low shear, may exacerbate or accelerate lesion formation, but the distinct anatomical curvature of the mouse aorta is responsible for the spatial distribution of lesions.

  18. Hemodynamic deterioration during extracorporeal membrane oxygenation weaning in a patient with a total artificial heart.

    Science.gov (United States)

    Hosseinian, Leila; Levin, Matthew A; Fischer, Gregory W; Anyanwu, Anelechi C; Torregrossa, Gianluca; Evans, Adam S

    2015-01-01

    The Total Artificial Heart (Syncardia, Tucson, AZ) is approved for use as a bridge-to-transplant or destination therapy in patients who have irreversible end-stage biventricular heart failure. We present a unique case, in which the inferior vena cava compression by a total artificial heart was initially masked for days by the concurrent placement of an extracorporeal membrane oxygenation cannula. This is the case of a 33-year-old man admitted to our institution with recurrent episodes of ventricular tachycardia requiring emergent total artificial heart and venovenous extracorporeal membrane oxygenation placement. This interesting scenario highlights the importance for critical care physicians to have an understanding of exact anatomical localization of a total artificial heart, extracorporeal membrane oxygenation, and their potential interactions. In total artificial heart patients with hemodynamic compromise or reduced device filling, consideration should always be given to venous inflow compression, particularly in those with smaller body surface area. Transesophageal echocardiogram is a readily available diagnostic tool that must be considered standard of care, not only in the operating room but also in the ICU, when dealing with this complex subpopulation of cardiac patients.

  19. Hemodynamics in the Valsalva sinuses after transcatheter aortic valve implantation (TAVI).

    Science.gov (United States)

    Ducci, Andrea; Tzamtzis, Spyridon; Mullen, Michael J; Burriesci, Gaetano

    2013-09-01

    The study aim was to assess, in vitro, the hemodynamic modifications produced by transcatheter valves in the Valsalva sinuses, by mean of phase-resolved particle image velocimetry (PIV) measurements. Flow measurements were performed on a glass mock aortic root that included three polymeric valve leaflets, before and after the implantation of a Medtronic CoreValve device and of an Edwards SAPIEN valve. All experiments were carried out in a hydro-mechanical cardiovascular pulse duplicator system (Vivitro Superpump System SP3891) that reproduced physiologically equivalent pressures and flow rates conforming to the requirements of the standard ISO 5840:2005. The flow dynamics, before and after implantation of the two prosthetic devices, was characterized on the basis of phase-resolved velocity field and viscous shear rate measurements. Direct comparison indicated that both transcatheter valves determined a significant variation of flow during the early stages of valve opening and during valve closure. In general, the presence of the two valve implants significantly reduced the flow activity in the Valsalva sinuses, promoting regions of stagnation at their base. The reduction in flow in the Valsalva sinuses could be associated with the higher incidence of ischemic events reported after transcatheter heart valve implantation.

  20. Caveolin1 Is Required for Th1 Cell Infiltration, but Not Tight Junction Remodeling, at the Blood-Brain Barrier in Autoimmune Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Sarah E. Lutz

    2017-11-01

    Full Text Available Lymphocytes cross vascular boundaries via either disrupted tight junctions (TJs or caveolae to induce tissue inflammation. In the CNS, Th17 lymphocytes cross the blood-brain barrier (BBB before Th1 cells; yet this differential crossing is poorly understood. We have used intravital two-photon imaging of the spinal cord in wild-type and caveolae-deficient mice with fluorescently labeled endothelial tight junctions to determine how tight junction remodeling and caveolae regulate CNS entry of lymphocytes during the experimental autoimmune encephalomyelitis (EAE model for multiple sclerosis. We find that dynamic tight junction remodeling occurs early in EAE but does not depend upon caveolar transport. Moreover, Th1, but not Th17, lymphocytes are significantly reduced in the inflamed CNS of mice lacking caveolae. Therefore, tight junction remodeling facilitates Th17 migration across the BBB, whereas caveolae promote Th1 entry into the CNS. Moreover, therapies that target both tight junction degradation and caveolar transcytosis may limit lymphocyte infiltration during inflammation.

  1. Hemodynamic management and outcome of patients treated for cerebral vasospasm with intraarterial nicardipine and/or milrinone.

    Science.gov (United States)

    Schmidt, Ulrich; Bittner, Edward; Pivi, Silvia; Marota, John J A

    2010-03-01

    Vasospasm is a potentially devastating complication after aneurysmal subarachnoid hemorrhage. Although endovascular treatment with intraarterial nicardipine and milrinone is an accepted clinical treatment strategy, there is little information either on hemodynamic management during treatment or on outcome and consequences of the hemodynamic management. We tested 2 hypotheses: (1) intraarterial administration of nicardipine and milrinone to treat cerebral vasospasm would require increased administration of vasoconstrictor to support arterial blood pressure at target levels; and (2) high-dose vasopressors administered to increase blood pressure in these patients would lead to systemic acidosis and end-organ ischemic damage. We conducted a single-center, retrospective review of consecutive patients with clinically symptomatic vasospasm after aneurysmal subarachnoid hemorrhage that failed medical management with "triple H therapy" and subsequently received intraarterial nicardipine and/or milrinone between March 2005 and July 2007. Of 160 endovascular interventions in 73 patients (aged 52 +/- 10 years; 50 women), 96 received only nicardipine, 5 only milrinone, and 59 both drugs. General anesthesia with muscle relaxation was performed for 93% of procedures. During treatment, both the number and dose of vasopressors required to maintain arterial blood pressure at target levels increased; the median dose of phenylephrine increased from 200 (n = 121) to 325 microg/min (n = 122), norepinephrine increased from 12 (n = 60) to 24.5 microg/min (n = 87), and vasopressin infusions increased from 7 to 24. Nonetheless, arterial blood pressure decreased 13% during treatment. In >90% of procedures, the postprocedure angiogram showed improved vessel caliber. A single patient demonstrated troponin T increase; no patients had a decrease in renal function, bowel or peripheral ischemia, systemic acidosis, or acute stroke. Overall mortality was 11%. Intraarterial administration of

  2. Coping changes the brain

    Directory of Open Access Journals (Sweden)

    Jordan M. Nechvatal

    2013-02-01

    Full Text Available One of the earliest and most consistent findings in behavioral neuroscience research is that learning changes the brain. Here we consider how learning as an aspect of coping in the context of stress exposure induces neuroadaptations that enhance emotion regulation and resilience. A systematic review of the literature identified 15 brain imaging studies in which humans with specific phobias or posttraumatic stress disorder were randomized to stress exposure therapies that diminished subsequent indications of anxiety. Most of these studies focused on functional changes in the amygdala and anterior corticolimbic brain circuits that control cognitive, motivational, and emotional aspects of physiology and behavior. Corresponding structural brain changes and the timing, frequency, and duration of stress exposure required to modify brain functions remain to be elucidated in future research. These studies will advance our understanding of coping as a learning process and provide mechanistic insights for the development of new interventions that promote stress coping skills.

  3. Brain perfusion CT in acute stroke: current status

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Matthias E-mail: matthias.koenig@ruhr-uni-bochum.de

    2003-03-01

    Dynamic perfusion CT has become a widely accepted imaging modality for the diagnostic workup of acute stroke patients. Although compared with standard spiral CT the use of multislice CT has broadened the range from which perfusion data may be derived in a single scan run. The advent of multidetector row technology has not really overcome the limited 3D capability of this technique. Multidetector CT angiography (CTA) of the cerebral arteries may in part compensate for this by providing additional information about the cerebrovascular status. This article describes the basics of cerebral contrast bolus scanning with a special focus on optimization of contrast/noise in order to ensure high quality perfusion maps. Dedicated scan protocols including low tube voltage (80 kV) as well as the use of highly concentrated contrast media are amongst the requirements to achieve optimum contrast signal from the short bolus passage through the brain. Advanced pre and postprocessing algorithms may help reduce the noise level, which may become critical in unconscious stroke victims. Two theoretical concepts have been described for the calculation of tissue perfusion from contrast bolus studies, both of which can be equally employed for brain perfusion imaging. For each perfusion model there are some profound limitations regarding the validity of perfusion values derived from ischemic brain areas. This makes the use of absolute quantitative cerebral blood flow (CBF) values for the discrimination of the infarct core from periinfarct ischemia questionable. Multiparameter imaging using maps of CBF, cerebral blood volume (CBV), and a time parameter of the local bolus transit enables analyzing of the cerebral perfusion status in detail. Perfusion CT exceeds plain CT in depicting cerebral hypoperfusion at its earliest stage yielding a sensitivity of about 90% for the detection of embolic and hemodynamic lesions within cerebral hemispheres. Qualitative assessment of brain perfusion can be

  4. The Serial Change of Cerebral Hemodynamics by Vascular Territory after Extracranial-Intracranial Bypass Surgery in Patients with Atherosclerosis of Cerebral Arteries

    International Nuclear Information System (INIS)

    Hong, Il Ki; Kim, Jae Seung; Ahn, Jae Sung; Kwon, Sun Uck; Im, Ki Chun; Lee, Jai Hyuen; Moon, Dae Hyuk

    2008-01-01

    To assess the effect of extracranial-intracranial (EC-IC) bypass surgery on hemodynamic improvement, we evaluated serial regional cerebral hemodynamic change of the middle cerebral artery (MCA) in symptomatic patients with atherosclerotic occlusion of the internal carotid artery (ICA) or MCA using 99m Tc-ECD acetazolamide stress brain perfusion SPECT (Acetazolamide SPECT). The patients who had suffered a recent stroke with atherosclerotic ICA or MCA occlusion underwent EC-IC bypass surgery and Acetazolamide SPECT at 1 week before and three to six months after surgery. For image analysis, attenuation corrected images were spatially normalized to SPECT templates with SPM2. Anatomical automated labeling was applied to calculate mean counts of each Volume-Of-Interest (VOI). Seven VOIs of bilateral frontal, parietal, temporal regions of the MCA territory and the ipsilateral cerebellum were defined. Using mean counts of 7 VOIs, cerebral perfusion index and perfusion reserve index were calculated. Seventeen patients (M:F=12:5, mean age: 53±2yr) were finally included in the analysis. The cerebral blood flow of the parietal region increased at 1 week (p=0.003) and decreased to the preoperative level at 3-6 months (p=0.003). The cerebrovascular reserve of the frontal and parietal regions increased significantly at 1 week after surgery (p<0.01) and improved further at 3-6 months. Cerebrovascular reserve of the MCA territory was significantly improved at early postoperative period after EC-IC bypass and kept improved state during long-term follow-up, although cerebral blood flow did not significantly improved. Therefore, cerebrovascular reserve may be a good indicator of postoperative hemodynamic improvement resulted from bypass effect

  5. The Serial Change of Cerebral Hemodynamics by Vascular Territory after Extracranial-Intracranial Bypass Surgery in Patients with Atherosclerosis of Cerebral Arteries

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Il Ki; Kim, Jae Seung; Ahn, Jae Sung; Kwon, Sun Uck; Im, Ki Chun; Lee, Jai Hyuen; Moon, Dae Hyuk [Asan Medial Center, Ulsan University School of Medicine, Seoul (Korea, Republic of)

    2008-02-15

    To assess the effect of extracranial-intracranial (EC-IC) bypass surgery on hemodynamic improvement, we evaluated serial regional cerebral hemodynamic change of the middle cerebral artery (MCA) in symptomatic patients with atherosclerotic occlusion of the internal carotid artery (ICA) or MCA using {sup 99m}Tc-ECD acetazolamide stress brain perfusion SPECT (Acetazolamide SPECT). The patients who had suffered a recent stroke with atherosclerotic ICA or MCA occlusion underwent EC-IC bypass surgery and Acetazolamide SPECT at 1 week before and three to six months after surgery. For image analysis, attenuation corrected images were spatially normalized to SPECT templates with SPM2. Anatomical automated labeling was applied to calculate mean counts of each Volume-Of-Interest (VOI). Seven VOIs of bilateral frontal, parietal, temporal regions of the MCA territory and the ipsilateral cerebellum were defined. Using mean counts of 7 VOIs, cerebral perfusion index and perfusion reserve index were calculated. Seventeen patients (M:F=12:5, mean age: 53{+-}2yr) were finally included in the analysis. The cerebral blood flow of the parietal region increased at 1 week (p=0.003) and decreased to the preoperative level at 3-6 months (p=0.003). The cerebrovascular reserve of the frontal and parietal regions increased significantly at 1 week after surgery (p<0.01) and improved further at 3-6 months. Cerebrovascular reserve of the MCA territory was significantly improved at early postoperative period after EC-IC bypass and kept improved state during long-term follow-up, although cerebral blood flow did not significantly improved. Therefore, cerebrovascular reserve may be a good indicator of postoperative hemodynamic improvement resulted from bypass effect.

  6. Wide-area mapping of resting state hemodynamic correlations at microvascular resolution with multi-contrast optical imaging (Conference Presentation)

    Science.gov (United States)

    Senarathna, Janaka; Hadjiabadi, Darian; Gil, Stacy; Thakor, Nitish V.; Pathak, Arvind P.

    2017-02-01

    Different brain regions exhibit complex information processing even at rest. Therefore, assessing temporal correlations between regions permits task-free visualization of their `resting state connectivity'. Although functional MRI (fMRI) is widely used for mapping resting state connectivity in the human brain, it is not well suited for `microvascular scale' imaging in rodents because of its limited spatial resolution. Moreover, co-registered cerebral blood flow (CBF) and total hemoglobin (HbT) data are often unavailable in conventional fMRI experiments. Therefore, we built a customized system that combines laser speckle contrast imaging (LSCI), intrinsic optical signal (IOS) imaging and fluorescence imaging (FI) to generate multi-contrast functional connectivity maps at a spatial resolution of 10 μm. This system comprised of three illumination sources: a 632 nm HeNe laser (for LSCI), a 570 nm ± 5 nm filtered white light source (for IOS), and a 473 nm blue laser (for FI), as well as a sensitive CCD camera operating at 10 frames per second for image acquisition. The acquired data enabled visualization of changes in resting state neurophysiology at microvascular spatial scales. Moreover, concurrent mapping of CBF and HbT-based temporal correlations enabled in vivo mapping of how resting brain regions were linked in terms of their hemodynamics. Additionally, we complemented this approach by exploiting the transit times of a fluorescent tracer (Dextran-FITC) to distinguish arterial from venous perfusion. Overall, we demonstrated the feasibility of wide area mapping of resting state connectivity at microvascular resolution and created a new toolbox for interrogating neurovascular function.

  7. Hemodynamic and regional blood flow distribution responses to dextran, hydralazine, isoproterenol and amrinone during experimental cardiac tamponade

    International Nuclear Information System (INIS)

    Millard, R.W.; Fowler, N.O.; Gabel, M.

    1983-01-01

    Four different interventions were examined in dogs with cardiac tamponade. Infusion of 216 to 288 ml saline solution into the pericardium reduced cardiac output from 3.5 +/- 0.3 to 1.7 +/- 0.2 liters/min as systemic vascular resistance increased from 4,110 +/- 281 to 6,370 +/- 424 dynes . s . cm-5. Left ventricular epicardial and endocardial blood flows were 178 +/- 13 and 220 +/- 12 ml/min per 100 g, respectively, and decreased to 72 +/- 14 and 78 +/- 11 ml/min per 100 g with tamponade. Reductions of 25 to 65% occurred in visceral and brain blood flows and in a composite brain sample. Cardiac output during tamponade was significantly increased by isoproterenol, 0.5 microgram/kg per min intravenously; hydralazine, 40 mg intravenously; dextran infusion or combined hydralazine and dextran, but not by amrinone. Total systemic vascular resistance was reduced by all interventions. Left ventricular epicardial flow was increased by isoproterenol, hydralazine and the hydralazine-dextran combination. Endocardial flow was increased by amrinone and the combination of hydralazine and dextran. Right ventricular myocardial blood flow increased with all interventions except dextran. Kidney cortical and composite brain blood flows were increased by both dextran alone and by the hydralazine-dextran combinations. Blood flow to small intestine was increased by all interventions as was that to large intestine by all except amrinone and hydralazine. Liver blood flow response was variable. The most pronounced hemodynamic and tissue perfusion improvements during cardiac tamponade were effected by combined vasodilation-blood volume expansion with a hydralazine-dextran combination. Isoproterenol had as dramatic an effect but it was short-lived. Amrinone was the least effective intervention

  8. Cerebral hemodynamics in patients with moyamoya disease, (2)

    International Nuclear Information System (INIS)

    Takeuchi, Shigekazu

    1983-01-01

    Regional cerebral blood flow (rCBF) was measured by the 133 Xe inhalation method in 19 patients with moyamoya disease aged 5 to 46 and compared with that in 17 healthy volunteers aged 7 to 67. In healthy volunteers, mean hemispheric flow values (mCBF) in the steady state decreased and cerebrovascular resistance (CVR) increased with advancing age. Most young patients showed low values of mCBF in both hemispheres in comparison with healthy volunteers. About half of the young patients showed higher values of CVR than young healthy volunteers. The distribution of rCBF showed a hyperfrontal pattern in healthy volunteers. However, in the patients, regional distribution of hemispheric flow showed a different pattern with low flow in the upper frontal region and mean flow in the posterotemporal and occipital regions. rCBF measurements were carried out during hyperventilation in five healthy volunteers and in one patient, and during 5% CO 2 inhalation in one healthy volunteer and two patients. CO 2 reactivity was uniformly present in the hemispheres of healthy volunteers. rCBF in both hemispheres was reduced by hyperventilation, more markedly in the patient than in healthy volunteers. On the other hand, in two patients, the flow was increased in the temporo-occipital regions and was decreased in the frontal region by 5% CO 2 inhalation, and mCBF was slightly increased. Postoperative rCBF measurements in 21 sides of 12 young patients indicated a gradual increase of mCBF in 14 sides of nine patients from 3 months after surgery. These results indicate that rCBF measurements by the 133 Xe inhalation method are useful in determining cerebral hemodynamics in patients with moyamoya disease, especially in children. (J.P.N.)

  9. Hemodynamic and permeability characteristics of acute experimental necrotizing enterocolitis

    International Nuclear Information System (INIS)

    Miller, M.J.; Adams, J.; Gu, X.A.; Zhang, X.J.; Clark, D.A.

    1990-01-01

    We examined the local hemodynamic response of intestinal loops during acute necrotizing enterocolitis (NEC) in anesthetized rabbits. NEC was induced in ileal loops by transmural injection of a solution containing casein (10 mg/ml) and calcium gluconate (50 mg/ml) acidified to pH 4.0 with propionic or acetic acid. Control loops received casein only (pH 5.0). Mucosal damage was quantified by the blood-to-lumen movement of [51Cr]EDTA, fluid shifts into the lumen, and histology. Mean arterial pressure and loop blood flow were steady over the 3-hr period, loop fluid volume decreased, and there was no evidence of necrosis or epithelial damage. In loops receiving acidified casein and calcium gluconate, there was an immediate dramatic increase in loop blood flow that returned to baseline by 50 min. In addition, loop fluid volume was dramatically increased, necrosis was noted in the form of blunting and loss of villi, and sevenfold increase in [51Cr]EDTA permeability was evident. Administration of CV 1808 (30 mg/kg/hr), a selective adenosine2 agonist, which maintained and elevated loop blood flow throughout the 3 hr protocol, failed to alter the changes in loop fluid volume or prevent necrosis. Histamine levels in loop fluid levels were significantly elevated 20-30 min after NEC induction when compared to saline controls, indicating an early activation of mucosal defenses with this luminal insult. Thus, this model of NEC is characterized by a transient, acute hyperemia, increased intestinal permeability, and histamine release. As mucosal damage was independent of ischemia and could not be prevented by vasodilatory therapy, this model supports the clinical findings that NEC is correlated with luminal factors related to feeding and independent of cardiovascular stress

  10. Ambient Temperature and Cerebrovascular Hemodynamics in the Elderly.

    Science.gov (United States)

    Pan, Wen-Chi; Eliot, Melissa N; Koutrakis, Petros; Coull, Brent A; Sorond, Farzaneh A; Wellenius, Gregory A

    2015-01-01

    Some prior studies have linked ambient temperature with risk of cerebrovascular events. If causal, the pathophysiologic mechanisms underlying this putative association remain unknown. Temperature-related changes in cerebral vascular function may play a role, but this hypothesis has not been previously evaluated. We evaluated the association between ambient temperature and cerebral vascular function among 432 participants ≥65 years old from the MOBILIZE Boston Study with data on cerebrovascular blood flow, cerebrovascular resistance, and cerebrovascular reactivity in the middle cerebral artery. We used linear regression models to assess the association of mean ambient temperature in the previous 1 to 28 days with cerebrovascular hemodynamics adjusting for potential confounding factors. A 10°C increase in the 21-day moving average of ambient temperature was associated with a 10.1% (95% confidence interval [CI], 2.2%, 17.3%) lower blood flow velocity, a 9.0% (95% CI, 0.7%, 18.0%) higher cerebrovascular resistance, and a 15.3% (95%CI, 2.7%, 26.4%) lower cerebral vasoreactivity. Further adjustment for ozone and fine particulate matter (PM2.5) did not materially alter the results. However, we found statistically significant interactions between ambient temperature and PM2.5 such that the association between temperature and blood flow velocity was attenuated at higher levels of PM2.5. In this elderly population, we found that ambient temperature was negatively associated with cerebral blood flow velocity and cerebrovascular vasoreactivity and positively associated with cerebrovascular resistance. Changes in vascular function may partly underlie the observed associations between ambient temperature and risk of cerebrovascular events.

  11. Central Hemodynamics and Arterial Stiffness in Systemic Sclerosis.

    Science.gov (United States)

    Bartoloni, Elena; Pucci, Giacomo; Cannarile, Francesca; Battista, Francesca; Alunno, Alessia; Giuliani, Marco; Cafaro, Giacomo; Gerli, Roberto; Schillaci, Giuseppe

    2016-12-01

    Although microvascular disease is a hallmark of systemic sclerosis (SSc), a higher prevalence of macrovascular disease and a poorer related prognosis have been reported in SSc than in the general population. The simultaneous assessment of prognostically relevant functional properties of larger and smaller arteries, and their effects on central hemodynamics, has never been performed in SSc using the state-of-the-art techniques. Thirty-four women with SSc (aged 61±15 years, disease duration 17±12 years, and blood pressure 123/70±18/11 mm Hg) and 34 healthy women individually matched by age and mean arterial pressure underwent the determination of carotid-femoral (aortic) and carotid-radial (upper limb) pulse wave velocity (a direct measure of arterial stiffness), aortic augmentation (a measure of the contribution of reflected wave to central pulse pressure), and aortobrachial pulse pressure amplification (brachial/aortic pulse pressure) through applanation tonometry (SphygmoCor). Patients and controls did not differ by carotid-femoral or carotid-radial pulse wave velocity. Aortic augmentation index corrected for a heart rate of 75 bpm (AIx@75) was higher in women with SSc (30.9±16% versus 22.2±12%; P=0.012). Patients also had a lower aortobrachial amplification of pulse pressure (1.22±0.18 versus 1.33±0.25; P=0.041). SSc was an independent predictor of AIx@75 (direct) and pulse pressure amplification (inverse). Among patients, age, mean arterial pressure, and C-reactive protein independently predicted carotid-femoral pulse wave velocity. Age and mean arterial pressure were the only predictors of AIx@75. Women with SSc have increased aortic augmentation and decreased pulse pressure amplification (both measures of the contribution of reflected wave to central waveform) but no changes in aortic or upper limb arterial stiffness. Microvascular involvement occurs earlier than large artery stiffening in SSc. © 2016 American Heart Association, Inc.

  12. Hemodynamic Characteristics Including Pulmonary Hypertension at Rest and During Exercise Before and After Heart Transplantation

    Science.gov (United States)

    Lundgren, Jakob; Rådegran, Göran

    2015-01-01

    Background Little is known about the hemodynamic response to exercise in heart failure patients at various ages before and after heart transplantation (HT). This information is important because postoperative hemodynamics may be a predictor of survival. To investigate the hemodynamic response to HT and exercise, we grouped our patients based on preoperative age and examined their hemodynamics at rest and during exercise before and after HT. Methods and Results Ninety-four patients were evaluated at rest prior to HT with right heart catheterization at our laboratory. Of these patients, 32 were evaluated during slight supine exercise before and 1 year after HT. Postoperative evaluations were performed at rest 1 week after HT and at rest and during exercise at 4 weeks, 3 months, 6 months, and 1 year after HT. The exercise patients were divided into 2 groups based on preoperative age of ≤50 or >50 years. There were no age-dependent differences in the preoperative hemodynamic exercise responses. Hemodynamics markedly improved at rest and during exercise at 1 and 4 weeks, respectively, after HT; however, pulmonary and, in particular, ventricular filling pressures remained high during exercise at 1 year after HT, resulting in normalized pulmonary vascular resistance response but deranged total pulmonary vascular resistance response. Conclusions Our findings suggest that, (1) in patients with heart failure age ≤50 or >50 years may not affect the hemodynamic response to exercise to the same extent as in healthy persons, and (2) total pulmonary vascular resistance may be more adequate than pulmonary vascular resistance for evaluating the exercise response after HT. PMID:26199230

  13. Brain Diseases

    Science.gov (United States)

    The brain is the control center of the body. It controls thoughts, memory, speech, and movement. It regulates the function of many organs. When the brain is healthy, it works quickly and automatically. However, ...

  14. MRI of the foetal brain

    International Nuclear Information System (INIS)

    Rich, P.; Jones, R.; Britton, J.; Foote, S.; Thilaganathan, B.

    2007-01-01

    Ultrasound examinations for foetal brain abnormalities have been a part of the routine antenatal screening programme in the UK for many years. In utero brain magnetic resonance imaging (MRI) is now being used increasingly successfully to clarify abnormal ultrasound findings, often resulting in a change of diagnosis or treatment plan. Interpretation requires an understanding of foetal brain development, malformations and acquired diseases. In this paper we will outline the technique of foetal MRI, relevant aspects of brain development and provide illustrated examples of foetal brain pathology

  15. Brain Aneurysm

    Science.gov (United States)

    A brain aneurysm is an abnormal bulge or "ballooning" in the wall of an artery in the brain. They are sometimes called berry aneurysms because they ... often the size of a small berry. Most brain aneurysms produce no symptoms until they become large, ...

  16. Brain Development

    Science.gov (United States)

    ... Become a Member Home Early Development & Well-Being Brain Development A child’s brain undergoes an amazing period of development from birth ... neural connections each second. The development of the brain is influenced by many factors, including a child’s ...

  17. Multimodal brain monitoring in fulminant hepatic failure

    Science.gov (United States)

    Paschoal Jr, Fernando Mendes; Nogueira, Ricardo Carvalho; Ronconi, Karla De Almeida Lins; de Lima Oliveira, Marcelo; Teixeira, Manoel Jacobsen; Bor-Seng-Shu, Edson

    2016-01-01

    Acute liver failure, also known as fulminant hepatic failure (FHF), embraces a spectrum of clinical entities characterized by acute liver injury, severe hepatocellular dysfunction, and hepatic encephalopathy. Cerebral edema and intracranial hypertension are common causes of mortality in patients with FHF. The management of patients who present acute liver failure starts with determining the cause and an initial evaluation of prognosis. Regardless of whether or not patients are listed for liver transplantation, they should still be monitored for recovery, death, or transplantation. In the past, neuromonitoring was restricted to serial clinical neurologic examination and, in some cases, intracranial pressure monitoring. Over the years, this monitoring has proven insufficient, as brain abnormalities were detected at late and irreversible stages. The need for real-time monitoring of brain functions to favor prompt treatment and avert irreversible brain injuries led to the concepts of multimodal monitoring and neurophysiological decision support. New monitoring techniques, such as brain tissue oxygen tension, continuous electroencephalogram, transcranial Doppler, and cerebral microdialysis, have been developed. These techniques enable early diagnosis of brain hemodynamic, electrical, and biochemical changes, allow brain anatomical and physiological monitoring-guided therapy, and have improved patient survival rates. The purpose of this review is to discuss the multimodality methods available for monitoring patients with FHF in the neurocritical care setting. PMID:27574545

  18. Left Brain. Right Brain. Whole Brain

    Science.gov (United States)

    Farmer, Lesley S. J.

    2004-01-01

    As the United States student population is becoming more diverse, library media specialists need to find ways to address these distinctive needs. However, some of these differences transcend culture, touching on variations in the brain itself. Most people have a dominant side of the brain, which can affect their personality and learning style.…

  19. Hemodynamics in stented vertebral artery ostial stenosis based on computational fluid dynamics simulations.

    Science.gov (United States)

    Qiao, Aike; Dai, Xuan; Niu, Jing; Jiao, Liqun

    2016-01-01

    Hemodynamic factors may affect the potential occurrence of in-stent restenosis (ISR) after intervention procedure of vertebral artery ostial stenosis (VAOS). The purpose of the present study is to investigate the influence of stent protrusion length in implantation strategy on the local hemodynamics of the VAOS. CTA images of a 58-year-old female patient with posterior circulation transient ischemic attack were used to perform a 3D reconstruction of the vertebral artery. Five models of the vertebral artery before and after the stent implantation were established. Model 1 was without stent implantation, Model 2-5 was with stent protruding into the subclavian artery for 0, 1, 2, 3 mm, respectively. Computational fluid dynamics simulations based on finite element analysis were employed to mimic the blood flow in arteries and to assess hemodynamic conditions, particularly the blood flow velocity and wall shear stress (WSS). The WSS and the blood flow velocity at the vertebral artery ostium were reduced by 85.33 and 35.36% respectively after stents implantation. The phenomenon of helical flow disappeared. Hemodynamics comparison showed that stent struts that protruded 1 mm into the subclavian artery induced the least decrease in blood speed and WSS. The results suggest that stent implantation can improve the hemodynamics of VAOS, while stent struts that had protruded 1 mm into the subclavian artery would result in less thrombogenesis and neointimal hyperplasia and most likely decrease the risk of ISR.

  20. Effects of anesthetic agents on brain blood oxygenation level revealed with ultra-high field MRI.

    Directory of Open Access Journals (Sweden)

    Luisa Ciobanu

    Full Text Available During general anesthesia it is crucial to control systemic hemodynamics and oxygenation levels. However, anesthetic agents can affect cerebral hemodynamics and metabolism in a drug-dependent manner, while systemic hemodynamics is stable. Brain-wide monitoring of this effect remains highly challenging. Because T(2*-weighted imaging at ultra-high magnetic field strengths benefits from a dramatic increase in contrast to noise ratio, we hypothesized that it could monitor anesthesia effects on brain blood oxygenation. We scanned rat brains at 7T and 17.2T under general anesthesia using different anesthetics (isoflurane, ketamine-xylazine, medetomidine. We showed that the brain/vessels contrast in T(2*-weighted images at 17.2T varied directly according to the applied pharmacological anesthetic agent, a phenomenon that was visible, but to a much smaller extent at 7T. This variation is in agreement with the mechanism of action of these agents. These data demonstrate that preclinical ultra-high field MRI can monitor the effects of a given drug on brain blood oxygenation level in the absence of systemic blood oxygenation changes and of any neural stimulation.

  1. Effects of anesthetic agents on brain blood oxygenation level revealed with ultra-high field MRI

    International Nuclear Information System (INIS)

    Ciobanu, Luisa; Reynaud, Olivier; Le Bihan, Denis; Uhrig, Lynn; Jarraya, Bechir

    2012-01-01

    During general anesthesia it is crucial to control systemic hemodynamics and oxygenation levels. However, anesthetic agents can affect cerebral hemodynamics and metabolism in a drug-dependent manner, while systemic hemodynamics is stable. Brain-wide monitoring of this effect remains highly challenging. Because T2'*-weighted imaging at ultra-high magnetic field strengths benefits from a dramatic increase in contrast to noise ratio, we hypothesized that it could monitor anesthesia effects on brain blood oxygenation. We scanned rat brains at 7 T and 17.2 T under general anesthesia using different anesthetics (isoflurane, ketamine-xylazine, medetomidine). We showed that the brain/vessels contrast in T2'*- weighted images at 17.2 T varied directly according to the applied pharmacological anesthetic agent, a phenomenon that was visible, but to a much smaller extent at 7 T. This variation is in agreement with the mechanism of action of these agents. These data demonstrate that preclinical ultra-high field MRI can monitor the effects of a given drug on brain blood oxygenation level in the absence of systemic blood oxygenation changes and of any neural stimulation. (authors)

  2. Brain Basics: Know Your Brain

    Science.gov (United States)

    ... however, the brain is beginning to relinquish its secrets. Scientists have learned more about the brain in ... through the activity of these lobes. At the top of each temporal lobe is an area responsible ...

  3. Renal functional reserve and renal hemodynamics in hypertensive patients.

    Science.gov (United States)

    Gaipov, Abduzhappar; Solak, Yalcin; Zhampeissov, Nurlan; Dzholdasbekova, Aliya; Popova, Nadezhda; Molnar, Miklos Z; Tuganbekova, Saltanat; Iskandirova, Elmira

    2016-10-01

    The renal functional reserve (RFR) is the ability of the kidneys to increase renal plasma flow and glomerular filtration rate (GFR) in response to protein intake. It is a measure of functional and anatomic integrity of nephrons. It is not known what relation between RFR and kidney Doppler parameters. We aimed to study the relation between the RFR and renal hemodynamic parameters in hypertensive patients with and without nephropathy who had normal kidney function. Twenty-four hypertensive subjects with nephropathy (HTN-n, n = 10) and hypertension without nephropathy (HTN, n = 14) were included in the study. Control group included 11 healthy subjects. Baseline GFR (GFR1) and GFR after intake of egg protein 1 mg/kg of body weight were determined (GFR2). RFR was calculated by the following formula: (GFR2-GFR1)/GFR1 × 100%. Doppler ultrasonography was performed. Arterial blood pressure (BP), body mass index (BMI), and estimated GFR were also recorded. HTN and HTN-n groups had impaired levels of RFR compared with controls (p < 0.05), significantly decreased value of flow velocity parameters (Vmax, Vmin), and increased RRI compared with controls. There was significant negative correlation of RFR with blood pressure levels (sBP, r = -0.435, p = 0.009; dBP, r = -0.504, p = 0.002), RRI (r = -0.456, p = 0.008), micro albuminuria (MAU, r = -0.366, p = 0.031) and positive correlation with Vmax and Vmin (r = 0.556, p = 0.001 and r = 0.643, respectively, p < 0.001). Linear regression showed that RRI and MAU were independent predictors of decreased RFR. RFR is lower in hypertensive patients despite near-normal level of kidney function and is related to particular level of BP. RRI and MAU were independent predictors of decreased RFR.

  4. An experimental and computational study of the inferior vena cava hemodynamics under respiratory-induced collapse of the infrarenal IVC.

    Science.gov (United States)

    Tedaldi, Elisabetta; Montanari, Chiara; Aycock, Kenneth I; Sturla, Francesco; Redaelli, Alberto; Manning, Keefe B

    2018-04-01

    the flow rate distribution between the right and left iliac veins induces significant variations in the flow characteristics. We speculate that asymmetries in the flow may generate unbalanced forces on the IVC wall and on placed IVC filters that could promote filter tilting and migration, although this requires further investigation. If unbalanced forces are present in vivo, the forces should be considered when determining the optimal placement positions and geometric features for IVC filters. Therefore, these findings motivate further investigation of the in vivo hemodynamics in the infrarenal IVC. Copyright © 2018 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Hemodynamic modelling of BOLD fMRI - A machine learning approach

    DEFF Research Database (Denmark)

    Jacobsen, Danjal Jakup

    2007-01-01

    This Ph.D. thesis concerns the application of machine learning methods to hemodynamic models for BOLD fMRI data. Several such models have been proposed by different researchers, and they have in common a basis in physiological knowledge of the hemodynamic processes involved in the generation...... of the BOLD signal. The BOLD signal is modelled as a non-linear function of underlying, hidden (non-measurable) hemodynamic state variables. The focus of this thesis work has been to develop methods for learning the parameters of such models, both in their traditional formulation, and in a state space...... formulation. In the latter, noise enters at the level of the hidden states, as well as in the BOLD measurements themselves. A framework has been developed to allow approximate posterior distributions of model parameters to be learned from real fMRI data. This is accomplished with Markov chain Monte Carlo...

  6. Ultrasound investigation central hemodynamics as a method of assessment effective analgesia in children

    Directory of Open Access Journals (Sweden)

    K. Y. Dmytriieva

    2016-06-01

    Vinnitsa National Medical University M.I. Pirogov   Summary: The study was include in 23 children (12,4±1,2 years operated on for tumors of the retroperitoneal space (14 children, 61%, renal tumors (6 children, 26%, ovarian cancer (3 children, 13% showed that a comprehensive study of the reactions of pain behavior and central hemodynamics by ultrasonography showed that the use of the scheme KSME bupivacaine 0.3-0.4 mg / kg and a continuous infusion of drugs (fentanyl in a dose of 10 mcg/kg/h for postoperative pain relief leads to effective analgesia after traumatic operations and comprehensive ultrasound including color and spectral Doppler studies, is the main tool by enabling timely and accurately assess the condition of the central hemodynamics at different methods of analgesia.   Key words: central hemodynamics, ultrasound, anesthesia.

  7. Automatd assessment of the state of central hemodynamics using a radiocardioanalyser RCA 3-01

    International Nuclear Information System (INIS)

    Sivachenko, T.P.; Zozulya, A.A.; Sribnaya, A.F.; Ratmanskij, A.Yu.; Tishchenko, F.M.; Kurenya, A.G.; Krupka, I.N.; Kulagin, S.N.; Protsenko, A.S.

    1987-01-01

    The authors presented the results of a clinical use of a new radiocardioanalyzer RCA 3-01 (manufactured in the USSR) providing for automated measurements and computations of indices of the central hemodynamics during studies using a method of dilution of radioactive nuclides. The main technical potentialities of the device designed on the basis of microprocessor technology, were described. The authors also provided the results of automated computation of the circulating blood volume and the main hemodynamic indices in a group of patients. Values of the hemodynamic indices were shown to correspond to actual ones and comparable to control ones and clinical evidence. The comparison of automated processing with a manual method of calculation indicated a significant coincidence of index values. The clinical use of the radiocardioanalyzer RGA 3-01 for automated assessment of the indices of the cardiovascular system was shown to hold promise among various groups of patients

  8. Hemodynamic characterization of chronic bile duct-ligated rats: effect of pentobarbital sodium

    International Nuclear Information System (INIS)

    Lee, S.S.; Girod, C.; Braillon, A.; Hadengue, A.; Lebrec, D.

    1986-01-01

    Systemic and splanchnic hemodynamics of the chronic bile duct-ligated rat were characterized by radioactive microspheres. Conscious and pentobarbital sodium-anesthetized, bile duct-ligated and sham-operated rats had cardiac output and regional organ blood flows determined. The conscious bile duct-ligated rat compared with the sham-operated showed a hyperdynamic circulation with an increased cardiac output and portal tributary blood flow. Pentobarbital sodium anesthesia induced marked hemodynamic changes in both sham-operated and bile duct-ligated rats. The latter group was especially sensitive to its effects; thus, comparison of cardiac output and portal tributary blood flow between anesthetized bile duct-ligated and sham-operated rats showed no significant differences. The authors conclude that the rat with cirrhosis due to chronic bile duct ligation is an excellent model for hemodynamic investigations but should be studied in the conscious state, since pentobarbital sodium anesthesia eliminated the hyperdynamic circulation

  9. The numerical simulation study of hemodynamics of the new dense-mesh stent

    Science.gov (United States)

    Ma, Jiali; Yuan, Zhishan; Yu, Xuebao; Feng, Zhaowei; Miao, Weidong; Xu, Xueli; Li, Juntao

    2017-09-01

    The treatment of aortic aneurysm in new dense mesh stent is based on the principle of hemodynamic changes. But the mechanism is not yet very clear. This paper analyzed and calculated the hemodynamic situation before and after the new dense mesh stent implanting by the method of numerical simulation. The results show the dense mesh stent changed and impacted the blood flow in the aortic aneurysm. The changes include significant decrement of blood velocity, pressure and shear forces, while ensuring blood can supply branches, which means the new dense mesh stent's hemodynamic mechanism in the treatment of aortic aneurysm is clearer. It has very important significance in developing new dense mesh stent in order to cure aortic aneurysm.

  10. Weak correlations between hemodynamic signals and ongoing neural activity during the resting state

    Science.gov (United States)

    Winder, Aaron T.; Echagarruga, Christina; Zhang, Qingguang; Drew, Patrick J.

    2017-01-01

    Spontaneous fluctuations in hemodynamic signals in the absence of a task or overt stimulation are used to infer neural activity. We tested this coupling by simultaneously measuring neural activity and changes in cerebral blood volume (CBV) in the somatosensory cortex of awake, head-fixed mice during periods of true rest, and during whisker stimulation and volitional whisking. Here we show that neurovascular coupling was similar across states, and large spontaneous CBV changes in the absence of sensory input were driven by volitional whisker and body movements. Hemodynamic signals during periods of rest were weakly correlated with neural activity. Spontaneous fluctuations in CBV and vessel diameter persisted when local neural spiking and glutamatergic input was blocked, and during blockade of noradrenergic receptors, suggesting a non-neuronal origin for spontaneous CBV fluctuations. Spontaneous hemodynamic signals reflect a combination of behavior, local neural activity, and putatively non-neural processes. PMID:29184204

  11. Biomechanical and Hemodynamic Measures of Right Ventricular Diastolic Function: Translating Tissue Biomechanics to Clinical Relevance.

    Science.gov (United States)

    Jang, Sae; Vanderpool, Rebecca R; Avazmohammadi, Reza; Lapshin, Eugene; Bachman, Timothy N; Sacks, Michael; Simon, Marc A

    2017-09-12

    Right ventricular (RV) diastolic function has been associated with outcomes for patients with pulmonary hypertension; however, the relationship between biomechanics and hemodynamics in the right ventricle has not been studied. Rat models of RV pressure overload were obtained via pulmonary artery banding (PAB; control, n=7; PAB, n=5). At 3 weeks after banding, RV hemodynamics were measured using a conductance catheter. Biaxial mechanical properties of the RV free wall myocardium were obtained to extrapolate longitudinal and circumferential elastic modulus in low and high strain regions (E 1 and E 2 , respectively). Hemodynamic analysis revealed significantly increased end-diastolic elastance (E ed ) in PAB (control: 55.1 mm Hg/mL [interquartile range: 44.7-85.4 mm Hg/mL]; PAB: 146.6 mm Hg/mL [interquartile range: 105.8-155.0 mm Hg/mL]; P =0.010). Longitudinal E 1 was increased in PAB (control: 7.2 kPa [interquartile range: 6.7-18.1 kPa]; PAB: 34.2 kPa [interquartile range: 18.1-44.6 kPa]; P =0.018), whereas there were no significant changes in longitudinal E 2 or circumferential E 1 and E 2 . Last, wall stress was calculated from hemodynamic data by modeling the right ventricle as a sphere: stress=Pressure×radius2×thickness. RV pressure overload in PAB rats resulted in an increase in diastolic myocardial stiffness reflected both hemodynamically, by an increase in E ed , and biomechanically, by an increase in longitudinal E 1 . Modest increases in tissue biomechanical stiffness are associated with large increases in E ed . Hemodynamic measurements of RV diastolic function can be used to predict biomechanical changes in the myocardium. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  12. Spontaneous hemodynamic oscillations during human sleep and sleep stage transitions characterized with near-infrared spectroscopy.

    Directory of Open Access Journals (Sweden)

    Tiina Näsi

    Full Text Available Understanding the interaction between the nervous system and cerebral vasculature is fundamental to forming a complete picture of the neurophysiology of sleep and its role in maintaining physiological homeostasis. However, the intrinsic hemodynamics of slow-wave sleep (SWS are still poorly known. We carried out 30 all-night sleep measurements with combined near-infrared spectroscopy (NIRS and polysomnography to investigate spontaneous hemodynamic behavior in SWS compared to light (LS and rapid-eye-movement sleep (REM. In particular, we concentrated on slow oscillations (3-150 mHz in oxy- and deoxyhemoglobin concentrations, heart rate, arterial oxygen saturation, and the pulsation amplitude of the photoplethysmographic signal. We also analyzed the behavior of these variables during sleep stage transitions. The results indicate that slow spontaneous cortical and systemic hemodynamic activity is reduced in SWS compared to LS, REM, and wakefulness. This behavior may be explained by neuronal synchronization observed in electrophysiological studies of SWS and a reduction in autonomic nervous system activity. Also, sleep stage transitions are asymmetric, so that the SWS-to-LS and LS-to-REM transitions, which are associated with an increase in the complexity of cortical electrophysiological activity, are characterized by more dramatic hemodynamic changes than the opposite transitions. Thus, it appears that while the onset of SWS and termination of REM occur only as gradual processes over time, the termination of SWS and onset of REM may be triggered more abruptly by a particular physiological event or condition. The results suggest that scalp hemodynamic changes should be considered alongside cortical hemodynamic changes in NIRS sleep studies to assess the interaction between the autonomic and central nervous systems.

  13. On the characterization of single-event related brain activity from functional Magnetic Resonance Imaging (fMRI) measurements

    KAUST Repository

    Khoram, Nafiseh

    2014-08-01

    We propose an efficient numerical technique for calibrating the mathematical model that describes the singleevent related brain response when fMRI measurements are given. This method employs a regularized Newton technique in conjunction with a Kalman filtering procedure. We have applied this method to estimate the biophysiological parameters of the Balloon model that describes the hemodynamic brain responses. Illustrative results obtained with both synthetic and real fMRI measurements are presented. © 2014 IEEE.

  14. Information technology for brain banking.

    Science.gov (United States)

    Schmitz, Peer

    2018-01-01

    Implementing and maintaining the information technology (IT) infrastructure of a brain bank can be a daunting task for any brain bank coordinator, particularly when access to both funds and IT professionals is limited. Many questions arise when attempting to determine which IT products are most suitable for a brain bank. The requirements of each brain bank must be assessed carefully to ensure that the chosen IT infrastructure will be able to meet those requirements successfully and will be able to expand and adapt as the size of the brain bank increases. This chapter provides some valuable insights to be considered when implementing the IT infrastructure for a brain bank and discusses the pros and cons of various approaches and products. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. The role of n terminal - probrain natriuretic peptide in the diagnosis of hemodynamic persistent asrteriosus ductus in premature neonates patient

    Science.gov (United States)

    Dasraf, D.; Djer, M. M.; Advani, N.

    2017-08-01

    Persistent ductus arteriosus is one of the most frequent congenital heart diseases found in infants, mainly in preterms. Echocardiography is the gold standard for the diagnosis of hemodynamically significant patent ductus arteriosus (hs-PDA) in preterm neonates. A few studies have suggested that the use of a simple blood assay to detect N-terminal pro-brain natriuretic peptide (NT-proBNP) may be useful in determining the diagnosis and management of hs-PDA. No such studies have been conducted in Indonesia, although the assay kit and characteristics of the patient (gestational age and chronological age) influence the accuracy of NT-proBNP levels in determining hs-PDA. The aim of this study was to determine the association between the NT-proBNP level and the prevalence of hs-PDA in an Indonesian patient population. A cross-sectional study was conducted at Dr. Cipto Mangunkusumo Hospital. PDA was determined using echocardiography in 49 preterm neonates (gestational age groups: non-PDA, non-hsPDA, and hs-PDA. The blood NT-proBNP level was then determined in the non-hsPDA and hs-PDA groups, and between-group differences were compared. Among the 49 neonates, 33 patients had PDA, and 16 of these had hs-PDA. The results revealed a significant association between the NT-proBNP level and hs-PDA (p < 0.001).

  16. Near-Infrared Spectroscopy Reveals Abnormal Hemodynamics in the Left Dorsolateral Prefrontal Cortex of Menopausal Depression Patients

    Directory of Open Access Journals (Sweden)

    Xiang-Yun Ma

    2017-01-01

    Full Text Available Background/Objective. Menopausal depression (MD is characterized by depressive symptoms along with hormonal fluctuations. We investigate brain function alteration between major depressive disorder (MDD and MD. Methods. The difference in oxygenated hemoglobin (Oxy-Hb for the prefrontal cortex (PFC was compared retrospectively among 90 females presented with 30 MDD, 30 MD, and 30 healthy controls (HCs using verbal fluency task (VFT with near-infrared spectroscopy (NIRS. Results. We observed a significant difference in Oxy-Hb alteration in the left dorsolateral PFC (DLPFC using VFT with NIRS (channel 18, P=0.007 between the MD and MDD groups. A significant difference in Oxy-Hb levels was observed among the three groups in the bilateral DLPFC (channels 18, 27, 33, 39, 41, and 45; P<0.05. Compared to the HCs, the MD group presented lower Oxy-Hb activation in the right DLPFC (channel 41; P=0.048 and the left DLPFC (channels 18, 39, and 45; P<0.05, and the MDD group presented lower Oxy-Hb activation in the right DLPFC (channels 27, 33, and 41; P<0.05 and the left DLPFC (channels 39 and 45; P<0.05. Conclusion. Abnormal hemodynamics of the left DLPFC can differentiate MD from MDD by NIRS.

  17. Multiparametric MR assessment of pediatric brain tumors

    International Nuclear Information System (INIS)

    Tzika, A.A.; Astrakas, L.G.; Zarifi, M.K.; Petridou, N.; Young-Poussaint, T.; Goumnerova, L.; Black, P.McL.; Zurakowski, D.; Anthony, D.C.

    2003-01-01

    MR assessment of pediatric brain tumors has expanded to include physiologic information related to cellular metabolites, hemodynamic and diffusion parameters. The purpose of this study was to investigate the relationship between MR and proton MR spectroscopic imaging in children with primary brain tumors. Twenty-one patients (mean age 9 years) with histologically verified brain tumors underwent conventional MR imaging, hemodynamic MR imaging (HMRI) and proton MR spectroscopic imaging (MRSI). Fourteen patients also had diffusion-weighted MR imaging (DWMRI). Metabolic indices including choline-containing compounds (Cho), total creatine (tCr) and lipids/lactate (L) were derived by proton MRSI, relative cerebral blood volume (rCBV) by HMRI, and apparent tissue water diffusion coefficients (ADC) by DWMRI. Variables were examined by linear regression and correlation as well as by ANOVA. Cho (suggestive of tumor cellularity and proliferative activity) correlated positively with rCBV, while the relationship between Cho and ADC (suggestive of cellular density) was inverse (P<0.001). The relationship between rCBV and ADC was also inverse (P=0.004). Cho and lipids (suggestive of necrosis and/or apoptosis) were not significantly correlated (P=0.51). A positive relationship was found between lipids and ADC (P=0.002). The relationships between Cho, rCBV, ADC and lipids signify that tumor physiology is influenced by the tumor's physical and chemical environment. Normalized Cho and lipids distinguished high-grade from low-grade tumors (P<0.05). Multiparametric MR imaging using MRSI, HMRI and DWMRI enhances assessment of brain tumors in children and improves our understanding of tumor physiology while promising to distinguish higher- from lower-malignancy tumors, a distinction that is particularly clinically important among inoperable tumors. (orig.)

  18. Variability of hemodynamic parameters in young healthy subjects with and without hypertensive family history

    International Nuclear Information System (INIS)

    Palombo, C.; Michelassi, C.; Ghione, S.

    1987-01-01

    In order to assess the short-term variability of the hemodynamic pattern in healthy normal subjects, Transcutaneous Aortovelography, a continuous wave Doppler technique, was performed in 17 normotensive males, 11 with and 6 without hypertensive family history and repeated after 30'. Reproducibility of measurements in the whole sample was comparable with previous observation reported in literature, but in the group with a positive family history of hypertension the reproducibility of most parameters was lower than in the other, suggesting the existence of a greater hemodynamic variability in normotensive offspring of hypertensive parents

  19. Hemodynamic and neuroendocrine responses to changes in sodium intake in compensated heart failure

    DEFF Research Database (Denmark)

    Damgaard, Morten; Norsk, Peter; Gustafsson, Finn

    2005-01-01

    inhibitors and beta-adrenoreceptor blockers. Therefore, we determined the hemodynamic and neuroendocrine responses to 1 wk of a low-sodium diet (70 mmol/day) and 1 wk of a high-sodium diet (250 mmol/day) in 12 HF patients and 12 age-matched controls in a randomized, balanced fashion. During steady......-state conditions, hemodynamic and neuroendocrine examinations were performed at rest and during bicycle exercise. In seated HF patients, high sodium intake increased body weight (1.6 +/- 0.4%), plasma volume (9 +/- 2%), cardiac index (14 +/- 6%), and stroke volume index (21 +/- 5%), whereas mean arterial pressure...

  20. Is there a specific hemodynamic effect in reflexology? A systematic review of randomized controlled trials.

    Science.gov (United States)

    Jones, Jenny; Thomson, Patricia; Irvine, Kathleen; Leslie, Stephen J

    2013-04-01

    Reflexology claims that the feet are representative of the body and that massage to specific points of the feet increases blood supply to "mapped" organs in the body. This review provides the first systematic evaluation of existing reflexology randomized controlled trials (RCTs) to determine whether there is any evidence to suggest the existence of a reflexology treatment-related hemodynamic effect; to examine whether reflexology researchers used study designs that systematically controlled for nonspecific effects in order to isolate this specific component; and to highlight some of the methodological challenges that need to be overcome to demonstrate specific and beneficial hemodynamic effects. Fifty-two RCTs of reflexology published from 1990 to September 2011 were initially retrieved. Cardiorespiratory Department, Highland Heartbeat Centre, Raigmore Hospital, Inverness. Adult subjects. Studies using reflexology foot massage techniques as the intervention versus sham reflexology treatment, simple foot massage, conventional treatment, or no treatment as the control were then selected. OUTCOME MEASURES included any hemodynamic parameter potentially involved in the regulation of circulating blood volume and flow, including heart rate and systolic and diastolic arterial blood pressure. Seven RCTs suggested that reflexology has an effect on selected cardiovascular parameters; however, five of these delivered the reflexology intervention as a whole complex treatment, with the data collector often delivering the intervention themselves. This systematic review found that although reflexology has been shown to have an effect on selected hemodynamic variables, the lack of methodological control for nonspecific general massage effects means that there is little convincing evidence at this time to suggest the existence of a specific treatment-related hemodynamic effect. Furthermore, the review found that few studies of reflexology controlled for nonspecific effects in order

  1. Vegetative and hemodynamic responses to stress in adolescents with constitutional-exogenous obesity and vascular dystonia of hypertensive type

    OpenAIRE

    Larina, N.

    2011-01-01

    We studied the characteristics of central hemodynamics and autonomic responses to cold and psycho-emotional test in adolescents with obesity and vascular dystonia of hypertensive type. Various options for the autonomic responses accompanied by changes in central hemodynamics as a function of body weight have been identified.

  2. Comparison of gabapentin, pregabalin and placebo as premedication for attenuation of hemodynamic response to laryngoscopy and endotracheal intubation

    Directory of Open Access Journals (Sweden)

    Alireza Mahoori

    2017-08-01

    Conclusion: Oral gabapentin premedication is effective for control of hemodynamic pressor response of laryngoscopy and tracheal intubation. The study data showed that the pregabalin have the same effect. Pregabalin and gabapentin are both useful and safe for control of hemodynamic pressor response as premedication.

  3. How to measure renal artery stenosis - a retrospective comparison of morphological measurement approaches in relation to hemodynamic s